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ABSTRACT

Most embedded applications are constructed with multiple threads to handle con-

current events. For optimization and debugging of the programs, dynamic program

analysis is widely used to collect execution information while the program is running.

Unfortunately, the non-deterministic behavior of multithreaded embedded software

makes the dynamic analysis difficult. In addition, instrumentation overhead for gath-

ering execution information may change the execution of a program, and lead to

distorted analysis results, i.e., probe effect. This thesis presents a framework that

tackles the non-determinism and probe effect incurred in dynamic analysis of embed-

ded software. The thesis largely consists of three parts. First of all, we discusses

a deterministic replay framework to provide reproducible execution. Once a pro-

gram execution is recorded, software instrumentation can be safely applied during

replay without probe effect. Second, a discussion of probe effect is presented and

a simulation-based analysis is proposed to detect execution changes of a program

caused by instrumentation overhead. The simulation-based analysis examines if the

recording instrumentation changes the original program execution. Lastly, the thesis

discusses data race detection algorithms that help to remove data races for correctness

of the replay and the simulation-based analysis. The focus is to make the detection ef-

ficient for C/C++ programs, and to increase scalability of the detection on multi-core

machines.
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Chapter 1

INTRODUCTION

1.1 Motivation

Dynamic program analysis is widely used to collect execution information while

programs are running. The approach is widely used to aid optimization and debugging

of the programs. However, the non-deterministic behavior of embedded software

and probe effect [22] make it a challenging task as embedded applications are often

constructed with multiple threads and I/O operations.

In Tables 1.1 and 1.2, the probe effect is illustrated in the execution of two em-

bedded programs. The two programs are based on the class projects of Embedded

Systems Programming [4] in Arizona State University. The first program is a QT [91]

application which draws lines following the inputs of mouse movement. The program

consists of three threads. The first thread receives mouse movement packets and sends

them to a POSIX message queue (MQ). The second thread receives the input packets

from the MQ and draws lines on a display device. The last thread performs a line

detection algorithm with the received mouse inputs. We collected mouse movement

at a normal sampling rate of 300 inputs per second and then fed the inputs to the

application with variant speeds. If the first thread was delayed and was not ready to

receive an input, we counted it as a missed input. The program is instrumented using

two dynamic analysis tools, i.e., the cache simulator using PIN [29] and our imple-

mentation of the FastTrack data race detector [19]. The workload of the program is

very light as it only spends less than 10% of CPU time. However, the instrumented

execution may miss up to 45% of the inputs. The impact of probe effect caused by the

1



 
        

inputs/sec 
Native 

execution 

PIN 

Cache 
Race detector 

150 0.0% 16.8% 0.3% 

300 0.0% 36.1% 1.2% 

450 0.0% 45.5% 1.9% 

Table 1.1: QT Application with Mouse Inputs (% of inputs missed out of 4445
mouse movement inputs)

 Queue 

Length 

Native 

execution 

PIN 

Cache 
Race detector 

5 1.3/7.5 8.3/191.9 5.5/56.3 

10 0.5/8 2.5/146.8 2.4/37.9 

Table 1.2: POSIX Message Queue Application (# of Queue full/# of Queue empty)

instrumentation is obvious since analysis results may be misleading when the input

data are missed.

The second program shown in Table 1.2 is a MQ (Message Queue) test program

with six threads and two MQs. The two sender threads send items to the first MQ

and the two router threads receive the items from the first MQ and send them to the

second MQ with timestamps. Finally, two receiver threads receive the items from the

second MQ. We used asynchronous functions for queue operations and, if a queue is

empty or full, the thread sleeps a fixed time interval and retries. We count the numbers

of occurrences that the queues become empty or full as a way of measuring different

program behaviors. In this program, there is no external environment affecting the

program execution, but the execution is determined by order of thread executions on

the shared MQs. As the results show, instrumentation overhead from the tools has

changed the relative ordering of thread operations on the shared MQs which, in turn,

leads to different status of the message queues.

The other concern, followed by the data shown in Tables 1.1 and 1.2, is that

it will be very hard to know if there exists any probe effect from the execution of

instrumented program. If we take any amount of measurement to examine probe

effect, the measurement itself would incur instrumentation overhead that can lead
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to execution divergence. Even if we know that there were some changes in program

execution, we still would not be able to know how the changes affect the results of

the analysis.

1.2 Contributions

The goals of this thesis are to provide (1) a reproducible execution environment

such that software instrumentation can be applied without any changes of program

execution, and (2) analysis frameworks for probe effect and data race detections which

are essential for building the reproducible execution environment.

1.2.1 Reproducible Execution

To provide a reproducible execution environment, we consider a record and replay

framework. First a program execution is recorded. Second, we apply software instru-

mentation on replayed execution. If the replay guarantees the same execution as the

record, dynamic analyses with the instrumentation can be safely performed without

worrying about execution changes of the program. In the record and replay frame-

work, the key is to have minimal recording overhead. Since the recording operation

itself is instrumenting the program, the recording overhead can change the program

execution.

To provide minimal recording overhead, we model a program execution as a partial

order of synchronization and I/O events, i.e., the happens-before relation [39]. In

other words, two executions of a program are same if and only if the partial orders

from the two executions are identical. In our record and replay, we record a partial

order of synchronization and I/O events, and we guarantee the same execution as the

recorded one by enforcing the same partial order during the replay.
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1.2.2 Probe Effect Analysis

It is perceivable that any recording operation should incur some instrumentation

overhead since the execution of the recording itself would have caused perturbation

to the original execution. We provide a simulation-based analysis for embedded soft-

ware to detect any variations of event ordering caused by instrumentation overhead.

The simulation-based analysis examines if the recording instrumentation changes the

original program execution.

1.2.3 Data Race Detection

In our program execution model, we only consider synchronization and I/O events.

However, the deterministic replay and the simulation-based analysis might not suc-

ceed in the presence of data races. For this end, this thesis describes the data race

detection algorithms that help to remove data races. The algorithms are designed for

efficient data race detection for C/C++ programs on multi-core machines. The race

detector has low runtime and memory overheads by enabling large detection gran-

ularity, and we have further improved the performance and increased scalability on

multi-core machines by decoupling data race detection from application execution.

1.3 Overview

Figure 1.1 illustrates an overview of this thesis. In the following chapter, we

present an overview of background on which this thesis is built.

Chapter 3 describes our deterministic replay. We present the construction of our

replay followed by the effectiveness of dynamic analysis of embedded software using

the replay.

Chapter 4 discusses the probe effect analysis for multithreaded embedded software.
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Figure 1.1: Dissertation Overview. The program under test is executed with record-
ing operations. A recorded execution is reproduced and analyzed in replayed execu-
tions. Probe effect that might be induced by the recording is checked before replay.
Data races are detected and removed when the replay fails.

The simulation-based analysis can detect any changes of program execution based on

our modeling of multithreaded program execution.

Chapter 5 describes a data race detection algorithm for C/C++ programs. Based

on the FastTrack algorithm [19], we build an efficient data race detector for C/C++

programs by utilizing large detection granularity during runtime.

Chapter 6 discusses how a data race detection can be parallelized by decoupling

race detection from application execution. We show the effectiveness of our approach

by parallelizing the FastTrack detector [19].

Chapter 7 concludes the thesis. We summarize our contributions and discuss our

future work.
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Chapter 2

BACKGROUND

2.1 Happens-before Relation

The happens-before relation [39] over the set of events in a program execution,

denoted “→”, is the smallest relation satisfying,

• Program order: If a and b are in the same thread and a occurs before b, then

a→b.

• Synchronization 1 : If a is a release operation of synchronization object (e.g.,

unlock) and b is the subsequent acquiring operation on the same object (e.g.,

lock), then a→b.

• Transitivity: If a→b and b→c, then a→c.

The happens-before relation implies a partial ordering of events. Two operations,

a and b, are concurrent if they are not ordered by the happens-before relation, i.e.,

a9b and b9a. An example of the happens-before relation in a program execution

is shown in Figure 2.1.

An event, as a sequence of instructions that a program executes, defines a par-

ticular action (e.g., system call, memory read/write). We consider only a particular

set of events for the underling system. In the deterministic replay (Chapter 3) and

the probe effect analysis (Chapter 4), program execution is represented by a set of

synchronization and I/O events. For the data race detection (Chapter 5 & 6), the

1Communication primitives such as message send and receive can be similarly defined. In this
thesis, we discuss thread interactions only in terms of synchronization for clarity.
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Thread 0 Thread 1
<1> <1>

<2>

<3>

<4>

<5>

L1

U1

L2

U2

W1

W2
W3

L1 →  U1 : Program order
U1 →  L2 : Synchronization
W1 → W2 : Transitivity

Figure 2.1: An Example of the Happens-before Relation and Logical Clocks in a
Program Execution. The events L1 and L2, and U1 and U2 are lock and unlock
operations for the same lock object, respectively. The events W1 to W3 are memory
write operations. The numbers on the right of each thread are logical clocks updated
for the event executions.

execution of a program consists of memory read and write events as well as synchro-

nization and I/O events.

2.2 Logical Clock

In this section, we discuss the logical clock [39] which is the building block for

vector clock defined in Section 2.3. We define a clock Ci for each thread i, and Ci

is a function which assigns a number Ci(a) to an event a in that thread. The clock

Ci is logical rather than a physical clock since we do not assume any physical timing

mechanism. For the correctness of the system, we need to ensure that if an event a

happens-before another event b, then the logical clock values for events a and b should

represent the relation as in a physical clock system. The condition can be stated as

follows,

Clock Condition. For any events a and b:

if a→b, then C(a) < C(b)

To satisfy the Clock Condition, the logical clock Ci is updated with the following

update rule:

• UR1. Each thread i increments Ci on every synchronization event.

• UR2. (1) If a is a release operation of a synchronization object s (e.g., unlock(s))
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Thread 0

<1,1> <1,1>

<2,1>

<3,1>

<3,2>

<3,3>

L1

U1

L2

U2

W1

W2
W3

CBA →  CBC

CBB and  CBC are concurrentCode Block CBA

Code Block CBB

Code Block CBC

Thread 1

Figure 2.2: An Example of Vector Clocks in a Program Execution. For the same
execution as in Figure 2.1, we illustrate vector clocks updates for each thread.

by thread i, then the logical clock of the synchronization object s, Cs, is set to

the timestamp of a, i.e., Cs=Ci(a) (2) On the subsequent acquiring operation on

the same object s (e.g., lock(s)) by thread j, thread j sets Cj as the maximum

of its present value and Cs.

In Figure 2.1, we show an example of happens-before relations with logical clock

updates. In the example, since W1 happens-before W2, C(W1) = 2 < C(W2) = 4.

Note that the converse of the Clock Condition does not hold. Hence, for a given

program execution with logical clocks for events, we are not able to find out the

partial ordering of events in the execution. In the following section, we show how we

can decide if two events are ordered by the happens-before relation given a collection

of logical clock information .

2.3 Vector Clock

A vector clock is [14] is an array of logical clocks for all threads. Each thread i

has a vector clock Ti and the vector clock is indexed with a thread id. For instance,

in Figure 2.2, T1[0] gives the logical clock of thread 0 in thread 1’s vector clock, and

after event L2, T1[0] = 3. The execution of a thread is logically divided into code

blocks by synchronization operations.

The vector clock for each thread is updated similarly as in the logical clock update
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in Section 2.2.

• VUR1. On a synchronization operation 2 in thread i, the vector clock entry

for the thread is incremented, i.e., Ti[i]++.

• VUR2. Each synchronization object also maintains a vector clock to convey

synchronization information from a releasing thread to the subsequent acquiring

thread. At a release operation of object s by thread i, the vector clock for the

object s is updated to the element-wise maximum of vector clocks of thread i

and object s. Upon the subsequent acquire operation of the object s by thread

j, the vector clock for thread j is updated as the element-wise maximum of

vector clocks of thread j and object s.

With VUR1 and VUR2, each element of a vector clock contains synchronization

information for the corresponding thread. For instance, Ti[j] is the current logical

clock for thread j that has been observed by thread i. If there has not been any

synchronization from thread j to thread i either directly or transitively, Ti[j] will

keep the initialization value.

With the vector clocks in a program execution, we can decide if two events are

ordered by the happens-before relation. Consider two vector clocks Va and Vb for

events a and b, respectively. We define “@” as ordering vector clocks in a element-

wise manner such that Va @ Vb if for all thread indexes i, the element of Va is smaller

than the element of Vb, i.e., ∀i : Va[i] < Vb[i]. Then, the happens-before relation

between a and b can be decided as follows:

a→b, if Va @ Vb

2In a vector clock based race detection (Chapter 5 & 6), a thread’s vector clock is incremented only
for release operations. For the consistent discussion with Section 2.2, we consider all synchronization
operations.
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As examples, consider the code blocks 3 CBA, CBB , and CBC in Figure 2.2.

Let vector clocks of all events in CBA, CBB , and CBC be VCBA
, VCBB

, and VCBC
,

respectively. Since VCBA
=< 2, 1 >@ VCBC

=< 3, 2 >, andW1 ∈ CBA andW2 ∈ CBC ,

W1→W2. Also consider W3 and W2. Since VCBB
=< 3, 1 >6@ VCBC

=< 3, 2 >, and

W3 ∈ CBB and W2 ∈ CBC , W3 and W2 are concurrent.

3We discuss memory read/write events with being in code blocks for the sake of simplicity. The
detailed descriptions are presented in Chapter 5.
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Chapter 3

RECORD AND REPLAY

For program optimization and debugging, dynamic analysis tools, e.g., profiler, de-

bugger, are widely used. To gather execution information, software instrumentation

is often employed for its portability and convenience. Unfortunately, instrumentation

overhead may change the execution of a program and lead to distorted analysis re-

sults, i.e., probe effect. Even without software instrumentation and with the same

input data, consecutive runs may result in different executions. In embedded software

which usually consists of multiple threads and external inputs, program executions

are determined by the timing of external inputs and the order of thread executions.

Hence, probe effect/non-deterministic program execution incurred in an analysis of

embedded software will be more prominent than in desktop software. This chapter

presents a reliable dynamic analysis method for embedded software using determin-

istic replay. The idea is to record thread executions and I/O operations with mini-

mal record overhead and to apply dynamic analysis tools in replayed execution. In

this chapter, we describe our record/replay framework [43, 83], based on Lamport’s

happens-before relation [39], and show that how dynamic analyses can be managed

in the replay execution as if the program execution is deterministic regardless of any

instrumentation.

3.1 Introduction

Dynamic program analysis is widely used to collect execution information while

programs are running. The approach is widely applied to aid optimization and debug-

ging of the programs. For the collection and analysis of program execution, software
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instrumentation is often employed for its portability and convenience. For instance,

dynamic binary instrumentation tools such as Intel PIN [29] and Valgrind [61] are

most commonly used since they do not require source code and recompilation of pro-

gram. However, instrumentation overhead from the tools is very high no matter how

trivial the analysis is.

The instrumentation overhead can perturb the execution of a program and lead

to different execution paths, and consequently misrepresent analysis results. This is

so called the probe effect [22]. One example is the delayed executions of input events

caused by the instrumentation overhead. Consequently, arriving external inputs may

be lost or the deadlines for real-time applications may be missed. The instrumentation

overhead may also lead to different order of thread operations on a shared resource

and produce different execution results.

In the cyclic debugging process, breakpoints are set in the program and the ap-

plication is re-run. Thus, the cause of the failure can be observed. As long as each

execution is deterministic and repeatable, the cause of the observed failure can be

reproduced and identified. However, the program execution can be non-deterministic

and non-reproducible as input events can be delayed or O/S internal states (e.g.,

run-queue state) can be changed due to the pauses of the execution.

In embedded systems, applications run with multiple threads interacting with

each other as they share resources, and the execution of threads is often triggered by

external inputs. Hence, embedded software will be sensitive to probe effect caused by

instrumentation overhead as the timing of input events and the order of thread execu-

tions can be easily deformed. On the other hand, probe effect and non-deterministic

program execution are less concerns in desktop applications which usually perform

predefined work load (e.g., file input) with fixed loop counts. Even if there were exe-

cution changes due to the uses of analysis tools, analysis results would be amortized
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with repeated executions of the same code, e.g., consistent data races and call-path

analysis results. In Tables 1.1 and 1.2, we have shown examples of probe effect caused

by instrumentation overhead; the instrumentation overhead has changed the program

executions such that the program missed input data and the interaction of threads

has been deformed.

To make dynamic analysis tools as non-intrusive as possible, hardware-based dy-

namic analyses can be used. Intel Vtune Amplifier XE [28] exploits on-chip hardware

for application profiling. ARM RealView Profiler [5] supports non-intrusive profiling

using dedicated hardware or simulator. However, they are specific for performance

profiling and do not support the analyses that require significant processing capabil-

ities. Sampling based analyses [9, 21, 28, 50, 108] can also be used, but the analysis

accuracy decreases when sampling rate is reduced to limit any measurement overhead.

For debugging multithreaded programs, one may claim that the existing debugging

tools [2, 20, 75] can be used. Although the tools include the functions of setting up

breakpoint, single stepping and monitoring at thread level, they do not ensure the

reproduction of execution behavior that is required in cyclic debugging. Hence, the

developers are responsible for feeding external signals synchronously, and he/she need

to manually schedule threads to reproduce the bugs.

Researchers have proposed deterministic replays [7, 24, 41, 42, 52, 68, 76, 77, 97,

104] to reproduce program execution. That is, developers may record a failed run of

a program and analyze the failed execution during replay. However, in those works

the overhead during recording will be too high such that the recorded execution itself

may change the program execution, and none of them have discussed the capabilities

and functionalities that replay phase can provide to users.

In this chapter, we present a dynamic program analysis for embedded software

using deterministic replay. The idea is to record thread executions and I/O events
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with a minimal recording overhead, and the program execution is analyzed with

analysis tool/debugger during replayed executions. For this end we have developed

a deterministic replay framework [43, 83]. The design goal is to minimize recording

overhead to prevent probe effect during recording and to have minimal disturbance

on analyzed program executions during replaying. The contributions of this chapter

are:

1. We present a dynamic analysis method that makes analyses of a program fea-

sible and faithful, and expedites the debugging and optimization process for

embedded programs.

2. We present a record/replay framework that can be incorporated with dynamic

analysis tools.

3. We present an overhead analysis of replay which can be incorporated in thread

profilers for accurate measurements of thread execution time.

The rest of chapter is organized as follows. In the following section, the dynamic

analysis method with deterministic replay is described. Section 3.3 presents the design

and implementation of the deterministic replay, and Section 3.4 describes the overhead

analysis of replay. In Section 3.5, we present the performance evaluation of the record

and replay, and the accuracy of dynamic analysis with the deterministic replay. A

concise survey of related work is described in Section 3.6 and we conclude this chapter

in Section 3.7.

3.2 Dynamic Analysis with Execution Replay

For dynamic analysis of a program, instrumentation overhead is not avoidable

whatever optimization techniques are used. During a cyclic debugging, pausing a

thread execution is inevitable to stepping through the thread. The overhead/pausing
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Figure 3.1: Dynamic Analyses with Execution Replay.

can result in different execution behavior. It is possible to repeat the same analysis

again and again hoping that eventually we see the true program behavior without

the overhead. This repeated running is not even feasible if the program execution

depends on the timing of external inputs. Consider the idea of using a record/replay

framework for dynamic analysis as shown in Figure 3.1. First, an execution of a

program is recorded. If the overhead of recording is insignificant to avoid probe

effect by the recording overhead itself, we can assume that the recorded execution is

as same as the original program execution. Second, we apply dynamic analyses on

the replayed execution which has the same thread executions and I/O events as the

recorded one. Thus, the analyzed program will be executed as if there is no execution

change by instrumentation. In addition, we can pause and resume any thread during

debugging without worrying about execution changes.

Moreover, analysis of program can be expedited with reproducible execution.

When we find an unexpected execution during testing of a program, the first step

will be to locate the cause of the problem. We may need to run various analysis tools

to locate the cause. This will be very time consuming and multiple trials may be

needed since it can be hard to reproduce the execution given the significant overhead

of the analysis tools. Instead, we record the program execution during the test run.

As the execution is reproducible in replayed execution, analysis runs can be performed

in the same program execution.
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With a deterministic replay, execution times of a thread can be precisely calcu-

lated. In thread profiling, execution time of each function is measured for each thread.

Since there can be probe effect caused by the measurements, researchers have pro-

posed several execution time estimation algorithms [49, 103] that recover the real

execution time without the measurement overheads. In the approaches, the real exe-

cution time can be recovered with the considerations of three factors: 1) thread local

measurement overhead, 2) event reordering, and 3) execution time difference due to

the event reordering. As an example of the factors 2) and 3), consider the take and

give operations performed on a semaphore. Assume that in the real execution, the

semaphore is given first and is taken afterward. Hence there is no blocking. In the

instrumented execution, if the semaphore give operation had started late due to the

delay of instrumentation overhead, then the thread taking the semaphore would have

been blocked. The estimation algorithms [49, 103] can account for the blocking time

and then reorder the events. However, if there is a change of program execution path,

then there will be no way to recover the real execution.

To avoid the above-mentioned problem, thread profiling can be applied in a re-

played execution. Note that the execution with the profiling is deterministic as the

event reordering is handled by the replay scheduling. The overhead compensation

for the reordering events is no longer needed. Therefore, as long as we can identify

the overhead caused by the replay mechanism, the total overhead from the thread

profiling tool on a replayed execution is simply the sum of the replay overhead and

the thread local measurement overhead from the profiler.

3.3 Record and Replay

In this section, we describe our record/replay framework. The framework is de-

signed to have minimal record and replay overheads. To enable execution replay,
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we consider the happens-before relation [39] among events which are execution in-

stances of synchronization or IO function calls. The record/replay operations are

implemented in the wrapper functions for events. The happens-before relation over

a set of events in a program’s execution is logged during recorded execution and is

used to guide the thread execution sequence in execution replay.

In the deterministic framework, a data race detector is included as an analysis tool

and for managing execution replay in the presence of data races. It also provides an

approach for recovering real execution time without measurement overhead of thread

profilers (presented in Section 3.4).

3.3.1 Record and Replay Operations

During recording operation, happens-before relations for all events in a program

execution are traced and saved into a log file, and the same happens-before relations

are to be enforced during execution replay.

A general approach [76] to obtain the happens-before relation is to use Lamport

clock [39]. In the approach, a Lamport clock is maintained for each thread and the

clock is incremented and synchronized by the happens-before relation as explained in

Section 2.2. A timestamp (Lamport clock value) is attached to each recorded event.

During the subsequent replay operations, the corresponding event is delayed until

all other events having smaller clock values are executed. For instance, consider the

execution of event b and let C be a function that returns Lamport clock value for an

event. For any other event a, C(a) < C(b) implies that a→b and event a has already

been executed, or events a and b are concurrent. Therefore, it is safe to execute

event b without violation of the happens-before relation. This can enforce a stronger

condition than necessary for replaying the partially ordered events as we are also

considering events that are concurrent. In our approach, we use a global sequence
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number to order the events traced in recording operation. This sequence represents

a total order of events and is used to index the set of events during execution replay.

To identify the happens-before ordering, the event log of an event consists of the

two sequence numbers for the event itself and the event immediately before it, plus

thread id, the function type and arguments for the event. For instance, for event b,

let a be the event happened before b immediately. For the execution of event b, the

sequence numbers of both events a and b are recorded in the event log of event b.

For an input event, the received input is saved into the log file as well. All logging

operations are performed in a dedicated logging thread to avoid possible jitters caused

by file operations.

In a subsequent replay operation, an event table is constructed from the recorded

log. The event table contains a list of events for each thread. Using the sequence

numbers in the record log, events are indexed to represent the happens-before rela-

tions. Thus, based on the table, the next event for each thread that is eligible for

execution can be identified and the same happens-before relations as the recorded

ones are used to schedule thread execution.

In our initial version of replay [43], the replay scheduling is performed inside GDB.

That is, the GDB thread module is modified to schedule thread executions according

to the recorded partial order of events. The GDB command “set scheduler-locking

on” is used to lock the Linux scheduler and a breakpoint is set at each event for

checking happened-before relations. The GDB command “thread thread-num” is used

for switching to a thread numbered “thread-num”. This approach can be efficient in

debugging of a program as the replay scheduling and the debugging capabilities are in

the same software module. However, the uses of replay are limited only for debugging

of a program. Hence, in our latest version [83] the replay scheduling is performed

inside replay wrapper functions. Thus, the replay operation is implemented purely in
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application level, and the uses of replay is as general as possible.

In our latest version of replay, a replay wrapper function for each event (e.g.,

pthread mutex lock()) consists of three parts. Firstly, a thread looks up the event

table for the events happened before its current event. If any of the events that

should be happened before are not executed, the thread is suspended waiting for a

conditional variable. In the second part, when a thread can proceed with its current

event, the thread carries out the original function. If the function is for an input

event, the thread reads input value from the log file instead of actual reading from

an I/O device. Lastly, the event for this wrapper function is marked as executed and

the thread wakes up (signal) other threads waiting for the execution of this event.

Note that the total order of events based on the sequence numbering is used only

for indexing events and the replay operation follows the same partial order as in the

recorded execution.

3.3.2 Handling Data Races

For efficient record and replay operations, only synchronization and I/O events

are considered. However, one drawback is that a replay may not be correct in the

presence of data races. A data race occurs when a shared variable is accessed by two

different threads that are not ordered by any happens-before relation and at least

one of the accesses is a write. Assume that, as an example, in the recorded execution

there is a data race on a variable that is used to decide alternative execution paths.

The presence of the data race implies that the order of accessing the variable is not

recorded. Hence, if an alternate accessing order from the record one is chosen in

replayed execution, the replayed program may take a different execution path, and

the replay is not reproducing the same execution as the record anymore.

We use a similar approach as RecPlay [76] to handle the presence of data races
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in replaying operations. RecPlay records an execution of a program as if there is

no data race and any occurrences of data races are checked during replay operation

using a data race detection tool. If data races are found, the races are removed and

record and replay operations are repeated. The approach is correct since a replayed

execution is correct up to the point where the first race occurs as shown in [10].

However, a data race detector incurs a substantial runtime overhead. Note that not

every data race causes execution path changes. Hence, it may not be practical to fix

every data race during replaying operations.

Instead of replaying a race-free program, our replay detects the occurrence of an

unexpected event. The detection of an unexpected event is done in the replay wrapper

by comparing the current events with the events in the record log. The detection of an

unexpected event stops the replay with the location of the unexpected event. Then,

the race can be detected with a data race detector and fixed. After fixing the race

that results in different execution path, the replay can be safely used with various

analysis tools including a data race detector for detecting races that cause errors other

than a change of execution paths.

We have implemented a data race detector for C/C++ programs based on Fast-

Track [19] and the detector is modified to be integrated with our deterministic replay.

The FastTrack algorithm detects data races based on happens-before relations in a

program execution. However, the replay scheduler invokes additional locking oper-

ations which appear as extra happens-before relations for the FastTrack detector.

As a consequence, some data races may not be detected in the replayed execution.

To correct the missed detections, we alter the FastTrack approach to discount the

synchronization operation introduced by the replay scheduler.
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Figure 3.2: Examples of Replay Minima/Maxima. (a): replay minima on event e1.
Only events e2, e3, and e4 are executed since they are the minimum set of events to
reach e1. (b): replay maxima on event e1. All events except e7 and e8 are executed
since events e7 and e8 can be executed only after event e1 is executed.

3.3.3 Debugging Support

During a replay, the execution follows the same partial order graph of events

as in the recorded execution. Hence, given the partial order graph, there can be

many different orders of event executions. We provide two debugging modes for more

controllable executions of threads:

1. Replay Minima : For a selected event in a thread, the events of other threads

will be executed only if they are happened before the selected event. That

is, only the minimum amount of executions to reach the selected events are

executed.

2. Replay Maxima : For a selected event in a thread, other thread can proceed

until there is a happens-before dependency on the selected event. That is, the

maximum amount of executions before the selected events are executed to see

how far the impact of the selected event can stretch.
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(a) Compiling for Record/Replay

(b) Menu of Replay Commands

Figure 3.3: Debugging Support in Eclipse.

Figure 3.4: Displaying Events and Threads in Eclipse. The executed events are
colored in red. The line between two events represents the happens-before relation.

Examples of replay minima/maxima are shown in Figure 3.2. The two debug-

ging modes are incorporated into GDB by adding two GDB commands, “set re-

play minima” and “set replay maxima”. GDB communicates with the record/replay

library through log files for the control of each event.

We provide a graphical environment in the form of Eclipse [88] plug-ins. The

Eclipse plug-ins includes interfaces to automate compiling process for record/replay

and to support the two debugging modes. The Eclipse environment also displays

threads and events during a debugging session. Figures 3.3 and 3.4 shows the Eclipse

supports for debugging.

3.4 Execution Time Estimation

In this section, we present an approximation approach to estimate execution time

that can account for the overheads of replay operation and thread profilers. First,

we present the algorithm that can estimate the real execution time without replay at
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program level. Second, the algorithm is refined to estimate the real execution time

at thread level without the overheads of profilers and replay operation. The replay

overhead is approximated based on the assumptions that 1) threads run on multiple

cores, 2) events are evenly distributed to each core, 3) the record overheads for all

event types are same, and 4) the number of worker threads is greater than or equal

to the number of cores.

3.4.1 Execution Time Estimation at Program Level

The estimated execution time of a program execution, Cestimate, can be calculated

by subtracting the replay overhead Oreplay from the replayed execution time Creplay,

such that,

Cestimate = Creplay −Oreplay (3.1)

The replay overhead Oreplay is the sum of 1) replay initialization time Cinit, 2) extra

execution time (CPU time), Ce, spent in replay wrapper functions, and 3) blocking

time, Bu, by the replay scheduling that leads to extra delay of replay execution, such

that,

Oreplay = Cinit + Ce +Bu (3.2)

The replay initialization is processing the log file and preparing the event table before

the replayed program runs. Hence it runs on a single core.

The extra execution time Ce is the sum of overheads for two different cases of

event executions. The replay has two different program paths for an event execution

depending on whether the event can proceed without blocking or not. For instance,

consider two events a and b with a→b. The execution of event b can be delayed until

event a is executed, or can be executed with no-delay if event a has already been

executed. The two possible ways of event executions contribute to various amount of

overheads, thus we account them differently. Let nnd and nd be the numbers of events
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of no-delay and delayed executions, respectively. Let cnd and cd be the execution time

for a no-delay and the execution time for a delayed event, respectively. Then, Ce is

expressed as,

Ce = nnd ∗ cnd + nd ∗ cd (3.3)

The replay overhead should also include extra blocking time (other than extra

execution time) by the replay scheduling. Threads can be blocked by the replay

scheduling in two ways: 1) the global locking used by the replay scheduling blocks

threads, and (2) if a thread tries to execute an event and the partial ordering becomes

different from the record as the result of the event execution, then the reply sched-

uler blocks the thread (delayed event). The blocking of threads leads to additional

execution time only when the number of ready threads becomes less than the number

of cores, i.e., when the cores are underutilized. Let ng be the number of occurrences

that threads are blocked by the global locking and let bg be the average delay caused

by each global locking. Also, let bd be the total execution delay caused by the delayed

events due to the replay scheduling at the end of a replay execution (i.e., the sum of

blocking times of events). Then, Bu is expressed as,

Bu = ng ∗ bg + bd (3.4)

Combining Equations 3.3 and 3.4 into Equation 3.2 gives,

Oreplay = Cinit + nnd ∗ cnd + nd ∗ cd + ng ∗ bg + bd (3.5)

3.4.2 Overhead Measurements

The replay initialization time Cinit, and the counter values, nnd, nd, and ng, can

be measured during a replay execution. The blocking delay, bd, is calculated using the

algorithm in Figure 3.5 based on the utilization of the cores. On the other hand, the

per event overheads, cnd, cd, and bg, are hard to measure online in the execution on
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 n = number of runnable threads //At start of event delay in thread T 
M = number of cores ts-T = get_timestamp(); 
  
//At start of every delayed event //At end of event delay in T 
if ( n==M ) //start measurement te-T = get_timestamp(); 
    ts = get_timestamp(); bT += (te-T - ts-T); 
else if (n < M)        
    tmp =  get_timestamp();    int blocking_overhead(thread T) 
    bd += (tmp- ts )*((M-n)/M);  { 
    ts = tmp;       if T is not blocking from replay  
n--;            return bT;  
       else 
//At end of every delayed event            return \ 
if ( n < M )              (bT + get_timestamp()-ts-T); 
    tmp =  get_timestamp();  } 
    bd += (tmp- ts )*((M-n)/M);  
    ts = tmp;  
n++;  
  

 

Figure 3.5: Calculation of Blocking Time of Events by the Replay Scheduling.
(Left): the time measurement in which the cores are underutilized due to the delayed
events by the replay scheduling. (Right): the measurement of blocking overhead for
a thread T.

multi-core systems. To avoid the online measurement, we assume they can be viewed

as constants for a given system and can be estimated offline using measurement

programs.

The measurement program for cnd consists of multiple threads which invoke their

own locks. Thus, threads are independent of each other and there is no overhead from

delayed events. Hence, nd ∗ cd = 0 and bd = 0. To avoid any idle CPU core caused by

the global locking, extra threads running busy loops and with no synchronization and

IO event are added. Hence, the blocking overhead from the global locking becomes

zero (ng ∗ bg = 0) since all cores are utilized fully. The execution time without replay,

Cm1, is measured and we can assume that Cm1 = Cestimate. Then, with Equations 3.1

and 3.5, cnd can be calculated using the following equation:

Cm1 = Creplay − (Cinit + nnd ∗ cnd) (3.6)

A similar program is used for measuring cd, where a lock is shared among all
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threads. Hence, nd ∗ cd 6= 0. Using the extra threads with busy loops, the program

keeps ng ∗ bg = 0 and bd = 0. Assuming that the execution time without replay, Cm2,

is equal to Cestimate, cd can be calculated using the following equation:

Cm2 = Creplay − (Cinit + nnd ∗ cnd + nd ∗ cd) (3.7)

The remaining constant bg is calculated using a similar measurement program for

measuring cd but without the extra threads and with busy loops.

3.4.3 Execution Time Estimation at Thread Level

In this subsection, we present how we can estimate per-thread replay overhead

based on the estimation algorithm presented in the previous Subsections 3.4.1 and 3.4.2,

and show how the overhead from a thread profiler can be calculated based on the per-

thread overhead estimation. In thread profiling, the execution times of threads’ activ-

ities such as function executions can be measured and analyzed for each thread. As

described in Section 3.2, the measurement overhead from the thread profiler consists

of 1) thread local overhead and 2) execution time differences due to event ordering.

When the profiler runs in a replayed execution, the latter overhead is contained in the

replay overhead for delayed events (nd ∗ cd + bd). Therefore, the total overhead from

the profiling on a replay execution is simply the sum of the replay overhead and the

thread local overhead of the profiler. To estimate the real execution time without the

overheads, we need a per-thread measurement at a given time instant. For instance,

if a function in thread T is invoked at ts and finishes at te, then the execution time

of the function is measured as te − ts. Let Cestimate−T be a function that returns the

estimated execution time of thread T up to a given time instance. Then, the real

execution time of the function can be estimated as, Cestimate−T (te)− Cestimate−T (ts).

We can start the measurements after the initialization of a replay execution, thus
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Cinit = 0. All counter values (nnd, nd, and ng in Equation 3.5) are maintained for

each thread. Note that all per-event measurements (cnd, cd, and bg in Equation 3.5)

are measured for concurrent executions on multiple cores. Hence, the per-event mea-

surements for each thread are approximated considering the number of cores in the

system. Let M be the number of cores in the system. Then, the per-event mea-

surements for each thread, denoted as c′nd, c
′
d, and b′g, can be approximated as the

product of M and cnd, cd, and bg, respectively. The blocking delay, bd, is replaced

with accumulated blocking time for each thread and it can be calculated as shown

in Figure 3.5. Then, the replay overhead in thread T at a given instant t can be

represented as,

Oreplay−T (t) = nnd−T (t) ∗ c′nd + nd−T (t) ∗ c′d + ng−T (t) ∗ b′g + bT (t) (3.8)

Let the thread local overhead from the profiler in thread T up to a given instant

t be Oprofile−T (t). Then, the estimated execution time for thread T at time t can be

expressed as,

Cestimate−T (t) = t− (Oreplay−T (t) +Oprofile−T (t)) (3.9)

3.5 Evaluation

In this section, we show the effectiveness of the analysis approach in replay ex-

ecution through several benchmark experiments. First, we show the overheads of

the record and replay operations. Second, we present the evaluation results of the

execution time estimation algorithm. Lastly, the accuracy of dynamic analyses using

the record and replay is presented. All experiments were performed on an Intel Core

Duo processor running Ubuntu 12.04 with kernel version 3.2.0.

The two programs shown in Section 1.1 are used to illustrate the effect of the

minimized probe effect in record phase. All other experiments were performed with
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11 benchmark programs for desktop computing to reveal the efficiency and accuracy of

the dynamic analysis methods performed in the replay phase. Out of the 11 programs,

8 programs are from the PARSEC-2.1 benchmark suite [8] and 3 programs are from

popular multithreaded applications: FFmpeg [89], a multimedia encoder/decoder;

pbzip2 [30], a parallel version of bzip2; and hmmsearch [15], a sequence search tool

in bioinformatics.

3.5.1 Overheads of Record and Replay Operations

Table 3.1 shows the overheads of the record and replay operations in our de-

terministic replay. “Number of events/sec” column shows the number of recorded

events per second in the execution of each benchmark program. The column shows

a general idea of how much the overheads will be in the record/replay executions as

the record/replay operations are performed in the wrapper functions of the events.

The overheads of record and replay operations are 1.46% and 2.78% on geometric

mean, respectively. The results suggest that the record/replay will be suitable for

dynamic program analysis of embedded software. The record operation would not

have intrusion on the execution, and analysis results during replay will have insignif-

icant amount of interferences (e.g., extra instructions counted from replay operation

for instruction counting profiling) due to replay operation. One exceptional case is

fluidanimate which incurs noticeable record/replay overheads due to a large number

of events in the execution.

Tables 3.2 and 3.3 are the revisits of Tables 1.1 and 1.2 with the additional mea-

sures collected in record phase. For fair comparisons for the QT application, the QT

libraries are not instrumented/analyzed for all analyses including our record opera-

tion, as there is no event to record in the QT libraries. The results in both tables

suggest that the recording operation does not have intrusion on the executions (i.e.,
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 Benchmark  

Program 

Base time 

(sec) 

Record 

(sec) 

Replay 

(sec) 

Number of 

events/sec 

Record 

Overhead  

Replay 

Overhead 

P
A

R
S

E
C

 

facesim 6.050 6.054 6.055 2,200.5 0.07% 0.08% 

ferret 5.027 5.073 5.161 2,066.2 0.92% 2.67% 

fluidanimate 2.054 3.620 4.887 2,163,267.3 76.24% 137.93% 

raytrace 9.823 9.843 9.813 9.8 0.20% -0.10% 

x264 2.196 2.288 2.323 17,487.2 4.19% 5.78% 

canneal 6.643 6.674 6.677 1.5 0.47% 0.51% 

dedup 7.750 8.208 8.711 75,623.9 5.91% 12.40% 

streamcluster 3.781 4.071 4.092 38,417.1 7.67% 8.23% 

 

ffmpeg 3.053 3.052 3.157 3,560.4 -0.03% 3.41% 

pbzip2 5.297 5.396 5.381 622.2 1.87% 1.59% 

hmmsearch 26.550 26.624 26.699 3,644.7 0.28% 0.56% 

Geometric mean         1.46% 2.78% 

Average         9.78% 17.31% 

Table 3.1: Record and Replay Overheads
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150 0.0% 0.0% 16.8% 0.3% 

300 0.0% 0.0% 36.1% 1.2% 

450 0.0% 0.0% 45.5% 1.9% 

 

Table 3.2: Revisit of the QT Application (Table 1.1) with Recording Operations.

no probe effect).

3.5.2 Execution Time Estimation

Based on the overhead analyses in Section 3.4, the replay overhead for each bench-

mark can be measured and calculated with Equation 3.5 and the real execution time

without the replay overhead can be estimated using Equation 3.1. Table 3.4 shows

the estimated execution times and errors. Column 2 and 3 list the measured times
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5 1.3/7.5 1.3/8.1 8.3/191.9 5.5/56.3 

10 0.5/8 0/7.1 2.5/146.8 2.4/37.9 

 

Table 3.3: Revisit of the MQ Application (Table 1.2) with Recording Operations
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facesim 6.050 6.055 6.041 -0.2% 

ferret 5.027 5.161 5.122 1.9% 

fluidanimate 2.054 4.887 2.144 4.4% 

raytrace 9.823 9.813 9.812 -0.1% 

x264 2.196 2.323 2.247 2.3% 

canneal 6.643 6.677 6.677 0.5% 

dedup 7.750 8.711 7.838 1.1% 

streamcluster 3.781 4.092 3.859 2.1% 

ffmpeg 3.053 3.157 3.052 0.0% 

pbzip2 5.297 5.381 5.378 1.5% 

hmmsearch 26.550 26.699 26.595 0.2% 

Average       1.24% 

 

Table 3.4: Execution Time Estimation without Replay Operation.

of the application execution without and with the replay, respectively. Column 4

show the estimated execution times with Equation 3.1. Column 5 lists the estimation

error for each program, i.e., the difference between columns 2 and 4. On average, the

estimation error is only 1.24%.

The replay overhead is classified into the 5 categories as shown in Equation 3.5.

In Figure 3.6, the relative overhead in the 5 categories is illustrated for the four

benchmarks that have more than 5% of replay overhead: fluidanimate, x264, dedup,

and streamcluster. In the chart, the items are correspondent to the five categories

of Equation 3.5 in the order. Two applications, dedup and streamcluster, show rela-

tively more percentages of blocking overhead caused by delayed events (around 50%)

than the other two applications. This is because there have been more per-event

disturbances caused by the replay scheduling than the other two applications.

3.5.3 Accuracy of Analysis in Replay Execution

In this section, we present experimental results to show the accuracy of dynamic

analysis with replay execution. Once we have a recorded execution which is as same

as the original execution, the analysis result in replay execution will be as close
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Figure 3.6: Decomposition of the replay overhead is shown only for benchmarks
that have more than 5% replay overhead

Benchmark 
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Slowdown 
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Without 

replay 

With 

replay 

facesim 140  139  8907 

ferret 86  82  2 

fluidanimate 85  116  1 

raytrace 27  27  13 

x264 74  77  1300 

canneal 12  12  0 

dedup 151  148  0 

streamcluster 244  251  1053 

ffmpeg 120  120  1 

pbzip2 68  69  0 

hmmsearch 83  86  1 

Average 99  103    

 

Table 3.5: Data Race Detection with FastTrack.

as the analysis without any instrumentation. Since it will be very hard to know

what the analysis results will be without any instrumentation 1 , it will be difficult

to compare results using real embedded software (i.e., non-deterministic program

with I/O events). Instead of using embedded software, we use the 11 benchmark

programs (which are for desktop computing) and assume that the programs show no

(or negligible) probe effect from the instrumentation. Therefore, in the experiments

we consider the execution without replay as the original execution.

1We present the idea of revealing the original execution without any instrumentation in Chapter 4
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Benchmark 

Program 

Slowdown 
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Without 

replay 

With 

replay  

facesim 37  37  0 

ferret 50  50  0 

fluidanimate 59  127  7 

raytrace 59  59  0 

x264 77  79  0 

canneal 25  24  0 

dedup 41  43  0 

streamcluster 58  52  4 

ffmpeg 66  66  0 

pbzip2 51  50  1 

hmmsearch 28  29  0 

Average 50  56    

 

Table 3.6: Flat Profiling Comparison with Callgrind.

 

Benchmark 

Program 

Slowdown Cache miss rate - Without replay Cache miss rate - With replay 

Without 

replay 

With 

replay 

L1- 

Instruction 

L1- 

Data 

L2- 

Unified 

L1- 

Instruction 

L1- 

Data 

L2- 

Unified 

facesim 472  462  0.00% 5.92% 12.02% 0.00% 5.92% 12.07% 

ferret 336  341  0.02% 4.73% 16.89% 0.02% 4.74% 16.14% 

fluidanimate 398  731  0.00% 1.15% 17.13% 0.00% 1.58% 18.72% 

raytrace 395  387  0.00% 2.77% 2.23% 0.00% 2.77% 2.23% 

x264 411  424  1.34% 4.07% 8.10% 1.32% 4.07% 9.62% 

canneal 92  91  0.00% 4.06% 43.46% 0.00% 4.08% 43.12% 

dedup 286  301  0.00% 4.06% 7.25% 0.01% 3.93% 7.66% 

streamcluster 395  454  0.00% 6.55% 49.14% 0.00% 6.42% 48.95% 

ffmpeg 478  478  0.01% 4.52% 11.56% 0.01% 4.61% 11.26% 

pbzip2 377  381  0.00% 4.03% 13.54% 0.00% 4.03% 14.40% 

hmmsearch 498  475  0.00% 0.78% 7.14% 0.00% 0.78% 7.10% 

Average 376  411              

Table 3.7: Cache Simulation Results from PIN Cache.

Table 3.5 compares analysis results of the FastTrack race detector with and with-

out replay operation. As shown in the table, the two approaches locate the same data

races. For facesim, there was a data race that may result in different execution paths.

Our replay has detected the unexpected event diverging from the recorded one, and

stops the replay execution. Then, the race is detected with the FastTrack detector

and fixed with correct synchronization. The data in the table shows the detection

result after fixing the race for facesim.

Table 3.6 compares the flat profiling results from the Callgrind profiler [93]. The
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flat profiler lists the functions in decreasing order that have fetched most instructions.

For each benchmark program, we compare the top 10 function entries from normal

program execution and replay execution, and the number of different function entries

is shown in the last column of Table 3.6. There are three cases showing different func-

tion entries. For streamcluster, the function entries are different from the 6th entries

due to the functions invoked for replay execution. However, from the 3rd function

in the list, the functions have used less than 1% of total instructions. Similarly, the

10th function entries are different in pbzip2 which fetches a negligible percentage of

instructions. For fluidanimate, it shows 7 different function entries since the bench-

mark program has high replay overhead with the replay library functions included in

the result. However, after removing the replay library functions, the same function

entries are shown in the same order.

Table 3.7 shows the comparisons of PIN Cache simulator running in normal pro-

gram execution and in replay execution. As can be seen from the comparisons, the

differences are negligible. There are only two measures of cache miss rates with a more

than 10% discrepancy between normal program execution and replay execution.

3.6 Related Work

Instant Replay [41] is one of the earliest works that support deterministic replay

on a multiprocessor. It records and replays a partial order of shared memory ac-

cesses. Microsoft’s iDNA [7] also trace every shared access to enable deterministic

replay. However, monitoring every shared memory access is too expensive (over 10x

slowdown).

Due to the high overhead of instrumenting all shared memory accesses, researchers

have proposed replay systems that reduce the scope of programs that can be replayed

[42, 76, 77, 97]. RecPlay [76, 77], which is most similar to our system, logs only syn-
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chronization operations. As in our system, this approach only ensures a deterministic

replay up until the first race in the program. However, the replay overhead is too

high (around 2x) for uses with dynamic analyses.

As an effort to avoid probe effect, several hardware-base dynamic analysis tools

have been proposed. To detect data races, CORD [72] keeps timestamps for shared

data that are presented in on-chip caches. With simplified but realistic timestamp

schemes, the overhead can be negligible. DAProf [59] uses separate caches for profiling

of loop executions. In the approach, short backward branches are identified and

profiling results are stored in the cache. Both approaches are non-intrusive with

acceptable accuracies of analysis results. However, the requirement of extra hard-

ware mechanisms may make the approaches impractical.

Moreno et.al [53] has proposed a non-intrusive debugging approach for deployed

embedded systems. In the approach, the power consumption of a system is traced

and matched to sections of code blocks. Thus, a faulty behavior in the execution of

the code blocks can be identified only with an inexpensive sound card for measuring

power consumption and a standard PC for the power trace analysis.

Respec [42] logs systems calls as well as low-level synchronization operations.

At the end of every code segment, a failed replay due to data races is checked by

examining any deviation in system call output or program state. When a failed

replay is detected, Respect rollbacks the execution and retry the failed execution.

Respec supports a deterministic replay even in the presence of data races. However,

the recording overhead is still high for embedded software (>50%) and it requires

modifications on O/S and shared libraries which may change the original program

execution.

DoublePlay [97] provides an efficient deterministic replay system by exploiting

spare cores. An execution of a thread is time-sliced into program intervals (epochs)
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and the same epoch of threads is executed on the same core in a pipelined manner.

It also support checkpoint (rollback and retry) and requires speculative execution.

However, it requires at least 2x as many cores for efficient record and replay, and as

in Respec significant modifications on O/S and shared libraries are required.

3.7 Chapter Conclusions

In this chapter, we have presented how we should carry out dynamic analysis

for embedded software. First, we record a program execution with record operation

to avoid execution changes caused by instrumentation overhead (i.e., probe effect)

and non-deterministic program execution. Then, dynamic analyses are performed in

replayed executions without worrying about execution changes. For the analysis ap-

proach, we have proposed the deterministic replay framework. The record operation

has low overhead to prevent possible probe effect caused by the recording opera-

tion itself, and the deterministic replay has low overhead during reply to minimize

execution disturbances on the analysis results.

The experimental results show that our approach is viable. However, the approach

has to be supplemented in two ways. First of all, even if the record overhead is min-

imal, it is still possible that the overhead may have changed the program execution.

In Chapter 4, we propose a simulation-based approach to decide whether any instru-

mentation (including our recording operation) has changed the program execution or

not. Secondly, we need to have efficient ways to detect data races in a program. To

make the record/replay efficient, we only consider synchronization and I/O events.

However, if there are data races in the execution that deviate the execution path, our

replay might fail. For this end, in Chapter 5 and 6 we propose efficient data race

detection for C/C++ programs on multi-core machines.
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Chapter 4

PROBE EFFECT ANALYSIS

Software instrumentation has been a convenient and portable approach for debug-

ging or profiling of program execution. Unfortunately, instrumentation may change

the temporal behavior of multi-threaded program execution and result in different

ordering of thread operations, which is called probe effect. While the approaches to

reduce instrumentation overhead, to enable reproducible execution, and to enforce

deterministic threading have been studied, no research has yet answered if an in-

strumented execution has the same behavior as the program execution without any

instrumentation and how the execution gets changed if there were any. In this chap-

ter, we present a simulation-based analysis [85] to detect the changes of execution

event ordering that are induced by instrumentation operations. The execution model

of a program is constructed from the trace of instrumented program execution and

is used in a simulation analysis where instrumentation overhead is removed. As a

consequence, we can infer the ordering of events in the original program execution

and verify the existence of probe effect resulted from instrumentation.

4.1 Introduction

In real-time embedded systems, application tasks usually run in concurrent threads.

Threads may interrelate with each other as they share resource and data. They also

interact with the external environment to receive sensor data and to control actuators.

While the threads are running, any instrumentation to observe program execution be-

havior will introduce extra overhead to the execution. Instrumentation overhead, no

matter how small it is, may intrude and change the execution behavior of the pro-
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gram and, consequently, introduce probe effect [22, 38]. Hence the observed behavior

through instrumentation is not guaranteed to represent the original program behavior.

Instrumentation operations can perturb program execution in two ways [38]. First,

the occurrence of an execution event is delayed by the amount of time spent on running

instrumented code. This can change the timing of interacting with other threads and

external environment (e.g., reading an input). Second, due to the changes of the

timing of invoking guarded resources and critical sections, scheduling decision can be

different. This, in turn, can lead to the variations in the sequential order of accessing

shared resources. Therefore, the timing perturbation by instrumented code can result

in a different happened-before ordering of events [39] and possibly a different program

execution path from the original program. The other related issue is that we may not

be able to know whether there is any change on program execution paths caused by

the timing perturbation.

To obtain a proper observation of multi-threaded program execution through in-

strumentation, it is important to know the effect of timing perturbation. However,

unless we adopt hardware-based monitoring, it might not be possible to know the

exact execution behavior of a program. It may be argued that a comparison of com-

putation results from instrumented and un-instrumented programs can reveal any

different behavior of program execution. Note that some benign program behavior

may not affect the final computation results, for instance, a branch decision can be

caused by different conditions in a compound conditional expression. In addition, for

embedded systems, it may be tricky to manage identical external inputs arriving at

the precise instants of the execution. Another approximation is to measure the over-

head of instrumentation, calculate the execution time by removing the overhead, and

infer the real execution. In a single thread program, this approach would be feasible.

However, in a multi-threaded program it is extremely difficult to consider all thread
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interactions when thread execution time is changed. Moreover, it is problematic to

take into account kernel states (e.g., run-queue state) which may affect scheduling

decision.

There have been several approaches to recover the performance of parallel pro-

grams by compensating the instrumentation overhead [49, 103], but they do not

examine the ordering of the program execution. On the other hand, deterministic

replays [7, 24, 41–43, 52, 68, 76, 77, 83, 97, 104] provide reproducible execution that

guarantees the same execution ordering as the one observed in a recording operation.

It is perceivable that any recording operation should incur some instrumentation

overhead since the execution of the recording itself would have caused perturbation

to the original execution. Nonetheless no research on deterministic replay examines

the issue of any changes to the original program execution behavior caused by the

recording operation.

In this chapter, we present a simulation-based analysis for embedded software to

detect any variations of event ordering caused by instrumentation overhead. It is

assumed that application tasks are performed by concurrent threads in a priority-

based preemptive scheduling system. We also assume that the program is data race

free. The analysis starts with an instrumented program (e.g., for dynamic program

analysis) from which we want to analyze the impact of instrumentation overhead

to the program execution. We add trace codes into the instrumented program to

obtain traces for the simulation-based analysis including thread interaction events

and the overhead of instrumentation code. All the other activities that can affect

a program execution such as O/S events and external inputs are also traced. From

the traces of the instrumented program execution, we construct a simulation of the

program execution where the instrumentation overhead is removed. Timings of thread

events is calculated which decides the ordering of events in the simulated run. Then,
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the ordering information of the original program execution with no instrumentation

overhead is projected. The contributions of this chapter can be summarized as follows:

1. We provide a novel way of detecting execution changes of a program caused by

instrumentation overhead.

2. Timing deciding program execution (i.e., ordering of events) is accurately sim-

ulated with the consideration of all factors affecting the program execution,

including kernel activities, external inputs, as well as thread execution times.

3. We provide an analysis framework for inferring the original program execution

based on simulation results.

The rest of chapter is organized as follows. In Section 4.2, we discuss execution

of multi-threaded program, and based on the discussion we present the modeling

of multi-threaded program execution in Section 4.3. In Section 4.4, we present the

simulation design to reveal the original program execution without instrumentation

overhead. Section 4.5 provide the analysis framework for inferring the original pro-

gram execution based on simulation results. The implementation details are explained

in Section 4.6, and Section 4.7 presents the experimental results. A concise survey of

related work is presented in Section 4.8, and we conclude this chapter in Section 4.9.

4.2 Multi-threaded Program Execution

Multi-threaded program execution can consist of a set of thread interaction events.

Such an event, as a sequence of instructions that the program executes, defines a

particular action (e.g. a system call) to interact with other threads, internal and

external environment. Examples include synchronization, communication operations,

and IO read/write calls. The events can be totally ordered by the timestamps at which

39



the events take place. A partial order can also be defined among the events based on

logical dependencies, i.e., happened-before relation [39].

Let’s consider multiple runs of a program and the ordering of interaction events

from each run. If the execution events happen at different instants, the happened-

before ordering of the events may be different from one run to the other. This may

lead to a change of program execution behavior. For instance, in the sleeping barber

problem, customers may be served in different orders when they arrive at different

instants in separate runs. On the other hand, a particular customer may find out the

waiting room is full and miss the service in one run. In the other run, if the barber

cuts hair quickly, the customer can find a seat in the waiting room and receive the

service eventually. In this case, the execution path of at least one thread is changed

which results in a different timestamp-based ordering of events at thread level.

It is a well-known principle used in deterministic replays [43, 76, 77, 83] that, for

two runs of a data race free program, if we supply the same input data and have the

same happened-before ordering of events, then the two runs must result in the same

behavior. Conversely, if we observe two distinguished runs of a program, then either

inputs and/or the happened-before ordering of one run must be different from those

of the other run.

During an execution of a program, a happened-before ordering of program events

can be dependent upon the external inputs it receives, including input data value and

the timing that new data arrives. If we have the same inputs, the happened-before

ordering of the program events is decided by the execution instants of threads events

on shared resources and communication. For example, when two threads compete for

a resource, the happened-before ordering of the locking events will be decided by the

instants that the two threads issue their resource requests. The choice on who is going

to take the resource first may also depend upon the kernel’s scheduling policy, e.g.,
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priority based or FIFO, as well as the kernel’s internal states, including run-queue

state and other tasks running in the system including interrupt handlers. So, when

a program is instrumented, we can expect that more CPU time is spent to execute

instrumentation code and the execution time of each thread becomes longer. This

may have a ripple effect on the instants that program events may take place, and the

happened-before ordering of the events.

4.3 Model of Multi-threaded Program Execution

To model multi-threaded program execution, we assume there are n concurrent

threads, thread Ti for i = 1, , n, in an embedded program. The threads are data race

and exception free and are scheduled preemptively according to their priorities. The

system state is the collection of thread local states and a shared global state. The

interactions among the threads and with the external environment are done through

the operations on the global state, which are represented by interaction events. An in-

teraction event (abbreviated as event), e, can be a lock/unlock, semaphore give/take,

message send/receive, or input/output operation that is performed when a thread

invokes an event function f . The following notation is used to indicate that an event

e is generated during the execution of the event function f :

Ex : f → e

Apparently, the resulting event of an invocation of f depends upon the local state

of the calling thread, as well as the shared global state. For instance, a non-blocking

read from a device can succeed or fail depending on the availability of input data

when the function is invoked.

There are two important incidents during the execution of an event function f

by thread T . The two timing incidents define a partial ordering of events for the

program execution.
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• “T enters f” occurs when the processing begins to take place globally. The

entrance gives an important timing information since it decides a logical order

between events, as well as the possible resultant event to be generated by the

function. For instance, when two threads request a semaphore concurrently, the

moments that they enter sem wait function provide an order of the requests

and can determine which thread can take the semaphore successfully and the

consequent global state.

• “e happens” symbolizes that the result of execution, as event e, is posted and is

available to subsequent execution. Obviously, the invocation of event functions

by a thread form a sequence and an event happened previously can causally

affect any subsequent events [39].

To include OS and device activities in the model, a system thread, T0, is added.

The events that occur in T0 consist of interrupts, OS scheduling, and the arrivals and

updates of device input data. Thus, an interrupt event of T0 may set a semaphore

and wake up a waiting application thread. Also, an application thread can read in

the latest sensor data if the read operation happens after a data update event in T0.

To define the occurrence instants, we adopt two types of clock. Clock C indi-

cates the CPU cycles used globally. Starting from 0, it is advanced for all activities

consuming CPU cycles, including thread executions, OS activities such as interrupt

handler and scheduler, and idle process. In addition, Ci is the thread local clock for

thread Ti and is advanced only during the execution of Ti. Hence Ci represents the

CPU time spent on the execution of Ti. With the clocks, we define functions that

return the clock values:

• ht is a function that returns the C clock values for event function f and event

e. That is, ht(f) and ht(e) return the C clock values when f is invoked and e
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T1 enters f1 T2 enters f2 e2

happens 

e1

happens

C

C1

C2

ht(e1)ht(e2)

CT1(f1) CT1(e1)

CT2(f2) CT2(e2)

C1

CT1(f1)CT1(e1)

C2

CT2(f2) CT2(e2)

//thread T1                      //thread T2   
T1 {                                    T2 {  

//f1=sem_take(a)            //f2=sem_give(a)
//f1 -> e1                           //f2 -> e2
sem_take(a);                    sem_give(a);

}                                             //f3=read(0, buf, 1)
//priority T1 > T2                //(f3, x) -> e3

read(0, buf, 1);
} 

: scheduler execution,              : interrupt execution

CT2(f3)CT2(e3)

CT2(f3) CT2(e3)

T2 enters f3 e3

happens

Figure 4.1: An Example of Global/Local Clocks and Event Executions for Two
Interacting Threads.

happens, respectively.

• CTi(f) and CTi(e) return the Ci clock values when Ti enters fi and when ei

happens as a result of fi’s execution, respectively. In other words, function CTi

returns accumulated CPU time spent by thread Ti until the instants of entrance

of function f or execution of event e.

Based on CTi(f) and CTi(e), we can compute ct(fi,k) which is thread Ti’s exe-

cution time between the instants that the (k− 1)th event ei,k−1 happens and that the

subsequent function invocation fi,k is entered. Similarly, ct(ei,k) can be obtained as

the processing time from entering fi,k to posting ei,k. In Figure 4.1, an example exe-

cution of the interacting events performed by threads T1 and T2 and event timestamps

are depicted. In addition to the thread local clocks for T1 and T2, thread events are

aligned with the global clock and the kernel scheduling and interrupt service events

are included.
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e0 : input update
e1 : read
e2 and e6: events on 
semaphore 5
e3, e4 and e5: events on 
semaphore 7

ht(e0) < ht(e1) < ht(e2) < ht(e3) 
< ht(e4) < ht(e5) < ht(e6)

e1 e2

e3
e4

e5 e6

T1 T2

G

e0

T0

Figure 4.2: An Example of Partial Order Graph G with Seven Events from Program
Execution.

For the events generated from the executions of the program threads (T1...Tn) and

the system thread (T0), an event graph G = (V ,E) can be constructed where V is a

set of events and edge (ea, eb) ∈ E if ea ∈ V and eb ∈ V and eb is logically dependent

on ea. Basically, G is a partially ordered graph representing the happened-before

relation among events [39]. An example of event graphs is shown in Figure 4.2. In

the following sections, we use GI = (V I ,EI) and GU = (V U ,EU ) to represent

the event graphs of the instrumented program P I and the original program without

the instrumentation PU , respectively. To determine whether there is a probe effect

caused by instrumentation, it is assume that the initial states and the external events,

including interrupts and the arrivals of input data, are identical in the execution of

P I and PU . We will then need to compare GI and GU or at least find a way to check

whether GI differs from GU .

4.4 Simulated Program Execution

We consider executions of instrumented and un-instrumented programs with the

same input. In the instrumented program, extra code is inserted to record program

execution behavior that we are interested in. For instance, additional instrumentation
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CTi
I (e1)CTi

I (f1) CTi
I (e2)CTi

I (f2)

Ci
I

Ci
S

CTi
S (e1)CTi

S (f1) CTi
S (e2)CTi

S (f2)
Overhead 

removed

Trace from the instrumented program

Execution time (CPU time) for the simulation

: Instrumentation overhead

Figure 4.3: (top): execution time from the instrumented program execution. (bot-
tom): From the trace for the instrumented program execution (top figure), instru-
mentation overhead is removed for the simulation.

is added to obtain the trace of thread interaction events, thread execution time, and

the overhead of instrumentation code. Thus, the event graphs GI can be constructed

from the observed event trace. However, GU of PU is not observable directly.

With the event functions and the events collected from the execution of P I , an

event-driven simulation can be conducted to analyze the execution behavior of PU .

Since there is no instrumentation in PU , any instrumentation overhead should be

removed from the thread execution time of P I . As shown in Figure 4.3, the execu-

tion time to be considered in the simulation analysis, CTi
S(f) and CTi

S(e), can be

obtained from the measured CTi
I(f) and CTi

I(e) of the instrumented program P I .

As a consequence, if PU invokes an identical event function and results in the same

event as in the execution of P I , the event may occur at an early instant. The change

in execution time can also vary the relative order of program and system events. For

instance, an event e of P I that is invoked after an interrupt may happen before the

same interrupt in PU . This alteration may have a ripple effect. For instance, if the

interrupt service routine signals a ready status, the running thread that invokes a

function call to read the status in PU would not see the ready status immediately

and may be blocked until the interrupt arrives. The example suggests that, in the
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simulation analysis, kernel resource and scheduling operations must be incorporated

to determine the event ordering.

The goal of the simulation is to generate an event graph GS to represent the un-

instrumented execution of all threads and system events observed in the execution of

P I . In the simulation, thread Ti will execute a sequence of function invocations and

events (fi,k and ei,k) in timestamp ordering that are collected from P I . The inter-

event execution times of ctS(fi,k) and ctS(ei,k), are calculated by subtracting any

instrumentation overhead from ctI(fi,k) and ctI(ei,k), respectively. The simulation

is done with a global clock CS, and assume that the current CS value is denoted

as cur time. At each simulation epoch, the ready thread with the highest priority is

chosen as the running thread. The running thread Ti can proceed to perform its next

activity ai,k, where ai,k is either fi,k or ei,k, if there is no system event in [cur time,

cur time+ctS(ai,k)]. The global clock CS is then advanced to the next simulation

epoch, i.e., CS = cur time + ctS(ai,k). Otherwise, the running thread is preempted

by the arriving interrupt irqj at cur time = ht(irqj). Note that we have recorded

the interrupt happen time, ht(irqj), from the instrumented program execution and

the interrupt is being supplied at the same time as in the instrumented program

execution. After the un-instrumented execution time of irqj, Ti may continue its

execution or a context switch may occur if there is a thread of higher priority waked

up by the interrupt.

As the simulation proceeds from one event to the other, the graph GS is con-

structed by adding edges for logical dependencies among threads and system events.

For instance, a happened-before relation is added from a message send event to a

subsequent message receive event. Similarly, an interrupt is happened before the

thread’s sem wait event which gets completed due to a sem post event issued by

the interrupt. In Section 4.6, the simulation algorithm implemented for execution in
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VxWorks is described.

4.5 Analysis of Simulation Results

Once GS is constructed, we will be interested in the execution behavior of PU that

may be inferred based on GS. Note that GS does not always represent GU , since

if the event ordering of PU is different from that of P I (due to the instrumentation

overhead), then the execution paths of PU and P I might be different. Thus, there

might be an event e such that e ∈ V I but e /∈ V U . Given that the simulation is

based on the events in P I , we have e ∈ V S. This leads to GU 6= GS. However,

a positive result can be established in the following theorem when GI and GS are

equivalent.

Theorem 1: GU = GI if and only if GS = GI .

Proof : to show the “if” part, let’s assume GU 6= GI . Then, there should be

at lease one thread that generates different events or experiences different happened-

before relations in the executions of PU and P I . Let eIi (k) be the first such event of

P I (in terms of the global clock CI) that eIi (k) 6= eUi (k), where eXi (k) represents the

kth event performed by thread Ti of program PX . All events of P I that are prior to

eIi (k) have the identical happened-before relations as their equivalent events in PU .

For thread Ti, it must have executed the same first (k − 1) functions and generated

the same (k − 1) events, i.e., eIi (l) = eUi (l) for l = 1, . . . , k − 1. Thus, it should use

the same function in its kth invocation, i.e. f I
i (k) = fU

i (k).

To have eIi (k) 6= eUi (k), the global states of P I and PU that are used in the

processing of f I
i (k) and fU

i (k), should be different. This suggests that at least one

extra update is inserted before the invocations of fU
i (k) in the execution of PU . Let

this update event be performed by a different thread Tj and denoted as eUj (k′), k 6= k′.

As the instrumentation overhead is removed in PU , this update event is brought
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forward and occurs before the invocations of fU
i (k) in the execution of PU , even

if eIj (k
′) occurs after the invocations of f I

i (k) in the execution of P I . This change

in event ordering should be observed in the simulation analysis, i.e., eSj (k′) occurs

before the invocations of fS
i (k) since the same instrumentation overhead is deducted

and the program behavior has not been changed before Ti makes its kth invocation.

The addition of the happened-before dependency, eSj (k′) → eSi (k), in GS results in

GS 6= GI .

For the “only if” part, the equivalence of GU and GI indicates that thread Ti

would invoke the same event function f I
i (k) and generate the same event eIi (k) as

in the execution of P I , even if the instrumentation overhead is removed. Thus, the

simulated execution of f I
i (k) will generate the same event eIi (k) which has the same

happened-before relations with preceding events. This implies GS = GI . �

The theorem implies that, if the logical order of thread events built in the simu-

lation analysis is as same as the one in the execution of the instrumented program

P I , then GI is the true representation of GU . On the other hand, if GS 6= GI , the

simulation failed in a sense that when the partial order begins to be different, the

execution path may also have changed too. This suggests that the instrumented pro-

gram may have started to take a different execution path. Since the simulation uses

the same execution path as the instrumented program, the simulated execution is no

longer a representation of the un-instrumented program. However, we can find out

when and how the execution changes. Let ed be the very first event of GS that causes

a different partial order from GI . Then, the partial graph GS for all events priori

to ed is the true representation of the same events in the execution of PU . A follow-

up investigation on the trace can be considered to find out how the instrumentation

changes the program execution.
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4.6 Implementation

4.6.1 Execution Environment

To implement the proposed approach of detecting probe effect, an execution envi-

ronment is set up on a single core of a 1.6 GHz Intel Atom processor running VxWorks

6.8 [102]. The VxWorks’ priority-based preemptive scheduler is configured. Two IRQs

are available during the execution, a 60Hz timer IRQ and a PS2 keyboard IRQ. The

queuing mechanism for tasks blocked on a semaphore is based on task priority.

We consider a simplified system in which three kinds of tasks and system activities

can affect the timings of event occurrences and must be traced in the execution of

instrumented program: application tasks, interrupt handlers, and the scheduler. All

application tasks and kernel operations are run in a flat memory space and there is

no page-fault exception. We also assume there are no exceptions from the running

applications. The priorities of application tasks are set to be higher than the priorities

of any other system background tasks. Thus, the execution of background tasks will

not affect the analysis of probe effect. The trace data are sent to the host at the end of

the application execution to avoid any activities including file IO during application

execution.

4.6.2 Execution Trace and Measurements

To trace the invocation of event functions and the occurrence of events, we adopt

the instrumentation mechanism of the record of our deterministic replay framework

introduced in Chapter 3. Since the record framework already supports the wrappers

for tracing event execution, we only added 1) the measurement code for CPU time

spent for each thread and 2) the overhead measurement for the instrumentation code.

The existing interrupt handlers for timer and keyboard are instrumented to collect
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the timestamp when an interrupt arrives and to measure the execution time of inter-

rupt handler. In addition, the keyboard interrupt handler is customized to directly

communicate with the keyboard driver. For our Atom-based target processor, x86’s

RDTSC (Read Time-Stamp Counter) instruction is used to collect timestamps.

Task execution time is measured in scheduler hook routines that are invoked for

every context switch. For each task, we keep the timestamp that the task is switched

in and when the task is switched out. The difference between the current timestamp

and the switched-in timestamp is accumulated to the task CPU time. The execution

time of scheduling operation and context switching is measured offline using two tasks,

task 1 and task 2, where task 2 has a higher priority than task 1. First, we let task

2 be blocked on a semaphore and when task 1 posts the semaphore, task 2 becomes

running. Then, we remove task 2 and just run the sem post operation by task 1. The

intervals from the invocation of sem post to the completion of the call are measured

for the two cases. The difference is considered as the measured execution time of

scheduling operation and context switch.

4.6.3 Simulation Analysis Algorithm

Using the execution trace from the instrumented program execution, the simula-

tion is performed as shown in Figures 4.4 and 4.5. It is governed by the invocation

to event functions and the occurrence of events and interrupts. The simulation main-

tains a global clock C which is advanced when the running task, event function,

or interrupt service routing is executed. Note that thread T0 is used to represent

system’s external activities (e.g., interrupt and input data change events) and runs

concurrently with the scheduled application threads.

When a thread is scheduled to run, the global clock C is adjusted to the instant of

the next interrupt or the execution time of the subsequent event function call is added
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1: enter_func(func: f, thread: T, event e) 
2:      if f is resource release function 

3:           return 

4:      if resource not available 

5:           if f is synchronous function 

6:                 set T to pending 

7:           else 

8:                 mark e as “fail to acquire the resource” 

9:      else  

10:            mark e as “succeed to acquire the resource”  

11:  

12: execute_event(event: e, thread: T) 
13:      if e is resource releasing event 

14:           the resource is released 

15:           if any tasks pending for the resource      

16:                  select a task and set it to ready 

17:      eL = event that e logically depends on 

18:      VS =VS   e 

19:      ES =ES   (eL, e) 

 

Figure 4.4: Sub-routines for the Simulation Algorithm. The selection of a task in
execute event() is based on the system property of the instrumented program, e.g.,
FIFO, priority-based.

to C, whichever comes first. When the global clock C is equal to the arrival time

of an interrupt, the time spent on the interrupt is added to C. If there is a thread

pending for the arrival of the interrupt, its state is changed to ready once the interrupt

is processed. Then, the highest priority ready thread is scheduled for execution. If

an event function invocation takes place, the resource required by the function is

evaluated. The call can lead a return with error, a blocked thread, or the execution

of event function. A simulated event happens when an event function is completed.

The system state may be updated (e.g., a message is dequeued) and blocked tasks

may be waked up as the consequence of the happened event. Whenever needed, the

scheduler’s execution time is added to C to simulate the scheduling operation. When

there is no ready thread, the idle process is simulated by advancing C to the next

interrupt. Note that, interrupts are accepted during task execution and are delay if
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1: do_simulation() 

2: C_cur = 0             // the current global clock   

3: Ci = 0  for all Ti     // Ci is the thread clock for Ti 

4: Tr = the highest priority ready thread 

5: next_act = the earliest action of T0 and Tr 

6:    while (true) { 

7: =the instant of cur_act – C_cur 

8: cur_act = next_act 

9: C_cur is advanced to the instant of cur_act 

10: if (cur_act == ISR completion) 

11:      set any tasks pending for the ISR to ready 

12: else {   

13: if (Tr ≠ null), Cr is advanced by  

14: if (cur_act == IRQ arrival at T0) 

15: next_act=ISR completion 

16: else if (cur_act==input data change) 

17: mark data input event 

18: else if (cur_act==function f invocation) 

19: enter_func(f, Tr, e) // Ex:f→e 

20: else if (cur_act==event e completion) 

21: execute_event(e, Tr) 

22: } 

23: if any change in task state 

24: Tr = the highest priority ready thread 

25: if (cur_act ≠ IRQ arrival at T0) 

26: next_act = the earliest action of T0 and Tr 

27: if all events are executed  

28: break 

29:    } 

 

Figure 4.5: Simulation Algorithm

they arrive during the execution of event functions or scheduling operation.

4.7 Evaluation

We used two multi-threaded programs, the dining philosophers and the sleeping

barber, from the LTP benchmark suite [90] in the experiments. The dining philoso-

phers program has 5 philosopher threads (P1 to P5) with decreasing priorities from

philosopher 1 to philosopher 5. Each philosopher is looping from thinking, picking up
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Thread 
CPU time 

(cycles) 

CPU time without 

overhead(cycles) 
Overhead 

P1 29,964,934 20,042,918 49.5% 

P2 29,073,286 20,029,304 45.1% 

P3 161,459,044 153,060,446 5.4% 

P4 161,626,702 153,232,244 5.4% 

P5 160,931,184 153,228,482 5.0% 

Average   8.6% 

 

Table 4.1: CPU Time for the Dining Philosophers

forks, and to eating. The thinking and eating activities of philosophers 1 and 2 are

implemented with blocking reads for keyboard input. On the other hand, the think-

ing and eating activities for philosophers 3, 4, and 5 are replaced with a simulated

computation. When a keyboard pressing interrupt occurs, a philosopher (1 or 2) will

be waked up and may preempt another running philosopher. Thus, philosophers will

be differently interleaved depending on the timing of keyboard inputs (e.g., different

order of philosophers’ eating). In the sleeping barber program, the waiting room has

three available chairs and there are one barber thread with the highest priority and

5 customer threads (C1 to C5) with decreasing priorities from customers 1 to 5. The

barber is looping from sleeping if there is no waiting customer, and to serving a cus-

tomer. A customer waits in the waiting room and gets a haircut if a chair is available.

He leaves without a haircut if all the three chairs are occupied. The barber’s sleep

is waked up by a keyboard interrupt. As a consequence, customers 4 and 5 (with

lower priorities than customers 1 to 3) may not get haircuts depending on how fast

the barber is waked up by keyboard interrupt.

Both programs in the experiments have relatively short execution times consid-

ering manually injected keyboard operations. A simulated computation is inserted

between event functions to ensure the speed of program execution is comparative

to the rate of manual keyboard entry. As we add wrappers to event functions and

interrupts, instrumentation overhead is added to the program execution. In addition,
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Thread 
CPU time 

(cycles) 

CPU time without 

overhead(cycles) 
Overhead 

Barber 7,965,912 5,024,050 58.5% 

C1 10,065,480 9,544,202 5.4% 

C2 10,046,790 9,524,506 5.4% 

C3 2,568,782 2,047,280 25.4% 

C4 1,378,142 1,029,454 33.8% 

C5 1,615,038 1,231,966 31.0% 

Average   18.4% 

 

Table 4.2: CPU Time for the Sleeping Barber

extra simulated computation is inserted in thread execution to represent dynamic

analysis or profiling overheads. These instrumentation overheads are removed in the

following simulation analysis. Tables 4.1 and 4.2 show the execution times and over-

heads from the average of 5 executions of each benchmark program. In Table 4.1, the

CPU times of philosophers 3, 4, and 5 are greater than those of philosophers 1 and 2

as simulated computations are used for the thinking and eating activities instead of

blocking reads. In Table 4.2, customers 1 and 2 spend more CPU times than other

customers as we inserted additional simulated computations before entering the wait-

ing room to delay the entrances of customers 4 and 5. Thus, customers 4 and 5 would

not arrive too early while the first three customers are waiting on the three chairs,

and have to leave. There are some differences in the CPU times spent by customers

3, 4, and 5 as customer 3 always gets a haircut while customers 4 and 5 may get

haircuts depending on input timing.

Figures 4.6, 4.7, and 4.8 show experimental results illustrating probe effect. Fig-

ures 4.6 and 4.7 are the results of two different executions of the dining philosophers

program with different inputs and Figure 4.8 is based on an execution of the sleeping

barber program. In each result, we compare the event orderings from the instru-

mented and simulated program executions. We only illustrate specific time frames

with particular threads that show some variations in event ordering. The horizontal
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Figure 4.6: An example execution of dinning philosophers program where GI = GS

but some events are with different timestamp ordering
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Figure 4.7: An example execution of dinning philosophers program in which GI 6=
GS (i.e., the partial orderings are different after the 38th event)

lines show the timestamps of event occurrences and arrow lines indicate the logical de-

pendencies between events. The number below each event denotes the event sequence

number in timestamp (total) ordering. Figure 4.6 depicts a case when GI = GS but

with different timestamp orderings. The case appears when philosopher 2 is waiting

for a keyboard input and, as soon as the input becomes available, it preempts philoso-

pher 4. In the simulated execution, since thread execution time is reduced due to the

removal of the instrumentation, the events of philosopher 4 happen while philosopher
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Figure 4.8: An example execution of sleeping barber program where GI 6= GS after
the 28th event. In the simulation, customer 5 does not get haircut while he does in
the instrumented program

2 is still blocked. As a result, the timestamp ordering of events in the simulation dif-

fers from that of the instrumented program. However, the partial ordering of events

still remains same, i.e., GI = GS. Hence, the simulation is the true representation

of the original program execution, and since GU = GS = GI , the instrumentation

overhead has not caused any probe effect on the execution.

Figure 4.7 shows a case where the logical (partial) ordering is altered due to the

instrumentation overhead. The timestamp ordering of events in the simulation is

changed in a similar way as in Figure 4.6. Events of philosopher 4 in the simulated

program execution occurred earlier than in the instrumented program execution while

philosopher 2 was still blocking for input. Since GI 6= GS, the simulation is no longer

a representation of the original program. We notice that the partial order graphs,

GI and GS, are identical until the 37th event. Thus, for each thread, the next event

function to be invoked immediately after the 37th events should be identical in the

instrumented and simulated program executions. After the 37th event, the difference

in the logical ordering of events is triggered by the order of the sem wait(7) events

invoked by philosopher 2 and philosopher 4. We manually inspected the source code
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Figure 4.9: Examples of the partial order graphs from the executions of sleeping
barber program.

and found out that the change in the logical ordering did not result in a change of

execution path. Hence, any dynamic program analysis based on the execution path

is still valid. However, in general it will be a very challenging task to find a change

of execution path by manual inspection of source code.

Figure 4.8 demonstrates a case for a change of execution path due to instrumen-

tation overhead in sleeping barber program. The result shows that GI = GS up to

the 27th event. However, in the 28th event, the sem wait(4) is invoked much earlier in

the simulation than in the instrumented program. The resultant partial order graphs

are drawn in Figure 4.9. In each partial order graph, the second line shows events

for barber thread and the last line shows events for customer 5 thread. In the sim-

ulation, the semaphore given at the 25th event is taken by customer 5 while in the

instrumented program execution the semaphore is taken by barber thread. In fact,

in the instrumented execution, customer 5 arrives after the barber is waked up by a
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keyboard input and begins to cut hair. Hence, a chair becomes available for the ar-

riving customer 5. On the other hand, in the simulated execution customer 5 arrives

before the keyboard input, suggesting the barber is still in sleep mode. The customer

should leave as he cannot find any available chair in the waiting room leading to a

different execution path. Since the simulation uses the same observed event from

the instrumented program, the simulated execution may not be correct after the 28th

event.

4.8 Related Work

Malony et al. presented the instrumentation uncertainty principle [49] suggesting

that the accuracy of execution performance is degraded as the degree of instrumen-

tation increases. In the approach, performance perturbation models were proposed

to calculate the true performance from instrumented parallel programs. The models

were further refined in [103]. In the models, perturbations trigger a change in event

execution time and event ordering is represented by time-based and event-based per-

turbation models. In the time-based model, the thread events are independent while

the event-based model considers the dependency between events for recovering the

true performance. The dependency considered is performance degradation as arrival

time and resource state change. However, the approach assumes the program exe-

cution is fixed no matter there is any instrumentation overhead or not. Hence, it

does not consider how the program behavior may differ from the un-instrumented

program.

When instrumentation perturbation causes different thread interleaving, we will be

concerned with the potential problems of data race and execution non-determinism.

Data races can result in arbitrary failures and do not help increase scalability [1].

Several efficient dynamic data race detection algorithms [19, 70, 76, 79, 84, 86, 105]
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have been proposed and race detection tools [27, 94, 95] are widely used in practice.

In general, the approaches are based on the monitoring of read/write operations to

shared variables among concurrent threads. However, the delay caused by monitoring

operations and any possible probe effect have not been addressed. Deterministic

multi-threading techniques provide deterministic event ordering for parallel program

execution [6, 11, 12, 45, 46, 51, 65]. In Kendo [65], a thread’s progress is represented

with a logical clock. It is a thread’s turn to take a lock when its logical clock is

the global minimum. In [45] and [46], thread’s shared memory is isolated from other

threads during a parallel phase. During a serial phase, the memory updates to shared

variables are applied and locks are taken in a deterministic order. Regardless of their

overheads, the approaches don’t consider any external input events and time-based

operations, and cannot be applicable to embedded software.

It may be argued that instrumentation can be done during program replay if a

reproducible execution can be constructed. Instant Replay [41] is one of the earliest

works that allows cyclic debugging for parallel programs by tracing and replaying rel-

ative order of events for each shared object in the program. RecPlay [76, 77], based

on Lamport’s happened-before relations [39] records and replays synchronization op-

erations. In the approach, data races can be detected by checking all shared memory

references so that the program is free of data race before record/replay operations. To

reduce overhead of record and replay, speculative execution and external determinis-

tic replay are used in Respec [42] that is capable of online replaying on multiprocessor

systems even with data races. Using speculative execution, the recording process can

continue to execute speculatively instead of being blocked until the corresponding

replay finishes.

Most profiling tools adopt instrumentation approaches. There have been research

efforts to reduce profiling overhead caused by instrumentation. Froyd et al. proposed
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a call-path profiler based on stack sampling [21]. The profiler, called csprof, provides

an efficient way of constructing the calling context tree without instrumenting every

procedure’s call. Zhuang et al. introduced the adaptive busting approach [108] to

build calling context tree with a reduced overhead while preserving profiling accuracy.

In their approach, unnecessary profiling is avoided by disabling redundant stack-

walking with a history-based predictor. The profiling overhead has been further

alleviated by taking advantage of multi-core systems. In shadow profiling [54], shadow

processes are periodically created for running instrumented code while the original

process is running on a different core with minimal overhead. PiPA [106] exploits

parallelism by forming a pipeline to collect and process profiles. Application execution

and profiling operation are divided into stages that are pipelined and performed in

multiple cores. Kim et al. proposed a scalable data-dependence profiling [37] to

reduce runtime and memory overheads. In the approach, memory references are

stored as compressed formats, and pipelining and data level parallelism are used to

reduce the overheads in the data-dependence profiling. Time-aware instrumentation

approaches [3, 16] have been proposed to minimize violation of timing constraints due

to instrumentation overhead. DIME [3] monitors instrumentation time and limits the

program instrumentation to a given time budget in a time period. A static approach

[16] inserts instrumentation code only where the instrumentation can preserve the

worst-case execution time.

Although there have been research works on the overhead calculation for precise

performance measurement and the reduction of instrumentation overhead for repro-

ducible execution and profiling, no work has been proposed to reveal the possibility of

execution deviation caused by instrumentation overhead. In this chapter, the focused

analysis is to verify if the recorded or observed execution is a true representation of

the original program execution and if any instrumentation may alter the event or-
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dering of multi-thread embedded programs as to cause any changes of the intended

program behavior.

4.9 Chapter Conclusions

Often the most important metric in dynamic analysis of multi-threaded programs

is the overhead of instrumentation since researchers are aware of the potential probe

effect caused by the overhead. However, to the best of our knowledge, no research

has proposed a way to detect any changes in program execution when the programs

are instrumented. In this chapter, we model the execution of multi-threaded program

according to the happened-before ordering of global events. Using the trace of event

function invocations and O/S activities, a simulation-based analysis is presented to

detect if the partial order of events is altered by instrumentation. The experiments

of two simple applications running on VxWorks demonstrate how instrumentation

overhead can lead to changes in the timestamp ordering and in the partial ordering

of the event executions.

In the thread execution model of this chapter and Chapter 3, a program execution

is represented with a partial order of synchronization and I/O event executions. The

execution model makes the analysis of program efficient. However, presence of data

races in a program execution can make the program analysis incorrect. That is,

recording only synchronization events would not enough to capture the execution

of memory accesses contained in the data races. When an execution of program

is deviated from another, it will be hard to decide if the deviation was caused by

instrumentation overhead or data races. Hence, in Chapters 5 and 6 we propose

efficient data race detection algorithms that help to remove data races.
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Chapter 5

DATA RACE DETECTION FOR C/C++ PROGRAMS

In previous chapters, thread executions are modeled as a partial order of synchroniza-

tion and I/O event executions. The approach makes the dynamic program analyses

(i.e., record/replay, probe effect analysis) feasible and efficient. However, the program

execution model may not work correctly in the presence of data races. In this chap-

ter, we discuss an efficient data race detection for C/C++ programs with minimal

false alarms. To detect races precisely without false alarms, vector clock based race

detectors can be applied if the overheads in time and space can be contained. This is

indeed the case for the applications developed in object-oriented programming lan-

guage where objects can be used as detection units. On the other hand, embedded

applications, often written in C/C++, necessitate the use of fine-grained detection

approaches that lead to significant execution overhead. In this chapter, we present a

dynamic granularity algorithm [84] for vector clock based data race detectors. The

algorithm exploits the fact that neighboring memory locations tend to be accessed

together and can share the same vector clock archiving dynamic granularity of detec-

tion. Our experimental results on benchmarks and comparisons with two commercial

race detection tools show that the proposed dynamic granularity approach is very

viable.

5.1 Introduction

Most embedded applications are constructed with multiple threads to handle con-

current events. With the prevalence of multi-core architectures, applications can

be programmed with multiple threads that run in parallel to take advantage of on-
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chip multiple CPU cores and to improve program performance. In a multi-threaded

program, concurrent accesses to shared resource and data structures need to be syn-

chronized to guarantee the correctness of the program. Unfortunately, the use of

synchronization primitives and mutex locking operations in multi-threaded programs

can be problematic and results in subtle concurrency errors. Data race condition, one

of the most pernicious concurrency bugs, has caused many incidences, including the

Therac-25 medical radiation device [44], the 2003 Northeast Blackout [92], and the

Nasdaq’s Facebook glitch [33].

A data race occurs when a memory location is accessed concurrently by two dif-

ferent threads and at least one of the accesses is a write. Data races are hard to

reproduce, find, and fix since a data race may only occur in a particular execution of

the program and the race does not necessarily always cause observable errors in the

program execution.

Over the past few years, several techniques have been developed to detect data

races. Static analysis techniques [17, 34, 58, 71, 98] consider all execution paths for

possible data races providing a better detection coverage than dynamic techniques

but they suffer from excessive number of false alarms. On the other hand, dynamic

techniques detect data races when execution paths are exercised and they largely

fall into two categories: LockSet algorithms [79, 105] and happens-before algorithms

[19, 70, 76, 77, 94]. In Eraser’s LockSet algorithm [79], data races are reported when

shared variable accesses violate a specified locking discipline, i.e., the variable is not

protected by the same lock consistently. For a given execution path, checking a lock

discipline enables Eraser to detect potential data races as well as ones that actually

happened in the program execution. Eraser may report many false alarms which

hinder developers’ focus on fixing real problems. Eraser may also report false alarms

since lock operations are not the only way to synchronize threads and a violation of
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lock discipline does not necessarily imply a data race.

Happens-before detectors are based on Lamport’s happens-before relation [39] and

do not report false alarms as the approach only checks any happens-before relation

that actually occurs during the given execution paths. Based on the execution of a

multi-threaded program, a partial ordering of memory and synchronization operations

can be defined. A pair of accesses to the same variable is concurrent when neither of

the accesses happens before the other. The happens-before relation is realized by the

use of vector clock [14] and there are largely two happens-before detection methods

based on how shared accesses are represented and compared for the detection.

In the first method [76, 77, 94], a segment is defined as a code block between two

successive synchronization operations and shared memory accesses are collected in a

bitmap for each segment. In each thread a vector clock is collected to uncover any

concurrent segments of running threads. If two concurrent segments contain common

shared memory accesses, the accesses are reported as data races. This method may

incur a significant overhead in time despite of several optimization techniques such as

clock snooping and merging segments [76, 77] as the detection requires set operations

with the collected shared memory accesses.

In the second method [19, 70], other than a vector clock for each thread, each

shared variable has two vector clocks for reads and writes which record access history

of the variable by every thread. When a thread reads from a shared variable, the write

vector clock of the shared variable is compared with the vector clock of the thread. A

write-read data race is reported if the vector clock comparison reveals that the write

and the read are not ordered by the happens-before relation. A similar protocol can

be performed for a write access. Having vector clocks for each shared variable can

result in huge memory consumption. However, for applications developed in object-

oriented languages, the memory requirement may be tolerable as large detection units
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such as field or object can be used.

Data race detection for embedded applications which are mostly written in C/C++

needs to consider fine granularity of data access (e.g., byte). It would seem to be a

better choice to use the first happens-before detection method since having a vector

clock for every shared read or write byte may make the detection infeasible. On the

other hand, as shown in FastTrack [19], the second method can reduce the space

and time overheads of vector clocks from O(n) (where n is the number of threads)

to nearly O(1) with no loss in detection precision. While it may become feasible to

detect races in C/C++ programs, the overheads using the FastTrack detector with

fine granularity is still high for C/C++ programs, as illustrated in our experimental

results.

In this chapter, we present a dynamic granularity algorithm for vector clock based

race detection. The detection granularity starts from byte and is dynamically adjusted

as shared memory locations are accessed. A large detection granularity is adopted

when neighboring bytes have the same vector clock. Thus, instead of multiple copies, a

single copy of vector clock is shared among these neighboring bytes. Sharing the same

vector clock among neighboring memory locations become feasible since (1) neigh-

boring memory locations belonging to array or struct tend to be accessed together,

(2) data structures are often accessed together during initialization even if they are

separately protected afterward, and (3) some groups of shared memory locations are

accessed only for one code block.

In the algorithm, a state machine is associated with a vector clock for read or

write of a memory location and the state can be Init, Shared, Private, or Race. To

minimize analysis overhead, the sharing decision for each read or write location is

made at most twice for the lifetime of the location. Peak memory consumption is

further reduced by temporarily sharing vector clock at Init state. In addition, the
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possibility of false alarms caused by sharing vector clock is minimized as new sharing

decision is made after Init state.

We have developed a race detector based on the FastTrack algorithm for C/C++

program and the dynamic granularity algorithm is implemented on top of the Fast-

Track implementation. Our experimental results on several benchmark programs

show that the race detector using our dynamic granularity provides 43% speedup and

60% less memory over the FastTrack detector with byte granularity. Also we provide

case studies on two popular data race detectors: Valgrind DRD [61, 94] and Intel

Inspector XE [27]. Our dynamic granularity detector is about 2.2x and 1.4x faster

than Valgrind DRD and Inspector XE, and consumes about 2.8x less memory than

Inspector XE.

The rest of the chapter is organized as follows. In the following section, we discuss

the notion of data races in more detail, and a brief survey of static and model-based

approaches is described. In Section 5.3, a brief review of vector clock based race detec-

tors is presented. Section 5.4 presents the proposed dynamic granularity algorithm.

The implementation of data race detector using dynamic granularity is explained in

Section 5.5. Section 5.6 shows evaluation results of our dynamic granularity as well as

comparisons with Valgrind DRD and Intel Inspector XE. A concise survey of related

work is described in Section 5.7 and, in Section 5.8 we conclude this chapter.

5.2 Discussion of Data Race Detection

5.2.1 What is a (Data) Race?

In this section, we clarify the concepts and terms used in the literature of data

race detection. We often use the terms, “data races” and “races”, interchangeably.

According to the definition in [63], a race occurs when two different threads access
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//Thread 1, deposit “amount”
cur_balance = read_balance();
new_balance = cur_balance + amount;

//Thread 2, withdraw “amount”
cur_balance = read_balance();
new_balance = cur_balance - amount;

(a)

//Thread 1, deposit “amount”
Lock(a);
cur_balance = read_balance();
Unlock(a);
Lock(a);
new_balance = cur_balance + amount;
Unlock(a);

//Thread 2, withdraw “amount”
Lock(a);
cur_balance = read_balance();
Unlock(a);
Lock(a);
new_balance = cur_balance - amount;
Unlock(a);

(b)

//Thread 1, deposit “amount”
Lock(a);
cur_balance = read_balance();
new_balance = cur_balance + amount;
Unlock(a);

//Thread 2, withdraw “amount”
Lock(a);
cur_balance = read_balance();
new_balance = cur_balance - amount;
Unlock(a);

(c)

Figure 5.1: An Example of Atomicity Violation without Data Races. (a): Data
race and atomicity violation. (b): No data race but with atomicity violation. (c): No
data race and no atomicity violation.

shared memory concurrently. A race can cause a program to behave in unintended

ways by the programmer. A “data race” is a race that can cause non-atomic execution

of critical section. However, these definitions can confuse audiences since an atomicity

violation can occur without data races (described in the next paragraph). Hence, in

this thesis “a race” refers to “a data race” unless explicitly stated otherwise.

“An atomicity violation” is another type of concurrency bug closely related to data

race. An atomicity violation occurs when two different threads access one or more of

shared variables in a critical section concurrently. An example of atomicity violation

is shown in Figure 5.1. Atomicity violation and data race are closely related to each

other as both violations occur when threads access shared variables concurrently.

However, free of data races does not necessarily imply no atomicity violation. In

the example of Figure 5.1b, all the shared variables are protected by the same lock

without data races. Yet, accessing the global variables for the back account is not

atomic. Thus, the atomicity violation might cause incorrect updates of the variables.

For the detailed discussion of atomicity violation, refer to [18, 26, 32, 56, 67].

The problem of locating all real races in a program is computationally hard.

Races can be classified into several categories [63, 70]. Feasible races are races that
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All shared

Figure 5.2: Classification of Data Races. The set of all shared variables in a program
is represented by region All shared. A: the set of apparent data races. F: the set
of feasible data races. D: the set of data races that can be detected by a dynamic
happens-before approach. S: the set of data races that can be detected by a static
approach or a LockSet detector.

can appear in a feasible execution of program. Hence, the ideal goal of a race detector

is to locate all feasible races in a program. Unfortunately, the problem of locating

all feasible races in a program is NP-hard [62]. Apparent races are approximations

to feasible races based on explicit synchronizations. That is, a race can be located

when a shared memory access is not protected by explicit lock operations. However,

exhaustively locating all apparent races is also NP-hard [62].

In Figure 5.2, we show the classification of races. Vector clock based detectors

locate a subset of feasible races since the detection is based on happens-before relations

that actually occur in a program execution. In Lockset based or static approaches,

the detection is based on approximations of lock-unlock pairs locating a subset of

apparent races. Figure 5.3 show examples of feasible/apparent race. In an execution

of the program in Figure 5.3a, there is a feasible race on variable X. Since the

variable is not inside lock-unlock pairs, the race will be detected by a Lockset/static

detector. However, a vector clock detector will not report a race on variable X since

the accesses are ordered by the happens-before relation in the particular execution

of the program. Figure 5.3b shows an example of an apparent race but not feasible.
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//thread 1
X = 1;
Lock(a);
flag = true;
Unlock(a);

X=0; flag = false;

//thread 2

Lock(a);
flag = false;
Unlock(a);
X = 2;

(a)

//thread 1
X = 1;
Lock(a);
flag = true;
Unlock(a);

X=0; flag = false;

//thread 2

Lock(a);
local = flag;
Unlock(a);
if (local==true)
X = 2;

(b)

Figure 5.3: Examples of Feasible/Apparent Races. (a): A feasible race on variable
X. A vector clock detector does not report a data race, but a Lockset/static detector
will report a data race. (b): An apparent race but not feasible. A Lockset/static
detector will report a false alarm, but a vector clock detector will not detect it as a
data race.

Figure 5.4: A Benign Race Example.

The accesses on variable X will be reported as a race by a Lockset/static detector as

any of the accesses is not inside a lock-unlock pair. A vector clock detector will not

report it as a data race as any execution that makes the accesses on X concurrent is

not feasible.

Feasible races are real races that can appear in a program execution. However,

not all feasible races malfunction the program. A benign race is a feasible race that

does not malfunction the program execution, and it can be categorized [60] as follows,

1. User supplied synchronization idiom : programmers may synchronize

threads without using conventional synchronization (e.g., pthread lock, semaphore).

For instance, a programmer may use a busy waiting loop to wait for a condition,

e.g., { while(!flag) {} do something(); }.
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Program  Static True  

False 

alarms 

% of false 

alarms 

Apache 118 8 110 93% 

SQLite 88 3 85 97% 

Memcached 7 1 6 86% 

Fmm 176 58 118 67% 

Barnes 166 16 150 90% 

Ocean 115 3 112 97% 

Pbzip2 65 9 56 86% 

Knot 157 2 155 99% 

Agt 256 4 252 98% 

Pfscan 17 2 15 88% 

Average       90% 

Table 5.1: Races Detected by a Static Detector, RELAY [36]

2. Double checks : a programmer may insert a check for a global condition with-

out locking to improve the performance. The program is correct since the global

condition is checked again with locking in the critical section, e.g., if (condition)

{ lock(); {if (condition) . . . } }.

3. Subtle race but valid : there can be a case that a data race between read and

write operations does not harm the program execution. For instance, consider

the example in Figure 5.4 which is a data race found in facesim program of the

PARSEC benchmark suite [8]. In the example, the consumer of a queue reads

the length of the queue without synchronization. Thus there is a data race. The

consequence is that the consumer may return even if the queue is not actually

empty. However, it does not cause any problem on the program execution, but

the consumer just could waits longer.

5.2.2 Static Race Detection

Static race detectors analyze source core of a program without any execution

information. As the static algorithms do not rely on any particular execution, they

often have better detection coverages than dynamic race detectors. On the other hand,

lack of execution information (e.g., memory addresses) makes the static detection

70



 

  

Program Static True  
False 

alarms 

% of false 

alarms 

aget 62 31 31 50% 

ctrace 10 2 8 80% 

engine 7 0 7 100% 

knot 12 8 4 33% 

pfscan 6 0 6 100% 

sntprc 46 1 45 98% 

3c501 15 4 11 73% 

eql 35 0 35 100% 

hp100 14 8 6 43% 

plip 42 11 31 74% 

sis900 6 0 6 100% 

slip 3 0 3 100% 

sundance 5 1 4 80% 

synclink 139 0 139 100% 

wavelan 10 1 9 90% 

Average       81% 
 

Table 5.2: Races Detected by a Static Detector, LOCKSMITH [71]

imprecise. The first and foremost problem is to match what memory location a given

operation is affected by. lvalue can be passed by a function as a parameter and

the value can be changed by pointer arithmetic. Various analysis techniques such

as calling-context-sensitive-analysis and pointer-alias-analysis are required. However,

those analysis techniques are often imprecise and computationally expensive. Also,

it will be hard to decide whether two lock operations at different accesses are for the

same lock object or not. Thus, static race detectors produce an excessive number

of false alarms. Tables 5.1 and 5.2 shows data races detected by RELAY [98] and

LOCKSMITH [71], respectively. The true data races (feasible races) in Table 5.1 are

verified by a dynamic race validation approach [36]. True data races in Table 5.2 are

verified by manual code inspection by the author of the paper.

False positives produced by static detectors can be filtered out with various meth-

ods. RELAY [98] filters out false alarms with several static analyses. However, the

filtering itself can be imprecise removing some of feasible races. Some of filtering

analyses are described as follows,

1. Object allocation and initialization : consider the code snippet in Fig-
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Func_a()

{

Obj = malloc(…);         //allocate shared object

Obj -> field1 = SOME; //initialize it

Lock(&m);       //enter critical section

Add_objt(obj); //now it begin to share

…

}

Filter out because it is 

allocated in the same 

thread

(a)

(R1, R2)

: a pair of accesses 

reported by a static 

race detector

R1
R2 R1

R2

If both orders can be observed, it is a feasible race

(b)

Figure 5.5: Filtering out False Alarms from Static Race Detection. (a): RELAY
[98] filters out a false alarm when it is allocated in the same thread. (b): Dynamic
testing for validating feasible races. Using schedule steering, it tries to observe both
orders of accesses.

ure 5.5a. The thread allocates and initializes an object, and passes the object

to the critical section. A static detector will report a race for the access during

the initialization (Obj→field1=SOME) since the initialization is not performed

inside locking. As an approximation, RELAY filters out races for objects that

are allocated inside the thread within which the race is reported.

2. Un-sharing : due to the field and arithmetic insensitivity of the alias analysis,

a static detector reports many false alarms. For instance, when a pointer rep-

resents a large number of fields, reported races within the field are most likely

false alarms. RELAY filters out those races by considering insensitive aliasing

analysis and the number of represented nodes by a pointer. Note that this is

also an approximation and can remove feasible races.

In dynamic testing approaches [36, 80], a race reported by an imprecise detector

is verified by scheduling thread executions. Figure 5.5b shows the basic idea of the
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approaches. Given a pair of accesses reported by a race detector, the approaches try

to expose both possible orders. If both orders can be exercised, we can conclude that

the pair is a feasible race. To control the order of accesses, thread executions are

steered. That is, the scheduler suspends one thread to proceed the other thread on

the same variable access. However, reproducing both orders can be a difficult task.

If one of the orders is in a rare thread interleaving, it will be hard to reproduce the

execution and the validation may make a wrong decision.

RaceFuzzer [80] uses a random scheduling technique. For a given race set found

by an imprecise race detector, it first randomly choose one thread to proceed it to the

one of the accesses and the scheduler let the other thread to reach the other access.

The approach is effective as a rare threads interleaving can be exposed easily due to

the random scheduling.

Static race detection is efficient and provides good detection coverages. Neverthe-

less, the imprecise detection even with the filtering methods makes us difficult to use

static detection approaches in practice.

5.2.3 Using Model Checking Techniques

Using Model Checker

Model checking technique is for verifying properties of a system composed of con-

current finite-state machines. For a given model of a system, a model checker sys-

tematically explores all possible thread interleavings to verify if the model satisfies a

given specification. Model checking techniques can be used in various ways for data

race detection. In [87], a system of thread executions is explicitly modeled to verify

the property of ordered accesses of a shared resource. Various synchronizations and

IPCs for VxWorks real-time operating system are modeled as timed automaton in
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the UPPAAL modeling tool [40]. The property of data race free is verified by the

model checking in UPPAAL.

Exploring Hidden Execution Paths/interleavings

The capability of exploring all execution paths in model checking techniques can be

useful for data race detection/verification. CHESS [55] is a tool for exploring thread

interleaving to find and reproduce bugs. The CHESS scheduler controls execution of

threads to expose rare thread interleavings. The size of state space is reduced as the

CHESS scheduler is non-preemptive and uses fewer preemption points. CHESS also

has a capability of record and replay by remembering/replaying scheduling decision.

DBug [82] keeps a global view of the system for state exploration. On every non-

deterministic choice, a scheduling request is sent to the arbiter. The arbiter selects

an event to execute next based on the global view and a permission is sent to the

corresponding thread.

Predictive Analysis Technique

Predictive analysis techniques can be used to increase the coverage of concurrency

bug detection (including race detection) by exploring rare thread interleavings [99,

100]. The approaches use symbolic analysis techniques based on event execution

traces. Hence, the predictive analysis techniques have advantages over purely static

approaches with less false alarms. In addition, events in a given execution trace are

enumerated to infer more feasible interleavings uncovering more concurrency bugs

than dynamic approaches.

Figure 5.6 shows an example for the predictive analysis technique. First, an

execution trace ρ is collected. Trace ρ is a serialization of events in a total ordering

of events such that, ρ = e1e2e3e4e5e6. Other possible interleavings can be explored
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e2:Read(p)

(a) observed (b) feasible (c) infeasible

e4:Read(p)

e1:Write(p)

e6:Write(p)

e2:Read(p)

e4:Read(p)

e1:Write(p)

e6:Write(p)

e2:Read(p)

e4:Read(p)

e1:Write(p)

e6:Write(p)

Thread T1
{

e2:   b = p;
e3:   if (b!=0) {

...

e4:     q = p;
e5:     *q = 10;

}
}

P = 0; //initialized when program starts

Thread T2
{

e1:   p = &a;
...

e6:   p = 0;
}

Figure 5.6: An Example for Predictive Analysis Technique [99]. (top): observed
execution trace. The event number is listed on the left in the order of observation. (a):
the execution order of events without atomicity violation. (b): a feasible execution
ordering of events inferred by the predictive analysis technique. The inferred ordering
contains an atomicity violation. (c): an infeasible ordering of events. This ordering
is not explored.

by enumerating the events in trace ρ. Initially, any permutation of events is allowed

and any infeasible ordering is pruned. For instance, if two events ea and eb are in one

thread within a lock-unlock pair and an event ec in another thread is protected by the

same lock, then eaeceb is not a valid enumeration of events. As shown in Figure 5.6,

the enumeration e1e2e6e3e4 in (b) represents a valid interleaving with an atomicity

violation. On the other hand, the interleaving in (c), e2e1e3e4e6, is not feasible since

e2 → e1 makes the branch statement in e3 false and e4 does not exist in the execution.

In the approaches, the problem of finding concurrency bugs is reduced to a sat-

isfiability problem. A quantifier-free first-order formula Φ is built such that Φ is

satisfiable if and only if there is an interleaving containing any bugs. In a simple
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form, the formula Φ is expressed as,

Φ := ΦTM ∧ ΦSC ∧ ΦPRP (5.1)

where ΦTM expresses a valid event ordering in each thread without considering in-

teraction with other threads. ΦPRP is the property constraint encoding failures by

concurrency bugs. ΦSC encodes all the valid thread interaction, i.e., valid thread

interleavings. ΦSC specifies valid mappings of shared memory reads and writes with

considerations of happens-before relations in the trace. That is, for each variable x

each shared read Rx should match a proceeding write Wx. Then, any other write W ′
x

should be before Wx or after Rx. As an example, consider the interleaving (c) in Fig-

ure 5.6. Read p in e4 must be from the write in the initialization. Hence, write p in e1

should be before the initialization (which is not possible) or after e4. Since event e1 is

between event e4 and the initialization, the interleaving is invalid and consequently Φ

is not satisfiable. Synchronization operations can be similarly encoded. The formula

Φ is decided by an SMT solver. For the complete description of the encoding and

implementation, refer to [99, 100].

The uses of model checking techniques could be expedite debugging process (in-

cluding detection of data races) by enabling exposures of hidden program paths or

interleavings. However even optimization techniques in the approaches, the state ex-

plosion problem still remains. Cui et al. proposed one approach to reduce the size of

state space [11]. The idea is to use a deterministic multithreading technique which

make an execution of threads as deterministic as possible. Under the deterministic

multithreading, the number of thread interleavings can be greatly reduced.
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5.3 Vector Clock Based Race Detectors

In vector clock based race detection approaches [19, 70], a data race is reported

when two accesses on a memory location are not defined by the happens-before re-

lation [39]. The approaches do not report false alarms as the detection is based on

actual happens-before relations occurred during the execution of a program. However,

the overheads of maintaining vector clocks for every memory location are consider-

ably high. For backgrounds on the happens-before relation and vector clock, refer to

Chapter 2.

5.3.1 DJIT+

In the DJIT+ algorithm [70], an epoch 1 is defined as a code block between two

release operations. DJIT+ detects only the first race for each memory location. For

consecutive reads of a memory location in the same epoch, it is sufficient to check

only the first read for the detection of the first race. This property is also true for

consecutive write operations. With this property, the amount of race analysis can be

greatly reduced.

The happens-before relation in a program execution is realized by the uses of

vector clock [14]. During the execution, each thread has a vector clock. Let Ti be a

vector clock for thread i. Each synchronization object s maintain a vector clock Ls

to convey synchronization information from the releasing thread to the subsequent

acquiring thread. Similarly a memory location x has a write vector clock Wx and a

read vector clock Rx to record access history of the location. Upon initialization of a

synchronization object or a memory location, all elements of the vector clock are set

to zeros. When a thread is created, the vector clock elements are initialized to ones.

1It is defined as a timeframe in the paper. But we refer to it as an epoch for the consistency of
discussion.
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<1, 1, …> <1, 1, …> <0, 0, …> <0, 0, …>

<2, 1, …>

<1, 0, …>

<2, 1, …>

<1, 1, …>

<2, 1, …>

write(x)

write(x)
unlock(s)

lock(s)

T0 T1 Wx Ls

<1, 1 , …>

lock(s)

write(x) <2, 1, …>

(a) Execution of DJIT+.

<1, 1, …> <1, 1, …> <0, 0, …>

<2, 1, …> <2, 1, …> <2, 1, …>

write(x)

write(x)
unlock(s)

lock(s)

T0 T1 Wx Ls

<1, 1 , …>

lock(s)

write(x)

┴e

1@0

1@1

2@0

(b) Execution of FastTrack.

Figure 5.7: Example Executions of DJIT+ and FastTrack. T0 and T1 are vector
clocks of thread 0 and thread 1, respectively. Wx and Ls are vector clocks for write
x and lock s, respectively. Solid arrows show happens-before relations and dotted
arrows indicate vector clock updates by the operations.

On a release operation of synchronization object s in thread i,

1. The vector clock entry for the thread itself is incremented, such that Ti[i]++.

2. The vector clock for the object s is updated to the element-wise maximum of

vector clocks of thread i and object s.

Upon the subsequent acquire operation of the object s by thread j,

1. The vector clock for thread j is updated as the element-wise maximum of vector

clocks of thread j and object s.
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Notice that as threads are synchronized, the synchronization information is recorded

in the threads’ vector clocks which are conveyed by synchronization objects. If there

has not been any synchronization from thread i to thread j either directly or transi-

tively, Tj[i] will keep the initialization value.

When thread i accesses a memory location x, a data race is detected by comparing

vector clocks of the thread and the memory location. If the previous access repre-

sented by the vector clocks Wx or Rx, does not happens-before the current access

represent by the thread vector clock Ti, then the access is a conflict. Upon the first

write of x in an epoch by thread i,

1. A write-write data race is reported if there is another thread j whose write

to x is not known to thread i. The check is done by element-wise comparison

of vector clock elements of Wx and Ti. That is, it is a write-write race if

∃j, i 6= j,Wx[j] ≥ Ti[j]. If there was a synchronization from thread j to thread

i between the previous and current writes, then the accesses should have been

ordered and Wx[j] < Ti[j].

2. Thread i updates Wx such that, Wx[i] = Ti[i].

3. Similarly with the read vector clock Rx, a read-write data race is checked and

Rx is updated accordingly.

A similar protocol can be applied to read operations. Figure 5.7a shows an exam-

ple of how DJIT+ detects a data race. In the example, consider the first write x in

thread 0 and the write in thread 1. When thread 1 writes to x, it checks a write-write

data race by comparing T1 with Wx. The accesses are ordered by the happens-before

relation and not a data race since ∀i, i 6= 1,Wx[i] < T1[i]. As another example, con-

sider the second write x in thread 0 and the write in thread 1, and assume that the
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second write x in thread 0 is physically observed later than the write in thread 1.

When thread 0 writes to x, it detects a data race since Wx[1] ≥ T0[1].

By the property of checking only the first read and write in an epoch, run-time

performance can be significantly improved. However, there still exists significant

overheads in time and space for maintaining the vector clocks of shared memory

locations.

5.3.2 FastTrack

FastTrack [19] is based on DJIT+ and provides a significant performance enhance-

ment over DJIT+ with the same detection precision as DJIT+. FastTrack exploits

the insight that, in most cases the last access of a memory location can provide enough

information for detecting data races instead of using the full vector clock representa-

tion. An epoch representation denotes the last access of a memory location. If the

last access was made by thread t at logical clock c, then the epoch is denoted as c@t

using only two scalars. For all writes to a memory location, the epoch representation

can be used instead of the full vector clock because all writes to the location are

totally ordered by the happens-before relation before the first race on the location.

This leads to a reduction in time and space overheads from O(n) (where n is the

number of threads in the execution) to O(1). For read operations, the epoch repre-

sentation cannot be used all the time since read operations can be performed without

locking (i.e., read shared). Thus, read vector clock, Rx, is replaced with an adaptive

representation which uses a full vector clock only when the read is shared with other

threads without protection. Based on the adaptive representation, the overhead for

reads can be reduced from O(n) to nearly O(1).

Figure 5.7b shows an example of the FastTrack detection for the same execution

shown in Figure 5.7a. In the example, except for the write vector Wx all the other
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vector clock updates are identical as in the DJIT+ execution. For the write vector

clock, an epoch represent with two scalars (i.e., O(1) space overhead) is used instead

of the full vector clock representation, (i.e., O(n) space overhead). When thread 1

writes to x, the epoch representation 1@0 for the write vector is compared with the

thread vector clock with O(1) time overhead.

5.4 Dynamic Granularity Algorithm

FastTrack is a fast and space-efficient race-detection tool but it still needs to keep

vector clocks for each memory location. This is not problematic for object-oriented

programming languages since detection unit can be either a field or an object. For

C/C++ programs, it is not easy to detect data structure boundaries (e.g., dynamically

allocated struct or array) and moreover data are often protected in fine grained (e.g.,

a byte or a word). A simple way to rectify the problem is to use a fixed granularity.

However using a fixed granularity (e.g., word) would produce a large number of false

alarms and does not help reducing the overheads for many cases as shown in our

evaluation results.

In this section, we present a dynamic granularity algorithm which enables vector

clock based race detectors to use detection granularity as large as possible with min-

imal false alarms. The algorithm is described on the assumption of using DJIT+ or

FastTrack detectors (That is, a thread’s execution is defined as a sequence of epochs,

and for consecutive accesses of a memory location in an epoch, only the first read

and write are checked.) In the description, two vector clocks are the same when they

are the same size and their contents are of equal value, and both a vector clock and

an epoch representation are referred to as a vector clock.

The dynamic granularity is realized by sharing vector clocks with neighboring

memory locations. The basic idea is illustrated in Figure 5.8. The sharing heuristic
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Figure 5.8: Idea of Dynamic Granularity. A large detection granularity is achieved
by sharing vector clocks with neighboring memory locations.

is based on the following observations:

1. Neighboring memory locations (e.g., array, struct) tend to be accessed together

whether the locations have data races or not. Hence, they can have the same

vector clock.

2. At initialization, a data structure is often accessed in its entirety, e.g., zero-out

an array, even if its elements are protected separately afterward.

3. There are groups of memory locations that are accessed only in one epoch for

the entire lifetime of the location, e.g., dynamically allocated memory locations

that are used temporarily.

With these observations, the dynamic granularity algorithm is realized with a

vector clock state machine that is described in the following subsection.

5.4.1 Vector Clock State Machine

For a memory location, we maintain a read location and a write location sep-

arately. Hence, only the same access type (read or write) of vector clocks can be

shared. Let L be a location which can be either a read or write location. When L

is accessed for the first time, a vector clock is created for it. The sharing state of

each location is maintained by a state machine attached to its vector clock as shown

in Figure 5.9. The state machine basically has four states. In the first epoch access,
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Init
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and not shared by 
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No data race on L

Data Race

Shared Private

Race

Figure 5.9: Vector Clock State Machine for Each Read or Write Location.

the vector clock is temporarily shared with its neighbor if the neighbor has the same

vector clock. When the second epoch access begins at a location, the shared vector

clock at the location is split and new sharing decision is made.

A neighbor of L is a memory location adjacent to L that is considered to share

potentially a vector clock with L. A location L can have two neighbors that one is

located left (a predecessor of L) and the other is located right (a successor of L).

During the first epoch, the neighbors are the nearest predecessor and successor that

have valid vector clocks. A new access to a location L initiates a vector clock in Init

state. This vector clock can be shared with L’s neighbors if they have the same vector

clock and are in Init state as well. For an access to a location L in the 2nd epoch, the

neighbors are at locations L − size and L + size where size is the data size of the

access. As long as the neighbors are not in Init or Race state, we compare the vector
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clock of L with those of its neighbors. If the vector clocks are equal, the state is set

to Shared. Otherwise, it is Private. The four states of a vector clock are explained in

detail as follows,

Init: When L is accessed first time, its vector clock is initiated and is set to

this state until the next epoch access. This Init state is intended to approximate the

initialization process. Note that, even if two different memory locations in a data

structure are protected separately (with two different locks), the locations of the data

structure may be initialized together and have the same vector clock during the first

epoch. Hence, if we make a firm sharing decision at the initialization, the vector clock

can be inaccurately updated leading to a false alarm. However, starting from the 2nd

epoch, a new sharing decision is made and the locations have their own private vector

clocks.

While in Init state, L can be in 1st-Epoch-Shared sub-state if one of the neighbors

has the same vector clock and is in Init state. Thus, L shares temporarily its vector

clock with its neighbors during the first epoch. When there is no neighbor that has

the same vector clock as the location L, the state of L becomes 1st-Epoch-Private.

The state of L can transition to 1st-Epoch-Shared when a new neighbor location L′ is

initiated and L′ has the same vector clock as L. The rationale behind the temporary

sharing is that there could be many memory locations that are accessed only in

one epoch. Examples include dynamically allocated memory or groups of memory

locations in a big data structure that are used only in one epoch. As our experimental

results show, having this Init state saves a considerable amount of memory for some

applications. Upon the next epoch access, L has its own vector clock and state, and

the new sharing decision is made for the rest lifetime of the location L.

Shared: On the second epoch access of L, if there is no data race on L (and no

read-read conflict for a read location) and there exists a neighbor that has the same
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vector clock as L and is in either Shared or Private, the location L shares its vector

clock with the neighbor. Also, the state of L can transition from Private to Shared

when L becomes a neighbor of another location L′ that has the same vector clock as

L.

Private: When there is no neighbor that has the same vector clock as L, the

state of L becomes Private on the second epoch access.

Race: On a data race, the state of L becomes Race. If there are memory locations

sharing the same vector clock with L, the sharing is terminated and each of these

locations become Race and is assigned with a private vector clock.

5.4.2 Dynamic Granularity

The dynamic granularity is achieved by sharing vector clocks with neighboring

address locations. The detection starts with byte granularity for every location and

the granularity is increased as more neighboring locations share the same vector

clock. The vector comparison to determine vector clock sharing can be an expensive

operation. However, following the vector clock state machine, there can be at most

two sharing decisions for the lifetime of a memory location and it requires only O(1)

time overhead in most cases when the FastTrack algorithm is used. In fact, we can

have a significant performance enhancement by the use of dynamic granularity since,

as we change to a large granularity, multiple accesses may be treated as the same

epoch accesses.

5.5 Implementation

We have implemented the FastTrack algorithm for data race detection of C/C++

programs with fixed (byte and word) and dynamic granularities. Intel PIN 2.11 [47]

is used for dynamic instrumentation of the programs.
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void memoryRead(uint addr, uint size, uint tid)  
{ 

    if (nonSharedRead(addr) || sameEpoch(tid, addr)) 

        return; 
     

    Location L = findReadAccess(addr); 

    if (!L) {                                               // The first access of addr 
        L = insertRead(addr, size); 

        shareFirstEpoch(L, addr, size);       // Temporary sharing 

        L→ state = Init; 
    } else if (L→state==Init) {                  // Second epoch access 

        split(L, addr, size);                          // Split for new sharing 

        shareSecondEpoch(L, addr, size);   // New sharing decision 
        if (L→count>1) 

            L→state = Shared; 

        else 
            L→state = Private; 

    } 

 

    //if race found on addr, split all vectors sharing with L 

    //  and set states of locations to Race 

    if (raceFound(addr)) 
        splitAndSetRace(L, addr);   

 

    //remember access L into bitmap for this thread     
    //the bitmap is reset at the next epoch of this thread 

    insertEpochAccess(tid, addr); 

} 

 Figure 5.10: Instrumentation Code for Memory Read.

5.5.1 Instrumentation

To trace all shared memory accesses, every data access operation is instrumented.

If an instruction accesses non-shared memory (e.g., stack), the instrumentation rou-

tine returns immediately. Figure 5.10 shows pseudocode for memory read instructions.

Memory write can be similarly described and we omit the FastTrack algorithm for

clarity.

When an access is not the first read or write in an epoch, vector clock updates

and data race checking on that access can be skipped according to the FastTrack

algorithm. Checking the same epoch access can be costly since looking up a vector

clock from a global data structure requires synchronization of threads. To reduce
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Figure 5.11: (Top): A separate chaining hash table implementation. Each entry
can contain m addresses (shown a case m = 128). (Bottom): The size of indexing
array in a hash entry is changed from m/4 to m when byte granularity access begins
in the entry.

overhead, a per-thread bitmap is implemented. When the first access is made in an

epoch, the access is set in the bitmap and the bitmap is reset for every lock release

operation. Because the bitmap is a thread local data structure, checking the same

epoch is more efficient than looking up a global data structure.

The mechanism for dynamic granularity is invoked at the first two epochs for

each read or write location. Thus, the overhead can be negligible. Also it will be

straightforward to apply dynamic granularity into existing data race detection tools.

5.5.2 Data Structures

To find the vector clock of each read or write location, a chained hash table

is implemented as shown in Figure 5.11. For efficient sequential processing such

as deleting vector clock entries from free() and vector clock sharing process, each
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chain entry contains vector clocks for multiple memory locations rather than just one

vector clock. Each hash chain entry has an indexing array which can contain up to

m pointers for vector clock entries. For a 32-bit address, the upper address (upper

32 − log2m bits of the address) is hashed into the table to locate the corresponding

hash entry. Then, the vector clock entry for the address is indexed using the lower

address (lower log2m bits of the address).

The use of indexing array makes sequential processing efficient, but a considerable

amount of memory can be wasted. For instance, assume that an indexing array

contains 128 byte addresses (i.e., 128 pointers) and the program only makes word-

aligned accesses. Then, 3/4 of the indexing array (96 words) will not be used. To

save memory on the indexing array, the size of the indexing array in the hash entry

changes according to memory access patterns. When a new hash entry is created, it

starts with an array of m/4 pointers since the most common access pattern is word

access. When a byte access (i.e., the address is not word or half-word aligned) is

detected, the array is expended to have m pointers.

5.6 Evaluation

In this section, we present the efficiency and effectiveness of our dynamic granu-

larity algorithm. First, we show our experimental results of the FastTrack detector

with fixed (byte and word) and dynamic granularities. Second, analysis results on

the state machine are presented. Lastly, performance measures of two popular data

race detection tools, Valgrind DRD [61, 94] and Intel Inspector XE [27], are com-

pared with the FastTrack detector using dynamic granularity. All experiments were

performed on Ubuntu 12.04 with kernel version 3.2.0 and Intel Core Duo CPU with

4 GB of RAM.

All experiments were run with 11 benchmarks: 8 from the PARSEC-2.1 bench-
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mark suite [8] that are implemented with the POSIX thread library and 3 from pop-

ular multithreaded applications: FFmpeg [89], a multimedia encoder/decoder; pbzip2

[30], a parallel version of bzip2; and hmmsearch [15], a sequence search tool in bioin-

formatics. For input sets of the PARSEC benchmark programs, the simsmall input

set is used for raytrace while the simlarge is used for the rest 7 programs. Inputs

for the other three programs are chosen to have similar run times as the PARSEC

benchmark programs.

5.6.1 Performance and Detection Precision

Table 5.3 shows overall experimental results of the FastTrack detector with three

different granularities. “Total shared accesses” column shows the total number of

shared reads and writes during each benchmark program run. “Max. # of vectors in

byte granularity” column indicates the maximum number of vector clocks present for

the execution of each program in byte granularity run. These two columns combined

with the number of threads, give us a general idea of the instrumentation overhead

in the detection. “Slowdown” and “Memory overhead” columns report runtime and

memory overhead of each detection mechanism as the ratios to the run time and

maximum memory used in the un-instrumented program execution. “# of Detected

Data Races” columns show the number of data races detected by each granularity

detector.

Overall Results. The results show that the dynamic granularity detector is on

average 1.43x and 1.25x faster than the byte-granularity and the word-granularity

detectors, respectively. For memory overhead, on average the dynamic granularity

detector consumes 60% less memory than the byte granularity detector and 23% less

memory than the word granularity detector.

For benchmarks facesim, fluidanimate, raytrace, canneal, streamcluster, and hmm-
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facesim 8033 93,930,447 2 6.1 288 138 138 102 8.8 8.8 4.6 8909 8909 8909 

ferret 3856 83,678,104 11 6.7 146 65 57 52 16.6 11.7 8.9 2 2 2 

fluidanimate 2443 11,220,394 3 2.0 248 87 87 81 2.6 2.6 2.2 1 1 1 

raytrace 18 3,291,927 3 9.5 170 27 27 27 2.1 2.1 2.0 13 13 13 

x264 3392 12,550,683 256 2.2 49 75 55 64 20.8 9.6 9.0 1300 993 1313 

canneal 359 7,141,372 3 6.5 104 13 13 13 5.3 5.3 5.1 0 0 0 

Dedup 10003 9,208,539 7 7.7 2682 152 76 85 1.0 1.0 1.0 0 0 0 

streamcluster 8030 2,277,958 5 3.8 30 245 245 137 4.8 4.8 3.7 1053 1053 1079 

 

ffmpeg 5790 7,195,586 9 3.0 95 121 106 109 4.0 3.0 3.1 1 9 1 

pbzip2 7239 8,842,583 6 5.7 67 64 49 39 5.4 4.2 3.4 0 0 0 

hmmsearch 38050 961,831 3 26.6 23 84 83 45 4.9 4.9 4.3 1 1 1 

Average      97 85 68 6.9 5.3 4.3    

Table 5.3: Overall Experimental Results.

search, memory consumption is neither reduced nor does detection become faster

when we switch from byte granularity to word granularity. Since the sizes of most

accesses in those benchmarks are equal to or greater than a word, no vector clock is

created for non-word-aligned locations. Thus, using word granularity does not help to

reduce the overhead of vector clock operations. However, except for raytrace, canneal,

the use of dynamic granularity enhances the detection both in time and memory space.

This suggests the advantage of using a large granularity crossing word boundaries.

The results from ferret and pbzip2 show improvements both in word granularity and

dynamic granularity, but the use of dynamic granularity has more benefits than the

use of word granularity. It may be strange to see that the factor of memory overhead

for dedup is 1.0 for all detectors. Note that the maximum overhead does not always

occur when the maximum memory is used in the benchmark. In fact, dedup uses a

large amount of memory (about 2.7 GB) at the beginning of the execution when the

detection overhead is close to zero. Then, the memory usage is gradually decreased

while the peak memory overhead from the detectors occurs afterward.

For detection precision, there are few discrepancies among the detectors as shown
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facesim 288 513 1505 132 2149 514 1503 132 2148 517 273 131 921 

ferret 146 458 1573 66 2097 259 1072 57 1388 454 469 64 988 

fluidanimate 248 132 180 27 339 132 180 27 338 132 74 27 233 

raytrace 170 35 53 15 103 30 53 15 97 35 22 15 72 

x264 49 77 233 7 317 33 89 7 129 77 44 7 128 

canneal 104 87 176 52 315 87 176 52 315 87 155 52 294 

dedup 2682 212 148 57 417 147 100 58 305 214 88 56 358 

streamcluster 30 11 37 6 54 11 36 6 54 11 3 6 21 

ffmpeg 95 37 118 7 162 18 43 7 68 37 28 7 72 

pbzip2 67 49 141 17 207 37 89 17 143 50 4 16 70 

hmmsearch 23 12 15 3 30 12 15 3 30 13 1 3 17 

Average  148 380 35 563 116 305 35 456 148 105 35 288 

Table 5.4: Memory Overhead of FastTrack Detection with Different Granularities.

in Table 5.3. With word granularity, 993 data races are reported for x264 while the

dynamic granularity detector reported more data races. When word granularity is

used, non-word-aligned addresses are masked to word boundary and data races for

those locations are detected as one race. That is how the word granularity detector

reported less number of data races for x264. We carefully inspected data races from

x264 found by the dynamic granularity detector and noticed that there were 4 write

locations which were sharing a vector clock with one location having a data race.

More data races from ffmpeg by the word granularity detector and from streamcluster

by the dynamic granularity detector are found to be false alarms due to inaccurate

updates of vector clocks when large detection granularities are used.

Memory Overhead. Table 5.4 shows the details of memory overhead. For

each granularity, three major overhead factors are shown. “Hash” column indicates

the maximum memory used for the hash tables and the hash entries to index vector

clocks. “Vector clock” column gives the maximum memory used to store vector

clocks. The third column, “Bitmap”, is the maximum memory used for the bitmap

data structures for checking same epoch accesses. The overhead is measured based
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facesim 93,930 93,808 16,991 5.5 

ferret 83,678 52,375 24,689 3.4 

fluidanimate 11,220 11,174 4,590 2.4 

raytrace 3,291 3,285 1,319 2.5 

x264 12,550 4,803 2,019 6.2 

canneal 7,141 7,141 5,812 1.2 

dedup 9,208 6,226 5,474 1.7 

streamcluster 2,277 2,245 193 11.8 

ffmpeg 7,195 2,620 1,696 4.2 

pbzip2 8,842 5,570 265 33.3 

hmmsearch 961 950 53 17.9 

Table 5.5: Maximum Number of Vector Clocks Present.

on object size and is slightly underestimated since the size of memory allocated for a

data object is usually little more than the actual size of the type.

The dynamic granularity algorithm saves a substantial amount of memory used

for vector clock allocations (as shown in “Vector clock” columns). Another view of

memory savings on vector clocks is shown in Table 5.5 which lists the maximum

numbers of vector clocks during program executions. On average, the dynamic gran-

ularity detector uses roughly 4x and 3x less memory for vector clocks than the byte

granularity and the word granularity detectors, respectively. Indexing costs of the

byte granularity and the dynamic granularity detectors are almost same since the use

of dynamic granularity does not save memory on indexing vector clocks (as shown in

“Hash” columns of Table 5.4). The use of word granularity saves memory on indexing

for some benchmark programs because the addresses are mostly word-aligned, thus

using smaller indexing arrays in hash entries.

Slowdown. Speedups can be achieved in two ways by the use of a large granu-

larity. Firstly, in DJIT+ based race detectors including FastTrack, the vector clock

operations are performed only for the first read and write of a shared memory loca-
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facesim 138 138 102 74% 74% 94% 

ferret 65 57 52 78% 83% 87% 

fluidanimate 87 87 81 89% 89% 94% 

raytrace 27 27 27 65% 65% 68% 

x264 75 55 64 67% 90% 78% 

canneal 13 13 13 97% 97% 97% 

dedup 152 76 85 85% 93% 85% 

streamcluster 245 245 137 50% 51% 97% 

ffmpeg 121 106 109 68% 90% 84% 

pbzip2 64 49 39 95% 97% 95% 

hmmsearch 84 83 45 83% 83% 98% 

Average 97 85 68 77% 83% 89% 

Table 5.6: Measures of Same Epoch Accesses.

tion during each epoch. The use of a large granularity makes multiple accesses as

one access. Thus, there are more same epoch accesses enhancing the detection per-

formance. In Table 5.6, we show the percentage of same epoch accesses along with

the slowdown for each benchmark program. The results suggest that in most cases

the performance gains from a large granularity are consistent with the percentage of

same epoch accesses. For the cases of canneal and raytrace, as the percentages of

same epoch accesses do not vary noticeably among different granularities, there is no

performance enhancement by the use of a large granularity.

Second, speedup comes from the reduction of vector clock allocation and de-

allocation operations. For the case of pbzip2, the dynamic granularity detector is

1.6x faster than the byte granularity detector while the percentages of same epoch

accesses are same. On the other hand, the average number of locations that share a

vector clocks is 33.3 under dynamic granularity as shown in Table 5.5. This implies

that there will be about 33 times less vector clock creation and deletion operations.

The other interesting case is dedup. The program has the same percentage of same

epoch accesses for both byte and dynamic granularities and the average number of
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facesim 2180 1317 9210 8909 

ferret 1808 1302 2 2 

fluidanimate 604 551 18529 1 

raytrace 348 334 13 13 

x264 470 442 1315 1313 

canneal 550 530 0 0 

dedup 2729 2730 0 0 

streamcluster 142 111 1079 1079 

ffmpeg 301 294 1 1 

pbzip2 359 225 2 0 

hmmsearch 107 99 1 1 

Average 873 721   

Table 5.7: Comparisons of State Machines with Different Configurations.

sharing vector clocks is only 1.7. However, the dynamic granularity detector is 1.78x

faster than the byte granularity detector. The reason is that there are an excessive

number of dynamic memory locations in dedup. On average, there is about 1.7 GB

of memory allocated and de-allocated in the 11 benchmark programs whereas it is

14GB in dedup.

5.6.2 Analysis of State Machine

The sharing decision for realizing dynamic granularity is made twice for the life-

time of a location L (read or write). In the first epoch, L tries to share a vector

clock with its neighbors temporarily. In the second epoch, a new sharing decision is

made for the rest lifetime of L. We make a firm sharing decision at the second epoch

(after initialization of L) since some groups of data structures can be initialized at

the same segment of code even if they are accessed separately afterward. This design

makes the sharing decision accurate. The temporary sharing at the first epoch may

save a considerable amount of memory because there could be groups of locations

that are accessed together only once in the same epoch and if that is the case, we do
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 facesim 6.1 288 59 128 102 2.2 6.0 4.6 8909 31 8909  

 ferret 6.7 146 748 87 52 2.6 5.0 8.9 108 4 2  

 fluidanimate 2.0 248 -- 89 81 -- 12.4 2.2 -- 7 1  

 raytrace 9.5 170 42 17 27 1.9 4.1 2.0 16 0 13  

 x264 2.2 49 143 246 64 3.2 22.1 9.0 988 218 1313  

 canneal 6.5 104 31 41 13 8.2 11.9 5.1 0 0 0  

 dedup 7.7 2682 -- -- 85 -- -- 1.0 -- -- 0  

 streamcluster 3.8 30 66 108 137 4.2 17.5 3.7 1067 61 1079  

 ffmpeg 3.0 95 120 -- 109 2.6 -- 3.1 0 -- 1  

 pbzip2 5.7 67 64 99 39 2.9 8.6 3.4 0 0 0  

 hmmsearch 26.6 23 74 64 45 4.4 21.9 4.3 1 2 1  

 Average     150 98 68 3.6 12.2 4.3        

Table 5.8: Performance Comparisons of Valgrind DRD, Intel Inspector XE and the
FastTrack with Dynamic Granularity.

not have to keep a separate vector clock for each of them. Notice that there is no

possibility of false alarms by the temporary sharing at Init state. Table 5.7 shows

the effectiveness of this design. Column 2 and 3 show the maximum memory used

without and with temporarily sharing at the first epoch. Column 4 shows the number

of detected data races without Init state, i.e., no temporary sharing and the sharing

decision is made only once in the first epoch. Comparing with column 5 in which

Init state is added, there could be many false alarms as the consequence of improper

sharing decisions made only in the first epoch. In addition, the results suggest that

there are considerable numbers of memory locations that are used only in one epoch.

5.6.3 Case Studies

In this section, we present experimental results on two popular data race detection

tools, DRD in Valgrind-3.8.1 [94] and Intel Inspector XE 2013 [27] update-5. Also

comparison results with our dynamic granularity on FastTrack are given. DRD, a tool

for programs written with the POSIX library, detects various errors including data
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races, lock contention delays, and misuses of the POSIX library. The race detection

algorithm in DRD is based on RecPlay [77]. Since DRD does not keep vector clocks

for each memory location in its segment comparison approach, we expect that DRD

uses less memory but is slower than the FastTrack detector. Intel Inspector XE is a

memory and thread error checker that is capable of detecting various errors including

data races, deadlocks, and cross-thread stack access.

Inspector XE provides a GUI with comprehensive analysis reports, including the

source code location of an error, calling stack analyses, and suggestion for fixing any

detected errors. Likewise, DRD provides execution context for each error as well as

the location that the error occurs. Race report from our implementation of FastTrack

is not as comprehensive as the two tools, but we provide the location of a race along

with the previous access location, thread ids, and the race memory address. The

information should be sufficient for developers to fix the problems easily.

For Inspector XE, the command-line version was used and only data race detection

is enabled. The two detectors used byte granularity and all detectors, including

our dynamic granularity version of FastTrack, traced all modules including shared

libraries. For the dynamic granularity detector, we applied the similar suppression

rules as in DRD, e.g., suppressed data races detected from libc and ld. The dynamic

granularity detector and DRD report the first race for each memory location while

Inspector XE uses a combination of instruction pointers and timeline when a race

occurs to distinguish races. Thus, Inspector XE may report the same accesses on a

specific memory location as multiple races or multiple accesses issued at the same

instruction points as one race. DRD and Inspector XE classify the detected data

races with execution context, but in the experimental results we list the raw number

of data races before the classifications.

The comparison results are shown in Table 5.8. Both Inspector XE and DRD ex-
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ited on dedup runs with out of memory warnings. DRD on fluidanimate and Inspector

XE on ffmpeg ran for more than 24 hours before we stopped the analyses.

As we expected before the experiment, DRD is slower than the FastTrack detec-

tor with dynamic granularity and even slower than the FastTrack detector with byte

granularity. However, DRD consumes less memory than the FastTrack detector with

dynamic granularity. The comparison results also suggest that the dynamic granu-

larity detector is as accurate as the other two detectors. All three detectors detected

the same race for hmmsearch (Inspector XE reported the same race one more time in

a different timeline). The dynamic granularity detector and Inspector XE reported

the same races for three benchmarks, ferret, fluidanimate, and streamcluster. For

raytrace, the dynamic granularity detector and DRD reported the same races, but

DRD reported more races from pthread library which was suppressed by the dynamic

granularity detector. DRD detected no race for ffmpeg while the dynamic granularity

detector reported one race. We manually inspected the source code and found that

it was a data race by the two worker threads accessing a shared variable without

protection.

5.7 Related Work

5.7.1 Hybrid Race Detectors

Aside from the 3 basic approaches for race detections, [19, 70, 76, 77, 79, 94, 105],

a variety of hybrid race detectors have been proposed in which Eraser’s Lockset

algorithm is combined with the happens-before algorithm to have better detection

coverage and to avoid false alarms. O’Callahan and Choi [64] have proposed a race

detection algorithm in which a subset of happens-before relations is added to a Lockset

based detector. The detector is optimized by detecting redundant event accesses
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and by the use of a “two phase” approach of detailed and simple mode detections.

MultiRace [70] combines DJIT+ and Lockset algorithm and only check the first access

in each time frame. In MultiRace, the number of detection operations is reduced

based on the information produced from LockSet and false alarms from LockSet are

filtered out by happens-before relations. ThreadSanitizer [81] is a hybrid race detector

for C++ programs that offers tunable options to users. Its dynamic annotations

allow the detector to be aware of user defined synchronizations. Thus, the tool hides

certain false alarms and benign races. RaceTrack [105] incorporates the happens-

before relation into the LockSet algorithm and only report races caused by concurrent

accesses. One interesting idea in RaceTrack is the use of adaptive granularity. The

detection granularity starts from object level and becomes field level when a potential

race is detected. Unfortunately, the idea, based on object references, is not applicable

to C/C++ programs.

5.7.2 Sampling/HW-assisted Approaches

LiteRace [50] is a sampling based race detector grounded in the cold-region hy-

pothesis that infrequently accessed areas are more likely to have data races than

frequently accessed areas. Accesses to code regions of different function units are

sampled while all synchronization operations are collected. The sampler starts at a

100% sampling rate and the sampling rate is adaptively decreased until it reaches a

lower bound. PACER [9] is another sampling based race detector that periodically

samples all threads and offers a detection rate proportional to the sampling rate.

These approaches offer reasonable detection rate with minimal overhead, but may

miss critical data races.

As an alternative to software only race detectors, several hardware assisted race

detectors have been proposed. In SigRace [57], data addresses are automatically
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encoded in hardware address signatures and in a hardware module. The signatures

are intersected with those of other processors to detect data races. Greatehouse et al.

[23] proposed a demand-driven race detector that utilizes cache performance counters

to detect data sharing between threads. When the data sharing is detected, a software

race detector is enabled and run until there is no more data sharing. These approaches

are efficient but require specific hardware making them impractical.

5.7.3 Data Race Detection for C/C++ Programs

While many researchers have focused on data race detection algorithms for Java

programs, only a few of which have presented evaluation results for existing data

race detection tools on C/C++ programs. Aikido [66] is a framework for shared

data analysis in which sharing data is detected using per-thread page protection

technique. The Aikido sharing detector is complementary to dynamic granularity and

is effective to remove the instrumentation overhead of no-shared memory accesses.

IFRit [13] is a dynamic race detection algorithm for C/C++ programs based on

interference-free region which can limit the range of code instrumentation. IFRit has

been compared with FastTrack and ThreadSanitizer [81]. Both researches applied the

PARSEC benchmark suite in their performance evaluations, but only the sim-small

input set was used and no memory overhead was reported. Moreover, none of them

made an attempt to compare their tools with commercial grade data race detection

tools.

5.7.4 Classifying/Surviving Data Races

Aside from detecting data races, a number of researches on classifying data races

have been proposed. Among detected data races, many portions of them are harmless;

shared data are intentionally not protected for performance reason; or the data races
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are benign in a sense that they do not affect the correctness of the program. The

motivation is for developers to more focus on harmful data races not distracted by

a number of harmless data races. Narayanasamy et al. [60] proposed an idea of

classifying data races using replay. The basic idea is to replay twice with two different

orderings for a given data race. If the two replays produce the same memory and

register values, the race is classified as a benign race. Portend [35] extends the idea

considering different paths and different scheduling. Even if the two replays produce

the same states, Portend does not conclude but explores paths before and after the

race occurs and paths from different thread interleaving.

Veeraraghavan et al. proposed Frost [96] that protects programs from data races

and introduced an outcome-based race detector, i.e., data races are reported when

outputs of replicas diverge. Frost uses complementary schedules to force replicas to

diverge on races. Depending on combinations of diverged outcomes, Frost reports

data races and takes actions to survive data races. ToleRace [73] uses a concept of

using thread local copy of a shared data and propagating the appropriate copy after

detecting conflicting changes. ToleRace is focus on asymmetric races (i.e., one thread

protects a shared variable properly while the other improperly accesses the variable)

since, according to the claim in the paper, asymmetric races are very common in

practice and most of them are benign.

5.7.5 Automatically Fixing Data Races

Once we have detected data races with one of the methods we have discussed, the

races can be fixed by placing proper synchronization operations. However, placing

correct synchronizations can be time-consuming and error-prune process resulting in

new concurrency errors. Jin et al. have proposed a system that automatically fixes

concurrency bugs including data races [31, 32]. In the approach, synchronization
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operations are automatically placed based on a bug report. The bug report should

contain enough details to place synchronizations and is required to be sound, i.e., no

false positives. The challenges in the approach is to guarantee that no new bugs (e.g.,

deadlocks) are introduced due to the additions of synchronization. For instance, a

synchronization operation (e.g., lock, unlock) can be added inside a branch or loop

statement, and it can cause a deadlock when the branch/loop is not taken. Also,

putting a synchronization in a recursive function call can cause a deadlock. To avoid

those case, the system statically analyze the program and place synchronizations for

both branch/loop taken and not-taken paths, and locks are replaced with reentrant

locks.

5.8 Chapter Conclusions

In this chapter, we have presented a dynamic granularity algorithm for C/C++

programs that enables vector clock based race detectors to adjust detection granu-

larity. A vector clock state machine is employed to determine when vector clocks

can be shared. The state machine also considers the initialization patterns of data

structures. Thus, possible false alarms due to vector clock sharing can be reduced.

Our experimental results show that the dynamic granularity detector outperforms

the FastTrack detector with byte or word granularities and also outperforms two

existing data race detection tools, Valgrind DRD and Intel Inspector XE.

Although our approach for efficient data race detection is promising, the runtime

overhead would be still high for the routine uses. As multi-core machines are readily

available today, the overhead can be alleviated by exploiting multiple/extra cores in

a system. In Chapter 6, we study the overhead and scalability of data race detection

on multi-core machines and propose a paralleling data race detection algorithm.
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Chapter 6

DATA RACE DETECTION ON MULTI-CORE SYSTEMS

In Chapter 5, we have proposed an efficient data race detection for C/C++ pro-

grams. Although our approach is viable outperforming commercial grade data race

detectors, the runtime overhead would be still high for the routine uses. In this chap-

ter, we present a novel approach to parallelize data race detection in multi-core SMP

(Symmetric multiprocessing) machines. In our approach, data access information

needed for dynamic detection is collected at application threads and passed to worker

threads. The access information is distributed in a way that the detection operation

performed by each worker thread is independent of those of other worker threads.

As a consequence, the overhead caused by locking operations in data race detector

can be alleviated and multiple cores can be fully utilized to speed up and scale up

the detection. Furthermore, since each worker thread deals with its own assigned

access range rather than the whole address space, the executions of worker threads

can exploit the spatial locality of accesses leading to an improved cache performance.

We have applied our parallel approach on the FastTrack algorithm and demonstrated

the validity of our approach on an Intel Xeon machine. Our experimental results

show that the parallel FastTrack detector, on average, runs 2.2 times faster than the

original FastTrack detector on the 8 core machine.

6.1 Introduction

As discussed in Chapter 5, static data race detectors [17, 34, 58, 71, 98] may

produce excessive number of false alarms which hinders developers’ focus on real

data races. Hence, in practice dynamic detection approaches are often preferred
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to static detectors due to the soundness of the detection. Nevertheless, the high

runtime overhead impedes routine uses of the detection. There have been broadly

two approaches to reduce the runtime overhead. The first approach is to reduce the

amount of work that is fed into a detection algorithm. Sampling approaches [9, 50] can

be efficient but we may miss critical data races in a program. DJIT+ [70] has greatly

reduced the number of checks for data race analysis with the concept of timeframes.

In [78], memory accesses that do not need to be checked can be removed from the

detection by various filters. The use of large detection granularity can also reduce

the amount of work for data race analysis. RaceTrack [105] uses adaptive granularity

in which the detection granularity is changed from array/object to byte/field when

a potential data race is detected. In dynamic granularity [84], starting with byte

granularity, detection granularity is adapted by sharing vector clocks with neighboring

memory locations. Another approach is to simplify the detection operations. For

instance, by the adaptive representation of vector clock, FastTrack [19] reduces the

analysis and space overheads from O(n) (where n is the number of threads in the

execution) to nearly O(1).

Despite the recent efforts to reduce the overhead of dynamic race detectors, they

still cause a significant slowdown. According to [84], the FastTrack detector imposes

a slowdown of 97 times on average for a set of C/C++ benchmark programs. For

the same benchmark programs, Intel Inspector XE [27] and Valgrind DRD [94] slow

down the executions, on average, by a factor of 98 times and 150 times, respectively.

With multi-core architectures, one promising approach is to increase parallel ex-

ecutions of data race detector. Wester, et.al, has presented a strategy to parallelize

data race detection [101]. In the approach, thread execution is time-sliced and exe-

cuted in a pipe-lined manner. That is, each thread execution is defined as a series of

timeframes and the code blocks in the same time frame for all threads are executed
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in a designated core. Their parallel detector speeds up the detection and scales well

with multiple cores by eliminating lock cost in the detection and by increasing parallel

executions. However, the approach relies on a new multithreading paradigm, unipar-

allelism [97] which is different from the task parallel paradigm supported by typical

thread libraries. In addition, it requires modifications on OS and shared libraries,

and rewriting the detection algorithm.

In this chapter, we present a novel approach to parallelize data race detection in

multi-core machines. Our approach does not require any change in the underlining

system and we use the same race detection algorithm, such as FastTrack. Also, our

parallelization does not alter the access information and order of memory accesses

which are used for the sequential version of the original detection algorithm. Hence,

the parallelized data race detection provides the same detection precision with in-

creased performance and scalability. As in the FastTrack algorithm, we assume that

the detection runs on SMP (Symmetric multiprocessing) based machines.

The idea is to separate race detection from application threads and to perform

data race analysis in worker threads without inter-thread dependencies. Data access

information for race analysis is distributed from application threads to worker threads

based on memory address. In other words, each worker thread performs data race

analysis only for the memory accesses in its own address range. Note that in a

conventional race detector, each application thread performs data race analysis for

any memory accesses occurred in the thread. Our parallelization strategy increases

scalability as we can use any number of worker threads regardless of application

threads. Speedups are attained as the lock operations in the detector program are

eliminated, and the executions of worker threads can exploit the spatial locality of

accesses.

We have applied our approach on the FastTrack algorithm [19] and demonstrated
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Figure 6.1: A High Level View of the FastTrack Detection When Two Threads
Write to the Variable X.

the validity of our approach on an 8-core Intel Xeon machine. Our experimental

results show that when 4 times more cores are used for the detection, the parallel

version of FastTrack, on average, can speed up the detection by a factor of 3.3 over

the original FastTrack detector. Even without additional cores, the parallel FastTrack

detector runs 2.2 times faster on average than the original FastTrack detector.

The rest of this chapter is organized as follows. In Section 6.2, we present an anal-

ysis of overhead and scalability of the FastTrack algorithm on multi-core machines.

Section 6.3 describes the parallel FastTrack algorithm, and in Section 6.4 we present

the implementation of the parallel version of FastTrack. In Section 6.5, our experi-

mental results are presented to show the validity of our approach. A concise survey

of related work is presented in Section 6.6 and we conclude the chapter in Section 6.7.

For the background on the FastTrack algorithm, refer to Section 5.3 of Chapter 5.

6.2 Overhead and Scalability of FastTrack

When a thread accesses a memory location, the FastTrack race detector must

perform the following operations to analyze any data race. First, the vector clocks

(for read and write) for the memory location are read from the global data structures.

Second, the detection algorithm is applied by comparing the thread’s vector clock
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with the vector clocks for the memory location. Lastly, the vector clocks for the

memory location is updated and saved into the global data structures. As illustrated

in the following, these operations can lead to excessive overhead. In addition, as

the detection is performed when every application thread make references to shared

memory, the FastTrack detector incurs substantial runtime overhead and does not

scale well on multi-core machines.

Lock overhead : A dynamic race detector is a piece of code that is invoked

when the application program issues data references to shared memory. Thus, if the

application runs with multiple threads, so does the race detector. In the FastTrack

algorithm, vector clocks should be read from and updated in global data structures

as shown in Figure 6.1. When multiple threads access the global data structures, the

accesses should be synchronized with lock operations at an appropriate granularity.

Otherwise, the detector program itself will suffer from concurrency bugs including

data races. As lock operations should be applied for every shared memory access,

the overhead of race detection can be substantial. As shown in Table 6.2 of the next

section, the locking overhead constitutes on average 17% and can be up to 44% of

the execution time of the FastTrack detector.

Inter-thread dependency : During the executions of application threads, it

is often the case that a thread may block or condition-wait for the resource to be

freed by another thread. Hence, CPU cores may not be effectively utilized even with

sufficient number of application threads. Since the data race analysis is performed

as a part of the execution of application threads, it can suffer from the same inter-

thread dependencies as the application threads. Thus, when an application thread is

inactive, no data race detection can be done for its memory accesses.

Utilizing extra cores: The prevalence of multi-core technologies makes us be-

lieve that extra cores will be available for execution of an application. However, if
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there were more CPU cores than the number of application threads, the race detec-

tion may not utilize these extra cores. We may increase the number of application

threads to scale up the detection. This can lead to three potential problems. First,

increasing the number of application threads may not be beneficial especially if the

application is not computation-intensive. Second, changing the number of applica-

tion threads may imply a different execution behavior including possible data races.

Lastly, as shown in our experimental results, the detection embedded in application

threads may not scale well when the number of cores increases.

Inefficient execution of instructions: In an execution of the FastTrack de-

tector, global data structures for vector clocks are shared by multiple threads, and

each application thread is responsible for data race analyses of the memory accesses

occurred in the thread. As a consequence, each application thread may access the

global data structures whenever it reads or writes shared variables. Thus, the amount

of data shared between threads is multiplied which can result in an increase of the

number of cache invalidations. Also, as the working set of each thread is enlarged,

the thread execution may experience a low degree of spatial locality and an increase

of cache miss ratio. In addition, using lock operations on every shared memory access

will incur frequent pipeline stalls leading to higher CPI. As shown in Figure 6.3, this

performance penalty will become noticeable as we increase the number of application

threads.

6.3 Parallel FastTrack Detector

To cope with the aforementioned problems of race detection on multi-core systems,

we propose a parallel data race detection with which race analyses are decoupled from

application threads. The role of an application thread is to record the shared-memory

access information needed by race analysis. Additional worker threads are employed
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Figure 6.2: An Overview of Our Approach for a Case When Two Detection Threads
Are Used. The address space is divided into two regions, and each detector is respon-
sible only for its own address region.

to perform data race detection. We refer to the worker threads as detector/detection

threads. The key point is to distribute the race analysis workload to detection threads

such that (1) a detector’s analysis is independent of other detection threads, and

(2) the execution of application threads has a minimal impact to the race analyses

performed in the detectors.

In the FastTrack detector, the same vector clock is shared by multiple threads as

the detection for the memory location is performed by the multiple threads. Con-

versely, in our approach accesses to one memory location by multiple threads are

processed by one detection thread. Assume that the shared memory space is di-

vided into blocks of 2C contiguous bytes and there are n detection threads. Then,

accesses to the memory location of address addr by multiple threads are processed

by a detection thread Tid. The detection thread is decided based on addr as follows,

Tid = (addr>>C) mod n (6.1)

For each detection thread, a FIFO queue is maintained. Upon a shared memory
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access of address addr, access information needed by the FastTrack race detection

should be sent to the FIFO queue of detector Tid. Since the queue is shared by

application threads and the detector, accesses to the queue should be synchronized.

To minimize the synchronization, each application thread saves temporarily a chunk

of access information in a local buffer for each detection thread. When the buffer

is full or a synchronization operation occurs in the thread, then the pointer of the

buffer is inserted to the queue and new buffer is created to save subsequent access

information. Other than memory access information, execution information of a

thread such as synchronization and thread creation/join is also sent to the queue. At

the detector side, the pointers of the buffers are retrieved from the queue and the

thread execution information is read from the buffer to perform data race analysis

using the same FastTrack detection approach. An overview of the approach is shown

in Figure 6.2.

Note that the parallelization does not change the precision of the original Fast-

Track detection since the same FastTrack algorithm is employed by the detection

threads. The only concern is that the distribution of access information might change

the processing order of memory accesses for the race analysis. However, the distri-

bution of access information does not break the order of race analyses if the accesses

already follow the happens-before relation. The order is naturally preserved by the

use of the FIFO queues and synchronizations in the application threads. On the other

hand, if the accesses are concurrent, they can be analyzed in any order for a detec-

tion of race. As an example, consider the access chunks sent to detector thread 0 in

Figure 6.2. The access chunk 1 is inserted into the queue before the release operation

in application thread 0 and the access chunk 2 can appear in the queue only after

the synchronization acquire in application thread 1. Therefore, the order of analyses

in detector thread 0 will be preserved as if the analyses are done in the application
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threads.

The parallel FastTrack detector has an improved performance and scalability over

the original version of FastTrack in a number of ways. First, as accesses to a memory

location by multiple threads are handled by one detector, lock operations in the

detection can be eliminated. Second, the race detection becomes less dependent on

the application threads’ execution than in the original FastTrack detector. Even

when multiple application threads are inactive (e.g., condition waiting), the detector

threads can proceed with the race analysis and utilize any available cores. Third, the

detection operation can scale well even for the applications consisting of less number

of threads than the number of available cores. Lastly, cache performance will be

improved and there will be less data sharing. If there are n detection threads, each

detector will be responsible for 1/n of the shared address space, and each detector

does not share the data structures of vector clock with other detectors.

6.4 Implementation

6.4.1 Instrumentation and Optimization

We have implemented the parallel FastTrack detector based on our previous im-

plementation of FastTrack described in Chapter 5. The original FastTrack detec-

tor is implemented for data race detection of C/C++ programs and Intel PIN 2.11

[47] is used for dynamic binary instrumentation of programs. To trace all shared

memory accesses, every data access operation is instrumented. A subset of function

calls is also instrumented to trace thread creation-join, synchronization, and memory

allocation/de-allocation.

In the FastTrack algorithm, to check same epoch accesses, vector clocks should

be read from global data structures with a lock operation. In our original FastTrack
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implementation, we adopt a per-thread bitmap at each application thread to localize

the same epoch checking and to remove the need of lock operations. Thus, only the

first access in an epoch needs to be analyzed for a possible race. Even with this

enhancement, the lock cost in the FastTrack detector is still considerably high as our

experimental results show. Before any access information is fed into the FastTrack

detector, we have applied two additional filters to remove unnecessary analyses. First,

we filter out stack accesses assuming that there is no stack sharing. Second, a hash

filter, which is similar to “Duplicate filter” in [78], is applied to remove consecutive

assesses to an identical location. The second filter is a small hash-table like array that

is indexed with lower bits of memory address and remembers only the last access for

each array element. In PIN, a function can be in-lined into instrumented code as

long as it is a simple basic block. To enhance the performance of instrumentation, an

analysis function, written in a basic block, is used to apply the two filters, and put

the access information into a per-thread buffer. When the buffer is full a non-inline

function is invoked for data race analyses for the accesses in the buffer.

6.4.2 Parallel FastTrack

The instrumentation routine for every memory access for the parallel FastTrack is

identical to the original FastTrack except the buffering of accesses. Instead of the per-

thread buffer at each application thread, there is a buffer for each detection thread.

That is, for every memory access, the detector thread is chosen based on the address

of the access, as shown in Equation 6.1, and the access information is routed to the

corresponding buffer. When the buffer is full or there is a synchronization operation,

the buffer is inserted into the FIFO queue of the detector thread. For the FastTrack

race detection, a tuple of {thread id, VC (Vector Clock), address, size, IP (Instruction

Pointer), access type} is needed for each memory access. Since {thread id, VC} can
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be shared by multiple accesses in the same epoch, only the tuple of {address, size,

IP, access type} is recoded into the buffer.

Upon the detection starts, the number of detector threads is set to a predefined

value and each detector is created as a PIN internal thread. The FIFO queue for each

detector is a queue of pointers, each pointing to a buffer of access information. Allo-

cating memory for the buffers of all memory accesses will incur substantial overheads

both in time and space. To reduce the overheads from memory allocation, the FIFO

queue maintains additional queue of used buffers. When a detector finishes data race

analyses for accesses in a buffer, the buffer is not freed but sent to the FIFO queue for

reuse. When an application thread puts a buffer into the FIFO queue, a new buffer

is obtained from the queue if any used buffer is available in the queue.

6.5 Evaluation

In this section, we present the experimental results on the performance and scala-

bility of our parallel FastTrack detection. First, we show the overhead analysis of the

FastTrack detection to clarify why the FastTrack detection has high runtime over-

head and does not scale well on multi-core machines, and how the parallel version

of FastTrack alleviates the overhead. Second, the performance and scalability of the

FastTrack and parallel FastTrack detections are compared. All experiments were per-

formed on an 8-core workstation with 2 quad-core 2.27 GHz Intel Xeon running Red

Hat Enterprise 6.6 with 12 GB of RAM.

The experiments were performed with 11 benchmark programs, 8 from the PARSEC-

2.1 benchmark suite [8] and 3 from popular multi-threaded applications: FFmpeg [89]

which is a multimedia encoder/decoder, pbzip2 [30] as a parallel version of bzip2, and

hmmsearch [15] which performs sequence search in bioinformatics. In the following

subsections, the number of application threads that carry out the computation is con-
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facesim 8,671 7,586 5,096 2,397 

ferret 6,797 4,110 2,174 896 

fluidanimate 10,184 9,870 4,674 2,171 

raytrace 9,208 2,276 865 104 

x264 4,776 4,028 2,369 257 

canneal 2,714 2,668 903 16 

dedup 10,793 10,687 3,938 1,797 

streamcluster 19,540 17,720 7,888 4,026 

ffmpeg 10,279 9,960 6,408 990 

pbzip2 7,567 7,253 4,154 344 

hmmsearch 21,912 6,579 3,241 1,308 

Table 6.1: Number of Accesses Filtered and Checked in the FastTrack Detection (8
cores with 8 threads).

trollable through a command-line parameter. For the parallel FastTrack detection,

the number of detection threads is set to the number of cores for all cases.

6.5.1 Analysis of Race Detection Execution

Table 6.1 shows the number of accesses that are filtered by the two filters and

checked by the FastTrack algorithm. “All” column shows the number of instrumen-

tation function calls invoked by memory accesses. “After stack filter” and “After

hash filter” columns show the number of accesses after the stack and hash filters,

respectively. The last column shows the number of accesses after removing the same

epoch accesses with the per-thread bitmap. The last column represents accesses that

are fed into the race analysis of the FastTrack algorithm, and we can expect that

the lock cost will be proportional to the number in this column for each benchmark

application.

Table 6.2 presents the overhead analysis of the FastTrack detection for running

on 8 cores with 8 application threads. “PIN” column shows the time spent in PIN
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facesim 22.4 32.1 67.4 89.6 245.5 457.0 19.6% 

ferret 14.4 11.8 18.3 39.1 140.5 224.0 17.4% 

fluidanimate 9.2 18.4 43.2 68.8 92.3 232.0 29.7% 

raytrace 15.1 19.0 3.3 1.7 3.0 42.0 4.0% 

x264 10.3 12.1 13.5 18.8 67.2 122.0 15.4% 

canneal 9.4 8.1 8.9 0.2 2.4 29.0 0.6% 

dedup 15.3 17.0 39.1 62.2 454.4 588.0 10.6% 

streamcluster 9.2 11.8 47.6 125.9 94.5 289.0 43.6% 

ffmpeg 25.8 0.0 139.7 64.3 170.2 400.0 16.1% 

pbzip2 7.5 12.4 13.6 6.8 77.7 118.0 5.8% 

hmmsearch 14.2 30.3 31.5 66.8 131.2 274.0 24.4% 

Average             17.0% 

Table 6.2: Overheads of the FastTrack Detector (8 cores with 8 threads).

instrumentation function without any analysis code. The execution time of filtering

access and saving access information into the per-thread buffer is presented in “Filter-

ing” column. The two columns signify the amount of time that cannot be parallelized

by our approach as they should be done in application threads, and the scalability of

our parallel detector will be limited by the sum of the two columns. The lock cost,

shown in the “Lock” column, is extracted from the runs with locking and unlocking

operations, but with no processing on vector clocks. The measure may not be very

accurate due to the possible lock contention. However, it will still show a basic idea

of how significant the lock overhead is. The overhead of locking is 17%, on average

and it is up to 44% of the total execution time for steamcluster benchmark program.

With the number of application threads equals to the number of cores, the average

lock overheads on the systems of 2, 4, and 6 cores are 14.1%, 14.7%, and 15.2%,

respectively. These overheads follow the similar pattern as the overheads shown in

the table for an 8 cores system, and the results are omitted for the simplicity of the

discussion.
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Figure 6.3: CPI Measures of the Race Detection Programs. For each benchmark,
the first four columns are the CPIs of the FastTrack runs on 2, 4, 6, and 8 cores, and
the second four columns are the CPIs of the parallel FastTrack runs on the similar
machine configurations.

In Figure 6.3, we present the CPI (Cycles per Instruction) measures from the Fast-

Track and our parallel FastTrack detector runs. The CPI measures indirectly show

(1) the performance degradation due to pipeline stalls by frequent lock operations,

and (2) the cache performance as cache misses and invalidations can lead to memory

stalls. The CPIs are measured with Intel Amplifier-XE [28]. For each benchmark

program in Figure 6.3, the first four columns represent the CPIs of the FastTrack de-

tector running on machines of 2, 4, 6, and 8 cores. The second four columns indicate

the CPIs of the parallel FastTrack detector on the same machine configurations. For

all cases, the number of application threads is equal to the number of cores. Since

the benchmark program fluidanimate can only be configured with 2n threads, the

performance measures of fluidanimate with 6 application threads are not reported

throughout this chapter.

The results in Figure 6.3 suggest that the CPIs of the FastTrack detection are

higher than those of the parallel FastTrack detection. It is notable that, in the Fast-

Track detection, the CPI increases as we increase the number of application threads
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facesim 77% 76% 92% 54% 55% 87% 39% 46% 78% 33% 41% 72% 

ferret 88% 85% 88% 85% 79% 85% 81% 53% 81% 77% 40% 75% 

fluidanimate 92% 89% 87% 86% 81% 87% N/A N/A N/A 69% 73% 77% 

raytrace 96% 89% 84% 89% 77% 73% 84% 67% 63% 83% 60% 56% 

x264 87% 94% 87% 86% 90% 81% 81% 82% 71% 73% 66% 60% 

canneal 89% 84% 79% 78% 70% 64% 66% 56% 51% 62% 51% 44% 

dedup 77% 91% 92% 59% 83% 91% 37% 62% 87% 37% 72% 85% 

streamcluster 96% 95% 92% 95% 87% 91% 91% 68% 90% 76% 77% 86% 

ffmpeg 62% 72% 89% 46% 48% 88% 38% 36% 79% 28% 29% 72% 

pbzip2 97% 96% 87% 96% 94% 90% 96% 93% 88% 94% 91% 85% 

hmmsearch 99% 87% 84% 98% 67% 91% 99% 55% 91% 98% 46% 89% 

Average 87% 87% 87% 79% 75% 85% 71% 62% 78% 66% 59% 73% 

Table 6.3: Comparison of CPU Core Utilization.

and the number of cores. Note that, in the FastTrack detection, the vector clocks are

organized in a global data structure and shared among all running threads. Locking

operations, which need to flush the CPU pipeline, can also lead to a negative impact

on the CPI. The increased CPI not only hurts the performance of race detection, but

makes the detection not scalable. For the two programs, dedup and pbzip2, we can

expect that the performance of the FastTrack detection would not be improved even

with additional cores. On the contrary, the CPIs of the parallel FastTrack detector

are stable as we change the number of cores. The detection thread performs data race

analyses for an independent range of the address space and they don’t share vector

clocks with other detectors without lock operations.

In Table 6.3, the CPU core utilizations, measured with Intel Amplifier-XE [28], are

reported. For each machine configuration, the experiments include running bench-

mark applications alone, benchmark applications with the FastTrack detection and

with the parallel FastTrack detection. In general, we can observe that, when the

applications cannot fully utilize the cores, adding the processing of the FastTrack de-
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tection would not improve CPU utilization. On the other hand, the core utilization

is improved under the parallel detection regardless of the executions of application

threads. For instance, for facesim, ferret, and ffmpeg on an 8 core machine, the

parallel detection nearly doubles the CPU core utilization of the FastTrack detection.

Ideally, the execution of the parallel FastTrack detector should utilize 100% of

cores. There are largely two reasons why the parallel detection does not fully utilize

the cores. First, application threads may not be fast enough in generating access

information into the queues to make the detection threads busy. In other words, the

queues become empty and the detection threads become idle. In the cases of raytrace

and canneal, the applications use a single thread to process input data during the ini-

tialization of the programs. In our implementation of race detection, we disable race

detection when only one thread is active. Hence, during the initialization process, all

detection threads are idle. Also, a large amount of stack accesses can cause the de-

tection threads idle since all the stack accesses are filtered out by the instrumentation

code of the application threads.

The other reason is due to the serialization between application threads and the

detection threads. To reduce the overhead, access information from an application

thread is saved in a buffer (the size of 100k access entries in the current implemen-

tation) and is transferred to a detector when the buffer is full. However, when a

synchronization event occurs during application execution, the buffer is moved into

the queue immediately. Thus, frequent synchronization events in application threads

can serialize the FIFO queue operations with detection threads.

6.5.2 Performance and Scalability

The performance results for the executions of the parallel and FastTrack detectors

are compared and shown in Table 6.4. The experiments were performed on the ma-
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facesim 5.5 718 461 1.6 3.9 519 251 2.1 3.4 484 194 2.5 3.2 457 154 3.0 

ferret 5.4 304 247 1.2 2.9 192 133 1.4 2.1 228 102 2.2 1.6 224 83 2.7 

fluidanimate 6.5 313 254 1.2 3.5 220 161 1.4 --  --  --  -- 2.2 232 155 1.5 

raytrace 9.4 105 104 1.0 5.2 63 62 1.0 3.6 49 54 0.9 2.9 42 42 1.0 

x264 3.4 239 224 1.1 1.9 145 133 1.1 1.3 125 117 1.1 1.1 122 98 1.2 

canneal 8.1 60 61 1.0 4.8 39 40 1.0 3.8 33 36 0.9 3.2 29 31 0.9 

dedup 8.7 719 562 1.3 5.8 482 298 1.6 6.4 671 208 3.2 4.8 588 159 3.7 

streamcluster 4.3 632 431 1.5 2.3 372 238 1.6 1.3 392 174 2.3 1.0 289 143 2.0 

ffmpeg 6.2 563 379 1.5 4.4 434 198 2.2 3.9 407 159 2.6 3.7 400 127 3.1 

pbzip2 5.7 219 208 1.1 3.1 128 109 1.2 2.0 128 77 1.7 1.6 118 59 2.0 

hmmsearch 5.8 443 348 1.3 2.9 309 178 1.7 2.0 285 132 2.2 1.5 274 92 3.0 

Average       1.2       1.5       1.9       2.2 

Table 6.4: Performance Comparisons of the FastTrack and the Parallel FastTrack
Detections. The number of applications threads and detection threads are set to the
number of cores.

chines of 2 to 8 cores and the number of application threads is equal to the number of

cores. In addition to the execution times, the speedup factor of the parallel detection

over the FastTrack detection is included in the table.

Overall, the parallel detector performs much better than the FastTrack detector.

This performance improvement is attributed to three factors: (1) the overhead of lock

operations in race analyses, as shown in Table 6.2, is eliminated, (2) the parallel de-

tection better utilizes multiple cores as presented in Table 6.3, and (3) the localized

data structure in detection threads reduces global data sharing and improves CPI

with less pipeline stalls, as shown in Figure 6.3. In addition, the speed-up factors

of Table 6.4 (i.e., the ratio of execution time of the FastTrack detector to that of

the parallel detector) increase with the number of cores. This is caused by the en-

hancements in core utilizations and CPIs when the parallel detection is executed on

multi-core machines.

While the parallel detector achieves a speed-up factor of 2.2 on average over the

FastTrack detection on an 8 core machine, some programs, such as raytrace, canneal
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Figure 6.4: Scaling Factors of Race Detectors Where the Number of Threads Equal
to the Number of Cores.

in our experiments, don’t gain any speed-up with the parallel detection. As described

in the previous subsection, the two programs run with a single application thread for

a long period of time, and there are relatively small amount of accesses that must be

checked by the FastTrack algorithm (as shown in the last column of Table 6.1).

Another view for the performance results of Table 6.4 is depicted in Figure 6.4

where the speed-up factors are drawn from 2 cores to 8 cores for application alone, the

FastTrack detection, and the parallel detection. For comparison, the ideal speedup is

added in the figure (e.g., 4x speed-up when 4x more application threads run). The

figure suggests that the parallel FastTrack detector can scale up when we increase the

number of cores in the systems. On the other hand, the FastTrack detector does not

scale well due to the reasons explained previously.

In Table 6.5, we present the performance of parallel race detector when additional

cores are available. Only two application threads are used for all the experiments in

Table 6.5. As we increase the number of cores from 2 to 8, 6 additional cores can

be used to run the detection threads in the parallel race detector. Note that the

executions of application itself and the FastTrack detection obviously do not change

since the number of application threads is fixed. On the other hand, the parallel

FastTrack detector, that utilizes all additional 6 cores, produces an average speed-up
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facesim 5.5 718 461 249 194 156 

ferret 5.4 304 247 129 97 79 

fluidanimate 6.5 313 254 139 125 112 

raytrace 9.4 105 104 83 97 83 

x264 3.4 239 224 127 100 81 

canneal 8.1 60 61 44 48 43 

dedup 8.7 719 562 291 197 150 

streamcluster 4.3 632 431 227 159 118 

ffmpeg 6.2 563 379 197 176 142 

pbzip2 5.7 219 208 108 88 75 

hmmsearch 5.8 443 348 184 204 165 
 

Table 6.5: Speedups with Additional Cores. For all cases, two application threads
are used.
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Figure 6.5: Performance Comparison with/without the Hash Filter. On average,
the use of the hash filter improves the detection performance by 5% and 10% for the
FastTrack and parallel detector, respectively.

of 3.3 when the performance of the parallel detection and the FastTrack detection is

compared. This speedup is due to the effective execution of parallel detection threads

that is separated from the application execution.

Figure 6.5 shows the performance enhancement with the hash filter. On average,

the hash filter brings about 5% and 10% performance improvements for the Fast-

Track and parallel FastTrack detectors. In our current implementation, each thread
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facesim 417 5137 5950 576 5450 6682 730 5600 7613 888 5810 7756 

ferret 759 7011 5638 1365 8091 6224 1971 8900 7768 2577 10032 9506 

fluidanimate 267 1362 2253 290 1440 2408  --  --  -- 338 1605 3088 

raytrace 80 741 1142 101 811 1746 121 878 1870 142 949 2651 

x264 135 4282 4531 165 4092 7757 195 6530 11247 225 8292 13736 

canneal 207 861 1380 359 1085 1785 510 1319 2219 662 1572 2616 

dedup 2717 8265 7018 2709 8823 8069 3026 9175 8512 3371 9829 9409 

streamcluster 110 668 1182 131 692 1424 151 761 1696 172 821 2037 

ffmpeg 147 1519 2317 229 1746 2697 312 1968 3330 395 2239 3778 

pbzip2 217 3914 4318 380 4497 4781 557 5078 5146 726 3912 6114 

hmmsearch 161 599 1047 312 806 1406 464 1006 1676 615 1206 2529 

Average 474 3124 3343 601 3412 4089 804 4122 5108 919 4206 5747 
 

 

Table 6.6: Maximal Memory Usage of FastTrack and Parallel FastTrack Race De-
tections.

maintains hash filters of 512 and 256 entries for read and write accesses, respectively.

We found out that, while an increase of the hash filter, more accesses can be removed

from the checking of the same epoch access. However, there were performance penal-

ties in cache accesses as the arrays of the hash filter are randomly accessed. There are

significant performance enhancements for certain benchmark programs. For instance,

in streamcluster, the performance gain due to the hash filter is 33% for the FastTrack

detector and 38% for the parallel detector. This application frequently spins on flag

variables and generates a substantial amount of accesses to few memory locations

during short intervals. Thus, the hash filter can effective remove the duplicated ac-

cesses and improve the performance greatly. The use of the hash filter in the parallel

detection can not only save redundant race analysis but also avoid the transfer of

access information through the FIFO queue.

In Table 6.6, we present the maximum memory used during the executions of the

application, the FastTrack detector, and the parallel detector. For the executions

on an 8 cores machine (there are 8 detection threads), the parallel detector uses on

121



average 1.37 times more memory than the FastTrack detector. As we increase the

number of detection threads, it is expected that additional memory is consumed by

the buffers and queues to distribute access information from application threads to

detection threads.

6.6 Related Work

Most related works on static and dynamic data race detections and their opti-

mizations have been mentioned throughout this chapter and Chapter 5. It is worthy

noting that a different approach to parallelize race detection is reported in [101] in

which thread execution is time-sliced and pipelined. To incorporate this approach,

application threads must be organized following the uniparallelism multithreading

paradigm [97].

A variety of hybrid race detectors [64, 70, 81, 105] have been proposed in which

Eraser’s Lockset algorithm is combined with vector clock based algorithms. The

approaches take advantage of vector clock based algorithm to reduce false alarms, and

preserve the performance and/or the detection coverage of lockset based algorithm.

RaceMob [36] adapts a crowdsourcing approach that can be considered as a hybrid

race detection of static and dynamic approaches. In RaceMob, a hive is maintained

to manage a set of candidate races produced by a static race detector. A candidate

race is distributed to multiple users through an on-line community. The users validate

the race with schedule steering to explore more execution ordering and each user is

assigned with a different timeout value. RaceMob increases a statistical confidence

on the validation results as more users participate.

For programs in specific domains, race detection algorithms should be revised

to accommodate the specific execution environment. In a GPU program execution

model, a large number of threads are scheduled with the same instructions on different

122



data sets, and the threads are synchronized with barriers. GRace [107] exploits the

GPU execution model and uses static analysis to prune out memory accesses that

cannot be in data races. It then detects data races for the unresolved memory accesses

with dynamic analysis. Another specific domain of race detection is for Android

applications which are event-driven programs comprising asynchronous tasks. In

[25, 48], the happens-before relation is defined and inferred for the events to detect

races in Android applications. A web application is another type of event-driven

program in which each event is processed in a single threaded event handler. Raychev,

et.al, has proposed an algorithm to effectively discover atomic-executed event handlers

to avoid false alarms and to reduce the overhead of vector clock based race detector

[74]. In [69], a happens-before relation is defined for JavaScript and HTML to detect

races for web applications.

6.7 Chapter Conclusions

In this chapter, we present an efficient parallel dynamic data race detection on

multi-core systems. We have analyzed the overhead of the FastTrack detector on the

execution of multi-core machines. Based on the overhead analysis, we have devised

a parallelization method to increase the performance and scalability of dynamic data

race detection. In our parallel race detector, data race analyses are decoupled from

execution of application threads, and each detection thread performs race analyses

independently of other detection threads. Our experimental results show that the

approach is viable for the race detection on multi-core environment.
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Chapter 7

CONCLUSIONS

7.1 Summary

This thesis has presented a dynamic analysis framework for embedded software.

As discussed in Chapter 3, the non-deterministic nature of multi-threaded program

execution makes dynamic program analysis a challenging task. In addition, observing

program execution may not even feasible due to probe effect caused by instrumen-

tation overhead. Hence, we propose a deterministic replay that enables efficient and

effective dynamic analysis of embedded software. We also present probe effect anal-

ysis and data race detection tools which are essential for building the deterministic

replay framework.

In Chapter 3, we present the deterministic replay. We record an execution of

program that exhibits a failure or performance anomaly. The recorded execution can

be reproduced during replay as if there is no instrumentation overhead or the program

is totally deterministic. Hence, any dynamic analysis (e.g., debugging, profiling) can

be safely applied during replay. We keep the recording overhead minimal to ensure

that the recording operation itself does not incur probe effect.

In the research works of dynamic program analysis, one of the most important

metrics is instrumentation overhead since researchers are aware of potential probe

effect caused by the instrumentation overhead. As for our deterministic replay, al-

though a program execution is reproducible during replay, the recording operation

(even if the overhead is minimal) might have changed the program execution. In

Chapter 4, we propose a simulation-based analysis that decides whether a given in-
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strumentation has changed the program execution or not. Since the analysis considers

all factors that can affect a program execution including O/S and I/O events, any

probe effect can be precisely detected.

In our thread execution model from Chapters 3 and 4, a program execution is

represented as a partial order of synchronization and I/O events. While the model

makes the program analyses efficient, one drawback is that the execution model may

not work correctly in the presence of data races in the program execution. Hence, in

Chapter 5 we present in-depth discussion of data race detection and propose an effi-

cient data race detection algorithm for C/C++ program. The run-time and memory

overheads have substantially been reduced by adapting large detection granularity

considering memory access patterns.

As multi-core machines are readily available nowadays, our race detector can be

more efficient and scalable by exploiting parallel executions. In Chapter 6, we start

with the overhead and scalability analyses of race detection on multi-core machines.

Based on the analyses, we propose a parallelized data race detection. Our idea is to

decouple race detection analysis from application execution and localize the analyses

for additional detection threads. As our experimental results show, our parallel Fast-

Track detector achieves a speedup of 2.2 times, on average, over the original FastTrack

detector.

7.2 Future Work

The research works can be extended in a number of ways. For the determinis-

tic replay, some implementation issues are remained. Currently, we provide wrapper

functions only for the pthread library. Whenever there is a need to support other

thread primitives, corresponding wrapper functions should be implemented. This re-

work can be avoided if the record/replay is implemented in lower level synchronization
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primitives (e.g., in glibc).

In the simulation-based analysis, we only consider single core machines with

priority-based preemptive scheduling. As a further step, our analysis can be ex-

tended for multi-core systems in which thread migration and multiprocessor schedul-

ing should be considered. Also it would be interesting to attempt a hardware-assisted

online detection mechanism for potential probe effect. Then, remedy actions, such as

synchronization operations, can be inserted to ensure deterministic event ordering.

The sharing algorithm for dynamic granularity can be refined to remove possible

false alarms. In the current implementation, read and write vector clocks are main-

tained separately. The decision of sharing read vector clocks can be guided by the

status of write vector clocks. We also plan to enhance the vector clock state ma-

chine to accommodate access behavior after the second epoch so that the detection

granularity can be changed more dynamically.

Our work for data race detection can be extended for other dynamic analyses such

as atomicity and order violation detections. Since those analyses are also based on

tracing memory accesses, our dynamic granularity and parallelizing race detection

will be easily adapted to detect other concurrency bugs.
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