281 research outputs found

    ICESat/GLAS Data as a Measurement Tool for Peatland Topography and Peat Swamp Forest Biomass in Kalimantan, Indonesia

    Get PDF
    Indonesian peatlands are one of the largest near-surface pools of terrestrial organic carbon. Persistent logging, drainage and recurrent fires lead to huge emission of carbon each year. Since tropical peatlands are highly inaccessible, few measurements on peat depth and forest biomass are available. We assessed the applicability of quality filtered ICESat/GLAS (a spaceborne LiDAR system) data to measure peatland topography as a proxy for peat volume and to estimate peat swamp forest Above Ground Biomass (AGB) in a thoroughly investigated study site in Central Kalimantan, Indonesia. Mean Shuttle Radar Topography Mission (SRTM) elevation was correlated to the corresponding ICESat/GLAS elevation. The best results were obtained from the waveform centroid (R2 = 0.92; n = 4,186). ICESat/GLAS terrain elevation was correlated to three 3D peatland elevation models derived from SRTM data (R2 = 0.90; overall difference = −1.0 m, ±3.2 m; n = 4,045). Based on the correlation of in situ peat swamp forest AGB and airborne LiDAR data (R2 = 0.75, n = 36) an ICESat/GLAS AGB prediction model was developed (R2 = 0.61, n = 35). These results demonstrate that ICESat/GLAS data can be used to measure peat topography and to collect large numbers of forest biomass samples in remote and highly inaccessible peatland forests

    Using ICESAT\u27s geoscience laser altimeter system to assess large scale forest disturbance caused by Hurricane Katrina

    Get PDF
    We assessed the use of GLAS data as a tool to quantify large-scale forest damage. GLAS data for the year prior to and following Hurricane Katrina were compared to wind speed, forest cover, and MODIS NPV maps to analyze senor sampling, and changes in mean canopy height. We detected significant losses in mean canopy height post-Katrina that increased with wind intensity, from ∼.5m in forests hit by tropical storm winds to ∼4m in forests experiencing category two force winds. Season of data acquisition was shown to influence calculations of mean canopy height. There was insufficient sampling to adequately detect changes at one degree resolution and less. We observed a strong relationship between delta NPV and post storm mean canopy heights. Changes in structure were converted into loss of standing carbon estimates using a height structured ecosystem model, yielding above ground carbon storage losses of ∼30Tg over the domain

    Post-drought decline of the Amazon carbon sink

    Get PDF
    Amazon forests have experienced frequent and severe droughts in the past two decades. However, little is known about the large-scale legacy of droughts on carbon stocks and dynamics of forests. Using systematic sampling of forest structure measured by LiDAR waveforms from 2003 to 2008, here we show a significant loss of carbon over the entire Amazon basin at a rate of 0.3 ± 0.2 (95% CI) PgC yr−1 after the 2005 mega-drought, which continued persistently over the next 3 years (2005–2008). The changes in forest structure, captured by average LiDAR forest height and converted to above ground biomass carbon density, show an average loss of 2.35 ± 1.80 MgC ha−1 a year after (2006) in the epicenter of the drought. With more frequent droughts expected in future, forests of Amazon may lose their role as a robust sink of carbon, leading to a significant positive climate feedback and exacerbating warming trends.The research was partially supported by NASA Terrestrial Ecology grant at the Jet Propulsion Laboratory, California Institute of Technology and partial funding to the UCLA Institute of Environment and Sustainability from previous National Aeronautics and Space Administration and National Science Foundation grants. The authors thank NSIDC, BYU, USGS, and NASA Land Processes Distributed Active Archive Center (LP DAAC) for making their data available. (NASA Terrestrial Ecology grant at the Jet Propulsion Laboratory, California Institute of Technology)Published versio

    Estimating Canopy Gap Fraction Using ICESat GLAS within Australian Forest Ecosystems

    Get PDF
    Spaceborne laser altimetry waveform estimates of canopy Gap Fraction (GF) vary withrespect to discrete return airborne equivalents due to their greater sensitivity to reflectance differencesbetween canopy and ground surfaces resulting from differences in footprint size, energy thresholding,noise characteristics and sampling geometry. Applying scaling factors to either the ground or canopyportions of waveforms has successfully circumvented this issue, but not at large scales. This studydevelops a method to scale spaceborne altimeter waveforms by identifying which remotely-sensedvegetation, terrain and environmental attributes are best suited to predicting scaling factors basedon an independent measure of importance. The most important attributes were identified as: soilphosphorus and nitrogen contents, vegetation height, MODIS vegetation continuous fields productand terrain slope. Unscaled and scaled estimates of GF are compared to corresponding ALS datafor all available data and an optimized subset, where the latter produced most encouraging results(R2 = 0.89, RMSE = 0.10). This methodology shows potential for successfully refining estimates ofGF at large scales and identifies the most suitable attributes for deriving appropriate scaling factors.Large-scale active sensor estimates of GF can establish a baseline from which future monitoringinvestigations can be initiated via upcoming Earth Observation missions

    Coupling potential of ICESat/GLAS and SRTM for the discrimination of forest landscape types in French Guiana

    Get PDF
    The Shuttle Radar Topography Mission (SRTM) has produced the most accurate nearly global elevation dataset to date. Over vegetated areas, the measured SRTM elevations are the result of a complex interaction between radar waves and tree crowns. In this study, waveforms acquired by the Geoscience Laser Altimeter System (GLAS) were combined with SRTM elevations to discriminate the five forest landscape types (LTs) in French Guiana. Two differences were calculated: (1) penetration depth, defined as the GLAS highest elevations minus the SRTM elevations, and (2) the GLAS centroid elevations minus the SRTM elevations. The results show that these differences were similar for the five LTs, and they increased as a function of the GLAS canopy height and of the SRTM roughness index. Next, a Random Forest (RF) classifier was used to analyze the coupling potential of GLAS and SRTM in the discrimination of forest landscape types in French Guiana. The parameters used in the RF classification were the GLAS canopy height, the SRTM roughness index, the difference between the GLAS highest elevations and the SRTM elevations and the difference between the GLAS centroid elevations and the SRTM elevations. Discrimination of the five forest landscape types in French Guiana was possible, with an overall classification accuracy of 81.3% and a kappa coefficient of 0.75. All forest LTs were well classified with an accuracy varying from 78.4% to 97.5%. Finally, differences of near coincident GLAS waveforms, one from the wet season and one from the dry season, were analyzed. The results showed that the open forest LT (LT12), in some locations, contains trees that lose leaves during the dry season. These trees allow LT12 to be easily discriminated from the other LTs that retain their leaves using the following three criteria: (1) difference between the GLAS centroid elevations and the SRTM elevations, (2) ratio of top energy in the wet season to top energy in the dry season, or (3) ratio of ground energy in the wet season to ground energy in the dry season

    Lidar for Biomass Estimation

    Get PDF

    Correction of interferometric and vegetation biases in the SRTMGL1 spaceborne DEM with hydrological conditioning towards improved hydrodynamics modeling in the Amazon Basin

    Get PDF
    In the Amazon basin, the recently released SRTM Global 1 arc-second (SRTMGL1) remains the best topographic information for hydrological and hydrodynamic modeling purposes. However, its accuracy is hindered by errors, partly due to vegetation, leading to erroneous simulations. Previous efforts to remove the vegetation signal either did not account for its spatial variability or relied on a single assumed percentage of penetration of the SRTM signal. Here, we propose a systematic approach over an Amazonian floodplain to remove the vegetation signal, addressing its heterogeneity by combining estimates of vegetation height and a land cover map. We improve this approach by interpolating the first results with drainage network, field and altimetry data to obtain a hydrological conditioned DEM. The averaged interferometric and vegetation biases over the forest zone were found to be -2.0 m and 7.4 m, respectively. Comparing the original and corrected DEM, vertical validation against Ground Control Points shows a RMSE reduction of 64%. Flood extent accuracy, controlled against Landsat and JERS-1 images, stresses improvements in low and high water periods (+24% and +18%, respectively). This study also highlights that a ground truth drainage network, as a unique input during the interpolation, achieves reasonable results in terms of flood extent and hydrological characteristics

    Regional scale rain-forest height mapping using regression-kriging of spaceborne and airborne lidar data : application on French Guiana

    Get PDF
    LiDAR data has been successfully used to estimate forest parameters such as canopy heights and biomass. Major limitation of LiDAR systems (airborne and spaceborne) arises from their limited spatial coverage. In this study, we present a technique for canopy height mapping using airborne and spaceborne LiDAR data (from the Geoscience Laser Altimeter System (GLAS)). First, canopy heights extracted from both airborne and spaceborne LiDAR were extrapolated from available environmental data. The estimated canopy height maps using Random Forest (RF) regression from airborne or GLAS calibration datasets showed similar precisions (~6 m). To improve the precision of canopy height estimates, regression-kriging was used. Results indicated an improvement in terms of root mean square error (RMSE, from 6.5 to 4.2 m) using the GLAS dataset, and from 5.8 to 1.8 m using the airborne LiDAR dataset. Finally, in order to investigate the impact of the spatial sampling of future LiDAR missions on canopy height estimates precision, six subsets were derived from the initial airborne LiDAR dataset. Results indicated that using the regression-kriging approach a precision of 1.8 m on the canopy height map was achievable with a flight line spacing of 5 km. This precision decreased to 4.8 m for flight line spacing of 50 km

    Biomass estimation from simulated GEDI, ICESat-2 and NISAR across environmental gradients in Sonoma County, California

    Get PDF
    Estimates of the magnitude and distribution of aboveground carbon in Earth's forests remain uncertain, yet knowledge of forest carbon content at a global scale is critical for forest management in support of climate mitigation. In light of this knowledge gap, several upcoming spaceborne missions aim to map forest aboveground biomass, and many new biomass products are expected from these datasets. As these new missions host different technologies, each with relative strengths and weaknesses for biomass retrieval, as well as different spatial resolutions, consistently comparing or combining biomass estimates from these new datasets will be challenging. This paper presents a demonstration of an inter-comparison of biomass estimates from simulations of three NASA missions (GEDI, ICESat-2 and NISAR) over Sonoma county in California, USA. We use a high resolution, locally calibrated airborne lidar map as our reference dataset, and emphasize the importance of considering uncertainties in both reference maps and spaceborne estimates when conducting biomass product validation. GEDI and ICESat-2 were simulated from airborne lidar point clouds, while UAVSAR's L-band backscatter was used as a proxy for NISAR. To estimate biomass for the lidar missions we used GEDI's footprint-level biomass algorithms, and also adapted these for application to ICESat-2. For UAVSAR, we developed a locally trained biomass model, calibrated against the ALS reference map. Each mission simulation was evaluated in comparison to the local reference map at its native product resolution (25 m, 100 m transect, and 1 ha) yielding RMSEs of 57%, 75%, and 89% for GEDI, NISAR, and ICESat-2 respectively. RMSE values increased for GEDI's power beam during simulated daytime conditions (64%), coverage beam during nighttime conditions (72%), and coverage beam daytime conditions (87%). We also test the application of GEDI's biomass modeling framework for estimation of biomass from ICESat-2, and find that ICESat-2 yields reasonable biomass estimates, particularly in relatively short, open canopies. Results suggest that while all three missions will produce datasets useful for biomass mapping, tall, dense canopies such as those found in Sonoma County present the greatest challenges for all three missions, while steep slopes also prove challenging for single-date SAR-based biomass retrievals. Our methods provide guidance for the inter-comparison and validation of spaceborne biomass estimates through the use of airborne lidar reference maps, and could be repeated with on-orbit estimates in any area with high quality field plot and ALS data. These methods allow for regional interpretations and filtering of multi-mission biomass estimates toward improved wall-to-wall biomass maps through data fusion.</p
    • …
    corecore