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ABSTRACT 

It is estimated that in 2008, worldwide deforestation and forest degradation emissions 

contributed about 6-17% of the total anthropogenic carbon dioxide (CO2) emissions. 

In Indonesia deforestation and forest degradation are almost exclusively caused by 

human economic activities such as shifting cultivation, illegal logging, and the 

establishment of industrial timber estates and large-scale oil palm plantations. Green 

House Gas (GHG) emissions are particularly evident in the costal lowlands of 

Sumatra and Kalimantan, where peat fires and peat decomposition, due to peatland 

drainage, result in the release of huge amounts of CO2. Current estimates indicate 

that the total area of undeveloped tropical peatland is in the range of 30-45 million 

hectares (ha) (approximately 10-12% of the global peatland resource); about 16.8-

27.0 million ha are found in Indonesia, which makes them one of the largest near-

surface pools of terrestrial organic carbon. With Indonesia’s ranking as one of the 

world’s biggest emitters of carbon and with a peat carbon store of about 57 ±11 giga 

tons (Gt), it has enormous potential to negatively influence the global climate if its 

peatlands are burned and drained at rates currently observed. One important 

measure of the United Nations Framework Convention on Climate Change 

(UNFCCC) to curb GHG emissions from this sector is the program on Reducing 

Emissions from Deforestation and forest Degradation in developing countries 

(REDD+) which involves the private sector of industrialized countries in the protection 

of the remaining tropical forests to compensate the exceeding of their GHG emission 

quota. The quantification of tropical forest carbon stocks is a key challenge in 

creating a basic methodology for REDD+ projects. Since most peatlands in Indonesia 

are highly inaccessible, very few field measurements have been made to date. One 

way to overcome this problem is the use of Light Detection and Ranging (LiDAR) 

data. LiDAR is based on the transmission of laser pulses toward the ground surface 

and the recording of the return signal. Airborne LiDAR systems, compared to other 

remote sensing technologies, have been shown to yield the most accurate estimates 

for land topography, forest structural properties, and forest Above Ground Biomass 

(AGB). The main goal of this thesis was the assessment of the potential and 

accuracy of airborne and spaceborne LiDAR data in measuring peatland topography, 

peat fire burn depth, peat fire carbon emissions, and forest AGB in Central 

Kalimantan, Indonesia. The focus of our investigation was on a peat dominated 
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landscape in Central Kalimantan where almost all peat swamp forest ecosystems 

have been severely impacted by extensive logging and drainage for more than two 

decades. The application of airborne LiDAR data succeeded in deriving estimates on 

peat loss after single and multiple fire events. Based on this estimates peat fire 

carbon emissions could be extrapolated to the sub district, district, and national level. 

The findings of these analyses resulted in a deeper understanding of the dimension 

and impact of these peat fires on the global carbon cycle and their ecological 

dynamics. It was estimated that within a 2.79 million ha study area in Central 

Kalimantan (approximately 13% of the Indonesian peatland area) 49.15 ±26.81 mega 

tons (Mt) of carbon were released from peat fires during the 2006 El Niño episode. 

This represents 10–33% of all carbon emissions from transport for the European 

Community in the year 2006. It was also possible to derive large scale AGB 

estimates and show its spatial variability for peat swamp and lowland diperocarp 

forests through correlating field estimates with airborne LiDAR point cloud metrics. In 

combination with satellite data (optical and/or RADAR) airborne LiDAR is a cost 

effective approach which could then be used as input to future REDD+ projects. 

Further the results demonstrated the usefulness and robustness of ICESat/GLAS 

data (spaceborn LiDAR) as a sampling tool to extract information on peatlands, 

which can be used as a proxy for peat volume and consequently carbon storage, 

state and structure of peat swamp forests, and peat swamp forest AGB for large 

inaccessible areas at low costs where no systematic sampling has been conducted 

yet. 
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ZUSAMMENFASSUNG 

Schätzungen nach stammen 6-17% des totalen 2008 anthropogen verursachten 

Kohlendioxidausstoßes aus der weltweiten Abholzung und Degradierung von 

Wäldern. In Indonesien lassen sich die Ursachen für Abholzung und Degradierung 

der Wälder fast ausschließlich auf wirtschaftliche Aktivitäten wie Wanderfeldbau, 

illegaler Holzeinschlag und das Anlegen industrieller Holz- und großflächiger 

Palmölplantagen zurückführen. Hohe Treibhausgasemissionen sind besonders in 

den küstennahen Tiefländern von Sumatra und Kalimantan zu beobachten, wo 

Torffeuer und die Zersetzung von Torf, bedingt durch die Entwässerung dieser 

Torfgebiete, zur Emission riesiger Mengen an Kohlenstoffdioxid (CO2) führen. Nach 

aktuellem Kenntnisstand liegt die gesamte Fläche an unerschlossenen tropischen 

Torfgebieten im Bereich von 30-45 Millionen Hektar (ha) (annähernd 10-12% der 

globalen Torfreserven). Davon kommen etwa 16,8-27,0 Millionen ha in Indonesien 

vor, welches diese zu einem der größten oberflächennahen Vorkommen an 

terrestrischen organischen Kohlenstoff macht. Da Indonesien zu den weltweit 

größten Emittenten von Kohlenstoff zählt und einen Torfkohlenstoffspeicher von etwa 

57 ±11 Gigatonnen (Gt) aufweist, ist das Potential zur negativen Beeinflussung des 

globalen Klimas gewaltig, wenn die dortigen Torgebiete weiterhin in dem Tempo 

verbrannt und entwässert werden wie es derzeitig beobachtet wird. Eine wichtige 

Maßnahme des United Nations Framework Convention on Climate Change 

(UNFCCC) zur Reduzierung der Treibhausgasemissionen dieses Sektors ist das 

Programm „Reducing Emissions from Deforestation and forest Degradation in 

developing countries (REDD+)“. Mit Hilfe dieses Programmes wird der Privatsektor 

industrieller Länder in den Schutz der verbleibenden tropischer Wälder involviert, um 

die Überschreitung festgelegter Treibhausgasemissionen dieser Länder zu 

kompensieren. Bei der Entwicklung einer grundlegenden Methode für REDD+ 

Projekte ist die Quantifizierung des im tropischen Wald gespeicherten Kohlenstoffs 

die nahezu größte Herausforderung. Da die meisten Torfgebiete in Indonesien sehr 

unzugänglich sind, wurden bisher nur wenige Feldinventuren durchgeführt. Ein Weg, 

dieses Problem zu bewältigen, wäre die Nutzung von Light Detection and Ranging 

(LiDAR) Daten. LiDAR basiert auf der Aussendung von Laserpulsen in Richtung der 

Bodenoberfläche und der Aufzeichnung des Rücksignals. Es zeigte sich, dass 

flugzeuggetragene LiDAR Systeme, verglichen mit anderen 



x 
 

Fernerkundungstechnologien, die genausten Abschätzungen für Landtopographie, 

Waldstrukturparameter und oberirdischer Waldbiomasse liefern. Das Hauptziel 

dieser Doktorarbeit war die Beurteilung des Potentials und der Genauigkeit von 

flugzeug- und satellitengetragener LiDAR Systeme zur Messung von 

Torfgebietstopographie, Tiefe von Torfbränden, Torffeuerkohlenstoffemissionen und 

oberirdischer Waldbiomasse in Zentral Kalimantan, Indonesien. Der Fokus der 

Untersuchung lag auf einer torfdominierten Landschaft in Zentral Kalimantan, in 

welcher fast alle Torfsumpfwaldökosysteme über mehr als zwei Jahrzehnte durch 

extensiven Holzeinschlag und Entwässerung beeinflusst wurden. Durch die 

Auswertung von Daten eines luftgetragenem LiDAR Systems wurden Torfverluste 

nach einzelnen und mehreren Feuerereignissen erfolgreich abgeschätzt. Basierend 

auf diesen Abschätzungen konnten Torffeuerkohlenstoffemissionen auf den 

subdistrikt, distrikt und nationalen Level extrapoliert werden. Die Ergebnisse dieser 

Analysen resultierten in einem tieferen Verständnis der Dimension und Bedeutung 

dieser Torffeuer für den globalen Kohlenstoffkreislauf und ihrer ökologischen 

Dynamik. Für ein 2,79 Millionen ha großes Studiengebiet in Zentral Kalimantan (etwa 

13% der indonesischen Torfgebietsfläche) wurde geschätzt, dass 49,15 ±26,81 

Megatonnen (Mt) an Kohlenstoff durch Torffeuer während des El Niño Phänomens 

des Jahres 2006 emittiert wurden. Dies repräsentiert 10-33% aller 

Kohlenstoffemissionen des Transportsektors der Europäischen Gemeinschaft für das 

Jahr 2006. Durch die Korrelation von Forstinventurparametern und den 

luftgetragenen LiDAR Punktwolkenmetriken war auch das großräumige Herleiten und 

Aufzeigen der räumlichen Variabilität der oberirdischen Biomasse von 

Torfsumpfwäldern und Tieflanddipterocarpaceenwäldern möglich. In Kombination mit 

Satellitendaten (optisch und/oder RADAR) sind luftgetragene LiDAR Systeme ein 

kostengünstiger Ansatz, der dann als Beitrag für zukünftige REDD+ Projekte dienen 

könnte. Weiterhin demonstrierten die Ergebnisse die Nützlichkeit und Robustheit von 

ICESat/GLAS Daten (satellitengetragenes LiDAR System) bei der Entnahme von 

kostengünstigen Stichproben in diesen Torfgebieten. Die Informationen aus jenen 

Stichproben könnten dann Hinweise auf Torfvolumen und folglich auch auf 

Kohlenstoffspeicher, Zustand, Struktur und oberirdische Biomasse von 

Torfsumpfwäldern für große unzugängliche Gegenden ohne vorhandene 

systematische Inventur, liefern. 
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1 The tropical peatlands of Indonesia 

1.1 Characteristics 

Peatlands store huge amounts of carbon as peat consists of dead, incompletely 

decomposed plant material that has accumulated over thousands of years in 

waterlogged environments that lack oxygen. Tropical peatlands are found in 

mainland East Asia, Southeast Asia, the Caribbean, Central America, South 

America, and Southern Africa (Rieley & Page, 2005). Current estimates indicate that 

the total area of undeveloped tropical peatland is in the range of 30-45 million 

hectare (ha) (approximately 10-12% of the global peatland resource); about 16.8-

27.0 million ha are found in Indonesia (Immirzi et al., 1992; Rieley et al., 1996; Page 

& Banks, 2007), which makes them one of the largest near-surface pools of 

terrestrial organic carbon (Sorensen, 1993; Page & Rieley, 1998; IPCC, 2007). The 

tropical peatlands of Indonesia are typically located at low altitudes in alluvial 

floodplains where peat swamp forests form smooth convex shaped peat domes up to 

20m thick (Figure I-1) and cover at least 9% of the Indonesian land surface 

(Anderson, 1983; Rieley et al., 1996; Riely & Page, 2005) (Figure I-2). Peat domes 

can be more than 100km wide incorporating entire water catchments between rivers 

(Rieley & Page, 2005). In Indonesia the beginning of the peatland formation ranges 

from the Late Pleistocene through to the early Holocene (Siefferman et al., 1988; 

Staub & Esterle, 1994; Neuzil, 1997). Some of the sub-coastal peatlands on Borneo, 

for example, started to accumulate as early as 22,000-23,000 years ago (Page et al., 

2004). In the absence of human intervention the current average peat accumulation 

rate for Indonesian peatlands has been estimated to be 1-2 mm per year (yr) 

(Sorensen, 1993), which is substantially higher than the rates of 0.2-0.8mm/yr 

reported for boreal and subarctic peatlands (Gorham, 1991) and of 0.2-1.0mm/yr for 

temperate peatlands (Aaby & Tauber, 1975). 
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Figure I-1: Schematic cross-section through a typical tropical peat dome in Indonesia (WWF, 2009; 

modified). (a) Formation of a peat dome. A peat dome develops where large amounts of dead, 

incompletely decomposed plant material accumulates over thousands of years in waterlogged 

environments that lack oxygen. The yearly peat accumulation rate is only a few millimeters. (b) Full-

grown peat dome. Full-grown peat domes mostly have a convex shaped surface which can be up to 

20m thick and be more than 100km wide, covering entire water catchments between rivers. Usually 

they are covered by different peat swamp forest types reflecting the variations in water- and nutrient-

availability. 
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Figure I-2: Peatland extent within Indonesia (peatland data from Wetlands International 2003; 2004; 

2005). Most of the peatlands in Indonesia are located at low altitudes in coastal and sub-coastal areas 

on the islands of Sumatra, Borneo (Kalimantan), and New Guinea (West Papua and Papua). 

 

Peatlands in Indonesia are naturally covered by forests discriminated in different sub-

forest types reflecting the variations in water- and nutrient-availability (Anderson, 

1964; Shepherd et al., 1997; Page et al., 1999). These differences may range from a 

mixed swamp community with up to 240 tree species per ha on shallow peat around 

the margins of the peat dome to a less diverse, low canopy, small pole forest, usually 

associated with the wettest, deepest peat, in which tree species number can decline 

to 30–55 species per ha (Rieley & Page, 2005). Additionally there is a significant 

local and regional variation in species composition and vegetation types of peat 

swamp forest across Southeast Asia (Rieley & Ahmad-Shah, 1996). Peat that forms 

under the influence of fluctuating levels of river flood water is called topogenous, 

while that which is subjected to rainfall only is called ombrogenous (Rieley & Page, 

2005). Topogenous peat can be found along flood zones and banks of rivers, but 

most of the peat in the lowlands of Southeast Asia is ombrogenous where it extends 

over catchments and watersheds (Rieley & Page, 2005). As ombrogenous peat is 

purely rainwater fed, the water is nutrient poor and very acidic (pH 3.0-4.5) (Rieley & 

Page, 2005). Further Indonesian peatlands feature a characteristic micro-topography 

consisting of hummocks and hollows (Rieley & Page, 2005). Hummocks are up to 

0.5m in height and are usually formed around tree bases and comprise large 

proportions of both living and dead tree roots (Rieley & Page, 2005). These 

hummocks are interspersed with hollows of similar depth which form an 
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interconnected network that carries water from the interior peat dome to its periphery 

(Rieley & Page, 2005). 

Natural tropical peat swamp forest ecosystems have a wealth of ecological and 

hydrological functions such as water retention, flood reduction, protection against 

seawater intrusion, support of high levels of endemism, and finally as a retreat for 

endangered species such as the Bornean orangutan (Pongo pygmaeus) (Rieley & 

Page, 2005). Compared to the adjacent terrestrial rain forest ecosystems the 

diversity associated with ombrotrophic lowland tropical peatlands is usually lower, but 

many peatland species are specialist, which are not found in other habitats (Rieley & 

Page, 2005).  

 

1.2 Degradation and the impact on the global climate 

Between 1990 and 2005 about 13 million ha of tropical forest were deforested 

annually and with 0.98% South and Southeast Asia had one of the highest annual 

deforestation rates for the time period of 2000 to 2005 (FAO, 2006). Between the 

years 2002 and 2005, with 1.7%, this rate was ever higher for Borneo (Langner et al., 

2007). Deforestation and forest degradation in Indonesia are almost exclusively 

caused by human economic activities such as shifting cultivation, illegal logging, and 

the establishment of industrial timber estates and large-scale oil palm plantations 

(Rieley & Page, 2005; Hansen et al., 2009). During extended drought caused by the 

periodic El Niño phenomenon vast areas of the Indonesia forest have been 

destroyed by fire (Langner & Siegert, 2009). Fire serves as the principal tool for land 

clearing and its impacts and severity increases in degraded forests (Siegert et al., 

2001). It is estimated that in 2008, worldwide deforestation and forest degradation 

emissions contributed about 6% to 17% of the total anthropogenic carbon dioxide 

(CO2) emissions (Van der Werf et al., 2009). 

In Indonesia increased Green House Gas (GHG) emissions are particularly evident in 

the coastal lowlands of Sumatra and Kalimantan, where peat fires and peat 

decomposition, due to peatland drainage, results in the release of huge amounts of 

CO2 (Page et al., 2002; Ballhorn et al., 2009; Hooijer et al., 2010). The ability of 

peatlands to sequester and store these huge amounts of carbon is threatened by 

persistent anthropogenic impacts (Rieley & Page, 2005; Jaenicke et al. 2008; Hooijer 
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et al., 2010). Especially drainage and forest clearance disturb their hydrological 

stability (Page & Rieley, 1998) and make these otherwise waterlogged ecosystems 

susceptible to fire (Langner et al. 2007) (Figures I-3 and I-4). 

 

Figure I-3: Degradation of a tropical peat dome (WWF, 2009; modified). (a) Beginning of the 

degradation process. Construction of a network of drainage channels to control and lower the 

groundwater level for plantations and/or agricultural development, to facilitate the access to the peat 

swamp forest, and to extract timber. This leads to emissions of mainly CO2, due to micro-biotical 

decomposition and peat fires. (b) If no restoration measures are undertaken (e.g. blocking the 

drainage channels) these emissions will continue until no peat is left. 
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Figure I-4: Examples of peatlands in Central Kalimantan, Indonesia. (a) Undisturbed peat swamp 

forest. (b) Drainage channel. (c) Burned peatland. (d) Illegal logging. (e) Large-scale oil palm 

plantation on peatland. (f) Dam constructed for drainage channel blocking. 

 

After peatland drainage there are four largely irreversible processes that lead to a 

drop in peat surface level, called subsidence (Rieley & Page, 2005): (a) 

Consolidation is the compression of saturated peat due to increased ‘overburden’ (no 

peat matter is lost; increase of bulk density); (b) Shrinkage is the gradual volume 

reduction of peat in the unsaturated zone due to loss of water from pores (no peat 

matter is lost; increase of bulk density); (c) Oxidation is the gradual volume reduction 

of peat in the unsaturated zone due to micro-biotical decomposition of organic 

matter; and (d) Fire which results in the complete loss of peat organic matter from the 

burned zone (CO2, to a lesser degree carbon monoxide (CO), methane (CH4), and 

other volatile compounds). Nearly all peatland fires are started by farmers to clear 

land and on a larger scale by private companies as a cheap tool to clear forest before 

establishing oil palm and pulp wood plantations (ADB/BAPPENAS, 1999; Bompard & 

Guizol, 1999; Bowen et al., 2000; Siegert et al., 2001). Peat fires cause both severe 

deterioration in air quality and health problems by releasing huge volumes of 

aerosols and noxious gases (ADB/BAPPENAS, 1999; Bowen et al., 2000). Globally 

peat fires have the potential to accelerate global warming by releasing huge amounts 

of CO2 which has increased interest in tropical peatlands in the context of global 

warming (Page et al., 2002; Rieley & Page, 2005; Hooijer et al., 2006; Ballhorn et al., 

2009; Hooijer et al., 2010). Particularly acute is this problem on tropical peatlands in 

Indonesia, where severe peat fires occurred almost every second year during El Niño 
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induced droughts in 1997/98, 2002, 2004, 2006, and 2009, which is a new 

phenomenon and has not been observed in this frequency and spatial extent before 

(Ballhorn et al., 2009). These recurrent peat fires release huge amounts of CO2 to the 

atmosphere (Page et al., 2002; Ballhorn et al., 2009; Langner & Siegert, 2009). For 

example during the 1997/98 El Niño-induced drought peatland fires in Indonesia 

alone may have released 13-40% of the mean global carbon emissions from fossil 

fuels (Page et al., 2002). This important source of carbon emissions is currently not 

yet included in the Intergovernmental Panel on Climate Change estimates (IPCC, 

2007) or in most regional and global carbon cycling models. Additionally drained and 

deforested peatland areas release huge amounts of carbon due to micro-biotical 

decomposition (Hooijer et al., 2006; Hooijer et al., 2009; Hooijer et al., 2010). Due to 

the increased demand for palm oil, triggered by the biofuel boom, this situation will be 

seriously aggravated since peatlands are the only remaining uninhabited near 

coastal land resource in Indonesia. 

One important measure of the United Nations Framework Convention on Climate 

Change (UNFCCC) to curb GHG emissions from this sector is the program on 

Reducing Emissions from Deforestation and forest Degradation in developing 

countries (REDD+) which involves the private sector of industrialized countries in the 

protection of the remaining tropical forests to compensate the exceeding of GHG 

emission quota. To estimate GHG emissions from deforestation and forest 

degradation information on both the area of forest loss and/or degradation and the 

corresponding carbon stock of the land that is cleared and/or degraded is needed 

which remains a big challenge in tropical forests (Gibbs et al.2007). Especially GHG 

emission from forest degradation is difficult to monitor, particularly considering that 

degraded and regrowing forests are predicted to include increasingly large portions 

of the tropics (Gibbs et al., 2007). 

 

2 Market based mechanisms for forest conservation 

Forests provide a multitude of ecosystem goods and services of fundamental 

significance, among which are: food and timber, regulation of climate and hydrology, 

formation of soils, and recreational, aesthetic, and spiritual enjoyment of nature 

(World Resources Institute, 2005). Regulating the global climate is one of the most 

important ecosystem service provided by forests today. Most decisions to convert 
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forests to other land uses are based on market incentives without considering these 

ecosystem services, as conventional market systems undervalue these services in 

everyday decision-making (Holling, 1996; Chomitz et al., 1999). Policy instruments, 

incentives, or a change in undesirable behaviors are necessary to correct for this 

market failure (Portela et al., 2008). Some of the most common policy mechanisms to 

correct for this market failure are regulatory, or command-and-control, instruments 

(e.g. establishment of protected areas, environmental treaties) (Portela et al., 2008). 

Although still common, in recent years a shift has taken place toward more 

participatory mechanisms, economic incentives, and market-based instruments 

(Portela et al., 2008). There are also other approaches to change the behavior of 

people from deforestation to forest conservation relying on education and local 

participation, but it has to be kept in mind that these kinds of initiatives fail to address 

the key issue of market failure (Portela et al., 2008). 

Market-based approaches to forest conservation encourage a particular behavior by 

changing the incentives for individual agents (Portela et al., 2008). Further they differ 

from command-and-control approaches in that they allow more flexibility in the way 

policy targets are met (Portela et al., 2008). Currently two market opportunities exist: 

the regulatory carbon markets and the voluntary carbon markets. Regulatory markets 

were established to meet emissions targets as mandated by international and 

national authorities (Portela et al., 2008). Voluntary carbon markets on the other 

hand help governments, organizations, companies, and individuals to reduce carbon 

emissions outside the regulatory mandates (Portela et al., 2008). Currently 

opportunities for forest carbon projects exist in forest conservation, restoration, and 

sustainable forest management and the most common are afforestation and 

reforestation (AR) projects (Portela et al., 2008). The regulatory carbon market is 

dominated by the Kyoto Protocol of the UNFCCC (Portela et al., 2008). The Kyoto 

Protocol’s flexible mechanisms, the Clean Development Mechanism (CDM) and the 

Joint Implementation (JI) framework, allow market-based forestry activities in order to 

help mitigate climate change (Portela et al., 2008). Only credits for carbon 

sequestration through AR are allowed through CDM forestry carbon projects and 

project development is considerable restricted (Portela et al., 2008). Under the CDM 

no other forest carbon activities, such as avoided deforestation, are allowed, which 

limits the opportunities for forest conservation severely (Portela et al., 2008). The 
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voluntary carbon markets on the other hand offer a large majority of forestry carbon 

offsets with multiple benefits (Portela et al., 2008). And although most voluntary 

carbon markets also impose standards and verification guidelines the stringent 

compliance with CDM rules and paperwork is not required (Portela et al., 2008). 

There is a significant difference in market value between regulatory and voluntary 

carbon projects as regulatory projects receive higher prices than similar voluntary 

projects (Portela et al., 2008). 

What holds the greatest promise in protecting tropical forests and their services is the 

allowance of emissions credits based on the commitment of developing countries to 

reduce deforestation and forest degradation. Policy instruments that could provide an 

incentive to Reduce Emissions from Deforestation and Degradation in developing 

countries (REDD+) are being seriously explored by the UNFCCC. Including REDD+ 

in the next global climate agreement (post-2012) would give developing countries 

significant financial and technical support to protect forests and their services 

(Portela et al., 2008). The development of reference scenarios and the accurate 

measurements of forest carbon stocks and emissions (monitoring, reporting, and 

verification) pose technical and scientific challenges in implementing REDD+ 

projects. The scientific community believes that especially monitoring and estimating 

forest degradation in a cost-effective way is very difficult. Up to now it is not possible 

to directly measure forest carbon stocks across a landscape, so that tools and 

models have to be developed that can scale up or extrapolate destructive harvest 

data points to larger scales based on proxies measured in the field or from remote 

sensing instruments (Brown et al., 1989; 1993; Waring et al., 1995; Brown 1997; 

Chave et al 2005; Gibbs et al., 2007; Saatchi et al 2007). REDD+ projects pose a 

promising solution in protecting the last remaining undisturbed tropical peatlands in 

Indonesia. 

 

3 The use of remote sensing data to monitor Indonesian peatlands 

3.1 Introduction to remote sensing 

Lillesand et al. (2008) define remote sensing as “the science and art of obtaining 

information about an object, area, or phenomenon through the analysis of data 

acquired by a device that is not in contact with the object, area, or phenomenon 
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under investigation”. Many forms, including variations in force distribution, acoustic 

wave distributions, or electromagnetic energy, can be used to collect data remotely 

(Lillesand et al., 2008). Figure I-5 gives an overview of the processes and elements 

involved in electromagnetic remote sensing. 

 

Figure I-5: Electromagnetic remote sensing (Lillesand et al., 2008). 

 

Electromagnetic remote sensing can be split up into two basic processes; data 

acquisition and data analysis (Lillesand et al., 2008). It can be said that in the data 

acquisition process sensors are used to record variations in the way earth surface 

features reflect and emit electromagnetic energy (Lillesand et al., 2008). Visible light, 

radio waves, heat, ultraviolet rays, and X-rays are forms of electromagnetic energy 

and radiate in accordance with the basic wave theory. This theory describes 

electromagnetic energy as traveling in a harmonic, sinusoidal fashion at the velocity 

of light (Lillesand et al., 2008). Components of electromagnetic energy include a 

sinusoidal electric wave (E) and a similar magnetic wave (M) at right angles, both 

being perpendicular to the direction of propagation (Lillesand et al., 2008) (Figure I-

6). 
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Figure I-6: Electromagnetic wave (Lillesand et al., 2008). 

 

As we know from basic physics, waves obey the following general equation 

(Lillesand et al., 2008): 

 

ܿ ൌ ߣݒ  (eq. I-1) 

Where:  

ܿ ൌ velocity of light; essentially a constant (3*108 m/sec) 

ݒ ൌ wave frequency; number of wave peaks passing a fixed point in space 

ߣ ൌ wavelength; distance from one wave peak to the next 

 

With frequency and wavelength related inversely and ܿ being constant, both 

frequency and wavelength can be used to characterize a wave. It is common in 

remote sensing to categorize electromagnetic waves by their wavelength location 

within the electromagnetic spectrum (Lillesand et al., 2008). Figure I-7 displays this 

electromagnetic spectrum. 

 

Figure I-7: Electromagnetic spectrum. 
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Remote sensing sensors can be on airborne or spaceborne platforms (Figure I-5) 

and each kind of sensor produces images with specific characteristics that allow 

different applications. These characteristics involve the kind of sensor, image 

resolution, kind of orbit, size of the scene, and others. The sensors can be 

summarized as the active and the passive ones. The first one makes use, for 

example, of the emission of microwaves and registers the difference between the 

signal emitted by the system and the signal received from the terrestrial surface. The 

second one registers the electromagnetic reflectance of the earth’s surface. The 

pieces of information are usually stored in grids composed of units called pixels 

(Lillesand et al., 2008). These pixels represent the average values of reflectance by 

objects in a fixed area according to the kind of sensor that is being used (Lillesand et 

al., 2008). To characterize the different sensors, four types of resolution are of 

importance: (a) The spatial resolution is the limit on how small an object on the 

earth’s surface can still be separated from its surroundings (Lillesand et al., 2008). 

Spatial resolution is an indication on how well spatial detail can be recorded 

(Lillesand et al., 2008). (b) Sensors are able to collect information in different parts of 

the electromagnetic spectrum and store them independently in units called bands 

(Lillesand et al., 2008). The number, wavelength region, and width of these spectral 

bands are defined as the spectral resolution (Lillesand et al., 2008). (c) The amount 

of information collected by a pixel is dependent on the photon count sensitivity of the 

sensor (Lillesand et al., 2008). Radiometric resolution could be described as the 

capability to differentiate intensity or brightness classes (Lillesand et al., 2008). (d) 

Temporal resolution is defined as the repeat frequency of revisiting the same ground 

segment and is dependent on the registration platform, the ground resolution, and 

the orbit parameter (Lillesand et al., 2008). 

For the remotely sensed images to be integrated in a Geographic Information System 

(GIS) or to be able to represent reality correctly, keeping proportion relations 

between what you see in reality and what you see in the image, they need to be put 

in reality (Longley et al., 2005). This process is called georeferencing and it involves 

the registration of the image to a reference coordinate system (Longley et al., 2005). 

Georeferencing begins by defining ground control points with accurate geographic 

coordinates. These points may be extracted from an image, an aerial photo already 

corrected from maps, or points captivated in the field through the Global Positioning 
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System (GPS) (Longley et al., 2005). The process of defining the reference points is 

interactive (Longley et al., 2005). This way a point in reference is defined and is 

found in the image to be georeferenced one by one (Longley et al., 2005). 

Also of importance are processes of image rectification and restoration. They have 

the objective to correct distorted image data in order to produce a more faithful 

representation of the original scene (Lillesand et al., 2008). Typical processes include 

the correction of geometric distortions, the radiometric calibration of the data, and the 

elimination of noise present in the data (Lillesand et al., 2008). A special form of 

rectification that corrects for terrain displacement is called orthorectification (Lillesand 

et al., 2008). 

In the following sections only the sensors used in this thesis are described. 

 

3.2 LiDAR data 

Light Detection and Ranging (LiDAR) is an active remote sensing technique which is 

based on the transmission of laser pulses toward the ground surface and the 

recording of the return signal. By analyzing the time delay for each pulse back to the 

sensor, the heights of all reflecting objects can be measured in the range of a few 

centimeters. LiDAR systems are usually classified using three characteristics: (a) the 

type of recording the return signal, (b) footprint size, and (c) sampling rate and 

scanning pattern (Dubayah & Drake, 2000). Two recording types can be 

differentiated, the discrete-return and the full-waveform system (Figure I-8). For 

discrete-return systems, pulse detection is conducted in real-time on the returned 

signal, so that the system detector splits a continuous waveform into several time 

stamped pulses giving the position of the individual targets (Mallet & Bretar, 2009). 

These laser scanning systems are called multi-echo or multi-pulse and typically 

collect first and last pulses but some are able to differentiate up to six individual 

returns from one pulse. The footprints of these systems are small reaching sizes of 

0.2 to 0.9m. Full-waveform systems on the other hand record the amount of energy 

for a series of equal time intervals and give more control to the user as their 

processing methods increase pulse detection reliability, accuracy, and resolution. A 

certain amplitude against time waveform is obtained for each time interval. To 

understand these waveform pre-processing is necessary which is usually the 
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decomposition of these waveforms into a sum of echoes generating a three 

dimensional (3D) point cloud. Most commercial LiDAR systems nowadays are small-

footprint systems (0.2 to 3.0m), depending on flying height and beam divergence, 

and a high repetition frequency. In this thesis data from an airborne and a 

spaceborne LiDAR system was analyzed. 

 

Figure I-8: Conceptual differences between full-waveform and discrete-return LiDAR systems (Lefsky 

et al., 2002b; modified). In the left the intersection of a laser illumination area, or footprint, through a 

simplified tree crown is shown. In the center the hypothetical return signal collected by a full-waveform 

recording device is depicted. In the right three different discrete-return LiDAR sensors are indicated. 

First-return LiDAR devices only record the position of the first object hit by the laser beam. Last-return 

LiDAR devices on the other had record the position of the last object hit by the laser beam and are 

especially useful for topographic mapping. Multiple-return LiDAR sensors record the positions of a 

smaller number of objects in the path of the illumination. 

 

Airborne LiDAR data was acquired during a flight campaign conducted between 5 

and 10 August 2007. A Riegl LMS-Q560 Airborne Laser Scanner was mounted to a 
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Bell 206 helicopter. Small-footprint full-waveform LiDAR data was collected from a 

flight altitude of 500m above ground over a scan angle of ±30° (swath width ±500m). 

The laser sensor had a pulse rate of up to 100,000 pulses per second with a footprint 

of 0.25m and a wavelength of 1.5μm (near infrared). Due to the accurate time 

stamping (109 samples per second), the three dimensional coordinates of the laser 

beam reflections (x, y, and z), the intensity, and the pulse width can be extracted by a 

waveform decomposition, which fits a series of Gaussian pulses to the waveform. 

This resulted in an average of 1.4 echoes per square meter. The Riegl LMS-Q560 

Airborne Laser Scanner system allows height measurements of ±0.02m. Single beam 

measurements have an absolute horizontal accuracy of ±0.50m and vertical accuracy 

of ±0.15m Root Mean Square Error (RMSE). 

The Ice, Cloud, and land Elevation Satellite (ICESat) has been orbiting the earth 

since 12 January 2003 at an altitude of 600km with a 94° inclination and during most 

of its operating life it has been programmed for a 91-day orbital repeat cycle and was 

decommissioned from operation on 14 August 2010. The Geoscience Laser Altimeter 

System (GLAS) onboard ICESat was a full waveform sensor using a 1,064nm laser 

operating at 40Hz. This resulted in a nominal footprint of about 65m diameter on the 

earth’s surface with each pulse separated by 172m postings (Schutz et al., 2005). 

There were three lasers onboard ICESat of which the first one failed about 38 days 

into the mission (29 March 2003). The original temporally continuous measurements 

were replaced by three 33 day operating periods per year, so that the life of the 

second and third laser could be extended (Sun et al., 2008). The laser footprint on 

the earth’s surface actually was in the form of an ellipse and its size varied over time 

as a function of power output from the laser (Harding & Carajabal, 2005). As the 

GLAS sensor recorded the returned energy over time these waveforms represented 

the vertical distribution of the terrain and vegetation within each footprint. GLAS data 

have been demonstrated to accurately estimate forest height (Lefsky et al., 2007; 

Rosette et al., 2008; Lefsky, 2010) and AGB (Harding & Carajabal, 2005; Boudreau 

et al., 2008). In this study we used the ICESat/GLAS data from release version 31. 

According to The National Snow and Ice Data Center ICESat/GLAS this release 

version had an average horizontal geolocation error for all laser campaigns of 0.78 

±5.09m (The National Snow and Ice Data Center, 2011b). 

 



Introduction 

17 
 

3.4 Optical satellite data 

Optical data from different Landsat satellites, the Advanced Very High Resolution 

Radiometer (AVHRR) on board the National Oceanic and Atmospheric 

Administration (NOAA) satellite, the Along-Track Scanning Radiometer (ATSR) on 

board the European Remote Sensing Satellite 2 (ERS-2), and the MODerate 

resolution Imaging Spetroradiometer (MODIS) on board the Terra and Aqua satellites 

were analyzed in this thesis. 

The beginning of the Landsat program was a conceptual study of the feasibility of a 

series of Earth Resource Technology Satellites (ERTSs) by the National Aeronautics 

and Space Administration (NASA) and the United States (US) Department of the 

Interior (Lillesand et al., 2008). This study resulted in a planned sequence of six 

satellites called ERTS-A, -B, -C, -D, -E, and -F (after launch there were to become 

ERTS-1, -2, -3, -4, -5, and -6) (Lillesand et al., 2008). ERTS-1 was launched on July 

23, 1972, and represented the first unmanned satellite specifically designed to 

acquire data about earth resources on a systematic, repetitive, medium resolution, 

and multispectral basis (Lillesand et al., 2008). The collected data was open to 

everyone and all nations of the world were invited to take part in evaluating ERTS-1 

data (Lillesand et al., 2008). NASA officially renamed the ERTS program as the 

Landsat program prior to the launch of ERTS-B on January 22, 1975 (ERTS-1 was 

retroactively named Landsat-1) (Lillesand et al., 2008). Up until now six Landsat 

satellites have been launched successfully, namely Landsat-1 to -5 and Landsat-7 

(Landsat-6 suffered a launch failure) (Lillesand et al., 2008). Five different types of 

sensors have been included in various combinations on these missions. These are 

the Return Beam Vidicon (RBV), the MultiSpectral Scanner (MSS), the Thematic 

Mapper (TM), the Enhanced Thematic Mapper (ETM), and the Enhanced Thematic 

Mapper Plus (ETM+). A summary of the Landsat program with the different sensors 

is given in Tables I-1 and I-2. A problem occurred on May 31, 2003, with Landsat-7 

as an instrument malfunctioned (Lillesand et al., 2008). The cause was a failure of 

the Scan Line Corrector (SLC) and without an operating SLC the ETM+ line of sight 

now traces a zig-zag pattern along the satellite ground track with a resulting 

duplication of imaged area that increases toward the scene edge (Lillesand et al., 

2008). 
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Table I-1: Characteristics of Landsat-1 to -7 missions (Lillesand et al., 2008). 
Satellite Launched Decommissioned RBV bands MSS bands TM bands Orbit 

Landsat-1 July 23, 1972 January 6, 1978 1-3 
(simultaneous 
images) 

4-7 None 18 days/900km 

Landsat-2 January 22, 1975 February 25, 1982 1-3 
(simultaneous 
images) 

4-7 None 18 days/900km 

Landsat-3 March 5, 1978 March 31, 1983 A-D 
(one-band 
side-by-side 
images) 

4-8a None 18 days/900km 

Landsat-4 July 16, 1982b June 15, 2001 None 1-4 1-7 16 days/705km 
Landsat-5 March 1, 1984c - None 1-4 1-7 16 days/705km 
Landsat-6 October 5, 1993 Failure upon launch None None 1-7 plus 

panchromatic 
band (ETM) 

16 days/705km 

Landsat-7 April 15, 1999d - None None 1-7 plus 
panchromatic 
band (ETM+) 

16 days/705km 

aBand 8 (10.4-12.6 μm) failed shortly after launch. 
bTM data transmission failed in August 1993. 
cMSS powered off in August 1995; solar array drive problems began in November 2005. 
dScan Line Corrector (SLC) malfunctioned on May 31, 2003. 
 
Table I-2: Sensors used on Landsat-1 to -7 missions (Lillesand et al., 2008). 
Sensor Mission Sensitivity (μm) Resolution (m) 
RBV 1, 2 

 
 
3 

0.475-0.575 
0.580-0.680 
0.690-0.830 
0.505-0.750 

80 
80 
80 
30 

MSS 1-5 
 
 
 
3 

0.5-0.6 
0.6-0.7 
0.7-0.8 
0.8-1.1 
10.4-12.6b 

79/82a 

79/82a 

79/82a 

79/82a 

240 
TM 4, 5 0.45-0.52 

0.52-0.60 
0.63-0.69 
0.76-0.90 
1.55-1.75 
10.4-12.5 
2.08-2.35 

30 
30 
30 
30 
30 
120 
30 

ETMc 6 Above TM bands 
plus 0.50-0.90 

30 (120 thermal band) 
15 

ETM+ 7 Above TM bands 
plus 0.50-0.90 

30 (60 thermal band) 
15 

a79m for Landsat-1 to -3 and 82m for Landsat-4 and -5. 
bFailed shortly after launch (band 8 of Landsat-3). 
cLandsat-6 launch failed. 
 

Active fire occurrence was analyzed from day-light independent thermal IR bands (3-

4µm) incorporated in the AVHRR, ATSR, and MODIS sensors (Cochrane, 2003; 

Siegert et al., 2004; Davies et al., 2009). 

 

3.5 RADAR satellite data 

RAdio Detection And Ranging (RADAR) was developed to detect the presence of 

objects, to determine their distance, and sometimes their angular position by using 

radio waves (Lillesand et al., 2008). Short burst or pulses of microwaves energy are 
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transmitted in the direction of interest and the strength and origin of the reflections 

received are recorded (Lillesand et al., 2008). As these systems supply their own 

source of energy, they are active remote sensing systems and are therefore day-light 

independent. Additionally they are able to penetrate clouds and haze so that they are 

of special interest to the tropics as these regions are often covered by clouds. Data 

from the Shuttle Radar Topography Mission (SRTM) was used in this thesis. 

The SRTM, a joint mission conducted by the NASA and the National Imagery and 

Mapping Agency (NIMA), was flown from 11 to 22 February 2000 and collected 

single-pass radar interferometry data covering 119.51 million km2 of the earth’s 

surface including over 99.9% of the land area between 60°N and 56°S latitude 

(Lillesand et al., 2008). The C-band InSAR acquired data in 225km swaths and was 

provided by the Jet Propulsion Laboratory (JPL). For Southeast Asia digital elevation 

models with a pixel spacing of three arcseconds (about 90m) were produced. The 

absolute horizontal and vertical accuracy of the data are better than 20 and 16m 

respectively (Lillesand et al., 2008). 

 

4 Approach and specific objectives 

Since most peatlands in Indonesia are highly inaccessible, very few field 

measurements have been made to date. One way to overcome this problem may be 

the use of airborne LiDAR data. The resulting 3D LiDAR point clouds (x, y, and z 

coordinates) are differentiated into ground points, points reflected from the terrain, 

and non-ground points mainly reflected from the vegetation in forested regions. The 

ground points are then used to generate Digital Terrain Models (DTMs). Aerial LiDAR 

systems (discrete-return and full-waveform), compared to other remote sensing 

technologies, have been shown to yield the most accurate estimates for land 

topography, forest structural properties, and forest Above Ground Biomass (AGB). 

On the other hand systems operated from airplanes have limitations due to large 

data volumes and high costs (Ranson et al., 2007). The GLAS onboard the ICESat 

mission is the first spaceborne LIDAR system capable of providing global data sets of 

the earth’s topography (Schutz et al., 2005). ICESat/GLAS data have been 

demonstrated to accurately estimate forest structural properties especially well in 

topographically even areas with uniform forest cover (Harding & Carajabal, 2005; 

Lefsky et al., 2007; Baccini et al., 2008; Boudreau et al., 2008, Rosette et al., 2008; 
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Sun et al., 2008; Goetz et al., 2010; Lefsky, 2010; Dolan et al., 2011). In areas of 

moderate to high relief the results show lower reliability (Harding & Carajabal, 2005). 

Peatlands have an especially smooth topography. The inland peat swamps of 

Central Kalimantan (Indonesia), for example, have an elevation rise of only about 1m 

per km (Page et al., 1999; Rieley & Page, 2005). Therefore ICESat/GLAS data might 

be an adequate tool to measure the topography of the peat soil and the forest AGB. 

The main goal of this thesis was the assessment of the potential and accuracy of 

airborne and spaceborne LiDAR data in measuring peatland topography, peat fire 

burn depth, peat fire carbon emissions, and forest AGB in Central Kalimantan, 

Indonesia. 

We focused our investigation on a peat dominated landscape in Central Kalimantan, 

Indonesia (Figure I-9). Almost all peat swamp forest ecosystems within Central 

Kalimantan have been severely impacted by extensive logging and drainage for more 

than two decades (Rieley & Page, 2005). The area also covers the former Mega Rice 

Project (MRP), an ill-fated transmigrasi resettlement project initiated in 1995 by the 

Indonesian government, which resulted in the serious degradation of more than one 

million ha of peat swamp forest (Rieley & Page, 2005). 

To reach this main goal following specific objectives were formulated: 

(1) Assessment of the potential and accuracy of airborne LiDAR data to measure 

peat burn depth for single and multiple fire events. 

(2) Estimation of carbon emissions from peat fires for single and multiple fire 

events at different spatial scales from the sub district level to the national 

level based on the peat depth calculations. 

(3) Assessment of the potential and accuracy of spaceborne LiDAR data to 

measure peatland topography. 

(4) Collection of forest in-situ data at various degradation levels. 

(5) Assessment of the potential and accuracy of airborne and spaceborne LiDAR 

data to calculate forest AGB through correlation with the collected forest in 

situ data. 
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Figure I-9: Overview of the study area in Central Kalimantan, Indonesia. Peatland extent is 

superimposed on Landsat ETM+ imagery (bands 5, 4, 3). Buildings and new burn scars appear in red, 

old burn scars in light green, and peat swamp forest in dark green. Also visible is the drainage channel 

network. The red rectangle in the upper left depicts the location of the study area within Central 

Kalimantan. 
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5 Structure of the thesis 

This thesis is structured in seven sections (CHAPTER I-VII). In Chapter I a short 

introduction to Indonesian peatlands, the environmental problems surrounding these 

ecosystems, possible mechanisms in protecting their ecosystems services, an 

overview of the used remote sensing sensors, the main goal, the specific objectives, 

and the structure of the thesis are given. CHAPTER II-VI are the main sections and 

relate to the specific objectives outlined above. In CHAPTER II, using an airborne 

LIDAR data set acquired in Central Kalimantan, in 2007, one year after the severe 

peatland fires of 2006, the average peat burn scar depth was determined. Based on 

this result and the burned area determined from Landsat imagery the emitted carbon, 

within a 2.79 million hectare study area, was estimated. Further the approximate 

carbon emissions through peatland fires for Indonesia in 2006 based on active fire 

recording of the MODIS, a correction factor for the MODIS burned area determined 

from a correlation with Landsat-derived burned areas, peatland maps of Indonesia, 

and the derived peat burn depth were calculated. In CHAPTER III, based on the 

same airborne LiDAR set analyzed in CHAPTER II, peat loss not only after single but 

also multiple fire events were calculated through 3D modelling of a pre-fire peat 

surface. These peat loss calculations were then set in relation to water table 

measurements, burn frequency, the year of the fire occurrence, and the duration of 

the dry season to assess the influence of these factors. Additionally based on object 

oriented fire scar classifications (derived from Landsat data) between the years 1990-

2009 and the calculated peat loss the carbon emitted within the Kapuas district 

(1,489,325ha; Central Kalimantan) was estimated. In CHAPTER IV the applicability 

of quality filtered ICESat/GLAS data to measure peatland topography as a proxy for 

peat volume and to estimate peat swamp forest AGB in a thoroughly investigated 

study site in Central Kalimantan was assessed. Mean SRTM elevation and three 3D 

peatland elevation models derived from SRTM data were correlated to the 

corresponding ICESat/GLAS elevation. Based on the correlation of in-situ peat 

swamp forest AGB and airborne LiDAR data an ICESat/GLAS AGB prediction model 

was developed. In CHAPTER V the applicability of airborne LiDAR data, based on 

the same airborne LiDAR set analyzed in CHAPTER II, to estimate AGB of two 

different tropical rainforest types (lowland dipterocarp and peat swamp forest) in 

Central Kalimantan was tested by developing multiple regression models at plot 
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level. In order to sample a high number of field plots the angle count method was 

applied which allows fast sampling and more laborious fixed-area plots (three nests 

of circular shape) were used as a control. AGB-prediction models were established 

for each forest type using statistical values of the LiDAR point clouds and the forest 

inventory plots. These regression models were then applied to six LiDAR tracks 

(altogether with a size of 5,241ha) covering unlogged, logged and burned lowland 

dipterocarp and peat swamp forest. In CHAPTER VI AGB was estimated for different 

tropical forests (lowland dipterocarp and peat swamp forest) in Central Kalimantan 

through correlating airborne LiDAR data (the same airborne LiDAR set analyzed in 

CHAPTER II) to forest inventory data. Two metrics, the Quadratic Mean Canopy 

profile Height (QMCH) and the Centroid Height (CH), derived from the LiDAR height 

histograms were correlated to AGB values from a forest inventory. A possible 

improvement of the regression models through the use of the LiDAR point densities 

as weight was tested. A rigorous covariance propagation analysis was carried out to 

find the LiDAR point density with the best cost-benefit relation. Further a Landsat 

based classification approach, in which each land cover class was linked to a single 

biomass value determined from a regional biomass database, was compared to 

LiDAR derived AGB estimates. Finally, CHAPTER VII synthesizes the six preceding 

sections and provides directions for future research. 

CHAPTERS II-VI were written as stand-alone manuscripts to be published in 

international peer-reviewed journals. Each chapter is therefore structured into 

subsections introduction, materials and methods, results, discussion and 

conclusions, thereby resulting in a limited amount of recurring material: 

CHAPTER II: Ballhorn U, Siegert F, Mason M, Limin S (2009) Derivation of 

burn scar depths and estimation of carbon emissions with LiDAR 

in Indonesian peatlands. Proceedings of the National Academy of 

Sciences of the United States of America, 106, 21213-21218. 

CHAPTER III: Ballhorn U, Jubanski J, Siegert F Pre-fire surface 3D modeling of 

tropical peatland burn scars based on airborne LiDAR in Central 

Kalimantan, Indonesia. Manuscript in preparation for Global 

Change Biology. 
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CHAPTER IV: Ballhorn U, Jubanski J, Siegert F (2011) ICESat/GLAS Data as a 

Measurement Tool for Peatland Topography and Peat Swamp 

Forest Biomass in Kalimantan, Indonesia. Remote Sensing, 3, 

1957-1982. 

CHAPTER V: Kronseder K, Ballhorn U, Böhm V, Siegert F Above ground 

biomass estimation across forest types at different degradation 

levels in Central Kalimantan using LiDAR data. International 

Journal of Applied Earth Observations and Geoinformation, in 

print. 

CHAPTER VI: Jubanski J, Ballhorn U, Kronseder K, Siegert F Deriving forest 

above ground biomass in Central Kalimantan (Indonesia) using 

airborne LiDAR data. Manuscript in preparation for Nature Climate 

Change. 
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Abstract 

During the 1997/98 El Niño-induced drought peatland fires in Indonesia may have 

released 13–40% of the mean annual global carbon emissions from fossil fuels. One 

major unknown in current peatland emission estimations is how much peat is 

combusted by fire. Using a light detection and ranging data set acquired in Central 

Kalimantan, Borneo, in 2007, one year after the severe peatland fires of 2006, we 

determined an average burn scar depth of 0.33 ±0.18m. Based on this result and the 

burned area determined from satellite imagery, we estimate that within the 2.79 

million hectare study area 49.15 ±26.81 mega tons of carbon were released during 

the 2006 El Niño episode. This represents 10–33% of all carbon emissions from 

transport for the European Community in the year 2006. These emissions, originating 

from a comparatively small area (approximately 13% of the Indonesian peatland 

area), underline the importance of peat fires in the context of green house gas 

emissions and global warming. In the past decade severe peat fires occurred during 

El Niño-induced droughts in 1997, 2002, 2004, 2006, and 2009. Currently, this 

important source of carbon emissions is not included in IPCC carbon accounting or in 

regional and global carbon emission models. Precise spatial measurements of peat 

combusted and potential avoided emissions in tropical peat swamp forests will also 

be required for future emission trading schemes in the framework of Reduced 

Emissions from Deforestation and Degradation in developing countries. 

 

Keywords: climate change; fires; Indonesia; tropical peat; remote sensing 
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1 Introduction 

Current estimates indicate that the total area of undeveloped tropical peatland is in 

the range of 30–45 million ha (approximately 10–12% of the global peatland 

resource); about 16.8–27.0 million ha are found in Indonesia (Immirzi et al., 1992; 

Rieley et al., 1996; Page & Banks, 2007), which makes them one of the largest near-

surface pools of terrestrial organic carbon (Sorensen, 1993; Page & Rieley, 1998; 

IPCC, 2007). Typically, tropical peat is located at low altitudes where peat swamp 

forest forms peat domes up to 20m thick that usually have a convex shaped surface 

(Anderson, 1983; Rieley et al., 1996; Rieley & Page, 2005). Some of the sub-coastal 

peatlands on Borneo started to accumulate as early as 22,000–23,000 years ago 

(Page et al., 2004). Their ability to sequester and store huge amounts of carbon is 

threatened by persistent anthropogenic impacts (Rieley & Page, 2005; Hooijer et al., 

2006; Jaenicke et al., 2008). Drainage and forest clearance in particular disturb their 

hydrological stability (Page & Rieley, 1998) and make them susceptible to fire 

(Langner et al., 2007). Nearly all peatland fires are of anthropogenic origin, as they 

are started by farmers to clear land and on a much larger scale by private companies 

as the cheapest tool to clear forest before establishing oil palm and pulp wood 

plantations (ADB/BAPPENAS, 1999; Bompard & Guizol, 1999; Bowen et al., 2000; 

Siegert et al., 2001). Peat fires cause both severe deterioration in air quality and 

health problems in the region by releasing huge volumes of aerosols and noxious 

gases (ADB/BAPPENAS, 1999; Bowen et al., 2000). Globally peat fires have the 

potential to accelerate global warming by releasing huge amounts of carbon dioxide 

(Page et al., 2002; Hooijer et al., 2006). 

To quantify the role of peatland fires in the release of carbon, it is important to know 

how much of the peat layer is consumed by a fire. Since most peatlands in Indonesia 

are highly inaccessible, very few field measurements have been made to date, as 

this would require either knowing the fire affected area in advance or igniting 

peatland on a larger scale intentionally. Due to these constraints, previous peat fire 

carbon emission estimates were based on a very limited number of spatially non-

representative field samples (Page et al., 2002). To overcome these problems and to 

obtain spatial measurements on burn depth across large fire scars, we used light 

detection and ranging (LiDAR) aerial remote sensing. LiDAR is based on the 

transmission of laser pulses toward the ground surface and the recording of the 
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return signal. By analyzing the time delay for each pulse back to the sensor, relative 

and absolute surface heights can be determined with an accuracy of several 

centimeters. We focused our investigation on 2.79 million ha of a peat dominated 

landscape in Central Kalimantan, Borneo, where in 2006 severe wildfires destroyed 

large tracts of peat swamp forest (Figure II-1a). Our main objectives were to (a) 

assess the potential and accuracy of LIDAR 3D height measurements to measure 

the peat volume combusted by fire in peat swamp forests, (b) develop an operational 

methodology to do this, (c) provide accurate information on the depth of specific burn 

scars within the study area that originated in the 2006 El Niño fire event and compare 

these to previous estimates, and (d) to estimate carbon emissions from peat fires for 

the 2006 fire season within the study area. 

 

Figure II-1: (a) Study area in Central Kalimantan, Borneo, Indonesia Landsat ETM+ 7 image 118–62, 

August 5, 2007, (gap filled) covering the study area; burn scars are visible in shades of red and pink 

(RGB: ETM+ 7 bands 5, 4, 3); the LiDAR transects are indicated in yellow, investigated burn scars in 

dark brown, peat domes of Block B and Block C in orange and in situ peat fire depth measurements 

as black crosses. (b) Three hundred meter LiDAR cross-section through a burn scar within a peat 

swamp forest; vegetation return signals are indicated in green and ground return signals are indicated 

in magenta; in peat forests about 1.0 ±0.5% and in burn scars about 6.4 ±2.1% of the return signal 

were classified as ground. (c) Interpolated DTM derived from the LiDAR ground return signals; note 

the height difference between the burn scar (Left) and the unburned forest floor (Right). 
 

2 Results 

Land cover and previous fire history was analyzed using a time series of 11 Landsat 

images acquired between 1997 and 2007. The extent of peatland in Indonesia was 
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determined from maps prepared by Wetlands International (Wetlands International, 

2003, 2004, 2006) (see Materials and Methods). We analyzed peat fire occurrence in 

Borneo based on a fire hotspot database, spanning from January 1, 1997, to August 

31, 2009, (Langner & Siegert, 2009). As there is not a single sensor system which 

covers the full time period, a separate analysis for 2 investigation periods was carried 

out: (a) from 1997 to 2000 using fire hotspots from the Advanced Very High 

Resolution Radiometer (AVHRR) on board the National Oceanic and Atmospheric 

Administration (NOAA) satellite and from the Along-Track Scanning Radiometer 

(ATSR) on board the European Remote Sensing Satellite 2 (ERS-2), and (b) and 

from 2001 to 2009 using fire hotspots from the MODerate resolution Imaging 

Spectroradiometer (MODIS) on board the Terra and Aqua satellites (Davies et al., 

2009; Langner & Siegert, 2009). This fire hotspot time series showed that the peat 

fires in 2006 were the most severe after the well known 1997–1998 fire disaster. In 

2002 and 2004, and January–September, 2009, fewer, yet more extensive, peat fires 

were observed in Borneo, especially in the Indonesian part of Borneo (Kalimantan), 

resulting in 5 years of significantly increased fire activity within one decade (Figure II-

2) (Langner & Siegert, 2009) (see Materials and Methods). This is very unusual in 

this wet swamp ecosystem and was not observed to this extent before 1997 (Field et 

al., 2009). The El Niño episode of 2006 caused a drier and longer dry season than 

usual. During these drought conditions the average groundwater table sank from a 

normal value of -0.16m to -1.61m near burn scar C1 and -1.68m near burn scar C2 

(Figure II-1a) (Materials and Methods). In total 256,783ha of pristine and logged-over 

peat swamp forests, as well as degraded forests and forests regrowing after previous 

fires (almost 10% of the study area), were seriously affected by fire in 2006 (Table II-

1) (Materials and Methods). 
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Figure II-2: Fire occurrence (hotspots) on peat in Borneo and groundwater depth (cm) measured in a 

peat swamp forest. (a) Fire occurrence (hotspots) on peat in Borneo from January 1, 1997 to August 

31, 2009. Fire hotspots before the year 2001 were derived from the NOAA AVHRR and ATSR data 

and after 2001 from the MODIS on board the Terra and Aqua satellites; 2006 had the highest number 

of fires occurrences since 1997–1998 which resulted in exceptionally high carbon emissions 

compared to the other years. (b) Groundwater depth (cm) measured in a largely undisturbed peat 

swamp forest in the Sebangau National Park situated in Central Kalimantan. Low groundwater depth 

correlates with a high occurrence of fire (hotspots). The data gaps are due to a failure of the data 

logger. 
 

For the purpose of this study, 3 transects were analyzed: transect 1 had a length of 

27,900m and an average width of 600m, transect 2 had a length of 15,340m and an 

average width of 460m, and transect 3 had a length of 20,700m and an average 

width of 580m (Figure II-1a). The LiDAR transects covered 3 major individual burn 

scars (B1, C1, C2) and several small ones (Figure II-1a). These transects covered 

burned and adjacent unburned peatlands, the elevation difference between burned 

and unburned areas is clearly visible (Figure II-1c). Burn scar B1 had a size of 

2,632ha, C1 a size of 1,209ha, and C2 a size of 864ha (Figure II-1a; Table II-1). The 

exact time of fire occurrence was determined using daily MODIS hotspot data. 
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Seventy-eight percent of the investigated burn scar borders are located in peat 

swamp forests previously not affected by fire but which showed a disturbed canopy 

due to many years of legal and illegal logging operation. Sixteen percent of the 

investigated burn scar borders burned during the 1997 El Niño and were covered by 

dense regrowing forest approximately 10–15m tall. In 2007, one year after the fire, all 

fire scars were sparsely covered with regrowing tree saplings, ferns, and vines. 

Often, unburned wood debris and toppled over tree trunks were scattered on the 

ground. On fire scars, the LiDAR signal is often reflected directly from the peat soil 

surface, while in peat swamp forests most of the signal is echoed from leaves and 

branches and not from the ground. Nevertheless, logged over peat swamp forests 

are much less dense and shorter than typical tropical lowland rainforests. 

The 3D LiDAR point clouds (x, y, and z coordinates) were differentiated into ground 

points, points reflected from the terrain, and non-ground points reflected from the 

vegetation (Figure II-1b). To generate a digital terrain model (DTM), it was necessary 

to eliminate all vegetation points while at the same time preserving the ground points. 

A statistical analysis of the signals reflected from the peat soil surface showed that in 

unburned peat forests about 1.0 ±0.5% of the points were reflected from the ground 

surface and in burn scars about 6.4 ±2.1% of the points were reflected (Figure II-1b) 

(see Materials and Methods). This adds up to about 112 ±80 ground return signals 

per ha (0.011 per square m) in unburned peat forests and to about 1298 ±212 ground 

return signals per ha (0.13 per square m) in burn scars. The inland peat swamps of 

Central Kalimantan are flat with a rise of only about 1m per km (Figure II-3b) (Page et 

al., 1999; Rieley & Page, 2005). Due to the smooth topography across distances of 

up to 40km, it is justified to interpolate this low number of ground echoes. The typical 

ground surface microtopography in peat swamp forests, a mosaic of hummocks and 

hollows, could not be resolved by the LiDAR frequency applied in this study. 
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Figure II-3: Analysis of LiDAR Transect 3. (a) Subset from LiDAR Transect 3 (yellow outlines) 

covering two of the investigated burn scars (C1 and C2); the location of a burned peat depth profile is 

indicated by a black line. (b) Transect across a peat dome, note the curvature of the peat dome. The 

range covered by the subset shown in (b) is colored red. (c) DTM left burn scar and right unburned 

area; note the fire spread into the forest forming bud-like structures. (d) Burn scar depth was 

calculated by subtracting the mean of the burned peat depth profile of the burned area from the mean 

of the burned peat depth profile of the unburned area. The inclination due to the convex shape of the 

peat surface was excluded mathematically. 
 

The elevation difference between unburned und burned peat was measured using 

height profiles of one meter width extracted from interpolated continuous DTM 

(Figure II-1c and Figure II-3) (see Materials and Methods). The height difference 

between burned and adjacent unburned peat swamp forest was calculated at 79 

locations. However, not all reflected signals may have come from the true soil 
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surface, since fires often consume only part of the above ground biomass, leaving 

large quantities of wood debris and tree trunks scattered in the area (Figure II-4). To 

make sure that we did not include return signals from tree trunks and branches lying 

on top of the peat surface, we investigated the resulting burned depth if only 30% or 

10% of the lowest values of the DTM were included in the calculation. The average 

standard deviation in all unburned height profiles was 0.037m and 0.036m for all 

burned profiles for the 10% lowest values. The average burn scar depth among all 

investigated burn scar borders was 0.30 ±0.15m based on 100% ground point 

values, 0.33 ±0.17m based on the 30% lowest values, and 0.33 ±0.18m based on the 

10% lowest values. For all further calculations we used the 10% value because this 

was a reasonable tradeoff between a low standard deviation and a sufficiently high 

number of ground points for the determination of the burned depth. A low standard 

deviation indicates that possible returns from wood debris and regrowing vegetation 

are excluded. 

 

Figure II-4: Aerial and in situ photos of a part of the investigated burn scar C2. (a) Aerial photo of a 

part of the investigated burn scar C2 taken from a helicopter; visible is the burn scar, the unburned 

peat forest, and a drainage channel; the red rectangle indicates the location of (b). (b) Subset of (a) 

toppled over trees and dead tree trunks are scattered across the burn scar. (c and d) Photos taken on 

the ground within the investigated burn scar C2. 

 

The height profiles across fire scars often showed a constant burned depth across 

large distances, although in some locations we observed depressions several meters 

wide and more than a meter deep. Because these measurements were made one 

year after the fires, it cannot be excluded that some of the peat loss is due to 
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bacterial oxidation and/or compaction. Since 2007 was an unusually wet year (La 

Niña following El Niño), we expect that the groundwater table was higher than in dry 

years, which would limit bacterial decomposition (Figure II-2, few fires). It was shown 

that bacterial decomposition causes up to 2cm of peat loss per year, which is a small 

fraction of the measured depth of fire scars (Wösten et al., 1997). 

Field data on burned depth collected during the 2006 El Niño fire event by the Centre 

for International Co-operation in Management of Tropical Peatland (CIMTROP) 

(Figure II-1a) confirmed the LiDAR measurements. Iron rods placed in front of the fire 

front showed that on average 0.30 ±0.13m (n = 40) of peat was combusted by fire 

(see Materials and Methods). 

The amount of carbon released to the atmosphere was estimated by combining the 

average burned depth with published figures on peat carbon content. We assumed a 

smooth surface for the prefire peat dome across distances up to several kilometers, 

which justifies using an average burned depth of 0.33m to calculate the peat volume 

loss. The 3 burn scars (B1, C1, and C2) with a total area of 4,705ha were selected 

(Figure II-1a; Table II-1). Peat carbon content was calculated by applying a dry peat 

bulk density of 0.1 gram per cubic centimeter (g cm-3) and a peat carbon content of 

58% (Neuzil, 1997). Most of the carbon lost will be emitted as carbon dioxide, with 

additional emissions of carbon monoxide and methane (Muraleedharan et al., 2000). 

We calculated carbon emissions of 0.50 ±0.27 mega tons (Mt) for burn scar B1, 0.23 

±0.13Mt for burn scar C1, and 0.17 ±0.09Mt for burn scar C2 (Table II-1). Based on a 

digital map of the study area showing burned peat forest from the year 2007, peat 

fires released 49.15 ±26.81Mt of carbon (Table II-1) (see Materials and Methods). 

This is equal to about 10-33% of all carbon emissions from transport (civil aviation, 

road transportation, railways, navigation, and other transportation) for the European 

Community in the year 2006 

(http://unfccc.int/di/DetailedByParty/Event.do;jsessionid_4B56CEF8097A1587450FB

B5AC8451F87.diprod02?event_go). 
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Table II-1: Different peat fire carbon emissions in Indonesia from the 2006 El Niño fire season. 
 Specific burn scars in the study area  Study area  Indonesia 
 Block B peat dome  Block C peat dome     
 B1  C1 C2     

Peatland area 283,800ha*  361,400ha*  1,651,805ha†  21,892,399ha† 
Mean peat thickness 4.90 ±1.15m*  3.65 ±0.92m*  4.65 ±1.05m‡  4.5 ±0.85m* 
Peat Volume 13.86 ±3.26 109m3*  13.17 ±3.32 109m3*  76.81 ±17.34 109m3§  985.16 ±186.09 109m3§ 
Carbon storage 0.80 ±0.19Gt*  0.76 ±0.19Gt*  4.45 ±1.01Gt║  57.14 ±10.79Gt║ 
 Fire damaged peatland 2,632ha  1,209ha 864ha  256,783ha#  1,331,367ha∆ 
 Per cent peatland damaged 0.9%  0.3% 0.2%  15.5%  6.1% 
 Peat volume loss 8.69 ±4.74 106m3Ω  3.99 ±2.18 106m3Ω 2.85 ±1.55 106m3Ω  847.38 ±462.21 106m3Ω  4.39 ±2.40 109 m3Ω 
 Peat carbon loss 0.50 ±0.27Mt║  0.23 ±0.13Mt║ 0.17 ±0.09Mt║  49.15 ±26.81Mt║  0.25 ±0.14Gt║ 

* (Jaenicke et al., 2008). 
† (Wetlands International, 2003; 2004; 2006). 
‡Average peat thickness of the three peat domes in Central Kalimantan (Block B, Block C, and Sebangau) modeled by Jaenicke et al. (2008). 
§derived by multiplying peatland area and mean peat thickness. 
║Based on a peat bulk density of 0.1g cm-3 and a peat carbon content of 58% (0.58) (Neuzil, 1997). 
¶Derived from visually digitizing the burn scars based on the Landsat ETM+ 7 image (118-62, 05 August 2007, gap filled) (see Materials and 
Methods). 
#Derived from the object oriented classification of the Landsat ETM+ 7 image (118-62, 05 August 2007, gap filled) (see Materials and Methods). 
∆Derived from MODIS hotspot data of the year 2006 converted to fire affected areas minus a correction factor of 30% (see Materials and 
Methods). 
ΩDerived from a burned peat depth of 0.33 ±0.18m based on this LiDAR study. 

 

3 Discussion 

The results presented here demonstrate that LiDAR has the ability to collect 

sufficiently accurate and spatially representative measurements of the burn scar 

depths in peat over large areas in very inaccessible terrain. The determined average 

burn depth of 33cm correlated well with field measurements recorded in the same 

year at locations near the LiDAR transects. The LiDAR measurements also showed 

that the surface of the peat dome is very smooth over many kilometers. This allowed 

us to reconstruct the prefire peat surface and thus to calculate the peat volume 

combusted by a fire. The relatively invariable burned depth and the low standard 

deviation of 0.18m across several kilometers indicate restrictions in fire behavior and 

impact. Fires never burned considerably deeper than 0.5m although extreme burned 

depths of up to 1.1m sometimes were observed. However, these extremes were 

small in scale and originated most probably from places where ignited tree trunks 

and roots facilitated oxygen supply and thus allowed the fire to propagate deeper into 

the peat layer. The consistent burned depth relates to the groundwater table in the 

peat layer, leading to a higher moisture content of the substrate with increasing 

depth. Additional factors may be important in regulating burned depth, for example, 

as fire progresses deeper a build-up of char and ash makes the peat less flammable 

and impedes the flow of oxygen. Usup et al. (2004) observed that the ignition 

temperature of peat in deep layers is higher than that of surface peat and that a 

change in fire behavior occurs between 0.20–0.40m below the surface in Central 

Kalimantan’s peatlands. This LiDAR study also suggests that peat fires that burn 
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several meters below the surface (Goldammer, 1993), like fires observed in coal 

deposits, are extremely unlikely. 

The available transects covered only fire scars in which peat fires burned into 

previously undisturbed peat swamp forest (78%, disturbed only by logging) or in 10-

year-old regrowing peat swamp forest (16%). Evidence from aerial and field surveys 

suggest that fires in peat swamp forests burn deeper than fires on deforested 

peatland or peatland that has been previously affected by fire. Toppled over trees 

and exposed root systems in burned peat swamp forests are indicators of such fires. 

Deforested peatland is often covered by dense pockets of ferns and sedges through 

which the fire propagates quickly with little impact on the deeper peat layer. In 

addition, LiDAR measurements acquired in wet years are needed to be able to 

correlate burned depth to groundwater depth and land cover type. 

During the last decade the global carbon dioxide concentration growth rate was 

1.9ppm per year on average, resulting mainly from the emission of 7.2 giga tons (Gt) 

carbon per year due to the use of fossil fuel and approximately 1.6Gt carbon per year 

due to land use change (IPCC, 2007). With Indonesia’s ranking as one of the world’s 

biggest emitters of carbon (Hooijer et al., 2006) and with a peat carbon store of about 

57 ±11Gt (Wetlands International, 2003, 2004, 2006; Jaenicke et al., 2008), it has an 

enormous potential to negatively influence the global climate if its peatlands are 

burned and drained at rates currently observed (Table II-1). To estimate Indonesia’s 

contributions to global carbon emissions through peatland fires, we calculated the 

approximate emissions for Indonesia in 2006 based on (a) active fire recordings of 

the MODIS (Davies et al., 2009), (b) a correction factor for the MODIS burned area 

determined from a correlation with Landsat-derived burned areas, (c) peatland maps 

of Indonesia (Wetlands International, 2003, 2004, 2006), and (d) the burned depth 

measurements described here. We are well aware that there is considerable 

uncertainty in this estimate due to a range of factors (e.g., MODIS burned area, 

extent of the peatland, burned depth in relation to water table, moisture conditions, 

emission factors), but this calculation may provide a reasonable estimate of the order 

of magnitude of this event. Peat fires in 2006 released about 0.25 ±0.14Gt (Table II-

1) of carbon which is equal to 7–24% of all global emissions by land use change in 

that year (IPCC, 2007). Van der Werf et al. (2008) estimated that in 2006 0.30 

±0.12Gt of carbon were released by fires in Indonesia and Papua New Guinea, 
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however, this estimate also includes non-peat fires and above ground biomass 

burning. 

In the past decade, severe peat fires have occurred almost every second year during 

El Niño induced droughts in 1997, 2002, 2004, 2006, and 2009 (Figure II-2). This is a 

new phenomenon and has not been observed in this frequency and spatial extent 

before. Undisturbed tropical peat swamp forests are, as the name suggests, just too 

wet to burn. Currently, this important source of carbon emissions is not yet included 

in the IPCC estimate for land cover change (IPCC, 2007) or in most regional and 

global carbon cycling models. 

As most studies on land conversion and climate change consider only above ground 

biomass in forests this study shows that in the future, emissions from below ground 

biomass combustion should be included in the emission estimates. The carbon 

content of the peat layers depends on its thickness and can be up to 19 times higher 

than that of a pristine peat swamp forest growing on top of the peat (Jaenicke et al., 

2008). In addition, deforested and drained peatlands release considerable amounts 

of carbon due to bacterial oxidation (Hooijer et al., 2009). These emissions are 

persistent for many years and add to the estimates given here. 

The increased demand for palm oil, triggered by the biofuel boom, will seriously 

aggravate the situation since peatlands are the only remaining uninhabited near 

coastal land resource in Indonesia. The Clean Development Mechanism (CDM) and 

the proposed Reduced Emissions from Deforestation and Degradation in developing 

countries (REDD) schemes represent promising financial incentives to preserve the 

remaining tropical peat swamp forests and their huge underground carbon stock. 

 

4 Materials and methods 

4.1 Satellite data processing and classification 

The 2.79 million ha study area is located in Central Kalimantan, Borneo, and covers 

a part of the former Mega Rice Project (MRP). The MRP, a failed transmigrasi 

resettlement project in Central Kalimantan, was initiated in 1995 by the Indonesian 

government and resulted in serious degradation of more than one million ha of peat 

swamp forest (Figure II-1a). The area was selected because (a) it contains one of the 

largest remaining undisturbed peat swamp forest ecosystems in Indonesia, (b) it is 
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under high pressure through the plantation business, and (c) severe peat fires were 

recorded there in 2006. 

To obtain the fire history within the study area Landsat TM and ETM+ images (118–

62) acquired between 1991–2007 were visually analyzed. The impact of fire and 

regrowth conditions in the 2006 fire scars was investigated on the ground in selected 

sites and in 86 aerial photos that were recorded using a Bell 206 helicopter between 

August 5–10, 2007, with a Hasselblad H3D-22 digital camera (50 millimeter (mm) 

lens) from an altitude of ±500m. All images were coregistered and projected to the 

World Geodetic System (WGS) 1984 Universal Transverse Mercator (UTM) zone 49 

south. 

Burned areas from the year 2006 were mapped at a 1:50.000 scale (minimum 

mapping unit 5ha) using an object oriented classification on the basis of a Landsat 

ETM+ 7 image (118–62, August 5, 2007, gap filled). Data from the MODIS was used 

to unambiguously discriminate burned areas from sparsely vegetated soils, which 

eventually have a similar spectral response as fire scars. The MODIS system detects 

active burning fires, so called hotspots, at a spatial resolution of 1km in tropical 

regions (Langner et al., 2007; Davies et al., 2009; Langner & Siegert, 2009). The 

classification accuracy was determined through visual on screen validation. The 

overall accuracy for the discrimination of burned and unburned vegetation was 89% 

with a kappa coefficient of 0.845. 

The 3 investigated burn scars B1 (located in the Block B peat dome of the former 

MRP), C1 and C2 (located in the Block C peat dome of the former MRP) were 

visually digitized at a scale of 1:25,000 (minimal mapping unit 1ha) on the basis of 

the Landsat ETM+ 7 image (118–62, August 5, 2007, gap filled). 

We analyzed MODIS data recorded by Fire Information for Resource Management 

System (FIRMS) (Davies et al., 2009; http://maps.geog.umd.edu/firms/) to estimate 

the burned peat area for Indonesia. Previous studies showed that there is a 

reasonable correlation between burned areas deduced from MODIS hotspots and 

those derived from high resolution Landsat imagery, especially in peatlands, although 

a fire may cover the whole area of the sensor element (1 square km) or only a small 

fraction of it (Langner et al., 2007; Miettinen et al., 2007; Langner & Siegert, 2009). 

When using hotspots to determine burned areas, several constrictions have to be 
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kept in mind: (a) fires are only detected once or twice a day and thus rapidly 

spreading fires escape recording, (b) smoke from the fire often impedes the detection 

of hotspots, and (c) ground fires in tropical forests generally produce too little heat to 

be detected from space. (a) is irrelevant for peat fires, while (b) and (c) are relevant 

for peat fires. To convert hotspot data to fire affected areas, it was assumed that the 

area of each hotspot (1 square km) was completely affected by fire. Areas in which 

several hotspots were recorded were considered to have burned only once. A direct 

comparison of the burned area derived from MODIS hotspots with the object oriented 

classification result from Landsat within the study area showed that MODIS 

overestimated the burned area by 30% (Langner et al., 2007; Miettinen et al., 2007; 

Langner & Siegert, 2009) (Table II-1). When estimating the burned peat area for 

Indonesia, we discounted this factor. 

The extent of peatland in Indonesia was determined from maps prepared by 

Wetlands International (Wetlands International, 2003, 2004, 2006). According to 

these maps, Indonesia has 21,892,399ha of peatland comprising approximately 11% 

of its land mass (Table II-1). 

 

4.2 Light Detection and Ranging (LiDAR) data processing, filtering 
and Digital Terrain Model (DTM) generation 

LiDAR is an active remote sensing technique which is based on the transmission of 

laser pulses toward the ground surface and the recording of the return signal. By 

analyzing the time delay for each pulse back to the sensor, the heights of all 

reflecting objects can be measured in the range of a few centimeters. The aircraft 

was equipped with an airborne global positioning system (GPS) to record the position 

of the sensor and an inertial measurement unit (IMU) to measure the angular 

orientation of the sensor with respect to the ground. To calculate absolute height 

values, the LiDAR system was calibrated with a ground based differential GPS. To 

further assure and verify the accuracy of the LiDAR data, a calibrated alignment 

process for the GPS position of the sensor and the orientation parameters was 

applied. 

Small-footprint full waveform LiDAR data were collected using a Riegl LMS-Q560 

Airborne Laser Scanner from an altitude of ±500m, over a scan angle of ±30° (swath 
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width ±500m). The laser pulse repetition rate was 66,000–100,000 pulses per second 

with a footprint of 0.25m and a wavelength of 1.5µm. Any echo, caused by multiple 

targets hit by a single laser shot, was received, digitized, time-stamped, compressed, 

and stored on the data recorder. Due to the accurate time stamping for each sample 

(109 samples per seconds), the 3D coordinates of the laser beam reflections, the 

intensity and the pulse width can be extracted by a waveform decomposition, which 

fits a series of Gaussian pulses to the waveform. To avoid noise and outliers only 

echoes with an intensity higher than 9 were used in this study. This resulted in an 

average of 1.4 echoes per square meter. Basically each reflection can be detected 

by the waveform decomposition and thus eliminates the dead zone effect. 

Conventional LiDAR systems (recording at most five reflections) can have a dead 

zone of up to 3m which makes these systems effectively blind after a reflection and 

thus impedes the discrimination of small height differences. The position and 

orientation of the system was measured in-flight using GPS and an IMU, with a 

stationary GPS located at the nearby airport of Palangka Raya for differential 

correction. The Riegl LMS-Q560 Airborne Laser Scanner system allows height 

measurements of ±0.02m. Single beam measurements have an absolute horizontal 

accuracy of ±0.50m and vertical accuracy of ±0.15m root mean square (RMS) error. 

Between 05–10 August 13,626ha of LiDAR measurements were recorded using a 

Bell 206 helicopter, of which 3,750ha were investigated in this study. 

We applied a terrain-adaptive bare earth extraction algorithm to discriminate ground 

points from non-ground points reflected by the vegetation which is a utility integrated 

with Cloud Peaks software’s LASEdit version 1.15.1 tool Surface Magic 2 (Figure II-

1b). This algorithm provides unsupervised classification of non-ground features and 

adapts to the terrain condition. Furthermore, the ground points were visually 

searched to eliminate outliers. Off nadir locations with viewing angles larger than 20° 

showed little difference in the detected number of ground points. 

Finally, the ground points were interpolated using a GIS inverse distance weighted 

(IDW) interpolation model (Figure II-1c). For the interpolation we used a cell size of 1 

m, a variable search radius of 20 points, power 2 and no barriers. There was almost 

no difference between the interpolated DTM and the original ground point cloud. In 

transect 1 and 2 48% of the original ground return signals were below the 

interpolated DTM and 52% above with an average difference of -0.02 ±0.02m and 



Derivation of burn scar depth and carbon emissions 

43 
 

0.02 ±0.02m respectively. In transect 3 47% of the ground return signals were below 

the interpolated DTM and 53% above with an average difference of -0.01 ±0.02m 

and 0.01 ±0.01m respectively. We used the DTM instead of the original 3D point 

clouds because it facilitated all further data handling and analysis. 

 

4.3 Burn scar depth analysis and in situ measurements 

Height profiles (burned peat depth profiles) of one meter width were extracted from 

the DTMs stretching along the full length of the transects with a spacing of 25m to 

each other. All together, 41 profiles were analyzed: 15 for transect 1, each with 

27,850m length, 13 for transect 2, each with 10,745m length, and 13 for transect 3, 

each with 20,400m length. The DTM profiles, the corresponding remote sensing 

images (aerial photos and Landsat images), and the digital burn scar map were 

exactly aligned to identify the boundary between burned and unburned peat (Figure 

II-3). 79 locations were assessed in detail to determine burned depth. The profiles 

were clipped to cover a distance of 1,000m within the burned area and 1,000m within 

the unburned area (Figure II-3c and d). If the extent of the burned and/or unburned 

area was smaller than 1,000m we clipped the maximum distance possible on both 

sides. Linear regression models were used to eliminate the inclination resulting from 

the convex shaped peat surface. To statistically analyze the reliability of the 

determined ground points and the interpolated DTMs we investigated the resulting 

burned depth if only the 30% or 10% of the lowest values from profiles were 

considered for the burned peat depth calculation. The average standard deviation in 

all unburned height profiles was 0.063m (100% ground point values), 0.040m (30% 

lowest values), and 0.037m (10% lowest values). The average standard deviations in 

all burned height profiles was 0.093m (100% ground point values), 0.043m (30% 

lowest values), and 0.036m (10% lowest values). Moreover, we statistically tested 

whether the mean of the unburned and burned surfaces differed significantly. If the 

values of the both height profiles were distributed normally a parametric T-Test was 

applied, if not a non-parametric Mann Whitney U-Test was applied. The level of 

significance (p) for 94 T-tests and 143 Mann Whitney U-tests with a confidence 

interval of 95% was calculated. All levels of significance were smaller than 0.001. It 

can be concluded that the differences in the means of the unburned and burned 

surfaces are highly significant and not random. In Transect 3 we additionally 
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compared burned depths derived from DTM profiles to 3D point clouds. The average 

difference of the burned depth was 0.01m based on 100% ground point values, -

0.01m based on the 30% lowest values, and -0.01m based on the 10% lowest 

values. 

In situ data of peat fire depth was collected in 2006 by the CIMTROP of the 

University of Palangka Raya. With the exception of the plots along the Sebangau 

River (10 measurements), all these measurements were situated on burn scars 

within Block C of the former MRP (Figure II-1a). This was done by inserting 40 iron 

rods in front of the fire. The surface of the peat layer before and after the fire was 

measured. The water table in the peat dome of Block C during the peat fires in 2006 

that formed the burn scars C1and C2 was measured at 3 locations (2 in a burn scar 

from the year 2002 and 1 in an unburned peat forest). No water table measurements 

were available for Block B. 
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Abstract 

Indonesian peatlands store about 57 ±11 giga tons (Gt) of carbon and have 

enormous potential to negatively influence the global climate if they are drained and 

burned at rates currently observed. Since most peatlands in Indonesia are highly 

inaccessible very few field measurements on peat loss after fire exist. Peat loss after 

single and multiple fire events within a study area in Central Kalimantan (Indonesia) 

were estimated through 3D modeling of a pre-fire peat surface based on airborne 

Light Detection and Ranging (LiDAR) data. Since there were no historical burn depth 

field measurements and only mono-temporal LiDAR data available it was not 

possible to distinguish between peat subsidence caused by fire and peat subsidence 

caused by other processes within the investigated fire scars and to determine the 

difference of these subsidence processes between differing land covers. The results 

showed that after the first fire event peat loss with 0.37 ±0.22m was the highest, the 

second with 0.30 ±0.17m was less and the third with 0.11 ±0.25m was the lowest, so 

that no linear relationship was observed. Additionally the results indicated that there 

is a relation between the duration of the dry season and the mean peat loss. Based 

on object oriented fire scar classifications (derived from Landsat data) between the 

years 1990-2009 it was estimated that 61.361 mega tons (Mt) of peat carbon were 

emitted within the Kapuas district (1,489,325ha), Central Kalimantan (Indonesia). 

This is equal to about 25% of all carbon emissions from transport for the European 

Community in the year 2009. The presented approach could be used as an input to 

future Reduced Emissions from Deforestation and Degradation in developing 

countries (REDD+) projects which represent promising financial incentives to 

preserve the remaining tropical peat swamp forests. 

 

Keywords: climate change; tropical peat; fires; Indonesia; remote sensing; carbon; 

LiDAR; 3D surface modeling; REDD+; green house gas emissions 
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1 Introduction 

It is estimated that the total area of tropical peatland is in the range of 30-45 million 

hectares (ha), approximately 10-12% of the global peatland resource, and about 

16.8-27.0 million ha are found in Indonesia (Immirzi et al., 1992; Rieley et al., 1996; 

Page & Banks, 2007; Page et al., 2010). Tropical peatlands act as sinks and store 

huge amounts of carbon as peat consist of dead, incompletely decomposed plant 

material that has accumulated over thousands of years in waterlogged environments 

that lack oxygen, which makes them one of the largest near-surface pools of 

terrestrial organic carbon (Sorensen, 1993; Page & Rieley, 1998; IPCC, 2007). 

Typically tropical peatlands are located at low altitudes in alluvial floodplains where 

peat swamp forests form smooth convex shaped peat domes up to 20m thick 

(Anderson, 1983; Rieley et al., 1996; Rieley & Page, 2005). Indonesian peatlands 

feature a characteristic micro-topography consisting of hummocks and hollows 

(Rieley & Page, 2005). Hummocks are up to 0.5m in height and are usually formed 

around tree bases and comprise of large proportion of both living and dead tree roots 

(Rieley & Page, 2005). These hummocks are interspersed with hollows of similar 

depth which form an interconnected network that carries water from the interior peat 

dome to its periphery (Rieley & Page, 2005). The ability of tropical peatlands to 

sequester and store these huge amounts of carbon is threatened by persistent 

anthropogenic impacts (Rieley & Page, 2005; Jaenicke et al., 2008; Hooijer et al., 

2010). Especially drainage and forest clearance disturb their hydrological stability 

(Page & Rieley, 1998) and make these otherwise waterlogged ecosystems 

susceptible to fire (Langner et al., 2007). After peatland drainage there are four 

largely irreversible processes that lead to a drop in peat surface level, called 

subsidence (Rieley & Page, 2005): (a) Consolidation is the compression of saturated 

peat due to increased ‘overburden’ (no peat matter is lost; increase of bulk density); 

(b) Shrinkage is the gradual volume reduction of peat in the unsaturated zone due to 

a loss of water from pores (no peat matter is lost; increase of bulk density); (c) 

Oxidation is the gradual volume reduction of peat in the unsaturated zone due to 

decomposition of organic matter; and (d) Fire which results in the complete loss of 

peat organic matter from the burned zone (carbon dioxide (CO2) to a lesser degree 

carbon monoxide (CO), methane (CH4), and other volatile organic compounds). 

Nearly all peatland fires are started by farmers to clear land and on a larger scale by 
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private companies as a cheap tool to clear forest before establishing oil palm and 

pulp wood plantations (ADB/BAPPENAS, 1999; Bompard & Guizol, 1999; Bowen et 

al., 2000; Siegert et al., 2001). Particularly acute is this problem on tropical peatlands 

in Indonesia, where recurrent peatland fires release huge amounts of carbon to the 

atmosphere (Page et al., 2002; Ballhorn et al., 2009; Langner & Siegert, 2009). This 

has increased interest in tropical peatlands in the context of global warming (Page et 

al., 2002; Rieley & Page, 2005; Ballhorn et al., 2009; Hooijer et al., 2010). 

It is important to know how much of the peat layer is consumed by a fire in order to 

quantify the role of peatland fires in the release of carbon. Most peatlands in 

Indonesia are highly inaccessible so that very few field measurements have been 

made to date, as this would require either knowing the fire affected area in advance 

or igniting peatland on a larger scale intentionally. Ballhorn et al. (2009) used 

airborne Light Detection and Ranging (LiDAR) data to overcome these problems and 

to obtain spatial measurements on peat burn depth across large fire scars in a study 

site in Central Kalimantan, Indonesia. LiDAR is based on the transmission of laser 

pulses towards the ground surface and the recording of the return signal. By 

analyzing the time delay for each pulse reflected back to the sensor, surface 

elevation can be determined with an accuracy of a few centimeters. The resulting 

three dimensional (3D) LiDAR point clouds are then differentiated into ground points 

and non-ground points mainly reflected from vegetation in forested areas. Finally the 

ground points are used to interpolate Digital Terrain Models (DTMs). Airborne LiDAR 

systems, of all remote sensing technologies, have shown to yield the most accurate 

estimates for land topography. Ballhorn et al. (2009) determined an average peat 

burn scar depth of 0.33 ±0.18m. Based on this result and the burned area 

determined from satellite imagery, they estimated that within the 2.79 million hectare 

study area 49.15 ±26.81 mega tons (Mt) of carbon were released during the 2006 El 

Niño episode which represents 10-33% of all carbon emissions from transport for the 

European Community for that year (Ballhorn et al. 2009). The increased demand for 

palm oil, triggered by the biofuel boom, seriously aggravates the situation since 

peatlands are the only remaining uninhabited near coastal land resource in 

Indonesia. 

In the present study the same LiDAR data set used by Ballhorn et al. (2009) was 

processed. Ballhorn et al. (2009) calculated peat burn depth for single fire events 
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through determining the elevation difference of LiDAR derived DTMs at the border 

between burned and adjacent unburned peatlands. Other subsidence processes 

caused by consolidation, shrinkage, or decomposition played only a minor role, 

because the LiDAR data set was acquired shortly after the fire event. Here a different 

and advanced approach to estimate peat loss after not only single but also multiple 

fire events is introduced. Based on 3D modeling a pre-fire peat surface is 

reconstructed from which peat loss is then derived. In 1997, drainage channels were 

created which lead to the occurrence of huge fires and it is likely that the whole 

peatland area has undergone significant subsidence (Rieley & Page, 2005). Without 

repetitive field measurements, initiated before 1997, it is impossible to quantify the 

rates of the various subsidence processes (Figure III-1). The subsidence rate is a 

function of the original peat type (degree of maturation, mineral content), mechanical 

compaction, fire history, and most importantly water table level (Rieley & Page, 

2005), as there is a clear relationship between the subsidence rate and water table 

level (Hooijer et al., 2011). The pre-fire peat surface was modelled using anchor 

points to the left and right of each of the recorded fire scars, either in undisturbed 

reference areas or in areas which had burned once, twice and so forth (Figure III-1). 

The peat loss after single and multiple fire events was calculated by comparing the 

LiDAR derived DTM with the modelled pre-fire peat surface (Figure III-1). As 

mentioned above, it is likely that the whole hydrological system of the peat dome was 

affected by the extensive drainage network that caused overall peat dome 

subsidence. Most published studies analysing GHG emissions from drained tropical 

peatlands in Indonesia use gas chamber measurements and do not report on the 

corresponding subsidence rate of the peat surface (Hooijer et al., 2006; 2009; 2010; 

Jauhiainen et al., 2001; 2004; 2005; 2011). One exception is a publication by Wösten 

et al. (1997) showing that the average subsidence rate for a peatland area in 

Malaysia was 2cm of peat loss per year and 60% of the total subsidence originates 

from oxidation and 40% from shrinkage. Since in our study no historical burn depth 

field measurements and only mono-temporal LiDAR data was available it was 

impossible to distinguish between subsidence caused by fire and other subsidence 

processes (especially subsidence due to peat decomposition) within the investigated 

fire scars or to determine the difference of these subsidence processes between 

differing land covers (e.g. peat swamp forest, secondary forest, bushland, and fire 

scars). Due to this only peat loss after fire with the possibility of including other 
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subsidence processes could be estimated. As our results for single fire events 

agreed well with previous published results (Ballhorn et al., 2009; Van der Werf et al., 

2010) and are in line with observations made during various field visits we believe 

that the approach presented here is a possible solution to determine the impact of 

single and multiple fire events on a peat dome with this limited data availability. 

 

Figure III-1: Schematic overview of the main processes that lead to peat subsidence. The dashed line 

indicates the peat surface at the time when the peat dome was undisturbed and covered by pristine 

peat swamp forest. The solid line indicates the peat surface measured by LiDAR in 2007 (the LiDAR 

derived DTM). It is likely that the whole hydrological system of this peat dome was affected by the 

extensive drainage network that caused overall subsidence of it. The scale of subsidence is unknown 

due to the lack of historical field measurements. Also shown is the estimation of the pre-fire peat 

surface (dashed line with points), that was modeled based on reference areas. 

 

Additionally the calculated peat loss was set in relation to in-situ water table 

measurements, burn frequency, the year of the fire occurrence, and the duration of 

the dry season to assess the influence of these factors. 

To indicate the area of total fire impact further a historical analysis of peat fire 

occurrence and extent in the Kapuas district (1.49 million ha), also located in Central 

Kalimantan, was conducted. This was accomplished using a time series of Landsat 

images from 1990-2009. Based on the LiDAR peat loss calculations and the 

historical peat burn scar classification the peat volume lost and the corresponding 

carbon emitted within the Kapuas district were estimated. 
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2 Materials and methods 

2.1 Study area 

The island of Borneo lies in a region of constant rainfall and high temperatures 

throughout the year which are ideal conditions for plant growth. The major part of 

Borneo lies within Indonesia and is known as Kalimantan. 5.7 million ha or 27.8% of 

Indonesia’s peatland resources are found in Kalimantan (Wetlands International, 

2004). Peat depth varies from very shallow (less than 0.5m) to very deep peat with 

up to 12m (Wetlands International, 2004). The 62 investigated burn scars and the 

Kapuas district are located within Central Kalimantan (Figure III-2). All peat swamp 

forest ecosystems within Central Kalimantan have been severely impacted by 

extensive logging and drainage for more than two decades (Rieley & Page, 2005). 

The area also covers the former Mage Rice Project (MRP), an ill-fated transmigrasi 

resettlement project initiated in 1995 by the Indonesian government, which resulted 

in the serious degradation of more than one million ha of peat swamp forest (Rieley & 

Page, 2005). 
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Figure III-2: Location of the LiDAR tracks (white outlines), 62 investigated peat fire scars, water table 

(turquoise triangles), and Differential Global Positioning System (DGPS) measurements (black 

crosses) superimposed on Landsat imagery (ETM+ 118-61, 2009-05-22 and ETM+ 118-62, 2007-08-

05, bands 5-4-3, and both scenes gap filled). For validation purposes additionally 3 areas (virtual fires 

scars) within unburned pristine peat swamp forest were delineated. The Kapuas district (black 

outlines) within Central Kalimantan (Indonesia), the peatland extent (brown) within Kalimantan 

(derived from maps prepared by Wetlands International (2004), and the extent of the study area 

within Kalimantan (extent of the big figure, red rectangle) are shown in the smaller upper left figure. 

 

2.2 Data 

2.2.1 Airborne LiDAR data and digital photos 

Airborne LiDAR data and digital photos were acquired during a flight campaign 

conducted between the 5th to 10th August 2007 (Ballhorn et al., 2009). A Riegl LMS-

Q560 Airborne Laser Scanner was mounted to a Bell 206 helicopter. This system 

allows height measurements of ±0.02m. Single beam measurements have an 

absolute horizontal accuracy of ±0.50m and a vertical accuracy of ±0.15m Root Mean 

Square Error (RMSE). The small-footprint full-waveform LiDAR data was collected 

from a flight altitude of ±500m above ground over a scan angle of ±30 degrees 

(swath width ±500m). This survey has an average of 1.4 points per square meter 
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(pt/m2). 6,852ha of LiDAR data, composed of 9 tracks, were used in this study 

(Figure III-2). The aerial photos were recorded with a Hasselblad H3D-22 digital 

camera (focal distance of 50mm). 

 

2.2.2 Landsat data 

The dates of investigation were chosen according to the fire activity and Landsat 

imagery availability. The study is based on 49 high resolution Landsat images (39 

Landsat ETM+, 10 Landsat-5 TM) acquired from 1991-2010. Scenes acquired during 

or shortly after the fire events (mostly during August to October) detect burn scars 

with higher confidence due to the fast regrowth of vegetation. Often images acquired 

directly after the fire season were too obstructed by clouds and therefore not 

available, so that images acquired before the next fire season of the following year 

were also analyzed. To determine the lengths of the individual fire seasons between 

1997-2009 MODIS collection 5 hotspot data was used to identify suitable image 

acquisition dates. 

 

2.2.3 MODIS hotspot, DGPS, water table, and rainfall data 

The latest MODIS Collection 5 hotspot data for the study area was provided by the 

University of Maryland's Fire Information for Resource Management System (FIRMS) 

as ESRI point shapefiles for the time period from 1997 to 2009 

(http://maps.geog.umd.edu/firms/). Each hotspot/active fire detection represents the 

center of a 1km2 pixel flagged as containing at least one active fire (Davies et al., 

2009). 

To assess the accuracy of the LiDAR derived DTMs points were measured with a 

Trimble 5700 Differential Global Positioning System (DGPS) device from May to 

August 2010. The locations of the 201 DGPS measurements overlapping the LiDAR 

tracks are shown in Figure III-2. For every DGPS measurement digital photos were 

taken in the field. 

Water table data (cm below peat surface) for the years 1997 to 2007 were measured 

in dipwells at different locations (Figure III-2). 
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To assess rainfall patterns in the study area the Global Precipitation Climatology 

Project (GPCP) One – Degree Daily (1DD) data sets for the years 1997 to 2007 were 

downloaded from the KNMI (Koninklijk Nederlands Meterologisch Instituut) Climate 

Explorer Website (http://climexp.knmi.nl/start.cgi?someone@somewhere). The 

GPCP 1DD data set provides daily, global 1x1 degree gridded fields of precipitation 

(mm/day) for October 1996 to the present from currently available observational data 

(Huffman et al., 2001). 

 

2.3 Data analysis 

2.3.1 LiDAR data filtering and interpolation of DTMs 

The filtering of the LiDAR point clouds consisted in the separation between ground 

and off-ground points, since within the study area all off-ground points consisted of 

vegetation. The used filtering methodology was the hierarchic robust filtering. This 

algorithm is based on linear prediction with individual accuracies for each 

measurement and works iteratively (Pfeifer et al., 2001). After the filtering process 

every track was examined further in small subsets to validate the results and 

manually delete outliers. The method used to generate the DTMs (1m resolution) 

was the linear adaptable prediction interpolation (Assmus, 1975; Wild, 1983; Kraus, 

1998), which corresponds to the statistical estimation method kriging (Kraus, 1998). 

Both filtering and the interpolation were carried out with the Inpho software package 

(DTMaster and SCOP++). 

In order to assure the accuracy of the LiDAR derived DTMs, 66 DGPS field 

measurements overlapping the LiDAR tracks were compared to the corresponding 

LiDAR derived DTMs. 

 

2.3.2 Visual delineation of fire scars within the LiDAR tracks 

First all historic fires and their spatial extent and distribution along the LiDAR tracks 

were visually digitized in a Geographical Information System (GIS). This historical fire 

scar analysis was based on Landsat satellite imagery acquired between 1990 and 

2007. The results of the historical fire analysis are burned area maps for the 

investigated years indicating the extent of the burned areas along the LiDAR tracks. 
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In LiDAR track 9 no fires occurred in the past, but to validate the accuracy of the 

modeling method additionally three areas (virtual fire scars) were delineated within 

unburned peat swamp forest sites (Figure III-2). 

 

2.3.3 LiDAR based pre-fire peat surface modeling 

In order to mathematically define the pre-fire peat surface, a Bézier surface was 

calculated based on the LiDAR points within reference areas (Figure III-1). Bézier 

surfaces are popular and commonly used in practical works (Salomon, 2006). These 

surfaces are visually intuitive and mathematically convenient, since they permit one 

to define complex surfaces with a relatively small number of parameters. A Bézier 

surface is able to resume millions of LiDAR measurements in a small set of 

significant parameters that mathematically describe the surface, in this specific case, 

a peat dome. The Bézier surface is obtained by applying a Cartesian product to the 

Bézier equations of a Bézier curve, using the Bernstein binomial coefficients ܤ௠,௜ሺݔሻ 

and ܤ௡,௝ሺݕሻ (Salomon, 2006): 

ܲሺݔ, ሻݕ ൌ  ෍෍ܤ௠.௜ሺݔሻ ௜ܲ,௝ܤ௡,௝ሺݕሻ
௡

௝ୀ଴

௠

௜ୀ଴

 (eq. III-1) 

Peat domes are relatively simple surfaces and have an especially smooth 

topography. The inland peat swamps of Central Kalimantan, for example, have an 

elevation rise of only about 1m per km (Page et al., 1999; Rieley & Page, 2005). For 

this reason, we assumed that just one set of parameters is enough to define the peat 

surface. Usually, the polynomial order of a Bézier surface is defined by the number of 

points within the surface. In the case of modeling the pre-fire peat surface, an 

alternative approach is necessary, because it is mathematically and computationally 

impossible to solve polynomials with orders of up to millions. Engels (1986) 

presented a least squares method for estimation of Bézier curves and surfaces which 

overcomes this issue, and this approach was adapted to this study. Every LiDAR 

point ܲ with height (z) is defined by an equation: 

ݖ ൌ ܲሺݔ,  ሻ (eq. III-2)ݕ

Where ܲሺݔ, ,ݔሻ is the eq. III-1. Defining ሺݕ  as variable, the ݖ ሻ as constants andݕ

Bernstein coefficients ܤ௠,௜ሺݔሻ and ܤ௡,௝ሺݕሻ become constant and just the polynomial 
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parameters ௜ܲ,௝ must be determined. Denoting ܼ the vector with all z coordinates of 

the LiDAR points, ܹ the weight matrix containing the inverse of the variances of the 

heights (obtained from the LiDAR precision) and ܣ the matrix of the derivatives of the 

mathematical model (eq. III-1), the least squares solution becomes: 

௜ܲ௝ ൌ   ሺܣ௧ܹܣሻିଵሺܣ௧ܹܼሻ  (eq. III-3) 

The interpolated surface is obtained by applying the adjusted parameters ௜ܲ,௝ in eq. 

III-1, for all DTM points, generating a smooth raster that represents the pre-fire 

surface model (Figure III-5c). 

For every of the LiDAR tracks 5 to 9 (in LiDAR track 9 three virtual fire scars for 

validation purpose where delineated) a pre-fire peat surface based on unburned 

reference areas was modeled (Figure III-2). For LiDAR tracks 1-4 on the other hand 

one pre-fire peat surface also covering the gaps between the four LiDAR tracks was 

modeled (Figure III-2). First profiles for the four LiDAR tracks based on the LiDAR 

derived DTMs were assessed to evaluate the limits of the peat dome. This data was 

used as constrains in the Bézier surface adjustment. Next based on the determined 

historical fire occurrence (see section Visual delineation of fire scars) a set of 

reference areas that best geometrically cover the study area were determined. From 

a strictly geometric point of view, the areas which burned twice were the best choice. 

The proposed solution is to reconstruct the peat dome based on these areas 

(‘degraded peat model’), and then, using the peat swamp forest islands as reference, 

to correct this model, reconstructing the pre-fire peat surface in this way. This was 

achieved by determining the differences between the ‘degraded peat model’ and the 

LiDAR ground points within the forest islands and performing an adjustment with a 

small degree polynomial surface. 

Since subsidence is higher near channels (where peat is washed away and 

undergoes compaction and shrinkage more intensively), we excluded a 50m wide 

strip to both sides of drainage channels from the modeling process. Another reason 

to exclude these stripes was that in some areas there are significant mounds of 

excavated peat and sand material (berms) along the channels which are remnants 

from channel construction. The distance of 50m was decided on the basis of a 

careful analysis of the LiDAR track data, the fire scars, and the number of fire 

occurrences. The LiDAR derived DTM with 1m horizontal resolution provided detailed 

information on small scale topography near channels, such as berms (Figure III-3). 



Pre-fire surface 3D modeling of tropical peatland 

59 
 

2.3.4 Peat loss calculation 

We then calculated the peat loss for fire scars that burned once, twice, and three 

times (Figure III-2). This was done by generating 50 randomly distributed sample 

plots (10x10m) per ha inside the boundaries of these fire scars (Figure III-3). Here 

also no plots were generated within 50m distance to channels (see section LiDAR 

based pre-fire peat surface modeling and Figure III-3). For each of the sample plots 

the minimum, maximum, mean and the standard deviation of the normalized surface 

(z values of the modeled pre-fire peat surface were subtracted from the LiDAR 

derived DTMs) were extracted. This normalized surface constitutes the estimated 

peat loss at the specific locations. The final peat loss estimations after the different 

fire events were calculated by averaging plots with the same number of fire events. 

The peat loss for fire scars that burned more than three times was not calculated due 

to the geo-statistically (size and spatial distribution) not sufficient occurrence of them 

(Figure III-2). 
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Figure III-3: Example of two fire scars along a channel in LiDAR track 7 (Figure III-2) that burned 

once. (a) Height profile through a drainage channel and the surrounding area based on a LiDAR 

derived DTM (white lines in b). Visible is excavated material left over from channel construction. (b) 

Aerial photos (upper image), the LiDAR derived DTM (middle image), and the normalized LiDAR 

derived DTM (on basis of the modeled pre-fire peat surface, lower image) superimposed on a 

Landsat image (ETM+ 118-62, 2007-08-05, bands 5-4-3, and gap filled). For the modeling of the pre-

fire peat surface and the distribution of the 10x10m sample plots (black rectangles in the lower image) 

for the peat loss calculation a 50m wide impact zone on both sides of the channel was chosen were 

no data was used. 
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2.3.5 Relation of peat loss to burn frequency, water table 
measurements, and duration of dry season 

The calculated peat loss was set in relation to water table measurements, burn 

frequency, the year of the fire occurrence, and the duration of the dry season to 

assess the influence of these factors. 

A MODIS hotspot analysis was carried out to derive the dates of the different fire 

events within all fire scars. With these dates it was possible to relate peat loss after 

the different fire events to water table measurements. 

Next a boxplot analysis war carried out to compare the peat loss of sample plots that 

never burned, burned once, twice, and three times. 

Finally the peat loss of sample plots that burned once but in different years (1997, 

2002, and 2006) were compared with boxplots. The duration of the dry season for 

these specific years (1997, 2002, and 2006) was also determined. The duration of 

the dry season for a specific year was defined as the longest continuity of days were 

the sum of the rainfall (mm/day) of the 30 previous days was less than 200mm. The 

rainfall in the study area was determined with the GPCP 1DD product (see Section 

DGPS, water table, and rainfall data). 

 

2.3.6 Object-oriented historical fire scar classification within the 
Kapuas district 

A Landsat object-oriented fire scar classification for the years 1990, 1997, 2001, 

2002, 2004, 2005, 2006, and 2009 within the Kapuas district (Figure III-2) was 

carried out. The software used was eCognition Developer 8. To classify burned areas 

a method was developed based on the normalized burn ratio (Tansey et al., 2008), 

an additional ratio based on Landsat bands 4 and 6, and on a Spectral Mixture 

Analysis (SMA) (Adams et al., 1986; Tompkins et al., 1997; Rashed et al., 2003). A 

special type of SMA, the Mixture Tuned Matched Filtering (MTMF) was applied using 

ENVI/IDL (Boardman, 1998; Williams & Hunt, 2002). Each classification result was 

manually post-processed to eliminate misclassifications. 
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2.3.7 Estimation of peat volume loss and carbon emitted within the 
Kapuas district 

The extent of peatlands within the Kapuas district was identified through a digital map 

prepared by Wetlands International (Wetlands International, 2004). With the help of 

the historical burned area maps (see section Object-oriented historical fire scar 

classification within the Kapuas district) the extent and the fire occurrence on 

peatlands was determined. The peat volume loss was estimated by multiplying the 

burned area extent with the obtained peat loss which is related to the fire occurrence 

at the respective location. 

The amount of carbon emitted was estimated by combining the peat volume loss with 

published figures on peat carbon content. Peat carbon content was calculated by 

applying a dry peat bulk density of 0.1 gram per cubic centimeter (g/cm3) and a peat 

carbon content of 58% (Neuzil, 1997). 

 

3 Results 

3.1 LiDAR derived DTMs 

In order to assure the quality of the LiDAR derived DTMs, 66 of the originally 201 

DGPS elevation measurements overlapping the LIDAR tracks (see section DGPS, 

water table, and rainfall data and Figure III-2) were correlated to the corresponding 

elevation of the interpolated LiDAR DTMs using an in house developed software. 

Only DGPS measurements lying within bushland or forest and outside the 50m buffer 

zone along the channels were used for comparison. Also DGPS measurements 

where the LiDAR point density was lower than 0.1pt/m2 and within new fire scars 

from 2009 were eliminated. With a coefficient of determination (R2) of 0.94 and a 

RMSE of 0.33m good regression results were observed between the elevations of 

both data sets (Figure III-4a). In Figure III-4b it is noticeable that in areas with higher 

LiDAR point densities (as occurs in bushlands) the RMSE goes as low as 0.20m 

(with a very high R2 value of 0.98). Whereas in areas of lower LiDAR point densities 

(as occurs in forested areas) lesser correlation is obtained (R2 = 0.80, RMSE = 

0.42m) (Figure III-4c).  
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Figure III-4: Correlation of the LiDAR derived DTM heights and the DGPS heights collected in the 

field. (a) Regression model with all points. (b) Regression using just bushland points. (c) Regression 

using just forest points. 

 

3.2 Modeled pre-fire peat surfaces 

To validate the accuracy of the modeling method the elevation within the 10x10m 

sample plots of a modeled surface was compared to the LiDAR derived DTM 

elevation of three areas (virtual fire scars) within LiDAR track 9 located in unburned 

peat swamp forest (Figure III-2). There were very small mean elevation differences of 

-0.01-0.02 ±0.07-0.08m observed between the modeled surface and the LiDAR 

derived DTM (Table III-1). 

 
Table III-1: Elevation differences between three modeled surfaces and the corresponding LiDAR 

derived DTM located in unburned peat swamp forest within LiDAR track 9 (virtual fire scars, Figure III-

2). 
Virtual fire 

scar nr. 
Number of sample 

plots 
Area virtual fire 

scars (ha) 
Minimum

(m) 
Maximum 

(m) 
Mean 
(m) 

Standard 
deviation (m) 

1 1,754 35 -0.22 0.21 -0.01 0.07 
2 1.510 30 -0.28 0.23 -0.01 0.07 
3 1,452 29 -0.24 0.26 0.02 0.08 

Total 4,716 94 -0.28 0.26 0.00 0.07 
 

Next for every of the LiDAR tracks 5 to 8 a pre-fire peat surface based on unburned 

reference areas was modeled (Figure III-2). For LiDAR tracks 1-4 on the other hand 

one pre-fire peat surface also covering the gaps between the four LiDAR tracks was 

modeled (Figure III-2). Figure III-5 illustrates the results of the pre-fire peat surface 

modeling process for LiDAR tracks 1-4. Figure III-5a exemplarily shows profiles along 

each of the 4 LiDAR tracks displaying the elevations of the LiDAR derived DTMs and 

the pre-fire peat surface. Also shown is the burn frequency along these profiles. In 

areas where it never burned the elevations of the pre-fire peat surface and of the 
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LiDAR derived DTM fall together (e.g. middle part of profile 2 in Figure III-5) and in 

areas where it burned, dependent on burn frequency, the difference between these 

two elevations is visible. In the west of the DTM profile 1 it is visible that the peat 

dome got heavily degraded, so that a reliable pre-fire peat surface was difficult to 

reconstruct. As a consequence no peat loss analysis of fire scars located in this area 

was carried out. Profiles 2-4 show the dome curvature reconstruction and that the 

peat dome begins on the west (by the Kapuas River) at an elevation of about 17.4m 

and ends on the east at the Mentangai River. In order to assure a higher reliability of 

the modeling outcome some reference areas have been set at these edges forcing 

the pre-fire peat surface to cross elevation at 17.4m in the west and the Mentangai 

River in the east. Figure III-5b displays the LiDAR derived DTMs and Figure III-5c the 

final pre-fire peat surface for these four LiDAR tracks. 

 

Figure III-5: Results of the pre-fire peat surface modeling for LiDAR tracks 1-4 (Figure III-2.). (a) 

Elevation Profiles 1-4 for LiDAR tracks 1-4. Shown are the elevations of the LiDAR derived DTMs 

(grey lines) and the modeled pre-fire peat surface (blue lines). Also shown is the burn frequency (red = 

high burn frequency, green = not burned) along these profiles. The white lines in b and c show the 

location of these profiles. (b) The LiDAR derived DTMs for LiDAR tracks 1-4 superimposed on a 

Landsat image (ETM+ 118-62, 2007-08-05, bands 5-4-3, and gap filled). (c) Final pre-fire peat surface 

based on LiDAR tracks 1-4 superimposed on a Landsat image (ETM+ 118-62, 2007-08-05, bands 5-4-

3, and gap filled). 
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3.3 Peat loss 

Figure III-6 shows a fire scar which burned once and twice. Cleary visible are the 

different depths for areas that never burned, burned once or twice of the LiDAR 

derived DTM in relation to the modeled pre-fire peat surface (Figure III-6a). 

 

 
Figure III-6: Example of an area where it never burned, burned once and twice. (a) Upper profile 

displaying the elevation of the LiDAR derived DTM (black line) and the modeled pre-fire peat surface 

(red line). Lower profile illustrates the normalized surface (z values of the modeled pre-fire peat 

surface were subtracted from the LiDAR derived DTM) which constitutes the estimated peat loss 

depth. The black lines indicate the trend of the normalized surface for the areas where it never 

burned (green line), burned once (yellow line) and twice (orange line). The white lines in b show the 

location of the profiles. (b) Extent of an area which never burned, burned once and twice (b1), the 

LiDAR derived DTM (b2), the modeled pre-fire peat surface (b3), and the normalized surface (b4) 

superimposed on a Landsat image (ETM+ 118-62, 2007-08-05, bands 5-4-3, and gap filled). 
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All together 98,971 sample plots (10x10m) within 62 areas (see section Visual 

delineation of fire scars within the LiDAR tracks) were assessed. The average size of 

these areas was 32ha. 4 areas never burned, 17 areas burned once, 20 areas 

burned twice, and 21 areas burned three times. Table III-2 summaries the results of 

the peat loss calculations. The peat loss after every fire event is estimated by 

calculating the difference of the mean z value of the normalized surface to a previous 

fire event. Also given are the summed up peat losses for the different number of fires. 

Results show that peat loss after the first fire with a mean 0.37 ±0.22m is the highest, 

after the second fire with a mean of 0.30 ±0.17m is lower and after the third fire with a 

mean of 0.11 ±0.25m is the lowest. 

 
Table III-2: Results of the peat loss calculations. Minimum, maximum, range, mean, and standard 

deviation of the normalized surface (z values of the modeled pre-fire peat surface were subtracted 

from the LiDAR derived DTM) based on the 10x10m sample plots for the different burn frequencies (0 

= never burned, 1 = burned once, 2 = burned twice, and 3 = burned three times). Also given is the 

average peat loss after a fire event (estimates by calculating the difference of the mean z values of the 

normalized surface to a previous fire event) and the summed up peat losses. 

Burn 
frequency 

Number of 
fire scars 

Number of 
sample plots 

Area 
(ha) 

Minimum 
(m) 

Maximum 
(m) 

Mean 
(m) 

Standard 
deviation (m) 

Peat loss (m) 
Per fire 
event 

Fire events 
summed 

0 4 15,242 305 -0.91 0.76 0.02 0.19 0.00 0.00 
1 17 20,848 419 -1.57 0.51 -0.34 0.22 0.37 0.37 
2 20 34,741 695 -1.62 1.13 -0.65 0.17 0.30 0.67 
3 21 28,140 563 -1.91 0.06 -0.76 0.25 0.11 0.78 

Sum 62 98,971 1,981 
 

The accuracy of the pre-fire peat surface model for the LiDAR tracks 1-4 was also 

assessed by comparing elevations within the 10x10m sample plots of the modeled 

surface with the corresponding elevations of the LiDAR derived DTM elevation for the 

four areas that did not burn. The overall mean difference was with 0.02 ±0.19m very 

low (Table III-2). 

 

3.4 Relation of peat loss to burn frequency, water table 
measurements, and duration of dry season 

When correlating peat loss to water table measurements at the different dates of the 

fire events (see section Relation of peat loss to burn frequency, water table 
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measurements, and duration of dry season) all R2 values were lower than 0.29, so 

that no statistical significant correlation could be identified. 

Looking at the boxplots for the different burn frequencies (Figure III-7a) it is obvious 

that for every successive fire event the mean peat loss is less deep as the mean 

depth of the prior fire event (Figure III-7a). The range between both the maximum 

and minimum peat loss and the first and third quartile of the peat loss differ 

considerably from each other for the different fire events. 

Only considering areas that burned once it is noticeable that for the year 1997 (0.57 

±0.09m) compared to the years 2002 (0.35 ±0.17m) and 2006 (0.33 ±0.23m) the 

mean peat loss is by far the deepest (Figure III-7b). The years 2002 and 2006 have 

similar average peat losses. Additionally plotting the duration of the dry season (as 

defined in section Relation of peat loss to burn frequency, water table 

measurements, and duration of dry season) into Figure III-7b shows that the year 

1997 with 184 days had the longest dry season compared to 132 days for the year 

2002 and 128 days for the year 2006. As in the case of the average peat loss here 

also the years 2002 and 2006 had similar long dry seasons.  

 

 
Figure III-7: Results of the boxplot analyses. (a) Boxplot analysis for burn frequencies (0 = never 

burned, 1 = burned once, 2 = burned twice, and 3 = burned three times). The normalized surface (z 

values of the modeled pre-fire peat surface were subtracted from the LiDAR derived DTM) is equal to 

the peat loss. A non linear trend is visible where the mean peat loss of a successive fire event is less 

deep than of the previous fire event. (b) Boxplot analysis of the burn year for sample plots that only 

burned once. Here the year 1997 had the highest peat loss (as in a the normalized surface is equal to 

the peat loss). Also shown is the duration of the dry season for these three years. The duration of the 

dry season for the year 1997 was the longest. 
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3.5 Historical fire scar classification, estimation of the peat volume 
loss, and carbon emitted within the Kapuas district 

Figure III-8 displays an overview of the historical fire scar classification (between the 

years 1990-2009) on peatlands within the Kapuas district. It is clearly visible that by 

far most of the fire occurrences are near water drainage channels (Figure III-8). Fire 

scars that burned up to seven times were observed. Table III-3 gives the peatland 

area affected according to the different burn frequencies. 

 

Figure III-8: Historical fire scar classification results for the years 1990 to 2009 on peatlands within the 

Kapuas district. (a) Historical fire scar classification results (with areas of up to seven fire events), the 

boundaries of the Kapuas district, and the peatland extent (derived from maps prepared by Wetlands 

International (2004) superimposed on Landsat imagery (ETM+ 118-61+62, 2009-05-22, bands 5-4-3, 

and both scenes gap filled). The black rectangle indicates the extent of b. (b) Enlarged detail from the 

central area of the Kapuas district also displaying the results of the historical fire scar classification. It 

is clearly visible that most of the fire occurrences are near the water drainage channels. 

 

Based on the results of the peat loss calculations (see section Peat loss) and the 

historical fire scar classification the peat volume loss and the carbon emitted were 

estimated for the Kapuas district. As already mentioned above only peat loss of fire 
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scars burned up to three times were assessed, so that any additional fire was 

assumed to have the same peat loss as the third fire (0.11m). Based on these 

calculations about 61.361 mega tons (Mt) of carbon were emitted from fire scars 

within the Kapuas district between the years 1990 and 2009.  

 
Table III-3: Results of the historical fire scar classification, estimation of the peat loss volume, and 

carbon emitted within the peatlands of the Kapuas district between the years 1990 and 2009. 
Burn 

frequency 
Area affected 

(ha) 
Peat loss summed 

(m) 
Peat loss 

volume (m3) 
Carbon released 

(Mt) 
0 202,853 0.00 0 0.000 
1 80,933 0.37 299,451,170 17.368 
2 63,212 0.67 423,517,298 24.564 
3 31,686 0.78 247,153,764 14.335 
4 7,801 0.89 69,429,475 4.027 
5 1,542 1.00 15,419,831 0.894 
6 249 1.11 2,766,456 0.160 
7 17 1.22 206,202 0.012 

Sum 388,293  1,057,944,196 61.361 
 

4 Discussion and conclusions 

In 1997 an enormous system of drainage channels was created within the study area 

so that it is likely that the whole peatland has undergone significant other subsidence 

processes than those caused by fire (Rieley & Page, 2005). The subsidence rate is a 

function of the original peat type (degree of maturation, mineral content), mechanical 

compaction, fire history, and most importantly water table level (Rieley & Page, 

2005), as there is a clear relationship between the subsidence rate and the water 

table level (Hooijer et al., 2011). Most published figures on GHG emissions from 

drained tropical peatlands in Indonesia use gas chamber measurements and do not 

report on the corresponding subsidence rate of the peat surface (Hooijer et al., 2006; 

2009; 2010; Jauhiainen et al., 2001; 2004; 2005; 2011). One exception is a study by 

Wösten et al. (1997) which shows that the average subsidence rate for a peatland 

area in Malysia was 2cm of peat per year and 60% of the total subsidence originates 

from oxidation and 40% from shrinkage. For our study no historical burn depth field 

measurements, initiated before 1997, and only mono-temporal LiDAR data was 

available. Due to these constraints (no historical in-situ measurements and no 

literature values on the various subsidence rates) we are aware that it is impossible 

to distinguish between subsidence caused by fire and other subsidence processes 

within the investigated fire scars or to determine the difference of these subsidence 

processes between differing land covers (e.g. peat swamp forest, secondary forest, 
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bushland, and fire scars). Because of this only peat loss after fire with the possibility 

of including other subsidence processes could be estimated. Our results for peat loss 

after single fire events agreed well with previous published peat fire depth 

calculations (Ballhorn et al., 2009; Van der Werf et al., 2010) and are in line with 

observations made during various field visits. One explanation for this good 

accordance is that other subsidence processes than fire have a similar impact 

outside and inside the fire scar so that the here measured peat loss might mostly 

originate from fire. In future the uncertainties described above could be better 

estimated and reduced once multi-temporal LiDAR data will be available (currently a 

new LiDAR campaign is conducted within the investigated area). By comparing the 

2007 and the new LiDAR data sets, the results of this study could be re-evaluated 

and subsidence rates across the peatland and within different land covers or in 

proximity to channels could be spatially estimated in more detail. In our opinion 

however the approach presented here is a possible solution to determine the impact 

of single and multiple fire events on a peat dome with this limited data availability. 

An accuracy assessment of the LiDAR derived DTMs through 66 DGPS elevation 

measurements resulted in overall good regression results (R2 = 0.94, RMSE = 

0.33m, Figure III-4a). It is also noticeable that in areas with higher LiDAR point 

densities (as occurs in bushlands) a R2 value of 0.98 (RMSE = 0.20m) whereas in 

areas of lower point densities (as occurs in forested areas) a lesser R2 value of 0.80 

(RMSE = 0.42m) was obtained (Figs. 4b and 4c). The LiDAR derived DTMs stem 

from a large number of filtered LiDAR ground return signals (several million) and the 

DGPS measurements are point measurements. A statistical analysis of the LiDAR 

signals reflected from the peat surface showed that in unburned peat forests about 

1% of the points were reflected from the ground surface and in burn scars about 6% 

of the points were reflected. Nevertheless, peat swamp forests are much less dense 

than tropical lowland rainforests, so that more LiDAR signals are returned from the 

ground. As there are far too few LiDAR ground returns it is impossible to correctly 

map the typical micro-topography of hummocks and hollows as observed in 

Indonesian peatlands (Rieley & Page, 2005). The observed texture in the LiDAR 

derived DTMs is related to large scale undulations of the terrain and the random 

representation of signals from hummocks and hollows (Figures III-5b and III-6b2). 

The results from the accuracy assessment above prove the quality of the LiDAR 
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derived DTMs and that the elevation differences of the two data sets are related to 

the natural micro-topography and not to the quality of the LiDAR filtering process. 

However it is justified to interpolate this low number of ground echoes, as the 

peatlands of Central Kalimantan are flat with a rise of only about 1m per km (Page et 

al., 1999; Rieley & Page, 2005) and have a smooth topography across distances of 

up to 40km. It should be added that a 4 year gap between the different acquisition 

dates of the two data sets can also lead to differences in elevation due to related 

subsidence processes.  

The small mean elevation differences of -0.01-0.02 ±0.07-0.19m between the 

modeled pre-fire surface and the LiDAR derived DTMs in unburned areas (Tables III-

1 and III-2) demonstrated that the applied modeling approach accurately estimated 

pre-fire peat surface elevation. 

The peat loss calculations showed that after the first fire event the mean peat loss 

with 0.37 ±0.22m was the highest, after the second fire with 0.30 ±0.17m was less 

high, and after the third fire with 0.11 ±0.25m was the lowest (Table III-1 and Figure 

III-7a), so that no linear relationship was observed. These results agree with 

evidence from aerial and field surveys suggesting that fires in peat swamp forests 

burn deeper into the peat layer than fires on areas previously affected by fire. Dense 

pockets of ferns and sedges through which fire propagates quickly, with little impact 

on the deeper peat layer, often cover these deforested peatlands. 

Due to the geo-statistically (size and spatial distribution) not sufficient occurrence of 

areas that burned more than three times no peat loss calculations were carried out 

for these areas (Figure III-2). For future research it would be of interest how high the 

mean peat loss after the third fire event would be. Does the mean peat loss stabilize 

at a certain level or does it become less and less after every successive fire event? 

How important is the fuel loads on top of the peatland for the mean peat loss? In 

future these research questions could be answered in more detail once the multi-

temporal LiDAR data will be available. 

The results for the mean peat loss for the first fire event (0.37 ±0.22m) is higher 

compared to studies on peat burn depth by Ballhorn et al. (2009) (0.33 ±0.18m) and 

Van der Werf et al. (2010) (0.30 ±0.08m). Also field data on burn depth collected 

during the 2006 El Niño fire event, through placing iron rods in front of the fire front, 
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by the Centre for International Co-operation in Management of Tropical Peatlands 

(CIMTROP) showed a lower mean peat burn depth (0.30 ±0.13m, n = 40). 

Comparing the mean peat loss separately for these years (1997 = 0.57 ±0.09m; 2002 

= 0.35 ±0.17m; 2006 = 0.33 ±0.23m) it is obvious that the year 1997 had by far the 

highest peat loss (Figure III-7b). Additionally comparing the duration of the dry 

season for these three years the year 1997 with 184 days also had the longest dry 

season. This results indicate that there is a relation between the duration of the dry 

season and the mean peat loss. 

When correlating peat loss after different fire events to water table measurements all 

R2 values were lower than 0.29. This shows that no statistical significant correlation 

could be identified here. One explanation for this unexpected weak correlation could 

be that the in-situ water table measurements were collected at sites far away from 

the investigated fire scars, so that they might not be a good enough representation of 

the hydrological conditions at the fire scars during the specific fire events. To 

investigate the relation between peat loss and water table level more accurately in 

future it would be necessary to collect water table measurements near burning peat 

fires. 

Based on the historical fire scar classification and the peat loss identified 61.361Mt of 

carbon were emitted within the Kapuas district (1,489,325ha) between the years 

1990-2009. This is equal to about 25% of all carbon emissions from transport (civil 

aviation, road transportation, railways, navigation, and other transportation) for the 

European Community in the year 2009 

(http://unfccc.int/di/DetailedByParty/Event.do;jsessionid_4B56CEF8097A1587450FB

B5AC8451F87.diprod02?event_go). This high number once more demonstrates the 

possible impact of tropical peat fires on the global climate and the necessity to 

accurately determine peat loss after fires to get better estimates on carbon 

emissions. Currently, this important source of carbon emissions is not yet included in 

the IPCC estimate for land cover change (IPCC, 2007) or in most regional and global 

carbon cycling models. 

The results of our study demonstrates the usefulness and robustness of LiDAR data 

to be used as input to model pre-fire peat surfaces from which it is then possible to 

calculate peat loss after not only single but also multiple fire events. This is a 

significant advance to the method used by Ballhorn et al. (2009), as they only 
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investigated fire scars which burned once. Additionally only peat fires within 

previously undisturbed peat swamp forest (78%, disturbed only by logging) or 10-

year-old regrowing peat swamp forest (16%) were analyzed. When combining the 

determined peat loss with fire scar classifications from other remote sensing sources 

(optical and/or RADAR satellite imagery) this approach will help to better estimate the 

amount and spatial distribution of disturbed peatland carbon emission. Additional this 

method could be used as an input tool to future Reduced Emissions from 

Deforestation and Degradation in developing countries (REDD+) projects which 

represent promising financial incentives to preserve the remaining tropical peat 

swamp forests. 
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Abstract 

Indonesian peatlands are one of the largest near-surface pools of terrestrial organic 

carbon. Persistent logging, drainage and recurrent fires lead to huge emission of 

carbon each year. Since tropical peatlands are highly inaccessible, few 

measurements on peat depth and forest biomass are available. We assessed the 

applicability of quality filtered ICESat/GLAS (a spaceborne LiDAR system) data to 

measure peatland topography as a proxy for peat volume and to estimate peat 

swamp forest Above Ground Biomass (AGB) in a thoroughly investigated study site 

in Central Kalimantan, Indonesia. Mean Shuttle Radar Topography Mission (SRTM) 

elevation was correlated to the corresponding ICESat/GLAS elevation. The best 

results were obtained from the waveform centroid (R2 = 0.92; n = 4,186). 

ICESat/GLAS terrain elevation was correlated to three 3D peatland elevation models 

derived from SRTM data (R2 = 0.90; overall difference = −1.0m, ±3.2m; n = 4,045). 

Based on the correlation of in situ peat swamp forest AGB and airborne LiDAR data 

(R2 = 0.75, n = 36) an ICESat/GLAS AGB prediction model was developed (R2 = 

0.61, n = 35). These results demonstrate that ICESat/GLAS data can be used to 

measure peat topography and to collect large numbers of forest biomass samples in 

remote and highly inaccessible peatland forests. 

 

Keywords: ICESat/GLAS; LiDAR; SRTM; tropical peatlands; carbon; above ground 

biomass; peat swamp forest; Indonesia 
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1 Introduction 

Peatlands store huge amounts of carbon as peat consists of dead, incompletely 

decomposed plant material that has accumulated over thousands of years in 

waterlogged environments that lack oxygen. In the tropics, peatland is usually 

covered by forests and current estimates indicate that the total area of tropical 

peatland is in the range of 30–45 million ha (approximately 10–12% of the total global 

peatland resource); about 16.8–27.0 million ha are found in Indonesia (Page et al., 

2010). This is one of the largest near-surface pools of terrestrial organic carbon 

(Sorensen, 1993; Page & Rieley, 1998; IPCC, 2007; Page et al., 2010). Peat swamp 

forests have a wealth of ecological and hydrological functions such as water 

retention, flood reduction, protection against seawater intrusion, support of high 

levels of endemism, and finally as a retreat for endangered species such as the 

Bornean Orangutan (Pongo pygmaeus). Tropical peat typically accumulates in 

alluvial floodplains where peat swamp forests, over thousands of years, formed 

convex shaped peat domes up to 20m thick (Anderson, 1983; Rieley et al., 1996; 

Page et al., 2004; Rieley & Page, 2005). Persistent anthropogenic impacts by logging 

and drainage diminish their ability to sequester carbon and conversion to plantations 

and recurrent uncontrolled fire release huge amounts of carbon dioxide each year 

(Rieley & Page, 2005; Jaenicke et al., 2008; Hooijer et al., 2010). In particular 

drainage and forest clearance disturb the hydrological stability (Page & Rieley, 1998) 

and make these otherwise waterlogged ecosystems susceptible to fire (Langner et 

al., 2007). Usually peatland fires are started by farmers to clear land and on a larger 

scale by private companies as a cheap tool to clear forest before establishing oil 

palm and pulp wood plantations (ADB, 1999; Bompard & Guizol 1999; Bowen et al., 

2000; Siegert et al., 2001). Fire is particularly acute in Indonesia, where recurrent 

fires release large amounts of carbon dioxide to the atmosphere (Page et al., 2002; 

Ballhorn et al., 2009; Langner & Siegert, 2009). This has increased interest in tropical 

peatlands in the context of global warming (Page et al., 2002; Rieley & Page, 2005; 

Ballhorn et al., 2009; Hooijer et al., 2010). 

To measure the carbon content it is necessary to determine the carbon density of the 

peat and the peat volume. Peat thickness is usually measured by using manually 

operated peat corers at intervals of 500–2,000m. Since most peatlands in Indonesia 

are highly inaccessible, very few field measurements have been made to date. To 
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overcome these constraints, Jaenicke et al. (2008) applied 3D modeling based on 

the combined analysis of earth observation data and in situ peat thickness 

measurements. They demonstrated that Shuttle Radar Topography Mission (SRTM) 

data can be used to determine the extent and topography of the dome shaped 

surface and correlation was obtained between the convex peat dome surface and the 

depth of the underlying mineral ground, which was determined by manually operated 

peat corers in the field. These results were then used to calculate the peat volume 

and carbon store. The main problem of this approach was the determination of the 

vegetation height growing on peat domes as the SRTM C-band sensor does not 

penetrate dense and tall vegetation cover straight to the soil surface. 

One way to overcome this problem may be the use of aerial Light Detection and 

Ranging (LiDAR). LiDAR is based on the transmission of laser pulses toward the 

ground surface and the recording of the return signal. By analyzing the time delay for 

each pulse reflected back to the sensor, surface elevation can be determined with an 

accuracy of a few centimeters. The resulting three dimensional LiDAR point clouds 

(x, y, and z coordinates) are differentiated into ground points, points reflected from 

the terrain, and non-ground points mainly reflected from the vegetation in forested 

regions. The ground points are then used to generate Digital Terrain Models (DTMs). 

Aerial LiDAR systems (discrete return and full waveform), compared to other remote 

sensing technologies, have been shown to yield the most accurate estimates for land 

topography, forest structural properties, and forest Above Ground Biomass (AGB). 

On the other hand systems operated from airplanes have limitations due to large 

data volumes and high costs (Ranson et al., 2007). 

The GeoScience Laser Altimeter System (GLAS) onboard NASA’s Ice, Cloud, and 

land Elevation Satellite (ICESat) mission is the first spaceborne LiDAR system 

capable of providing global datasets of the earth’s topography (Schutz et al., 2005). 

ICESat/GLAS data have been demonstrated to accurately estimate forest structural 

properties especially well in topographically even areas with uniform forest cover 

(Harding & Carajabal, 2005; Lefsky et al., 2007; Baccini et al., 2008; Boudreau et al., 

2008, Rosette et al., 2008; Sun et al., 2008; Goetz et al., 2010; Lefsky, 2010; Dolan 

et al., 2011). In areas of moderate to high relief the results show lower reliability 

(Harding & Carajabal, 2005). 
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Peatlands have an especially smooth topography. The inland peat swamps of 

Central Kalimantan (Indonesia), for example, have an elevation rise of only about 1m 

per km (Page et al., 1999; Rieley & Page, 2005). Therefore ICESat/GLAS data might 

be an adequate tool to measure the topography of the peat soil and the forest AGB. 

On the other hand, based on the authors’ airborne LiDAR data estimates (see 

section IV-2.3.1), the canopy coverage can be higher than 95%, depending on the 

peat swamp forest subtype and previous logging impacts. 

In order to assess the applicability of ICESat/GLAS, the following questions were 

proposed: (1) Is ICESat/GLAS capable of penetrating the dense peat swamp forest 

cover and to measure the peat surface topography? (2) How accurate is the SRTM 

digital elevation model in comparison to ICESat/GLAS measurements on peatlands? 

(3) How accurate are 3D peatland elevation models derived from SRTM data? (4) 

How accurate are ICESat/GLAS measurements of peat swamp forest canopy heights 

compared to airborne LiDAR measurements? (5) Is it possible to derive a peat 

swamp forest AGB prediction model from ICESat/GLAS data based on airborne 

LiDAR and forest inventory data? 

 

2 Methodology 

2.1 Study area 

Borneo is the third largest island in the world and the largest land mass in the 

Sundaic area. The island lies in a region (between latitudes 7°N and 4°S) of constant 

rainfall and high temperatures throughout the year which are ideal conditions for 

plant growth. Forest types include mangrove forests, peat swamp and freshwater 

swamp forests, the most extensive extent of heath forests (kerangas) in Southeast 

Asia, lowland dipterocarp forests, ironwood (ulin) forests, forests on limestone and 

ultrabasic soils, hill dipterocarp forests and various montane formations (MacKinnon 

et al., 1996). The major part of Borneo (539,460km2 or 73%) lies within Indonesian 

territory and is known as Kalimantan; the rest of the island consists of the states of 

Sarawak and Sabah (together forming East Malaysia) and the independent sultanate 

of Brunei Darussalam (Figure IV-1(A)). 
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Figure IV-1: Overview of the study area: (A): The island of Borneo and the peatland extent within 

Kalimantan, Indonesia, derived from maps prepared by Wetland International (2004). Shown are the 

ICESat/GLAS transects from the years 2003 to 2009, which were used in this study (shots with 

incorrect elevation flags were filtered out), superimposed on Shuttle Radar Topography Mission 

(SRTM) data; (B): Location of the investigated 3D peat models and the LiDAR stripes intersecting 

ICESat/GLAS data within Central Kalimantan superimposed on Landsat TM and ETM+ data (bands 5, 

4, 3). Peatland extent (orange outline) and the examined ICESat/GLAS data from the years 2003 to 

2009 are also indicated. The red rectangle in (A) shows the location and extent of (B). 

 

The focus of this study is the peatlands of Central Kalimantan. Their extent within 

Kalimantan was determined from maps prepared by Wetlands International (2004) 

and the authors’ Landsat satellite image interpretations (Figure IV-1(A)). 5.7 million 

ha or 27.8% of Indonesia’s peatland resources are found in Kalimantan (Wetlands 

International, 2004). Peat depth varies from very shallow (less than 0.5m) to very 

deep peat with up to 12m (Wetlands International, 2004). 42% were classified as 

very deep peat (Wetlands International, 2004). The three 3D peatland elevation 

models and airborne LiDAR data were available from other research projects (Figure 

IV-1(B)) (Jaenicke et al., 2008; Ballhorn et al., 2009). A detailed description of the 

methodology on how these 3D peatland elevation models were extracted from SRTM 

data is given by Jaenicke et al. (2008). Within Central Kalimantan all peat swamp 

forest ecosystems have been severely impacted by extensive logging and drainage 

for more than two decades (Moeliono et al., 2009). The area also covers the former 

Mega Rice Project (MRP), an ill-fated transmigrasi resettlement project, initiated in 

1995 by the Indonesian government. 
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2.2 Data 

2.2.1 ICESat/GLAS data 

The Ice, Cloud, and land Elevation Satellite (ICESat) has been orbiting the earth 

since 12 January 2003 at an altitude of 600km with a 94° inclination and during most 

of its operating life it has been programmed for a 91-day orbital repeat cycle and was 

decommissioned from operation on 14 August 2010. The GeoScience Laser 

Altimeter System (GLAS) onboard ICESat was a full waveform sensor using a 

1,064nm laser operating at 40Hz. This resulted in a nominal footprint of about 65m 

diameter on the earth’s surface with each pulse separated by 172m postings (Schutz 

et al., 2005). There were three lasers onboard ICESat of which the first one failed 

about 38 days into the mission (29 March 2003). The original temporally continuous 

measurements were replaced by three 33 day operating periods per year, so that the 

life of the second and third laser could be extended (Sun et al., 2008). The laser 

footprint on the earth’s surface actually was in the form of an ellipse and its size 

varied over time as a function of power output from the laser (Harding & Carajabal, 

2005). As the GLAS sensor recorded the returned energy over time these waveforms 

represented the vertical distribution of the terrain and vegetation within each footprint. 

GLAS data have been demonstrated to accurately estimate forest height (Lefsky et 

al., 2007; Rosette et al., 2008; Lefsky, 2010) and AGB (Harding & Carajabal, 2005; 

Boudreau et al., 2008). In this study we used the ICESat/GLAS data product GLA14 

Global Land Surface Altimetry Data release version 31 for all acquisition dates from 

February 2003 to October 2009 for the island of Borneo (Figure IV-1(A,B)). This data 

product can be downloaded at The National Snow and Ice Data Center (The National 

Snow and Ice Data Center, 2011a). According to The National Snow and Ice Data 

Center ICESat/GLAS data release version 31 had an average horizontal geolocation 

error for all laser campaigns of 0.78m (±5.09m) The National Snow and Ice Data 

Center, 2011b). For the comparison of the ICESat/GLAS data and SRTM data only 

ICESat/GLAS data acquired from February 2003 to October 2003 was used, as 

these are the nearest acquisition dates to the SRTM data (11–22 February 2000), so 

that potential vegetation cover change could be minimized (see section IV-2.2.4). To 

compare ICESat/GLAS data to the airborne LiDAR data and the 3D peatland 

elevation models all ICESat/GLAS acquisitions from February 2003 to October 2009 

were utilized. 
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The elevations from the GLA 14 product were obtained by combining Precise Orbit 

Data (POD) (Rim & Schutz, 2002), Precise Altitude Data (PAD) (Bae & Schutz, 

2002), and range data. To determine the range data the time stamps between the 

centroid of the transmitted pulse and the corresponding reference point, mostly the 

centroid, of the return waveform were compared. Latitude, longitude and footprint 

elevation were computed (Schutz, 2002), after all instrumental, atmospherical, and 

tidal corrections are applied (Brenner et al., 2003). The positions of these reference 

points were then stored as range offsets. The waveforms received by the GLAS 

sensor were characterized by a single Gaussian peak over oceans, sea ice, and ice 

sheets, and by multiple peaks over irregular surfaces such as land covered by 

vegetation. Over vegetated land the GLA14 product extracted information from these 

complex waveforms by fitting up to six Gaussian distributions to the waveform 

(Harding & Carajabal, 2005). From these Gaussian distributions different waveform 

peaks were derived that describe different features of the vertical vegetation structure 

and the underlying topography (Harding & Carajabal, 2005). For tree-covered areas 

a bimodal GLAS waveform was typical, where topographic relief within a footprint 

was small compared to vegetation height, which can be used to estimate biophysical 

parameters. Reflections from the underlying ground, where hit through canopy gaps, 

and plant surfaces were separated vertically. The height where half of the return 

energy is above and half below correspond to the centroid of the waveform (Ranson 

et al., 2004a; 2004b). The distance between the signal beginning and the centroid of 

the ground return corresponds to the maximum canopy height and can be used as an 

estimate of AGB (Lefsky et al., 2005). Sometimes the last Gaussian peak is not a 

good representation of the ground surface, for example when the last peak has a 

lower amplitude than another peak close to it (Boudreau et al., 2008; Rosette et al., 

2008). In this case the higher amplitude peak represents ground surface height 

(Boudreau et al., 2008; Rosette et al., 2008). The distance between signal begin and 

signal end corresponds to the total waveform length and also provides information on 

vegetation height although it is combined with effect of topographic slope (Lefsky et 

al., 2005). A simplified overview of the different ICESat/GLAS elevations and height 

metrics is given in Figure IV-2. The interpretation of waveforms is significantly more 

difficult for areas where within-footprint topographic relief is a substantial fraction of 

the vegetation height, so that the canopy and ground reflections are mixed. 
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Figure IV-2: Simplified ICESat/GLAS waveform with four Gaussian peaks. On the left, the location of 

the different ICESat/GLAS elevations is depicted and, on the right, the varying ICESat/GLAS height 

metrics derived from them are shown. The Signal Begin and the Signal End of the waveform are 

defined by the crossing of an Alternate Threshold (dashed line). 
 

2.2.2 Airborne LiDAR data 

Airborne LiDAR data was acquired during a flight campaign conducted between 5 

and 10 August 2007 (Ballhorn et al., 2009). A Riegl LMS-Q560 Airborne Laser 

Scanner was mounted to a Bell 206 helicopter. Small-footprint full-waveform LiDAR 

data was collected from a flight altitude of 500m above ground over a scan angle of 

±30° (swath width ±500m). The laser sensor had a pulse rate of up to 100,000 pulses 

per second with a footprint of 0.25m and a wavelength of 1.5μm (near infrared). Due 

to the accurate time stamping (109 samples per second), the three dimensional 

coordinates of the laser beam reflections (x, y, and z), the intensity, and the pulse 

width can be extracted by a waveform decomposition, which fits a series of Gaussian 

pulses to the waveform. This resulted in an average of 1.4 echoes per square meter. 

The Riegl LMS-Q560 Airborne Laser Scanner system allows height measurements of 

±0.02m. Single beam measurements have an absolute horizontal accuracy of 
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±0.50m and vertical accuracy of ±0.15m Root Mean Square Error (RMSE). 13,626ha 

of LiDAR data was available for this study of which 9,702ha of LiDAR transects were 

intersected by ICESat/GLAS data (Figure IV-1(B)). 

 

2.2.3 SRTM data 

The Shuttle Radar Topography Mission (SRTM), a joint mission conducted by the 

National Aeronautics and Space Administration (NASA) and the National Imagery 

and Mapping Agency (NIMA), was flown from 11 to 22 February 2000 and collected 

single-pass radar interferometry data covering 119.51 million km2 of the earth’s 

surface including over 99.9% of the land area between 60°N and 56°S latitude. The 

C-band InSAR acquired data in 225km swaths and was provided by the Jet 

Propulsion Laboratory (JPL). For Southeast Asia digital elevation models with a pixel 

spacing of three arcseconds (about 90m) were produced. The absolute horizontal 

and vertical accuracy of the data are better than 20 and 16m respectively (Lillesand 

et al., 2008). 

 

2.2.4 MODIS data 

To determine potential vegetation cover change between the acquisition of the SRTM 

data (11–22 February 2000) and the ICESat/GLAS data (February 2003 to October 

2003) the area proportional estimate of woody vegetation, provided in the 500m 

resolution Vegetation Continuous Fields (VCF) product from the Moderate Resolution 

Imaging Spectroradiometer (MODIS) was used, which is referred to as the percent 

tree cover layer (Hansen et al., 2003). Hansen et al. (2003) used global training data 

derived from high resolution imagery to extract VCF woody vegetation, herbaceous 

vegetation, and bare cover estimates from cloud-corrected, monthly composites of 

MODIS surface reflectance. 

 

2.2.5 Field inventory data 

Field inventory data in Central Kalimantan was collected from May to August 2008. 9 

Clusters each with four sample plots were selected depending on representativeness 

of forest, sub forest and land use type, and accessibility. The cluster positions were 
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set in advance to assure that they lie within the swath of the aerial LiDAR data set. A 

GPS device (Garmin GPS map60CSx, accuracy of 3 to 10m) was used to locate the 

position of the clusters, as well as to mark the center of each sample plot. The four 

sample plots of one cluster build the corners of a 50×50m square. In each sample 

plot trees were measured using the nested plot method which is based on circular 

fixed-area plots (Pearson et al., 2005b). Three nests of circular shape with radii of 4, 

14 and 20m were used. Trees with a Diameter at Breast Height (DBH) smaller than 

7cm were excluded. In each nest, trees of a certain DBH range were measured: 7 to 

20cm (4m radius), 20 to 50cm (14m radius), and greater than 50cm (20m radius). For 

each tree following parameters were recorded: local species name, DBH in cm, and 

tree height in m. Local names were translated to corresponding Latin names through 

information provided by the experts of a local herbarium at the Centre for 

International Co-operation in Management of Tropical Peatland (CIMTROP) in 

Palangka Raya and tropical timber databases provided by Chudnoff (1984) and the 

World Agroforestry Centre (2011). Species specific wood densities were also derived 

from these databases as well as from IPCC (2006). Some local names could not be 

translated and some trees could not be identified in the field. In these cases an 

average specific wood density for Asian tropical trees, 0.57Mg m−3, was applied 

(Brown, 1997). AGB was calculated using an allometric model of Chave et al. (2005) 

for moist tropical forests which includes DBH and wood density but not tree height. 

We decided to use a model which excludes tree height as accurate tree height 

measurements in this tropical ecosystem are almost impossible due to the dense and 

tall forest canopy. 36 sample plots, located in peat swamp forest, were used to 

compare AGB calculated in the field to airborne LiDAR 3D point cloud height 

statistics. 

 

2.3 Data analysis 

2.3.1 Airborne LiDAR data processing and correlation with field 
inventory data 

A filtering algorithm based on Kraus & Pfeifer (1998) was applied to differentiate 

between ground and vegetation points within the airborne LiDAR 3D point clouds. 

Every track was examined further in small subsets to validate the results and 
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manually delete outliers. Digital Terrain Models (DTMs) were then generated by 

interpolating the filtered ground points. Kriging interpolation was applied (cell size 

1m) as it showed the best results. 

 

 
Figure IV-3: Correlation of the airborne LiDAR derived DTMs and the Differential Global Positions 

System (DGPS) points collected in the field (R2 = 0.9, n = 201). Also shown are the 95% confidence 

intervals. 

 

In order to assure the quality of the generated LiDAR DTMs, 201 field points 

measured with a Differential Global Positioning System (DGPS) were correlated to 

the interpolated LiDAR DTMs. A high correlation coefficient (R2 = 0.9) between both 

data sets was observed (Figure IV-3). This proves the quality of the LiDAR derived 

DTMs. The altitude differences observed are due to the use of different height 

reference systems. Also small deviations are expected, since the LiDAR point clouds 

are from August 2007 and the DGPS measurements from August 2010, and this time 

shift can lead to discrepancies, mainly near to canals, due to new fires and peat 

subsidence. 
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Figure IV-4: Overview of the methodology to derive Above Ground Biomass (AGB) values from the 

field plots (left), the development of AGB models by correlating AGB from the field to airborne LiDAR 

3D point clouds statistics (middle), and the correlation of ICESat/GLAS elevations and height metrics 

to LiDAR 3D point cloud statistics and the development of a AGB model by correlating AGB results 

from the airborne LiDAR AGB model to ICESat/GLAS height metrics (right). 

 

The LiDAR 3D point cloud statistics within a defined polygon were correlated to the 

corresponding ground-based AGB value. Linear and multiple linear regression 

analysis were applied to identify the best AGB estimation model. 36 sample plot 

centers were expanded by a circle with a radius of 20m. These areas were used to 

clip the LiDAR 3D point clouds. The height above the terrain (absolute vegetation 

heights) for each point within the cloud was determined by subtracting the 

corresponding pixel value of the DTM. Only points with a value higher than 0.5m 

were included in the analysis. LiDAR point height distributions of each sample plot 

were analyzed statistically and following metrics were derived and used as 

predictors: mean, Standard Error of the Mean (SEM), standard deviation, variance, 

range, maximum, mean point density per square meter, and the quantiles 

corresponding to the 5, 10, ..., 95 percentiles of the distributions. As further potential 

predictors Canopy Cover (CC), the Quadratic Mean Canopy profile Height (QMCH) 

(Lefsky et al., 2002a) and the centroid of the LiDAR point cloud height histogram (CL) 

were determined. For every pixel of a certain size (5m), CC was calculated by 

dividing the number of points above a certain height threshold (10m) by the number 
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of points below the threshold. A schematic overview of this approach is shown in 

Figure IV-4. For final model validation, the coefficient of determination (R2), the 

corrected coefficient of determination (R2
corr), and the Standard Error of the Estimate 

(SEE) were used. 

 

2.3.2 ICESat/GLAS data processing and analysis 

The original GLA14 data product was converted to the ESRI point Shape file format 

using an in house Java script. GLA14 data contains elevations with respect to the 

TOPEX/Poseidon-Jason Ellipsoid (Schutz et al., 2005). For the reason of comparison 

GLA14 data was converted to the WGS84 ellipsoid and orthometric elevations were 

obtained by applying the EGM96 geoid. In ArcGis 9.3 the elliptical footprints for the 

individual shots were extracted. Only footprints located completely on peatland were 

selected (Wetlands International, 2004; Figure IV-1(A)). 

The SRTM data, three 3D peatland elevation models in Central Kalimantan (Figure 

IV-1(B)), and MODIS VCF product for the years 2000 and 2003 were resampled to 

5m with the nearest neighbor interpolation method. Additionally the slope in degrees 

was calculated from the SRTM data by using a 3×3 moving window which then was 

also resampled to 5m. From these layers for each ICESat/GLAS footprint zonal 

statistics were extracted. 

Furthermore a number of different ICESat/GLAS elevations and height metrics were 

calculated (Figure IV-2). 

A range of different filters were generated. To avoid terrain slope and heterogeneous 

effects the SLOPE filter indicates whether the slope, derived from the interpolated 

SRTM slope layer, in a footprint is less than 10 degrees or not. The SATURATION 

filter shows whether an ICESat/GLAS waveform suffers from saturation. To define 

this filter the i_satCorrFlg flag from the GLA14 records was utilized. If there is a thin 

cloud cover ICESat/GLAS data is returned from the earth’s surface, but a thick cloud 

layer may prevent the laser pulse from reaching the ground and either no return is 

detected or the return is from the cloud top (Carabajal & Harding, 2006). To prevent 

this outlier occurrence the OUTLIER filter was implemented. This filter indicates 

whether the ICESat/GLAS elevation is more than 100m above the SRTM elevation 

as these records are associated with laser returns from cloud tops (Carabajal & 
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Harding, 2006). Additionally the ATMOSPHERE filter was established, defined by the 

i_FRir_qaFlag flag of the GLA14 data product, which indicates the presence of 

clouds. All waveforms ≤60m are indicated by the WAVEFORM EXTENT filter. The 

ELEVATION filter indicates whether the elevation information of a footprint can be 

considered as valid and is defined by the i_ElvuseFlg flag. With the help of the 

GLA14 i_rng_UQF flag the RANGE filter is determined which indicates the quality of 

the range increments. The filters VCF CHANGE 0% to VCF CHANGE 25% show the 

woody vegetation change in percent between the years 2000 and 2003 defined by 

the MODIS VCF product. Through visual comparison of the ICESat/GLAS footprints 

and Landsat imagery the vegetation change between the acquisition of the 

ICESat/GLAS data and the acquisition of the airborne LiDAR data was assessed and 

the footprints were classified into 8 vegetation change classes (no change, forest–

degraded forest, forest–deforested area, degraded forest–deforested area, degraded 

forest–forest, deforested area–forest, deforested area–degraded forest, water). This 

VEGETATION CHANGE filter could then be used to exclude ICESat/GLAS footprints 

with a vegetation change from the statistical comparison. 

 

2.3.3 Comparison ICESat/GLAS and airborne LiDAR data 

ICESat/GLAS footprints located completely within airborne LiDAR point clouds were 

selected. For these footprints, on average about 65m in diameter, different statistics 

from the airborne LiDAR point clouds and the DTMs were calculated and then 

correlated to the corresponding ICESat/GLAS elevations. Statistics included: 

minimum, maximum, mean of the z values from the airborne LiDAR points and DTMs 

within the ICESat/GLAS footprints. Furthermore different statistics from the 

normalized airborne LiDAR point clouds (z values of the airborne LiDAR points minus 

the corresponding DTM values) were correlated to ICESat/GLAS height metrics H1–

H7 (Figure IV-2). Statistics included: minimum, maximum, mean, and the 5, 10, ..., 95 

percentiles. Additionally the Quadratic Mean Canopy profile Height (QMCH) and the 

centroid of the LiDAR point cloud height histogram (CL) were compared to these 

ICESat/GLAS height metrics. A schematic overview of this approach is shown in 

Figure IV-4. 
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2.3.4 Development of above ground biomass prediction models 
from ICESat/GLAS data 

Again ICESat/GLAS footprints located completely within airborne LiDAR point clouds 

were selected. For these footprints the airborne LiDAR point statistics of the 20m 

circular buffers at footprint center (representing the 20 m field plots with a size of 

0.13ha) were used to calculate AGB derived from the airborne LiDAR regression 

models (see section IV-2.3.1, Figure IV-4). These AGB values at ICESat/GLAS 

footprint location were then correlated to different ICESat/GLAS height metrics. 

Multiple linear regression analysis was applied to create ICESat/GLAS AGB 

estimation models. 

Following ICESat/GLAS height metrics were used as predictors: last telemetered 

gate–signal begin (H1), waveform centroid–signal begin (H2), signal end–signal 

begin (H3), signal end–nearest Gaussian peak (H4), last highest Gaussian peak–

signal begin (H5), last highest Gaussian peak–nearest Gaussian peak (H6), and last 

highest Gaussian peak–waveform centroid (H7) (Figure IV-2). 

Stepwise and backward selection was performed to determine which independent 

variables should be included in the final models. For final model validation, the 

coefficient of determination (R2), the corrected coefficient of determination (R2
corr), 

and the Standard Error of the Estimate (SEE) were used. Figure IV-4 shows a 

simplified overview of this approach. 

  



ICESat/GLAS data as measurement tool for peatlands 

91 
 

2.3.5 Conceptual overview 

Figure IV-5 gives a conceptual overview of the methodology described above. 

 

Figure IV-5. Conceptual overview of the methodology used in this study. 
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3 Results 

3.1 Comparison ICESat/GLAS, SRTM data, and SRTM 3D peatland 
elevation models 

The ICESat/GLAS data is referenced to a consistent geodetic reference frame, so 

that its horizontal and vertical geolocation accuracy and its ability to resolve the 

height distribution of elevations within the laser footprint, provides a set of accurate 

control points which can be used to investigate the vertical accuracy of the SRTM 

digital elevation model (Carabajal & Harding, 2006). ICESat/GLAS’s capability to 

measure the vertical distribution of forests and the underlying surface is useful to 

assess especially the SRTM C-band microwave penetration depth into these forested 

areas (Carabajal & Harding, 2006). First we established correlations between SRTM 

mean elevation at footprint location and ICESat/GLAS elevations of signal begin, 

waveform centroid, and signal end on peatlands for the whole of Kalimantan. In 2003 

9,849 ICESat/GLAS footprints were recorded on peatlands in Kalimantan. This 

ICESat/GLAS data were quality filtered to incorporate valid and usable footprints for 

further analyses. Only footprints with a slope of less than 10 degrees and with an 

ICESat/GLAS elevation not more than 100m above the SRTM elevation, indicated by 

the SLOPE and OUTLIER filters respectively, were used. Waveforms that suffer from 

saturation or that indicate the presence of clouds were excluded using the 

SATURATION and ATMOSPHERE filters. Furthermore footprints with a waveform 

>60 m, without valid elevation information, and without sufficient quality of the range 

increments, indicated by the WAVEFORM EXTENT, the ELEVATION, and the 

RANGE filters respectively, were also excluded. Finally for the statistical analysis we 

only used footprints that show a vegetation cover change of less than 15% between 

the years 2000 and 2003 (derived from the MODIS VCF product and represented by 

the VCF CHANGE 15% filter). The ICEsat/GLAS elevations of the signal begin, 

waveform centroid, and the signal end of the remaining 4,186 shots were correlated 

to the corresponding mean SRTM elevation. The R² values are 0.88, 0.92, and 0.60 

respectively, where waveform centroid shows the highest correlation. Figure IV-6 

displays the results of this correlation in three scatter plots. The mean ICESat/GLAS 

and SRTM elevation differences are 8.7m (±6.1m) for signal begin, −4.9m (±3.8m) for 

waveform centroid, and −16.1m (±8.4m) for signal end. This result also indicates that 

the SRTM C-band phase is not reflected by the top of the peat swamp forest canopy 
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but somewhere within the 3D forest structure. Figure IV-7(B) suggests that on 

average the C-band penetrates approximately 10–15m into the forest cover. 

 

 
Figure IV-6: Scatter plots displaying the correlation between ICESat/GLAS signal begin, waveform 

centroid, and signal end elevations a.s.l. (m) to the mean elevation a.s.l. (m) of the corresponding 

SRTM data. All ICESat/GLAS footprints are from the year 2003 and located on peatlands. The 

elevation of the waveform centroid with a coefficient of determination (R²) of 0.92 shows the highest 

correlation to the SRTM data. 
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Figure IV-7: ICESat/GLAS transect covering the Sebangau peatland area from south to north. The 

transect of 98km length starts at the ocean in the south then transects heavily degraded forest, logged 

peat swamp forest, an old burn scar, and further north a lake, and peat swamp forest again. (A): 

ICESat/GLAS transect superimposed on a Landsat ETM+ image (22-05-2003, bands 5, 4, 3). Bright 

green represents degraded forest, dark green peat swamp forest. A1–A3: Three enlarged areas within 

this ICESat/GLAS footprint transect. The locations of these areas are indicated by the three black 

rectangles in A; (B): Elevation profile of the ICESat/GLAS transect. Shown are the ICESat/GLAS 

elevations for the forest canopy (green) and the peat surface (blue). Note the curvature of the peat 

dome. Also displayed is the mean elevation at footprint location from the SRTM data (black). The 

locations of a peat swamp forest fragment, two low pole peat swamp forest transition zones, and an 

old burn scar are indicated by black arrows; (C): Measurement of absolute vegetation height by 

subtracting ICESat/GLAS peat surface elevation from ICESat/GLAS forest canopy signals 

(ICESat/GLAS height metric H5). 
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Based on the results above, it is reasonable to use ICESat/GLAS data as a tool to 

validate 3D peatland elevation models which were derived from SRTM data. 14,312 

footprints acquired between 2003 and 2009 were located on the three investigated 

3D peatland elevation models (see location in Figure IV-1). For these footprints we 

applied the same filters as described above with exception of the VCF CHANGE 15% 

filter as this was not necessary. After filtering 4,045 footprints remained, of which 

1,116 were located on the peat model Sebangau, 1,244 on the peat model Block B, 

and 1,685 on the peat model Block C. As the elevation from the last highest 

Gaussian peak is known to correspond best with the actual surface elevation 

(Boudreau et al., 2008; Rosette et al., 2008) this parameter was correlated to the 

mean elevation of the three 3D peatland elevation models. The R2 value for this 

correlation is 0.90. Although some of the elevations of the 3D peatland elevation 

models differ from the corresponding elevations of the last highest Gaussian peak 

the mean difference between the two elevation parameters was only −1.0m (±3.2m). 

Furthermore we investigated specific ICESat/GLAS footprint transects in more detail 

for several well investigated peat domes in Central Kalimantan. Figure IV-7 shows 

one transect that extends 98km from south to north over the Sebangau peat dome. 

The transect starts at the coastline in the south and first covers heavily degraded 

peat swamp forest with some remaining tall forest fragments, then more or less 

disturbed tall peat swamp forest, an old burn scar, a lake with adjacent wetland 

scrubs and further north again peat swamp forest which has been logged 20 years 

ago. From the elevation of the ICESat/GLAS signal begin, which corresponds to the 

top of the forest canopy, these different vegetation types are clearly discernible 

(Figure IV-7(B)). Also apparent is a variation in the forest canopy height of the peat 

swamp forest which is related to different subtypes of peat swamp forests (low pole, 

medium, and tall). This is clearly visible in Figure IV-7(B,C) at km 42 and 87. In 

Figure IV-7(C) the elevation of the last highest Gaussian peak is subtracted from the 

elevation of the signal begin (ICESat/GLAS height metric H5) and so showing the 

absolute vegetation height. Also shown in Figure IV-7(B) is the corresponding mean 

SRTM elevation. The penetration depth of the SRTM C-band phase center into the 

forest canopy can be assessed. On deforested sites the SRTM C-band phase center 

and the last highest Gaussian peak match to each other and represent the surface 

elevation. The blue line in Figure IV-7(B) indicates the peat surface topography 
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across a vast distance with high accuracy using ICESat/GLAS. Over a distance of 

30km the peat surface increases from 5 to 15m and forms a convex shape which is 

typical for peat swamp ecosystems. 

 

3.2 Comparison ICESat/GLAS and airborne LiDAR data 

In order to compare ICESat/GLAS derived elevations with those of airborne LiDAR 

measurements ICESat/GLAS footprints located completely within airborne LiDAR 

point clouds were selected. After filtering 104 valid footprints remained. 

We correlated the minimum, maximum, and mean z values from the airborne LiDAR 

points and DTMs to the signal begin, nearest Gaussian peak, waveform centroid, last 

highest Gaussian peak, last Gaussian peak, and signal end from the ICESat/GLAS 

data. The results of these correlations are displayed in Table IV-1. The highest 

correlation, with a R2 value of 0.91, was observed when comparing the mean z value 

of the airborne LiDAR points to the waveform centroid of the ICESat/GLAS data. Also 

high correlations are evident for the comparison of the maximum and mean z values 

of the LiDAR points to the signal begin of the ICESat/GLAS data and the maximum z 

values of the airborne LiDAR points to the waveform centroid of the ICESat/GLAS 

data (Table IV-1). The mean elevation difference between these two data sets was 

−0.5m (±1.9m) for waveform centroid and the mean z value, 2.3m (±3.3m) for the last 

highest Gaussian Peak and the minimum z value, and 3.2m (±3.2m) for signal begin 

and the maximum z value. 

 
Table IV-1: Coefficients of determination (R2) for the correlation of the minimum, maximum, and mean 

of the z values from the airborne LiDAR points and DTMs with different ICESat/GLAS elevation 

parameters. Where n is the number of ICESat/GLAS footprints used for the comparison. The highest 

coefficients of determination (R2) are bold. 

Airborne LiDAR 
statistics 

ICESat/GLAS elevations 
n Signal 

begin 
Nearest 

Gaussian peak 
Waveform 
centroid 

Last highest 
Gaussian peak 

Last Gaussian 
peak 

Signal 
end 

Minimum z 103a 0.50 0.48 0.61 0.63 0.68 0.66 
Maximum z 103b 0.86 0.76 0.81 0.48 0.43 0.42 
Mean z 104 0.84 0.77 0.91 0.60 0.60 0.59 
Minimum DTM 104 0.57 0.54 0.67 0.63 0.71 0.67 
Maximum DTM 104 0.57 0.54 0.67 0.62 0.70 0.67 
Mean DTM 104 0.57 0.54 0.67 0.62 0.71 0.67 

a Footprints with a minimum z value < 0m were considered as outliers and removed; b Footprints with a maximum z value 
> 100m were considered as outliers and removed 
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Statistics from the normalized airborne LiDAR point clouds (z values of the airborne 

LiDAR points minus the corresponding DTM values) were then compared to 

ICESat/GLAS height metrics H1–H7 (Figure IV-2). Statistics included: minimum, 

maximum, mean, the 5, 10, …, 95 percentiles, Quadratic Mean Canopy profile Height 

(QMCH), and the centroid of the LiDAR point cloud height histogram (CL). The 

results are shown in Table IV-2. The highest R2 values were found when correlating 

percentile 95 with the ICESat/GLAS height metrics with exception of H7 where 80% 

had the highest R2. The overall highest correlation was between percentile 95 and 

ICESat/GLAS height metric H3. 

 
Table IV-2: Coefficients of determination (R2) for minimum, maximum, mean, the 5, 10, ..., 95%, 

Quadratic Mean Canopy profile Height (QMCH), and the centroid of the LiDAR point cloud height 

histogram (CL) from the normalized airborne LiDAR point clouds (z values of the airborne LiDAR 

points minus the corresponding DTM values) correlated to ICESat/GLAS height metrics H1–H7 

(Figure IV-2). Where n is the number of ICESat/GLAS footprints used for the comparison. The highest 

coefficients of determination (R2) are bold. 
Airborne LiDAR 

statistics 
ICESat/GLAS height metrics 

N H1 H2 H3 H4 H5 H6 H7 
Minimum  102a 0.01 0.00 0.00 0.01 0.00 0.00 0.00 
Maximum  103b 0.40 0.46 0.54 0.42 0.49 0.33 0.28 
Mean 104 0.26 0.22 0.36 0.30 0.34 0.25 0.29 
Percentile 5 104 0.00 0.00 0.00 0.00 0.00 0.01 0.01 
Percentile 10 104 0.00 0.01 0.01 0.00 0.00 0.00 0.00 
Percentile 15 104 0.00 0.01 0.02 0.01 0.00 0.00 0.00 
Percentile 20 104 0.00 0.01 0.03 0.02 0.01 0.01 0.01 
Percentile 25 104 0.01 0.02 0.05 0.04 0.04 0.02 0.04 
Percentile 30 104 0.03 0.03 0.09 0.07 0.07 0.04 0.08 
Percentile 35 104 0.09 0.06 0.16 0.13 0.15 0.10 0.17 
Percentile 40 104 0.14 0.09 0.22 0.17 0.22 0.15 0.25 
Percentile 45 104 0.18 0.11 0.25 0.19 0.24 0.16 0.26 
Percentile 50 104 0.21 0.13 0.28 0.22 0.28 0.18 0.29 
Percentile 55 104 0.26 0.17 0.34 0.26 0.34 0.23 0.34 
Percentile 60 104 0.29 0.20 0.38 0.30 0.38 0.26 0.36 
Percentile 65 104 0.33 0.24 0.43 0.36 0.42 0.31 0.39 
Percentile 70 104 0.37 0.29 0.48 0.40 0.47 0.36 0.41 
Percentile 75 104 0.40 0.33 0.51 0.44 0.51 0.40 0.42 
Percentile 80 104 0.42 0.36 0.53 0.47 0.53 0.43 0.43 
Percentile 85 104 0.43 0.39 0.53 0.48 0.54 0.44 0.41 
Percentile 90 104 0.42 0.41 0.53 0.49 0.53 0.44 0.38 
Percentile 95 104 0.45 0.47 0.57 0.50 0.56 0.45 0.37 
Percentile 100  103b 0.40 0.46 0.54 0.42 0.49 0.33 0.28 
QMCH  102c 0.27 0.23 0.40 0.35 0.39 0.34 0.31 
CL 104 0.28 0.21 0.38 0.32 0.37 0.35 0.28 

a Footprints with a minimum z value > 5m were considered as outliers and removed; b Footprints with a maximum z value 
> 100m were considered as outliers and removed; c Footprints where QMCH could not be calculated were excluded 
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3.3 Above ground biomass predictions models from airborne 
LiDAR data and ICESat/GLAS data 

To derive an AGB prediction model from ICESat/GLAS we used the model derived 

from airborne LiDAR and forest inventory data. In a first step 36 forest sample plots 

were used to correlate AGB values calculated in the field to airborne LiDAR 3D point 

clouds. The best overall predictor of AGB was the centroid of the airborne LiDAR 

point cloud height histogram (CL). The model could further be enhanced through 

incorporating the average LiDAR point density per square meter per sample plot of 

all LiDAR points. Sample plots with a higher average LiDAR point density per square 

meter were weighted higher during the computation of the final model (Figure IV-8). 

The average LiDAR point densities per square meter for these 36 sample plots were 

between 0.2 and 3.6. The R2 value of this model is 0.75, the corrected coefficient of 

determination (R2
corr) is 0.73, and the Standard Error of the Estimate (SEE) is 2.66 

ton 0.13ha−1. 

 

 
Figure IV-8: Scatter plot displaying the correlation between the Above Ground Biomass (AGB), 

calculated from field plots, to the centroid of the airborne LiDAR point cloud height histogram (CL). 

The sizes of the circles represent the average LiDAR point density per square meter (small = lower 

average LiDAR point density per square meter; big = higher average LiDAR point density per square 

meter). 
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To analyze biomass estimates from ICESat/GLAS we selected only footprints, where 

the 20m radius circular buffers at footprint center (representing the field plot size of 

0.13ha) were completely located within the airborne LiDAR point clouds. After 

filtering 104 valid footprints remained. 

The centroid of the airborne LiDAR point cloud height histogram (CL) at these 

footprints was correlated to the ICESat/GLAS height metrics H1–H7 (Figure IV-2) 

depending on the average LiDAR point density per square meter per 20m radius 

circular buffer. The corresponding R2 values are shown in Table IV-3. The highest R2 

values were found for H5 with average LiDAR point densities per square meter ≥0.7 

and ≥0.8. 

Stepwise and backward multiple regression approaches, incorporating all 7 

ICESat/GLAS height metrics (H1–H7), were applied to determine which independent 

variables should be included in the final models. The highest R² value of 0.61 (n = 

35) was reached through a backward multiple regression approach with H1, H2, H4, 

H6, and H7 as independent variables and where the average LiDAR point density per 

square meter was ≥0.8 points. The corrected coefficient of determination (R2
corr) was 

0.54 and the Standard Error of the Estimate (SEE) 9.76 ton 0.13ha−1. The mean 

difference between the ICESat/GLAS AGB estimation and the airborne LiDAR AGB 

estimation was −2.62 ton 0.13ha−1 (±10.78 ton 0.13ha−1, n = 104). 

 
Table IV-3: Coefficients of determination (R2) for the ICESat/GLAS height metrics (H1–H7; Figure IV-

2) correlated to the centroid of the airborne LiDAR point cloud height histogram (CL) at the 20m radius 

circular buffers at footprint center (representing the field plot size) dependent on the average LiDAR 

point density per square meter. Where n is the number of ICESat/GLAS footprints used for the 

comparison. The highest coefficients of determination (R²) are bold. 
Average LiDAR point 
densitiy per square m n 

ICESat/GLAS height metrics 
H1 H2 H3 H4 H5 H6 H7 

all 104 0.32 0.25 0.43 0.37 0.44 0.33 0.40 
≥ 0.1 93 0.40 0.31 0.51 0.43 0.52 0.40 0.46 
≥ 0.2 72 0.45 0.34 0.54 0.49 0.59 0.53 0.56 
≥ 0.3 54 0.55 0.45 0.63 0.60 0.67 0.62 0.63 
≥ 0.4 47 0.65 0.55 0.69 0.66 0.70 0.63 0.67 
≥ 0.5 46 0.68 0.57 0.73 0.68 0.75 0.65 0.71 
≥ 0.6 43 0.70 0.60 0.74 0.69 0.75 0.67 0.70 
≥ 0.7 41 0.72 0.62 0.75 0.71 0.77 0.70 0.70 
≥ 0.8 39 0.72 0.62 0.74 0.71 0.77 0.71 0.72 
≥ 0.9 35 0.70 0.61 0.75 0.73 0.76 0.71 0.70 
≥ 1 32 0.73 0.63 0.76 0.74 0.76 0.70 0.68 
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4 Discussion and conclusions 

Since most peatlands in Indonesia are highly inaccessible, very few field 

measurements have been made to date to assess these carbon pools. Especially the 

potential spatial variation is unknown because up-to-date no systematic large scale 

sampling has been undertaken. ICESat/GLAS data have been demonstrated to 

accurately estimate forest structural properties especially well in topographically even 

areas (Harding & Carajabal, 2005; Lefsky et al., 2007; Baccini et al., 2008; Boudreau 

et al., 2008; Rosette et al., 2008; Sun et al., 2008; Goetz et al., 2010; Lefsky, 2010; 

Dolan et al., 2011). As peatlands have an especially smooth topography (Page et al., 

1999; Rieley & Page, 2005) we assessed the applicability of ICESat/GLAS data to 

measure peatland topography, peat swamp forest vertical structure, and peat swamp 

forest AGB in Central Kalimantan, Indonesia. ICESat/GLAS data was compared to 

different other data (SRTM data, 3D peatland elevation models derived from SRTM 

data, and airborne LiDAR data). 

Jaenicke et al. (2008) demonstrated that SRTM data can be used to determine the 

extent and topography of the dome shaped surface and a correlation was obtained 

between the convex peat dome surface and the depth of the underlying mineral 

ground, which was then used to calculate the peat volume and carbon store. The 

main problem of this approach was the determination of the vegetation height 

growing on top of the peat domes as the SRTM C-band sensor does not completely 

penetrate the forest cover. To get a high number of quality filtered footprints we 

investigated ICESat/GLAS data on peatlands for the whole of Kalimantan. The 

comparison of ICESat/GLAS elevations to the mean SRTM elevation showed a very 

high correlation of the waveform centroid (R² = 0.92). The mean ICESat/GLAS and 

SRTM elevation difference of −4.9m (±3.8m) also showed that the SRTM C-band 

phase center penetration depth is dependent on forest structural parameters such as 

canopy closure. These results comply well with a study by Carabajal and Harding 

(2006) and indicate that even for densely forested peat swamp areas the error is well 

below the 16m at 90% confidence vertical accuracy specifications for the SRTM 

mission. These findings demonstrate that with the help of ICEsat/GLAS data the 

penetration depth of the SRTM C-band phase center into different peat swamp forest 

canopy closures and consequently the height of the SRTM elevation above the 

actual peat surface can be measured. Based on this it is reasonable to use 
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ICESat/GLAS data as a tool to validate 3D peatland elevation models which were 

derived from SRTM data for selected regions in Central Kalimantan. Because the 

elevation from ICESat/GLAS last highest Gaussian peak is known to correspond best 

with the actual peat surface (Boudreau et al., 2008; Rosette et al., 2008) we 

correlated it to the mean elevation of the three 3D peatland elevation models. 

Transects covering entire peat domes, clearly show the convex curvature of the peat 

domes (Figure IV-7(B)). The difference between the last highest Gaussian peak from 

the ICESat/GLAS data, referring to the estimated peat surface within the 

ICESat/GLAS waveform, and the 3D peatland elevation models, in which the forest 

canopy height was eliminated from the SRTM terrain model, was with −1.0m (±3.2m) 

low. These results indicate that ICESat/GLAS data can be used to validate and 

enhance SRTM derived 3D peatland elevation models. 

Furthermore, ICESat/GLAS data can be used as a sampling tool to screen for 

peatland areas in remote areas, such as West Papua. A systematic sampling with 

ICESat/GLAS could help to improve the knowledge on the spatial extent and 

curvature variation of peat domes and also consequently lead to better estimates of 

the carbon pools. 

Considering peat swamp forest vertical structure we investigated specific 

ICESat/GLAS footprint transects in more detail that covered peat domes and 

adjacent areas where the land cover was known from optical satellite imagery and 

field surveys. Figure IV-7 shows one of these transects. From the elevation of the 

ICESat/GLAS signal begin, which corresponds to the top of the forest canopy, new 

and old burn scars, peat swamp forest fragments, logged and unlogged peat swamp 

forests are clearly discernible. Also apparent is a variation in the tree canopy height 

of the peat swamp forest which corresponds to different growth conditions in relation 

to hydrology. This leads to the conclusion that through combing optical data with 

ICESat/GLAS data it would be possible to obtain transect samples on the state and 

structure of peat swamp forests not only across the Indonesia archipelago but also in 

other regions where tropical peatlands occur. 

Our field derived AGB values for tropical peat swamp forest lie in the range of 

existing literature values (Waldes & Page, 2001). Different degradation levels 

between unlogged, logged and burned forests could be quantified. Most problematic 

were in situ tree height measurements as a multi-layered and dense canopy made it 
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almost impossible to clearly sight tree tops. Especially in logged forest, dense 

undergrowth prevented from moving to a point where the tree top could be identified. 

Therefore we decided to use an allometric model for AGB calculation, which includes 

DBH and wood density but not tree height. The resulting correlation between field 

derived AGB values and airborne LiDAR data is comparable to other previously 

published values (Means et al., 1999; Drake et al., 2002a; Lefsky et al., 2002a; Lucas 

et al., 2006; Asner et al., 2009; Asner et al., 2010). However, possible errors and 

limitations must be considered. For example errors might occur due to the use of a 

navigation GPS (C/A code only) for the forest sample plot locations, which had an 

accuracy of 3 to 10m. Also effects like multi-path of the GPS signal in dense forested 

environments can lead to inaccurate location of the field plots. Due to these error 

sources the correlation might be influenced if the field plot location does not 

accurately match the location within the LiDAR 3D point cloud, which was measured 

more accurately by differential GPS. Also the filtering for ground points plays a key 

role. Peat swamp forests grow on very flat terrain covered by tall forests with 

sometimes dense, scrubby undergrowth, which may impede the detection of the real 

soil surface. The error produced hereby and by the interpolation process could not be 

quantified because of a lack of reliable fine scale elevation data from the field. The 

resulting R² value of 0.75 (n = 36), where the average LiDAR point density per 

square meter was used as weighting factor in the linear regression, indicates that the 

established model should be valid, but the R² value is slightly lower than those 

reported for other biomes. LVIS (Laser Vegetation Imaging Sensor) data was 

successfully analyzed for forests in Costa Rica with a R² value of 0.89 (Drake et al., 

2002a). Asner et al. (2009) quantified AGB of a rain forest reserve on Hawaii Island 

using vertical profiles of a full waveform LiDAR system and showed that field-

measured AGB was best predicted by the mean canopy height (R² = 0.78). Applying 

this approach in the Peruvian Amazon improved the resulting model (R² = 0.85) 

(Asner et al., 2010). Analyzing discrete LiDAR data from a range of forest structural 

types in Australia Lucas et al. (2006) derived a R2 value of 0.92. A possible 

explanation for the lower R² value in our study could be that filtering for ground points 

is more erroneous in peat swamp forests. Preliminary results, where we investigated 

the same LiDAR data set in a lowland dipterocarp forest in Central Kalimantan 

resulted in a R² value higher than 0.90. 
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When correlating ICESat/GLAS elevations to airborne LiDAR 3D clouds and DTMs 

derived from these the signal begin and waveform centroid compared to the 

maximum z and mean z value all had R² values higher than 0.8, with the highest 

correlation between the waveform centroid and the mean z value (R² = 0.91, n = 104) 

(Table IV-1). The mean elevation difference between these two data sets was −0.5m 

(±1.9m) for waveform centroid and the mean z value, 2.3m (±3.3m) for the last 

highest Gaussian Peak and the minimum z value, and 3.2m (±3.2m) for signal begin 

and the maximum z value. These results indicate that ICESat GLAS data and 

airborne LiDAR data comply well regarding elevation and that ICESat/GLAS data can 

be used as a tool to measure different elevations in these dense tropical peat swamp 

forest ecosystems. On the other hand when comparing ICESat/GLAS height metrics 

H1–H7 (Figure IV-2) to statistics from the normalized airborne LiDAR point clouds (z 

values of the airborne LiDAR points minus the corresponding DTM values) R2 values 

were lower than 0.58 (Table IV-2). The highest R2 were found when correlating 

percentile 95 with the ICESat/GLAS height metrics with exception of H7 (Figure IV-2) 

where percentile 80 had the highest R2 value. The overall highest correlation (R2 = 

0.57, n = 104) was between 95% and ICESat/GLAS height metric H3 (Figure IV-2). 

The best ICESat/GLAS AGB prediction model was achieved through a backward 

multiple regression approach with H1, H2, H4, H6, and H7 (Figure IV-2) as 

independent variables where the average LiDAR point density per square meter was 

≥0.8 points (R² = 0.61, n = 35). The mean difference between the ICESat/GLAS AGB 

estimation and the airborne LiDAR AGB estimation was −2.62 ton 0.13ha−1 (±10.78 

ton 0.13ha−1, n = 104). For future studies it would be beneficial to have a higher 

number of ICESat/GLAS footprints intersecting with LiDAR point clouds with high 

average point densities. It has to also be considered that having multiple waveform 

derived variables (in our case 5) in the same equation may lead to collinearity 

problems. Comparing the model with other studies the R² value is in the lower range. 

Baccini et al. (2008) found a strong positive correlation (R2 = 0.90) between 

ICESat/GLAS height metrics and AGB values predicted from MODIS data across 

tropical Africa. Lefsky et al. (2005) combined ICESat/GLAS waveforms and SRTM 

data to estimate maximum forest height in three ecosystems (tropical broadleaf 

forests in Brazil, temperate broadleaf forests in Tennessee, and temperate 
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needleleaf forests in Oregon). Additionally ICESat/GLAS derived heights for the 

Brazilian plots were correlated to AGB estimates from the field (R2 = 0.73). 

The results of our study demonstrate the usefulness and robustness of ICESat/GLAS 

data as a sampling tool to extract information on peatlands, which can be used as a 

proxy for peat volume and consequently carbon storage, state and structure of peat 

swamp forests, and peat swamp forest AGB for large inaccessible areas at low costs 

where no systematic sampling has been conducted yet. When combined with other 

data sources (optical satellite imagery, SRTM, and airborne LiDAR) ICESat/GLAS 

data can help to better understand carbon pools in tropical peatlands and their spatial 

distribution across Indonesia and other regions. 
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Abstract 

The quantification of tropical forest carbon stocks is a key challenge in creating a 

basic methodology for REDD (Reducing Emissions from Deforestation and 

Degradation in developing countries) projects. Small-footprint LiDAR (Light Detection 

And Ranging) systems have proven to successfully correlate to Above Ground 

Biomass (AGB) estimates in boreal and temperate forests. Their applicability to two 

different tropical rainforest types (lowland dipterocarp and peat swamp forest) in 

Central Kalimantan, Indonesia, was tested by developing multiple regression models 

at plot level using full waveform LiDAR point cloud characteristics. Forest inventory 

data is barely available for Central Kalimantan’s forests. In order to sample a high 

number of field plots the angle count method was applied which allows fast sampling. 

More laborious fixed-area plots (three nests of circular shape) were used as a control 

and approved the use of the angle count method. AGB values, calculated by using 

existing allometric models, were in the range of 15 to 547Mg ha-1 depending on forest 

type, degradation level and the model used for calculation. As expected, logging 

resulted in significant AGB losses in all forest types. AGB-prediction models were 

established for each forest type using statistical values of the LiDAR point clouds and 

the forest inventory plots. These regression models were then applied to six LiDAR 

tracks (altogether with a size of 5,241ha) covering unlogged, logged and burned 

lowland dipterocarp and peat swamp forest. The regression analysis showed that the 

45th and 65th percentiles and the standard error of the mean explain 83% of the 

variation in lowland dipterocarp forest plots (RMSE = 21.37%). The best model for 

peat swamp forest could only explain 32% of the AGB variation (RMSE = 41.02%). 

Taking both forest types together explained 71% (RMSE = 33.85%). Calculating AGB 

for whole LiDAR tracks demonstrated the ability of this approach to quantify not only 

deforestation but especially forest degradation and its spatial variability in terms of 

biomass change in different forest ecosystems using LiDAR transects. Concluding it 

can be stated that the combined approach of extensive field sampling and LiDAR 

point cloud analysis have high potential to significantly improve current estimates of 

carbon stocks across different forest types and degradation levels and its spatial 

variation in highly inaccessible tropical rainforests in the framework of REDD. 
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1 Introduction 

Between 1990 and 2005 about 13 million hectares (Mha) of mostly tropical forest 

were destroyed annually (FAO, 2006) and with 1.3% per year insular Southeast Asia 

had the highest rate of deforestation (FAO, 2001; Archad et al., 2002; FWI/GWI, 

2002). In Kalimantan, Indonesia, forest cover was reduced by about 78% between 

1973 and 2003 (Page et al., 2009). Deforestation and forest degradation in Borneo 

are almost exclusively caused by human economic activities such as shifting 

cultivation, illegal logging, and the establishment of industrial timber estates and 

large-scale oil palm plantations (Boehm & Siegert, 2004; Curran et al, 2004; Rieley & 

Page, 2005; Sandker et al., 2007; Hansen et al., 2009; Sheil et al., 2009). During 

extended droughts caused by the periodic El Niño phenomenon vast areas of the 

Indonesian forests have been destroyed by fire (Langner & Siegert, 2009). Fire 

serves as the principal tool for land clearing and its impacts and severity increases in 

degraded forests (Siegert et al., 2001). It is estimated that in 2008, worldwide 

deforestation and forest degradation emissions contributed about 6 to 17% of the 

total anthropogenic carbon dioxide (CO2) emissions (Van der Werf et al., 2009). In 

Indonesia increased Green House Gas (GHG) emissions are particularly evident in 

the coastal lowlands of Sumatra and Kalimantan, where peat fires and peat 

oxidation, due to peatland drainage, result in the release of huge amounts of CO2 

(Page et al., 2002; Ballhorn et al., 2009; Hooijer et al., 2010). The planned 

programme on Reduced Emissions from Deforestation and Degradation in 

developing countries (REDD) is involving the private sector of industrialized countries 

in the protection of the remaining tropical forests. Conservation and the involved 

emission reduction allow for a compensation of their GHGs emission quota 

exceeding. REDD projects require an exact quantification and monitoring of forest 

carbon stocks which remains a big challenge in tropical forests (Gibbs et al., 2007). 

The main carbon pool of tropical forest ecosystems is typically the Above Ground 

Biomass (AGB) (Gibbs et al., 2007), but the soil carbon has to be critically 

considered for tropical peat swamp forests, where massive amounts of carbon are 

stored within the peat layer (Jaenicke et al., 2008; Page et al., 2010). 
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AGB at a landscape scale can be estimated by extrapolating results measured in the 

field or from remote sensing instruments (Brown, 1997; Chave et al., 2005). For 

Central Kalimantan and most other regions in Indonesia forest inventory data and 

specific allometric formulas from destructive sampling barely exist. Non-destructive 

forest inventory methods are based on the statistical relation of field measurements 

to destructive harvest measurements, and the conversion to biomass estimates using 

allometric equations (Brown, 1997; Chave et al., 2005; Basuki et al., 2009). 

According to Brown (2002), grouping all species together and establishing 

generalized equations for broad forest types turned out to be highly effective for the 

tropics. However, the structural and biotic complexity of tropical forest causes 

difficulties for the inventory: the generic relationships are not appropriate for all 

regions, inventories can be expensive and time-consuming, and it is challenging to 

produce globally consistent results (Chave et al., 2005; Gibbs et al., 2007). Since 

remote sensing instruments estimate biomass indirect they are depending on 

additional in-situ data (Roesenqvist et al., 2003). The estimation of tropical forest 

biomass by the means of optical remote sensing methods is generally challenging 

and has not yet been satisfactorily resolved due to dense canopies, heterogeneous, 

complex, tall structure, and the low saturation level of spectral bands and derived 

indices (Gibbs et al., 2007). Frequent cloud cover in the inner tropics further hampers 

the data analysis (Foody & Curran, 1994). Spaceborne synthetic aperture radar 

(SAR) sensors have the advantage to be weather and daylight independent. In 

tropical regions, longer wavelengths have proven to be more useful because of an 

increasing backscatter range with changing biomass (Dobson et al., 1992; Luckman 

et al., 1997; Castro et al., 2003; Lu, 2006), but again, there is a problem of saturation 

at high AGB values (e.g. Imhoff, 1995; Luckman et al., 1997; Kuplich et al., 2005; 

Lucas et al., 2007; Mitchard et al., 2009). Nevertheless, optical remote sensors and 

SAR are potential tools to upscale AGB estimates from a smaller scale. 

Airborne Light Detection and Ranging (LiDAR), or laser altimetry, provides three-

dimensional information of forest structure and represents a potential technique for 

biomass quantification and monitoring. LiDAR is based on the transmission of laser 

pulses from the aircraft toward the ground surface and the recording of the return 

signal. By analyzing the time delay for each pulse back to the sensor, relative and 

absolute surface heights can be determined with an accuracy of several centimeters. 
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LiDAR systems have certain advantageous characteristics, such as high sampling 

intensity, direct measurements of heights, precise geolocation, and automated 

processing (Mallet & Bretar, 2009). These properties make LiDAR systems useful for 

direct assessment of vegetation characteristics and deriving forest biomass at 

multiple scales from individual trees (e.g. Popescu, 2007; Zhao et al., 2009) to 

regional extents (e.g. Lefsky et al., 1999a; 1999b; 2002a; 2005; Means et al., 1999). 

The correlation of laser height metrics to the field-measured AGB of a certain plot, 

known as the quantile estimator method (Magnussen & Boudewyn, 1998), was 

successfully applied in temperate (e.g. Lim & Treitz, 2004, Patenaude et al., 2004; 

Hollaus et al., 2007) and boreal forest (e.g. Naesset, 2002; 2004). LiDAR data 

analysis in tropical forest holds difficulties due to forest structure complexity (Nelson 

et al., 1997). Drake et al. (2002a; 2002b; 2003) estimated AGB in Panama and Costa 

Rica using the full waveform system Laser Vegetation Imaging Sensor (LVIS) and 

Asner et al. (2009; 2010) succeeded in relating small-footprint LiDAR metrics to 

above ground carbon densities of tropical forests in Hawaii and the Peruvian 

Amazon. 

The main goal of this study was the estimation of AGB values for two different forest 

types (lowland dipterocarp and peat swamp forest) in study sites located in Central 

Kalimantan by LiDAR data analysis, making use of an extensive forest inventory 

database collected in the field. The approach was tested for its applicability as input 

to a basic methodology for future REDD projects. The study was divided into the 

following subtasks: 

(1) In-situ data of forest parameters was collected within two different forest types 

(lowland dipterocarp and peat swamp forest) at various degradation levels using 

the angle count method which allows fast sampling. To test this method on its 

feasibility for biomass estimates in the tropics several plots were also recorded 

with the nested plot method. 

(2) LiDAR three-dimensional point clouds were analyzed and correlated to field 

AGB estimates on plot level to establish robust biomass estimation models. The 

feasibility, effectiveness, advantages and disadvantages of the plot level 

approach were assessed and the resulting models were compared to literature. 
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(3) Finally the biomass estimation models were applied to different LiDAR tracks 

covering unlogged, logged and burned lowland dipterocarp and peat swamp 

forest. Results were compared to a land cover classification based on Landsat 

imagery. 

 

2 Materials and methods 

2.1 Study area 

In this study two forest types within Central Kalimantan, Borneo, were targeted: 

Lowland dipterocarp forest and peat swamp forest. Both forest types can usually be 

well discriminated in the field by means of species composition, average tree height, 

tree crown diameter, and canopy closure, with lowland dipterocarp forest being more 

diverse with taller trees and a more closed canopy (MacKinnon et al., 1996). All 

forest ecosystems in Central Kalimantan have been severely impacted by more than 

three decades of extensive logging (Moeliono et al., 2009). The Mega Rice Project, a 

transmigration project of the Indonesian government and the Worldbank established 

during the 1990s (Rieley & Page, 2005) led to severe peat drainage through the 

building of a channel system and recurrent fire disasters with huge CO2 emissions 

(Page et al., 2002; Ballhorn et al., 2009; Langner & Siegert, 2009). 

Field inventory data was collected in six study sites from September to October 2007 

and from May to August 2008. The first study site was located in the Sebangau peat 

swamp catchment. The Sebangau forests had been selectively logged for 20 years 

until 1997 (Waldes & Page, 2001). Nine field inventory clusters (see section V-2.2) 

were located in each of four sub peat swamp forest types described by Sheperd et al. 

(1997) (Figure V-1). Study sites 2 and 3 were located within Block C and B of the 

former Mega Rice Project. These blocks consist of peat swamp forest and large 

burned peatland areas. Most peat swamp forests are severely degraded due to 

logging, peatland drainage, and fire. Fires occurred in 1997/98, 2002, 2006 and 2009 

on different sites. Nine clusters were located in logged forest and three clusters in 

burned areas (Figure V-1, LiDAR tracks 2a, 2d and 3b). Lowland dipterocarp forest 

was studied at three study sites (Figure V-1, study sites 4-6). Ten clusters of nearly 

unlogged forest were recorded near the village Tumbang Danau (study site four). 

Within study site five, near Tewaibaru, four clusters were measured in regrown 
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lowland dipterocarp forest within a shifting cultivation area and five clusters in logged 

lowland dipterocarp forest further east. In Bawan (study site six), five clusters each 

were located in unlogged and logged lowland dipterocarp forest. 

 

 
Figure V-1: Overview of field inventory locations, LiDAR tracks and cluster distribution (Landsat 

scenes: ETM+ 118-61, 2009-05-22 and ETM+ 118-62, 2007-08-05; bands 5-4-3 and both scenes are 

gap filled) 
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2.2 Field inventory 

Altogether 77 clusters (see section V-2.1) each with four sample plots were selected 

depending on representativeness of forest type (lowland dipterocarp or peat swamp 

forest), degradation level (unlogged/little logging, logged and burned), and on 

accessibility. It has to be considered that unlogged forest is virtually not present in 

the lowlands of Central Kalimantan (own observations). The cluster positions were 

set in advance to assure that they lie within the swath of the LiDAR data set. A 

Global Positioning System (GPS) device (Garmin GPSmap60CSx) was used to 

locate and mark each sample plot. The four sample plots of one cluster build the 

corners of a 50×50m square. In each sample plot the angle count method (Bitterlich, 

1947) was conducted. A Bitterlich Spiegel Relascope with a wide scale was used to 

select the trees to be measured. Trees of DBH smaller than 7cm were excluded. To 

validate the accuracy of the angle count method in tropical forests the nested plot 

method with circular design was conducted additionally in one to two clusters per 

forest, sub forest and land use type. The nested plot method is based on fixed-area 

plots (Pearson et al., 2005a; Pearson et al., 2005b). In each of the three circular 

nests trees of a certain DBH range were measured: 7 to 20cm (4m radius), 20 to50 

cm (14m radius), and greater than 50cm (20m radius). The sum of DBH, tree height, 

basal area, and biomass per nest was multiplied by an expansion factor in order to 

get the values per ha. Expansion factors were 198.9 for the small, 16.2 for the 

intermediate and 8.0 for the large nest, respectively. To test the applicability of the 

angle count method for biomass estimates in the tropics results were statistically 

compared to results from the nested plot method. Correlation analysis was carried 

out applying bivariate correlation tests with the correlation coefficient of Pearson, 

Kendall’s tau b, Spearman’s rho, and a two-tailed test of significance. Comparing the 

means of the two different sampling methods models the Paired Samples T-test for 

two dependent variables was applied. 

For each tree selected by either the angle count or the nested plot method the 

following parameters were recorded: Local species name, DBH in cm (at 1.3m above 

the ground), and tree height in m. A HAGA tree height measuring device was used 

for tree height determination. Local names were translated to corresponding Latin 

names using information provided by a local herbarium at the Centre for International 

Co-operation in Management of Tropical Peatland (CIMTROP) in Palangka Raya, 
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local expert knowledge, and tropical timber databases provided by Chudnoff (1984) 

and the World Agroforestry Centre 

(http://www.worldagroforestrycentre.org/Sea/Products/AFDbases/WD/Index.htm (last 

visited: 07.10.2011). Species specific wood densities were also derived from these 

databases as well as from IPCC (2006). In case of lacking identification or translation 

an average specific wood density for Asian tropical forests, 0.57Mg m-3, was applied 

(Brown, 1997). 

AGB was calculated using an allometric model for tropical forest stands from Chave 

et al. (2005). Two models are proposed for moist forest, one of which includes tree 

height, DBH and wood density, the other includes DBH and wood density, but no tree 

height. It was decided to use the second model excluding tree height as accurate 

tree height measurements in the field were impossible due to the dense and tall 

forest canopy. 

Significant differences of the means of DBH, tree height, basal area, number of 

stems per ha, and AGB between the different forest types and degradation levels 

(namely more than two independent groups) were determined using One-Way-

ANOVA (Analysis of Variance). A subsequent Post-Hoc-Test was applied in order to 

analyse the differences between two classes individually. 

 

2.3 LiDAR data 

2.3.1 Acquisition and processing of airborne laser scanner data 

The airborne LiDAR data set was acquired in a flight campaign by Milan Geoservice 

GmbH and Kalteng Consultants from the 5th to 10th August 2007. During the 

campaign 13,626ha were scanned. A Riegl LMS-Q560 Airborne Laser Scanner was 

mounted to a Bell 206 helicopter. Small-footprint full-waveform LiDAR data was 

collected from a flight altitude of ±500m above ground over a scan angle of ±30 

degrees (swath width ±500m). The laser sensor had a pulse rate of up to 100,000 

pulses per second with a footprint of 0.25m and a wavelength of 1.5µm (near 

Infrared). To avoid noise and outliers only echoes with intensity higher than 9 were 

used in this study. This resulted in an average of 1.4 echoes per square meter. The 

corresponding GPS ground station for differential geo-correction was located at 

Palangka Raya airport at an elevation of 25m above sea level (a.s.l.). Position and 
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orientation of the aircraft and LiDAR measurement system were measured in-flight by 

GPS and an Inertial Measurement Unit (IMU). The Riegl LMS-Q560 Airborne Laser 

Scanner system allows height measurements of ±0.02m. Single beam 

measurements have an absolute horizontal accuracy of ±0.50m and vertical accuracy 

of ±0.15m Root Mean Square Error (RMSE). 

A filtering algorithm based on Kraus & Pfeifer (1998) was applied to differentiate 

between ground and vegetation points. The algorithm is based on linear prediction 

with an individual accuracy for each measurement. Digital Terrain Models (DTMs) 

and Canopy Surface Models (CSMs) were generated by interpolating the filtered 

ground and vegetation points respectively. Ordinary Kriging interpolation method was 

selected to generate the DTM (cell size 1m). It showed the best results with fewest 

artefacts. CSMs were generated using the Inverse Distance weighted interpolation 

(cell size 1m) as point clouds exceeded feasible data size for Kriging. Subtracting the 

DTM from the CSM resulted in the Canopy Height Model (CHM) which provides an 

estimate of vegetation height. 

 

2.3.2 Generation of multiple regression models: Plot level 
approach 

The plot level approach of biomass estimation focuses on the direct correlation of the 

LiDAR 3D point cloud statistics within a defined polygon with the corresponding 

ground-based AGB value. Multiple regression analysis was applied to create AGB 

estimation models. Our analysis follows the principles of Magnussen & Boudewyn 

(1998) and its application follows Lim & Treitz (2004), Patenaude (2004), and Lucas 

(2006). As the angle count method is designed to extrapolate measurements to 1ha 

values, a circle of 1ha (56.42m radius around the sample plot center) was used to 

clip the LiDAR point cloud. The height above the terrain (absolute vegetation heights) 

for each point within the cloud was determined by subtracting the corresponding pixel 

value of the DTM. Only points with a value greater than 0.5m were included in the 

analysis (Lucas et al., 2006). LiDAR point height distributions of each sample plot 

were analyzed statistically and following metrics were derived and used as 

predictors: (1) mean hmean, (2) measures of dispersion including the Standard Error of 

the Mean (SEM) hSEM, standard deviation (σ) hσ, variance hvar, range hrange and 
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maximum hmax, and (3) the quantiles corresponding to the 5, 10, ..., 95 percentiles of 

the distributions (h5,..,.95). As a further potential predictor, Canopy Cover (CC) was 

determined. For every pixel of a certain size (5m), CC was calculated by dividing the 

number of points above a certain height threshold (10m) by the number of points 

below the threshold. The 10-meter-threshold was assumed to be appropriate for 

getting significant differences between the plots. A small cell size of 5m was used in 

order to avoid large errors at the borders of the plot circle, since the cut pixels along 

the border are either counted completely or not. 

All above variables within the sampling area of the angle count method were 

correlated to the corresponding estimated AGB values per ha. Multiple linear 

regression analysis was conducted for all sample plots as well as for different forest 

and land use types. Stepwise selection was performed to determine which 

independent variables should be included in the final models. Further, a log-

transformation of the predictors and an exponential regression were tested. For final 

model validation, the coefficient of determination (R²), the adjusted coefficient of 

determination (R²adj), the Standard Error of the Estimate (SEE), and absolute as well 

as relative Root Mean Square Error (RMSE) were used. 

 

2.3.3 Application of the regression models 

Fitted regression models were applied to six selected LiDAR tracks which together 

have a size of 5,241ha (adding up to 93,221m length and on average 562m wide). In 

lowland dipterocarp forest area, tracks 4a (236ha, Tumbang Danau) and 5a (462ha, 

Tewaibaru) were analysed. The other four tracks cover peat swamp forest within the 

Sebangau National Park (parts of track 1a, 556ha and 2, 472ha), Block C (track 2b, 

1,280ha) and Block B (track 3a, 2,234ha) (Figure V-1). Each track was overlaid by a 

grid with a cell size of 100m representing forest inventory plot size (1ha). The point 

cloud statistics for each grid cell including mean height, canopy cover, standard error 

of the mean, standard deviation, variance, range, maximum height, percentiles, and 

standard error of the mean was calculated. Based on these statistics and the 

regression models developed (see section V-2.3.2) the AGB values for each 1ha grid 

cell were calculated. 
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For comparison, a Landsat image (ETM+ 118-62, 2007-08-05) was classified. Prior 

to the classification the Landsat imagery was geometrically corrected by automated 

image to image matching techniques. Afterwards a radiometric correction was 

applied in order to compensate atmospheric distortions, resulting from water vapour, 

viewing geometry, and other physical parameters. The land cover classification of the 

imagery was implemented using an object oriented approach, applying a 

segmentation algorithm prior to the classification. Classification itself corresponds in 

fact a database query by formulating rule bases on how the objects should be 

evaluated. The AGB values of the different land cover types were based on standard 

values of the IPCC (2006) for insular Asia: tropical rain forest (350Mg ha-1, here: 

pristine peat swamp forest) and tropical shrubland (70Mg ha-1, here: bushland, shrub, 

regrowth). The class ‘open peat swamp forest’ was assumed to be 75% of the 

pristine class based on the canopy closure maximum of this class. 
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2.4 Conceptual overview 

Figure V-2 gives a conceptual overview of the methodology described above. 

 

Figure V-2: Conceptual overview methodology (AGB = Above Ground Biomass) 
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3 Results 

3.1 Field inventory analysis 

3.1.1 Angle count versus nested plot method 

A total of 64 sample plots were measured with both sampling methods. Mean DBH 

measurements per plot and AGB estimates per ha of angle count and nested plot 

method were analyzed. DBH showed a significant Pearson correlation of 0.744** 

(significant at the 0.01-level), so did AGB estimates (0.873**). Both rank correlation 

coefficients also indicated significant correlations: Kendall’s tau b (DBH: 0.654**; 

AGB: 0.738**), and Spearman’s rho (DBH: 0.810**; AGB: 0.889**). Plotting the 

parameters of the angle count against those of the nested plot method showed linear 

relationships with a R² of 0.55 (DBH) and 0.76 (AGB). The mean, range, and 

standard deviation of DBH and AGB are clearly higher when applying the angle count 

method (Table V-1). The latter also produced more outlier and extreme cases of AGB 

estimates than the nested plot method. The Paired Samples T-Test showed a 

difference in mean DBH but no significant difference was found between derived 

AGB. The mean difference between the two sampling design values was 3.3cm and 

3.1Mg ha-1 respectively. Due to this analysis the remaining field work analysis is 

based on the angle count method only. 

 
Table V-1: Descriptive statistics and paired differences of DBH measurements and AGB estimates per 

ha of the two sampling methods (n = 64). (SEM: Standard error of the mean; σ: standard deviation; 

Sig. 2-tailed: two-tailed test of significance) 

 Sampling 
method Mean SEM σ Range 

Paired difference 

Mean SEM Sig. 
2-tailed 

DBH (cm) 
Angle Count 19.77 1.42 11.32 46.47 

3.34 0.96 0.001 
Nested Plot 16.42 1.21 9.65 38.83 

AGB (Mg) 
Angle Count 228.01 26.90 215.20 910.05 

3.13 13.15 0.813 
Nested Plot 224.89 22.66 181.26 822.69 

 

3.1.2 Comparison of forest types at different degradation levels 

In total 2,788 trees were measured during the two field inventories. The means of 

DBH, tree height, basal area, number of stems per ha, and AGB per category forest 
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type/ degradation level are listed in Table V-2. For all parameters, One-Way-ANOVA 

analysis showed that the mean values of the categories are significantly different. In 

all categories, the Tamhane Post-Hoc test was used as the variances were tested to 

be not homogeneous (Levène-Test). The main findings of the Post-Hoc analysis can 

be summarized as the following: 

(1) Mean AGB values per ha are lower in peat swamp forest than in lowland 

dipterocarp forest. For the mean number of stems per ha this trend is the 

opposite. Comparing unlogged lowland dipterocarp forest to unlogged peat 

swamp forest all differences are significant except for the mean number of 

stems per ha. Differences between logged lowland dipterocarp forest and 

logged peat swamp forest are all significant except for basal area. 

(2) Higher values were measured in unlogged forest. All parameters are 

significantly higher in unlogged lowland dipterocarp forest than in logged 

lowland dipterocarp forest. Comparing unlogged to logged peat swamp forest, 

significant differences are only found for DBH and AGB, none are found for tree 

height, basal area and number of stems per ha. The latter is higher in logged 

peat swamp forest. 

(3) In burned peat swamp forest, average values of number of stems per ha, basal 

area, volume, and AGB were significantly lower than all other classes. One-

Way-ANOVA and Post-Hoc test results for the class burned peat swamp forest 

have to be taken with certain care as sample sizes were comparatively small. 

 
Table V-2: Means per ha (in bold) and their respective standard deviation (in italic, below mean) of 

angle count method field parameters and calculated values (PSF: Peat Swamp Forest; LDF: Lowland 

Dipterocarp Forest). 

 

Forest-/ land use type 
PSF 

unlogged-little 
logging 

PSF 
logged 

PSF 
burned 

LDF 
unlogged-Little 

logging 
LDF 

logged 

DBH (cm) 
21.6 14.7 12.7 41.2 28.6 

5.3 4.6 16.9 13.1 10.2 

Basal area (m²) 
30.7 25.1 1.9 51.6 25.3 
12.4 9.6 2.6 17.5 11.0 

Number of stems 
1,956 2,429 143 1,612 1,074 
1,151 983 282 850 819 

Tree height (m) 
19.8 18.3 10.7 33.1 24.6 
4.3 4.6 15.1 7.2 8.0 

AGB (Mg) 
228.1 159.9 14.6 547.1 230.8 

98.1 88.2 22.4 193.8 104.2 
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3.2 LiDAR data analysis 

Figure 3 shows examples of the 3D view of a lowland dipterocarp and peat swamp 

forest DTM and CHM. The DTM of peat swamp forest is very flat in elevation. In 

contrary, the DTM of lowland dipterocarp forest clearly shows a hilly landscape. The 

canopy is higher and the crowns appear larger in the CHM of the lowland dipterocarp 

forest compared to the peat swamp forest. Figure V-3 also shows the frazzled 

structure of the peat swamp forest canopy. The forest types further differed in laser 

point distribution (Figure V-4). In peat swamp forest, the vertical distribution is quite 

even, thus, more laser pulses were able to penetrate the less dense upper canopy 

layer and reach lower canopies and understorey vegetation. In lowland dipterocarp 

forest most laser pulses concentrate around the upper canopy layer.  

 

Figure V-3: 3D view of Lowland Dipterocarp Forest (LDF) (left) and Peat Swamp Forest (PSF) (right) 

surface models: (A, C) DTM, and (B, D) CHM. The 12.5ha subsets of the lowland dipterocarp forest 

show primary and secondary forest and a just recently abandoned rice field. The peat swamp forest 

subsets show a transition zone from burned to forested (logged) area. Note the lower tree height 

compared to those of lowland dipterocarp forest. 

 

3.2.1 Multiple regression analysis: Plot level approach 

142 sample plots within unlogged and logged forest could be evaluated and 

compared. 70 were located in lowland dipterocarp forest and 72 in peat swamp 

forest. Figure V-4 shows the height distributions of plot point clouds. In unlogged 
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lowland dipterocarp forest the height range and peak position is clearly higher than in 

peat swamp forest. 

Mean tree height from field measurements and from the sample plot point clouds 

showed a good relationship in lowland dipterocarp forests (R² = 0.71), but no 

relationship was found in peat swamp forests. The same trend could be observed 

when plotting the average plot values of the 5th and 85th percentile, and the canopy 

cover percentage against field AGB. In lowland dipterocarp forest, the best linear 

relationships were found for the higher percentiles like the 85th (R² = 0.73). The 

parameter CC could explain 42% of variation in AGB. The results for peat swamp 

forest were less significant. 

 

Figure V-4: Distribution of LiDAR point heights within 1ha plots: comparison of lowland dipterocarp 

forest and mixed peat swamp forest (LDF: Lowland Dipterocarp Forest; PSF: Peat Swamp Forest). 

Mean tree height, its standard deviation (Std. Dev.) and the total number of points higher than 0.5m 

(n) is given in the histograms. 

 

Results of multiple regression analysis of the angle count plots are presented in 

Table V-3 and Figure V-5. Burned sample plots were excluded because too few 
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samples for different fire impact scenarios had been measured. A linear multiple 

regression models showed best results. Log-transformation of predictor did not 

improve the models. Best R² values were derived for lowland dipterocarp forests (R² 

= 0.83). The 45th, 65th percentile and the SEM were selected (stepwise) as predictor 

variables with a RMSE of 21.37 %. In contrast, the model for peat swamp forest had 

a very low R² of 0.32. Here, only a single variable (50th percentile) was sufficient for 

biomass prediction. When all sample plots were put together, R² is accordingly lower 

(0.71) than that of lowland dipterocarp forest due to the low results for peat swamp 

forest.  

 
Table V-3: Results of multiple regression analysis of angle count plots for both forest types (All), for 

Lowland Dipterocarp Forest (LDF) and for Peat Swamp Forest (PSF) Where No. is model numbers 1 

to 3 and n (SP) is number of sample plots. Models are validated by the coefficient of determination 

(R²), adjusted R² (R²adj), Standard Error of the Estimate (SEE), and Root Mean Square Error (RMSE). 

Forest 
type No. n 

(SP) Model R² R²adj 
SEE 

(Mg ha-1) 
RMSE 

(Mg ha-1) 
RMSE 

(%) 

All 1 142 -386.84+ 23.59 * h70+6.52* hRange  0.71 0.70 116.44 115.20 33.85 

LDF 2 70 -378.07 + 67.99 * h65 – 5090.94 * SEM 
– 27.39 * h45 

0.83 0.82 99.63 96.74 21.37 

PSF 3 72 -8.87 + 19.35 * h50 0.32 0.31 96.11 94.77 41.02 

 

Figure V-5: Comparison of AGB values (Mg ha-1) per sample plot measured in the field and those 

derived from the established regression models. A: Both forest types (model 1). B: Lowland 

Dipterocarp Forest (model 2). C: Peat Swamp Forest (model 3). 

 

3.2.2 Application of the regression models 

Results of the multiple regression model application are presented in Table V-4. As 

can be seen the mean AGB values for the intensively logged Tewaibaru lowland 

dipterocarp forest site (track 5a) are considerably lower than for the less intensively 
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logged Tumbang Danau lowland dipteropcarp forest site (track 4a). The Sebangau 

LiDAR track 1b covers a burned scar so that here also the mean AGB value is 

considerably lower than in the three other peat swamp forest sites (1a, 2b and 3a). 

 
Table V-4: Results of the multiple regression model application for angle count plots (models 2 and 3) 

for both forest types (LDF: Lowland Dipterocarp Forest; PSF: Peat Swamp Forest; Size: size of LiDAR 

track in ha; Size appli.: size in ha within the LiDAR track for which AGB was calculated; σ: standard 

deviation; Sum: sum AGB in Mg for Size appli.). 
Track Size 

(ha) 
Size appli. 

(ha) 
Forest 
type 

Regression 
model 

Mean
(Mg ha-1) 

σ 
(Mg ha-1) 

Sum
(Mg) 

4a (Tumbang Danau) 236 165 LDF 2 511.36 189.27 84,374.21 

5a (Tewaibaru) 463 352 LDF 2 114.40 277,76 40,269.17 

1a (Sebangau) 556 320 PSF 3 258.47 74.69 82,710.95 

1b (Sebangau) 472 295 PSF 3 98.41 140.82 29,032.03 

2b (Block C) 1280 908 PSF 3 251.83 73.69 228,666.04 

3a (Block B) 2234 1636 PSF 3 214.90 91.86 351,572.63 

 

Figure V-6 shows an example of the AGB estimates calculated for a subset of the 

LiDAR track 3a (multiple regression model 3). In Figure V-6 A, B, and C1-C3 the 

LiDAR track and AGB estimates are superimposed on two RapidEye satellite images 

(West: satellite image taken 2010-02-11, bands: 4, 5, 3; east: satellite image taken 

2010-02-10, bands: 4, 5, 3). This subset covers intensively logged and less 

intensively logged peat swamp forest in the west and two burned scars in the east 

(burned in 1997/98). Clearly visible is that the AGB values are lower in degraded 

forests and very low in regrowing forest on a fire scar (Figure V-6 B and C1-C3). This 

variation is also apparent in the AGB histogram of Figure V-6 E. The two profiles of 

Figure V-6 D (from the interpolated LiDAR DTM and CSM) show the ground surface, 

in this case the curvature of the peat dome with an elevation of 13 meters from the 

edge to the center of the dome and the tree canopy height which also clearly reflects 

degradation levels. 
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Figure V-6: Results of the multiple regression application for a subset of the LiDAR track 3a (1ha 

plots and regression model 3). A: Outline of a subset of the LiDAR track 3a superimposed on two 

RapidEye satellite images (West: satellite image taken 2010-02-11, bands: 4, 5, 3; east: satellite 

image taken 2010-02-10, bands: 4, 5, 3), logged and less intensively logged Peat Swamp Forest 

(PSF) in the west (logged in the 1990ies) and two burned scars in the east (burned 1997/98). B: 

LiDAR subset of the calculated AGB values from regression model 3 superimposed on two RapidEye 

satellite images; clearly visible is the AGB variability of the different land cover types. C1 - C3: Three 

subsets from A and B representing logged peat swamp forest (C1), less intensively logged peat 

swamp forest (C2), and an burned scar (C3); the three black rectangles in B indicate the locations of 

C1 – C3. D: Two height profiles (from the interpolated LiDAR DTM and CSM) representing the center 

of the LiDAR track. E: Histogram of the calculated AGB values along the profile represented by Figure 

V-6 D. 
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Figure V-7 illustrates logging impact in Block C of the years 1991 and 2007, and its 

differing consequence on Landsat classification and LiDAR estimated biomass. 

Logging activities in peat swamp forest are clearly visible in 1991 (Figure V-7 A). In 

2007, this impact can still be recognized visually (Figure V-7 B) but in the Landsat 

classification these areas are not assigned to open or secondary, but uniformly to 

pristine peat swamp forest. The calculated AGB estimates of LiDAR track 2b (Block 

C) clearly show a variation and lower values within the former logging area (Figure V-

7 D, E). Comparing mean AGB within the borders of the land cover classes, the 

mean IPCC value (350Mg ha-1) for pristine forest clearly exceeds the corresponding 

mean LiDAR estimate (286.46Mg ha-1). The IPCC standard for bushland (70Mg ha-1) 

is also much higher than the LiDAR estimate (27.88Mg ha-1). The values of open 

forest are comparable (IPCC: 262.50Mg ha-1; LiDAR mean: 257.58Mg ha-1). 
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Figure V-7 Illustration of logging impact in Block C at two point of times (1997, 2007), and its differing 

consequence on Landsat classification and LiDAR estimated Above Ground Biomass (AGB). A: 
Logging activities in peat swamp forest in 1991 (Landsat scene: ETM+ 118-62, 1991-06-30, bands: 5-

4-3). B: The same extent 16 years later (Landsat scene: ETM+ 118-62, 2007-08-05, bands 5-4-3). C: 

Classification based on Landsat scene 2007. D: Subsets of LiDAR track 2b (Block C) showing the 

calculated AGB values from regression model 3 (background: Landsat scene 2007). E: A small subset 

of the LiDAR track highlighting the former logging area (the extent is shown as a red rectangle in A to 

D). F: Histogram of the calculated AGB values of a profile along the centre of the LiDAR track subset. 

Mean AGB derived from Landsat classification is shown by the dark grey line (source: IPCC). 

 

4 Discussion and conclusions 

Kalimantan’s forests serve as an important carbon sink, as does the immense peat 

layer underlying the peat swamp forests, so that the estimation of the carbon stored 

within them is of global interest (Gibbs et al., 2007). These forests are also not only a 

hotspot of biodiversity with numerous valuable timber species (MacKinnon et al., 

1996), they are also the home to endangered species like the orangutan (Pongo 

pygmaeus), and the basis of life for indigenous people. 
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REDD projects, as a tool to stop rapid deforestation, urgently need precise 

information on AGB storage and on levels of forest degradation over larger areas. 

This study succeeded in deriving larger scale AGB estimates and showing its spatial 

variability for Central Kalimantan’s peat swamp and lowland dipterocarp forests 

correlating field estimates with LiDAR point cloud metrics. It provides a possible 

approach as input to future REDD projects. Further, this study adds new in-situ AGB 

estimates of forest ecosystems that were barely inventoried in the past. Especially 

information on biomass in peat swamp forests is limited. 

The field inventory derived AGB values are considered to be reliable as they reflect 

the estimates from the literature and therefore present a robust basis for the 

correlation to LiDAR data. In the following comparison the respective equations and 

methods used, and their bias have to be considered. The biome average values for 

tropical rain forest of IPCC (2006) for insular Southeast Asia agree quite well with the 

numbers of this study. AGB estimates of unlogged and logged lowland dipterocarp 

forest (547.08 and 230.84Mg ha-1) are comparable to results from previous studies. 

No reference was found for lowland dipterocarp forests in Central Kalimantan. In 

East Kalimantan, Yamakura et al. (1986) and Toma et al. (2005) reported AGB 

values of 500Mg ha-1 and greater than 400Mg ha-1 for original mixed and lowland 

dipterocarp forest. Ashton & Hall (1992), MacKinnon et al. (1996), and Brown (1997) 

measured AGB in mixed dipterocarp forest in Sarawak, one of the two Malaysian 

districts on Borneo. Their values lie between 325 and 1,115Mg ha-1. The logged 

lowland dipterocarp forest biomass value of this study is in the range of the values of 

fire-degraded lowland dipterocarp forest in East Kalimantan estimated by Toma et al. 

(2005) (117 to 315Mg ha-1). It is slightly below the average estimate of 300Mg ha-1 for 

commercially logged forest in Indonesia reported by Hairiah et al. (2001), as well as 

the biomass values of Brown (1997) measured in medium stocking mixed dipterocarp 

forest in Sarawak, and logged lowland dipterocarp forests on the Philippines (Brown, 

1997) and in Papua (Indonesia) (Stanley, 2009). Secondary dipterocarp forest, 

selectively logged in the 1940s, reached a biomass value of 547Mg ha-1 (Lasco et al., 

2004). Waldes & Page (2001) measured AGB of different sup types within the 

Sebangau peat swamp forests with a range from 249 to 312Mg ha-1. One single plot 

was measured within the sub type tall interior forest showing a very high AGB value 

(643Mg ha-1). In this study, the results from Sebangau show relatively homogenous 
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AGB values for all subtypes (mean of 228.06Mg ha-1, Table V-2). Sebangau forest 

was logged for more than 20 years. Field plots of this study might have been located 

closer to a former logging road than those of Waldes & Page (2001). For peat swamp 

forests in Southern Thailand Kaneko (1992) reported AGB values ranging from 287 

to 491Mg ha-1 which are slightly higher than the study’s estimates. Apart from the 

difference in geographical location, the extent of logging activities within all peat 

swamp study areas can be the reason for lower values. 

Field derived mean DBH and tree height reflected the expected differences between 

lowland dipterocarp forest and peat swamp forest described by MacKinnon et al. 

(1996), and between unlogged, logged and burned forest areas. The extreme 

conditions in peatlands, like acid soil and water logging, lead to an abundance of 

lower and thinner trees at a higher number. In unlogged lowland dipterocarp forest, 

the canopy is higher and multi-layered and consequently denser than in peat swamp 

forest thus hampering the growth of a high number of saplings and understorey trees. 

In logged lowland dipterocarp forest more sunlight penetrates the canopy and more 

saplings can grow on the clearances. 

The field inventory data was collected under very difficult conditions. Dense 

vegetation, long walking distances and waterlogged swamps complicated access and 

measurements. In the following, sources of error are addressed which are possible 

explanations for differences to literature results or contradicting phenomena. Tree 

height values were assumed to be relatively inaccurate. A multi-layered and dense 

canopy made it almost impossible to clearly sight tree tops. Especially in logged 

forest, dense undergrowth prevented from moving to a point where the tree top could 

eventually be seen. If different individuals measured tree height an error due to 

subjectivity was introduced. This error was considered to be higher than an error 

produced by an AGB prediction model leaving out height as an input variable, 

supporting the choice of the Chave et al. (2005) model excluding tree height. Another 

source of error is the selection of trees to be measured. Especially in stands with 

dense undergrowth, the risk of missing trees is high (Köhl et al., 2006). This is more 

serious when using the angle count method, but cases of extremely dense 

undergrowth, trees can also be missed when applying the nested plot method as 

moving around is limited. The correct translation from local to scientific tree species 

names was not possible for about 24% of the measured trees. These trees were 
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attributed with a standard wood density of Brown (1997).The use of an average 

introduces a bias in the biomass estimates as this constant might not represent the 

actual density value of a plot. 

The angle count method could be shown to be an adequate sampling method for the 

purpose of fast, quantitative sampling. The comparison of mean DBH and AGB 

estimates from plots where angle count and nested plot method were used showed 

positive correlations. Despite the higher risk of missing trees in dense stands (Köhl et 

al., 2006), the angle count method was assumed to be applicable in all forest types. 

Nevertheless, strong correlations do not provide for a small bias. Since a high 

number of sample plots are necessary for the correlation of the field data to LiDAR 

measurement, the time-saving of the angle count method outweighs this loss in 

accuracy. 

This study shows that decomposed full-waveform, small-footprint LiDAR data can be 

used for AGB estimation in Central Kalimantan. The multiple regression analysis on 

plot level brought good results for lowland dipterocarp forest with model validation 

being comparable to literature values. The approach showed some weakness when 

applying it to peat swamp forests and further study is necessary to confirm current 

results. However, the subsequent application of the regression models to complete 

LiDAR tracks demonstrated the ability of this approach to monitor not only 

deforestation but especially forest degradation and its variability at high spatial 

resolution. 

The derived coefficient of determination of lowland dipterocarp forest (model 2: R² = 

0.83, RSE = 99.63Mg ha-1, RMSE = 96.74Mg ha-1 or 21.37%) is comparable with 

those reported in studies throughout different biomes. LVIS data was successfully 

analyzed for forests in Costa Rica (Drake et al., 2002a) with slightly higher R² of 0.89 

(RMSE = 22.54Mg ha-1). Asner et al. (2009) quantified AGB of a 5,016ha rain forest 

reserve on Hawaii Island using vertical profiles of a full waveform LiDAR system. 

Field-measured AGB of 59 plots (24 and 30m radius) was predicted by the mean 

canopy height (R² = 0.78), one of the vegetation LiDAR metrics developed by Lefsky 

et al. (1999a). Applying this approach in the Peruvian Amazon improved the 

coefficient of determination (R² = 0.85) (Asner et al., 2010). Analyzing discrete return 

data from a range of forest communities and structural types in Injune (Australia), 

Lucas et al. (2006) derived a R² of 0.92 (SEE = 12.06Mg ha-1). Only 32 sample plots 
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(50x50m grids) were evaluated which had ground-measured AGB values ranging 

from about 2 to 160Mg ha-1. The resulting equation was comprised of seven 

predictors (percentiles 5, 10, 20, 40, 75, 85 and CC), whereas in this study only three 

variables (percentile 45, 65 and the SEM) predict the AGB of lowland dipterocarp 

forest best. 

Also using the concept of Magnussen & Boudewyn (1998), but log-transformed, 

Naesset (2004) reported coefficients of determination of 0.83 to 0.97 for volume 

estimation in boreal forests of Norway. Nearly 1,400 plots of 200 to 400m² were 

analyzed and produced a model with a RMSE of 32.9 to 67.8m³ ha-1 (17.5 to 22.5%). 

Stands mainly containing Picea abies (96%) in Vorarlberg (Austria) were estimated 

by Hollaus et al. (2007) like in Naesset (2002, 2004). Volume data of plots of 10m 

radius (n = 103) ranging from 15.7 to 1,137.7m³ ha-1 were used for regression 

analysis (R² = 0.85, RMSE = 90.9m³ ha-1 or 21.4%). Lim & Treitz (2004), analyzing 

hardwood forest in Ontario, reported a R² from 0.82 to 0.90 (RMSE of 48.07 to 

66.65Mg ha-1) for logarithmic models each with one quartile as predictor. The 75th 

quartile has the lowest RMSE. 36 sample plots of 400m² were used as reference. 

Using large-footprint full-waveform data derived from SLICER, Means et al. (1999) 

could establish an AGB model with a very high R² of 0.96 (RMSE = 88Mg ha-1) for a 

douglas-fir stand in Oregon. The single equation of Lefsky et al. (2002a, 2005) could 

explain 84% of variation in three biomes within North America. 

All studies employing the quantile-estimator approach have correlated AGB values 

and height characteristics, etc. obtained from relatively small areas compared to the 

1-ha-plots used in this study. Inaccuracy of plot location produced by GPS devices is 

more an issue for smaller plots, but they have the advantage that the biomass is 

determined for exactly this area. In the 1-ha-plots, the accuracy problem is 

minimized, but the extrapolated biomass value does not necessarily match to the 

whole area. The GPS accuracy range of 3 to 10m in the field inventory of 2008, and 

only 8 to 20m in 2007, supports the choice of 1-ha-plots in this study. Smaller plots of 

different size, also using AGB estimates from the nested plot method will be tested in 

future. 

The difference between regression results of the forest types is considerable. In peat 

swamp forests, all height characteristics plotted against AGB field measures showed 

a poor relationship compared to those of lowland dipterocarp forests. Therefore, 
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height characteristics do not seem to be very strong predictors of AGB in peat 

swamp forests. The occurrence of CC in most peat swamp forest regression models 

generated during this study further indicates that biomass of peat swamp forests 

might be better predicted by different density metrics. This should be tested in further 

studies. In contrary, AGB of lowland dipterocarp forest seems to be highly dependent 

on height. CC does not occur in the lowland dipterocarp forest model. 

Another possible explanation could be that filtering for ground points was more 

difficult in peat swamp forest LiDAR tracks. Filtering for ground points plays a key 

role in LiDAR data analysis. Peat swamp forest grows on very flat and even terrain 

usually covered by dense, scrubby undergrowth like Pandanus spp. Signals from the 

true soil surface and signals from scrubs and low growing leaves are not easy to 

differentiate. The error produced here and by the interpolation process could not be 

quantified because of a lack of reliable fine scale elevation data from the field. In 

addition, peat swamp forests are not as multi-layered as lowland dipterocarp forest. 

The tree crowns are quite small and in degraded forest they appear frazzled (Figure 

V-3). One canopy layer might be more or less missing due to logging operations. 

This fact may also contribute to the poor relationship of height distributions. 

When applying the regression models to different LiDAR tracks covering unlogged, 

logged and burned lowland dipterocarp and peat forest it is possible to quantify 

natural biomass variability and forest degradation by logging and fire with high spatial 

resolution (Figures V-6 and V-7). This clearly is an advantage to indirect AGB 

estimations where AGB values are attributed to land cover types not considering the 

spatial variability within these land covers. As shown by the comparison of Landsat 

and LiDAR analysis (Figure V-7), Landsat classification tends to overestimate 

biomass as it neither detects degraded forest from smaller scale logging activities 

and selective logging, nor from logging in past decades. By analyzing spectral 

information, large areas of forest are assigned to be one class. Thereby, the negative 

impact of named logging activities on AGB or carbon content is neglected. The plot 

level analysis of LiDAR data makes it possible to detect these former logging 

activities. 

Since our approach is almost completely automated, extensive LiDAR tracks can be 

assessed in very short periods of time. LiDAR-derived values can be extrapolated to 

large-scale vegetation maps (Asner et al., 2010; Englhart et al., 2011). Englhart et al. 
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(2011) succeeded to directly estimate AGB combining two spaceborne SAR-

instruments (TerraSAR-X and ALOS PALSAR). The model was calibrated using field 

data and the peat swamp forest model of our study. The model does not saturate 

until 300Mg ha-1. 

For the future, the generation of allometric models from destructive sampling is of 

high importance, especially for peat swamp forest. Bias from generic models could 

be decreased. Concerning the plot level analysis further study should focus on the 

inclusion of density metrics into regression analysis. Laser pulse intensity might also 

be a helpful parameter, implementing it as a weight for each laser point. Generally, 

the analysis of leaf area index- and crown cover photos from the field might be a 

valuable complement to the current findings. More sample plots in low biomass 

stands are currently established to optimize the multiple regressions models because 

most models had problems calculating AGB values for grid cells with obviously low 

biomass. Different plot/ grid cell sizes should also be tested. Generating new 

parameters at varying plot sizes, variable selection, variable transformation, and 

model formulation have to be considered anew. 

Concluding, it can be stated that the combined approach of extensive field sampling 

and LiDAR point cloud analysis have high potential to significantly improve current 

estimates of carbon stocks across different forest types and degradation levels and 

its spatial variation in the highly inaccessible tropical rainforests of Kalimantan. A 

basis for AGB estimation in the framework of REDD projects has been created but, of 

course, further work is needed to reach more precise prediction models and to create 

a final tool to predict AGB for larger areas in a relatively short time. 
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Abstract 

The quantification of tropical forest carbon stocks over large geographic areas is a 

key challenge in creating a basic methodology for Reduced Emissions from 

Deforestation and forest Degradation in developing countries (REDD+) projects. As 

the main carbon pool of tropical forests is typically the Above Ground Biomass (AGB) 

(Brown, 1997; Chave et al., 2005; Gibbs et al., 2007) we estimated AGB of different 

tropical forests in the Indonesian province of Central Kalimantan through correlating 

airborne Light Detection and Ranging (LiDAR) data to forest inventory data. Two 

metrics, the Quadratic Mean Canopy profile Height (QMCH) and the Centroid Height 

(CH) from the LiDAR height histogram, which was developed for this study, were 

analysed. The regression models could be improved through the use of the LiDAR 

point densities as weight. The highest coefficient of determination was achieved for 

CH (R² = 0.88, n = 52). Rigorous covariance propagation analysis showed that 

surveying with a LiDAR point density between 2 and 4 points per square meter 

(pt/m2) results in the best cost-benefit relation. A Landsat based classification 

approach resulted in an overestimation of 60.8% compared to the LiDAR derived 

AGB estimates for a 2,987,726ha study area. This AGB overestimation can lead to 

significantly wrong emission estimates and compensation payments. The best 

solution to monitor tropical forest carbon stocks would be the continuous mapping 

with airborne LiDAR data, which is not feasible for large-scale use due to the 

relatively high cost of operation. The combination of satellite data, LiDAR, and field 

plots, however, would be a cost effective alternative and reduces uncertainty in 

estimating carbon densities for REDD+ projects. Further the new approach presented 

here, through using CH and the LiDAR point densities as weight, has a high potential 

to improve current estimates of carbon stocks in these highly inaccessible tropical 

rainforests. 
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1 Summary and conclusions 

It is estimated that in 2008, worldwide deforestation and forest degradation emissions 

contributed about 6% to 17% of the total anthropogenic carbon dioxide (CO2) 

emissions (Van der Werf et al., 2009). Between 1990 and 2005 about 13 million 

hectares (ha) of tropical forest were deforested annually and with 0.98% South and 

Southeast Asia had one of the highest annual deforestation rates for the time period 

of 2000 to 2005 (FAO, 2006). Deforestation and forest degradation in this region are 

almost exclusively caused by human economic activities such as shifting cultivation, 

illegal logging, and the establishment of industrial timber estates and large-scale oil 

palm plantations (Siegert et al., 2001; Rieley & Page, 2005; Langner et al., 2007; 

Hansen et al., 2009; Langner et al., 2009). In Indonesia increased Green House Gas 

(GHG) emissions are particularly evident in the coastal lowlands of Sumatra and 

Kalimantan, where peat fires and peat decomposition, due to peatland drainage, 

result in the release of huge amounts of CO2 (Page et al., 2002; Ballhorn et al., 2009; 

Hooijer et al., 2010). 

One important measure of the United Nations Framework Convention on Climate 

Change (UNFCCC) to curb GHG emissions from this sector is the REDD+ 

programme which involves the private sector of industrialized countries in the 

protection of the remaining tropical forests to compensate the exceeding of their 

GHG emission quota. To estimate GHG emissions from deforestation and forest 

degradation information on both the area of forest loss and/or degradation and the 

corresponding carbon stock of the land that is cleared and/or degraded is needed 

which remains a big challenge in tropical forests (Gibbs et al., 2007). Especially GHG 

emission from forest degradation is difficult to monitor, particularly considering that 

degraded and regrowing forests are predicted to include increasingly large portions 

of the tropics (Gibbs et al., 2007). The main carbon pool of tropical forest ecosystems 

is typically the AGB (Brown, 1997; Chave et al., 2005; Gibbs et al., 2007). However, 

the structural and biotic complexity of tropical forest causes difficulties for the 

inventory: the generic relationships are not appropriate for all regions, inventories can 

be expensive and time-consuming, and it is challenging to produce regionally and 

globally consistent results (Chave et al., 2005; Gibbs et al., 2007). AGB can also be 

estimated by remote sensing, but no remote sensing instrument can detect AGB 
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values directly, so that additional in situ data collection is necessary (Drake et al., 

2003; Rosenqvist et al., 2003). 

Airborne LiDAR provides three-dimensional information of forest structure and 

represents a potential technique for biomass quantification and monitoring. LiDAR 

systems have certain advantageous characteristics, such as high sampling intensity, 

direct measurements of heights, precise positioning, and highly automated 

processing (Mallet & Bretar, 2009). These properties make airborne LiDAR systems 

an efficient tool for direct assessment of vegetation characteristics and deriving forest 

biomass at multiple scales from individual trees (e.g. Popescu, 2007; Zhao et al., 

2009) to large contiguous forest stands (e.g. Means et al., 1999; Lefsky et al., 1999a; 

1999b; 2002a; 2005; Asner et al., 2009; 2010). 

The main goal of this study was the estimation of AGB values for different tropical 

forests in the Indonesian province of Central Kalimantan through small-footprint full-

waveform LiDAR data analysis (Figure VI-1). Central Kalimantan comprises a peat 

dominated landscape where large-scale peatland drainage systems and resulting 

repeating severe wildfires destroyed large tracts of these peatland ecosystems 

(Rieley & Page, 2005). The LiDAR point clouds were analysed using two techniques: 

the Quadratic Mean Canopy profile Height (QMCH) (Asner et al., 2010); and the 

Centroid Height (CH), which was developed for this study (see methods). These 

parameters were correlated to the field-measured AGB on plot level (0.13ha) in order 

to establish robust non-linear biomass estimation models (see methods). As 

additional parameter to improve the robustness of the models, the LiDAR point 

density per square meter (pt/m2) at each plot was treated as weight during the 

regression (see methods). The biomass estimation models were applied to 33,178ha 

of LiDAR tracks covering diverse forest types in Central Kalimantan (Figure VI-1). 

Further the LiDAR AGB estimates were quantitatively compared to results obtained 

by an object-oriented land cover classification based on Landsat imagery for a 

2,987,726ha study area (see methods). Finally the developed approach was tested 

for its applicability as input to a basic methodology for future REDD+ projects. 
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Figure VI-1: Location of the LiDAR tracks and Above Ground Biomass (AGB) plots (0.13ha) within 

Central Kalimantan, Indonesia, superimposed on Landsat imagery (ETM+ 118-61, 2009-05-22 and 

ETM+ 118-62, 2007-08-05; bands 5-4-3 and both scenes were gap filled). The red rectangles show 

the location of A, B, and C. In B and C also the LiDAR derived Digital Surface Models (DSM) are 

shown. 

 

Four main forest types - tall peat swamp forest, low pole peat swamp forest, 

degraded forest (logged or burned) and lowland dipterocarp forest - were analysed. 

Figure VI-2 shows four typical field plots, one for each of the analysed forest types, 

their LiDAR height profiles with absolute vegetation heights, and the derived LiDAR 

height histograms. These LiDAR height histograms illustrate the clear structural 

differences between the different forest types. 
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Figure VI-2: (A) shows a plot within tall pole peat swamp forest (AGB = 57.61t/0.13ha, LiDAR point 

density = 1.5pt/m2, Centroid Height (CH) = 18.7m, Quadratic Mean Canopy profile Height (QMCH) = 

24.0m). Observe in A2 and A3 that the CH and the QMCH are located in high levels of the forest. (B) 

shows a low pole peat swamp forest (AGB = 19.12t/0.13ha, LiDAR point density = 1.1pt/m2, CH = 

13.7m, QMCH = 18.9m) with emergent trees. In B3 the forest structure can be clearly observed (a 

small peak at about 24m representing the emergent trees and a large peak at about 14m 

representing the main canopy layer). (C) shows a degraded tall pole peat swamp forest (AGB = 

5.05t/0.13ha, point density = 2.9 pt/m2, CH = 5.8m, QMCH = 6.2m). The small peak in C2 at about 

26m height indicates remaining high trees. C3 shows clearly the dominant ground return. Note also 

that the CH and the QMCH are located in similar heights. (D) shows a lowland dipterocarp forest 

(AGB = 108.20t/0.13ha, LiDAR point density = 2.3pt/m2, CH = 25.3m, QMCH = 35.3m). The two main 

peaks in D3 (at about 14m and 34m) indicate a higher and more complex structured canopy. 
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Figure VI-3A shows the results for the regression using the CH as input. A high 

correlation coefficient (R2 = 0.88) was obtained when the LiDAR point densities per 

square meter (pt/m2) were treated as weight during the regression. The derived 

coefficient of determination is comparable with those reported in studies throughout 

various tropical biomes (Drake et al., 2002a; Asner et al., 2009; 2010). Also for the 

QMCH a high correlation was obtained (R2 = 0.84) when applying the LiDAR point 

density weighting (Figure VI- 3B). In both cases, the use of the LiDAR point densities 

as weight improved the regression models (9% and 8% for the CH and QMCH 

respectively). As the presented approach is easy to reproduce it would be of interest 

whether these improved results are also observed for other tropical forest 

ecosystems around the world. 

 

Figure VI-3: (A) In red the Centroid Height (CH) based regression model with LiDAR point density 

weighting (AGB = 0.0865 x CH2.1564; R2 = 0.88) and in blue without weighting (AGB = 0.0484 x 

CH2.3494; R2 = 0.79). (B) In red the Quadratic Mean Canopy profile Height (QMCH) based regression 

model with LiDAR point density weighting (AGB = 0.1150 x QMCH1.8656; R2 = 0.84) and in blue without 

weighting (AGB = 0.0660 x QMCH2.0277; R2 = 0.76). The circle sizes represent the point densities (the 

smallest about 0.2pt/m2 and the biggest about 3.5pt/m2). (C) Standard deviation behaviour estimation 

curves for CH and QMCH based regression models (derived from the covariance propagation 

analysis). 

 

Next the AGB estimates for 15,950ha of LiDAR tracks were compared to the Landsat 

land cover classification (Table VI-1, see methods). Through applying the CH based 

regression model it was possible to quantify natural AGB variability (linked to soil 

properties and water availability) and the impact of previous logging operation and 

fire with high spatial resolution. Variability could also be detected in low AGB ranges. 

These disturbances cannot be identified unambiguously in Landsat imagery. By 
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analysing spectral information, large areas of forest are assigned to be one class 

(e.g. pristine peat swamp forest). Thereby, the negative impact of named degradation 

activities on AGB or carbon content is neglected. In our study this leads to a serious 

overestimation of the AGB by the indirect method, while with LiDAR it is possible to 

detect these previous disturbances. Table VI-1 shows that 43.1% of the LiDAR track 

area has been classified as pristine peat swamp forest constituting approximately 

80% of the total AGB. The LiDAR estimate for this class is 52.3% lower than the 

literature value. Similar relations were found in all other classes and therefore the 

direct LiDAR based AGB estimate is 56.3% lower than the indirect method via optical 

remote sensing considering the intersected area, and 60.8% lower considering a 

2,987,726ha study area (Table VI-1, Figure VI-4). These results are in accordance 

with a study by Asner et al. (2010) who observed a 33% lower regional carbon 

estimate than by a default estimation approach based on average Intergovernmental 

Panel on Climate Change (IPCC, 2006) carbon values assigned to biomes in the 

Peruvian Amazon. These AGB overestimations can lead to significantly wrong 

emission estimates and compensation payments. 

 
Table VI-1: Above Ground Biomass (AGB) comparison between the LiDAR based estimation model 

and the object-oriented land cover classification based on Landsat in which each class was linked to a 

single AGB value determined from a regional biomass database. 
Class Averaged AGB (t/0.13ha) Total AGB (t) Difference (%) 

Name % Area Landsat LiDAR Landsat % LiDAR %  
Peat swamp forest - 

pristine 43.1 40.56 19.13 ± 9.91 2,146,981 79.3 1,012,852 85.6 -52.8 

Bushland, secondary 
forest, shrubs 33.5 3.90 0.81 ± 3.18 160,066 5.9 33,626 2.8 -78.9 

Land clearing for plantation 8.3 9.49 0.30 ± 1.10 96,742 3.5 3,129 0.3 -96.7 
Peat swamp forest - open, 

canopy closure < 75% 5.7 30.42 15.49 ± 14.72 215,195 7.9 109,634 9.2 -49.0 

Peat swamp forest - 
fragmented, burned 8.2 8.11 2.34 ± 4.12 80,900 2.9 23,435 1.9 -71.0 

Swamp 1.2 5.72 0.46 ± 1.31 8,432 0.3 692 >0.1 -91.7 

  TOTAL 
(Intersection) 2.71Mt  1.18Mt  -56.3 

  TOTAL 
(whole study area) 398.23Mt  156.25Mt 

(±139.25Mt)  -60.8 
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Figure VI- 4 shows the results for both up-scaling approaches (Figures VI-4C and VI-

4D), as well as a LiDAR track (888ha) covering three main land cover classes 

(Figures VI-4E and 4F): burned peat swamp forest (fire scar from 1997), open peat 

swamp forest (logged), and pristine peat swamp forest. Figure VI-4E shows the 

LiDAR AGB estimates superimposed on the Landsat based land cover classification. 

Figure VI-4F shows the AGB profile (along the black line indicated in Figure VI-4E) 

for the direct LiDAR AGB estimate and the indirect AGB estimate based on the 

Landsat land cover classification. The profile clearly shows the ability of airborne 

LiDAR to describe AGB variations with high resolution. The Landsat based AGB 

estimates only determine variations between the three land cover classes. 
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Figure VI-4: AGB estimation for a Landsat scene classification based on literature values and LiDAR 

regression model (CH with LiDAR point density weighting). (A) Landsat Scene (ETM+ 118-62, 2007-

08-05; bands 5-4-3; gap filled). (B) Landsat Classification. (C) Literature based AGB estimation. (D) 

LiDAR average AGB estimation. (E) Subset of the of the LiDAR AGB regression results covering a 

track with about 22km length in the Sebangau peat swamp forest catchment superimposed on the 

Landsat image. The red outlines indicate the borders of the Landsat classification. (F) AGB variability 

captured by LiDAR (black), the averaged LiDAR values for all tracks (green), and the Landsat 

classification (red) along the profile indicated by the black lines in A-E. 
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The costs of LiDAR surveying are decreasing, but still relatively high, and are 

strongly related to the desired point density. To assess the influence of the LiDAR 

point density on the estimation of the AGB, a rigorous covariance propagation 

analysis was performed (see methods). The results of this analysis show that the 

AGB standard deviation decreases significantly with increasing LiDAR point density 

until approximately 2pt/m2 and for LiDAR point densities higher than 4pt/m2 no 

significant standard deviation improvement could be observed (Figure VI-3C). These 

results suggest that expensive LiDAR surveying with more than 4pt/m2 are not 

necessary to achieve reasonable AGB regression models but on the other hand 

surveying with less than 1pt/m2 can lead to significant inaccuracies, so that surveying 

with a point density between 2 and 4pt/m2 shows the best cost-benefit relation. The 

QMCH tends to perform better than the CH in terms of standard deviation. 

Up to date the best solution to monitor tropical forest carbon stocks, at the high 

resolution monitoring agencies and investors demand, would be the continuous 

mapping of the REDD+ project areas with LiDAR data. This approach produces the 

most accurate estimates of forest carbon stocks and their spatial variability, but is not 

feasible for large-scale use due to the relatively high cost of operation. However, in 

combination with satellite data (optical and/or RADAR) LiDAR could be a cost 

effective approach to derive more accurate maps on forest carbon densities (Asner et 

al., 2010, Englhardt et al., 2011). Asner et al. (2010) for example successfully up-

scaled LiDAR derived AGB estimates to 4.3 million ha of tropical lowland forest in 

Peru with the help of optical satellite data (Landsat). The new approach presented 

here through using the CH and incorporating LiDAR point densities as weight has a 

high potential to improve current estimates of AGB and carbon stocks across 

different forest types and degradation levels and its spatial variation in these highly 

inaccessible tropical rainforests. Further it could assist the efforts in up-scaling LiDAR 

derived AGB estimates to large-scale geographic areas as it will be necessary for 

future REDD+ projects. 

  



CHAPTER VI 

148 
 

2 Methods 

2.1 Field inventory 

Field inventory data was collected in 3 study sites from May to August 2008 (Figure 

VI-1). The first study site was located in the Sebangau peat swamp forest catchment 

(Fig VI-1C), with 16 field inventory plots covering tall and low pole peat swamp 

forests. The second study site was located within Block C of the former Mega Rice 

Project (MRP), with 20 field inventory plots covering diverse degradation stages of 

peat swamp forest (Figure VI-1C). The third study site was located in Tumbang 

Danau and Tewaibaru, with 16 field plots covering logged and unlogged lowland 

dipterocarp forests (Figure VI-1B). The location of the nested plots were selected 

depending on forest type representativeness and set in advance to assure that they 

lie within the swath of the LiDAR point clouds. Trees with a Diameter at Brest Height 

(DBH) smaller than 7cm were excluded. The nested plot method is based on fixed-

area plots (Pearson et al., 2005b). In each of the three circular nests trees of a 

certain DBH range were measured: 7 to 20cm (4m radius), 20 to 50cm (14m radius), 

and greater than 50cm (20m radius). The sum of DBH, tree height, basal area, and 

biomass of the two smaller nests was multiplied by an expansion factor in order to 

get the values for the 20m radius inventory plot (0.13ha). Local species name and 

DBH were recorded. Local names were translated to corresponding Latin names 

using information provided by a local herbarium at the Centre for International Co-

operation in Management of Tropical Peatland (CIMTROP) in Palangka Raya, local 

expert knowledge, and tropical timber databases provided by Chudnoff (1984) and 

the World Agroforestry Centre 

(http://www.worldagroforestrycentre.org/Sea/Products/AFDbases/WD/Index.htm (last 

visited: 21.11.2011). Species specific wood densities were also derived from these 

databases as well as from IPCC (2006). Some local names, especially of various 

dipterocarp species, could not be translated. In these cases an average specific 

wood density for Asian tropical forests, 0.57t/m3, was applied (Brown, 1997). Finally, 

the AGB values were calculated using the allometric model for tropical forest stands 

from Chave et al. (2005) excluding tree height. 
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2.2 Acquisition and processing of airborne laser scanner data 

The airborne LiDAR data set was acquired in a flight campaign by Milan Geoservice 

GmbH and Kalteng Consultants from the 5th to 10th August 2007. A Riegl LMS-

Q560 Airborne Laser Scanner was mounted on a Bell 206 helicopter. Small-footprint 

full-waveform LiDAR data was collected from a flight altitude of approximately 500m 

above ground over a scan angle of ±30 degrees (swath width ±500m). The laser 

sensor had a pulse rate of up to 100,000 pulses per second with a footprint of 0.25m 

and a wavelength of 1.5µm (near Infrared). This survey configuration resulted in a 

nominal point density of 1.4pt/m2. The Riegl LMS-Q560 Airborne Laser Scanner 

system allows height measurements of up ±0.02m under laboratory conditions. The 

acquired data set has an absolute horizontal accuracy of ±0.50m and vertical 

accuracy of ±0.15m Root Mean Square Error (RMSE). Next step was the filtering of 

the LiDAR point clouds. This is a crucial step, since the DTM is directly derived from 

the filtered point clouds. In this work, the filtering was a simple separation between 

ground and off-ground LiDAR points, since within the study area all off-ground points 

consist of vegetation. The applied filtering approach was the hierarchic robust 

filtering, and the method used to generate the DTMs (1m resolution) the linear 

adaptable prediction interpolation. Both solutions are implemented within the Inpho 

software package (DTMaster and SCOP++). 

 

2.3 Generation of the regression models 

The first step for the generation of the regression models was the creation of a height 

histogram for every field plot. In order to achieve this, all points within each plot area 

were normalized to the ground using the DTM as reference. After that, given a pre-

defined height interval (or bin size), the number of points within the given intervals 

was stored in the form of a histogram. In order to correlate the AGB field 

observations with the LiDAR metrics, two parameters derived from the height 

histograms were used. The first one correlates the AGB with the Quadratic Mean 

Canopy profile Height (QMCH) (Asner et al., 2010). The second is based on Centroid 

Height (CH) of the histogram. The first bin of each plot was considered ground return 

and therefore eliminated from the further processing. Figure VI-2 shows four typical 

field plots, their point cloud profile, and the derived histogram. 
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One important parameter in LiDAR surveying is the point density. The acquisition of 

high point densities is expensive, because it requires most recent equipment and a 

slow and low flying aircraft. The real point density can strongly vary across the 

surveyed area mainly due to stripe overlapping, flight velocity, height variation, return 

quality variation caused by smoke or water vapour in the atmosphere, and target 

reflectance. In order to account for these factors within the regression models, the 

point density was used for each plot as a weighting factor. Since the point density 

affects directly the quality of the height histogram, this also affects the metrics 

derived from it (i.e. the CH and QMCH). Usually, the regression models applied for 

AGB estimations use the AGB as dependent variable and the LiDAR metrics as 

independent. In this study, this order was changed because the least-squares 

solution chosen permitted only weighting the dependent variable, which are treated 

as observations with known weights - the point densities. For both studied metrics 

(CH and QMCH) the regression models were derived using the classic approach and 

the weighted adjustment. After the regression processing, the obtained parameters 

were transformed in order to obtain an equation that directly determines the AGB 

based on the LiDAR metrics. Their variances and co-variances were calculated 

through covariance propagation. In order to verify the influence of point density in the 

AGB accuracy, a further rigorous covariance analysis was performed. 

 

2.4 Covariance propagation analysis 

The basic regression model used in this work correlates the AGB with de LiDAR 

Metrics (LM) though a power function: 

ܤܩܣ ൌ ܽ ·  ௕ (eq. VI-1)ܯܮ

Although, in order to permit LiDAR metrics weighting, it is necessary to rewrite eq. VI-

1 with LM as dependent variable: 

ܯܮ ൌ ݇ ·  ௪ (eq. VI-2)ܤܩܣ

In this form, the LiDAR metrics can be treated as observations and weighted with the 

correspondent LiDAR point density within a non-linear least-squares solution. After 

the regression processing, the residuals of the observations can be determined as 

well as the covariance matrix of the parameters k and w (Σ௞௪). Now it is necessary to 

transform the parameters k and w into a and b, which actually correlate the LiDAR 

metrics with the AGB: 
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ܽ ൌ ቀ1 ݇ൗ ቁ
ଵ ௪ൗ

 (eq. VI-3) 

 

ܾ ൌ 1 ൗݓ  (eq. VI-4) 

In order to perform a rigorous AGB accuracy estimation, it is necessary to determine 

the covariance matrix of the parameters a and b (Σ௔௕) though a covariance 

propagation: 

Σ௔௕ ൌ ܩ · Σ௞௪ ·  (eq. VI-5) ்ܩ

Where: 
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 (eq. VI-6) 

Returning to eq. VI-1, one can write a new covariance propagation equation: 

Σ஺ீ஻ ൌ ஺ீ஻ଶߪ ൌ ܦ · Σ௅ெ,௔௕ ·  (eq. VI-7) ்ܦ

Considering all terms on the right side of the eq. VI-1 as parameters, one comes to: 

ܦ ൌ ቈ ஺߲ீ஻
߲௅ெൗ ஺߲ீ஻

߲ܽൗ ஺߲ீ஻
߲ܾൗ ቉

ൌ ሾܽ · ܾ · ௕ିଵܯܮ ௕ܯܮ ܽ · ௕ܯܮ · ln ሺܯܮሻሿ 
(eq. VI-8) 

Take Σ௅ெ,௔௕ as the extended covariance matrix: 

Σ௅ெ,௔௕ ൌ ቎
௅ெଶߪ 0 0
0 ௔ଶߪ ௔௕ߪ
0 ௔௕ߪ ௕ଶߪ

቏ (eq. VI-9) 

Solving eq. VI-7 with eq. VI-8 and eq. VI-9 and denoting the point density ߩ, one 

comes to the final AGB standard deviation (ߪ஺ீ஻) estimation model: 

஺ீ஻ߪ ൌ ඨ
ܣ
ඥߩ൘ ൅ ܤ ൅  (eq. VI-10) ܥ

With: 

ܣ ൌ ሺܽ · ܾ ·  ௕ିଵሻଶܯܮ

ܤ ൌ ௕ܯܮ · ൬ܯܮ௕ · ௔ଶߪ ൅ ௔௕ߪ · ቀܽ · ௕ܯܮ · ln ሺܯܮሻቁ൰ 

ܥ ൌ ቀܽ · ௕ܯܮ · ln ሺܯܮሻቁ · ൬ߪ௔௕ · ௕ܯܮ ൅ ௕ଶቀܽߪ · ௕ܯܮ · ln ሺܯܮሻቁ൰ 

 

Eq. VI-4, eq. VI-5, and eq. VI-10 were applied to the CH and QMCH models derived 

in this work. 



CHAPTER VI 

152 
 

2.5 Comparison between optical remote sensing and LiDAR 
approach for AGB estimation 

The obtained AGB estimation parameters were applied to 33,178ha of LiDAR tracks. 

The chosen regression model was the CH due to its higher correlation coefficient, 

lower RMSE and better computational performance. In order to avoid artefacts 

caused by filtering problems, 20m of the LiDAR track borders were excluded from the 

processing. 

Prior to the classification the Landsat imagery (ETM+ 118-62, 2007-08-05) was 

geometrically corrected by automated image to image matching techniques. 

Afterwards a radiometric correction was applied in order to compensate atmospheric 

distortions, resulting from water vapour, viewing geometry, and other physical 

parameters. The land cover classification of the imagery (2,987,726ha) was 

implemented using an object-oriented approach, applying a segmentation algorithm 

prior to the classification. The segmentation generates objects and evaluates spectral 

reflectance, as well as texture information and additional thematic information such 

as altitude. Classification itself corresponds in fact a database query by formulating 

rule bases on how the objects should be evaluated. The AGB values of the different 

land cover types were based on results of a literature survey and assigned to the 

different land cover types classified in the satellite imagery. 

 

Acknowledgements 

We would like to thank Suwido Limin and his team from CIMTROP for the logistic 

support during the field inventory and Sampang Gaman (CIMTROP) and Simon 

Husson (Orang Utan Tropical Peatland Project, OUTROP) for providing tree species 

lists. Further we would like to thank FORRSA (Forest Restoration and Rehabilitation 

in Southeast Asia) project of the EU-funded Asia Link programme for financially 

supporting the field trips to Indonesia. The LiDAR data set was acquired by Kalteng 

Consultants. 

  



Deriving forest above ground biomass using airborne LiDAR 

153 
 

 

 



 

154 
 

  



 

155 
 

 

 

 

 

 

 

 

CHAPTER VII:                                     
Synthesis 

 

 

 

 

 



CHAPTER VII 

156 
 

1 Summary and main conclusions 

During the last decade the global carbon dioxide concentration growth rate was 

1.9ppm per year on average, resulting mainly from the emission of 7.2Gt of carbon 

per year due to the use of fossil fuels and proximately 1.6Gt of carbon per year due 

to land use change (IPCC, 2007). It is estimated that in 2008, worldwide 

deforestation and forest degradation emissions contributed about 6% to 17% of the 

total anthropogenic CO2 emissions (Van der Werf et al., 2009). About 13 million ha of 

tropical forest were deforested annually between 1990 and 2005 and with 0.98% 

South and Southeast Asia had one of the highest annual deforestation rates for the 

time period of 2000 to 2005 (FAO, 2006). Deforestation and forest degradation in this 

region are almost exclusively caused by human economic activities such as shifting 

cultivation, illegal logging, and the establishment of industrial timber estates and 

large-scale oil palm plantations (Hansen et al., 2009; Rieley & Page, 2005). During 

extended droughts caused by the periodic El Niño phenomenon vast areas of the 

Indonesian forests have been destroyed by fire (Langner & Siegert, 2009). Fire 

serves as the principal tool for land clearing and its impacts and severity increases in 

degraded forests (Siegert et al., 2001). In Indonesia increased GHG emissions are 

particularly evident in the coastal lowlands of Sumatra and Kalimantan, where peat 

fires and peat decomposition, due to peatland drainage, result in the release of huge 

amounts of CO2 (Ballhorn et al., 2009; Hooijer et al., 2010; Page et al., 2002). With 

Indonesia’s ranking as one of the world’s biggest emitters of carbon (Hooijer et al., 

2006) and with a peat carbon store of about 57 ±11Gt (Jaenicke et al., 2008; 

Wetlands International, 2003; 2004; 2006;), it has enormous potential to negatively 

influence the global climate it its peatlands are burned and drained at rates currently 

observed. One important measure of the UNFCCC to curb GHG emissions from this 

sector is the REDD+ program which involves the private sector of industrialized 

countries in the protection of the remaining tropical forests to compensate the 

exceeding of their GHG emission quota. To estimate GHG emissions from 

deforestation and forest degradation information on both the area of forest loss 

and/or degradation and the corresponding carbon stock of the land that is cleared 

and/or degraded is needed which remains a big challenge in tropical forests (Gibbs 

et al., 2007). Especially GHG emissions from forest degradation is difficult to monitor, 

particularly considering that degraded and regrowing forests are predicted to include 
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increasingly large portions of the tropics (Gibbs et al., 2007). The quantification of 

tropical forest carbon stocks is a key challenge in creating a basic methodology for 

REDD+ projects. Since most peatlands in Indonesia are highly inaccessible, very few 

field measurements have been made to date. One way to overcome this problem 

may be the use of LiDAR data. Airborne LiDAR systems (discrete-return and full-

waveform), compared to other remote sensing technologies, have been shown to 

yield the most accurate estimates for land topography, forest structural properties, 

and forest AGB. 

The main goal of this thesis was the assessment of the potential and accuracy of 

airborne and spaceborne LiDAR data in measuring peatland topography, peat fire 

burn depth, peat fire carbon emissions, and forest AGB in Central Kalimantan, 

Indonesia. 

The focus of our investigation was on a peat dominated landscape in Central 

Kalimantan, Borneo, where almost all peat swamp forest ecosystems have been 

severely impacted by extensive logging and drainage for more than two decades 

(Rieley & Page, 2005; Figure I-9). The area also covers the former Mage Rice 

Project (MRP), an ill-fated transmigrasi resettlement project initiated in 1995 by the 

Indonesian government, which resulted in the serious degradation of more than one 

million ha of peat swamp forest (Rieley & Page, 2005). 

Following five specific objectives were analyzed in this thesis: 

Objective (1): Assessment of the potential and accuracy of airborne LiDAR data to 

measure peat burn depth for single and multiple fire events. 

The results of CHAPTERS II and III demonstrate that airborne LiDAR has the ability 

to collect sufficiently accurate and spatially representative measurements of peat 

burn scar depths over large areas in this very inaccessible terrain. In CHAPETR II, 

through using an airborne LiDAR data set acquired in Central Kalimantan, in 2007, 

one year after the severe peatland fires of 2006, an average peat burn scar depth of 

0.33 ±0.18m was determined. The peat burn depth for this single fire event was 

calculated through determining the elevation difference of the LiDAR derived DTMs 

at the border between burn and adjacent unburned peatlands. The determined 

average burn depth correlated well with field measurements recorded in the same 

year at locations near the LiDAR transects. The relatively invariable burn depth and 
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the low standard deviation indicated restrictions in fire behavior and impact. Fires 

never burned considerably deeper than 0.5m although sometimes extreme burn 

depths of up to 1.1m were observed. These extremes were small in scale and 

originated most probably from places where ignited tree trunks and roots facilitated 

oxygen supply and thus allowed the fire to propagate deeper into the peat layer. The 

consistent burn depth relates to the water table in the peat layer. Additional factors 

may be important in regulating burn depth, for example, as fire progresses deeper a 

build-up of char and ash makes the peat less flammable and impedes the flow of 

oxygen. The results also suggest that peat fires burning several meters below the 

surface (Goldammer, 1993), like fires observed in coal deposits, are extremely 

unlikely. In CHAPTER III, based on the same LiDAR data set, a different and 

advanced approach to estimate peat loss after fire, not only for single but also for 

multiple fire events, was introduced. Through 3D modeling a pre-fire peat surface 

was reconstructed from which the peat loss was then derived. The pre-fire peat 

surface was modelled using anchor points to the left and right of each of the recorded 

fire scars, either in undisturbed reference areas or in areas which had burned once, 

twice and so forth. The peat loss after single and multiple fire events was calculated 

by comparing the LiDAR derived DTM with the modelled pre-fire peat surface. The 

small mean elevation differences of -0.01-0.02 ±0.07-0.19m between the modelled 

pre-fire surface and the LiDAR derived DTMs in unburned areas demonstrated that 

the applied modelling approach accurately estimated the pre-fire peat surface 

elevation. The results of the average peat loss calculations showed that peat loss 

after the first fire event with 0.37 ±0.22m was the highest, after the second fire event 

with 0.30 ±0.17m lesser, and after the third fire event with 0.11 ±0.25m the lowest, so 

that no linear relationship was observed. This result agrees with evidence from aerial 

and field surveys suggesting that fires in peat swamp forests burn deeper into the 

peat layer than fires on areas previously affected by fire. When comparing the 

average peat loss results separately for the years they originated from (1997 = 0.57 

±0.09m; 2002 = 0.35 ±0.17m; 2006 = 0.33 ±0.23m) it is obvious that the year 1997 

had by far the highest peat loss. If the duration of the dry season for these three 

years is additionally compared the year 1997 with 184 days also had the longest dry 

season. This result indicates that there is a relation between duration of the dry 

season and the average peat loss after fire. 
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Objective (2): Estimation of carbon emissions from peat fires for single and multiple 

fire events at different spatial scales from the sub district level to the 

national level based on the peat depth calculations. 

To estimate Indonesia’s contribution to global carbon emissions through peatland 

fires the results of the average peat burn depths was set in relation to burned 

peatland area determined from satellite data. In CHAPTER II, based on burned 

peatland area derived from Landsat imagery, it was estimated that within the 2.79 

million hectare study area 49.15 ±26.81Mt of carbon were released during the 2006 

El Niño episode. This represents 10-33% of all carbon emissions from transport for 

the European Community in the year 2006 

(http://unfccc.int/di/DetailedByParty/Event.do;jsessionid_4B56CEF8097A1587450FB

B5AC8451F87.diprod02?event_go). These emissions, originating from a 

comparatively small area (approximately 13% of the Indonesian peatland area), 

underline the importance of peat fires in the context of GHG emissions and global 

warming. Further the approximate carbon emissions from peatland fires for Indonesia 

in 2006 were estimated based on (a) active fire recordings of the MODIS (Davies et 

al., 2009), (b) a correction factor for the MODIS burned area determined from a 

correlation with Landsat-derived burned areas, (c) peatland maps of Indonesia 

(Wetlands International, 2003, 2004, 2006), and (d) the results of the LiDAR-derived 

burn depth calculations. There is considerable uncertainty in this estimate due to a 

range of factors (e.g. MODIS burned area, extent of the peatland, burn depth in 

relation to water table, moisture conditions, and emission factors), but this calculation 

may provide a reasonable estimate of the order of magnitude of this event. Peat fires 

in 2006 released about 0.25 ±0.14Gt of carbon which is equal to 7-24% of all global 

emissions by land use change in that year (IPCC, 2007). Van der Werf et al. (2008) 

estimated that in 2006 0.30 ±0.12Gt of carbon were released by fires in Indonesia 

and Papua New Guinea, however, this estimate also includes non-peat fires and 

AGB burning. In CHAPTER III based on historical Landsat fire scar classifications 

and the results of the average peat loss calculations is was estimated that 61.361Mt 

of carbon were emitted within the Kapuas district (1,489,325ha), Central Kalimantan, 

between the years 1990-2009. This is equal to about 25% of all carbon emissions 

from transport (civil aviation, road transportation, railways, navigation, and other 

transportation) for the European Community in the year 2009 

(http://unfccc.int/di/DetailedByParty/Event.do;jsessionid_4B56CEF8097A1587450FB
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B5AC8451F87.diprod02?event_go). In the past 15 years, severe peat fires have 

occurred almost every second year during El Niño induced droughts in 1997, 2002, 

2004, 2006, and 2009. This is a new phenomenon and has not been observed in this 

frequency and spatial extent before. Currently, this important source of carbon 

emissions is not yet included in the IPCC estimate for land cover change (IPCC, 

2008) or in most regional and global cycling models. As most studies on tropical land 

conversion and climate change consider only AGB this study shows that in the future, 

emissions from tropical peat combustion should be included in the emissions 

estimates. The carbon content of the peat layer depends on its thickness and can be 

up to 19 times higher than that of a pristine peat swamp forest growing on top of the 

peat (Jaenicke et al., 2008). In addition, deforested and drained peatlands release 

considerable amounts of carbon due to bacterial oxidation (Hooijer et al., 2009). 

These emissions are persistent for many years and add to the estimates given here. 

Objective (3): Assessment of the potential and accuracy of spaceborne LiDAR to 

measure peatland topography. 

As already mentioned most peatlands in Indonesia are highly inaccessible so that 

very few field measurements have been made to assess these carbon pools. 

Especially the potential spatial variation is unknown because up-to-date no 

systematic large scale sampling has been undertaken. ICESat/GLAS data have been 

demonstrated to accurately estimate topography especially well in even areas. As 

peatlands have and especially smooth topography (Page et al., 1999; Rieley & Page, 

2005) this spaceborn LiDAR data set was assessed for its applicability to measure 

peatland topography in Central Kalimantan. In CHAPTER IV ICESat/GLAS data was 

compared to other elevation data. (SRTM data, 3D peatland elevation models 

derived from SRTM data, and elevation data derived from airborne LiDAR). Jaenicke 

et al. (2008) demonstrated that SRTM data can be used to determine the extent and 

topography of the dome shaped surface and a correlation was obtained between the 

convex peat dome surface and the depth of the underlying mineral ground, which 

was then used to calculate peat volume and carbon store. The main problem of this 

approach was the determination of the vegetation height growing on top of the peat 

domes as the SRTM C-band sensor does not completely penetrate the forest cover. 

To get a high number of quality filtered footprints ICESat/GLAS data on peatlands for 

the whole of Kalimantan was investigated. The comparison of the ICESat/GLAS 
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elevations to the mean SRTM elevation showed a very high correlation of the 

waveform centroid (R2 = 9.92). The mean ICESat/GLAS and SRTM elevation 

difference of -4.9 ±3.8m also showed that the SRTM C-band phase center 

penetration depth is dependent on forest structural parameters such as canopy 

closure. These results complied well with a study by Carabajal and Harding (2006) 

and indicate that even for densely forested peat swamp areas the error is well below 

the 16m at 90% confidence vertical accuracy specifications for the SRTM mission. 

These findings demonstrated that with the help of ICESat/GLAS data the penetration 

depth of the SRTM C-band phase center into different peat swamp forest canopy 

closures and consequently the height of the SRTM elevation above the actual peat 

surface can be measured. Based on this it is reasonable to use ICESat/GLAS data 

as a tool to validate peatland elevation models derived from SRTM data for selected 

areas in Central Kalimantan. Because the elevation from the ICESat/GLAS last 

highest Gaussian peak is known to correspond best with the actual peat surface 

(Boudreau et al., 2008; Rosette et al., 2008) it was correlated to the mean elevation 

of three 3D peatland elevation models derived from SRTM data. ICESat/GLAS 

transects covering entire peat domes, clearly showed the convex curvature of them. 

The difference between the last highest Gaussian peak from the ICESat/GLAS data, 

referring to the estimated peat surface within the ICESat/GLAS waveform, and the 

3D peatland elevation models, in which the forest canopy height was eliminated from 

the SRTM terrain model, was with −1.0 ±3.2m low. These results indicate that 

ICESat/GLAS data can be used to validate and enhance SRTM derived 3D peatland 

elevation models. When correlating ICESat/GLAS elevations to airborne LiDAR 3D 

point clouds and DTMs derived from these the signal begin and waveform centroid 

compared to the maximum z and mean z value all had R2 values higher than 0.8, 

with the highest correlation between the waveform centroid and the mean z value (R² 

= 0.91, n = 104). The mean elevation difference between these two data sets was -

0.5 ±1.9m for waveform centroid and the mean z value, and 3.2 ±3.2m for signal 

begin and the maximum z value. These results indicated that ICESat/GLAS data and 

airborne LiDAR data comply well regarding elevation and that ICESat/GLAS data can 

be used as a tool to measure different elevations in these dense tropical peat swamp 

forest ecosystems. The findings show that ICESat/GLAS data can be used as a 

sampling tool to screen for peatlands in remote areas, such as West Papua. A 

systematic sampling with ICESat/GLAS could help to improve the knowledge on the 
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spatial extent and curvature variation of peat domes and also consequently lead to 

better estimates of the carbon pools. 

Objective (4): Collection of forest in-situ data at various degradation levels. 

For the analyses in CHAPTERS IV, V, and VI forest in-situ data at different 

degradation levels within Central Kalimantan was collected. Altogether 77 clusters 

each with four sample plots were selected depending on representativeness of forest 

type (lowland dipterocarp or peat swamp forest), degradation level (unlogged/little 

logging, logged and burned), and on accessibility. The four sample plots of one 

cluster build the corners of a 50x50m square. In each sample plot the angle count 

method (Bitterlich, 1947) was conducted. Trees with a Diameter at Breast Height 

(DBH) smaller than 7cm were excluded. Additionally the nested plot method with 

circular design was conducted in one to two clusters per forest, sub forest, and land 

use type. The nested plot method is based on fixed-area plots (Pearson et al., 2005a; 

Pearson et al., 2005b). In each of the three circular nests trees of a certain DBH 

range were measured: 7 to 20cm (4m radius), 20 to 50 cm (14m radius), and greater 

than 50cm (20m radius). The applicability of the angle count method for AGB 

estimates in the tropics was tested through statistically comparing its results with 

them from the nested plot method. For each tree selected by either the angle count 

or the nested plot method following parameters were recorded: Local species name, 

DBH in cm (at 1.3m above the ground), and tree height in m. AGB was calculated 

using an allometric model for tropical forest stands from Chave et al. (2005). Two 

models are proposed for moist forest, one which includes tree height, DBH and wood 

density, the other includes DBH and wood density, but no tree height. It was decided 

to use the second model excluding tree height as accurate tree height measurements 

in the field were impossible due to the dense and tall forest canopy. The field 

inventory derived AGB values were considered to be reliable as they reflected the 

estimates from the literature. The derived mean DBH and tree height reflected the 

expected differences between lowland dipterocarp forest and peat swamp forest and 

between unlogged, logged and burned forest areas. The angle count method could 

be shown to be an adequate sampling method for the purpose of fast, quantitative 

sampling. A comparison of mean DBH and AGB estimates from plots where angle 

count and nested plot method were used showed positive correlations. Despite the 
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higher risk of missing trees in dense stands (Köhl et al., 2006), the angle count 

method was assumed to be applicable in all forest types. 

Objective (5): Assessment of the potential and accuracy of airborne and spaceborn 

LiDAR data to calculate forest AGB through correlation with the 

collected forest in-situ data. 

In CHAPTERS IV-VI the airborne LiDAR 3D point cloud statistics within a defined 

polygon were correlated to the corresponding ground-based AGB value. In 

CHPATER V multiple regression analysis was applied to create AGB estimation 

models. This analysis followed the principles of Magnussen & Boudewyn (1998) and 

its application followed Lim & Treitz (2004), Patenaude (2004), and Lucas (2006). As 

the angle count method is designed to extrapolate measurements to 1ha values, a 

circle of 1ha area was used to clip the LiDAR point clouds. The height above the 

terrain (absolute vegetation heights) for each point within the cloud was determined 

by subtracting the corresponding pixel value of the LiDAR derived DTM. LiDAR point 

height distributions of each sample plot were analyzed statistically and following 

metrics were derived and used as predictors: (a) mean hmean, (b) measures of 

dispersion including the Standard Error of the Mean (SEM) hSEM, standard deviation 

(σ) hσ, variance hvar, range hrange and maximum hmax, and (c) the quantiles 

corresponding to the 5, 10, ..., 95 percentiles of the distributions (h5,..,.95). As a further 

potential predictor, Canopy Cover (CC) was determined. All above variables within 

the sampling area of the angle count method were correlated to the corresponding 

estimated AGB values per ha. Multiple linear regression analysis was conducted for 

all sample plots as well as for different forest and land use types. Best R2 value was 

derived for lowland dipterocarp forests (R² = 0.83) and was comparable to literature 

values. The 45th, 65th percentile and the SEM were selected (stepwise) as predictor 

variables with a RMSE of 21.37%. In contrast, the model for peat swamp forest had a 

very low R2 of 0.32. Here, only a single variable (50th percentile) was sufficient for 

biomass prediction. When all sample plots were put together, R2 is accordingly lower 

(0.71) than that of lowland dipterocarp forest due to the low results for peat swamp 

forest. The subsequent application of the regression models to complete LiDAR 

tracks demonstrated the ability of this approach to monitor not only deforestation but 

especially forest degradation and its variability at high spatial resolution. This clearly 

is an advantage to indirect AGB estimations where AGB values are attributed to land 



CHAPTER VII 

164 
 

cover types not considering spatial variability within these land covers. As shown by 

the comparison of Landsat and LIDAR analysis, Landsat classification tends to 

overestimate biomass as it neither detects degraded forest from small-scale logging 

activities and selective logging, nor from logging in past decades. By only analyzing 

spectral information, large areas of forest are assigned to be one class. Thereby, the 

negative impact of named logging activities an AGB or carbon content is neglected. 

In CHAPTER IV the LIDAR 3D point clouds statistics were correlated to the 

corresponding ground-based AGB from the nested plot samples. 36 sample plot 

centers were expanded by a circle with a radius of 20m. These areas were used to 

clip the LiDAR 3D point clouds. Additionally to the metrics mentioned above the 

Quadratic Mean Canopy profile Height (QMCH) (Lefsky et al., 2002a) and the 

Centroid of the LiDAR point cloud height histogram (CL) were used as predictors. 

The best overall predictor of AGB was the CL. The model could further be enhanced 

through incorporating the average LiDAR point density per square meter per sample 

plot of all LiDAR points. Sample plots with a higher average LiDAR point density per 

square meter were weighted higher during the computation of the final model. The R2 

value of this model was 0.75 (R2
corr = 0.73, SEE = 2.66t/0.13ha). In CHAPTER VI the 

coefficient of determination could even be improved (R² = 0.88, RMSE = 

13.8t/0.13ha, n = 52) and was comparable with those reported in studies throughout 

various tropical biomes. Here also the regression models could be further improved, 

for both of the LiDAR canopy vertical profile metrics (9% and 8% for CL and QMCH 

respectively) through the use of the LiDAR point densities as weight. In terms of 

correlation coefficient the CL showed a better performance than the QMCH. The 

costs of LiDAR surveying are decreasing, but still relatively high, and are strongly 

related to the desired point density. To assess the influence of the LiDAR point 

density on the estimation of AGB, a rigorous covariance propagation analysis was 

performed. The results of this analysis show that the AGB standard deviation 

decreases significantly with increasing LiDAR point density until approximately 2pt/m2 

and for LiDAR point densities higher than 4pt/m2 no significant standard deviation 

improvement could be observed. These results suggest that expensive LiDAR 

surveying with more than 4pt/m2 are not necessary to achieve reasonable AGB 

regression models but on the other hand surveying with less than 1pt/m2 can lead to 

significant inaccuracies, so that surveying with a point density between 2 and 4pt/m2 

shows the best cost-benefit relation. The CL based regression model was also 
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applied to different LiDAR tracks and showed that it was possible to quantify natural 

AGB variability (linked to soil properties and the duration of water logging) and the 

impact of previous logging operation and fire with high spatial resolution. Variability 

could be also be detected in low AGB ranges. Further the results of the LiDAR AGB 

estimates were compared with an indirect Landsat based classification approach, in 

which each class was linked to a single biomass value, determined from a regional 

biomass database. Here the Landsat classification showed an overestimation of 

60.8% for a 2,987,726ha study area. This can again be explained due to the fact that 

the Landsat classification neither detects degraded forest from small-scale logging 

activities and selective logging, nor from logging in past decades. These AGB 

overestimations can lead to significantly wrong emission estimates and 

compensation payments. In CHAPTER IV a multiple linear regression analysis was 

applied to create ICESat/GLAS AGB estimation models through correlating 

ICESat/GLAS height metrics to AGB estimates derived from the airborne LiDAR 

regression models. Following ICESat/GLAS height metrics were used as predictors: 

last telemetered gate–signal begin (H1), waveform centroid–signal begin (H2), signal 

end–signal begin (H3), signal end–nearest Gaussian peak (H4), last highest 

Gaussian peak–signal begin (H5), last highest Gaussian peak–nearest Gaussian 

peak (H6), and last highest Gaussian peak–waveform centroid (H7). The highest R² 

value of 0.61 (R2
corr = 0.54, SEE = 9.76t/0.13ha, n = 35) was reached through a 

backward multiple regression approach with H1, H2, H4, H6, and H7 as independent 

variables and where the average LiDAR point density per square meter was ≥0.8 

points. The mean difference between the ICESat/GLAS AGB estimation and the 

airborne LiDAR AGB estimation was −2.62t/0.13ha (±10.78t/0.13ha, n = 104). 

However it has to be considered that having multiple waveform derived variables (in 

our case 5) in the same equation may lead to collinearity problems. 

Concluding, it can be stated that the application of airborne LiDAR data succeeded in 

deriving estimates on peat loss for single and multiple fire events in Central 

Kalimantan. Based on this estimates peat fire carbon emissions could be 

extrapolated to the sub district, district, and national level in Indonesia. The findings 

of these analyses resulted in a deeper understanding on the dimension and impact of 

these peat fires on the global carbon cycle and their ecological dynamics. 
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It was also possible to derive large scale AGB estimates and show its spatial 

variability for Central Kalimantan’s peat swamp and lowland diperocarp forests 

through correlating field estimates with airborne LiDAR point cloud metrics, which 

then provides a possible approach as input to future REDD+ projects. Up to date the 

best solution to monitor tropical carbon stocks, at the high resolution monitoring 

agencies and investors demand, would be the continuous mapping of the REDD+ 

project areas with airborne LiDAR data. This approach produces the most accurate 

estimates of forest carbon stocks and their spatial variability, but is not feasible for 

large-scale use due to the relatively high cost of operation. However, in combination 

with satellite data (optical and/or RADAR) airborne LiDAR could be a cost effective 

approach to derive more accurate estimates on carbon densities of these tropical 

forests (Asner et al., 2010; Englhardt et al., 2011). 

Further the results of this study demonstrated the usefulness and robustness of 

ICESat/GLAS data as a sampling tool to extract information on peatlands, which can 

be used as a proxy for peat volume and consequently carbon storage, state and 

structure of peat swamp forests, and peat swamp forest AGB for large inaccessible 

areas at low costs where no systematic sampling has been conducted yet. When 

combined with other data sources (optical satellite imagery, SRTM, and airborne 

LiDAR) ICESat/GLAS data could help to better understand carbon pools in tropical 

peatlands and their spatial distribution across Indonesia and other regions. 

 

2 Future research 

During the course of this thesis several interesting research issues for future 

research beyond the scope of this work evolved. 

Since there were no historical burn depth measurements and only mono-temporal 

airborne LiDAR data available it should be realized that there might be uncertainties 

due to unknown variables such as non-fire subsidence of the peat. In future 

uncertainties could be better estimated and reduced once multi-temporal airborne 

LiDAR will be available (currently a new airborne LiDAR campaign is conducted 

within the investigated area). By comparing the new airborne LiDAR data set to the 

on analyzed here, the results of this study could be re-evaluated and subsidence 

rates across the peatland and within different land covers or in proximity to drainage 
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canals could be spatially estimated in more detail. Due to the geo-statistically (size 

and spatial distribution) not sufficient occurrence of areas that burned more than 

three times no mean peat loss calculations were carried out for these areas. For 

future research it would be of interest how peat loss changes after the third fire event. 

Does the mean peat loss stabilize at a certain depth or does it become less and less 

after every successive fire event? How important is the fuel load on top of the 

peatlands for peat loss after fire? In future these research questions could be 

answered in more detail once multi-temporal airborne LiDAR data will be available. 

When correlating peat loss after different fire events to water table measurements all 

R2 values were lower than 0.29. This shows that no statistical significant correlation 

could be identified here. One explanation for this unexpected weak correlation could 

be that the water table measurements were collected at sites far away from the 

investigated fire scars, so that they might not be a good enough representation of the 

hydrological conditions at the fire scars during the specific fire events. To investigate 

the relation between peat loss and water table level more accurately it would be 

necessary to collect water table measurements near burning peat fires. 

Considering the estimation of AGB values from airborne LiDAR data it would be of 

high importance for the future to generate allometric models from destructive 

sampling, especially for peat swamp forests, so that bias from generic models could 

be decreased. Also the inclusion of the laser pulse intensity might be a helpful 

parameter, implementing it as a weight for each laser point. More sample plots in low 

biomass stands should be established to optimize the regression models because 

most models had problems calculating AGB values for grid cells with obviously low 

biomass. The approach presented in CHAPTER VI through using the CL and 

incorporating LiDAR point densities as weight has a high potential to improve current 

estimates of AGB and carbon stocks across different forest types and degradation 

levels and its spatial variation in these highly inaccessible tropical rainforests. As the 

presented approach is easy to reproduce it would be of interest whether the 

improved results are also observed for other tropical forest ecosystems. 

For future studies it would be beneficial to have a higher number of ICESat/GLAS 

footprints intersecting with LiDAR point clouds with high average point densities. 

Further it would be of interest whether ICESat/GLAS data can be used as a sampling 

tool to screen for peatland in other remote areas, such as the Amazon region or 
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tropical Africa. A systematic sampling with ICESat/GLAS could help to improve the 

knowledge on the spatial extent of peatlands and consequently lead to better 

estimates of this carbon pool 
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alpina), between 1975 - 2005, with Pixel based and Object 
Oriented Classification Methods 

10/1998 – 04/2004 Study of Forestry at the University of Applied Sciences 
Weihenstephan, Germany 
Focal areas 
- Sustainable forest management 
- Economics 
- Wildlife management 
- GIS 
- Statistics 
- Conflict management 
- Practical forest work 
Topic diploma thesis 
Luchsübergriffe auf landwirtschaftliche Wildgehege - 
Bedeutung, Ursachen und Lösungsansätze am Beispiel des 
Naturpark Bayerischer Wald 

 

Employment History 

10/2008 – present Remote Sensing Solutions GmbH, Munich, Germany 
- Research associate and consultant for environmental 

remote sensing 
- Permanent staff 

04/2007 – 09/2008 Ludwig Maximilians University, Munich, Germany 
- Research associate and consultant for environmental 

remote sensing 
- Permanent staff 

02/2006 – 03/2007 Remote Sensing Solutions GmbH, Munich, Germany 
- Research associate and consultant for environmental 

remote sensing 
- Freelancer 

10/2005 – 01/2006 World Agroforestry Centre (ICRAF), Nairobi, Kenya 
- Research fellowship: Project leader for a remote sensing 

study of Mount Kenya’s indigenous pure bamboo 
vegetation (Yushania alpina) 

07/2004 – 09/2004 Bund Naturschutz e.V., Munich, Germany 
- Public relations associate for the petition for a referendum 

against the privatization of the Bavarian forest 
03/2002 – 06/2002 Internship at the forestry office Bodenmais, Germany 

- Planning of forest roads and skid tracks 
- Management and planning of logging operations 
- Wildlife management 
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10/2000 – 02/2000 Internship at the forestry office Altötting, Germany 
- Handling of all necessary practical forestry activities 

 

Work Abroad 

08/2010 – 09/2010 Australian Agency for International Development 
(AUSAID), Central Kalimantan, Indonesia 
- Differential GPS measurements 
- Forest inventory 
- Ground truthing 

01/2008 – 02/2008 Forest Restoration and Rehabilitation in Southeast Asia 
(FORRSA), Northern Thailand 
- Lecturer on remote sensing and GIS 
- Field trip assistance 

08/2007 – 11/2007 LiDAR Study, Central Kalimantan, Indonesia 
- Forest inventory 
- Ground truthing 

07/2007 – 07/2007 Forest Restoration and Rehabilitation in Southeast Asia 
(FORRSA), Bogor, Indonesia 
- Lecturer on remote sensing and GIS 
- Field trip assistance 

05/2007 – 06/2007 South Sumatra Forest Fire Management Project 
(SSFFMP), Palembang, Indonesia 
- International short term expert on remote sensing and GIS 

06/2006 – 07/2006 Forest Restoration and Rehabilitation in Southeast Asia 
(FORRSA), West Java, Indonesia 
- Remote sensing and GIS land cover study 

10/2005 – 01/2006 World Agroforestry Centre (ICRAF), Nairobi, Kenya 
- Research fellowship: Project leader for a remote sensing 

study of Mount Kenya’s indigenous pure bamboo 
vegetation (Yushania alpina) 

 

Lectures 

05/2007 – present Remote Sensing and GIS course, GeoBio Center of the 
Ludwig Maximilians University Munich, Germany 
- Supervisor 

01/2008 – 02/2008 Forest Restoration and Rehabilitation in Southeast Asia 
(FORRSA), Northern Thailand 
- Lecturer on remote sensing and GIS 

07/2007 – 07/2007 Forest Restoration and Rehabilitation in Southeast Asia 
(FORRSA), Bogor, Indonesia 
- Lecturer on remote sensing and GIS 
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Publications in peer-reviewed journals 

Kronseder K, Ballhorn U, Böhm V, Siegert F (2012) Above ground biomass 

estimation across forest types at different degradation levels in Central 

Kalimantan using LiDAR data. International Journal of Applied Earth 

Observations and Geoinformation, 18, 37-48. 

Ballhorn U, Jubanski J, Siegert F (2011) ICESat/GLAS Data as a Measurement Tool 

for Peatland Topography and Peat Swamp Forest Biomass in Kalimantan, 

Indonesia. Remote Sensing, 3, 1957-1982. 

Ballhorn U, Siegert F, Mason M, Limin S (2009) Derivation of burn scar depths and 

estimation of carbon emissions with LiDAR in Indonesian peatlands. 

Proceedings of the National Academy of Sciences of the United States of 

America, 106, 21213-21218. 

 

Publications in preparation for peer-reviewed journals 

Ballhorn U, Jubanski J, Siegert F Pre-fire surface 3D modeling of tropical peatland 

burn scars based on airborne LiDAR in Central Kalimantan, Indonesia. 

Manuscript in preparation for Global Change Biology. 

Jubanski J, Ballhorn U, Kronseder K, Siegert F A new method to estimate tropical 

forest above ground biomass in Central Kalimantan, Indonesia, using airborne 

LiDAR data. Manuscript in preparation for Nature Climate Change. 

 

Conference presentations 

Kronseder K, Ballhorn U, Siegert F (2010) Estimation of Aboveground Biomass 

Across Forest Types at Different Degradation Levels in Central Kalimantan 

(Borneo) using LiDAR and Field Inventory Data. Presentation at the conference 

Tropentag 2010, Zürich, Switzerland, 14th-16th September 2010. Poster 

presentation. 

Kronseder K, Ballhorn U, Siegert F (2010) Estimation of above ground biomass 

across forest types at different degradation levels in Central Kalimantan 

(Borneo) using LiDAR and field inventory data. Presentation at the conference 

ForestSAT 2010, Lugo, Spain, 7th-10th September 2010. Oral presentation. 
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Uryu Y, Mott C, Ballhorn U, Jaenicke J, Budiman A, Siegert F (2009) CO2 Emissions 

from Land Use, Land Use Change, and Forestry (LULUCF) in the Province of 

Riau, Indonesia, from 1990 – 2007. Presentation at the 8th International Carbon 

Dioxide Conference. Jena, Germany, 13th-19th September 2009. Poster 

presentation. 

Ruecker G, Moder F, Siegert F, Ballhorn U, Solichin, Sidiq M (2009) Reducing 

emissions from deforestation and degradation in South Sumatra, Indonesia: a 

remote sensing supported feasibility study. Presentation at the 33rd International 

Symposium on Remote Sensing of Environment. Stresa, Italy, 4th-8th May 2009. 

Oral Presentation. 

Ballhorn U, Siegert F (2009) Derivation of Burn Scar Depths with Airborne Light 

Detection and Ranging (LIDAR) in Indonesian Peatlands. Presentation at 

Conference European Geosciences Union General Assembly 2009. Vienna, 

Austriy, 19th-24th April 2009. Poster presentation. 

 

Other publications 
 

Ballhorn U, Mott C, Siegert F (2007) Peat Dome Mapping & Analysis. Report for the 

South Sumatra Forest Fire Management Project (SSFFMP) (Delegation of the 

European Commission to Indonesia, Singapore and Brunei Darussalam), 

Palembang, Indonesia. 

Ballhorn U (2007) Assessment of the Changes in the Distribution of Mount Kenya’s 

Indigenous pure Bamboo Vegetation (Yushania alpina), between 1975 - 2005, 

with Pixel based and Object Oriented Classification Methods. Master thesis, 

Technical University of Munich, Germany. 

Ballhorn U, Brück-Dyckhoff C (2004) Luchsübergriffe auf landwirtschaftliche 

Wildgehege - Bedeutung, Ursachen und Lösungsansätze am Beispiel des 

Naturpark Bayerischer Wald. Diploma thesis, University of Applied Sciences 

Weihenstephan, Germany. 

 


