10 research outputs found

    Soil sampling automation using mobile robotic platform

    Get PDF
    ArticleLand based drone technology has considerable potential for usage in different areas of agriculture. Here a novel robotic soil sampling device is being introduced. Unmanned mobile technology implementation for soil sampling automation is significantly increasing the efficiency of the process. This automated and remotely controlled technology is enabling more frequent sample collection than traditional human operated manual methods. In this publication universal mobile robotic platform is adapted and modified to collect and store soil s amples from fields and measure soil parameters simultaneously. The platform navigates and operates autonomously with dedicated software and remote server connection. Mechanical design of the soil sampling device and control software is introduced and discu ssed

    Autonomous surveillance for biosecurity

    Full text link
    The global movement of people and goods has increased the risk of biosecurity threats and their potential to incur large economic, social, and environmental costs. Conventional manual biosecurity surveillance methods are limited by their scalability in space and time. This article focuses on autonomous surveillance systems, comprising sensor networks, robots, and intelligent algorithms, and their applicability to biosecurity threats. We discuss the spatial and temporal attributes of autonomous surveillance technologies and map them to three broad categories of biosecurity threat: (i) vector-borne diseases; (ii) plant pests; and (iii) aquatic pests. Our discussion reveals a broad range of opportunities to serve biosecurity needs through autonomous surveillance.Comment: 26 pages, Trends in Biotechnology, 3 March 2015, ISSN 0167-7799, http://dx.doi.org/10.1016/j.tibtech.2015.01.003. (http://www.sciencedirect.com/science/article/pii/S0167779915000190

    Task-based agricultural mobile robots in arable farming: A review

    Get PDF
    In agriculture (in the context of this paper, the terms “agriculture” and “farming” refer to only the farming of crops and exclude the farming of animals), smart farming and automated agricultural technology have emerged as promising methodologies for increasing the crop productivity without sacrificing produce quality. The emergence of various robotics technologies has facilitated the application of these techniques in agricultural processes. However, incorporating this technology in farms has proven to be challenging because of the large variations in shape, size, rate and type of growth, type of produce, and environmental requirements for different types of crops. Agricultural processes are chains of systematic, repetitive, and time-dependent tasks. However, some agricultural processes differ based on the type of farming, namely permanent crop farming and arable farming. Permanent crop farming includes permanent crops or woody plants such as orchards and vineyards whereas arable farming includes temporary crops such as wheat and rice. Major operations in open arable farming include tilling, soil analysis, seeding, transplanting, crop scouting, pest control, weed removal and harvesting where robots can assist in performing all of these tasks. Each specific operation requires axillary devices and sensors with specific functions. This article reviews the latest advances in the application of mobile robots in these agricultural operations for open arable farming and provide an overview of the systems and techniques that are used. This article also discusses various challenges for future improvements in using reliable mobile robots for arable farmin

    Análise de viabilidade de plataforma para controle de seguimento de caminho baseado em GNSS para veículo agrícola

    Get PDF
    Neste trabalho, foi analisada a viabilidade de uma plataforma de controle de baixo custo, projetada e desenvolvida para um veículo agrícola. Essa plataforma busca direcionar e/ou manter o veículo em um caminho previamente definido (path following), através da geração de um sinal de comando para o ângulo de esterçamento das rodas dianteiras. O funcionamento da plataforma é baseado no Sistema de Navegação Global por Satélite (GNSS), do qual se obtêm as coordenadas do veículo usando um receptor de baixo custo acoplado ao mesmo. A partir desse sinal, um modelo no software Simulink compara a posição momentânea do veículo em relação ao caminho previamente definido, e, através da aplicação de uma lei de controle, informa qual o ângulo de esterçamento que deve ser aplicado no veículo para o seguimento do caminho. Foram implementados dois sistemas com diferentes sensores para obter o valor do ângulo de esterçamento: o primeiro utiliza um sensor laser de medição de distância linear; e o segundo, um encoder absoluto. A aplicação da lei de controle ocorreu de forma manual, visto que não estava prevista na proposta do trabalho a disponibilidade de um atuador automático. Cinco experimentos foram realizados, nos quais se estudou a estabilidade da resposta do sistema, bem como a influência da variação da velocidade no desempenho do sistema de controle. Verificou-se que tanto o sistema que utiliza o encoder, quanto o que utiliza o sensor laser apresentaram estabilidade e convergência para o caminho de referência definido, mas o desvio lateral médio encontrado foi de até 2,564 em relação à referência em regime estacionário, o que ocorreu principalmente devido às simplificações de modelagem e os equipamentos de baixo custo utilizados. Portanto, apesar de funcional, a plataforma não apresenta viabilidade para aplicação na Agricultura de Precisão, pois não apresenta a acurácia necessária para este fim.In this paper, the viability of a low-cost control platform, designed and developed for an agricultural vehicle, was analyzed. The aim of this platform is to direct and/or to keep the vehicle on a previously defined path (path following) by generating a command signal for the front wheels’ heading angle. The operation of the platform is based on the Global Navigation Satellite System (GNSS), which provides the vehicle coordinates to a low-cost receiver attached on it. Taking this signal, a model on Simulink compares the vehicle’s instantaneous position relating to the (previously defined) reference path, and, through the application of a control law, informs the front wheel heading angle that must be applied on the vehicle for path following. Two systems were implemented with different sensors to read the wheel heading angle: the first uses a linear distance measuring laser sensor, and the second uses an absolute encoder. The input of the control law on the vehicle occurred manually, since an automatic actuator was not available for this work. Five experiments were accomplished in order to evaluate the system response stability as well as the velocity influence on system performance. It was verified that both platforms (based on the encoder and on the laser sensor) were stable and converged to the defined reference path, but both presented an average lateral deviation up to 2,564 on steady state, which appeared mainly due to the modeling assumptions and low-cost devices that were acquired. Therefore, although the control platform was functional, its use is not pointed as a viable application on Precision Agriculture, because the platform does not present the demanded accuracy for this purpose

    FLEX-RO: DESIGN, IMPLEMENTATION, AND CONTROL OF SUBASSEMBLIES FOR AN AGRICULTURAL ROBOTIC PLATFORM

    Get PDF
    Automation technology in agriculture is growing, making agricultural robotics viable. Innovative field usable multi-purpose robotic platforms are needed for the successful progression of agricultural robotics. Furthermore, the field of agricultural robotics would benefit from a robotic platform design allowing for variable height, thus accommodating navigation throughout various crop growth stages. A variable height machine, Flex-Ro was developed to accommodate this feature. Multiple sub-assemblies were designed and implemented for Flex-Ro. An electronic control unit (ECU) enabled engine was used to power Flex-Ro. An embedded application program was developed to control engine speed using proprietary Controller Area Network (CAN) messages in conjunction with J1939 standard messages. It was observed that the maximum standard deviation from the requested set speed was 8.423 rpm. A hydrostatic transmission system was designed and implemented on Flex-Ro. An embedded application program was developed for controlling the pumps and motors of the hydrostatic transmission utilizing proprietary CAN messages. Additionally, the embedded controller operated a Control Cut Off (CCO) that regulated flow to the spring applied motor brakes and the Electronic Displacement Control (EDC) which controls pump flow. Based on the motor speed data collected, it was observed that an increase in deviation occurred as the operational speed increased with a minimum standard deviation of 6.98 rpm at 50 RPM and a maximum standard deviation of 36.13 rpm at 156 RPM. The measured data should be used in developing further higher level control programs. A vertically adjustable frame was developed to allow Flex-Ro to enter crops at various growth stages. A steering system was developed and programmed to allow for steering control through the CAN bus again using proprietary CAN messages. Lastly, a remote control program was developed to allow messages to be created and wirelessly transmitted to Flex-Ro’s CAN bus for teleoperation. Sub-assemblies of Flex-Ro will be further developed for fully autonomous navigation, and performing various field operations. Advisor: Santosh Pitl

    FLEX-RO: DESIGN, IMPLEMENTATION, AND CONTROL OF SUBASSEMBLIES FOR AN AGRICULTURAL ROBOTIC PLATFORM

    Get PDF
    Automation technology in agriculture is growing, making agricultural robotics viable. Innovative field usable multi-purpose robotic platforms are needed for the successful progression of agricultural robotics. Furthermore, the field of agricultural robotics would benefit from a robotic platform design allowing for variable height, thus accommodating navigation throughout various crop growth stages. A variable height machine, Flex-Ro was developed to accommodate this feature. Multiple sub-assemblies were designed and implemented for Flex-Ro. An electronic control unit (ECU) enabled engine was used to power Flex-Ro. An embedded application program was developed to control engine speed using proprietary Controller Area Network (CAN) messages in conjunction with J1939 standard messages. It was observed that the maximum standard deviation from the requested set speed was 8.423 rpm. A hydrostatic transmission system was designed and implemented on Flex-Ro. An embedded application program was developed for controlling the pumps and motors of the hydrostatic transmission utilizing proprietary CAN messages. Additionally, the embedded controller operated a Control Cut Off (CCO) that regulated flow to the spring applied motor brakes and the Electronic Displacement Control (EDC) which controls pump flow. Based on the motor speed data collected, it was observed that an increase in deviation occurred as the operational speed increased with a minimum standard deviation of 6.98 rpm at 50 RPM and a maximum standard deviation of 36.13 rpm at 156 RPM. The measured data should be used in developing further higher level control programs. A vertically adjustable frame was developed to allow Flex-Ro to enter crops at various growth stages. A steering system was developed and programmed to allow for steering control through the CAN bus again using proprietary CAN messages. Lastly, a remote control program was developed to allow messages to be created and wirelessly transmitted to Flex-Ro’s CAN bus for teleoperation. Sub-assemblies of Flex-Ro will be further developed for fully autonomous navigation, and performing various field operations. Advisor: Santosh Pitl

    Mit autonomen Landmaschinen zu neuen Pflanzenbausystemen

    Get PDF
    Ziel des Projektes war es, Szenarien zu künftigen Pflanzenbausystemen auf Basis autonomer Landmaschinen zu entwickeln und Fragestellungen für künftige Gestaltung dieses Forschungsfeldes abzuleiten. Es wurde untersucht, wie derzeitige Entwicklungen in den Bereichen Automatisierung und Digitalisierung genutzt werden können, um heutige Pflanzenbausysteme weiterzuentwickeln und nachhaltiger zu gestalten. In einem ersten Schritt wurde hierfür ein Szenario mit autonomen Großmaschinen entwickelt und bewertet. Es zeigt sich, dass aus rechtlichen und technischen Gesichtspunkten mit Ausnahme der Ernte alle Verfahrensschritte autonom darstellbar sind. Allerdings ergaben sich sowohl ökonomisch als auch pflanzenbaulich keine wesentlichen Verbesserungen im Vergleich zu heutigen Verfahren. In einem zweiten Schritt wurde daher ein Szenario für die Weizenproduktion mit kleinen autonomen Landmaschinen konzipiert. Hierfür wurden die Anforderungen der Maschinen aus dem Pflanzenbau abgeleitet. Als wichtige Kennwerte wurden der Leistungsbedarf, das Gewicht oder die Flächenleistung der Maschinenkonzepte abgeleitet und ökonomisch bewertet. Hierfür wurden auf Basis der künftig zu erwartenden Herstellungskosten der Ma-schinen, der voraussichtlich verfügbaren Feldarbeitstage, die Anzahl erforderlicher Kleinmaschinen sowie deren Kosten abgeleitet. Es zeigte sich, dass die Arbeitserledigungskosten der Kleinmaschinen auf Niveau heutiger Kosten liegen können. Aus pflanzenbaulicher Sicht gilt es künftig zu untersuchen, welche Pflanzen wie auf dem Acker kombiniert werden sollten. Aus technischer und ökonomischer Sicht ist die optimale Maschinengröße einzelner Verfahren zu klären. Weiterhin sollte untersucht werden, ob ein modularer Aufbau der Kleinroboter realisiert werden kann, um einzelne Bauteile in verschiedenen Verfahren einsetzen zu können und die Maschinenkosten weiter zu senken

    Digitalisierung der Landwirtschaft: technologischer Stand und Perspektiven. Teil I des Endberichts zum TA-Projekt

    Get PDF
    Die Digitalisierung führt aktuell zu grundlegenden Umgestaltungen ganzer Lebens- und Wirtschaftsbereiche – auch die Landwirtschaft ist davon nicht ausgenommen. Viele innovative Agrartechnologien, die wesentlich auf digitaler Datenverarbeitung beruhen, sind bereits praxisreif oder in fortgeschrittener Entwicklung – etwa satellitengesteuerte Landmaschinen, Sensor- und Applikationstechniken mit variabler Dosierung von Dünge- und Pflanzenschutzmitteln oderRoboter für Melk-, Fütterungs- und Entmistungsvorgänge. Digitale Anwendungen erfassen große Mengen an Prozessdaten und bilden so die Grundlage für eineweitreichende Digitalisierung der landwirtschaftlichen Produktion. Angesichts der großen Erwartungen, die mit dieser Entwicklung verknüpftsind, wurde das TAB vom Ausschuss für Bildung, Forschung und Technikfolgenabschätzung beauftragt, den Stand und die Perspektiven der Digitalisierung in der Landwirtschaft zu untersuchen. Die dazugehörige TA-Analyse gliedert sich in zwei Teile: Der vorliegende TAB-Arbeitsbericht Nr. 193 gibt einen Überblick über Entwicklungsstand, Anwendungsmöglichkeiten und Tendenzen digitaler Agrartechnologien in den vier zentralen Technikfeldern Sensoren, Landmaschinen, Drohnen und Roboter. Der TAB-Arbeitsbericht Nr. 194 widmet sich dagegen der systemisch vernetzten Landwirtschaft und es wird eine vertiefende Analyse der damit verbundenen Chancen und Risiken vorgenommen
    corecore