318 research outputs found

    Viability of Numerical Full-Wave Techniques in Telecommunication Channel Modelling

    Get PDF
    In telecommunication channel modelling the wavelength is small compared to the physical features of interest, therefore deterministic ray tracing techniques provide solutions that are more efficient, faster and still within time constraints than current numerical full-wave techniques. Solving fundamental Maxwell's equations is at the core of computational electrodynamics and best suited for modelling electrical field interactions with physical objects where characteristic dimensions of a computing domain is on the order of a few wavelengths in size. However, extreme communication speeds, wireless access points closer to the user and smaller pico and femto cells will require increased accuracy in predicting and planning wireless signals, testing the accuracy limits of the ray tracing methods. The increased computing capabilities and the demand for better characterization of communication channels that span smaller geographical areas make numerical full-wave techniques attractive alternative even for larger problems. The paper surveys ways of overcoming excessive time requirements of numerical full-wave techniques while providing acceptable channel modelling accuracy for the smallest radio cells and possibly wider. We identify several research paths that could lead to improved channel modelling, including numerical algorithm adaptations for large-scale problems, alternative finite-difference approaches, such as meshless methods, and dedicated parallel hardware, possibly as a realization of a dataflow machine

    PGPG: An Automatic Generator of Pipeline Design for Programmable GRAPE Systems

    Get PDF
    We have developed PGPG (Pipeline Generator for Programmable GRAPE), a software which generates the low-level design of the pipeline processor and communication software for FPGA-based computing engines (FBCEs). An FBCE typically consists of one or multiple FPGA (Field-Programmable Gate Array) chips and local memory. Here, the term "Field-Programmable" means that one can rewrite the logic implemented to the chip after the hardware is completed, and therefore a single FBCE can be used for calculation of various functions, for example pipeline processors for gravity, SPH interaction, or image processing. The main problem with FBCEs is that the user need to develop the detailed hardware design for the processor to be implemented to FPGA chips. In addition, she or he has to write the control logic for the processor, communication and data conversion library on the host processor, and application program which uses the developed processor. These require detailed knowledge of hardware design, a hardware description language such as VHDL, the operating system and the application, and amount of human work is huge. A relatively simple design would require 1 person-year or more. The PGPG software generates all necessary design descriptions, except for the application software itself, from a high-level design description of the pipeline processor in the PGPG language. The PGPG language is a simple language, specialized to the description of pipeline processors. Thus, the design of pipeline processor in PGPG language is much easier than the traditional design. For real applications such as the pipeline for gravitational interaction, the pipeline processor generated by PGPG achieved the performance similar to that of hand-written code. In this paper we present a detailed description of PGPG version 1.0.Comment: 24 pages, 6 figures, accepted PASJ 2005 July 2

    High precision electric gate for time-of-flight ion mass spectrometers

    Get PDF
    A time-of-flight mass spectrometer having a chamber with electrodes to generate an electric field in the chamber and electric gating for allowing ions with a predetermined mass and velocity into the electric field. The design uses a row of very thin parallel aligned wires that are pulsed in sequence so the ion can pass through the gap of two parallel plates, which are biased to prevent passage of the ion. This design by itself can provide a high mass resolution capability and a very precise start pulse for an ion mass spectrometer. Furthermore, the ion will only pass through the chamber if it is within a wire diameter of the first wire when it is pulsed and has the right speed so it is near all other wires when they are pulsed

    Design and Implementation of a Stepped Frequency Continuous Wave Radar System for Biomedical Applications

    Get PDF
    There is a need to detect vital signs of human (e.g., the respiration and heart-beat rate) with noncontact method in a number of applications such as search and rescue operation (e.g. earthquakes, fire), health monitoring of the elderly, performance monitoring of athletes Ultra-wideband radar system can be utilized for noncontact vital signs monitoring and tracking of various human activities of more than one subject. Therefore, a stepped-frequency continuous wave radar (SFCW) system with wideband performance is designed and implemented for Vital signs detection and fall events monitoring. The design of the SFCW radar system is firstly developed using off-the-shelf discrete components. Later, the system is implemented using surface mount components to make it portable with low cost. The measurement result is proved to be accurate for both heart rate and respiration rate detection within ±5% when compared with contact measurements. Furthermore, an electromagnetic model has been developed using a multi-layer dielectric model of the human subject to validate the experimental results. The agreement between measured and simulated results is good for distances up to 2 m and at various subjects’ orientations with respect to the radar, even in the presence of more than one subject. The compressive sensing (CS) technique is utilized to reduce the size of the acquired data to levels significantly below the Nyquist threshold. In our demonstration, we use phase information contained in the obtained complex high-resolution range profile (HRRP) to derive the motion characteristics of the human. The obtained data has been successfully utilized for non-contact walk, fall and limping detection and healthcare monitoring. The effectiveness of the proposed method is validated using measured results

    Tackling Exascale Software Challenges in Molecular Dynamics Simulations with GROMACS

    Full text link
    GROMACS is a widely used package for biomolecular simulation, and over the last two decades it has evolved from small-scale efficiency to advanced heterogeneous acceleration and multi-level parallelism targeting some of the largest supercomputers in the world. Here, we describe some of the ways we have been able to realize this through the use of parallelization on all levels, combined with a constant focus on absolute performance. Release 4.6 of GROMACS uses SIMD acceleration on a wide range of architectures, GPU offloading acceleration, and both OpenMP and MPI parallelism within and between nodes, respectively. The recent work on acceleration made it necessary to revisit the fundamental algorithms of molecular simulation, including the concept of neighborsearching, and we discuss the present and future challenges we see for exascale simulation - in particular a very fine-grained task parallelism. We also discuss the software management, code peer review and continuous integration testing required for a project of this complexity.Comment: EASC 2014 conference proceedin

    Advanced measurement systems based on digital processing techniques for superconducting LHC magnets

    Get PDF
    The Large Hadron Collider (LHC), a particle accelerator aimed at exploring deeper into matter than ever before, is currently being constructed at CERN. Beam optics of the LHC, requires stringent control of the field quality of about 8400 superconducting magnets, including 1232 main dipoles and 360 main quadrupoles to assure the correct machine operation. The measurement challenges are various: accuracy on the field strength measurement up to 50 ppm, harmonics in the ppm range, measurement equipment robustness, low measurement times to characterize fast field phenomena. New magnetic measurement systems, principally based on analog solutions, have been developed at CERN to achieve these goals. This work proposes the introduction of digital technologies to improve measurement performance of three systems, aimed at different measurement target and characterized by different accuracy levels. The high accuracy measurement systems, based on rotating coils, exhibit high performance in static magnetic field. With varying magnetic field the system accuracy gets worse, independently from coil speed, due to the limited resolution of the digital integrator currently used, and the restrictions of the standard analysis. A new integrator based on ADC conversion and numerical integration is proposed. The experimental concept validation by emulating the proposed approach on a PXI platform is detailed along with the improvements with respect to the old integrators. Two new analysis algorithms to reduce the errors in dynamic measurements are presented. The first combines quadrature detection and short time Fourier transform (STFT) of the acquired magnetic flux samples; the second approach is based on the extrapolation of the magnetic flux samples. Unlike other algorithms presented in the literature, both the proposals do not require the information about the magnet current and are able to work in real time so, can be easily implemented in firmware on DSP. The performance of the new proposals are assessed in simulation. As far as medium accuracy systems are concerned, at CERN was originally developed a probe to measure the sextupolar and decapolar field harmonics of the superconducting dipoles using a suitable Hall plates arrangement for the bucking of the main dipolar field, which is, 4 orders of magnitude higher than the measurement target. The output signals of each Hall plate belonging to the same measurement ring are mixed using analog cards. The resultant signal is proportional to the field harmonic to measure. A complete metrological characterization of this sensor was carried out, showing the limitation of a fully analog solution. The main problems found were the instability of the analog compensation cards and the impossibility to correct the non linearity effects beyond the first order. An automatic calibration procedure implemented in the new instrument software is presented to guarantee measurement repeatability. In alternative a digital bucking solution, namely the compensation of the main field after the sampling of each hall plate signal by means of numerical sum, is proposed. An implementation of this approach, based on 18 bit ADC converter, over-sampling and dithering techniques as well as compensation of the Hall plates non linearity in real time is analyzed. Finally, as far as the low accuracy measurement systems are concerned, the design of an instrument based on a rotating Hall plate to check the polarity of all LHC magnets is presented. Even if this architecture is characterized by low accuracy in the measurement of field strength and phase, the results are sufficient to identify main harmonic order, type and polarity with practically no errors, thanks to an accurate definition of the measurement algorithm. A complete metrological characterization of the prototype developed and a correction of all the systematic measurement errors was carried out. This instrument, integrated in a test bench developed ad hoc, is become the standard at CERN for the polarity test of all the magnets will compose the machine
    corecore