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Abstract—In telecommunication channel modelling the wave-
length is small compared to the physical features of interest,
therefore deterministic ray tracing techniques provide solutions
that are more efficient, faster and still within time constraints
than current numerical full-wave techniques. Solving funda-
mental Maxwell’s equations is at the core of computational
electrodynamics and best suited for modelling electrical field in-
teractions with physical objects where characteristic dimensions
of a computing domain is on the order of a few wavelengths
in size. However, extreme communication speeds, wireless access
points closer to the user and smaller pico and femto cells will
require increased accuracy in predicting and planning wireless
signals, testing the accuracy limits of the ray tracing methods.
The increased computing capabilities and the demand for better
characterization of communication channels that span smaller ge-
ographical areas make numerical full-wave techniques attractive
alternative even for larger problems. The paper surveys ways
of overcoming excessive time requirements of numerical full-
wave techniques while providing acceptable channel modelling
accuracy for the smallest radio cells and possibly wider. We
identify several research paths that could lead to improved
channel modelling, including numerical algorithm adaptations
for large-scale problems, alternative finite-difference approaches,
such as meshless methods, and dedicated parallel hardware,
possibly as a realization of a dataflow machine.

Index Terms—Radio wave propagation, far-field computation,
signal prediction, full wave methods, numerical methods.

I. INTRODUCTION

COMPREHENSIVE understanding of radio wave propa-
gation is essential to any further development of wireless

networks. Ultra-dense ultra-reliable and low latency commu-
nications of the 6G vision, massive antenna systems, highly
dynamic mobility, location aware communications, widespread
use of artificial intelligence, shift toward higher frequency
bands—all these aspects and concepts require better knowl-
edge of radio wave propagation. The topic has already been a
subject of long-term research since the appearance of wireless
communications. The empirical models are still pervasive
in wireless coverage planning; however, they do not allow
modelling of channel spatial and temporal characteristics in
the required levels of details (MIMO, UWB, DSSS, OFDM).
More advanced deterministic models that include only a subset
of the propagation environment elements are of limited use as
well and do not guarantee the continued increase of wireless
systems data rates, throughput and reliability.
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Multipath propagation leads to signal delay spread. Direc-
tion of arrival is important for antenna systems. These and
similar parameters are readily available in advanced deter-
ministic models, which take into account detailed knowledge
of the environment geometry. Over the past decade, models
based on Geometric Optic (GO) have become popular for
electromagnetic wave propagation prediction. Deterministic
in nature, ray tracing algorithms can be only conditionally
characterized as full-wave techniques if they do not include
some sort of calibration to measurements. However, high-
frequency approximation, where rays mimic narrow beams of
light, has significant deviations from radio frequency diffrac-
tion and scattering behavior [1], [2]. Geometric theory of
diffraction improves the accuracy to a certain degree. On
the other hand, scattering has significant impact on indoor
propagation but no appropriate ray tracing approximation. In
general, any ray tracing extension either brings significant
processing burden, limiting its use to small geometries or
requires two-dimensional simplification.

On the other hand, when the problem is in the order of
tens of wavelengths, modelling based on numerical full-wave
techniques dominates. The full-wave techniques are centered
on Maxwell’s partial differential equations of electrodynamics,
which represent one of the most outstanding achievements
of the 19th century physics. The unification of electric and
magnetic field by four equations and the prediction of elec-
tromagnetic waves were undoubtedly the breakthrough points
in science. Numerical solutions to these equations are funda-
mental tool in the development of electronics, communication
devices, computers, lasers, antenna systems and many other
fields with problems of similar scale. Further, the last decade
has seen introduction of full-wave techniques in the classical
telecommunication modelling, which goes beyond several hun-
dred wavelengths limit. Most of the proposals are constrained
to two-dimensional geometries with many simplifications due
to the extraordinary computing demands.

Finite-difference time-domain (FDTD) methods and many
other numerical full-wave techniques encapsulate all interac-
tions of electromagnetic waves with matter, such as refraction,
reflection, diffraction or scattering, with computational com-
plexity being independent of the effect, its direction or the
number of repetitions. This cannot be said for all analytical
approaches, including many full-wave techniques. For exam-
ple, integral equations cannot handle atmospheric conditions
or urban architecture [3]–[5]. The use of parabolic equations
is limited by the propagation angle from the paraxial direction
[6]. Atmospheric conditions also cannot be accounted for
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in already mentioned ray tracing techniques, which have in
general difficulties modelling curved surfaces, terrain profile
or consequent diffraction phenomena [7].

Acceleration of the full-wave techniques for their greater
acceptability in electrically large problems is an alternative to
accuracy improvements of existing empirical or deterministic
models. Such an approach would require further adaptations
of numerical methods that fully account for the propagation
effects and rigorously capture the physics of wireless links.
The paper surveys ways of overcoming excessive time re-
quirements of numerical full-wave techniques while provid-
ing acceptable channel modelling accuracy for the smallest
radio cells and possibly wider. Our attention is on complex
geometries with many materials. Three different research paths
are identified: numerical algorithm adaptations for large-scale
problems, alternative finite-difference approaches, such as
meshless methods, and dedicated parallel hardware, including
dataflow machines.

In the following, Section II gives a short overview of tradi-
tional channel modelling, including stochastic, empirical and
ray-tracing models. Finite-difference time-domain methods are
studied in Section III. Non-FDTD techniques are discussed in
Section IV. Hardware acceleration of numerical procedures
can, at least to some extent, scale the size of viable problems.
The review of approaches and related problems is given in Sec-
tion V. We briefly discuss the subject of accurate environment
modelling in Section VI. The prospective concepts for wider
use of numerical full-wave techniques in telecommunication
channel modeling are summarized in Section VII, followed by
the conclusion in Section VIII.

II. TRADITIONAL CHANNEL MODELLING

Telecommunication channel modelling has a rich history
with numerous literature references. Chronologically, the mod-
elling techniques progressed from stochastic and empirical
models towards highly deterministic ray tracing approaches.

A. Stochastic and Empirical Models

General overview of the radio propagation models can be
found in COST 273 report [8]. Stochastic models are based
on the expected signal averages in distinct classes of envi-
ronments. On the other hand, empirical models aim at more
diverse propagation environments [9], [10]. They approximate
radio channels by parametric functions based on extensive
measurements and generally include path loss expression with
an environment-specific path loss exponent [11]. Well known
in this category are Ikegami, Wallfisch and Hata models [12]–
[14]. Time domain characteristics, the RMS delay spreads and
the angle of arrival have been integrated in the models by Saleh
and Valenzuela [15]. Short computation time of the empirical
models is offset by large prediction errors, especially in the
heterogeneous environments.

B. Geometrical Optics

Ray tracing is highly deterministic channel modelling, as
opposed to the empirical approach. It allows advanced channel

characteristics evaluation, such as delay spread or direction of
arrival, at the cost of higher processing efforts. Based on the
principles of geometrical optics, the method effectively traces
a large number of rays from the transmitting source in all
directions into the scene. The concept of a reception sphere
is usually needed to detect rays passing by the receivers [16],
[17]. The algorithms from this group refer to the principle as
ray launching [18], ray shooting and bouncing (SBR) [19],
pincushion method [20] or more elaborated ray-tube [21]
and beam tracing [22], the latter aggregating rays to reduce
computational complexity and effectively converging to the
second approach, known as the method of images [23]. Hybrid
methods [24] and Gaussian beam tracking [25] are building
on the further improvements of image theory.

The common denominator of all ray tracing algorithms is
high frequency approximation of propagating waves, where
a single ray mimics behavior of a thin beam of light. The
simplification most notably affects the accuracy of diffraction
modelling, which is negligible for many practical purposes at
optical frequencies [26]. Geometrical Theory of Diffraction
(GTD) introduces diffracted rays in order to approximate
Maxwell’s equations at the edge of two conducting half-
planes [1] with obvious discontinuity between the incident and
reflected shadow areas. The Uniform Theory of Diffraction
(UTD), proposed by Kouyoumjian and Pathak [2], makes the
transition smoother. The UTD has been afterwards extended
to handle diffraction edges with finite conductivity [27], [28].

The discrete nature of rays with no thickness shows a
weakness in the aggregation step of general ray tracers where
nearby rays to the observation point need to be differentiated
based on the sequences of previously encountered interactions.
The space- and time-consuming task constrains the algorithm
either to smaller geometries or to channel modelling with
a significant number of double-counting errors. In previous
work, the author proposed Bloom filters configured with
marginal false-positive rate as a replacement of the exact
wavefront differentiation with substantial computation gains
[7].

Accurate ray tracing in indoor environments is predicated
on the appropriate handling of diffuse scattering [17], [29]–
[31]. Geometrical optics has no satisfying solution to the
problem. Several new approaches [29], [31] try to alleviate
the shortcoming, all by significantly increasing processing load
and running time [17].

Ray tracing is considered frequency domain approach. On
the other hand, Time Domain Geometrical Optics (TDGO) is
promising alternative for wideband simulations [32]; however
the method has not achieved as much attention as its frequency
counterpart.

III. FINITE-DIFFERENCE TIME-DOMAIN METHODS

The Finite-Difference Time-Domain (FDTD) method is
arguably the simplest full-wave technique. It was proposed
by Kane Yee, who discretized Ampere’s and Faraday’s laws
by the second-order central differences in 1966 [33]. The
method is an explicit finite difference method. For example,
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the Faraday’s law for the propagation in one-dimensional space
along x-direction simplifies to

−µ∂Hy

∂t
= −ây

∂Ez

∂x
, (1)

where µ is permeability and ây denotes a unit vector pointing
in y-direction. On the other hand, Ampere’s law can be written
as

ε
∂Ez

∂t
= âz

∂Hy

∂x
, (2)

with ε being permittivity of propagation space and âz a unit
vector pointing in the direction of a magnetic field. Central-
difference approximation gives rise to discrete equations
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where ∆x is the spatial grid distance and ∆t is the time
interval between computations at the same spatial location.
The field values are indexed in space by m and in time by q.

The Courant-Friedrich-Levy (CFL) restriction of space to
time ratio is mainly to blame for the high computational
demands. Hence, the first applications were bounded to elec-
trically small problems. The simplicity of a single computation
step, which depends only on the values of immediate neigh-
bors, is affected by complex boundary conditions. The simplest
Absorbing Boundary Condition (ABC) is formulated on the
notion of perfect impedance matching. The ABCs typically
require several layers of specialized nodes in space [34]–[39].
Bounding conditions are active field of research with numerous
proposals in the last several decades.

Error sources of the finite-difference full-wave techniques
are well understood and mathematically explained. High com-
putational complexity and progressive accumulation of errors
with increasing propagation distance are the fundamental
limitations. That is, numerical solutions either are inherently
approximate due to the computer finite precision or because
of approximations needed to derive numerical algorithm. Iter-
ations lead to accumulation of delay or phase errors, which
show as nonphysical phenomena, such as anisotropy, broad-
ening and ringing of pulses, imprecise wave cancellations and
virtual refractions. The exception is one-dimensional variant of
the problem, where under proper conditions exact computation
is possible. Numerical dispersion can be reduced to any
degree by finer computational grid; however, this reduction
has limited practical value. Discretization artefacts disappear
only in the limit with finer meshes providing mostly theoretical
way to control the error in large-scale simulations. Time
limitations quickly prevent computation in any reasonable
time frame. Therefore, numerical acceleration and balanced
error handling are two key tasks that need to be faced while

addressing problem sizes found in wireless communications.
Numerical dispersion and instability are not the consequence
of calculations in finite precision, but rather property of the
finite difference approximation.

A. Handling Large-Scale Numerical Dispersion

Numerous proposals exist to alleviate dispersion problem.
For example, the increase in permittivity and permeability
helps to shift phase-velocity curve in a way to fit better
average signal propagation, thus reducing dispersion problem
for narrowband simulations. Dispersion depends on frequency
as well as on propagation direction, i.e., anisotropy, and
basically lowers phase velocity. Using fourth-order differences
for the spatial first-derivatives to implement the curl operator
significantly reduces dispersion at the cost of increased pro-
cessing time [40]. However, in this case, material disconti-
nuities require special boundary conditions. In [41] a smooth
continuous function is used to reduce discontinuity problem.
Alternative to the above techniques is to modify lattice ge-
ometry. Anisotropy significantly reduces if regular hexagonal
grid is used in two dimensions [42] or, when extended to three
dimensions, more complex tetra decahedron/dual-tetrahedron
mesh. Leading second-order error term compensates across the
grid, thus placing hexagonal grid on par with the fourth-order
spatial algorithms, while keeping dependence exclusively on
neighboring nodes and avoiding already mentioned problem of
material discontinuities. Use of hexagonal grids in telecommu-
nication geometries is still largely work-in-progress.

On the other hand, meshless alternatives with arbitrarily
distributed computation nodes [43]–[45] are largely at the
proof-of-concept stage. In principle, numerical methods based
on regular grids have meshless alternative with better mod-
elling of irregular geometries and arbitrarily distribution of
computation nodes. The topic of meshless differential solvers
is highly developed for a number of fields in physics, such as
heat convection and hydrodynamic. The mesh-free smoothed
particle hydrodynamics (SPH) method has already been ap-
plied to the electromagnetic modelling as well. The baseline
concept relies on the representation of a function as a volume
integral of that function multiplied by the Dirac delta pulses.
In approximation, Dirac delta function is replaced by the so-
called smoothing kernel function, i.e., kernel approximation.
If the kernel is an even function, its volume integral is unity,
in the limit converges toward Dirac delta and is compact,
then the approximation is of second order accuracy in terms
of the smoothing length. Kernel approximation simplifies
calculation of spatial derivatives, which translates to kernel
function differentiation. By replacing the integral with a sum,
infinitesimal volumes are changed to discrete volumes, i.e.,
particle approximation. The above principles were already
used to evaluate spatial steps, while time stepping remains as
in Yee algorithm. High computing complexity of kernel ap-
proximation and the need to access more than just immediate
neighbors raise some concerns about the method viability for
large geometries, which should be properly addressed in the
future.

R. NOVAK: PROSPECTS OF NUMERICAL FULL-WAVE TECHNIQUES 271



B. Coping with Instability

An attempt to accelerate simulations by using larger time
steps in large geometries is thwarted by numerical instability
of the baseline algorithm. In practice, instability shows as ex-
ponentially growing fast oscillations. Classical Yee algorithm
is constrained by the temporal to spatial step ratio, which is
commonly known as the CFL limit. The problem geometry
confines the spatial step, which through CFL ratio fixes the
time step. The total number of time steps follows from the
required observation time and has tendency to expand quickly
out of acceptable boundaries. Alternating-Direction-Implicit
FDTD (ADI FDTD) has offered a way to overcome the
Courant limit already in 1980’s, but only for problems having
a cell size much smaller than the observed wavelength [46]–
[49]. The authors proposed collocated electrical and magnetic
fields in time, as opposed to being staggered, and provided
explicit tridiagonal matrix systems that are not constrained by
the CFL limit. However, numerical dispersion is still present
and keeps growing even above the CFL limit. The time step is
independent from the spatial step, but should be small enough
to resolve the largest spectral components. The ADI FDTD is
opening a new way of solving larger problems. Nevertheless,
it discards fine-grained parallelism of FDTD. Similar approach
is LOD-FDTD (Locally One-Direction FDTD) [50], [51]. R-
FDTD (Reduced FDTD) addresses the problem of excessive
memory requirements [52], but further increases processing
time.

C. Large-Scale Applications

The use of FDTD in telecommunication problems is today
generally limited to two-dimensional modelling with a few
three-dimensional attempts [49], [53], [54]. A combination of
the unconditionally stable algorithm, the fourth-order space
differences and the moving window has already been evaluated
in the context of two-dimensional urban scenario with a
550 m cell radius [41]. The use of moving window with a
pulse excitation source limits processing to the sliding area
with the most energy. It is a promising way to accelerate
simulations over electrically large domains, with examples
including tunnels [55], modelling wave propagation over the
ocean [56] (40 m in three dimensions), and the prediction
of Loran-C 100 kHz Gaussian modulated pulse ground wave
along 400 km long path [57].

IV. OTHER FULL-WAVE TECHNIQUES AND HYBRIDS

The integral form of Maxwell’s equations serves as a
foundation of a numerical solver with very limited applica-
tions to small indoor environments [58], [59]. The approach
does not require explicit boundary conditions. Homogeneous
dielectric or conductive geometries are solved by the surface
integrals [60], whereas inhomogeneous materials require the
use of volume integration [61]. The equations discretization
is based either on Method of Moments (MoM) [60] or on
hybrid Finite-Element Boundary-Integral (FE-BI) [61]. The
computation can be accelerated for larger repetitive geometries
by Array Decomposition-Fast Multipole Method (AD-FMM)
[62]. Volume Electric Field Integral Equation (VEFIE) has

been proposed for three-dimensional geometries, which can be
accelerated either by approximate MultiLevel Fast Multipole
Algorithm (MLFMA) or by the exact Conjugate Gradient-Fast
Fourier Transform (CG-FFT) [58].

Expansion of the FDTD differential formulation in space
with the Deslauriers-Dubuc biorthogonal interpolating func-
tions leads to the Scaling Multi-Resolution Time Domain (S-
MRTD) method [63]–[65]. Accuracy remains comparable to
the FDTD but at lower spatial sampling, which results in up
to 8 times acceleration [64]. However, only two-dimensional
variant has been studied in indoor geometries.

Noteworthy is the generalization of the Transmission Line
Matrix (TLM) method from the electrical circuit design. Its
adaptation to modelling propagation in urban environments
can be considered as a time-domain full-wave method [66].
The principle of flows implicitly models wave reflections
and diffractions. High computational cost is slightly reduced
in its multi-resolution frequency-domain variant MR-FDPF
(Multi-Resolution Frequency Domain Parallel Flow) [67].
Simplifications in three-dimensional space by avoiding low-
impact propagation modes or a combination of multiple two-
dimensional sub problems [68] give approximate solutions that
require calibration. Reducing computation burden by running
simulations at lower frequencies also leads to approximations.

The base premise of the parabolic equation method is
paraxial approximation. Modelled geometry should have a
preferential propagation direction, with important physical
phenomena not occurring at angles greater than 15 degrees
from this direction. Tunnels and other special geometries are
best suited for the parabolic equation [69]. Wider use is
enabled by the relaxation of 15-degree constraint [70], [71].
Numerical solution is, as in FDTD, based on finite differences
and time stepping. Narrow geometries are particularly appro-
priate, with results comparable to the ray tracing approaches.
On the other hand, results more closely resemble those of
empirical models when applied to general geometries [72].

The PSTD (PseudoSpectral Time-Domain) method em-
beds frequency analysis to evaluate spatial derivatives, but
it remains time-domain method [73]. Spatial derivatives are
evaluated exactly for at least two points per wavelength. Time
derivatives still include the second-order error term. Perfectly
matched layer ABC is required to prevent the Fast Fourier
Transform (FFT) periodic behavior to generate additional
errors. However, only geometries made entirely of dielectrics
can be modelled by PSTD, because of the requirement of
continuity of tangential fields, which is clearly violated on
metal surfaces.

Hybrid methods are common compromise between speedier
but less accurate ray tracing and computationally demanding
full-wave techniques. The numerical treatment is performed in
the areas with complex discontinuities or areas with the size of
details close to the simulated wavelength, whereas ray tracing
is used in the rest of geometry. The transition between areas
poses a major challenge. Further, user interaction is needed to
define area partitioning [58], [74], [75]. Due to complexities
involved, hybrid approaches in three dimensions are even rarer
[76], [77].
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Fig. 1. Radio signal reflections and refractions are recursively traversed using
graphic primitives. The illustration shows two snapshots of a framebuffer
object at increasing reflection depth with black-and-white rendering of scene
objects and visible reception points superimposed as red dots.

V. USE OF HARDWARE ACCELERATORS

Wider applicability of full-wave techniques and particularly
the differential ones can be delivered, at least to some extent,
by hardware acceleration. Gate level implementations, graph-
ical accelerators and dataflow computing architectures have
already been proposed in the context of large-scale propagation
modelling; though they are more frequently applied to the
smaller numerical full-wave problems and based on algorithms
that depend only on a small number of neighboring cells.
Solving Maxwell’s equations numerically is generally well
suited to extensive hardware parallelism. Similar trend is
present in the more traditional channel modelling techniques.
For instance, radio signal ray tracing is not much different
from the established methods in computer graphics, which
heavily rely on the hardware acceleration. In previous work,
the author showed that even standard rendering can be used
to accelerate radiofrequency channel modeling [78]. For ex-
ample, Fig. 1 shows modelling of a reception point’s visibility
by rasterization after two consequent reflections.

A. GPU Acceleration

First papers on the dedicated computing architectures for the
acceleration of numerical finite difference methods appeared
shortly after the release of Compute Unified Device Architec-
ture (CUDA) [79]. In 2009, FDTD implementations spanning
entire clusters of CUDA supporting cards emerged [80]. GPU
cluster managed to simulate 3 G cells with the throughput of up
to 13 G cells/s. According to the report, 16-node Acceleware’s
G80 configurations achieved 29 times CPU cluster speed of
comparable size. Optimal time step selection for improved
precision on GPUs near stability limit is examined in [81].
The multi-resolution S-MRTD fits particularly well to GPU
architecture [65] with speed up factor of 30, while the refer-
ence FDTD peaked at 10. The lack of further research for this
method can be attributed to the implementation complexity of
interpolating and pulse basis functions.

Numerous non-telecommunication problems that are being
solved by the FDTD method have been successfully ported
to GPUs, such as TEz-FDTD problem inside piecewise-linear
recursive-convolution dispersive media [82], 3D FDTD hu-
man model for biomedical engineering [83], or the hybrid

implicit-explicit FDTD for the analysis of printed circuit board
shielding [84]. The almost unconditionally stable ADI FDTD
algorithm, which is of particular importance for large-scale
problems, has also been implemented on GPUs [85]. The
efficiencies of fundamental ADI FDTD and of locally one-
dimensional LOD FDTD on GPUs are discussed in [86].
Meshless time domain modelling of bended waveguide was
numerically investigated on GPUs [87] as well.

The actual acceleration depends on the algorithm and
the hardware. Still, not many proposals are targeting large-
scale geometries while being capable of running in multi-
ple dimensions. The reasons can be attributed to the high
memory requirements and to the ever-present communication
bottleneck between the processing cores and the memory.
Furthermore, GPU parameters need to be carefully tuned for
best performance.

B. Gate-Level Acceleration

High regularity and local dependencies make numerical full-
wave techniques attractive for implementations on the gate
level, e.g., in Field-Programmable Gate Arrays (FPGAs) or
even in Application-Specific Integrated Circuits (ASICs). The
finite resources of integrated circuits currently limit existing
proposals to conceptual implementations, smaller or simplified
variants of FDTD. Typical use of fixed-point arithmetic brings
some reduction in accuracy in addition to the already men-
tioned memory bottleneck. Chip-level interconnection archi-
tectures should be investigated further in order to map larger
problems on the available resources and to make better use of
distributed memory schemes. Some attempts have been made
to ease low-level coding by using Open Computing Language
(OpenCL) or to increase the algorithms’ abstraction level by
assuming existence of embedded processor arrays. In the latter
case Single Instruction, Multiple Data (SIMD) principles are
the most promising.

Custom gate-level implementation of one-dimensional
FDTD was already proposed in 2002 [88]. On the other hand,
three-dimensional implementation of Yee algorithm appeared
in 2003 [89]. The conceptual solver for resonant cavity prob-
lem with a small number of cells did not outperform a personal
computer, but revealed limited accuracy due to fixed-point
arithmetic and slow memory access. Detailed investigation
of the fixed-point arithmetic establishes that acceptable error
requires at least 28-bit numbers [90]. Single precision floating-
point implementation is studied in [91]. The conclusion of the
above initial works was that the accurate gate-level implemen-
tation is highly resource demanding.

Increasing memory bandwidth is also a priority of the
FPGA architecture for the 3D FDTD based on Open CL in
[92], [93], where FPGA design at 114 GFLOPS is reported.
According to the authors, 4 times speed-up over GPU was
achieved. Multi-core processor embedded in FPGA is studied
with respect to power efficiency while solving FDTD in [94].
Finally, synchronous data transfers of FPGA SIMD array
processor also minimize data transfer overhead in comparison
to the asynchronous GPU architecture with additional speed-
up benefits [95].

R. NOVAK: PROSPECTS OF NUMERICAL FULL-WAVE TECHNIQUES 273



Memory bottleneck can be avoided to some extent by
switching to dataflow algorithms. The research of the dataflow
full-wave techniques can still be classified as being in the
initial phase. For example, dataflow computer was suggested
in [96]–[99]. Further, Maxeler dataflow extension boards were
exploited in [100] with special attention paid to Dirichlet,
periodic and absorbing boundary conditions.

C. Prospects of Quantum Computing

Substituting classical physics with quantum mechanics is
believed by many to be the next revolution in computing,
although the arguments of skeptics should not be overlooked
[101]. The superposition property of quantum states, where the
system with n qubits can be described by 2n quantum ampli-
tudes, is predicted to enable massive parallelism of a scale
unseen in classical computing. The entanglement of quantum
states will enable new forms of interactions and operations.
The initial theoretical success in applying quantum computing
to cryptanalysis was quickly replicated in other fields, such
as computational chemistry and optimization research. With
respect to the electromagnetic field modeling, a quantum
algorithm was already developed that simulates the wave
equation [102]. That led to the proposal of a quantum based
TLM algorithm [103] for the simulations of electromagnetic
structures. However, a practical quantum acceleration of full-
wave techniques still requires a significant advance in the field,
including overcoming barriers to physical integration. In long
term, we believe that quantum technology has potential to cope
with the enormous computational demands of a larger scale
telecommunication channel modeling.

VI. ENVIRONMENT MODELLING

Increased accuracy of numerical methods is predicated on
having indoor and outdoor geometries that capture significant
level of details, going beyond simple wall and building models
[104]. Additional data should be collected about the shape and
the composition of the objects in the actual scenario, including
indoor objects as small as furniture. Accurate 3D modelling
of interior and exterior is becoming an important topic also in
many other research fields, e.g., robot navigation, interactive
visualization, indoor localization, etc. Digital modelling of
entire cities has been underway for some time to support urban
planning. Manual construction of simulation geometries based
on floorplans and using the hands-on knowledge about the
interior design is tedious and time-consuming task. Therefore,
automatic environment reconstruction methods are gaining in
popularity [105].

The technologies involved include Mobile Light Detection
and Ranging (LiDAR), inertial navigation techniques, various
indoor localization approaches and Global Navigation Satellite
System (GNSS). Some of them have already been tested in
automatic mapping of transportation infrastructure [106] or in
autonomous vehicle driving. Remote sensing technologies that
collect information without making a physical contact with the
objects have several shortcomings which need to be addressed
in the future. Mobile data capture is further hindered by
missing regions, variable sampling density and noise. Robust

shape detection from raw data in combination with filtering
and substructure clustering is one of the approaches to recover
missing data [107].

Indoor modelling requires even more accurate feature ex-
traction including the identification of the object composition
in order to choose appropriate electrical properties. Structural
elements, such as doors, windows, walls, floors and ceilings,
can be detected by their shape [105]. Detecting missing
information due to occlusion can be partially achieved by the
identification of structural elements [108]. Indoor spaces are
filled with complex details. Furthermore, they are subject of
frequent changes. The geometry extraction process from the
3D point cloud images, efficient data fusion from multiple
sensors, accurate feature extraction and other topics are, due
to complexities involved, major research challenges.

VII. SUMMARY OF PROSPECTIVE CONCEPTS

In order to make numerical full-wave techniques viable and
more attractive to telecommunication channel modelling we
need to overcome a number of obstacles (Table I). Among
the major hurdles is extremely high computational complexity
that requires some drastic simplifications and the use of dedi-
cated computer architectures. Next, numerical dispersion and
instability are well-known phenomena in smaller computation
domains which get even more pronounced in larger geome-
tries. In addition to known solutions, like permittivity and
permeability corrections, high-order differences, or alternate
lattice geometries, some new approaches need to be developed
that would also be applicable in wideband scenarios. Meshless
solvers are established numerical technique for many problems
in physics which appears promising for telecommunication
channel modelling.

Three-dimensional numerical problem solving is attractive
but usually resource-prohibitive even in smaller scenarios. A
combination of multiple two-dimensional computations seems
a viable alternative in larger scenarios. Open spaces make
the use of moving window where only areas with the most
energy are resolved also an attractive approach. Note that rich
multipath in indoor scenarios prohibits similar tactic.

Less accurate scenarios could benefit from running simula-
tions at lower frequencies, by avoiding low-impact propagation
modes or from taking advantage of particular geometries,
e.g., using parabolic equation in narrow spaces. Possible
approaches include new hybrid methods that resolve larger
homogenous spaces by alternative algorithms.

From the algorithmic perspective, synchronous-data trans-
fers of SIMD architectures and dataflow principles should
be used as much as possible to alleviate memory bottleneck
problems. Optimal chip-level interconnections, which were
neglected in conceptual dedicated hardware due to highly sim-
plistic test domains, should also get proper attention. On the
other hand, quantum computing may significantly accelerate
the full-wave modeling; however, there is no consensus among
the researchers on the time frame.

It has to be emphasized that the discussed concepts are
not necessarily mutually compatible and a subset should be
chosen for particular telecommunication problem. Tests so
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TABLE I
PROSPECTIVE CONCEPTS FOR LARGE-SCALE NUMERICAL

COMPUTATIONS

Obstacle Possible ways to proceed

Computational Reducing Use of moving window (outdoor)
complexity computation Simulations at lower frequencies

load 2.5 dimensional simulations
Use of meshless solvers

Avoiding low-impact modes
Taking advantage of geometry

Hybrid trade-offs

Use of GPUs, FPGAs, ASICs
dedicated SIMD architectures
hardware Dataflow architectures

Chip-level interconnect optimizations

Quantum Overcoming barriers to physical
computing integration

Dispersion Permittivity and permeability corrections
High-order differences and smooth cont. functions

Alternate lattice geometries including hexagonal grids
Meshless solvers with systematically distributed nodes

Instability ADI-like approaches

Accurate Use of LiDAR, inertial sensors, GNSS, localization
geometries techniques, image processing, machine learning

far strongly supports numerical acceleration in hardware with
prospects of expanding applicable geometry sizes at least by
order of magnitude. Further, capturing accurate environment
geometries is another aspect that should not be overlooked as
well.

VIII. CONCLUSION

Telecommunication channel modelling is founded on the
laws of electromagnetic interactions with matter and it should
meet the requirements of today and future communication
technologies. Acceleration of the numerical full-wave tech-
niques for their greater acceptability in electrically large prob-
lems is an alternative to accuracy improvements of existing
deterministic models, where ray tracing shows accelerating
trend to replace empirical models. We propose such a different
approach by adapting the methods that fully account for
the propagation effects and rigorously capture the physics
of wireless links. With that respect, ways of overcoming
excessive time requirements of numerical full-wave methods
while providing acceptable channel modelling accuracy for the
smallest radio cells and possibly wider are becoming increas-
ingly important. Researchers can follow several paths: numeri-
cal algorithm adaptations for large-scale problems, alternative
finite difference approaches, such as meshless methods, and
dedicated parallel hardware, including dataflow machines.
Further, quantum computing shows some prospects in the field.

Trade-off between speed and accuracy from the viewpoint of
full-wave techniques as well as from the viewpoint of today’s
deterministic methods should be systematically assessed. The
basic knowledge about the large-scale numerical solutions is
still limited and further research is crucial. The ever-increasing
number of access points and closely related reduction of the
wireless cell’s effective geographical area suggest viability of
the numerical full-wave techniques for the telecommunication
channel modelling.
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