33 research outputs found

    iSeeYou: Disabling the MacBook Webcam Indicator LED

    Get PDF
    The ubiquitous webcam indicator LED is an important privacy feature which provides a visual cue that the camera is turned on. We describe how to disable the LED on a class of Apple internal iSight webcams used in some versions of MacBook laptops and iMac desktops. This enables video to be captured without any visual indication to the user and can be accomplished entirely in user space by an unprivileged (non- root) application. The same technique that allows us to disable the LED, namely reprogramming the firmware that runs on the iSight, enables a virtual machine escape whereby malware running inside a virtual machine reprograms the camera to act as a USB Human Interface Device (HID) keyboard which executes code in the host operating system. We build two proofs-of-concept: (1) an OS X application, iSeeYou, which demonstrates capturing video with the LED disabled; and (2) a virtual machine escape that launches Terminal.app and runs shell commands. To defend against these and related threats, we build an OS X kernel extension, iSightDefender, which prohibits the modification of the iSight’s firmware from user space

    A Survey of Performance Optimization for Mobile Applications

    Get PDF
    Nowadays there is a mobile application for almost everything a user may think of, ranging from paying bills and gathering information to playing games and watching movies. In order to ensure user satisfaction and success of applications, it is important to provide high performant applications. This is particularly important for resource constraint systems such as mobile devices. Thereby, non-functional performance characteristics, such as energy and memory consumption, play an important role for user satisfaction. This paper provides a comprehensive survey of non-functional performance optimization for Android applications. We collected 155 unique publications, published between 2008 and 2020, that focus on the optimization of non-functional performance of mobile applications. We target our search at four performance characteristics, in particular: responsiveness, launch time, memory and energy consumption. For each performance characteristic, we categorize optimization approaches based on the method used in the corresponding publications. Furthermore, we identify research gaps in the literature for future work

    Digital Transformation

    Get PDF
    The amount of literature on Digital Transformation is staggering—and it keeps growing. Why, then, come out with yet another such document? Moreover, any text aiming at explaining the Digital Transformation by presenting a snapshot is going to become obsolete in a blink of an eye, most likely to be already obsolete at the time it is first published. The FDC Initiative on Digital Reality felt there is a need to look at the Digital Transformation from the point of view of a profound change that is pervading the entire society—a change made possible by technology and that keeps changing due to technology evolution opening new possibilities but is also a change happening because it has strong economic reasons. The direction of this change is not easy to predict because it is steered by a cultural evolution of society, an evolution that is happening in niches and that may expand rapidly to larger constituencies and as rapidly may fade away. This creation, selection by experimentation, adoption, and sudden disappearance, is what makes the whole scenario so unpredictable and continuously changing.The amount of literature on Digital Transformation is staggering—and it keeps growing. Why, then, come out with yet another such document? Moreover, any text aiming at explaining the Digital Transformation by presenting a snapshot is going to become obsolete in a blink of an eye, most likely to be already obsolete at the time it is first published. The FDC Initiative on Digital Reality felt there is a need to look at the Digital Transformation from the point of view of a profound change that is pervading the entire society—a change made possible by technology and that keeps changing due to technology evolution opening new possibilities but is also a change happening because it has strong economic reasons. The direction of this change is not easy to predict because it is steered by a cultural evolution of society, an evolution that is happening in niches and that may expand rapidly to larger constituencies and as rapidly may fade away. This creation, selection by experimentation, adoption, and sudden disappearance, is what makes the whole scenario so unpredictable and continuously changing

    Internet of Things From Hype to Reality

    Get PDF
    The Internet of Things (IoT) has gained significant mindshare, let alone attention, in academia and the industry especially over the past few years. The reasons behind this interest are the potential capabilities that IoT promises to offer. On the personal level, it paints a picture of a future world where all the things in our ambient environment are connected to the Internet and seamlessly communicate with each other to operate intelligently. The ultimate goal is to enable objects around us to efficiently sense our surroundings, inexpensively communicate, and ultimately create a better environment for us: one where everyday objects act based on what we need and like without explicit instructions

    A Modern Primer on Processing in Memory

    Full text link
    Modern computing systems are overwhelmingly designed to move data to computation. This design choice goes directly against at least three key trends in computing that cause performance, scalability and energy bottlenecks: (1) data access is a key bottleneck as many important applications are increasingly data-intensive, and memory bandwidth and energy do not scale well, (2) energy consumption is a key limiter in almost all computing platforms, especially server and mobile systems, (3) data movement, especially off-chip to on-chip, is very expensive in terms of bandwidth, energy and latency, much more so than computation. These trends are especially severely-felt in the data-intensive server and energy-constrained mobile systems of today. At the same time, conventional memory technology is facing many technology scaling challenges in terms of reliability, energy, and performance. As a result, memory system architects are open to organizing memory in different ways and making it more intelligent, at the expense of higher cost. The emergence of 3D-stacked memory plus logic, the adoption of error correcting codes inside the latest DRAM chips, proliferation of different main memory standards and chips, specialized for different purposes (e.g., graphics, low-power, high bandwidth, low latency), and the necessity of designing new solutions to serious reliability and security issues, such as the RowHammer phenomenon, are an evidence of this trend. This chapter discusses recent research that aims to practically enable computation close to data, an approach we call processing-in-memory (PIM). PIM places computation mechanisms in or near where the data is stored (i.e., inside the memory chips, in the logic layer of 3D-stacked memory, or in the memory controllers), so that data movement between the computation units and memory is reduced or eliminated.Comment: arXiv admin note: substantial text overlap with arXiv:1903.0398

    A Self-Organizing Wireless Sensor Network and Distributed Computing Engine for Commodity and Future Palmtop Computers

    Get PDF
    The embedded class processors found in commodity palmtop computers continue to become increasingly capable while retaining an energy-efficient footprint. Palmtop computers themselves, including smartphones and tablets, provide a small form factor system integrating wireless communication and non-volatile storage with these energy-efficient processors. Also, various wireless connectivity functions on mobile devices provide new opportunities in designing more flexible, smarter wireless sensor networks (WSNs), and utilizing the computation power in a way we could never imagine before. In this dissertation, I present a WSN concept for current and future generation tablet devices. My contributions include developments at the system level, architecture level, and collaborative design between different layers of the system. At the system level, I developed Ocelot, a grid-like computing environment for palmtop computers in place of traditional workstation or server class machines to compute highly parallel light to medium-weight tasks in an energy efficient manner. Additionally, I developed Lynx, a self-organizing wireless sensor network, which is a further step taken in exploiting the potential of palmtop computers. At the architecture level, to increase the storage capacity of future palmtop computers, I explore the use of a new storage class magnetic memory, Racetrack Memory (RM), throughout the memory hierarchy. Thus, I developed FusedCache, a naturally inclusive, dual-level private cache design for RM that provides fast uniform access at one level, and non-uniform access at the next, which allows RM to be effective as close to the processor as an L1 cache. For higher levels of the memory hierarchy such as the last level cache, I propose a Multilane Racetrack Cache (MRC), an RM last level cache design utilizing lightweight compression combined with independent shifting. MRCs allow cache lines mapped to the same Racetrack structure to be accessed in parallel when compressed, mitigating potential shifting stalls in an RM cache. Finally, leveraging the lightweight compression from MRC and the need for efficient communication in Lynx, I present a cross-level design combining memory-level lightweight compression with network-level packet transfer, together with a technique called Source-Aware Layout Reorganization (SALR) to increase the compressibility of sensor data

    Extending the Exposure Score of Web Browsers by Incorporating CVSS

    Get PDF
    When browsing the Internet, HTTP headers enable both clients and servers send extra data in their requests or responses such as the User-Agent string. This string contains information related to the sender’s device, browser, and operating system. Yet its content differs from one browser to another. Despite the privacy and security risks of User-Agent strings, very few works have tackled this problem. Our previous work proposed giving Internet browsers exposure relative scores to aid users to choose less intrusive ones. Thus, the objective of this work is to extend our previous work through: first, conducting a user study to identify its limitations. Second, extending the exposure score via incorporating data from the NVD. Third, providing a full implementation, instead of a limited prototype. The proposed system: assigns scores to users’ browsers upon visiting our website. It also suggests alternative safe browsers, and finally it allows updating the back-end database with a click of a button. We applied our method to a data set of more than 52 thousand unique browsers. Our performance and validation analysis show that our solution is accurate and efficient. The source code and data set are publicly available here [4].</p

    06. 2010 IMSAloquium Student Investigation Showcase

    Get PDF
    https://digitalcommons.imsa.edu/class_of_2010/1004/thumbnail.jp

    2010 IMSAloquium, Student Investigation Showcase

    Get PDF
    IMSA students engage in investigations in nanotechnology, particle physics, law, neonatal medicine, literature, transplantation biology, water purity, the educational achievement gap, neurobiology and memory, ethics, theatre, discrete mathematics, economics, and more.https://digitalcommons.imsa.edu/archives_sir/1002/thumbnail.jp

    Ad hoc networking in a medical environment

    Get PDF
    corecore