
0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3071193, IEEE
Transactions on Software Engineering

1

A Survey of Performance Optimization
for Mobile Applications

Max Hort, Maria Kechagia, Federica Sarro, Mark Harman

Abstract—To ensure user satisfaction and success of mobile applications, it is important to provide highly performant applications. This
is particularly important for resource-constrained systems such as mobile devices. Thereby, non-functional performance characteristics,
such as energy and memory consumption, play an important role for user satisfaction.
This paper provides a comprehensive survey of non-functional performance optimization for Android applications. We collected 156
unique publications, published between 2008 and 2020, that focus on the optimization of performance of mobile applications. We target
our search at four performance characteristics: responsiveness, launch time, memory and energy consumption. For each performance
characteristic, we categorize optimization approaches based on the method used in the corresponding publications. Furthermore, we
identify research gaps in the literature for future work.

Index Terms—mobile applications, android, non-functional performance optimization, software optimization, literature survey.

F

1 INTRODUCTION

The relevance of mobile (handheld) devices, such as the
so-called smartphones, has been ever growing for the past
ten years, reaching an estimate of 3.2 billion smartphone
users in 2019.1 Smartphones can nowadays be considered
as the main information processing devices for users. With
smartphones, users cannot only receive and make phone
calls, but also execute similar tasks as those performed
on personal computers (e.g., surf the internet, perform
calculations, pay bills).

Even though mobile devices are powerful, they represent
resource-constrained devices making the development of
applications that can run on them (mobile applications) chal-
lenging. This means that the functionality and performance
of mobile applications depend on the characteristics of
mobile phones (e.g., their physical memory, processors,
battery) and on the current execution context (e.g., how
many applications run at the same time on a mobile phone).

To ensure the success of an application (e.g., whether it
will be used, updated, or uninstalled [1], [2]), developers
aim to maximize user experience quality, and, consequently,
user satisfaction [3], [4], [5]. User satisfaction is mainly
influenced by functional (Does the application operate as the user
expects?) and non-functional (How does the application perform?)
application characteristics [1], [2]. Examples of functional
issues can include missing or buggy features (e.g., a game
application that functions in a different way than presented in
its description). An example of a non-functional characteristic
is the energy consumption of an application. Regardless of
an application’s functionality, users will be dissatisfied if the

• Department of Computer Science, University College London
E-mail: max.hort.19@ucl.ac.uk, m.kechagia@ucl.ac.uk, f.sarro@ucl.ac.uk,
mark.harman@ucl.ac.uk

Manuscript received xxx; revised xxx.
1. https://www.statista.com/statistics/330695/number-of-

smartphone-users-worldwide/

application drains the battery of their mobile devices within
minutes.

Finkelstein et al. [6] found that the success of mobile
applications in terms of downloads is correlated to the
rating that the application attracts. These ratings are recorded
by App Stores (e.g., Google Play, Apple Store, BlackBerry
World). In 2018, the number of total applications downloaded
amounted to 194 billion,2 with every user having a multitude
of different applications installed on their phone [7], [8]. With
such a high number of applications, 75% of mobile device
usage is filled by mobile applications [5]. While several
studies show the importance of fixing software bugs that
hinder applications’ smooth function [9], [10], [11], [12], non-
functional performance characteristics have shown to have
a strong impact on user satisfaction as well [1], [2], [3], [13],
[14], [15], [16], [17], [18]. This impact can be seen in the user
reviews of real-world mobile applications:

• “This app is destroying my battery. I will have to uninstall
it if there isn’t a fix soon.” [13]

• “It lags and doesn’t respond to my touch which almost
always causes me to run into stuff.” [19]

• “Bring back the old version. Scrolling lags.” [3]
• “Makes GPS stay on all the time. Kills my battery.” [3]
• “Too much memory usage for a glorified web portal ad

machine.” [18]

Furthermore, Banerjee and Roychoudhury [20] conducted
a study on 170,000 user reviews, and showed that poor
performance and energy consumption lead to application
downvotes from users. Among all causes of downvotes, en-
ergy consumption caused the highest ratio of uninstallations.

Given the importance of non-functional performance
characteristics on user satisfaction and the consequent suc-
cess of mobile applications, as well as new optimization
approaches that are developed each year, we provide a

2. https://www.statista.com/statistics/271644/worldwide-free-and-
paid-mobile-app-store-downloads/

Authorized licensed use limited to: University College London. Downloaded on April 22,2021 at 10:58:48 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3071193, IEEE
Transactions on Software Engineering

2

Android

HardwarePlatformApplication

Prefetching

Antipatterns

Refactoring

Offloading

Code	Type

Preloading

Low	Memory
Killer

API

Protocols

Garbage
Collection

Power	State

I/O	Operations

CPU	&	GPU

Display

Memory

Programming
Language

Memory
Management

Fig. 1. Categorization of existing optimization approaches for non-
functional characteristics of mobile applications.

comprehensive overview of existing approaches for non-
functional performance optimization of mobile applications.
This can be used by practitioners, developers, and researchers
to search for approaches appropriate to their needs (e.g.,
“How can I reduce energy consumption only by changing
application source code?” or “Can I improve responsiveness
by applying changes to the device hardware?”). Further-
more, we provide information on dependencies among non-
functional properties, which reside in mobile applications.
We focus our review on the Android platform, since it is open-
source software and has the highest market share among
mobile platforms at the time of writing.3

Initially, we gathered and analyzed existing work to
detect non-functional performance characteristics (Section 3).
Based on this, we identify four non-functional characteristics,
which describe user-perceived performance of mobile appli-
cations, and thereby their success, i.e.: responsiveness, launch
time, memory consumption, and energy consumption. For each
of these characteristics, we have categorized previous work
based on the optimization level (e.g., optimization applied
to application, platform, or hardware level) and proposed
optimization type (e.g., prefetching, preloading, display), as
shown in Figure 1.

We found that the majority of approaches to optimize
responsiveness applied changes to the application’s source
code, while launch time was improvement by changes to
the Android platform. Approaches that optimize memory
apply changes to both the application and Android plat-
form’s source code. The majority of work was concerned

3. https://gs.statcounter.com/os-market-share/mobile/worldwide

Fig. 2. Overview of mobile-device architecture [23].

with optimizing energy consumption. Moreover, we were
able to detect relationships among the four non-functional
performance characteristics (e.g., energy consumption can
increase with an improved responsiveness of applications).

To the best of our knowledge, this is the first survey to in-
vestigate multiple non-functional performance characteristics
and their relationships. To summarize, our work:

1) provides a comprehensive literature review of the
state-of-the-art research on the optimization of non-
functional characteristics for mobile applications;

2) provides a categorization of existing optimization
approaches based on their level and type;

3) identifies challenges and opportunities for future
research in this area.

We have made publicly available some additional re-
sources [21] and an online version of the work reviewed
in this survey, which we will keep up-to-date by accepting
external contributions [22].

The rest of this paper is structured as follows. Section
2 presents an overview of mobile devices and mobile-
application ecosystems. The search methodology is described
in Section 3. Sections 4-7 describe research on non-functional
performance optimization. These refer to: responsiveness
(Section 4), launch time (Section 5), memory consumption
(Section 6) and energy consumption (Section 7). A discus-
sion of results considering all non-functional performance
optimization characteristics is given in Section 8. Section
9 presents related work and Section 10 outlines threats to
validity. Section 11 concludes this survey.

2 BACKGROUND

This section presents an overview of the context of this survey.
Initially, we present key terms and definitions regarding
the architecture of mobile devices. Then, we focus on the
characteristics of the Android platform that we take into
account in this work. Finally, we explain how the function
and performance of mobile applications can affect users.

2.1 Mobile Devices
Mobile devices are embedded systems that consist of
hardware and software components. Figure 2 illustrates a
representative architecture of a mobile device.

The foundation of mobile devices is their hardware. The
capacity of hardware components, such as physical memory,

Authorized licensed use limited to: University College London. Downloaded on April 22,2021 at 10:58:48 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3071193, IEEE
Transactions on Software Engineering

3

processors, and battery, is constrained. Additionally, mobile
devices come with a growing set of embedded sensors, in-
cluding accelerometers, digital compasses, GPS, microphones,
and cameras, which enable the emergence of personal, group
and community-scale sensing applications [24]. However,
the use of these sensors in applications requires a higher
energy consumption [25].

The software of mobile devices comprises two basic
layers: the mobile platform and the hosted mobile appli-
cations. The mobile platform (e.g., Android, iOS) consists of
an embedded operating system (OS) that connects hardware
with software components. It offers services such as mem-
ory management, networking, and power management. In
mobile platforms, software libraries, which are used for the
interaction with components, such as the database and media
framework, are on the top of the OS. Mobile applications
(e.g., calculator, photos, contacts) are either provided by
a mobile framework (e.g., the Android platform) or third-
party applications provided by online stores for mobile
applications (e.g., Google Play Store, Apple iOS App Store,
AppNokia, Samsung, BlackBerry World and Windows Phone
Store).

2.2 Android
This survey focuses on the Android platform because it
is currently the most used mobile platform4 and open-
source software, facilitating the analysis and evaluation of
mobile systems. The following paragraphs present the main
components of the Android platform.

Android is an embedded system based on the Linux OS.
The Linux kernel links hardware and software components of
a mobile device. It manages services such memory, processes,
power, and networking access, and it offers drivers for flash
memory, Bluetooth, WiFi, keyboard and audio. On top of
the Linux kernel, lies the Android Runtime (ART), which is
essential for running different applications. Each application
runs as a separate process, having its own virtual machine
instance.

The Android platform provides several methods and
tools for improving the performance of mobile applications.
For instance, memory is freed by the OS if the available
memory on a device is low. To achieve that, Android
uses the Low Memory Killer (LMK) to remove the Least
Recently Used (LRU) cached application from the memory.
Cached data is stored in the virtual memory, as long as
memory is available [26]. In order to optimize the cache
memory, and address problems such as duplicated pages in
virtual memory, Kernel Same-page Merging (KSM) [27] and
zRAM [28] are applied by Android [29]. Even though these
methods optimize the cache memory, they consume power
while they are being executed.

Furthermore, Android offers a variety of tools in its
SDK to analyze system information and support application
development.5 Tools can be used for logging (LOGCAT),
retrieving application and system information (APKANA-
LYZER, DUMPSYS, SYSTRACE), as well as for simulations
and debugging (ANDROID DEBUG BRIDGE, AVDMANAGER).

4. https://gs.statcounter.com/os-market-
share/mobile/worldwide/#monthly-201909-201909-bar

5. https://developer.android.com/studio/command-line

Finally, Android provides developers with selected perfor-
mance measures (Android Vitals)6 that use real user data,
in case users have agreed on providing such information.
If that happens, several metrics related to startup time,
battery usage, and crash stack traces are recorded. Such
metrics can assist developers to monitor memory and energy
consumption, to identify synchronization issues, and to avoid
application crashes [30].

2.3 User Experience
User experience and satisfaction are important factors that
can ensure the success of mobile applications [31]. Applica-
tion rating, or user satisfaction with an application, has been
shown to correlate with the number of downloads [32]. After
installing and using an application, users are able to make
judgements regarding their satisfaction. Reviews regarding
user satisfaction of mobile applications appear in App Stores
and new users consider them in order to decide whether
they will download an application or not.

To achieve a high level of user satisfaction, developers
focus on improving both the functional and non-functional
characteristics of mobile applications [1], [2], [3], [13], [15],
[16]. Apart from fatal issues with functionality, such as appli-
cation crashes [3], non-functional performance characteristics
also shape users’ perception [1]. Non-functional performance
characteristics are the first characteristics to, potentially
adversely, affect users [15] and can lead to application
uninstallations [2]. In the following, we describe functional
and non-functional characteristics of mobile applications that
can affect user experience.

Functional characteristics describe whether an applica-
tion is doing what it is supposed to do (i.e., its behavior).
Frequent complaints about functional aspects of applications
include freezes or crashes [1], functional errors, such as not
getting push notifications, and the removal of features [3].

Non-functional characteristics determine how an appli-
cation carries out (performs) its behavior. Even though it is
difficult to measure and judge non-functional characteris-
tics [33], they represent a vital part of user satisfaction for
mobile applications. Related work analyzes a range of dif-
ferent non-functional characteristics regarding applications’
performance [1], [2], [3], [13], [15], [16].

Different schemes exist to classify functional and non-
functional characteristics of applications [34], [35], [36].
Among these, the FURPS model [36], [37] clearly distinguishes
performance characteristics from other functional and non-
functional characteristics, as follows:

• Functionality: feature set, capabilities, generality, se-
curity;

• Usability: human factors, aesthetics, consistency, doc-
umentation;

• Reliability: frequency/severity of failure, recoverabil-
ity, predictability, accuracy, mean time to failure;

• Performance: speed, efficiency, resource consumption,
throughput, response time;

• Supportability: testability, extensibility, adaptability,
maintainability, compatibility, configurability, service-
ability, installability, localizability, portability.

6. https://developer.android.com/topic/performance/vitals

Authorized licensed use limited to: University College London. Downloaded on April 22,2021 at 10:58:48 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3071193, IEEE
Transactions on Software Engineering

4

Among these characteristics, we are interested in the Perfor-
mance category, which in the context of mobile applications,
can be further refined into the following four non-functional
performance characteristics:

1) Responsiveness captures the time required to update
the frames of the graphical user interface after user
interaction.

2) Launch time describes the time required to start an
application. This can happen as a cold start, when
the application is launched without cached data (e.g.,
after device boot). Another launch type refers to the
hot/warm start of application, which occurs when
an application activity is kept in memory for a faster
launch [38].

3) Memory consumption describes the amount of oc-
cupied memory. Memory can be shared between
multiple applications or stored separately [39]. On
constrained systems, such as smartphones, memory
is a critical resource [26], [29].

4) Energy consumption is associated with the battery life.
Energy is consumed by various components, includ-
ing CPU, LCD, GPS, audio and WiFi services [25], [40].

A detailed description of each of the four non-functional
performance characteristics is given in sections 4-7 (re-
sponsiveness, launch time, memory consumption, energy
consumption, respectively).

3 SURVEY METHODOLOGY

The purpose of this survey is to gather and categorize
research work published in the mobile computing and
software engineering literature that refers to the optimization
of non-functional performance of Android applications.

As this is an emergent topic and there is limited related
work on Android performance optimization techniques to
perform a systematic literature review (according to the
guidelines of Kitchenham [41]), we conduct a comprehensive
literature review. In the following, we present our search
methodology in detail, starting with a preliminary and venue
search, followed by a repository search and snowballing.

3.1 Search Methodology
Our literature review on performance optimization includes
publications that refer to optimization techniques on mobile
applications and measurement of application performance.

3.1.1 Preliminary Search
Prior to systematically searching online repositories, we
conducted a preliminary search. The goal of the preliminary
search is to gain a deeper understanding of the field and
assess whether there is a sufficient amount of publications
that allows for subsequent analysis. Based on these results,
we distinguish between four different non-functional perfor-
mance characteristics: responsiveness, launch time, memory
and energy consumption.

Other than Sadeghi et al. [42], who refined keywords
during their search, we perform a preliminary search to
guide our repository search. Additionally, we use the results
of the preliminary search to define keywords (Table 2) and
venues (listed in Section 3.1.2).

3.1.2 Repository Search

Proceeding the preliminary search, we conduct a search of
six established online repositories (IEEE, ACM, ScienceDirect,
Scopus, arXiv, and Google Scholar). We have gathered
publications from 2008 to February 2020, since the first
version of Android was released in 2008.

To ensure that we provide an exhaustive literature search,
we manually examine relevant venues from the field of
software engineering and mobile computing, which we
encountered during the preliminary search. We search venues
with at least five publications in our preliminary search.

• Conferences: ICSE, ASE, MSR, MobiSys, MobileHCI,
MobileSoft, UbiComp, CHI, ESEC/FSE.

• Journals: IEEE TSE.

3.1.3 Selection

Table 2 lists keywords used to guide our repository search.
Keywords are divided into five categories. Firstly, the key-
words that belong to the Platform category ensure that the
selected publications deal with mobile platforms, particu-
larly Android. Furthermore, keywords that belong to the
Responsiveness, Launch time, Memory, and Energy categories
filter publications referring to non-functional performance
characteristics. We restrict search results to publications
that contain at least one platform keyword and one non-
functional keyword in their title.

To ensure that the publications found during our search
are relevant to the context of non-functional performance op-
timization of mobile applications, we consider the following
inclusion criteria:

• The publication should refer to at least one of the non-
functional performance characteristics investigated in
this survey (e.g., responsiveness, memory, energy, and
launch time), or to an approach that profiles at least
one of the mentioned performance characteristics.

• The publication investigates the proposed methods
on smartphones with an Android OS.

To assesses whether the publications satisfy our inclusion
criteria, we manually examined every publication using the
process adopted by Martin et al. [43], as follows:

1) Title: First, all those publications whose title clearly
does not match our inclusion criteria are excluded;

2) Abstract: Second, the abstract of every remaining
publications is checked. Publications whose abstract
does not meet our inclusion criteria are excluded at
this step;

3) Body: Publications that passed the previous two
steps are then read in full, and excluded if their
content does neither satisfy the inclusion criteria nor
contribute to this survey.

Based on the above three-stage process and inclusion
criteria, we iteratively reduce the amount of publications
obtained from online repositories, until we end up with the
set of publications investigated in the following sections
(sections 4 to 7). This process is performed by two authors
independently, the results are compared at each stage, and
disagreements discussed until an agreement is reached.

Authorized licensed use limited to: University College London. Downloaded on April 22,2021 at 10:58:48 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3071193, IEEE
Transactions on Software Engineering

5

TABLE 1
Results of the Repository Search. The number of papers retained at each stage of the search (e.g., Hits, Title, Abstract, Body) is given for each

online repository (e.g., Google Scholar, IEEE, Scopus, ACM, Science Direct, arXiv) and non-functional performance characteristic (Responsiveness,
Launch Time, Memory, Energy). Google Scholar is abbreviated with GS; Science Direct is abbreviated with SD. For example, searching for

“responsiveness” in GS retrieves 835 publications, among those 31 have a relevant title, 24 of those have an abstract satisfying our inclusion criteria,
and a total of 11 (of those 24) publications are included in our survey after reading them entirely.

Responsiveness Launch Time Memory Energy Responsiveness Launch Time Memory Energy

Hits

G
S

835 90 392 1129

IE
EE

180 14 47 487
Title 31 10 16 76 21 5 9 52
Abstract 24 9 11 58 17 4 9 37
Body 11 1 4 31 9 0 7 8

Hits

Sc
op

us

146 6 57 269

A
C

M

73 21 23 152
Title 20 3 6 51 17 10 3 47
Abstract 15 3 6 44 16 8 2 44
Body 7 0 2 15 8 4 2 20

Hits

SD

71 13 97 62

ar
X

iv

17 1 1 18
Title 2 2 0 21 3 0 0 10
Abstract 2 0 0 15 1 0 0 9
Body 0 0 0 1 2 0 0 2

TABLE 2
Keywords Used for the Repository Search.

Category Keywords

Platform android, smartphone, app, apps
Responsiveness responsiveness, performance
Launch time launch, start
Memory memory
Energy energy, battery, power

3.1.4 Snowballing
After a collection of publications is obtained from the
repository search, we proceed to inspect the related work
of the publications selected in the previous search to gather
cited publications using snowballing [44]. We apply one level
of backwards snowballing.

3.2 Selected Publications
Table 1 shows the results of the repository search. The amount
of publications found during each step of the search is listed.7

In the following, we give the number of unique publica-
tions after each stage of the search procedure in addition to
the number of newly added publications:

1) Preliminary search: 96
2) Repository search: 174 (+80)
3) Venue search: 180 (+4)
4) Snowballing: 252 (+72)
5) Author feedback: 297 (+45)

In addition to the discussed stages of the search procedure
(1-4), we added 45 publications based on the feedback
from the authors cited. Among all 294 publications, 156
unique publications optimize at least one non-functional
performance characteristic. These 156 publications were
published in 97 different venues. We further classify top pub-
lication venues (A, A* according the CORE ranking Portal),8

7. A collection of publications after checking Abstract is available in
our on-line appendix [21]

8. http://www.core.edu.au/conference-portal. Additionally, we in-
clude MobiSys, classified as “B”, due to its popularity on mobile systems.

2008 2010 2012 2014 2016 2018 2020
Year

0
2
4
6
8

10
12
14
16
18
20
22
24

Pu
bl

ica
tio

ns

Energy
Responsiveness
Memory
Launch Time

Fig. 3. Number of publications on non-functional performance optimiza-
tion per year.

regarding their category based on the ACM’s Computing
Classification System (CCS).9 Among these, a majority of
publications is obtained from Software Engineering (32%),
and Computer Systems Organisation (29.33%) venues. The
remaining publications are retrieved from Mobile Computing
(20%), Networks (17.33%), and Security and Privacy (1.33%)
venues. A full list of conferences and journals is available
online [21].

The publication distribution over the entire search period
is illustrated in Figure 3. Note, a publication can contribute
to more than one subtotal if it explicitly optimizes more than
one non-functional performance characteristic. During our
search, we found ten publications that optimize more than
one non-functional performance aspect [38], [45], [46], [47],
[48], [49], [15], [50], [51], [52]. Among these, there is one pub-
lication that optimizes three characteristics (responsiveness,
energy consumption, memory consumption) [45], while the
others optimize two. Section 8.3 provides further details on
the relationships between performance characteristics.

Based on our search results, we devise the categorization
of approaches shown in Figure 1. These categories consist of
approaches (e.g., offloading, code optimization) and elements
of the Android platform (e.g., Low Memory Killer, API). In

9. https://dl.acm.org/ccs

Authorized licensed use limited to: University College London. Downloaded on April 22,2021 at 10:58:48 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3071193, IEEE
Transactions on Software Engineering

6

the remainder of the survey, we discuss our search results in
detail.

4 RESPONSIVENESS

Responsiveness refers to the ability of mobile applications
to respond to user interactions fast and smoothly. An
application is highly responsive when the time it takes to
respond to user requests is minimal. A highly responsive
application offers high user satisfaction as users prefer not
to wait when interacting with an application. On the other
hand, an application with poor responsiveness can have a
negative impact on user perception, and on its success [53].

Specifically, Tolia et al. [54] argued that response times
lower than 150ms do not negatively affect user satisfaction.
In fact, delays that last almost one second do not significantly
affect users, but start making them aware of these delays,
whereas delays that last more than one second indeed
make users “unhappy” [54]. Willocx et al. [55] stated that
response times under 100ms appear as instantaneous to users.
Furthermore, users would accept response times up to a few
seconds, if delays were to occur rarely [55].

To detect and fix hot spots in mobile applications that
may cause response-time delays, developers use several
techniques, including profiling and optimization approaches.
Section 4.1 presents methods and approaches for profiling,
while Section 4.2 presents approaches to optimize respon-
siveness. Section 4.3 summarizes our findings.

4.1 Profiling
There are several profiling approaches that developers use
to measure the responsiveness of applications and locate hot
spots for improvement. Popular profiling techniques include
the measurement of page loading time [56], the measurement
of the overall frame time and the calculation of the number
of delayed frames [51], as well as the estimation of Central
Processing Unit (CPU) time [57]. Furthermore, responsiveness
can be measured at different levels of the Android platform,
considering the UI [58] and hardware components [59].

Several tools have been developed to measure the respon-
siveness of mobile applications. Specifically, Ravindranath et
al. [60] introduced APPINSIGHT to detect critical paths in ap-
plications, which represent bottlenecks for user transactions.
Hong et al. [61] proposed PERFPROBE, a profiling approach to
diagnose hardware and software causes for slowdowns with
runtime information. Kim et al. [62] conducted performance
testing, using unit tests, at early development stages of
the applications to identify response-time delays. Kang et
al. [63], [64] presented a technique that analyzes application
performance focusing on particular asynchronous executions.
Wang and Rountev [65] introduced a novel approach that
profiles responsiveness by tracking the usage of mobile
resources such as bitmap or SQLITE databases. Kwon et
al. [66] proposed MANTIS, a framework that predicts the
execution time of an application while using particular
inputs.

4.2 Optimization Approaches
For a high responsiveness of mobile applications, developers
apply several categories of optimization approaches. In the

TABLE 3
Studies on Responsiveness Optimization.

Category Authors [Ref] Year Venue

Offloading Kemp et al. [67] 2010 MobiCASE
Chun et al. [68] 2011 EuroSys
Ra et al. [69] 2011 MobiSys
Kosta et al. [70] 2012 INFOCOM
Gordon et al. [71] 2012 OSDI
Gordon et al. [72] 2015 MobiSys
Das et al. [46] 2016 IACC
Montella et al. [73] 2017 CCPE
Chen and Hao [74] 2018 J-Sac

Antipatterns Jin et al. [75] 2012 SIGPLAN
Yang et al. [53] 2013 MOBS
Nistor et al. [76] 2013 ICSE
Liu et al. [13] 2014 ICSE
Ongkosit and Takada [77] 2014 DeMobile
Hecht et al. [78] 2015 ASE
Habchi et al. [79] 2018 ASE
Hecht et al. [51] 2016 MobileSoft
Li et al. [80] 2019 SANER

Refactoring Lin et al. [81] 2014 FSE
Okur et al. [82] 2014 ICSE
Lin et al. [83] 2015 ASE
Lyu et al. [47] 2018 ISSTA
Feng et al. [84] 2019 ICSTW

Prefetching Higgins et al. [85] 2012 MobiSys
Zhao et al.[86] 2018 ICSE
Choi et al.[87] 2018 CoNEXT
Malavolta et al.[88] 2019 ICSE-NIER

Programming languages Batyuk et al. [89] 2009 MobileWare
Lee and Jeon [90] 2010 ICCAS
Lee and Lee [91] 2011 iCast
Lin et al. [92] 2011 IBICA
Saborido et al. [45] 2018 EMSE

CPU & GPU Wang et al. [93] 2013 CGO
Cheng et al. [94] 2013 IWSSIP
Thongkaew et al. [95] 2015 JIP

I/O operations Nguyen et al. [50] 2015 MobiSys
Mao et al. [96] 2018 ITCSDI

Hardware components Kim and Shin [97] 2015 ICUIMC

following, we describe techniques found in literature. Table 3
lists our findings.

Offloading refers to the transfer of heavy computational
tasks to external computing units with less performance-
related restrictions. This technique is popular in the de-
velopment of mobile applications as mobile devices are
embedded systems with restricted memory and CPU. How-
ever, offloading comes with an overhead while transfer-
ring the results of processes from an embedded system
to external computing units and vice versa [72]. The first
offloading implementation for Android applications was
introduced by Kemp et al. [67] and refers to the CUCKOO
framework. CUCKOO helps developers to easily implement
offloading tasks in their applications. The offloading decision
is made at runtime based on heuristics, context, and historic
information. Other frameworks that support offloading
include CLONECLOUD [68], THINKAIR [70], COMET [71],
and TANGO [72]. Offloading has frequently been used for
responsiveness improvements [46], [69], [73], [74].

Antipatterns are bad programming patterns, such as
performance bugs, which deteriorate software quality and
reduce application responsiveness that can negatively affect
user experience [13], [51]. For this reason, several tools
have been developed for the identification and removal
of antipatterns. In particular, Liu et al. [13] introduced
PERFCHECKER to automatically detect performance bugs
in mobile applications. PERFCHECKER is built on top of
the SOOT [98] Java optimization framework and analyzes
applications at a bytecode level. PERFCHECKER applies static

Authorized licensed use limited to: University College London. Downloaded on April 22,2021 at 10:58:48 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3071193, IEEE
Transactions on Software Engineering

7

code analysis to detect antipatterns. Other tools focus on
detecting particular types of bugs related to application
responsiveness [51], [76]. For instance, Nistor et al. [76]
searched for repetitive computations in code loops, following
the intuition that repetitive behavior is likely to be optimiz-
able. To detect repetitive behavior, they created TODDLER, an
automated oracle to analyze memory access patterns. Hecht
et al. [51] used a static analysis tool called PAPRIKA [78] to
detect three types of code smells (Internal Getter/Setter,
Member Ignoring Method, and HashMap Usage). They
investigated the removal of code smells in an empirical study,
obtaining responsiveness improvements of up to 12.4%.

Furthermore, Inefficient Image Displaying (IID) can cause
performance degradation (e.g., repeated and redundant
image decoding). Li et al. [80] developed the static analysis
tool TAPIR to detect IID issues, which can be strongly
correlated with antipatterns.

Finally, responsiveness-related bugs can be detected using
predefined rule sets (e.g., efficiency rules) [75], [77] and test
amplification (insertion of artificial delays in application
source code) [53].

Refactoring can be performed to utilize efficient pro-
gramming practices. Lin et al. [81], [83] provided an analysis
showing that even though applications include concurrent
code, they often contain bugs or end up with executing the
source code sequentially. For concurrent code execution, and
higher responsiveness, the authors located and refactored
long-running operations, using the two tools ASYNCHRO-
NIZER and ASYNCDROID. Okur et al. [82] developed two
tools to refactor asynchronous code in Windows Phone ap-
plications. Asynchronous code is converted by ASYNCIFIER
and common misuses in asynchronous code are corrected by
CORRECTOR. Their empirical study showed that developers
accept the proposed changes to asynchronous code. Lyu et
al. [47] applied static analysis to change ineffcient database
operations that are placed in within a loop. Database op-
erations called in loops can cause Repetitive Autocommit
Transaction (RAT), which creates a new transaction in each
iteration of the loop. Furthermore, Feng et al. [84] mined
optimization patterns from GITHUB projects, considering
performance-aware APIs, which can be manually injected
into the source code of mobile applications and improve
their performance.

Prefetching refers to a technique that caches data in
advance, so that it can timely provide required data when it is
needed. Higgins et al. [85] provided a library called Informed
Mobile Prefetching (IMP) that assigns the task of determining
when to prefetch data to the mobile system, rather than
leaving the choice to developers. Developers solely specify
which items could benefit from prefetching, while IMP
determines whether and how prefetching is handled, based
on responsiveness, battery lifetime, and mobile data usage.
Zhao et al. [86] proposed a technique named PALOMA, that
prefetches HTTP requests to reduce responsiveness latency.
PALOMA uses string analysis to detect prefetchable content
in the application source code. While users navigate in
an application, PALOMA uses short pauses (“user think
time”) for prefetching. Choi et al. [87] identified resource
dependencies with static analysis to automatically generate
acceleration proxies for dynamic prefetching. Application
binary files are analyzed to detect HTTP(s) messages, which

are later used for prefetching. As static analysis lacks certain
information, missing information of HTTP(s) requests is
added at runtime. Lastly, Malavolta et al. [88] proposed
a technique called NAPPA that prefetches network requests
based on user navigation patterns.

Programming languages can impact the processing
speed of applications and therefore responsiveness. Android
provides the Native Development Kit (NDK) that allows
developers to write native C/C++ code. Native instruc-
tions are directly executed by the CPU and, therefore, they
provide a better performance over non-native ones [93],
[99]. Several empirical studies compared the performance
of programming languages, and found that native C code
reduces the running time of the same algorithms written in
Dalvik Java code [92], [90], [91], [89]. Furthermore, efficient
implementation choices, such as which map variant to
use (e.g., HashMap, ArrayMap, and SparseArray) can
improve responsiveness [45].

CPU and Graphics Processing Unit (GPU) adaptations
can accelerate the execution of time-consuming program-
ming tasks and increase application responsiveness. Wang et
al. [93] proposed ACCELDROID to accelerate the execution of
bytecode on the HW/SW co-designed processor of Android.
Therefore, instead of translating bytecode twice, this is only
translated once. Cheng et al. [94] provided guidelines to
map applications to the Android platform (e.g., whether
to use CPU or GPU and how many cores are used). This
mapping is platform as well as task-dependent. An optimal
performance choice can avoid performance degradation.
Additionally, Thongkaew et al. [95] developed architectural
hardware extensions that can fetch and decode Dalvik
bytecode directly.

I/O operations have an impact on responsiveness and
can enable optimization [100]. For instance, Nguyen et al. [50]
proposed an approach that adapts the prioritization of read
and write operations for avoiding slowdowns. Mao et al. [96]
introduced a trace collection tool to identify redundant
I/O requests in mobile applications and eliminate them to
reduce response times. As redundancy is minimally shared
among applications, they performed an application-aware
optimization.

Hardware components, such as the use of embedded
Multimedia Cards (eMMC), can be investigated for respon-
siveness improvements. Kim and Shin [97] studied whether
additional features of eMMCs are utilized by Android smart-
phones, and reduced the I/O latency.

4.3 Summary

Responsiveness is a non-functional performance charac-
teristic concerned with the time an applications needs to
respond to user requests. In practice, this is either measured
in time (ms) [56], [57] or in frames [51]. Several tools
have been proposed to measure responsiveness and detect
responsiveness issues [60], [61], [63], [64].

Since responsiveness measures the duration required
to complete computations, a naive approach to improve
response times is to move the computations from the smart-
phone to devices with less restrictions. This approach is called
“offloading” and requires additional infrastructure (e.g.,
external servers for computation). If such an infrastructure

Authorized licensed use limited to: University College London. Downloaded on April 22,2021 at 10:58:48 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3071193, IEEE
Transactions on Software Engineering

8

is not available, other approaches can be followed, which in
majority are applicable to a source-code level (23/38).

Furthermore, changes that have been applied to mobile
applications’ source code include the removal of bad pro-
gramming patterns (antipatterns), and the usage of good
programming practices (e.g., concurrency with the help of
refactoring [81], [83], [82], and prefetching of content [85],
[86], [87], [88]). Other than changing source code after
responsiveness issues have been detected, a carefully con-
sidered choice of the right programming language can
lead to improvements (e.g., native C/C++ is faster when
executed on CPUs [89], [90], [91], [92]). Lastly, changes to the
hardware have achieved responsiveness improvements. This
can directly happen at CPU or GPU level [93], [94], which can
carry out computations, or on other hardware components
(e.g., memory [97]).

5 LAUNCH TIME

During the launch of a mobile application, operations and
data are loaded to make the application available to the user.
Therefore, launch time is the first performance characteristic
of a mobile application that users have the opportunity
to notice. Launch time directly influences user experience
and satisfaction. Nagata et al. [101], Song et al. [38] and
Kim et al. [15] defined the launch time of an application
as the required time until user input is accepted. Yan
et al. [102] described the Total Launch Time (TLT) of an
application as the needed time until the entire content,
including asynchronously loaded content, can be displayed
to the user.

Furthermore, Song et al. [38] found that cold start
time (when an application is started from scratch) has a
significant impact on the application launching experience of
users. Developers can address this issue by analyzing their
applications’ source code to identify and fix bottlenecks that
possibly increase launch time. The following sections discuss
profiling methods (Section 5.1) and approaches to optimize
launch time and cold start issues (Section 5.2). A summary is
given in Section 5.3.

5.1 Profiling
Profiling approaches have been proposed for locating issues
in mobile applications that may increase the application
launch time. Using monitoring functions in the source
code of Android applications, in the Android platform,
and in third-party libraries used by Android applications,
developers can pinpoint performance issues causing launch-
time delays [101], [103]. Also, developers can profile the
usage of system resources to pinpoint the application launch
completion [104]. Additionally, Nguyen et al. [50] studied
launch delays of an application as the time taken in kernel
mode and the time spent waiting for disk network opera-
tions.

To understand how launch time can affect user behavior,
Song et al. [38] investigated logs from application usages.
Other approaches for assessing the launch behavior of appli-
cations include monitoring of: handling of I/O requests [105],
system memory usage [15], restart ratio of applications (the
number of cold starts over all application launches) [38] and
user satisfaction with regards to launch-time delays [106].

TABLE 4
Studies on Launch Time Optimization.

Category Authors [Ref] Year Venue

Preloading Yan et al. [102] 2012 MobiSys
Nagata et al. [101] 2013 CANDAR
Parate et al. [107] 2013 UbiComp
Tang et al. [108] 2013 SIGAPP
Chung et al. [48] 2013 TECS
Song et al. [38] 2014 TECS
Lee et al. [49] 2017 J-SAC
Baumann and Santini [109] 2017 IMWUT
Martins et al. [16] 2018 ICMLT

Low Memory Killer Chung et al. [48] 2013 TECS
Prodduturi and Phatak [110] 2013 IIT
Song et al. [38] 2014 TECS
Baik and Huh [111] 2014 ICSE
Kim et al. [15] 2015 IEEE Micro
Vimal and Trivedi [112] 2015 RAICS
Singh et al. [113] 2016 IOTA
Kim et al. [104] 2016 TECS
Lee et al. [49] 2017 J-SAC
Li et al. [114] 2017 IWCMC

Memory Joo et al. [105] 2011 FAST
Kim et al. [15] 2015 IEEE Micro

I/O operations Nguyen et al. [50] 2015 MobiSys

5.2 Optimization Approaches

In order to reduce launch time, developers apply optimiza-
tion techniques. Table 4 summarizes publications found in
literature, which are described in the following.

Preloading of application data prevents cold starts and
thereby the overall user waiting time. Frequently, the usage of
applications follows patterns [38], and enables the prediction
and preloading of the next application to be used. Context
information, such as the time of day or the location can be
taken into account to improve predictions [16], [49], [115]
and preload applications.

The FALCON approach by Yan et al. [102], which refers
to an OS extension, preloads applications and application-
specific content based on the context (e.g., location) and usage
patterns. For this purpose, spatial and temporal features are
designed based on an extensive analysis. Usage patterns
include the use of weather applications in the morning, or
playing games at home.

Additionally, application predictions determine the ap-
plications to be launched next [38], [48], [108], [109] and
when they are going to be used [107]. In particular, Nagata
et al. [101] analyzed the relationship of application launch
time regarding the number of preloaded classes. For this,
they manually selected a number of preloaded classes, and
showed for one application that the launch time is reduced
when the number of preloaded classes is high. The prediction
of the next application to be used has been also investigated
for restructuring user interfaces [116], [117], [118].

The Low Memory Killer (LMK), which removes the
LRU application from memory, may not lead to optimal
results [15], [113], because users do not always rely on
recently used applications. To address this issue, several
studies introduce techniques that determine which data
should be removed from memory. Specifically, Song et al. [38]
and Li et al. [114] devised models to detect patterns in
application usages based on application cold start times.
Decisions for the LMK are based on usage patterns to
prioritize data of applications that are likely to be launched.

Instead of removing the LRU application from mem-

Authorized licensed use limited to: University College London. Downloaded on April 22,2021 at 10:58:48 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3071193, IEEE
Transactions on Software Engineering

9

ory, choices can be made based on application cold start
times [15], the required storage size [104], and the importance
of an application to a user [110], [112], [113]. Furthermore,
Baik and Huh [111] analyzed usage patterns and determined
a threshold on how many processes to keep in memory
before freeing them. If this limit is fixed to a high value, more
applications can be kept in memory, leading to fewer restarts.

Memory can be adapted to suit application launches
better. Accordingly, Joo et al. [105] proposed the use of SSDs
instead of HHDs to speedup application launch time. This
approach was not designed for mobile devices; however,
mobile devices use NAND flash memory as secondary storage
carrying almost identical performance characteristics as SSDs.
One could therefore apply this approach to mobile devices as
well. Furthermore, Kim et al. [15] proposed the use of Non-
Volatile Memory (NVM) to store frequently used applications
and shared libraries among applications. Shared data is
stored on Phase-Change Memory (PCM). Therefore, less data
needs to be loaded when launching applications.

I/O operations impact the application launch time, as
their speed can be seen as a performance bottleneck during
application launch [15]. In fact, Nguyen et al. [50] analyzed
the impact of read and write operations on launch time,
as mobile devices wait for I/O operations to complete. As
application launches are dominated by read operations (five
times as many read operations as write operations [50]) this
can have a high impact on overall application launch time. A
prioritization of read and write operations avoids slowdowns
and reduces launch time.

5.3 Summary
Launch time describes the time required until a user input is
received [15], [38], [101] or the entire application content is
displayed [102], after an application has been started by the
user. The application launch completion has been profiled
according to the system’s resource-management usage [104].

Due to the high negative impact that cold starts can
have on user satisfaction [38], the majority of launch time
optimization methods (15/18) prevent cold starts, and reduce
application launch time. On one hand, preloading of applica-
tion data can be applied to spend loading times before the
application launch, and reduce the actual launch itself. For
this purpose, predictions are used to determine applications
that are likely to be used next, based on usage patterns [16],
[38], [49], [102], [115]. On the other hand, changes to memory
management (LMK) have achieved similar results. In contrast
to preloading, which loads desired application data, changes
to the LMK to keep important data in memory for a longer
time. Both of these approaches require access to the Android
OS to implement the required adaptations.

An increased speed of memory operations (e.g., usage
of SSDs over HHDs [105]), shared libraries among appli-
cations [15], and I/O prioritization of read over write
operations [50] have been also applied to reduce launch
time.

6 MEMORY

Memory is a critical resource for embedded systems [26],
[29], such as mobile devices. Specifically, in Android de-
vices, data can be loaded either by the Android platform

(to be shared across multiple running applications) or by
each application, separately. Application data is stored in
separate heaps, per application [39]. The main memory is
typically shared between the CPU and GPU [52]. Therefore,
a considerable amount of the main memory is occupied by
graphic processing operations [26]. Kim et al. [15] classified
applications in two categories, based on their memory
consumption, stable and unstable. The memory consumption
of stable applications increases within the first ten seconds
of the applications’ launch, and it stabilizes afterwards.
The memory consumption of unstable applications increases
steadily, and it does not stabilize.

The following sections present approaches that are used
to measure the consumed memory of mobile applications
(Section 6.1), optimize application memory consumption
(Section 6.2). At the end, we provide a summary (Section 6.3).

6.1 Profiling
Different tools and approaches have been proposed to mea-
sure the memory usage of applications. For instance, memory
consumed by mobile applications can be measured by:
kernel memory footprints [119], garbage collection calls [51],
physical memory dumps, and logging information [29].
Vimal and Trivedi [112] used the Dalvik Debug Monitor
Server (DDMS) to analyze memory footprints of Android com-
ponents and measure memory consumption.10 Tools such
as ANDROSCOPE by Cho et al. [59] have been also used to
analyze the performance (including memory) of all the layers
of the Android platform. Furthermore, ANDROBENCH [120]
and ANDROSTEP [121] are benchmark tools that assess the
storage performance of Android devices by analyzing logs
from read and write I/O operations.

6.2 Optimization Approaches
To reduce the memory usage of mobile applications develop-
ers use different categories of optimization approaches. The
following paragraphs summarize the relevant approaches
found in literature. Table 5 lists the representative studies.

Antipattern coding practices can be used to identify
code that is likely to lead to memory leaks. Memory leaks
occur when applications constantly request memory while
running [122], or when unused objects are being kept in
memory longer than required [123].

Hecht et al. [51] showed in an empirical study that
memory consumption can be reduced by correcting code
smells. In particular, memory can be improved in terms
of memory usage and number of garbage collection calls.
Shahriar et al. [123] developed memory leak patterns for
Android applications and used fuzz testing to emulate
and detect memory leaks. A total of three fuzzing types
(application, resource, and API) are used in their experiments,
which discovered crashes due to memory leaks in real-
world applications. Furthermore, memory leaks can be
identified by analyzing memory dumps [52], [139], the
activity lifecycle [125], source code patterns [124] or memory
execution information by applying process control block
hooking [122].

10. DDMS is deprecated and was removed from Android Studio
3.2. Android offers other tools to carry out the functions of DDMS
https://developer.android.com/studio/profile/monitor

Authorized licensed use limited to: University College London. Downloaded on April 22,2021 at 10:58:48 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3071193, IEEE
Transactions on Software Engineering

10

TABLE 5
Studies on Memory Optimization.

Category Authors [Ref] Year Venue

Antipatterns Park and Choi [122] 2012 IJCA
Shahriar et al. [123] 2014 HASE
Hecht et al. [51] 2016 MobileSoft
Santhanakrishnan et al. [124] 2016 i-Society
Tasneem et al. [52] 2019 IJCA
Amalfitano et al. [125] 2020 IEEE Access

Garbage collection He et al. [39] 2011 IFIP
Gerlitz et al. [126] 2013 JTRES
Lim et al. [127] 2013 ICCE
Mori et al. [128] 2017 GCCE
Tasneem et al. [52] 2019 IJCA

Deduplication Kim et al. [129] 2014 ICSE
Lee et al. [29] 2015 APSys

Memory management Kim et al. [130] 2013 IEEE TCE
Jeong et al. [131] 2013 USENIX ATC
Zhong et al. [132] 2014 EMSOFT
Kim et al. [133] 2015 ISMM
Nguyen et al. [134] 2016 WiMob
Kim and Bahn. [135] 2017 PMC
Kim et al. [136] 2017 TECS
Kim and Bahn. [137] 2019 IEEE Access

GPU Kwon et al. [26] 2015 EMSOFT

Programming languages Escobar De La Torre and Cheon [138] 2017 UTEP
Saborido et al. [45] 2018 EMSE

Garbage collection is used in Android to manage mem-
ory and identify unused objects that can be removed [52].
Since version 2.2., Android uses a stop-the-world (STW)
garbage collector [39], [126]. This stops other operations
to free the memory and resume them afterwards, resulting
in pauses that can negatively effect user experience [39].

Different garbage collector designs have been evaluated
for improvements: reference counting garbage collection [52],
[126], concurrent garbage collection [39] and generational
garbage collection [39], [128]. Lim et al. [127] proposed a
memory partitioning scheme, which partitions available
memory into two nodes (for critical and uncritical appli-
cations). If one node runs out of memory, only the memory
of this node is freed.

Deduplication is a technique to remove redundant pages
from memory. While duplicated memory reduces available
memory for other applications, Android is prone to have
page-level duplication in memory [29]. Lee et al. [29] devel-
oped a system (MEMSCOPE) to analyze memory duplication
in Android OS. MEMSCOPE identifies memory segments that
contain duplicated memory pages. One of the disadvantages
of deduplication is the additional computation needed to
detect and merge redundant pages. Therefore, Kim et al. [129]
proposed a computationally efficient deduplication scheme,
considering background applications that do not update
memory contents and need to be scanned only once.

Memory management changes can be applied to achieve
further improvements in memory usage by mobile applica-
tions. For example, swapping is a technique that reclaims
memory by writing inactive memory pages to secondary
storage (e.g., eMMC). Kim et al. [136] proposed a swapping
scheme (Application-Aware Swapping) that considers OS
processes in the swapping decision. For example, swapping
an application to secondary memory is not useful if the LMK
is about to remove it from memory, freeing the used memory
pages. Other approaches utilized NVM for swapping [132],
[137].

Journaling in Android applies a write-twice behavior,
to ensure reliability, which reduces system performance by
additional write operations. Kim et al. [130] proposed an
architecture to reduce storage accesses for journaling. They

use non-volatile memory for this purpose. Among others,
Jeong et al. [131] eliminated the journaling of unnecessary
metadata. Nguyen et al. [134] proposed iRAM, a system
that cleans low-priority processes to maintain a high level
of free memory. Kim and Bahn [135] evicted write-only-
once data from the buffer cache to improve the utilization
of cache space. Kim et al. [133] proposed an approach to
group memory pages with the same lifetime to alleviate
fragmentation of I/O buffers.

GPU buffers have been analyzed by Kwon et al. [26], who
introduced a compressing scheme. Once an application goes
to the background, its GPU buffers are treated as inactive and
compressed. If the application is launched in the foreground,
GPU buffers are decompressed.

Programming languages influence the choice of lan-
guage constructs that further impact storage requirements.
Escobar De La Torre and Cheon [138] analyzed the impact of
the Java language constructs on the allocated memory. For
instance, for–each loops require more memory than equiv-
alent code snippets using regular loops. Removing those
constructs (iterators, for–each loops, lambda expressions
and the Stream API) reduces memory requirements [138].
Saborido et al. [45] showed that map implementations con-
sume different amounts of memory. Specifically, ArrayMap
uses less memory than HashMap.

6.3 Summary

Memory describes the occupation of device memory by ap-
plications, and is critical for resource-constraint systems [26],
[29]. For Android applications, data is either shared between
multiple applications, or loaded separately by each applica-
tion.

Memory has been measured according to kernel memory
footprints [119], garbage collection calls [51], physical mem-
ory dumps, and logging information [29]. Memory can be
analyzed by tools provided by the Android OS [112], and
external tools provided by researchers [59], [120], [121].

Memory consumption has been reduced by removing
code smells from application source code [51]. In particular,
memory leaks (e.g., constantly requesting memory [122], or
keeping unused objects in memory [123]) have a negative
impact on memory consumption.

Memory consumption has been further improved by
changes in the Android OS. For example, garbage collection,
which is used to free memory in Android, can use different
strategies for freeing memory [110]. Another approach is
the removal of redundant data from memory (deduplica-
tion) [29], [129]. Improvements can furthermore be achieved
by changes in swapping [132], [136], [137] and journaling
strategies [130], [131].

7 ENERGY

Embedded systems include several components that con-
sume battery. CPU, LCD, GPS, audio and WiFi services are
power-intensive components [25], [40]. Due to the limita-
tion in battery size and stored energy [140], [141], [142],
reducing energy consumption is gaining more and more
relevancy [143]. In general, optimizing energy consumption
depends on individual usage [7], [144].

Authorized licensed use limited to: University College London. Downloaded on April 22,2021 at 10:58:48 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3071193, IEEE
Transactions on Software Engineering

11

The following sections outline methods and tools to
profile energy consumption (Section 7.1) and reduce the
energy consumption of mobile applications (Section 7.2). A
summary is given in Section 7.3.

7.1 Profiling

Several measurements and prediction approaches have been
used to profile energy consumption on mobile devices.
Hoque et al. [145] discussed two ways to measure energy con-
sumption: with external instruments and self-metering. This
section gives an overview of respective profiling techniques.

A common approach to determine energy consumption
is to investigate hardware components. Zhang et al. [25] mea-
sured power consumption using battery voltage sensors and
knowledge of battery discharge behavior. Additionally, fuel
gauge chips [146] and Battery Monitoring Unit [147] can be
used to measure energy consumption. Other approaches use
physical power meters to measure energy consumption [99],
[148], [149], [150], [151]. Morales et al. [143] used a digital
oscilloscope for high frequency energy measurements. Ferrari
et al. [152] designed a Portable Open Source Energy Monitor
(POEM) to measure energy consumption of applications at a
control flow level. Bokhari et al. [153] built energy models
based on CPU utilization and lines of code, as external meters
can be expensive and not easy for developers to set these
meters up.

Other than measuring energy consumption with physical
devices, several studies make energy consumption estimates.
Energy consumption estimates can be performed based
on hardware utilization and system-calls [154], Android
kernel monitoring [155], pixel information [156], [157], user
behavior [7], data transmission-flow characteristics [158],
code level [159], [160] and source-code line level [161].

Jabbarvand et al. [162] proposed COBWEB, a search-based
technique to generate test suites for energy testing. These
tests are able to execute energy-greedy parts of the code.
The computational cost of such a testing technique can be
reduced by test-suite minimization [163]. Mittal et al. [164]
presented an emulation tool WATTSON to estimate energy
consumption during application development. CPU time has
been used as a proxy for energy consumption. However,
it is not as accurate as other techniques, because voltage
is scaled dynamically and multiple hardware components
are used [161]. One should consider that errors during the
measurement and estimation of energy consumption, as
noise, can be introduced by various hardware components,
such as a rising temperature of the battery [165]. This impacts
the number of samples required for ensuring statistical
significance when comparing the energy consumption of
applications [166]. Validation approaches should consider
the level of noise to compare solutions fairly [167].

7.2 Optimization Approaches

Several techniques have been applied to reduce the energy
consumption of mobile applications, which are discussed in
the following and summarized in Table 6.

Offloading, e.g., transferring computationally expensive
tasks to external devices, can be used to reduce energy

TABLE 6
Studies on Energy Optimization.

Category Authors [Ref] Year Venue

Offloading Cuervo et al. [149] 2010 MobiSys
Saarinen et al. [168] 2012 SIGCOMM
Ding et al. [169] 2013 SECON
Saarinen et al. [170] 2013 Mobicom
Khairy et al. [171] 2013 IWCMC
Kwon and Tilewich [172] 2013 ICSME
Corral et al. [173] 2014 MobiWis
Bolla et al. [174] 2014 NGMAST
Qian and Andresen [175] 2015 IJNDC
Das et al. [46] 2016 IACC

Prefetching Balasubramanian et al. [176] 2009 SIGCOMM
Chen et al. [177] 2013 SOSP
Mohan et al. [178] 2013 EuroSys
Yang and Cao [179] 2017 IEEE TCM
Dutta and Vandermeer [180] 2017 TWEB

Antipatterns Pathak et al. [181] 2011 HotNets
Zhang et al. [141] 2012 CODES
Pathak et al. [182] 2012 MobiSys
Banerjee et al. [148] 2014 FSE
Liu et al. [183] 2014 TSE
Jabbarvand and Malek [184] 2017 FSE

Refactoring Pathak et al. [185] 2012 Eurosys
Anwer et al. [186] 2014 MobileSoft
Alam et al. [187] 2014 DATE
Li et al. [188] 2014 ICSE
Linares et al. [156] 2015 FSE
Bruce et al. [189] 2015 GECCO
Cito et al. [146] 2016 ASE
Banerjee and Roychoudhury [190] 2016 MobileSoft
Cruz et al. [191] 2017 MobileSoft
Banerjee et al. [192] 2017 TSE
Morales et al. [143] 2017 TSE
Cruz and Abreu [193] 2017 FSE
Bokhari et al. [165] 2017 GECCO
Cruz and Abreu [194] 2018 CIbSE
Lyu et al. [47] 2018 ISSTA

Power states Pyles et al. [150] 2011 UbiComp
Kim et al. [195] 2012 ICOIN
Ding et al. [196] 2013 SIGMETRICS
Metri et al. [142] 2014 UbiComp
Bokhari and Wagner [197] 2016 GECCO
Rao et al. [198] 2017 HPCA

Displays Dong et al. [199] 2009 DAC
Anand et al. [200] 2011 MobiSys
Lin et al. [201] 2012 TC
Lin et al. [202] 2014 DAC
Chen et al. [203] 2014 Computers & graphics
Huang et al. [204] 2014 ISLPED
Chen et al. [205] 2014 HotPower
Nixon et al. [206] 2014 HotPower
Li et al. [188] 2014 ICSE
He et al. [207] 2015 Mobicom
Lin et al. [208] 2017 ISLPED
Lee et al. [209] 2018 ITMCCJ
Chang et al. [210] 2019 DAC
Lin et al. [211] 2019 DAC

CPU Nagata et al. [99] 2012 UIC
Bezerra et al. [212] 2013 PM2HW2N
Chang et al. [213] 2013 TECS
Tseng et al. [214] 2014 DAC
Hsiu et al. [215] 2016 TECS
Li and Mishra [216] 2016 J PARALLEL DISTR COM
Muhuri et al. [217] 2019 IEEE Trans. Fuzzy Syst.
Han and Lee [218] 2020 IEEE Access

APIs Paek et al. [219] 2010 MobiSys
Zhuang et al. [220] 2010 MobiSys
Chon et al. [221] 2011 SenSys
Oshin et al. [222] 2012 TrustCom
Zhang et al. [223] 2013 IEEE Sensors
Linares et al. [224] 2014 MSR

Protocols Ra et al. [225] 2010 MobiSys
Nurminen [226] 2010 CCNC
Pyles et al. [227] 2012 UbiComp
Lee et al. [228] 2012 IEEE Transactions
Cheng and Hsiu [229] 2013 INFOCOM
Siekkinen et al. [230] 2013 MoVid
Li et al. [231] 2016 ICSE

System strategies Chen et al. [232] 2015 Mobicom
Martins et al. [233] 2015 ATC

Memory management Duan et al. [40] 2011 IGCC
Nguyen et al. [234] 2013 UbiComp
Hussein et al. [235] 2015 Systor
Zhong et al. [236] 2015 ITCSDI

Programming languages Nagata et al. [99] 2012 UIC
Saborido et al. [45] 2018 EMSE

consumption [149]. Cuervo et al. [149] developed MAUI,
a system that supports automatic and developer-specified
code offload. MAUI determines which method to execute
remotely based on the current state of the device at runtime.
Offloading decisions can be motivated by device status [175],
execution times [171], network conditions [46], [168], [169],
[170] or developer decisions [172]. Bolla et al. [174] proposed
the concept of Application State Proxy (ASP) to offload entire
applications. ASP transfers internet-based applications to
other network devices, when they are kept in the background.
As long as no new events occur (e.g., messages), applications

Authorized licensed use limited to: University College London. Downloaded on April 22,2021 at 10:58:48 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3071193, IEEE
Transactions on Software Engineering

12

are kept in the proxy, which reduces the resource load on the
smartphone. Corral et al. [173] applied offloading to matrix
multiplication and image processing tasks to reduce energy
consumption.

Prefetching, e.g., the caching of data transmissions and
advertisements in advance, can be used to reduce energy
consumption. Balasubramanian et al. [176] distinguished ap-
plications in delay-tolerant and applications that can benefit
from prefetching, to decide which networking technology
(3G, GSM, WiFi) to use. Mohan et al. [178] and Chen et al. [177]
prefetched multiple ads to reduce energy consumption in-
duced by downloads. Dutta and Vandermeer [180] achieved
energy reductions with caching of up to 45%, even with small
cache sizes (e.g., 250MB). Yang and Cao [179] formalized the
prefetching for energy reductions as an optimization problem.
Two approaches (greedy and discrete) are investigated to
minimize energy consumption with regard to the network
condition (LTE).

Antipatterns can be defects such as energy bugs that will
likely drain energy. Pathak et al. [181] defined energy bugs as
errors that cause the system to unexpectedly consume energy.
Banerjee et al. [148] categorized energy inefficiencies into
two categories: energy hotspots and energy bugs. Energy
hotspots cause high battery consumption even though the
hardware utilization is low. Energy bugs prevent the idle
state of smartphones causing undesired battery consumption
without user activity. Pathak et al. [181] categorized energy
bugs caused by hardware (faulty battery, hardware damage)
and software (OS, configurations, applications) and proposed
a framework to detect the causes of energy bugs. Pathak
et al. [182] focused on detecting a particular type of energy
bug (no-sleep bug) via static analysis. A no-sleep bug occurs
when application components are being kept active when a
smartphone is in an idle state, without the necessity of being
kept active. Banerjee et al. [148] created a framework that
automatically generates tests to detect energy bugs. Each test
contains a sequence of user interactions that are aimed at
revealing energy bugs. As system calls are a primary source
for energy bugs, a directed search is used to generate test
cases containing system calls. Zhang et al. [141] developed
ADEL (Automatic Detector of Energy Leaks), to identify
energy leaks caused by network operations. Liu et al. [183]
created GREENDROID, a tool that extends Java PathFinder
(JPF) to automatically detect energy problems and report
actionable information to combat these problems. Jabbarvand
and Malek [184] proposed µDROID, a mutation testing
framework, that can be used to detect energy inefficiencies.
This framework uses 50 different mutation operators and
the similarity of power traces between original application
and mutants is used as the test oracle. The detection and
removal of energy bugs is not simple, as high energy
consumption in applications is not necessarily a sign for
wasted computations [141].

Refactoring, for example, by using energy-efficient algo-
rithms, can be used to reduce energy consumption.

Pathak et al. [185] manually restructured the source code
of applications to make efficient use of high power states of
components. They observed that applications consume I/O
energy in distinct lumps. Bundling these lumps can reduce
energy consumption. Similarly, Alam et al. [187] optimized
the placement of wakelock calls. Lyu et al. [47] refactored

database operations to avoid inefficiencies and reduce energy
consumption. Another approach is to change the choice of
colors used in an application, as the power consumption
of displays is effected by the displayed color [237]. This
goes as far that some applications consume double the
energy as they would do if colors were optimized for energy
consumption [157]. Li et al. [188] proposed an approach to
automatically change the colors used in web applications.
Linares et al. [156], [238] used multi-objective optimization
to reduce the energy consumption of GUIs, while offering
visually similar colors to the original design. Bruce et al. [189]
applied Genetic Improvement (GI) to find a more energy
efficient version of applications. Mutation operations were
applied to the source code of a Boolean satisfiability solver, to
reduce energy consumption as a measure of fitness. Bokhari
et al. [165] applied approximate computing on Rebound,11 a
Java Physics library, to achieve a trade-off between accuracy
and energy consumption.

Another approach to automatically refactor applications
is to follow energy efficiency guidelines [190], [191], [194].
Cito et al. [146] adapted application binaries to adjust
the frequency of network requests to advertisements and
analytics based on the battery status. Anwer et al. [186]
adapted permissions and corresponding source code of
applications based on user requirements, which can for
example prevent the unconscious sending of an SMS.

Morales et al. [143] showed that there is a correlation
between anti-patterns and energy consumption of mobile
applications, and proposed the use of multi-objective search
to find a set of refactoring sequences able to simultaneously
improve code design quality (including the removal of
energy smells) and reduce energy consumption. Banerjee
et al. [192] performed an automatic repair of energy bugs
with static and dynamic analysis. Cruz and Abreu [193]
manually fixed antipatterns based on Android performance-
based guidelines.

Power states determine the operating modes of hardware
components, which require different amount of energy [154].
Power state transitions can be initiated by hardware com-
ponents, but are usually performed by the OS [40]. As idle
power consumption accounts for approximately 50% of the
total energy consumption in a smartphone, it is suggested
that using different power modes to shut down components
is useful to reduce energy consumption [140]. Metri et
al. [142] developed BATTERYEXTENDER, a tool that enables
users to reconfigure device resources to reduce battery
consumption. For this purpose, battery consumption of
components is predicted with little computational overhead,
by using energy profiling. Users are able to pick a period
of time for which they want to reduce energy consumption
and then choose which components to put in an idle power
state to save energy. Bokhari and Wagner [197] proposed
a framework to optimize default settings of smartphone
components to reduce energy consumption. This problem is
formulated as an optimization problem, to minimize energy
consumption by changing settings of components based on
user behavior. Rao et al. [198] dynamically selected system
configurations (CPU frequency and memory bandwidth)
that reduce energy consumption while maintaining a user-

11. https://github.com/facebookarchive/rebound

Authorized licensed use limited to: University College London. Downloaded on April 22,2021 at 10:58:48 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3071193, IEEE
Transactions on Software Engineering

13

specified level of responsiveness. Ding et al. [196] determined
power modes based on wireless signal strength, as a poor
signal strength drains energy. Based on this, network traffic
can be delayed under poor signal strength and continued
when the network strength improves. Kim et al. [195] limited
data transmissions to smartphones (e.g., text, image, and
video) based on battery status. By minimizing the amount
of transferred data in Social Networking Services, energy
consumption can be reduced. For instance, Pyles et al. [150]
switched WiFi to a low power or sleep mode during periods
where it is not being used.

Displays are under constant energy consumption while
mobile devices are used. Dong et al. [199] were the first to
study the transformation of GUI colors of OLED displays to
reduce energy consumption. Their automatic transformation
can be applied on GUI elements (structured) or on pixel
information (unstructured). Anand et al. [200] adjusted
the brightness of screens to reduce the backlight level
of the display. Lin et al. [201] reduced backlight energy
consumption for mobile streaming applications, while other
work dimmed areas of the screen [188], [203], [205], [208].
Other approaches include the adaptation of pixels [202],
reduction of frame refreshes [204], [206], [209], [210], pixel
density [206], [207] and resolution [211].

CPU clock frequency impacts energy consumption [140].
Nagata et al. [99] proposed a method that adjusts CPU
clock frequency based on application requirements. Hsiu
et al. [215] allocated computing resources based on the
sensitivity of different applications. Application sensitivity
states can be HIGH (interactive), MEDIUM (foreground) or
LOW (background). Tseng et al. [214] adapted the allocation of
CPU resources to applications based on their delay-sensitivity.
Further approaches adjust the frequency and voltage of
devices (Dynamic Voltage and Frequency Scaling) [212],
[213], CPU frequency [218] or the number of cores [216].
Muhuri et al. [217] considered linguistic feedback from
users to adapt CPU frequency accordingly. They proposed
the approach Per-C for Personalized Power Management
Approach (Per-C PPMA), which collects user feedback about
their degree of satisfaction when using an application. This
can be applied to not only reduce energy consumption, but
also to improve user satisfaction.

APIs impact energy consumption, as Li et al. [239]
showed that 91.4% of applications consume more than 60%
of their energy with APIs. Linares et al. [224] analyzed
usage patterns of “energy-greedy” APIs and give recipes
to reduce energy consumption. To support their quantitative
and qualitative exploration of API usage pattern, they mined
thousands of method calls and API usage patterns. Among
those, there are usage patterns that have an unavoidable, high
energy consumption, and others which can be improved. An
example for energy-greedy APIs is GPS. Paek et al. [219]
adapted the rate of GPS, and only turns on GPS, when the
current location estimate is uncertain. Turning on GPS indoors
is also avoided. Other approaches reduce the sampling rate
of GPS [220], [221], [222], [223].

Protocols can be used by mobile devices to optimize
the energy consumption of networking technologies. Ra
et al. [225] designed an algorithm to optimize the energy-
delay trade-off of delay-tolerant applications that can benefit
from low-energy WiFi connections. Energy can be reduced

if mobile traffic is delayed to a situation where WiFi is
available [228]. Pyles et al. [227] saved energy by prioritizing
WiFi traffic based on application priority. Li et al. [231] bun-
dled HTTP requests to reduce energy consumption. Cheng
and Hsiu [229] considered signal strength to reduce energy
consumption when fetching location-based information.
Nurminen [226] showed that parallel TCP downloading can
be used to reduce energy consumption. Siekkinen et al. [230]
reduced energy consumption of streaming applications by
shaping LTE traffic into bursts. Hoque et al. [240] surveyed
other approaches for optimizing the energy efficiency of
streaming.

System strategies can be used to manage background
processes. Martins et al. [233] introduced TAMER, an OS
mechanism that allows rate-limiting of background processes
to reduce energy consumption. TAMER imposes on events
and signals that cause background applications to wakeup
and thereby consume a higher amount of energy. Among
others, TAMER can limit the frequency of notifications an
application sends while it runs in the background. Chen et
al. [232] avoided running applications in the background
when they are not beneficial for user experience.

Memory management strategies can be used to change
or increase memory to cope with higher requirements of
applications. However, a larger main memory size leads to
higher energy consumption [40], [132]. Energy reductions
can be achieved by using non-volatile memory [236], Phase
Change Memory [40] or adaptations to the garbage collec-
tion [235] and scheduling algorithms [234].

Programming Languages impact the responsiveness and
energy consumption of applications. Nagata et al. [99]
compared applications developed in different programming
languages (Java, JNI and C) and showed that the energy
consumption for JNI and C is smaller than for Java. A pro-
gramming language construct that impacts energy consump-
tion refers to maps (e.g., using HashMap over ArrayMap can
reduce energy consumption by 16% [45]).

7.3 Summary

Energy consumption is a crucial characteristic of embedded
systems since these devices have a limited battery size.
Energy is consumed by applications (often by multiple
applications at the same time), which use several components
(e.g., GPS, audio, WiFi, display) [25], [40].

To profile energy consumption, two techniques have been
pursued. On one hand, energy has been measured with either
internal or external instruments [145]. On the other hand,
energy consumption has been empirically estimated. For
this purpose, various indicators have been investigated [154],
[156], [161]. However, when profiling energy consumption,
one should consider noise, which impacts the validity of
measurements [165], [166], [167].

Many approaches have been proposed to optimize energy
consumption. The majority of these approaches address
the application source code (38/85). Changes to source
code included the removal of bad coding practices (antipat-
terns) [181], [182], [192], or refactoring to include best prac-
tices [190], [191], [194]. Source code adaptation approaches
can also focus on particular elements of devices, such as the
display. For instance, energy consumption of displays has

Authorized licensed use limited to: University College London. Downloaded on April 22,2021 at 10:58:48 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3071193, IEEE
Transactions on Software Engineering

14

2020
201920152010

2008

Android 1.0:
first commerical version

Android 10.0:
current version

Android 4.4:
Android Runtime (ART)

Android 7.0:
New JIT compiler

2009 2011 2012 2013 2014 2016 2017 2018

Dong et al. [191]
GUI transformation

Kemp et al. [52]
Offloading

Pathak et al. [146]
Fine-grained

energy-profling

Yan et al. [90]
App preload

Banerjee and Roychoudhury [182]
Automatic Refactoring

Liu et al. [13]
Antipatterns

Fig. 4. Timeline of key ideas in non-functional performance optimization and changes to the Android OS.

been reduced by changing colors used in applications [156],
[237], [238]. Adaptions have been also applied to displays
directly. Thereby, display energy consumption has been
reduced by changing brightness, colors and dimming [188],
[199], [200], [203], [205], [208].

Similar to responsiveness optimization, energy ineffi-
cient computations have been offloaded to external devices
with fewer computational restrictions [149]. Adapting the
CPU clock frequency, to adjust computational speed, have
also reduced energy consumption [99]. An adjustment of
components can be performed with different power states
(e.g., setting components in an idle state when they are not
required).

8 DISCUSSION

This section provides an overview and discussion of the
optimization approaches presented in previous sections
(sections 4 to 7). In the following, we present a timeline of
important methods and techniques proposed for advancing
mobile applications’ performance. Additionally, we discuss
current challenges and opportunities in this field.

8.1 Timeline
Important changes to the Android Platform and publications
concerned with optimization of non-functional performance
characteristics are shown in the timeline in Figure 4. The first
commercial Android version was introduced in 2008. In 2009,
Dong et al. [199] studied the transformation of the GUI to
reduce the energy consumption of mobile device displays.

In 2010, Kemp et al. [67] were the first that proposed an
offloading framework for Android applications. This frame-
work can be used to offload computationally expensive parts
of mobile applications and improve both responsiveness and
energy consumption.

In 2011, Pathak et al. [154] extended energy profiling of
hardware utilization based on system-calls to provide fine-
grained energy estimates. In 2012, Yan et al. [102] proposed
an OS extension that preloads applications and application-
specific content to improve the launch time of applications.
In 2013, Android designers applied a big change to the
Android platform, introducing ART over the previously used
DVM. With this change, optimizations such as Ahead-Of-Time
(AOT) compilation are applied by the Android platform to
improve application performance.

In 2014, Liu et al. [13] characterized several types of
performance bugs, which addressed different non-functional

characteristics of Android applications and caused excessive
resource consumption of memory and battery. Examples
of performance bugs include GUI lagging, energy leaks,
and memory bloat. Based on the knowledge of bugs and
antipatterns or guidelines, Banerjee and Roychoudhury [190]
proposed the automated refactoring of application source
code in 2016.

In 2016, Android 7.0-7.1 introduced a new JIT Compiler.
This allowed faster application installations and it reduced
the size of compiled code. The 10th major Android version
was published in 2019.

8.2 Optimization Approaches per Android Layer

Reading the related work, we observed that approaches are
applied to different layers of mobile devices. The distribution
of these approaches differs between the four non-functional
performance characteristics we investigated. In Figure 5, we
organize optimization approaches based on layers (appli-
cation, platform, hardware) to non-functional performance
characteristics (i.e., responsiveness, launch time, memory
and energy).

The majority of approaches to optimize responsiveness
are application-based techniques and apply changes to the
source code (e.g., antipatterns, refactoring or prefetching).
Hardware and I/O optimization approaches are concerned
with increasing the speed of reads and writes, faster fetching
of bytecode as well as correct usages of CPU and GPU.

Launch time has not been improved itself by changes
to applications, but, in majority, by changes in the Android
platform. In particular, the preloading of applications [16],
[38], [48], [49], [101], [102], [107], [108], [109], [241] and
better choices for the LMK [15], [38], [48], [49], [104], [111],
[112], [113], [114], to prevent cold starts from happening,
are investigated frequently. The overall research direction is
concerned with reducing the amount of cold starts rather
than reducing the launch time itself.

Memory is mostly optimized by removing antipat-
terns [51], [52], [122], [124], [125] and applying different
strategies for the garbage collection [39], [52], [96], [110],
[126], [127], [128].

A great deal of research work optimizes energy con-
sumption and almost every optimization category has been
addressed for energy consumption. Unlike the optimization
of responsiveness, launch time and memory usage, a large
portion of approaches apply changes to the hardware,
especially for screens. The power mode of components plays

Authorized licensed use limited to: University College London. Downloaded on April 22,2021 at 10:58:48 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3071193, IEEE
Transactions on Software Engineering

15

Android

Application

Platform

Hardware

Responsiveness

Launch

Memory

Energy

Fig. 5. Flow diagram of optimization approaches. Optimization approaches are matched with the layer of the embedded system (e.g., hardware,
platform, and application). These layers are matched with corresponding, optimized non-functional performance characteristics (e.g., responsiveness,
launch time, memory, and energy consumption). The width of the flows represent the number of publications with regards to a relationship.

an important role as well, which is governed by the Android
OS. Furthermore, API usage has a huge impact on energy
consumption. In particular, the use of GPS. Alike respon-
siveness, changes to application source code contribute to
energy savings. Approaches like offloading optimize both,
responsiveness and energy consumption.

8.3 Relationship of Optimization Approaches

A major trade-off that can be seen is between energy
consumption and responsiveness [198], [216], [242], which
should therefore be evaluated in union. One example for the
relationship of responsiveness and energy consumption can
be seen in the CPU clock frequency, as reducing it leads to
less energy consumption, but lowers responsiveness and vice
versa [99].

Considering application launch, hot starts are preferable
over cold starts, not only to reduce the launch time but also
to reduce energy consumption [26], [38], [243].

The choice of the memory system and storage technique
used impacts energy consumption [40], [244]. One aspect of
this is the size of memory, as a larger main memory size
leads to higher energy consumption [40], [132]. Regardless,
larger memory permits the preloading and prefetching of
more application data, which can improve launch time,
responsiveness and/or energy consumption. Evidence for
potential improvement comes from the observation that the
number of applications cached directly impacts the amount
of blocked memory [111]. Memory leaks [243] or a full
memory [15] limit the number of preloaded applications.
Different memory management strategies for the LMK [49],
[48] have shown to improve application launch.

While there is a relationship among non-functional char-
acteristics, several optimization approaches improve more
than one characteristic at the same time, which we will
present in the following.

Gordon et al. [72], Chun et al. [68], Chen and Hao [74],
Kemp et al. [67] and Kosta et al. [70] performed offloading to
improve responsiveness, and as a result reduced energy con-
sumption. Khairy et al. [171], and Qian and Andresen [175]
proposed offloading systems aimed at reducing energy
consumption, that reduced execution time as well. In order
to achieve improvements with offloading, the saving has

to exceed the additional cost imposed by the offloading
process [245].

Removing antipatterns can reduce the number of garbage
collection calls as well [51], whereas memory leaks reduce
available memory and responsiveness [125].

Nguyen et al. [50] improved both responsiveness and
launch time by optimizing I/O read and write operations.
Kim et al. [133] reduced CPU usage and energy consumption
with a region-based physical memory management scheme.
Hecht et al. [51] improved memory as well as user interface
performance by correcting code smells. The approach of
Han et al. [218] on CPU scheduling could not only reduce
energy consumption but also application launch time. Hsiu
et al. [215] reduced application response time by scheduling
computing resources for energy reduction. Saborido et al. [45]
showed that the choice of different map implementations
impacts memory, energy and responsiveness. Lyu et al. [47]
refactored database operations and thereby improved re-
sponsiveness and energy consumption. By reducing buffer
cache, Kim and Bahn [135] reduced energy consumption at
the same time.

Optimization approaches for responsiveness, launch time
and memory can induce additional energy costs, if they
extend the OS or require additional computations [29], [85],
[95], [102], [107], [109], [129]. Overhead is not only produced
by optimization approaches, but also by profiling and test-
ing [60], [142], [160], [246], as well as by displaying ads [247]
to generate revenue. In addition to causing overhead, non-
functional improvements may come with a trade-off with
regards to functional characteristics, such as the accuracy of
algorithms [151].

8.4 Challenges
Reflecting on the different optimization approaches and the
relationship between non-functional performance character-
istics, we have identified challenges and opportunities for
future work. We begin by outlining three challenges that de-
velopers face when optimizing non-functional performance
characteristics, followed by an overview of future work
targeted by the surveyed publications, and by opportunities
we detected.

Cross-characteristic dependencies. Section 8.3 shows
that a challenge that developers face while optimizing

Authorized licensed use limited to: University College London. Downloaded on April 22,2021 at 10:58:48 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3071193, IEEE
Transactions on Software Engineering

16

applications’ performance refers to the handling of the
dependencies among different performance characteristics.
This means that while improving one characteristic, they
may decrease the performance of another [40], [99], [132].
For example, optimization approaches that extend the OS or
invoke additional computation cause additional energy con-
sumption [29], [85], [95], [102], [107], [109], [129]. Therefore,
there should be a balance that developers need to achieve
among performance characteristics. While we pointed out
works that achieved improvements in more than one perfor-
mance characteristic (Section 8.3), it would be interesting if
adverse relationships and trade-offs between non-functional
performance characteristics receive more attention. One ex-
ample for this is the energy consumption and responsiveness
trade-off when adjusting CPU clock frequency [99].

Testing cost. There are different definitions of the four
non-functional characteristics to determine how performance
is measured (e.g., responsiveness measured in ms [56], [57]
or frames [51], or different definitions of application launch
completion [101], [102]). Another problem arises with noisy
measurements (e.g., due to hardware components [165]),
as we have seen in Section 7. Therefore, testing should
consider variance in measurements to ensure statistical
significance [166], [167].

An attempt to reduce the cost of testing is the usage
of emulators [123], [164] or prediction of non-functional
performance without executing an application. Prediction of
performance has been applied for responsiveness [57], [66]
and energy consumption [7], [154], [155], [156], [157], [158],
[159], [160], [161].

User satisfaction. While improvements in non-functional
characteristics without performance deterioration in other
characteristics, can always be seen as something positive,
quantifying the impact of improvements on user satisfaction
remains challenging.

Two of the surveyed publications attempted to tackle
this issues. For example, Muhuri et al. [217] collected
linguistic feedback about user satisfaction (e.g., ranging from
“very low” to “extremely high”) to examine the impact of
performance on user satisfaction. This information has been
used to adapt the CPU frequency. Zhao et al. [106] stated
that collecting user feedback can be costly and inconvenient
for developers. To overcome this issue, they mapped a
user-perceived satisfaction score about launch times to the
actual launch time delay, which is easily measurable. Such
an incorporation of user satisfaction in the optimization
procedure, could prove to be an interesting consideration for
future work on other performance characteristics.

In addition to these challenges, the reviewed publications
distinguished several fields of future work, including:

• Improvement and extension of prediction methods
(e.g., for offloading, prefetching, and preloading) [38],
[66], [67], [86], [115], [116], [132], [221];

• Investigation of antipatterns [13], [51], [58], [123],
[224];

• Automation of the optimization process [51], [148]
• Extension of testing (e.g., usage of more devices and

applications) [51], [183], [207];
• Improvement of measurements (profiling) [132], [189].

In particular, extensions of prediction methods include
the consideration of additional information, such as the
context (e.g., location, time) [38], behavioral patterns [86]
and information about remote resources for offloading (e.g.,
processor speed, available memory) [67]. Future work on
antipatterns is concerned with investigating a broader range
of antipatterns [51], [58] and discovering new antipatterns
or categories [13], [123], [224]. Automation could be applied
to time-consuming tasks, such as finding causes for energy
wastage [148] or the correction of antipatterns [148].

Based on our results, including Figure 5, we identified
further gaps in the literature. For once, changes to applica-
tions are not investigated for launch time improvements.
It could be investigated whether antipatterns, that exist
for responsiveness, memory and energy usage, exist for
application launch as well.

Automatic refactoring has been applied for both respon-
siveness and energy, individually. It could therefore be
interesting to apply refactoring in a multi-objective setting,
to optimize both. Lastly, changes to the platform have
scarcely been used to improve responsiveness. There could
be the potential to apply ideas from other non-functional
characteristics, such as APIs for energy consumption.

9 RELATED WORK

In the following, we give an overview of literature related to
the non-functional performance optimization of Android ap-
plications. At first, we look into optimization approaches for
software engineering. We furthermore describe the developer
and user perspective on mobile-application optimization.

9.1 Optimization in Software Engineering

This survey outlined optimization approaches for mobile ap-
plications. In the following, we present studies and insights
on optimization with regards to software engineering.

During the development and optimization of software, it
is important to consider software requirements [248], which
can contain functional, non-functional, business and user
requirements. Different techniques for prioritizing require-
ments [249], [250] can be applied to determine the importance
of non-functional over functional characteristics.

Nonetheless, the performance of software is difficult to be
measured, as it is pervasive and affected by various different
aspects (e.g., the platform used) [251]. Software Performance
Engineering (SPE) is an approach to measure and improve
system performance [251]. SPE subsumes software engineer-
ing activities that are applied to meet performance require-
ments and achieve improvements. Profiling tools can be used
to measure performance (e.g., for energy consumption [252],
[253], GPUs [254], responsiveness [255], and memory [256]).

Building upon performance profilers, optimization and
improvement techniques can be applied to software. Petke
et al. [33] conducted a survey on genetic improvement of
software. They mention improvements for non-functional
characteristics for energy and memory consumption as well
as functional improvements including repairs and addition
of new functionalities.

Following, we outline representative publications on
software optimization. Mao and Humphrey [257] analyzed

Authorized licensed use limited to: University College London. Downloaded on April 22,2021 at 10:58:48 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3071193, IEEE
Transactions on Software Engineering

17

long, unexpected startup times of Virtual Machines on the
cloud. Kaminaga [258] discussed techniques to achieve a
faster startup time for embedded Linux systems. Van Emden
and Moonen [259] analyzed code smells in Java source
code. Baer and Chen [260] proposed a hardware scheme for
preloading data. Sahin et al. [261] analyzed the impact of code
refactoring on the energy consumption of 197 applications.
Chen et al. [262] used flash drives in mobile computers
for caching and prefetching data to save energy. Chen et
al. [263] reduced writes to memory by using deduplication.
Hauswirth and Chilimbi [264] detected memory leaks with
low computational overhead. Padmanabhan and Mogul [265]
investigated latency reductions by prefetching web docu-
ments.

9.2 Developer Perspective

In the following, we outline the developer perspective
on optimization and development of mobile applications,
including challenges during the development process. While
certain characteristics of smartphones and PCs are simi-
lar [105], developers encounter differences to conventional
software development as mobile applications are smaller
than traditional software [266].

Developers use tools to support the development of
applications [267], profiling, and debugging [268]. Static
analysis can be used to support developers to find bugs
and inspect code [269]. Other tools perform security as-
sessment, automated test case generation and detection of
non-functional issues such as energy consumption [270],
[271]. While fixing non-functional performance bugs, devel-
opers need to consider the threat of introducing functional
bugs [272] and hindering code maintainability [273]. In this
context, Linares et al. [274] suggested that developers rarely
implement micro-optimizations (e.g., changes at statement
level).

When developing an application, developers need to
decide which and how many platforms to use (e.g., Android,
iOS, Windows OS). Note that each platform faces non-
functional issues alike (e.g., antipatterns can be found in
iOS [275], [276]). This impacts the development effort, as
multiple codebases need to be maintained. Development
of applications for multiple platforms can be supported by
cross-platform tools (CPTs) [277]. By doing so, developers
compromise between user experience and the ability to
publish an application on multiple platforms. Willocx et
al. [55] found that CPTs lead to an increased launch time of
applications.

Furthermore, devices vary in their available memory,
CPU, and display size, which has implications on application
performance [278]. Therefore, developers need to test their
applications on multiple devices.

Further changes and added functionality to the Android
OS can be imposed by phone vendors [279]. This leads to
varying behavior across different smartphone types [280].
Khalid et al. [281] analyzed the number of different phones
that use applications in order to help developers to decide
how many devices to use when testing applications, as the
rating varies for different phone types. Often, applications
run on more than hundred different phone types, implying a
huge computational effort if all devices would be tested for.

They found that around a third of the devices account for
80% of the reviews and thereby usage, which can be used to
prioritize which devices to use during testing. Lu et al. [282]
prioritized devices to test applications based on the amount
of user activity rather than the number of devices.

In order to analyze the performance of applications,
the Google Play Store provides developers with pre-launch
reports after an application is published. Tests are carried
out on different devices and for up to five languages [283].
Another tool that developers can use to judge the quality and
performance of applications are Android Vitals. Statistics
including battery consumption, and crashes are collected
from real users and reported to developers [30]. Comparisons
with regard to non-functional performance characteristics,
such as energy consumption, can also be measured with
applications of the same category [284].

Frequently, developers use user reviews and test applica-
tions manually to detect performance issues and bugs [268].
Developers can change applications based on user reviews.
Those reviews contain among others information about
performance, bugs, problems or new features [3], [31]. There
is a huge number of reviews that are written for applications,
where some of them contain relevant information for de-
velopers [285]. For this purpose, Chen et al. [19] developed
a framework to filter informative reviews by applying text
mining and ranking methods. Furthermore, reviews can be
analyzed for trends [286], [287] and emerging issues [288].

Even though developer identities do not often impact
the choice of applications (only 11% of users choose an
application based on who developed it [2]), they significantly
impact the quality and success of applications [1]. Other
factors that are correlated with the rating of applications
include the apk size, minimum required SDK, and number of
images on the application description page [289].

9.3 User Perspective

In the context of mobile applications, user shows a high
degree of individualism [290]. Therefore, not every optimiza-
tion approach can be applied in a general fashion. This is why
understanding user behavior and differences among users
and user groups is important when improving performance.
Ultimately it is the user who decides the changes to an
application result in a higher level of satisfaction.

The user-perceived quality of an application is not only
determined by the application itself, but also by the device
and attributes of its components [291]. Aspects that lead
to the most negative complaints in reviews are related to
privacy, hidden costs and features of the application [3].

Users’ behavior varies in terms of number of interactions,
amount of data received, interaction length and number
of applications used [7]. Some users even show addictive
behavior [292]. Approaches that aim to improve user expe-
rience (e.g., by reducing energy consumption or improving
the responsiveness), should therefore be adaptive to user
behavior. Making matters more difficult to predict, usage
patterns can change within a few days [117].

Additionally, user behavior across countries shows sig-
nificant differences as well [2]. Users of different countries
prioritize other aspects of applications and show variations
in rating applications as well as writing reviews [2]. For

Authorized licensed use limited to: University College London. Downloaded on April 22,2021 at 10:58:48 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3071193, IEEE
Transactions on Software Engineering

18

example, users in China are more likely to rate an application,
while users in Brazil are more likely to abandon a slow
or buggy application. While there exist differences among
Android users based on countries, a study on application
launch performed by Morrison et al. [293] showed that
similarities between Android and iOS exist.

Application usage can be seen as a sequence, with
multiple applications used consecutively in a short period
of time, whereas 68.2% of sequences only contain a single
application [115]. Application usage varies based on the
context, such as location [294] and/or time [115], [295].

10 THREATS TO VALIDITY

In this section, we discuss potential threats to our survey
based on internal and external validity.

Internal validity refers to problems of our methods that
could threat the validity of results and claims made in this
survey [9]. A potential threat to internal validity is the com-
pleteness of the reviewed literature. Ideally, every relevant
publication is included after the search process; however,
the risk of missing a publication cannot be eliminated. A
relevant publication can be missed if the respective data
source containing the publication is not properly searched.
Another cause for missing a publication is that corresponding
keywords are not included in our searching criteria. To
address both causes, we performed a preliminary search to
gather relevant keywords and venues to guide the literature
search. Moreover, two authors independently carried out the
filtering process and their results were cross-checked, in order
to ensure reliability and reduce researchers’ bias. A different
threat to internal validity refers to the precision of our results
(e.g., the inclusion of irrelevant publications). To mitigate
the impact of irrelevant publications, we check the title,
abstract, and body of the publications examined as outlined
in Section 3.1.3. Furthermore, there is a risk of drawing
incorrect conclusions or claims. For this purpose, every stage
of the search and analysis of results (e.g., repository search
and categorization of approaches) has been performed by
one author and cross-checked by another.

External validity describes the generalizability of our
results outside of the given scope [296]. A potential, external
threat is that the chosen non-functional performance charac-
teristics are insufficient to describe optimization techniques
for embedded systems. Through our preliminary search and
analysis of related work (Section 9) we found that the selected
four non-functional characteristics (responsiveness, launch
time, memory and energy consumption) are representative.
Another threat is the applicability of our study to other
mobile platforms (e.g., iOS). While there are differences
between iOS and Android, the general organization and
functionality within embedded systems remain the same.
We therefore argue that our categorization can be applied to
mobile platforms, other than Android.

11 CONCLUSIONS

In this paper, we have provided an overview of the existing
research work on non-functional performance optimiza-
tion for Android applications published between 2008 and
2020. Our survey presents optimization approaches for non-
functional performance characteristics (e.g., responsiveness,

launch time, memory, and energy). It also shows relation-
ships among these characteristics, and identifies research
gaps for potential future works. We hope that this survey
will help researchers and developers to have a holistic
perception on optimization approaches for mobile devices,
the impact of these approaches, and the significance of
different performance characteristics.

ACKNOWLEDGMENTS

This work is supported by the ERC Advanced fellowship
grant no. 741278 (EPIC). We would like to thank members
of the community who kindly provided comments and
feedback on an earlier draft of this paper. Our living
survey [22] has been inspired by the work of Allamanis
et al. [297].

REFERENCES

[1] V. Inukollu, D. Keshamoni, T. Kang, and M. Inukollu, “Factors in-
fluencing quality of mobile apps: Role of mobile app development
life cycle,” International Journal of Software Engineering Applications,
vol. 5, 10 2014.

[2] S. L. Lim, P. J. Bentley, N. Kanakam, F. Ishikawa, and S. Honiden,
“Investigating country differences in mobile app user behavior
and challenges for software engineering,” IEEE Transactions on
Software Engineering, vol. 41, no. 1, pp. 40–64, 2014.

[3] H. Khalid, E. Shihab, M. Nagappan, and A. E. Hassan, “What do
mobile app users complain about?” IEEE Software, vol. 32, no. 3,
pp. 70–77, 2014.

[4] A. AlSubaihin, F. Sarro, S. Black, L. Capra, and M. Harman, “App
store effects on software engineering practices,” IEEE Transactions
on Software Engineering, pp. 1–1, 2019.

[5] A. Mazuera-Rozo, C. Trubiani, M. Linares-Vásquez, and G. Bavota,
“Investigating types and survivability of performance bugs in
mobile apps,” Empirical Software Engineering, pp. 1–43, 2020.

[6] A. Finkelstein, M. Harman, Y. Jia, W. Martin, F. Sarro, and
Y. Zhang, “Investigating the relationship between price, rating,
and popularity in the blackberry world app store,” Information
and Software Technology, vol. 87, pp. 119–139, 2017.

[7] H. Falaki, R. Mahajan, S. Kandula, D. Lymberopoulos, R. Govin-
dan, and D. Estrin, “Diversity in smartphone usage,” in Proceedings
of the 8th international conference on Mobile systems, applications, and
services. ACM, 2010, pp. 179–194.

[8] P. Welke, I. Andone, K. Blaszkiewicz, and A. Markowetz, “Differ-
entiating smartphone users by app usage,” in Proceedings of the
2016 ACM International Joint Conference on Pervasive and Ubiquitous
Computing. ACM, 2016, pp. 519–523.

[9] M. Kechagia, D. Mitropoulos, and D. Spinellis, “Charting the
api minefield using software telemetry data,” Empirical Softw.
Engg., vol. 20, no. 6, pp. 1785–1830, 12 2015. [Online]. Available:
http://dx.doi.org/10.1007/s10664-014-9343-7

[10] C. Hu and I. Neamtiu, “Automating gui testing for android
applications,” in Proceedings of the 6th International Workshop on
Automation of Software Test, 2011, pp. 77–83.

[11] P. Bhattacharya, L. Ulanova, I. Neamtiu, and S. C. Koduru,
“An empirical analysis of bug reports and bug fixing in open
source android apps,” in 2013 17th European Conference on Software
Maintenance and Reengineering. IEEE, 2013, pp. 133–143.

[12] W. J. Martin, F. Sarro, and M. Harman, “Causal impact analysis
for app releases in google play,” in Proceedings of the 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016,
T. Zimmermann, J. Cleland-Huang, and Z. Su, Eds. ACM, 2016,
pp. 435–446.

[13] Y. Liu, C. Xu, and S.-C. Cheung, “Characterizing and detecting
performance bugs for smartphone applications,” in Proceedings of
the 36th International Conference on Software Engineering. ACM,
2014, pp. 1013–1024.

[14] F. Ferrucci, C. Gravino, P. Salza, and F. Sarro, “Investigating
functional and code size measures for mobile applications: A
replicated study,” in International Conference on Product-Focused
Software Process Improvement. Springer, 2015, pp. 271–287.

Authorized licensed use limited to: University College London. Downloaded on April 22,2021 at 10:58:48 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1007/s10664-014-9343-7

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3071193, IEEE
Transactions on Software Engineering

19

[15] H. Kim, H. Lim, D. Manatunga, H. Kim, and G.-H. Park, “Accel-
erating application start-up with nonvolatile memory in android
systems,” IEEE Micro, vol. 35, no. 1, pp. 15–25, 2015.

[16] A. L. N. Martins, C. A. Duarte, and J. Jeong, “Improving applica-
tion launch performance in smartphones using recurrent neural
network,” in Proceedings of the 2018 International Conference on
Machine Learning Technologies. ACM, 2018, pp. 58–62.

[17] C. Gao, J. Zeng, F. Sarro, M. R. Lyu, and I. King, “Exploring the
effects of ad schemes on the performance cost of mobile phones,”
in Proceedings of the 1st International Workshop on Advances in Mobile
App Analysis, A-Mobile@ASE 2018, Montpellier, France, September 4,
2018, L. Li, G. Meng, J. Klein, and S. Malek, Eds. ACM, 2018, pp.
13–18.

[18] C. Gao, J. Zeng, F. Sarro, D. Lo, M. R. Lyu, and I. King, “Do users
care about ad’s performance costs? exploring the effects of the
performance costs of in-app ads on user experience,” Information
and Software Technology, 2020.

[19] N. Chen, J. Lin, S. C. Hoi, X. Xiao, and B. Zhang, “Ar-miner:
mining informative reviews for developers from mobile app
marketplace,” in Proceedings of the 36th International Conference
on Software Engineering. ACM, 2014, pp. 767–778.

[20] A. Banerjee and A. Roychoudhury, “Future of mobile software
for smartphones and drones: Energy and performance,” in
2017 IEEE/ACM 4th International Conference on Mobile Software
Engineering and Systems (MOBILESoft), 2017, pp. 1–12.

[21] M. Hort, M. Kechagia, F. Sarro, and M. Harman, “On-
line appendix for the paper "A Survey of Performance
Optimization for Mobile Applications".” [Online]. Available:
https://solar.cs.ucl.ac.uk/os/appoptimization.html

[22] ——, “Living survey for the paper "A Survey of Performance
Optimization for Mobile Applications".” [Online]. Available:
https://solar.cs.ucl.ac.uk/appoptimization.github.io/

[23] R. Cohen and T. Wang, Overview of Embedded Application Develop-
ment for Intel Architecture. Berkeley, CA: Apress, 2014, pp. 1–18.
[Online]. Available: https://doi.org/10.1007/978-1-4842-0100-8_1

[24] N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and
A. T. Campbell, “A survey of mobile phone sensing,” Comm. Mag.,
vol. 48, no. 9, pp. 140–150, 9 2010.

[25] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao,
and L. Yang, “Accurate online power estimation and automatic
battery behavior based power model generation for smartphones,”
in Proceedings of the eighth IEEE/ACM/IFIP international conference
on Hardware/software codesign and system synthesis. ACM, 2010,
pp. 105–114.

[26] S. Kwon, S.-H. Kim, J.-S. Kim, and J. Jeong, “Managing gpu buffers
for caching more apps in mobile systems,” in Proceedings of the
12th International Conference on Embedded Software. IEEE Press,
2015, pp. 207–216.

[27] A. Arcangeli, I. Eidus, and C. Wright, “Increasing memory density
by using ksm,” in Proceedings of the linux symposium. Citeseer,
2009, pp. 19–28.

[28] N. Gupta, “Compcache: in-memory compressed swapping,” Re-
trieved at, p. 6, 2009.

[29] B. Lee, S. M. Kim, E. Park, and D. Han, “Memscope: analyzing
memory duplication on android systems,” in Proceedings of the 6th
Asia-Pacific Workshop on Systems. ACM, 2015, p. 19.

[30] J. Harty and M. Müller, “Better android apps using android vitals,”
in Proceedings of the 3rd ACM SIGSOFT International Workshop on
App Market Analytics. ACM, 2019, pp. 26–32.

[31] A. Di Sorbo, S. Panichella, C. V. Alexandru, J. Shimagaki, C. A.
Visaggio, G. Canfora, and H. C. Gall, “What would users change
in my app? summarizing app reviews for recommending software
changes,” in Proceedings of the 2016 24th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering. ACM,
2016, pp. 499–510.

[32] M. Harman, Y. Jia, and Y. Zhang, “App store mining and analysis:
MSR for app stores,” in Proceedings of the 9th IEEE Working
Conference on Mining Software Repositories. IEEE Press, 2012,
pp. 108–111.

[33] J. Petke, S. O. Haraldsson, M. Harman, W. B. Langdon, D. R. White,
and J. R. Woodward, “Genetic improvement of software: a com-
prehensive survey,” IEEE Transactions on Evolutionary Computation,
vol. 22, no. 3, pp. 415–432, 2017.

[34] B. W. Boehm, Characteristics of software quality. North-Holland,
1978, vol. 1.

[35] G.-C. Roman, “A taxonomy of current issues in requirements
engineering,” Computer, no. 4, pp. 14–23, 1985.

[36] R. B. Grady and D. L. Caswell, Software metrics: establishing a
company-wide program. Prentice-Hall, Inc., 1987.

[37] L. Chung and J. C. S. do Prado Leite, “On non-functional
requirements in software engineering,” in Conceptual modeling:
Foundations and applications. Springer, 2009, pp. 363–379.

[38] W. Song, Y. Kim, H. Kim, J. Lim, and J. Kim, “Personalized
optimization for android smartphones,” ACM Transactions on
Embedded Computing Systems (TECS), vol. 13, no. 2s, p. 60, 2014.

[39] Y. He, C. Yang, and X.-F. Li, “Improve google android user
experience with regional garbage collection,” in IFIP International
Conference on Network and Parallel Computing. Springer, 2011, pp.
350–365.

[40] R. Duan, M. Bi, and C. Gniady, “Exploring memory energy opti-
mizations in smartphones,” in 2011 International Green Computing
Conference and Workshops. IEEE, 2011, pp. 1–8.

[41] B. Kitchenham, “Procedures for performing systematic reviews,”
Keele, UK, Keele University, vol. 33, no. 2004, pp. 1–26, 2004.

[42] A. Sadeghi, H. Bagheri, J. Garcia, and S. Malek, “A taxonomy
and qualitative comparison of program analysis techniques for
security assessment of android software,” IEEE Transactions on
Software Engineering, vol. 43, no. 6, pp. 492–530, 2016.

[43] W. Martin, F. Sarro, Y. Jia, Y. Zhang, and M. Harman, “A survey
of app store analysis for software engineering,” IEEE transactions
on software engineering, vol. 43, no. 9, pp. 817–847, 2016.

[44] C. Wohlin, “Guidelines for snowballing in systematic literature
studies and a replication in software engineering,” in Proceedings
of the 18th international conference on evaluation and assessment in
software engineering, 2014, pp. 1–10.

[45] R. Saborido, R. Morales, F. Khomh, Y.-G. Guéhéneuc, and G. An-
toniol, “Getting the most from map data structures in android,”
Empirical Software Engineering, vol. 23, no. 5, pp. 2829–2864, 2018.

[46] P. K. Das, S. Shome, and A. K. Sarkar, “Apps: Accelerating
performance and power saving in smartphones using code
offload,” in 2016 IEEE 6th International Conference on Advanced
Computing (IACC). IEEE, 2016, pp. 759–765.

[47] Y. Lyu, D. Li, and W. G. Halfond, “Remove rats from your code:
automated optimization of resource inefficient database writes
for mobile applications,” in Proceedings of the 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2018, pp.
310–321.

[48] Y.-F. Chung, Y.-T. Lo, and C.-T. King, “Enhancing user experiences
by exploiting energy and launch delay trade-off of mobile mul-
timedia applications,” ACM Transactions on Embedded Computing
Systems (TECS), vol. 12, no. 1s, pp. 1–19, 2013.

[49] J. Lee, K. Lee, E. Jeong, J. Jo, and N. B. Shroff, “Cas: Context-aware
background application scheduling in interactive mobile systems,”
IEEE Journal on Selected Areas in Communications, vol. 35, no. 5, pp.
1013–1029, 2017.

[50] D. T. Nguyen, G. Zhou, G. Xing, X. Qi, Z. Hao, G. Peng,
and Q. Yang, “Reducing smartphone application delay through
read/write isolation,” in Proceedings of the 13th Annual International
Conference on Mobile Systems, Applications, and Services, 2015, pp.
287–300.

[51] G. Hecht, N. Moha, and R. Rouvoy, “An empirical study of the
performance impacts of android code smells,” in Proceedings of the
International Conference on Mobile Software Engineering and Systems.
ACM, 2016, pp. 59–69.

[52] K. Tasneem, A. Siddiqui, and A. Liaquat, “Android memory
optimization,” International Journal of Computer Applications, vol.
975, pp. 36–43, 2019.

[53] S. Yang, D. Yan, and A. Rountev, “Testing for poor responsiveness
in android applications,” in 2013 1st international workshop on the
engineering of mobile-enabled systems (MOBS). IEEE, 2013, pp. 1–6.

[54] N. Tolia, D. G. Andersen, and M. Satyanarayanan, “Quantifying
interactive user experience on thin clients,” Computer, vol. 39,
no. 3, pp. 46–52, 2006.

[55] M. Willocx, J. Vossaert, and V. Naessens, “Comparing performance
parameters of mobile app development strategies,” in 2016
IEEE/ACM International Conference on Mobile Software Engineering
and Systems (MOBILESoft). IEEE, 2016, pp. 38–47.

[56] J. Huang, Q. Xu, B. Tiwana, Z. M. Mao, M. Zhang, and P. Bahl,
“Anatomizing application performance differences on smart-
phones,” in Proceedings of the 8th international conference on Mobile
systems, applications, and services. ACM, 2010, pp. 165–178.

[57] J. Zhang, X. Wang, and Y. Chen, “Android app performance
detection framework based on dynamic analysis of function call

Authorized licensed use limited to: University College London. Downloaded on April 22,2021 at 10:58:48 UTC from IEEE Xplore. Restrictions apply.

https://solar.cs.ucl.ac.uk/os/appoptimization.html
https://solar.cs.ucl.ac.uk/appoptimization.github.io/
https://doi.org/10.1007/978-1-4842-0100-8_1

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3071193, IEEE
Transactions on Software Engineering

20

graphs,” in Proceedings of the 2019 The World Symposium on Software
Engineering, 2019, pp. 1–5.

[58] W. Zhao, Z. Ding, M. Xia, and Z. Qi, “Systematically testing
and diagnosing responsiveness for android apps,” in 2019 IEEE
International Conference on Software Maintenance and Evolution
(ICSME). IEEE, pp. 449–453.

[59] M. Cho, H. J. Lee, M. Kim, and S. W. Kim, “Androscope: An
insightful performance analyzer for all software layers of the
android-based systems,” ETRI Journal, vol. 35, no. 2, pp. 259–269,
2013.

[60] L. Ravindranath, J. Padhye, S. Agarwal, R. Mahajan, I. Obermiller,
and S. Shayandeh, “Appinsight: mobile app performance moni-
toring in the wild,” in Presented as part of the 10th {USENIX} Sym-
posium on Operating Systems Design and Implementation ({OSDI}
12), 2012, pp. 107–120.

[61] D. K. Hong, A. Nikravesh, Z. M. Mao, M. Ketkar, and
M. Kishinevsky, “Perfprobe: a systematic, cross-layer performance
diagnosis framework for mobile platforms,” in 2019 IEEE/ACM 6th
International Conference on Mobile Software Engineering and Systems
(MOBILESoft). IEEE, 2019, pp. 50–61.

[62] H. Kim, B. Choi, and W. E. Wong, “Performance testing of mobile
applications at the unit test level,” in 2009 Third IEEE International
Conference on Secure Software Integration and Reliability Improvement.
IEEE, 2009, pp. 171–180.

[63] Y. Kang, Y. Zhou, H. Xu, and M. R. Lyu, “Persisdroid: Android
performance diagnosis via anatomizing asynchronous executions,”
arXiv preprint arXiv:1512.07950, 2015.

[64] ——, “Diagdroid: Android performance diagnosis via anatomiz-
ing asynchronous executions,” in Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, 2016, pp. 410–421.

[65] Y. Wang and A. Rountev, “Profiling the responsiveness of android
applications via automated resource amplification,” in 2016
IEEE/ACM International Conference on Mobile Software Engineering
and Systems (MOBILESoft). IEEE, 2016, pp. 48–58.

[66] Y. Kwon, S. Lee, H. Yi, D. Kwon, S. Yang, B.-G. Chun, L. Huang,
P. Maniatis, M. Naik, and Y. Paek, “Mantis: Automatic perfor-
mance prediction for smartphone applications,” in Proceedings of
the 2013 USENIX Conference on Annual Technical Conference, ser.
USENIX ATC’13, 2013, pp. 297–308.

[67] R. Kemp, N. Palmer, T. Kielmann, and H. Bal, “Cuckoo: a com-
putation offloading framework for smartphones,” in International
Conference on Mobile Computing, Applications, and Services. Springer,
2010, pp. 59–79.

[68] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
elastic execution between mobile device and cloud,” in Proceedings
of the sixth conference on Computer systems, 2011, pp. 301–314.

[69] M.-R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall, and
R. Govindan, “Odessa: enabling interactive perception applica-
tions on mobile devices,” in Proceedings of the 9th international
conference on Mobile systems, applications, and services. ACM, 2011,
pp. 43–56.

[70] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair:
Dynamic resource allocation and parallel execution in the cloud
for mobile code offloading,” in 2012 proceedings IEEE Infocom.
IEEE, 2012, pp. 945–953.

[71] M. S. Gordon, D. A. Jamshidi, S. Mahlke, Z. M. Mao, and X. Chen,
“{COMET}: Code offload by migrating execution transparently,”
in Presented as part of the 10th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 12), 2012, pp. 93–106.

[72] M. S. Gordon, D. K. Hong, P. M. Chen, J. Flinn, S. Mahlke,
and Z. M. Mao, “Accelerating mobile applications through flip-
flop replication,” in Proceedings of the 13th Annual International
Conference on Mobile Systems, Applications, and Services. ACM,
2015, pp. 137–150.

[73] R. Montella, S. Kosta, D. Oro, J. Vera, C. Fernández, C. Palmieri,
D. Di Luccio, G. Giunta, M. Lapegna, and G. Laccetti, “Accelerat-
ing linux and android applications on low-power devices through
remote gpgpu offloading,” Concurrency and Computation: Practice
and Experience, vol. 29, no. 24, p. e4286, 2017.

[74] M. Chen and Y. Hao, “Task offloading for mobile edge computing
in software defined ultra-dense network,” IEEE Journal on Selected
Areas in Communications, vol. 36, no. 3, pp. 587–597, 2018.

[75] G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu, “Understanding and
detecting real-world performance bugs,” ACM SIGPLAN Notices,
vol. 47, no. 6, pp. 77–88, 2012.

[76] A. Nistor, L. Song, D. Marinov, and S. Lu, “Toddler: Detecting
performance problems via similar memory-access patterns,” in
Proceedings of the 2013 International Conference on Software Engineer-
ing. IEEE Press, 2013, pp. 562–571.

[77] T. Ongkosit and S. Takada, “Responsiveness analysis tool for an-
droid application,” in Proceedings of the 2nd International Workshop
on Software Development Lifecycle for Mobile, 2014, pp. 1–4.

[78] G. Hecht, O. Benomar, R. Rouvoy, N. Moha, and L. Duchien,
“Tracking the software quality of android applications along their
evolution (t),” in 2015 30th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 2015, pp. 236–247.

[79] S. Habchi, X. Blanc, and R. Rouvoy, “On adopting linters to deal
with performance concerns in android apps,” in Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software
Engineering, 2018, pp. 6–16.

[80] W. Li, Y. Jiang, C. Xu, Y. Liu, X. Ma, and J. Lü, “Characterizing
and detecting inefficient image displaying issues in android apps,”
in 2019 IEEE 26th International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE, 2019, pp. 355–365.

[81] Y. Lin, C. Radoi, and D. Dig, “Retrofitting concurrency for
android applications through refactoring,” in Proceedings of the
22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering. ACM, 2014, pp. 341–352.

[82] S. Okur, D. L. Hartveld, D. Dig, and A. v. Deursen, “A study and
toolkit for asynchronous programming in c#,” in Proceedings of
the 36th International Conference on Software Engineering, 2014, pp.
1117–1127.

[83] Y. Lin, S. Okur, and D. Dig, “Study and refactoring of android
asynchronous programming (t),” in 2015 30th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE). IEEE,
2015, pp. 224–235.

[84] R. Feng, G. Meng, X. Xie, T. Su, Y. Liu, and S.-W. Lin, “Learning
performance optimization from code changes for android apps,”
in 2019 IEEE International Conference on Software Testing, Verification
and Validation Workshops (ICSTW). IEEE, 2019, pp. 285–290.

[85] B. D. Higgins, J. Flinn, T. J. Giuli, B. Noble, C. Peplin, and
D. Watson, “Informed mobile prefetching,” in Proceedings of the
10th international conference on Mobile systems, applications, and
services. ACM, 2012, pp. 155–168.

[86] Y. Zhao, M. S. Laser, Y. Lyu, and N. Medvidovic, “Leveraging
program analysis to reduce user-perceived latency in mobile
applications,” in Proceedings of the 40th International Conference
on Software Engineering, 2018, pp. 176–186.

[87] B. Choi, J. Kim, D. Cho, S. Kim, and D. Han, “Appx: an
automated app acceleration framework for low latency mobile
app,” in Proceedings of the 14th International Conference on emerging
Networking EXperiments and Technologies, 2018, pp. 27–40.

[88] I. Malavolta, F. Nocera, P. Lago, and M. Mongiello, “Navigation-
aware and personalized prefetching of network requests in
android apps,” in 2019 IEEE/ACM 41st International Conference on
Software Engineering: New Ideas and Emerging Results (ICSE-NIER).
IEEE, 2019, pp. 17–20.

[89] L. Batyuk, A.-D. Schmidt, H.-G. Schmidt, A. Camtepe, and
S. Albayrak, “Developing and benchmarking native linux appli-
cations on android,” in International Conference on Mobile Wireless
Middleware, Operating Systems, and Applications. Springer, 2009,
pp. 381–392.

[90] S. Lee and J. W. Jeon, “Evaluating performance of android
platform using native c for embedded systems,” in ICCAS 2010.
IEEE, 2010, pp. 1160–1163.

[91] J. K. Lee and J. Y. Lee, “Android programming techniques for
improving performance,” in 2011 3rd International Conference on
Awareness Science and Technology (iCAST). IEEE, 2011, pp. 386–389.

[92] C.-M. Lin, J.-H. Lin, C.-R. Dow, and C.-M. Wen, “Benchmark
dalvik and native code for android system,” in 2011 Second
International Conference on Innovations in Bio-inspired Computing and
Applications. IEEE, 2011, pp. 320–323.

[93] C. Wang, M. Cintra, and Y. Wu, “Acceldroid: Co-designed acceler-
ation of android bytecode,” in Proceedings of the 2013 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO).
IEEE Computer Society, 2013, pp. 1–10.

[94] K.-T. T. Cheng, X. Yang, and Y.-C. Wang, “Performance optimiza-
tion of vision apps on mobile application processor,” in 2013 20th
International Conference on Systems, Signals and Image Processing
(IWSSIP). IEEE, 2013, pp. 187–191.

[95] S. Thongkaew, T. Isshiki, D. Li, and H. Kunieda, “Dalvik bytecode

Authorized licensed use limited to: University College London. Downloaded on April 22,2021 at 10:58:48 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3071193, IEEE
Transactions on Software Engineering

21

acceleration using fetch/decode hardware extension,” Journal of
Information Processing, vol. 23, no. 2, pp. 118–130, 2015.

[96] B. Mao, J. Zhou, S. Wu, H. Jiang, X. Chen, and W. Yang, “Improv-
ing flash memory performance and reliability for smartphones
with i/o deduplication,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 38, no. 6, pp. 1017–
1027, 2018.

[97] H. Kim and D. Shin, “Optimizing storage performance of android
smartphone,” in Proceedings of the 7th International Conference on
Ubiquitous Information Management and Communication, 2013, pp.
1–7.

[98] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sun-
daresan, “Soot: A java bytecode optimization framework,” in
CASCON First Decade High Impact Papers, 2010, pp. 214–224.

[99] K. Nagata, S. Yamaguchi, and H. Ogawa, “A power saving method
with consideration of performance in android terminals,” in 2012
9th International Conference on Ubiquitous Intelligence and Computing
and 9th International Conference on Autonomic and Trusted Computing.
IEEE, 2012, pp. 578–585.

[100] S. Georgiou, M. Kechagia, P. Louridas, and D. Spinellis, “What
are your programming language’s energy-delay implications?” in
Proceedings of the 15th International Conference on Mining Software
Repositories, ser. MSR ’18. New York, NY, USA: Association for
Computing Machinery, 2018, pp. 303—-313.

[101] K. Nagata, Y. Nakamura, S. Nomura, and S. Yamaguchi, “Measur-
ing and improving application launching performance on android
devices,” in 2013 First International Symposium on Computing and
Networking. IEEE, 2013, pp. 636–638.

[102] T. Yan, D. Chu, D. Ganesan, A. Kansal, and J. Liu, “Fast app
launching for mobile devices using predictive user context,” in
Proceedings of the 10th international conference on Mobile systems,
applications, and services. ACM, 2012, pp. 113–126.

[103] K. Nagata and S. Yamaguchi, “An android application launch an-
alyzing system,” in 2012 8th International Conference on Computing
Technology and Information Management (NCM and ICNIT), vol. 1.
IEEE, 2012, pp. 76–81.

[104] S.-H. Kim, J. Jeong, J.-S. Kim, and S. Maeng, “Smartlmk: A memory
reclamation scheme for improving user-perceived app launch
time,” ACM Transactions on Embedded Computing Systems (TECS),
vol. 15, no. 3, pp. 1–25, 2016.

[105] Y. Joo, J. Ryu, S. Park, and K. G. Shin, “Fast: Quick application
launch on solid-state drives.” in FAST, 2011, pp. 259–272.

[106] Z. Zhao, M. Zhou, and X. Shen, “Satscore: Uncovering and
avoiding a principled pitfall in responsiveness measurements
of app launches,” in Proceedings of the 2014 ACM International Joint
Conference on Pervasive and Ubiquitous Computing, 2014, pp. 21–32.

[107] A. Parate, M. Böhmer, D. Chu, D. Ganesan, and B. M. Marlin,
“Practical prediction and prefetch for faster access to applications
on mobile phones,” in Proceedings of the 2013 ACM international
joint conference on Pervasive and ubiquitous computing. ACM, 2013,
pp. 275–284.

[108] L.-Y. Tang, P.-C. Hsiu, J.-L. Huang, and M.-S. Chen, “ilauncher: an
intelligent launcher for mobile apps based on individual usage
patterns,” in Proceedings of the 28th Annual ACM Symposium on
Applied Computing, 2013, pp. 505–512.

[109] P. Baumann and S. Santini, “Every byte counts: Selective prefetch-
ing for mobile applications,” Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies, vol. 1, no. 2, pp. 1–29,
2017.

[110] R. Prodduturi and D. B. Phatak, “Effective handling of low
memory scenarios in android using logs,” Indian Institute of
Technology, 2013.

[111] K. Baik and J. Huh, “Balanced memory management for smart-
phones based on adaptive background app management,” in The
18th IEEE International Symposium on Consumer Electronics (ISCE
2014). IEEE, 2014, pp. 1–2.

[112] K. Vimal and A. Trivedi, “A memory management scheme for
enhancing performance of applications on android,” in 2015 IEEE
Recent Advances in Intelligent Computational Systems (RAICS). IEEE,
2015, pp. 162–166.

[113] A. Singh, A. V. Agrawal, and A. Kanukotla, “A method to improve
application launch performance in android devices,” in 2016
International Conference on Internet of Things and Applications (IOTA).
IEEE, 2016, pp. 112–115.

[114] C. Li, J. Bao, and H. Wang, “Optimizing low memory killers for
mobile devices using reinforcement learning,” in 2017 13th Inter-

national Wireless Communications and Mobile Computing Conference
(IWCMC). IEEE, 2017, pp. 2169–2174.

[115] M. Böhmer, B. Hecht, J. Schöning, A. Krüger, and G. Bauer,
“Falling asleep with angry birds, facebook and kindle: a large
scale study on mobile application usage,” in Proceedings of the 13th
international conference on Human computer interaction with mobile
devices and services. ACM, 2011, pp. 47–56.

[116] R. Baeza-Yates, D. Jiang, F. Silvestri, and B. Harrison, “Predicting
the next app that you are going to use,” in Proceedings of the eighth
ACM international conference on web search and data mining. ACM,
2015, pp. 285–294.

[117] C. Shin, J.-H. Hong, and A. K. Dey, “Understanding and prediction
of mobile application usage for smart phones,” in Proceedings of
the 2012 ACM Conference on Ubiquitous Computing. ACM, 2012,
pp. 173–182.

[118] X. Zou, W. Zhang, S. Li, and G. Pan, “Prophet: What app you wish
to use next,” in Proceedings of the 2013 ACM conference on Pervasive
and ubiquitous computing adjunct publication, 2013, pp. 167–170.

[119] J. Sylve, A. Case, L. Marziale, and G. G. Richard, “Acquisition
and analysis of volatile memory from android devices,” Digital
Investigation, vol. 8, no. 3-4, pp. 175–184, 2012.

[120] J.-M. Kim and J.-S. Kim, “Androbench: Benchmarking the storage
performance of android-based mobile devices,” in Frontiers in
Computer Education. Springer, 2012, pp. 667–674.

[121] S. Jeong, K. Lee, J. Hwang, S. Lee, and Y. Won, “Androstep:
Android storage performance analysis tool,” Software Engineering
2013-Workshopband, 2013.

[122] J. Park and B. Choi, “Automated memory leakage detection
in android based systems,” International Journal of Control and
Automation, vol. 5, no. 2, pp. 35–42, 2012.

[123] H. Shahriar, S. North, and E. Mawangi, “Testing of memory leak in
android applications,” in 2014 IEEE 15th International Symposium
on High-Assurance Systems Engineering. IEEE, 2014, pp. 176–183.

[124] G. Santhanakrishnan, C. Cargile, and A. Olmsted, “Memory leak
detection in android applications based on code patterns,” in 2016
International Conference on Information Society (i-Society). IEEE,
2016, pp. 133–134.

[125] D. Amalfitano, V. Riccio, P. Tramontana, and A. R. Fasolino, “Do
memories haunt you? an automated black box testing approach
for detecting memory leaks in android apps,” IEEE Access, vol. 8,
pp. 12 217–12 231, 2020.

[126] T. Gerlitz, I. Kalkov, J. F. Schommer, D. Franke, and S. Kowalewski,
“Non-blocking garbage collection for real-time android,” in Pro-
ceedings of the 11th International Workshop on Java Technologies for
Real-time and Embedded Systems. ACM, 2013, pp. 108–117.

[127] G. Lim, C. Min, and Y. I. Eom, “Enhancing application perfor-
mance by memory partitioning in android platforms,” in 2013
IEEE International Conference on Consumer Electronics (ICCE). IEEE,
2013, pp. 649–650.

[128] R. Mori, S. Yamaguchi, and M. Oguchi, “Memory consumption
saving by optimization of promotion condition of generational
gc in android,” in 2017 IEEE 6th Global Conference on Consumer
Electronics (GCCE). IEEE, 2017, pp. 1–2.

[129] S.-h. Kim, J. Jeong, and J. Lee, “Efficient memory deduplicati on
for mobile smart devices,” in 2014 IEEE International Conference on
Consumer Electronics (ICCE). IEEE, 2014, pp. 25–26.

[130] D. Kim, E. Lee, S. Ahn, and H. Bahn, “Improving the storage
performance of smartphones through journaling in non-volatile
memory,” IEEE Transactions on Consumer Electronics, vol. 59, no. 3,
pp. 556–561, 2013.

[131] S. Jeong, K. Lee, S. Lee, S. Son, and Y. Won, “I/o stack optimization
for smartphones,” in Presented as part of the 2013 USENIX Annual
Technical Conference (USENIX ATC 13), 2013, pp. 309–320.

[132] K. Zhong, T. Wang, X. Zhu, L. Long, D. Liu, W. Liu, Z. Shao,
and E. H.-M. Sha, “Building high-performance smartphones via
non-volatile memory: The swap approach,” in 2014 International
Conference on Embedded Software (EMSOFT). IEEE, 2014, pp. 1–10.

[133] S.-H. Kim, S. Kwon, J.-S. Kim, and J. Jeong, “Controlling physical
memory fragmentation in mobile systems,” in Proceedings of the
2015 International Symposium on Memory Management, ser. ISMM
’15. New York, NY, USA: Association for Computing Machinery,
2015, p. 1–14.

[134] D. T. Nguyen, H. Zhao, G. Zhou, G. Peng, and G. Xing, “iram:
Sensing memory needs of my smartphone,” in 2016 IEEE 12th In-
ternational Conference on Wireless and Mobile Computing, Networking
and Communications (WiMob). IEEE, 2016, pp. 1–10.

Authorized licensed use limited to: University College London. Downloaded on April 22,2021 at 10:58:48 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3071193, IEEE
Transactions on Software Engineering

22

[135] D. Kim and H. Bahn, “Exploiting write-only-once characteristics
of file data in smartphone buffer cache management,” Pervasive
and Mobile Computing, vol. 40, pp. 528–540, 2017.

[136] S.-H. Kim, J. Jeong, and J.-S. Kim, “Application-aware swapping
for mobile systems,” ACM Transactions on Embedded Computing
Systems (TECS), vol. 16, no. 5s, pp. 1–19, 2017.

[137] J. Kim and H. Bahn, “Analysis of smartphone i/o characteris-
tics—toward efficient swap in a smartphone,” IEEE Access, vol. 7,
pp. 129 930–129 941, 2019.

[138] A. Escobar De La Torre and Y. Cheon, “Impacts of java language
features on the memory performances of android apps,” Depart-
mental Technical Reports (CS), Tech. Rep., 2017.

[139] M. Jun, L. Sheng, Y. Shengtao, T. Xianping, and L. Jian, “Leakdaf:
An automated tool for detecting leaked activities and fragments of
android applications,” in 2017 IEEE 41st Annual Computer Software
and Applications Conference (COMPSAC), vol. 1. IEEE, 2017, pp.
23–32.

[140] A. Carroll, G. Heiser et al., “An analysis of power consumption
in a smartphone.” in USENIX annual technical conference, vol. 14.
Boston, MA, 2010, pp. 21–21.

[141] L. Zhang, M. S. Gordon, R. P. Dick, Z. M. Mao, P. Dinda, and
L. Yang, “Adel: An automatic detector of energy leaks for smart-
phone applications,” in Proceedings of the eighth IEEE/ACM/IFIP
international conference on Hardware/software codesign and system
synthesis. ACM, 2012, pp. 363–372.

[142] G. Metri, W. Shi, M. Brockmeyer, and A. Agrawal, “Batteryex-
tender: an adaptive user-guided tool for power management of
mobile devices,” in Proceedings of the 2014 ACM International Joint
Conference on Pervasive and Ubiquitous Computing. ACM, 2014, pp.
33–43.

[143] R. Morales, R. Saborido, F. Khomh, F. Chicano, and G. Antoniol,
“Earmo: an energy-aware refactoring approach for mobile apps,”
IEEE Transactions on Software Engineering, vol. 44, no. 12, pp. 1176–
1206, 2017.

[144] A. Shye, B. Scholbrock, and G. Memik, “Into the wild: studying
real user activity patterns to guide power optimizations for
mobile architectures,” in Proceedings of the 42nd Annual IEEE/ACM
International Symposium on Microarchitecture. ACM, 2009, pp.
168–178.

[145] M. A. Hoque, M. Siekkinen, K. N. Khan, Y. Xiao, and S. Tarkoma,
“Modeling, profiling, and debugging the energy consumption of
mobile devices,” ACM Computing Surveys (CSUR), vol. 48, no. 3,
pp. 1–40, 2015.

[146] J. Cito, J. Rubin, P. Stanley-Marbell, and M. Rinard, “Battery-aware
transformations in mobile applications,” in 2016 31st IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2016, pp. 702–707.

[147] W. Jung, C. Kang, C. Yoon, D. Kim, and H. Cha, “Devscope:
a nonintrusive and online power analysis tool for smartphone
hardware components,” in Proceedings of the eighth IEEE/ACM/IFIP
international conference on Hardware/software codesign and system
synthesis, 2012, pp. 353–362.

[148] A. Banerjee, L. K. Chong, S. Chattopadhyay, and A. Roychoud-
hury, “Detecting energy bugs and hotspots in mobile apps,” in
Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering. ACM, 2014, pp. 588–598.

[149] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: making smartphones last longer
with code offload,” in Proceedings of the 8th international conference
on Mobile systems, applications, and services. ACM, 2010, pp. 49–62.

[150] A. J. Pyles, Z. Ren, G. Zhou, and X. Liu, “Sifi: exploiting voip
silence for wifi energy savings insmart phones,” in Proceedings of
the 13th international conference on Ubiquitous computing, 2011, pp.
325–334.

[151] B. R. Bruce, J. Petke, M. Harman, and E. T. Barr, “Approximate
oracles and synergy in software energy search spaces,” IEEE
Transactions on Software Engineering, vol. 45, no. 11, pp. 1150–1169,
2018.

[152] A. Ferrari, D. Gallucci, D. Puccinelli, and S. Giordano, “Detecting
energy leaks in android app with poem,” in 2015 IEEE International
Conference on Pervasive Computing and Communication Workshops
(PerCom Workshops). IEEE, 2015, pp. 421–426.

[153] M. A. Bokhari, B. Alexander, and M. Wagner, “In-vivo and offline
optimisation of energy use in the presence of small energy signals:
A case study on a popular android library,” in Proceedings of the
15th EAI International Conference on Mobile and Ubiquitous Systems:
Computing, Networking and Services, 2018, pp. 207–215.

[154] A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y.-M. Wang, “Fine-
grained power modeling for smartphones using system call
tracing,” in Proceedings of the sixth conference on Computer systems.
ACM, 2011, pp. 153–168.

[155] C. Yoon, D. Kim, W. Jung, C. Kang, and H. Cha, “Appscope:
Application energy metering framework for android smartphone
using kernel activity monitoring,” in Presented as part of the 2012
USENIX Annual Technical Conference (USENIX ATC 12), 2012, pp.
387–400.

[156] M. Linares-Vásquez, G. Bavota, C. E. B. Cárdenas, R. Oliveto,
M. Di Penta, and D. Poshyvanyk, “Optimizing energy consump-
tion of guis in android apps: a multi-objective approach,” in
Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, 2015, pp. 143–154.

[157] M. Wan, Y. Jin, D. Li, and W. G. Halfond, “Detecting display
energy hotspots in android apps,” in 2015 IEEE 8th International
Conference on Software Testing, Verification and Validation (ICST).
IEEE, 2015, pp. 1–10.

[158] Y. Xiao, P. Savolainen, A. Karppanen, M. Siekkinen, and A. Ylä-
Jääski, “Practical power modeling of data transmission over 802.11
g for wireless applications,” in Proceedings of the 1st International
Conference on Energy-efficient Computing and Networking, 2010, pp.
75–84.

[159] S. Hao, D. Li, W. G. Halfond, and R. Govindan, “Estimating
android applications’ cpu energy usage via bytecode profiling,”
in 2012 First international workshop on green and sustainable software
(GREENS). IEEE, 2012, pp. 1–7.

[160] ——, “Estimating mobile application energy consumption using
program analysis,” in Proceedings of the 2013 International Conference
on Software Engineering. IEEE Press, 2013, pp. 92–101.

[161] D. Li, S. Hao, W. G. Halfond, and R. Govindan, “Calculating
source line level energy information for android applications,” in
Proceedings of the 2013 International Symposium on Software Testing
and Analysis. ACM, 2013, pp. 78–89.

[162] R. Jabbarvand, J.-W. Lin, and S. Malek, “Search-based energy
testing of android,” in 2019 IEEE/ACM 41st International Conference
on Software Engineering (ICSE). IEEE, 2019, pp. 1119–1130.

[163] R. Jabbarvand, A. Sadeghi, H. Bagheri, and S. Malek, “Energy-
aware test-suite minimization for android apps,” in Proceedings of
the 25th International Symposium on Software Testing and Analysis,
2016, pp. 425–436.

[164] R. Mittal, A. Kansal, and R. Chandra, “Empowering developers
to estimate app energy consumption,” in Proceedings of the 18th
annual international conference on Mobile computing and networking.
ACM, 2012, pp. 317–328.

[165] M. A. Bokhari, B. R. Bruce, B. Alexander, and M. Wagner,
“Deep parameter optimisation on android smartphones for energy
minimisation: a tale of woe and a proof-of-concept,” in Proceedings
of the Genetic and Evolutionary Computation Conference Companion.
ACM, 2017, pp. 1501–1508.

[166] M. A. Bokhari, L. Weng, M. Wagner, and B. Alexander, “Mind the
gap–a distributed framework for enabling energy optimisation on
modern smart-phones in the presence of noise, drift, and statistical
insignificance,” in 2019 IEEE Congress on Evolutionary Computation
(CEC). IEEE, 2019, pp. 1330–1337.

[167] M. A. Bokhari, B. Alexander, and M. Wagner, “Towards rigorous
validation of energy optimisation experiments,” arXiv preprint
arXiv:2004.04500, 2020.

[168] A. Saarinen, M. Siekkinen, Y. Xiao, J. K. Nurminen, M. Kemp-
painen, and P. Hui, “Smartdiet: offloading popular apps to save
energy,” ACM SIGCOMM Computer Communication Review, vol. 42,
no. 4, pp. 297–298, 2012.

[169] A. Y. Ding, B. Han, Y. Xiao, P. Hui, A. Srinivasan, M. Kojo, and
S. Tarkoma, “Enabling energy-aware collaborative mobile data
offloading for smartphones,” in 2013 IEEE International Conference
on Sensing, Communications and Networking (SECON). IEEE, 2013,
pp. 487–495.

[170] A. Saarinen, M. Siekkinen, Y. Xiao, J. K. Nurminen, M. Kemp-
painen, and P. Hui, “Can offloading save energy for popular
apps?” in Proceedings of the seventh ACM international workshop on
Mobility in the evolving internet architecture, 2012, pp. 3–10.

[171] A. Khairy, H. H. Ammar, and R. Bahgat, “Smartphone energizer:
Extending smartphone’s battery life with smart offloading,” in
2013 9th International Wireless Communications and Mobile Comput-
ing Conference (IWCMC). IEEE, 2013, pp. 329–336.

[172] Y.-W. Kwon and E. Tilevich, “Reducing the energy consumption of

Authorized licensed use limited to: University College London. Downloaded on April 22,2021 at 10:58:48 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3071193, IEEE
Transactions on Software Engineering

23

mobile applications behind the scenes,” in 2013 IEEE International
Conference on Software Maintenance. IEEE, 2013, pp. 170–179.

[173] L. Corral, A. B. Georgiev, A. Sillitti, G. Succi, and T. Vachkov,
“Analysis of offloading as an approach for energy-aware appli-
cations on android os: A case study on image processing,” in
International Conference on Mobile Web and Information Systems.
Springer, 2014, pp. 29–40.

[174] R. Bolla, R. Khan, X. Parra, and M. Repetto, “Improving smart-
phones battery life by reducing energy waste of background
applications,” in 2014 Eighth International Conference on Next
Generation Mobile Apps, Services and Technologies. IEEE, 2014,
pp. 123–130.

[175] H. Qian and D. Andresen, “Jade: Reducing energy consumption
of android app,” International Journal of Networked and Distributed
Computing, vol. 3, no. 3, pp. 150–158, 2015.

[176] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani,
“Energy consumption in mobile phones: a measurement study and
implications for network applications,” in Proceedings of the 9th
ACM SIGCOMM Conference on Internet Measurement. ACM, 2009,
pp. 280–293.

[177] X. Chen, A. Jindal, and Y. C. Hu, “How much energy can we save
from prefetching ads?: energy drain analysis of top 100 apps,” in
Proceedings of the Workshop on Power-Aware Computing and Systems.
ACM, 2013, p. 3.

[178] P. Mohan, S. Nath, and O. Riva, “Prefetching mobile ads: Can
advertising systems afford it?” in Proceedings of the 8th ACM
European Conference on Computer Systems, 2013, pp. 267–280.

[179] Y. Yang and G. Cao, “Prefetch-based energy optimization on
smartphones,” IEEE Transactions on Wireless Communications,
vol. 17, no. 1, pp. 693–706, 2017.

[180] K. Dutta and D. Vandermeer, “Caching to reduce mobile app
energy consumption,” ACM Transactions on the Web (TWEB),
vol. 12, no. 1, pp. 1–30, 2017.

[181] A. Pathak, Y. C. Hu, and M. Zhang, “Bootstrapping energy
debugging on smartphones: a first look at energy bugs in mobile
devices,” in Proceedings of the 10th ACM Workshop on Hot Topics in
Networks. ACM, 2011, p. 5.

[182] A. Pathak, A. Jindal, Y. C. Hu, and S. P. Midkiff, “What is keeping
my phone awake? characterizing and detecting no-sleep energy
bugs in smartphone apps,” in Proceedings of the 10th international
conference on Mobile systems, applications, and services, 2012, pp.
267–280.

[183] Y. Liu, C. Xu, S.-C. Cheung, and J. Lü, “Greendroid: Automated
diagnosis of energy inefficiency for smartphone applications,”
IEEE Transactions on Software Engineering, vol. 40, no. 9, pp. 911–
940, 2014.

[184] R. Jabbarvand and S. Malek, “µdroid: an energy-aware mutation
testing framework for android,” in Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, 2017, pp. 208–219.

[185] A. Pathak, Y. C. Hu, and M. Zhang, “Where is the energy spent
inside my app? fine grained energy accounting on smartphones
with eprof,” in Proceedings of the 7th ACM european conference on
Computer Systems, 2012, pp. 29–42.

[186] S. Anwer, A. Aggarwal, R. Purandare, and V. Naik, “Chiromancer:
A tool for boosting android application performance,” in Proceed-
ings of the 1st International Conference on Mobile Software Engineering
and Systems, 2014, pp. 62–65.

[187] F. Alam, P. R. Panda, N. Tripathi, N. Sharma, and S. Narayan,
“Energy optimization in android applications through wakelock
placement,” in 2014 Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE, 2014, pp. 1–4.

[188] D. Li, A. H. Tran, and W. G. Halfond, “Making web applications
more energy efficient for oled smartphones,” in Proceedings of the
36th International Conference on Software Engineering. ACM, 2014,
pp. 527–538.

[189] B. R. Bruce, J. Petke, and M. Harman, “Reducing energy consump-
tion using genetic improvement,” in Proceedings of the 2015 Annual
Conference on Genetic and Evolutionary Computation. ACM, 2015,
pp. 1327–1334.

[190] A. Banerjee and A. Roychoudhury, “Automated re-factoring of
android apps to enhance energy-efficiency,” in 2016 IEEE/ACM
International Conference on Mobile Software Engineering and Systems
(MOBILESoft). IEEE, 2016, pp. 139–150.

[191] L. Cruz, R. Abreu, and J.-N. Rouvignac, “Leafactor: Improving
energy efficiency of android apps via automatic refactoring,” in
2017 IEEE/ACM 4th International Conference on Mobile Software
Engineering and Systems (MOBILESoft). IEEE, 2017, pp. 205–206.

[192] A. Banerjee, L. K. Chong, C. Ballabriga, and A. Roychoud-
hury, “Energypatch: Repairing resource leaks to improve energy-
efficiency of android apps,” IEEE Transactions on Software Engineer-
ing, vol. 44, no. 5, pp. 470–490, 2017.

[193] L. Cruz and R. Abreu, “Performance-based guidelines for energy
efficient mobile applications,” in 2017 IEEE/ACM 4th International
Conference on Mobile Software Engineering and Systems (MOBILESoft).
IEEE, 2017, pp. 46–57.

[194] ——, “Using Automatic Refactoring to Improve Energy Efficiency
of Android Apps,” in CIbSE XXI Ibero-American Conference on
Software Engineering, 2018.

[195] M. W. Kim, D. G. Yun, J. M. Lee, and S. G. Choi, “Battery life time
extension method using selective data reception on smartphone,”
in The International Conference on Information Network 2012. IEEE,
2012, pp. 468–471.

[196] N. Ding, D. Wagner, X. Chen, A. Pathak, Y. C. Hu, and A. Rice,
“Characterizing and modeling the impact of wireless signal
strength on smartphone battery drain,” ACM SIGMETRICS
Performance Evaluation Review, vol. 41, no. 1, pp. 29–40, 2013.

[197] M. Bokhari and M. Wagner, “Optimising energy consumption
heuristically on android mobile phones,” in Proceedings of the
2016 on Genetic and Evolutionary Computation Conference Companion.
ACM, 2016, pp. 1139–1140.

[198] K. Rao, J. Wang, S. Yalamanchili, Y. Wardi, and Y. Handong,
“Application-specific performance-aware energy optimization on
android mobile devices,” in 2017 IEEE International Symposium on
High Performance Computer Architecture (HPCA). IEEE, 2017, pp.
169–180.

[199] M. Dong, Y.-S. K. Choi, and L. Zhong, “Power modeling of
graphical user interfaces on oled displays,” in Proceedings of the
46th Annual Design Automation Conference. ACM, 2009, pp. 652–
657.

[200] B. Anand, K. Thirugnanam, J. Sebastian, P. G. Kannan, A. L.
Ananda, M. C. Chan, and R. K. Balan, “Adaptive display power
management for mobile games,” in Proceedings of the 9th interna-
tional conference on Mobile systems, applications, and services, 2011,
pp. 57–70.

[201] C.-H. Lin, P.-C. Hsiu, and C.-K. Hsieh, “Dynamic backlight scaling
optimization: A cloud-based energy-saving service for mobile
streaming applications,” IEEE Transactions on Computers, vol. 63,
no. 2, pp. 335–348, 2012.

[202] C.-H. Lin, C.-K. Kang, and P.-C. Hsiu, “Catch your attention:
Quality-retaining power saving on mobile oled displays,” in 2014
51st ACM/EDAC/IEEE Design Automation Conference (DAC). IEEE,
2014, pp. 1–6.

[203] H. Chen, J. Wang, W. Chen, H. Qu, and W. Chen, “An image-space
energy-saving visualization scheme for oled displays,” Computers
& graphics, vol. 38, pp. 61–68, 2014.

[204] Y. Huang, M. Chen, L. Zhang, S. Xiao, J. Zhao, and Z. Wei,
“Intelligent frame refresh for energy-aware display subsystems in
mobile devices,” in Proceedings of the 2014 international symposium
on Low power electronics and design, 2014, pp. 369–374.

[205] X. Chen, K. W. Nixon, H. Zhou, Y. Liu, and Y. Chen, “Finger-
shadow: An {OLED} power optimization based on smartphone
touch interactions,” in 6th Workshop on Power-Aware Computing
and Systems (HotPower 14), 2014.

[206] K. W. Nixon, X. Chen, H. Zhou, Y. Liu, and Y. Chen, “Mobile
{GPU} power consumption reduction via dynamic resolution and
frame rate scaling,” in 6th Workshop on Power-Aware Computing and
Systems (HotPower 14), 2014.

[207] S. He, Y. Liu, and H. Zhou, “Optimizing smartphone power
consumption through dynamic resolution scaling,” in Proceedings
of the 21st Annual International Conference on Mobile Computing and
Networking, 2015, pp. 27–39.

[208] H.-Y. Lin, P.-C. Hsiu, and T.-W. Kuo, “Shiftmask: Dynamic oled
power shifting based on visual acuity for interactive mobile
applications,” in 2017 IEEE/ACM International Symposium on Low
Power Electronics and Design (ISLPED). IEEE, 2017, pp. 1–6.

[209] G. Lee, S. Lee, G. Kim, Y. Choi, R. Ha, and H. Cha, “Improving
energy efficiency of android devices by preventing redundant
frame generation,” IEEE Transactions on Mobile Computing, vol. 18,
no. 4, pp. 871–884, 2018.

[210] Y.-C. Chang, W.-M. Chen, P.-C. Hsiu, Y.-Y. Lin, and T.-W. Kuo,
“Lsim: Ultra lightweight similarity measurement for mobile
graphics applications,” in Proceedings of the 56th Annual Design
Automation Conference 2019, 2019, pp. 1–6.

Authorized licensed use limited to: University College London. Downloaded on April 22,2021 at 10:58:48 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3071193, IEEE
Transactions on Software Engineering

24

[211] H.-Y. Lin, C.-C. Hung, P.-C. Hsiu, and T.-W. Kuo, “Duet: an oled &
gpu co-management scheme for dynamic resolution adaptation,”
in 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC).
IEEE, 2018, pp. 1–6.

[212] P. T. Bezerra, L. A. Araujo, G. B. Ribeiro, A. C. d. S. B. Neto, A. G.
Silva-Filho, C. A. Siebra, F. QB da Silva, A. L. Santos, A. Mascaro,
and P. H. Costa, “Dynamic frequency scaling on android platforms
for energy consumption reduction,” in Proceedings of the 8th ACM
workshop on Performance monitoring and measurement of heterogeneous
wireless and wired networks, 2013, pp. 189–196.

[213] Y.-M. Chang, P.-C. Hsiu, Y.-H. Chang, and C.-W. Chang, “A
resource-driven dvfs scheme for smart handheld devices,” ACM
Transactions on Embedded Computing Systems (TECS), vol. 13, no. 3,
pp. 1–22, 2013.

[214] P.-H. Tseng, P.-C. Hsiu, C.-C. Pan, and T.-W. Kuo, “User-centric
energy-efficient scheduling on multi-core mobile devices,” in
Proceedings of the 51st Annual Design Automation Conference, 2014,
pp. 1–6.

[215] P.-C. Hsiu, P.-H. Tseng, W.-M. Chen, C.-C. Pan, and T.-W. Kuo,
“User-centric scheduling and governing on mobile devices with
big. little processors,” ACM Transactions on Embedded Computing
Systems (TECS), vol. 15, no. 1, pp. 1–22, 2016.

[216] S. Li and S. Mishra, “Optimizing power consumption in multicore
smartphones,” Journal of Parallel and Distributed Computing, vol. 95,
pp. 124–137, 2016.

[217] P. K. Muhuri, P. K. Gupta, and J. M. Mendel, “Person footprint
of uncertainty-based cww model for power optimization in
handheld devices,” IEEE Transactions on Fuzzy Systems, vol. 28,
no. 3, pp. 558–568, 2019.

[218] J. Han and S. Lee, “Performance improvement of linux cpu sched-
uler using policy gradient reinforcement learning for android
smartphones,” IEEE Access, vol. 8, pp. 11 031–11 045, 2020.

[219] J. Paek, J. Kim, and R. Govindan, “Energy-efficient rate-adaptive
gps-based positioning for smartphones,” in Proceedings of the 8th
international conference on Mobile systems, applications, and services,
2010, pp. 299–314.

[220] Z. Zhuang, K.-H. Kim, and J. P. Singh, “Improving energy
efficiency of location sensing on smartphones,” in Proceedings
of the 8th international conference on Mobile systems, applications, and
services, 2010, pp. 315–330.

[221] Y. Chon, E. Talipov, H. Shin, and H. Cha, “Mobility prediction-
based smartphone energy optimization for everyday location
monitoring,” in Proceedings of the 9th ACM conference on embedded
networked sensor systems, 2011, pp. 82–95.

[222] T. O. Oshin, S. Poslad, and A. Ma, “Improving the energy-
efficiency of gps based location sensing smartphone applications,”
in 2012 IEEE 11th International Conference on Trust, Security and
Privacy in Computing and Communications. IEEE, 2012, pp. 1698–
1705.

[223] L. Zhang, J. Liu, H. Jiang, and Y. Guan, “Senstrack: Energy-efficient
location tracking with smartphone sensors,” IEEE sensors journal,
vol. 13, no. 10, pp. 3775–3784, 2013.

[224] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, R. Oliveto,
M. Di Penta, and D. Poshyvanyk, “Mining energy-greedy api
usage patterns in android apps: an empirical study,” in Proceedings
of the 11th Working Conference on Mining Software Repositories.
ACM, 2014, pp. 2–11.

[225] M.-R. Ra, J. Paek, A. B. Sharma, R. Govindan, M. H. Krieger, and
M. J. Neely, “Energy-delay tradeoffs in smartphone applications,”
in Proceedings of the 8th international conference on Mobile systems,
applications, and services, 2010, pp. 255–270.

[226] J. K. Nurminen, “Parallel connections and their effect on the
battery consumption of a mobile phone,” in 2010 7th IEEE
Consumer Communications and Networking Conference. IEEE, 2010,
pp. 1–5.

[227] A. J. Pyles, X. Qi, G. Zhou, M. Keally, and X. Liu, “Sapsm: Smart
adaptive 802.11 psm for smartphones,” in Proceedings of the 2012
ACM conference on ubiquitous computing, 2012, pp. 11–20.

[228] K. Lee, J. Lee, Y. Yi, I. Rhee, and S. Chong, “Mobile data
offloading: How much can wifi deliver?” IEEE/ACM Transactions
on networking, vol. 21, no. 2, pp. 536–550, 2012.

[229] C.-C. Cheng and P.-C. Hsiu, “Extend your journey: Introducing
signal strength into location-based applications,” in 2013 Proceed-
ings IEEE INFOCOM. IEEE, 2013, pp. 2742–2750.

[230] M. Siekkinen, M. A. Hoque, J. K. Nurminen, and M. Aalto,
“Streaming over 3g and lte: How to save smartphone energy

in radio access network-friendly way,” in Proceedings of the 5th
Workshop on Mobile Video, 2013, pp. 13–18.

[231] D. Li, Y. Lyu, J. Gui, and W. G. Halfond, “Automated energy opti-
mization of http requests for mobile applications,” in Proceedings
of the 38th international conference on software engineering. ACM,
2016, pp. 249–260.

[232] X. Chen, A. Jindal, N. Ding, Y. C. Hu, M. Gupta, and R. Van-
nithamby, “Smartphone background activities in the wild: Origin,
energy drain, and optimization,” in Proceedings of the 21st Annual
International Conference on Mobile Computing and Networking, 2015,
pp. 40–52.

[233] M. Martins, J. Cappos, and R. Fonseca, “Selectively taming
background android apps to improve battery lifetime,” in 2015
{USENIX} Annual Technical Conference ({USENIX} {ATC} 15),
2015, pp. 563–575.

[234] D. T. Nguyen, G. Zhou, X. Qi, G. Peng, J. Zhao, T. Nguyen, and
D. Le, “Storage-aware smartphone energy savings,” in Proceedings
of the 2013 ACM international joint conference on Pervasive and
ubiquitous computing, 2013, pp. 677–686.

[235] A. Hussein, M. Payer, A. Hosking, and C. A. Vick, “Impact of gc
design on power and performance for android,” in Proceedings of
the 8th ACM International Systems and Storage Conference, 2015, pp.
1–12.

[236] K. Zhong, D. Liu, L. Liang, X. Zhu, L. Long, Y. Wang, and E. H.-M.
Sha, “Energy-efficient in-memory paging for smartphones,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 35, no. 10, pp. 1577–1590, 2015.

[237] X. Chen, Y. Chen, Z. Ma, and F. C. Fernandes, “How is energy
consumed in smartphone display applications?” in Proceedings of
the 14th Workshop on Mobile Computing Systems and Applications,
2013, pp. 1–6.

[238] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, M. D. Penta,
R. Oliveto, and D. Poshyvanyk, “Multi-objective optimization of
energy consumption of guis in android apps,” ACM Transactions
on Software Engineering and Methodology (TOSEM), vol. 27, no. 3,
pp. 1–47, 2018.

[239] D. Li, S. Hao, J. Gui, and W. G. Halfond, “An empirical study
of the energy consumption of android applications,” in 2014
IEEE International Conference on Software Maintenance and Evolution.
IEEE, 2014, pp. 121–130.

[240] M. A. Hoque, M. Siekkinen, and J. K. Nurminen, “Energy
efficient multimedia streaming to mobile devices—a survey,” IEEE
Communications Surveys & Tutorials, vol. 16, no. 1, pp. 579–597,
2012.

[241] S. K. Gudla, J. K. Sahoo, A. Singh, J. Bose, and N. Ahamed, “A
systematic framework to optimize launch times of web apps,” in
Proceedings of the 26th International Conference on World Wide Web
Companion. International World Wide Web Conferences Steering
Committee, 2017, pp. 785–786.

[242] L. Corral, A. B. Georgiev, A. Sillitti, and G. Succi, “Can execution
time describe accurately the energy consumption of mobile apps?
an experiment in android,” in Proceedings of the 3rd International
Workshop on Green and Sustainable Software, 2014, pp. 31–37.

[243] M. Xia, W. He, X. Liu, and J. Liu, “Why application errors drain
battery easily? a study of memory leaks in smartphone apps,” in
Proceedings of the Workshop on Power-Aware Computing and Systems,
2013, pp. 1–5.

[244] D. T. Nguyen, “Evaluating impact of storage on smartphone
energy efficiency,” in Proceedings of the 2013 ACM conference on
Pervasive and ubiquitous computing adjunct publication. ACM, 2013,
pp. 319–324.

[245] A. P. Miettinen and J. K. Nurminen, “Energy efficiency of mobile
clients in cloud computing.” HotCloud, vol. 10, no. 4-4, p. 19, 2010.

[246] L. Cruz and R. Abreu, “On the energy footprint of mobile testing
frameworks,” IEEE Transactions on Software Engineering, 2019.

[247] R. Saborido, F. Khomh, G. Antoniol, and Y.-G. Guéhéneuc,
“Comprehension of ads-supported and paid android applications:
are they different?” in 2017 IEEE/ACM 25th International Conference
on Program Comprehension (ICPC). IEEE, 2017, pp. 143–153.

[248] K. Wiegers and J. Beatty, Software requirements. Pearson Education,
2013.

[249] J. Karlsson, “Software requirements prioritizing,” in Proceedings
of the Second International Conference on Requirements Engineering.
IEEE, 1996, pp. 110–116.

[250] J. Karlsson, C. Wohlin, and B. Regnell, “An evaluation of methods
for prioritizing software requirements,” Information and software
technology, vol. 39, no. 14-15, pp. 939–947, 1998.

Authorized licensed use limited to: University College London. Downloaded on April 22,2021 at 10:58:48 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3071193, IEEE
Transactions on Software Engineering

25

[251] M. Woodside, G. Franks, and D. C. Petriu, “The future of soft-
ware performance engineering,” in Future of Software Engineering
(FOSE’07). IEEE, 2007, pp. 171–187.

[252] S. Schubert, D. Kostic, W. Zwaenepoel, and K. G. Shin, “Profiling
software for energy consumption,” in 2012 IEEE International
Conference on Green Computing and Communications. IEEE, 2012,
pp. 515–522.

[253] A. Sinha and A. P. Chandrakasan, “Jouletrack: a web based tool
for software energy profiling,” in Proceedings of the 38th annual
Design Automation Conference, 2001, pp. 220–225.

[254] M. Stephenson, S. K. S. Hari, Y. Lee, E. Ebrahimi, D. R. Johnson,
D. Nellans, M. O’Connor, and S. W. Keckler, “Flexible software
profiling of gpu architectures,” in 2015 ACM/IEEE 42nd Annual
International Symposium on Computer Architecture (ISCA). IEEE,
2015, pp. 185–197.

[255] X. Zhao, K. Rodrigues, Y. Luo, D. Yuan, and M. Stumm, “Non-
intrusive performance profiling for entire software stacks based on
the flow reconstruction principle,” in 12th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI} 16), 2016,
pp. 603–618.

[256] G. Xu and A. Rountev, “Precise memory leak detection for java
software using container profiling,” in Proceedings of the 30th
international conference on Software engineering, 2008, pp. 151–160.

[257] M. Mao and M. Humphrey, “A performance study on the
vm startup time in the cloud,” in 2012 IEEE Fifth International
Conference on Cloud Computing. IEEE, 2012, pp. 423–430.

[258] H. Kaminaga, “Improving linux startup time using software
resume (and other techniques),” in Linux Symposium, 2006, p. 17.

[259] E. Van Emden and L. Moonen, “Java quality assurance by
detecting code smells,” in Ninth Working Conference on Reverse
Engineering, 2002. Proceedings. IEEE, 2002, pp. 97–106.

[260] J.-L. Baer and T.-F. Chen, “An effective on-chip preloading scheme
to reduce data access penalty,” in Proceedings of the 1991 ACM/IEEE
conference on Supercomputing, 1991, pp. 176–186.

[261] C. Sahin, L. Pollock, and J. Clause, “How do code refactorings af-
fect energy usage?” in Proceedings of the 8th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement, 2014,
pp. 1–10.

[262] F. Chen, S. Jiang, and X. Zhang, “Smartsaver: turning flash drive
into a disk energy saver for mobile computers,” in Proceedings of
the 2006 international symposium on Low power electronics and design,
2006, pp. 412–417.

[263] F. Chen, T. Luo, and X. Zhang, “Caftl: A content-aware flash
translation layer enhancing the lifespan of flash memory based
solid state drives.” in FAST, vol. 11, 2011, pp. 77–90.

[264] M. Hauswirth and T. M. Chilimbi, “Low-overhead memory leak
detection using adaptive statistical profiling,” in Acm SIGPLAN
notices, vol. 39, no. 11. ACM, 2004, pp. 156–164.

[265] V. N. Padmanabhan and J. C. Mogul, “Using predictive prefetching
to improve world wide web latency,” ACM SIGCOMM Computer
Communication Review, vol. 26, no. 3, pp. 22–36, 1996.

[266] R. Minelli and M. Lanza, “Software analytics for mobile
applications–insights & lessons learned,” in 2013 17th European
Conference on Software Maintenance and Reengineering. IEEE, 2013,
pp. 144–153.

[267] O. J. Romero and S. A. Akoju, “Adroitness: An android-based
middleware for fast development of high-performance apps,”
arXiv preprint arXiv:1906.02061, 2019.

[268] M. Linares-Vasquez, C. Vendome, Q. Luo, and D. Poshyvanyk,
“How developers detect and fix performance bottlenecks in
android apps,” in 2015 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2015, pp. 352–361.

[269] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why
don’t software developers use static analysis tools to find bugs?”
in Proceedings of the 2013 International Conference on Software
Engineering. IEEE Press, 2013, pp. 672–681.

[270] L. Li, T. F. Bissyandé, M. Papadakis, S. Rasthofer, A. Bartel,
D. Octeau, J. Klein, and L. Traon, “Static analysis of android
apps: A systematic literature review,” Information and Software
Technology, vol. 88, pp. 67–95, 2017.

[271] M. Christakis and C. Bird, “What developers want and need from
program analysis: an empirical study,” in 2016 31st IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2016, pp. 332–343.

[272] A. Nistor, T. Jiang, and L. Tan, “Discovering, reporting, and fixing
performance bugs,” in Proceedings of the 10th Working Conference
on Mining Software Repositories. IEEE Press, 2013, pp. 237–246.

[273] L. Cruz, R. Abreu, J. Grundy, L. Li, and X. Xia, “Do energy-oriented
changes hinder maintainability?” in 2019 IEEE International Confer-
ence on Software Maintenance and Evolution (ICSME). IEEE, 2019,
pp. 29–40.

[274] M. Linares-Vásquez, C. Vendome, M. Tufano, and D. Poshyvanyk,
“How developers micro-optimize android apps,” Journal of Systems
and Software, vol. 130, pp. 1–23, 2017.

[275] L. Cruz and R. Abreu, “Catalog of energy patterns for mobile
applications,” Empirical Software Engineering, vol. 24, no. 4, pp.
2209–2235, 2019.

[276] S. S. Afjehei, T.-H. P. Chen, and N. Tsantalis, “iperfdetector:
characterizing and detecting performance anti-patterns in ios
applications,” Empirical Software Engineering, vol. 24, no. 6, pp.
3484–3513, 2019.

[277] I. Dalmasso, S. K. Datta, C. Bonnet, and N. Nikaein, “Survey,
comparison and evaluation of cross platform mobile application
development tools,” in 2013 9th International Wireless Communica-
tions and Mobile Computing Conference (IWCMC). IEEE, 2013, pp.
323–328.

[278] M. E. Joorabchi, A. Mesbah, and P. Kruchten, “Real challenges
in mobile app development,” in 2013 ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement.
IEEE, 2013, pp. 15–24.

[279] M. Mahmoudi and S. Nadi, “The android update problem: An
empirical study,” in Proceedings of the 15th International Conference
on Mining Software Repositories. ACM, 2018, pp. 220–230.

[280] D. Han, C. Zhang, X. Fan, A. Hindle, K. Wong, and E. Stroulia,
“Understanding android fragmentation with topic analysis of
vendor-specific bugs,” in 2012 19th Working Conference on Reverse
Engineering. IEEE, 2012, pp. 83–92.

[281] H. Khalid, M. Nagappan, E. Shihab, and A. E. Hassan, “Priori-
tizing the devices to test your app on: A case study of android
game apps,” in Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering. ACM, 2014, pp.
610–620.

[282] X. Lu, X. Liu, H. Li, T. Xie, Q. Mei, D. Hao, G. Huang, and F. Feng,
“Prada: prioritizing android devices for apps by mining large-scale
usage data,” in 2016 IEEE/ACM 38th International Conference on
Software Engineering (ICSE). IEEE, 2016, pp. 3–13.

[283] J. Harty, “Google play console: insightful development using
android vitals and pre-launch reports,” in 2019 IEEE/ACM 6th
International Conference on Mobile Software Engineering and Systems
(MOBILESoft). IEEE, 2019, pp. 62–65.

[284] R. Saborido, G. Beltrame, F. Khomh, E. Alba, and G. Antoniol,
“Optimizing user experience in choosing android applications,” in
2016 IEEE 23Rd international conference on software analysis, evolution,
and reengineering (SANER), vol. 1. IEEE, 2016, pp. 438–448.

[285] E. Guzman and W. Maalej, “How do users like this feature? a fine
grained sentiment analysis of app reviews,” in 2014 IEEE 22nd
international requirements engineering conference (RE). IEEE, 2014,
pp. 153–162.

[286] B. Fu, J. Lin, L. Li, C. Faloutsos, J. Hong, and N. Sadeh, “Why
people hate your app: Making sense of user feedback in a mobile
app store,” in Proceedings of the 19th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2013, pp.
1276–1284.

[287] P. M. Vu, T. T. Nguyen, H. V. Pham, and T. T. Nguyen, “Mining
user opinions in mobile app reviews: A keyword-based approach
(t),” in 2015 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 2015, pp. 749–759.

[288] C. Gao, J. Zeng, M. R. Lyu, and I. King, “Online app review
analysis for identifying emerging issues,” in 2018 IEEE/ACM 40th
International Conference on Software Engineering (ICSE). IEEE, 2018,
pp. 48–58.

[289] Y. Tian, M. Nagappan, D. Lo, and A. E. Hassan, “What are the
characteristics of high-rated apps? a case study on free android
applications,” in 2015 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2015, pp. 301–310.

[290] C. Shepard, A. Rahmati, C. Tossell, L. Zhong, and P. Kortum,
“Livelab: measuring wireless networks and smartphone users
in the field,” ACM SIGMETRICS Performance Evaluation Review,
vol. 38, no. 3, pp. 15–20, 2011.

[291] E. Noei, M. D. Syer, Y. Zou, A. E. Hassan, and I. Keivanloo, “A
study of the relation of mobile device attributes with the user-
perceived quality of android apps,” Empirical Software Engineering,
vol. 22, no. 6, pp. 3088–3116, 2017.

Authorized licensed use limited to: University College London. Downloaded on April 22,2021 at 10:58:48 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3071193, IEEE
Transactions on Software Engineering

26

[292] U. Lee, J. Lee, M. Ko, C. Lee, Y. Kim, S. Yang, K. Yatani,
G. Gweon, K.-M. Chung, and J. Song, “Hooked on smartphones:
an exploratory study on smartphone overuse among college
students,” in Proceedings of the 32nd annual ACM conference on
Human factors in computing systems. ACM, 2014, pp. 2327–2336.

[293] A. Morrison, X. Xiong, M. Higgs, M. Bell, and M. Chalmers, “A
large-scale study of iphone app launch behaviour,” in Proceedings
of the 2018 CHI Conference on Human Factors in Computing Systems.
ACM, 2018, p. 344.

[294] D. Yu, Y. Li, F. Xu, P. Zhang, and V. Kostakos, “Smartphone app
usage prediction using points of interest,” Proceedings of the ACM
on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 1,
no. 4, pp. 1–21, 2018.

[295] J. Huangfu, J. Cao, and C. Liu, “A context-aware usage prediction
approach for smartphone applications,” in Asia-Pacific Services
Computing Conference. Springer, 2015, pp. 3–16.

[296] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering. Springer
Science & Business Media, 2012.

[297] M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton, “A survey of
machine learning for big code and naturalness,” ACM Computing
Surveys (CSUR), vol. 51, no. 4, p. 81, 2018.

Max Hort is a PhD student in Software Engi-
neering at University College London, under the
supervision of Prof. Federica Sarro and Prof.
Mark Harman. His research research interests lie
on software fairness, non-functional optimization
of software, and search-based software engineer-
ing. Web page: http://www0.cs.ucl.ac.uk/staff/
mbhort/

Maria Kechagia is a Research Fellow at Uni-
versity College London. Previously, she was a
postdoctoral researcher at the Delft University
of Technology. Before that, she obtained a PhD
degree from the Athens University of Economics
and Business and a MSc degree from Imperial
College London. Her research interests include
program analysis, software testing, automated
program repair, and software analytics. Web
page: http://www0.cs.ucl.ac.uk/staff/M.Kechagia/

Federica Sarro is a Professor of Software En-
gineering at University College London. Her re-
search covers Predictive Analytics for Software
Engineering (SE), Empirical SE and Search-
Based SE, with a focus on software effort es-
timation, software sizing, software testing, and
mobile app store analysis. On these topics, she
has published several articles in prestigious in-
ternational venues including ICSE, FSE, TSE,
TOSEM, and has received several international
awards, including the FSE’19 ACM Distinguished

Paper Award and the ACM SIGEVO HUMIES GECCO’16 Award. She
has also been invited to serve on several programme, organisation
and steering committees, and editorial boards of well-renowned venues,
such as ICSE, FSE, ACM TOSEM, IEEE TSE, IEEE TEVC. Web page:
http://www0.cs.ucl.ac.uk/staff/F.Sarro/

Mark Harman works full time at Facebook Lon-
don as a Research Scientist in a team focussing
in AI for scalable software engineering. He also
holds a part-time professorship at UCL. Previ-
ously, Mark was the manager of the Facebook
team that deployed Sapienz to test mobile apps,
which grew out of Majicke, a start up co-founded
by Mark and acquired by Facebook in 2017. In
his more purely scientific work, Mark co-founded
the field Search Based Software Engineering
(SBSE), and is also known for scientific research

on source code analysis, software testing, app store analysis and
empirical software engineering. He received the IEEE Harlan Mills
Award and the ACM Outstanding Research Award in 2019 for this
work. In addition to Facebook itself, Mark’s scientific work is also
supported by the European Research Council (ERC), with an advanced
fellowship grant, and has also been regularly and generously supported
by the UK Engineering and Physical Sciences Research Council (EP-
SRC), with regular grants, a platform and a programme grant. Web
page:http://www0.cs.ucl.ac.uk/staff/M.Harman/

Authorized licensed use limited to: University College London. Downloaded on April 22,2021 at 10:58:48 UTC from IEEE Xplore. Restrictions apply.

http://www0.cs.ucl.ac.uk/staff/mbhort/
http://www0.cs.ucl.ac.uk/staff/mbhort/
http://www0.cs.ucl.ac.uk/staff/M.Kechagia/
http://www0.cs.ucl.ac.uk/staff/F.Sarro/
http://www0.cs.ucl.ac.uk/staff/M.Harman/

