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A Survey of Performance Optimization
for Mobile Applications
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Abstract—To ensure user satisfaction and success of mobile applications, it is important to provide highly performant applications. This
is particularly important for resource-constrained systems such as mobile devices. Thereby, non-functional performance characteristics,
such as energy and memory consumption, play an important role for user satisfaction.
This paper provides a comprehensive survey of non-functional performance optimization for Android applications. We collected 156
unique publications, published between 2008 and 2020, that focus on the optimization of performance of mobile applications. We target
our search at four performance characteristics: responsiveness, launch time, memory and energy consumption. For each performance
characteristic, we categorize optimization approaches based on the method used in the corresponding publications. Furthermore, we
identify research gaps in the literature for future work.

Index Terms—mobile applications, android, non-functional performance optimization, software optimization, literature survey.
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1 INTRODUCTION

The relevance of mobile (handheld) devices, such as the
so-called smartphones, has been ever growing for the past
ten years, reaching an estimate of 3.2 billion smartphone
users in 2019.1 Smartphones can nowadays be considered
as the main information processing devices for users. With
smartphones, users cannot only receive and make phone
calls, but also execute similar tasks as those performed
on personal computers (e.g., surf the internet, perform
calculations, pay bills).

Even though mobile devices are powerful, they represent
resource-constrained devices making the development of
applications that can run on them (mobile applications) chal-
lenging. This means that the functionality and performance
of mobile applications depend on the characteristics of
mobile phones (e.g., their physical memory, processors,
battery) and on the current execution context (e.g., how
many applications run at the same time on a mobile phone).

To ensure the success of an application (e.g., whether it
will be used, updated, or uninstalled [1], [2]), developers
aim to maximize user experience quality, and, consequently,
user satisfaction [3], [4], [5]. User satisfaction is mainly
influenced by functional (Does the application operate as the user
expects?) and non-functional (How does the application perform?)
application characteristics [1], [2]. Examples of functional
issues can include missing or buggy features (e.g., a game
application that functions in a different way than presented in
its description). An example of a non-functional characteristic
is the energy consumption of an application. Regardless of
an application’s functionality, users will be dissatisfied if the
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application drains the battery of their mobile devices within
minutes.

Finkelstein et al. [6] found that the success of mobile
applications in terms of downloads is correlated to the
rating that the application attracts. These ratings are recorded
by App Stores (e.g., Google Play, Apple Store, BlackBerry
World). In 2018, the number of total applications downloaded
amounted to 194 billion,2 with every user having a multitude
of different applications installed on their phone [7], [8]. With
such a high number of applications, 75% of mobile device
usage is filled by mobile applications [5]. While several
studies show the importance of fixing software bugs that
hinder applications’ smooth function [9], [10], [11], [12], non-
functional performance characteristics have shown to have
a strong impact on user satisfaction as well [1], [2], [3], [13],
[14], [15], [16], [17], [18]. This impact can be seen in the user
reviews of real-world mobile applications:

• “This app is destroying my battery. I will have to uninstall
it if there isn’t a fix soon.” [13]

• “It lags and doesn’t respond to my touch which almost
always causes me to run into stuff.” [19]

• “Bring back the old version. Scrolling lags.” [3]
• “Makes GPS stay on all the time. Kills my battery.” [3]
• “Too much memory usage for a glorified web portal ad

machine.” [18]

Furthermore, Banerjee and Roychoudhury [20] conducted
a study on 170,000 user reviews, and showed that poor
performance and energy consumption lead to application
downvotes from users. Among all causes of downvotes, en-
ergy consumption caused the highest ratio of uninstallations.

Given the importance of non-functional performance
characteristics on user satisfaction and the consequent suc-
cess of mobile applications, as well as new optimization
approaches that are developed each year, we provide a

2. https://www.statista.com/statistics/271644/worldwide-free-and-
paid-mobile-app-store-downloads/
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Fig. 1. Categorization of existing optimization approaches for non-
functional characteristics of mobile applications.

comprehensive overview of existing approaches for non-
functional performance optimization of mobile applications.
This can be used by practitioners, developers, and researchers
to search for approaches appropriate to their needs (e.g.,
“How can I reduce energy consumption only by changing
application source code?” or “Can I improve responsiveness
by applying changes to the device hardware?”). Further-
more, we provide information on dependencies among non-
functional properties, which reside in mobile applications.
We focus our review on the Android platform, since it is open-
source software and has the highest market share among
mobile platforms at the time of writing.3

Initially, we gathered and analyzed existing work to
detect non-functional performance characteristics (Section 3).
Based on this, we identify four non-functional characteristics,
which describe user-perceived performance of mobile appli-
cations, and thereby their success, i.e.: responsiveness, launch
time, memory consumption, and energy consumption. For each
of these characteristics, we have categorized previous work
based on the optimization level (e.g., optimization applied
to application, platform, or hardware level) and proposed
optimization type (e.g., prefetching, preloading, display), as
shown in Figure 1.

We found that the majority of approaches to optimize
responsiveness applied changes to the application’s source
code, while launch time was improvement by changes to
the Android platform. Approaches that optimize memory
apply changes to both the application and Android plat-
form’s source code. The majority of work was concerned

3. https://gs.statcounter.com/os-market-share/mobile/worldwide

Fig. 2. Overview of mobile-device architecture [23].

with optimizing energy consumption. Moreover, we were
able to detect relationships among the four non-functional
performance characteristics (e.g., energy consumption can
increase with an improved responsiveness of applications).

To the best of our knowledge, this is the first survey to in-
vestigate multiple non-functional performance characteristics
and their relationships. To summarize, our work:

1) provides a comprehensive literature review of the
state-of-the-art research on the optimization of non-
functional characteristics for mobile applications;

2) provides a categorization of existing optimization
approaches based on their level and type;

3) identifies challenges and opportunities for future
research in this area.

We have made publicly available some additional re-
sources [21] and an online version of the work reviewed
in this survey, which we will keep up-to-date by accepting
external contributions [22].

The rest of this paper is structured as follows. Section
2 presents an overview of mobile devices and mobile-
application ecosystems. The search methodology is described
in Section 3. Sections 4-7 describe research on non-functional
performance optimization. These refer to: responsiveness
(Section 4), launch time (Section 5), memory consumption
(Section 6) and energy consumption (Section 7). A discus-
sion of results considering all non-functional performance
optimization characteristics is given in Section 8. Section
9 presents related work and Section 10 outlines threats to
validity. Section 11 concludes this survey.

2 BACKGROUND

This section presents an overview of the context of this survey.
Initially, we present key terms and definitions regarding
the architecture of mobile devices. Then, we focus on the
characteristics of the Android platform that we take into
account in this work. Finally, we explain how the function
and performance of mobile applications can affect users.

2.1 Mobile Devices
Mobile devices are embedded systems that consist of
hardware and software components. Figure 2 illustrates a
representative architecture of a mobile device.

The foundation of mobile devices is their hardware. The
capacity of hardware components, such as physical memory,
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processors, and battery, is constrained. Additionally, mobile
devices come with a growing set of embedded sensors, in-
cluding accelerometers, digital compasses, GPS, microphones,
and cameras, which enable the emergence of personal, group
and community-scale sensing applications [24]. However,
the use of these sensors in applications requires a higher
energy consumption [25].

The software of mobile devices comprises two basic
layers: the mobile platform and the hosted mobile appli-
cations. The mobile platform (e.g., Android, iOS) consists of
an embedded operating system (OS) that connects hardware
with software components. It offers services such as mem-
ory management, networking, and power management. In
mobile platforms, software libraries, which are used for the
interaction with components, such as the database and media
framework, are on the top of the OS. Mobile applications
(e.g., calculator, photos, contacts) are either provided by
a mobile framework (e.g., the Android platform) or third-
party applications provided by online stores for mobile
applications (e.g., Google Play Store, Apple iOS App Store,
AppNokia, Samsung, BlackBerry World and Windows Phone
Store).

2.2 Android
This survey focuses on the Android platform because it
is currently the most used mobile platform4 and open-
source software, facilitating the analysis and evaluation of
mobile systems. The following paragraphs present the main
components of the Android platform.

Android is an embedded system based on the Linux OS.
The Linux kernel links hardware and software components of
a mobile device. It manages services such memory, processes,
power, and networking access, and it offers drivers for flash
memory, Bluetooth, WiFi, keyboard and audio. On top of
the Linux kernel, lies the Android Runtime (ART), which is
essential for running different applications. Each application
runs as a separate process, having its own virtual machine
instance.

The Android platform provides several methods and
tools for improving the performance of mobile applications.
For instance, memory is freed by the OS if the available
memory on a device is low. To achieve that, Android
uses the Low Memory Killer (LMK) to remove the Least
Recently Used (LRU) cached application from the memory.
Cached data is stored in the virtual memory, as long as
memory is available [26]. In order to optimize the cache
memory, and address problems such as duplicated pages in
virtual memory, Kernel Same-page Merging (KSM) [27] and
zRAM [28] are applied by Android [29]. Even though these
methods optimize the cache memory, they consume power
while they are being executed.

Furthermore, Android offers a variety of tools in its
SDK to analyze system information and support application
development.5 Tools can be used for logging (LOGCAT),
retrieving application and system information (APKANA-
LYZER, DUMPSYS, SYSTRACE), as well as for simulations
and debugging (ANDROID DEBUG BRIDGE, AVDMANAGER ).

4. https://gs.statcounter.com/os-market-
share/mobile/worldwide/#monthly-201909-201909-bar

5. https://developer.android.com/studio/command-line

Finally, Android provides developers with selected perfor-
mance measures (Android Vitals)6 that use real user data,
in case users have agreed on providing such information.
If that happens, several metrics related to startup time,
battery usage, and crash stack traces are recorded. Such
metrics can assist developers to monitor memory and energy
consumption, to identify synchronization issues, and to avoid
application crashes [30].

2.3 User Experience
User experience and satisfaction are important factors that
can ensure the success of mobile applications [31]. Applica-
tion rating, or user satisfaction with an application, has been
shown to correlate with the number of downloads [32]. After
installing and using an application, users are able to make
judgements regarding their satisfaction. Reviews regarding
user satisfaction of mobile applications appear in App Stores
and new users consider them in order to decide whether
they will download an application or not.

To achieve a high level of user satisfaction, developers
focus on improving both the functional and non-functional
characteristics of mobile applications [1], [2], [3], [13], [15],
[16]. Apart from fatal issues with functionality, such as appli-
cation crashes [3], non-functional performance characteristics
also shape users’ perception [1]. Non-functional performance
characteristics are the first characteristics to, potentially
adversely, affect users [15] and can lead to application
uninstallations [2]. In the following, we describe functional
and non-functional characteristics of mobile applications that
can affect user experience.

Functional characteristics describe whether an applica-
tion is doing what it is supposed to do (i.e., its behavior).
Frequent complaints about functional aspects of applications
include freezes or crashes [1], functional errors, such as not
getting push notifications, and the removal of features [3].

Non-functional characteristics determine how an appli-
cation carries out (performs) its behavior. Even though it is
difficult to measure and judge non-functional characteris-
tics [33], they represent a vital part of user satisfaction for
mobile applications. Related work analyzes a range of dif-
ferent non-functional characteristics regarding applications’
performance [1], [2], [3], [13], [15], [16].

Different schemes exist to classify functional and non-
functional characteristics of applications [34], [35], [36].
Among these, the FURPS model [36], [37] clearly distinguishes
performance characteristics from other functional and non-
functional characteristics, as follows:

• Functionality: feature set, capabilities, generality, se-
curity;

• Usability: human factors, aesthetics, consistency, doc-
umentation;

• Reliability: frequency/severity of failure, recoverabil-
ity, predictability, accuracy, mean time to failure;

• Performance: speed, efficiency, resource consumption,
throughput, response time;

• Supportability: testability, extensibility, adaptability,
maintainability, compatibility, configurability, service-
ability, installability, localizability, portability.

6. https://developer.android.com/topic/performance/vitals
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Among these characteristics, we are interested in the Perfor-
mance category, which in the context of mobile applications,
can be further refined into the following four non-functional
performance characteristics:

1) Responsiveness captures the time required to update
the frames of the graphical user interface after user
interaction.

2) Launch time describes the time required to start an
application. This can happen as a cold start, when
the application is launched without cached data (e.g.,
after device boot). Another launch type refers to the
hot/warm start of application, which occurs when
an application activity is kept in memory for a faster
launch [38].

3) Memory consumption describes the amount of oc-
cupied memory. Memory can be shared between
multiple applications or stored separately [39]. On
constrained systems, such as smartphones, memory
is a critical resource [26], [29].

4) Energy consumption is associated with the battery life.
Energy is consumed by various components, includ-
ing CPU, LCD, GPS, audio and WiFi services [25], [40].

A detailed description of each of the four non-functional
performance characteristics is given in sections 4-7 (re-
sponsiveness, launch time, memory consumption, energy
consumption, respectively).

3 SURVEY METHODOLOGY

The purpose of this survey is to gather and categorize
research work published in the mobile computing and
software engineering literature that refers to the optimization
of non-functional performance of Android applications.

As this is an emergent topic and there is limited related
work on Android performance optimization techniques to
perform a systematic literature review (according to the
guidelines of Kitchenham [41]), we conduct a comprehensive
literature review. In the following, we present our search
methodology in detail, starting with a preliminary and venue
search, followed by a repository search and snowballing.

3.1 Search Methodology
Our literature review on performance optimization includes
publications that refer to optimization techniques on mobile
applications and measurement of application performance.

3.1.1 Preliminary Search
Prior to systematically searching online repositories, we
conducted a preliminary search. The goal of the preliminary
search is to gain a deeper understanding of the field and
assess whether there is a sufficient amount of publications
that allows for subsequent analysis. Based on these results,
we distinguish between four different non-functional perfor-
mance characteristics: responsiveness, launch time, memory
and energy consumption.

Other than Sadeghi et al. [42], who refined keywords
during their search, we perform a preliminary search to
guide our repository search. Additionally, we use the results
of the preliminary search to define keywords (Table 2) and
venues (listed in Section 3.1.2).

3.1.2 Repository Search

Proceeding the preliminary search, we conduct a search of
six established online repositories (IEEE, ACM, ScienceDirect,
Scopus, arXiv, and Google Scholar). We have gathered
publications from 2008 to February 2020, since the first
version of Android was released in 2008.

To ensure that we provide an exhaustive literature search,
we manually examine relevant venues from the field of
software engineering and mobile computing, which we
encountered during the preliminary search. We search venues
with at least five publications in our preliminary search.

• Conferences: ICSE, ASE, MSR, MobiSys, MobileHCI,
MobileSoft, UbiComp, CHI, ESEC/FSE.

• Journals: IEEE TSE.

3.1.3 Selection

Table 2 lists keywords used to guide our repository search.
Keywords are divided into five categories. Firstly, the key-
words that belong to the Platform category ensure that the
selected publications deal with mobile platforms, particu-
larly Android. Furthermore, keywords that belong to the
Responsiveness, Launch time, Memory, and Energy categories
filter publications referring to non-functional performance
characteristics. We restrict search results to publications
that contain at least one platform keyword and one non-
functional keyword in their title.

To ensure that the publications found during our search
are relevant to the context of non-functional performance op-
timization of mobile applications, we consider the following
inclusion criteria:

• The publication should refer to at least one of the non-
functional performance characteristics investigated in
this survey (e.g., responsiveness, memory, energy, and
launch time), or to an approach that profiles at least
one of the mentioned performance characteristics.

• The publication investigates the proposed methods
on smartphones with an Android OS.

To assesses whether the publications satisfy our inclusion
criteria, we manually examined every publication using the
process adopted by Martin et al. [43], as follows:

1) Title: First, all those publications whose title clearly
does not match our inclusion criteria are excluded;

2) Abstract: Second, the abstract of every remaining
publications is checked. Publications whose abstract
does not meet our inclusion criteria are excluded at
this step;

3) Body: Publications that passed the previous two
steps are then read in full, and excluded if their
content does neither satisfy the inclusion criteria nor
contribute to this survey.

Based on the above three-stage process and inclusion
criteria, we iteratively reduce the amount of publications
obtained from online repositories, until we end up with the
set of publications investigated in the following sections
(sections 4 to 7). This process is performed by two authors
independently, the results are compared at each stage, and
disagreements discussed until an agreement is reached.
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TABLE 1
Results of the Repository Search. The number of papers retained at each stage of the search (e.g., Hits, Title, Abstract, Body) is given for each

online repository (e.g., Google Scholar, IEEE, Scopus, ACM, Science Direct, arXiv) and non-functional performance characteristic (Responsiveness,
Launch Time, Memory, Energy). Google Scholar is abbreviated with GS; Science Direct is abbreviated with SD. For example, searching for

“responsiveness” in GS retrieves 835 publications, among those 31 have a relevant title, 24 of those have an abstract satisfying our inclusion criteria,
and a total of 11 (of those 24) publications are included in our survey after reading them entirely.

Responsiveness Launch Time Memory Energy Responsiveness Launch Time Memory Energy

Hits

G
S

835 90 392 1129

IE
EE

180 14 47 487
Title 31 10 16 76 21 5 9 52
Abstract 24 9 11 58 17 4 9 37
Body 11 1 4 31 9 0 7 8

Hits

Sc
op

us

146 6 57 269

A
C

M

73 21 23 152
Title 20 3 6 51 17 10 3 47
Abstract 15 3 6 44 16 8 2 44
Body 7 0 2 15 8 4 2 20

Hits

SD

71 13 97 62

ar
X

iv

17 1 1 18
Title 2 2 0 21 3 0 0 10
Abstract 2 0 0 15 1 0 0 9
Body 0 0 0 1 2 0 0 2

TABLE 2
Keywords Used for the Repository Search.

Category Keywords

Platform android, smartphone, app, apps
Responsiveness responsiveness, performance
Launch time launch, start
Memory memory
Energy energy, battery, power

3.1.4 Snowballing
After a collection of publications is obtained from the
repository search, we proceed to inspect the related work
of the publications selected in the previous search to gather
cited publications using snowballing [44]. We apply one level
of backwards snowballing.

3.2 Selected Publications
Table 1 shows the results of the repository search. The amount
of publications found during each step of the search is listed.7

In the following, we give the number of unique publica-
tions after each stage of the search procedure in addition to
the number of newly added publications:

1) Preliminary search: 96
2) Repository search: 174 (+80)
3) Venue search: 180 (+4)
4) Snowballing: 252 (+72)
5) Author feedback: 297 (+45)

In addition to the discussed stages of the search procedure
(1-4), we added 45 publications based on the feedback
from the authors cited. Among all 294 publications, 156
unique publications optimize at least one non-functional
performance characteristic. These 156 publications were
published in 97 different venues. We further classify top pub-
lication venues (A, A* according the CORE ranking Portal),8

7. A collection of publications after checking Abstract is available in
our on-line appendix [21]

8. http://www.core.edu.au/conference-portal. Additionally, we in-
clude MobiSys, classified as “B”, due to its popularity on mobile systems.
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Fig. 3. Number of publications on non-functional performance optimiza-
tion per year.

regarding their category based on the ACM’s Computing
Classification System (CCS).9 Among these, a majority of
publications is obtained from Software Engineering (32%),
and Computer Systems Organisation (29.33%) venues. The
remaining publications are retrieved from Mobile Computing
(20%), Networks (17.33%), and Security and Privacy (1.33%)
venues. A full list of conferences and journals is available
online [21].

The publication distribution over the entire search period
is illustrated in Figure 3. Note, a publication can contribute
to more than one subtotal if it explicitly optimizes more than
one non-functional performance characteristic. During our
search, we found ten publications that optimize more than
one non-functional performance aspect [38], [45], [46], [47],
[48], [49], [15], [50], [51], [52]. Among these, there is one pub-
lication that optimizes three characteristics (responsiveness,
energy consumption, memory consumption) [45], while the
others optimize two. Section 8.3 provides further details on
the relationships between performance characteristics.

Based on our search results, we devise the categorization
of approaches shown in Figure 1. These categories consist of
approaches (e.g., offloading, code optimization) and elements
of the Android platform (e.g., Low Memory Killer, API). In

9. https://dl.acm.org/ccs
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the remainder of the survey, we discuss our search results in
detail.

4 RESPONSIVENESS

Responsiveness refers to the ability of mobile applications
to respond to user interactions fast and smoothly. An
application is highly responsive when the time it takes to
respond to user requests is minimal. A highly responsive
application offers high user satisfaction as users prefer not
to wait when interacting with an application. On the other
hand, an application with poor responsiveness can have a
negative impact on user perception, and on its success [53].

Specifically, Tolia et al. [54] argued that response times
lower than 150ms do not negatively affect user satisfaction.
In fact, delays that last almost one second do not significantly
affect users, but start making them aware of these delays,
whereas delays that last more than one second indeed
make users “unhappy” [54]. Willocx et al. [55] stated that
response times under 100ms appear as instantaneous to users.
Furthermore, users would accept response times up to a few
seconds, if delays were to occur rarely [55].

To detect and fix hot spots in mobile applications that
may cause response-time delays, developers use several
techniques, including profiling and optimization approaches.
Section 4.1 presents methods and approaches for profiling,
while Section 4.2 presents approaches to optimize respon-
siveness. Section 4.3 summarizes our findings.

4.1 Profiling
There are several profiling approaches that developers use
to measure the responsiveness of applications and locate hot
spots for improvement. Popular profiling techniques include
the measurement of page loading time [56], the measurement
of the overall frame time and the calculation of the number
of delayed frames [51], as well as the estimation of Central
Processing Unit (CPU) time [57]. Furthermore, responsiveness
can be measured at different levels of the Android platform,
considering the UI [58] and hardware components [59].

Several tools have been developed to measure the respon-
siveness of mobile applications. Specifically, Ravindranath et
al. [60] introduced APPINSIGHT to detect critical paths in ap-
plications, which represent bottlenecks for user transactions.
Hong et al. [61] proposed PERFPROBE, a profiling approach to
diagnose hardware and software causes for slowdowns with
runtime information. Kim et al. [62] conducted performance
testing, using unit tests, at early development stages of
the applications to identify response-time delays. Kang et
al. [63], [64] presented a technique that analyzes application
performance focusing on particular asynchronous executions.
Wang and Rountev [65] introduced a novel approach that
profiles responsiveness by tracking the usage of mobile
resources such as bitmap or SQLITE databases. Kwon et
al. [66] proposed MANTIS, a framework that predicts the
execution time of an application while using particular
inputs.

4.2 Optimization Approaches
For a high responsiveness of mobile applications, developers
apply several categories of optimization approaches. In the

TABLE 3
Studies on Responsiveness Optimization.

Category Authors [Ref] Year Venue

Offloading Kemp et al. [67] 2010 MobiCASE
Chun et al. [68] 2011 EuroSys
Ra et al. [69] 2011 MobiSys
Kosta et al. [70] 2012 INFOCOM
Gordon et al. [71] 2012 OSDI
Gordon et al. [72] 2015 MobiSys
Das et al. [46] 2016 IACC
Montella et al. [73] 2017 CCPE
Chen and Hao [74] 2018 J-Sac

Antipatterns Jin et al. [75] 2012 SIGPLAN
Yang et al. [53] 2013 MOBS
Nistor et al. [76] 2013 ICSE
Liu et al. [13] 2014 ICSE
Ongkosit and Takada [77] 2014 DeMobile
Hecht et al. [78] 2015 ASE
Habchi et al. [79] 2018 ASE
Hecht et al. [51] 2016 MobileSoft
Li et al. [80] 2019 SANER

Refactoring Lin et al. [81] 2014 FSE
Okur et al. [82] 2014 ICSE
Lin et al. [83] 2015 ASE
Lyu et al. [47] 2018 ISSTA
Feng et al. [84] 2019 ICSTW

Prefetching Higgins et al. [85] 2012 MobiSys
Zhao et al.[86] 2018 ICSE
Choi et al.[87] 2018 CoNEXT
Malavolta et al.[88] 2019 ICSE-NIER

Programming languages Batyuk et al. [89] 2009 MobileWare
Lee and Jeon [90] 2010 ICCAS
Lee and Lee [91] 2011 iCast
Lin et al. [92] 2011 IBICA
Saborido et al. [45] 2018 EMSE

CPU & GPU Wang et al. [93] 2013 CGO
Cheng et al. [94] 2013 IWSSIP
Thongkaew et al. [95] 2015 JIP

I/O operations Nguyen et al. [50] 2015 MobiSys
Mao et al. [96] 2018 ITCSDI

Hardware components Kim and Shin [97] 2015 ICUIMC

following, we describe techniques found in literature. Table 3
lists our findings.

Offloading refers to the transfer of heavy computational
tasks to external computing units with less performance-
related restrictions. This technique is popular in the de-
velopment of mobile applications as mobile devices are
embedded systems with restricted memory and CPU. How-
ever, offloading comes with an overhead while transfer-
ring the results of processes from an embedded system
to external computing units and vice versa [72]. The first
offloading implementation for Android applications was
introduced by Kemp et al. [67] and refers to the CUCKOO
framework. CUCKOO helps developers to easily implement
offloading tasks in their applications. The offloading decision
is made at runtime based on heuristics, context, and historic
information. Other frameworks that support offloading
include CLONECLOUD [68], THINKAIR [70], COMET [71],
and TANGO [72]. Offloading has frequently been used for
responsiveness improvements [46], [69], [73], [74].

Antipatterns are bad programming patterns, such as
performance bugs, which deteriorate software quality and
reduce application responsiveness that can negatively affect
user experience [13], [51]. For this reason, several tools
have been developed for the identification and removal
of antipatterns. In particular, Liu et al. [13] introduced
PERFCHECKER to automatically detect performance bugs
in mobile applications. PERFCHECKER is built on top of
the SOOT [98] Java optimization framework and analyzes
applications at a bytecode level. PERFCHECKER applies static
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code analysis to detect antipatterns. Other tools focus on
detecting particular types of bugs related to application
responsiveness [51], [76]. For instance, Nistor et al. [76]
searched for repetitive computations in code loops, following
the intuition that repetitive behavior is likely to be optimiz-
able. To detect repetitive behavior, they created TODDLER, an
automated oracle to analyze memory access patterns. Hecht
et al. [51] used a static analysis tool called PAPRIKA [78] to
detect three types of code smells (Internal Getter/Setter,
Member Ignoring Method, and HashMap Usage). They
investigated the removal of code smells in an empirical study,
obtaining responsiveness improvements of up to 12.4%.

Furthermore, Inefficient Image Displaying (IID) can cause
performance degradation (e.g., repeated and redundant
image decoding). Li et al. [80] developed the static analysis
tool TAPIR to detect IID issues, which can be strongly
correlated with antipatterns.

Finally, responsiveness-related bugs can be detected using
predefined rule sets (e.g., efficiency rules) [75], [77] and test
amplification (insertion of artificial delays in application
source code) [53].

Refactoring can be performed to utilize efficient pro-
gramming practices. Lin et al. [81], [83] provided an analysis
showing that even though applications include concurrent
code, they often contain bugs or end up with executing the
source code sequentially. For concurrent code execution, and
higher responsiveness, the authors located and refactored
long-running operations, using the two tools ASYNCHRO-
NIZER and ASYNCDROID. Okur et al. [82] developed two
tools to refactor asynchronous code in Windows Phone ap-
plications. Asynchronous code is converted by ASYNCIFIER
and common misuses in asynchronous code are corrected by
CORRECTOR. Their empirical study showed that developers
accept the proposed changes to asynchronous code. Lyu et
al. [47] applied static analysis to change ineffcient database
operations that are placed in within a loop. Database op-
erations called in loops can cause Repetitive Autocommit
Transaction (RAT), which creates a new transaction in each
iteration of the loop. Furthermore, Feng et al. [84] mined
optimization patterns from GITHUB projects, considering
performance-aware APIs, which can be manually injected
into the source code of mobile applications and improve
their performance.

Prefetching refers to a technique that caches data in
advance, so that it can timely provide required data when it is
needed. Higgins et al. [85] provided a library called Informed
Mobile Prefetching (IMP) that assigns the task of determining
when to prefetch data to the mobile system, rather than
leaving the choice to developers. Developers solely specify
which items could benefit from prefetching, while IMP
determines whether and how prefetching is handled, based
on responsiveness, battery lifetime, and mobile data usage.
Zhao et al. [86] proposed a technique named PALOMA, that
prefetches HTTP requests to reduce responsiveness latency.
PALOMA uses string analysis to detect prefetchable content
in the application source code. While users navigate in
an application, PALOMA uses short pauses (“user think
time”) for prefetching. Choi et al. [87] identified resource
dependencies with static analysis to automatically generate
acceleration proxies for dynamic prefetching. Application
binary files are analyzed to detect HTTP(s) messages, which

are later used for prefetching. As static analysis lacks certain
information, missing information of HTTP(s) requests is
added at runtime. Lastly, Malavolta et al. [88] proposed
a technique called NAPPA that prefetches network requests
based on user navigation patterns.

Programming languages can impact the processing
speed of applications and therefore responsiveness. Android
provides the Native Development Kit (NDK) that allows
developers to write native C/C++ code. Native instruc-
tions are directly executed by the CPU and, therefore, they
provide a better performance over non-native ones [93],
[99]. Several empirical studies compared the performance
of programming languages, and found that native C code
reduces the running time of the same algorithms written in
Dalvik Java code [92], [90], [91], [89]. Furthermore, efficient
implementation choices, such as which map variant to
use (e.g., HashMap, ArrayMap, and SparseArray) can
improve responsiveness [45].

CPU and Graphics Processing Unit (GPU) adaptations
can accelerate the execution of time-consuming program-
ming tasks and increase application responsiveness. Wang et
al. [93] proposed ACCELDROID to accelerate the execution of
bytecode on the HW/SW co-designed processor of Android.
Therefore, instead of translating bytecode twice, this is only
translated once. Cheng et al. [94] provided guidelines to
map applications to the Android platform (e.g., whether
to use CPU or GPU and how many cores are used). This
mapping is platform as well as task-dependent. An optimal
performance choice can avoid performance degradation.
Additionally, Thongkaew et al. [95] developed architectural
hardware extensions that can fetch and decode Dalvik
bytecode directly.

I/O operations have an impact on responsiveness and
can enable optimization [100]. For instance, Nguyen et al. [50]
proposed an approach that adapts the prioritization of read
and write operations for avoiding slowdowns. Mao et al. [96]
introduced a trace collection tool to identify redundant
I/O requests in mobile applications and eliminate them to
reduce response times. As redundancy is minimally shared
among applications, they performed an application-aware
optimization.

Hardware components, such as the use of embedded
Multimedia Cards (eMMC), can be investigated for respon-
siveness improvements. Kim and Shin [97] studied whether
additional features of eMMCs are utilized by Android smart-
phones, and reduced the I/O latency.

4.3 Summary

Responsiveness is a non-functional performance charac-
teristic concerned with the time an applications needs to
respond to user requests. In practice, this is either measured
in time (ms) [56], [57] or in frames [51]. Several tools
have been proposed to measure responsiveness and detect
responsiveness issues [60], [61], [63], [64].

Since responsiveness measures the duration required
to complete computations, a naive approach to improve
response times is to move the computations from the smart-
phone to devices with less restrictions. This approach is called
“offloading” and requires additional infrastructure (e.g.,
external servers for computation). If such an infrastructure
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is not available, other approaches can be followed, which in
majority are applicable to a source-code level (23/38).

Furthermore, changes that have been applied to mobile
applications’ source code include the removal of bad pro-
gramming patterns (antipatterns), and the usage of good
programming practices (e.g., concurrency with the help of
refactoring [81], [83], [82], and prefetching of content [85],
[86], [87], [88]). Other than changing source code after
responsiveness issues have been detected, a carefully con-
sidered choice of the right programming language can
lead to improvements (e.g., native C/C++ is faster when
executed on CPUs [89], [90], [91], [92]). Lastly, changes to the
hardware have achieved responsiveness improvements. This
can directly happen at CPU or GPU level [93], [94], which can
carry out computations, or on other hardware components
(e.g., memory [97]).

5 LAUNCH TIME

During the launch of a mobile application, operations and
data are loaded to make the application available to the user.
Therefore, launch time is the first performance characteristic
of a mobile application that users have the opportunity
to notice. Launch time directly influences user experience
and satisfaction. Nagata et al. [101], Song et al. [38] and
Kim et al. [15] defined the launch time of an application
as the required time until user input is accepted. Yan
et al. [102] described the Total Launch Time (TLT) of an
application as the needed time until the entire content,
including asynchronously loaded content, can be displayed
to the user.

Furthermore, Song et al. [38] found that cold start
time (when an application is started from scratch) has a
significant impact on the application launching experience of
users. Developers can address this issue by analyzing their
applications’ source code to identify and fix bottlenecks that
possibly increase launch time. The following sections discuss
profiling methods (Section 5.1) and approaches to optimize
launch time and cold start issues (Section 5.2). A summary is
given in Section 5.3.

5.1 Profiling
Profiling approaches have been proposed for locating issues
in mobile applications that may increase the application
launch time. Using monitoring functions in the source
code of Android applications, in the Android platform,
and in third-party libraries used by Android applications,
developers can pinpoint performance issues causing launch-
time delays [101], [103]. Also, developers can profile the
usage of system resources to pinpoint the application launch
completion [104]. Additionally, Nguyen et al. [50] studied
launch delays of an application as the time taken in kernel
mode and the time spent waiting for disk network opera-
tions.

To understand how launch time can affect user behavior,
Song et al. [38] investigated logs from application usages.
Other approaches for assessing the launch behavior of appli-
cations include monitoring of: handling of I/O requests [105],
system memory usage [15], restart ratio of applications (the
number of cold starts over all application launches) [38] and
user satisfaction with regards to launch-time delays [106].

TABLE 4
Studies on Launch Time Optimization.

Category Authors [Ref] Year Venue

Preloading Yan et al. [102] 2012 MobiSys
Nagata et al. [101] 2013 CANDAR
Parate et al. [107] 2013 UbiComp
Tang et al. [108] 2013 SIGAPP
Chung et al. [48] 2013 TECS
Song et al. [38] 2014 TECS
Lee et al. [49] 2017 J-SAC
Baumann and Santini [109] 2017 IMWUT
Martins et al. [16] 2018 ICMLT

Low Memory Killer Chung et al. [48] 2013 TECS
Prodduturi and Phatak [110] 2013 IIT
Song et al. [38] 2014 TECS
Baik and Huh [111] 2014 ICSE
Kim et al. [15] 2015 IEEE Micro
Vimal and Trivedi [112] 2015 RAICS
Singh et al. [113] 2016 IOTA
Kim et al. [104] 2016 TECS
Lee et al. [49] 2017 J-SAC
Li et al. [114] 2017 IWCMC

Memory Joo et al. [105] 2011 FAST
Kim et al. [15] 2015 IEEE Micro

I/O operations Nguyen et al. [50] 2015 MobiSys

5.2 Optimization Approaches

In order to reduce launch time, developers apply optimiza-
tion techniques. Table 4 summarizes publications found in
literature, which are described in the following.

Preloading of application data prevents cold starts and
thereby the overall user waiting time. Frequently, the usage of
applications follows patterns [38], and enables the prediction
and preloading of the next application to be used. Context
information, such as the time of day or the location can be
taken into account to improve predictions [16], [49], [115]
and preload applications.

The FALCON approach by Yan et al. [102], which refers
to an OS extension, preloads applications and application-
specific content based on the context (e.g., location) and usage
patterns. For this purpose, spatial and temporal features are
designed based on an extensive analysis. Usage patterns
include the use of weather applications in the morning, or
playing games at home.

Additionally, application predictions determine the ap-
plications to be launched next [38], [48], [108], [109] and
when they are going to be used [107]. In particular, Nagata
et al. [101] analyzed the relationship of application launch
time regarding the number of preloaded classes. For this,
they manually selected a number of preloaded classes, and
showed for one application that the launch time is reduced
when the number of preloaded classes is high. The prediction
of the next application to be used has been also investigated
for restructuring user interfaces [116], [117], [118].

The Low Memory Killer (LMK), which removes the
LRU application from memory, may not lead to optimal
results [15], [113], because users do not always rely on
recently used applications. To address this issue, several
studies introduce techniques that determine which data
should be removed from memory. Specifically, Song et al. [38]
and Li et al. [114] devised models to detect patterns in
application usages based on application cold start times.
Decisions for the LMK are based on usage patterns to
prioritize data of applications that are likely to be launched.

Instead of removing the LRU application from mem-

Authorized licensed use limited to: University College London. Downloaded on April 22,2021 at 10:58:48 UTC from IEEE Xplore.  Restrictions apply. 



0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3071193, IEEE
Transactions on Software Engineering

9

ory, choices can be made based on application cold start
times [15], the required storage size [104], and the importance
of an application to a user [110], [112], [113]. Furthermore,
Baik and Huh [111] analyzed usage patterns and determined
a threshold on how many processes to keep in memory
before freeing them. If this limit is fixed to a high value, more
applications can be kept in memory, leading to fewer restarts.

Memory can be adapted to suit application launches
better. Accordingly, Joo et al. [105] proposed the use of SSDs
instead of HHDs to speedup application launch time. This
approach was not designed for mobile devices; however,
mobile devices use NAND flash memory as secondary storage
carrying almost identical performance characteristics as SSDs.
One could therefore apply this approach to mobile devices as
well. Furthermore, Kim et al. [15] proposed the use of Non-
Volatile Memory (NVM) to store frequently used applications
and shared libraries among applications. Shared data is
stored on Phase-Change Memory (PCM). Therefore, less data
needs to be loaded when launching applications.

I/O operations impact the application launch time, as
their speed can be seen as a performance bottleneck during
application launch [15]. In fact, Nguyen et al. [50] analyzed
the impact of read and write operations on launch time,
as mobile devices wait for I/O operations to complete. As
application launches are dominated by read operations (five
times as many read operations as write operations [50]) this
can have a high impact on overall application launch time. A
prioritization of read and write operations avoids slowdowns
and reduces launch time.

5.3 Summary
Launch time describes the time required until a user input is
received [15], [38], [101] or the entire application content is
displayed [102], after an application has been started by the
user. The application launch completion has been profiled
according to the system’s resource-management usage [104].

Due to the high negative impact that cold starts can
have on user satisfaction [38], the majority of launch time
optimization methods (15/18) prevent cold starts, and reduce
application launch time. On one hand, preloading of applica-
tion data can be applied to spend loading times before the
application launch, and reduce the actual launch itself. For
this purpose, predictions are used to determine applications
that are likely to be used next, based on usage patterns [16],
[38], [49], [102], [115]. On the other hand, changes to memory
management (LMK) have achieved similar results. In contrast
to preloading, which loads desired application data, changes
to the LMK to keep important data in memory for a longer
time. Both of these approaches require access to the Android
OS to implement the required adaptations.

An increased speed of memory operations (e.g., usage
of SSDs over HHDs [105]), shared libraries among appli-
cations [15], and I/O prioritization of read over write
operations [50] have been also applied to reduce launch
time.

6 MEMORY

Memory is a critical resource for embedded systems [26],
[29], such as mobile devices. Specifically, in Android de-
vices, data can be loaded either by the Android platform

(to be shared across multiple running applications) or by
each application, separately. Application data is stored in
separate heaps, per application [39]. The main memory is
typically shared between the CPU and GPU [52]. Therefore,
a considerable amount of the main memory is occupied by
graphic processing operations [26]. Kim et al. [15] classified
applications in two categories, based on their memory
consumption, stable and unstable. The memory consumption
of stable applications increases within the first ten seconds
of the applications’ launch, and it stabilizes afterwards.
The memory consumption of unstable applications increases
steadily, and it does not stabilize.

The following sections present approaches that are used
to measure the consumed memory of mobile applications
(Section 6.1), optimize application memory consumption
(Section 6.2). At the end, we provide a summary (Section 6.3).

6.1 Profiling
Different tools and approaches have been proposed to mea-
sure the memory usage of applications. For instance, memory
consumed by mobile applications can be measured by:
kernel memory footprints [119], garbage collection calls [51],
physical memory dumps, and logging information [29].
Vimal and Trivedi [112] used the Dalvik Debug Monitor
Server (DDMS) to analyze memory footprints of Android com-
ponents and measure memory consumption.10 Tools such
as ANDROSCOPE by Cho et al. [59] have been also used to
analyze the performance (including memory) of all the layers
of the Android platform. Furthermore, ANDROBENCH [120]
and ANDROSTEP [121] are benchmark tools that assess the
storage performance of Android devices by analyzing logs
from read and write I/O operations.

6.2 Optimization Approaches
To reduce the memory usage of mobile applications develop-
ers use different categories of optimization approaches. The
following paragraphs summarize the relevant approaches
found in literature. Table 5 lists the representative studies.

Antipattern coding practices can be used to identify
code that is likely to lead to memory leaks. Memory leaks
occur when applications constantly request memory while
running [122], or when unused objects are being kept in
memory longer than required [123].

Hecht et al. [51] showed in an empirical study that
memory consumption can be reduced by correcting code
smells. In particular, memory can be improved in terms
of memory usage and number of garbage collection calls.
Shahriar et al. [123] developed memory leak patterns for
Android applications and used fuzz testing to emulate
and detect memory leaks. A total of three fuzzing types
(application, resource, and API) are used in their experiments,
which discovered crashes due to memory leaks in real-
world applications. Furthermore, memory leaks can be
identified by analyzing memory dumps [52], [139], the
activity lifecycle [125], source code patterns [124] or memory
execution information by applying process control block
hooking [122].

10. DDMS is deprecated and was removed from Android Studio
3.2. Android offers other tools to carry out the functions of DDMS
https://developer.android.com/studio/profile/monitor
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TABLE 5
Studies on Memory Optimization.

Category Authors [Ref] Year Venue

Antipatterns Park and Choi [122] 2012 IJCA
Shahriar et al. [123] 2014 HASE
Hecht et al. [51] 2016 MobileSoft
Santhanakrishnan et al. [124] 2016 i-Society
Tasneem et al. [52] 2019 IJCA
Amalfitano et al. [125] 2020 IEEE Access

Garbage collection He et al. [39] 2011 IFIP
Gerlitz et al. [126] 2013 JTRES
Lim et al. [127] 2013 ICCE
Mori et al. [128] 2017 GCCE
Tasneem et al. [52] 2019 IJCA

Deduplication Kim et al. [129] 2014 ICSE
Lee et al. [29] 2015 APSys

Memory management Kim et al. [130] 2013 IEEE TCE
Jeong et al. [131] 2013 USENIX ATC
Zhong et al. [132] 2014 EMSOFT
Kim et al. [133] 2015 ISMM
Nguyen et al. [134] 2016 WiMob
Kim and Bahn. [135] 2017 PMC
Kim et al. [136] 2017 TECS
Kim and Bahn. [137] 2019 IEEE Access

GPU Kwon et al. [26] 2015 EMSOFT

Programming languages Escobar De La Torre and Cheon [138] 2017 UTEP
Saborido et al. [45] 2018 EMSE

Garbage collection is used in Android to manage mem-
ory and identify unused objects that can be removed [52].
Since version 2.2., Android uses a stop-the-world (STW)
garbage collector [39], [126]. This stops other operations
to free the memory and resume them afterwards, resulting
in pauses that can negatively effect user experience [39].

Different garbage collector designs have been evaluated
for improvements: reference counting garbage collection [52],
[126], concurrent garbage collection [39] and generational
garbage collection [39], [128]. Lim et al. [127] proposed a
memory partitioning scheme, which partitions available
memory into two nodes (for critical and uncritical appli-
cations). If one node runs out of memory, only the memory
of this node is freed.

Deduplication is a technique to remove redundant pages
from memory. While duplicated memory reduces available
memory for other applications, Android is prone to have
page-level duplication in memory [29]. Lee et al. [29] devel-
oped a system (MEMSCOPE) to analyze memory duplication
in Android OS. MEMSCOPE identifies memory segments that
contain duplicated memory pages. One of the disadvantages
of deduplication is the additional computation needed to
detect and merge redundant pages. Therefore, Kim et al. [129]
proposed a computationally efficient deduplication scheme,
considering background applications that do not update
memory contents and need to be scanned only once.

Memory management changes can be applied to achieve
further improvements in memory usage by mobile applica-
tions. For example, swapping is a technique that reclaims
memory by writing inactive memory pages to secondary
storage (e.g., eMMC). Kim et al. [136] proposed a swapping
scheme (Application-Aware Swapping) that considers OS
processes in the swapping decision. For example, swapping
an application to secondary memory is not useful if the LMK
is about to remove it from memory, freeing the used memory
pages. Other approaches utilized NVM for swapping [132],
[137].

Journaling in Android applies a write-twice behavior,
to ensure reliability, which reduces system performance by
additional write operations. Kim et al. [130] proposed an
architecture to reduce storage accesses for journaling. They

use non-volatile memory for this purpose. Among others,
Jeong et al. [131] eliminated the journaling of unnecessary
metadata. Nguyen et al. [134] proposed iRAM, a system
that cleans low-priority processes to maintain a high level
of free memory. Kim and Bahn [135] evicted write-only-
once data from the buffer cache to improve the utilization
of cache space. Kim et al. [133] proposed an approach to
group memory pages with the same lifetime to alleviate
fragmentation of I/O buffers.

GPU buffers have been analyzed by Kwon et al. [26], who
introduced a compressing scheme. Once an application goes
to the background, its GPU buffers are treated as inactive and
compressed. If the application is launched in the foreground,
GPU buffers are decompressed.

Programming languages influence the choice of lan-
guage constructs that further impact storage requirements.
Escobar De La Torre and Cheon [138] analyzed the impact of
the Java language constructs on the allocated memory. For
instance, for–each loops require more memory than equiv-
alent code snippets using regular loops. Removing those
constructs (iterators, for–each loops, lambda expressions
and the Stream API) reduces memory requirements [138].
Saborido et al. [45] showed that map implementations con-
sume different amounts of memory. Specifically, ArrayMap
uses less memory than HashMap.

6.3 Summary

Memory describes the occupation of device memory by ap-
plications, and is critical for resource-constraint systems [26],
[29]. For Android applications, data is either shared between
multiple applications, or loaded separately by each applica-
tion.

Memory has been measured according to kernel memory
footprints [119], garbage collection calls [51], physical mem-
ory dumps, and logging information [29]. Memory can be
analyzed by tools provided by the Android OS [112], and
external tools provided by researchers [59], [120], [121].

Memory consumption has been reduced by removing
code smells from application source code [51]. In particular,
memory leaks (e.g., constantly requesting memory [122], or
keeping unused objects in memory [123]) have a negative
impact on memory consumption.

Memory consumption has been further improved by
changes in the Android OS. For example, garbage collection,
which is used to free memory in Android, can use different
strategies for freeing memory [110]. Another approach is
the removal of redundant data from memory (deduplica-
tion) [29], [129]. Improvements can furthermore be achieved
by changes in swapping [132], [136], [137] and journaling
strategies [130], [131].

7 ENERGY

Embedded systems include several components that con-
sume battery. CPU, LCD, GPS, audio and WiFi services are
power-intensive components [25], [40]. Due to the limita-
tion in battery size and stored energy [140], [141], [142],
reducing energy consumption is gaining more and more
relevancy [143]. In general, optimizing energy consumption
depends on individual usage [7], [144].
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The following sections outline methods and tools to
profile energy consumption (Section 7.1) and reduce the
energy consumption of mobile applications (Section 7.2). A
summary is given in Section 7.3.

7.1 Profiling

Several measurements and prediction approaches have been
used to profile energy consumption on mobile devices.
Hoque et al. [145] discussed two ways to measure energy con-
sumption: with external instruments and self-metering. This
section gives an overview of respective profiling techniques.

A common approach to determine energy consumption
is to investigate hardware components. Zhang et al. [25] mea-
sured power consumption using battery voltage sensors and
knowledge of battery discharge behavior. Additionally, fuel
gauge chips [146] and Battery Monitoring Unit [147] can be
used to measure energy consumption. Other approaches use
physical power meters to measure energy consumption [99],
[148], [149], [150], [151]. Morales et al. [143] used a digital
oscilloscope for high frequency energy measurements. Ferrari
et al. [152] designed a Portable Open Source Energy Monitor
(POEM) to measure energy consumption of applications at a
control flow level. Bokhari et al. [153] built energy models
based on CPU utilization and lines of code, as external meters
can be expensive and not easy for developers to set these
meters up.

Other than measuring energy consumption with physical
devices, several studies make energy consumption estimates.
Energy consumption estimates can be performed based
on hardware utilization and system-calls [154], Android
kernel monitoring [155], pixel information [156], [157], user
behavior [7], data transmission-flow characteristics [158],
code level [159], [160] and source-code line level [161].

Jabbarvand et al. [162] proposed COBWEB, a search-based
technique to generate test suites for energy testing. These
tests are able to execute energy-greedy parts of the code.
The computational cost of such a testing technique can be
reduced by test-suite minimization [163]. Mittal et al. [164]
presented an emulation tool WATTSON to estimate energy
consumption during application development. CPU time has
been used as a proxy for energy consumption. However,
it is not as accurate as other techniques, because voltage
is scaled dynamically and multiple hardware components
are used [161]. One should consider that errors during the
measurement and estimation of energy consumption, as
noise, can be introduced by various hardware components,
such as a rising temperature of the battery [165]. This impacts
the number of samples required for ensuring statistical
significance when comparing the energy consumption of
applications [166]. Validation approaches should consider
the level of noise to compare solutions fairly [167].

7.2 Optimization Approaches

Several techniques have been applied to reduce the energy
consumption of mobile applications, which are discussed in
the following and summarized in Table 6.

Offloading, e.g., transferring computationally expensive
tasks to external devices, can be used to reduce energy

TABLE 6
Studies on Energy Optimization.

Category Authors [Ref] Year Venue

Offloading Cuervo et al. [149] 2010 MobiSys
Saarinen et al. [168] 2012 SIGCOMM
Ding et al. [169] 2013 SECON
Saarinen et al. [170] 2013 Mobicom
Khairy et al. [171] 2013 IWCMC
Kwon and Tilewich [172] 2013 ICSME
Corral et al. [173] 2014 MobiWis
Bolla et al. [174] 2014 NGMAST
Qian and Andresen [175] 2015 IJNDC
Das et al. [46] 2016 IACC

Prefetching Balasubramanian et al. [176] 2009 SIGCOMM
Chen et al. [177] 2013 SOSP
Mohan et al. [178] 2013 EuroSys
Yang and Cao [179] 2017 IEEE TCM
Dutta and Vandermeer [180] 2017 TWEB

Antipatterns Pathak et al. [181] 2011 HotNets
Zhang et al. [141] 2012 CODES
Pathak et al. [182] 2012 MobiSys
Banerjee et al. [148] 2014 FSE
Liu et al. [183] 2014 TSE
Jabbarvand and Malek [184] 2017 FSE

Refactoring Pathak et al. [185] 2012 Eurosys
Anwer et al. [186] 2014 MobileSoft
Alam et al. [187] 2014 DATE
Li et al. [188] 2014 ICSE
Linares et al. [156] 2015 FSE
Bruce et al. [189] 2015 GECCO
Cito et al. [146] 2016 ASE
Banerjee and Roychoudhury [190] 2016 MobileSoft
Cruz et al. [191] 2017 MobileSoft
Banerjee et al. [192] 2017 TSE
Morales et al. [143] 2017 TSE
Cruz and Abreu [193] 2017 FSE
Bokhari et al. [165] 2017 GECCO
Cruz and Abreu [194] 2018 CIbSE
Lyu et al. [47] 2018 ISSTA

Power states Pyles et al. [150] 2011 UbiComp
Kim et al. [195] 2012 ICOIN
Ding et al. [196] 2013 SIGMETRICS
Metri et al. [142] 2014 UbiComp
Bokhari and Wagner [197] 2016 GECCO
Rao et al. [198] 2017 HPCA

Displays Dong et al. [199] 2009 DAC
Anand et al. [200] 2011 MobiSys
Lin et al. [201] 2012 TC
Lin et al. [202] 2014 DAC
Chen et al. [203] 2014 Computers & graphics
Huang et al. [204] 2014 ISLPED
Chen et al. [205] 2014 HotPower
Nixon et al. [206] 2014 HotPower
Li et al. [188] 2014 ICSE
He et al. [207] 2015 Mobicom
Lin et al. [208] 2017 ISLPED
Lee et al. [209] 2018 ITMCCJ
Chang et al. [210] 2019 DAC
Lin et al. [211] 2019 DAC

CPU Nagata et al. [99] 2012 UIC
Bezerra et al. [212] 2013 PM2HW2N
Chang et al. [213] 2013 TECS
Tseng et al. [214] 2014 DAC
Hsiu et al. [215] 2016 TECS
Li and Mishra [216] 2016 J PARALLEL DISTR COM
Muhuri et al. [217] 2019 IEEE Trans. Fuzzy Syst.
Han and Lee [218] 2020 IEEE Access

APIs Paek et al. [219] 2010 MobiSys
Zhuang et al. [220] 2010 MobiSys
Chon et al. [221] 2011 SenSys
Oshin et al. [222] 2012 TrustCom
Zhang et al. [223] 2013 IEEE Sensors
Linares et al. [224] 2014 MSR

Protocols Ra et al. [225] 2010 MobiSys
Nurminen [226] 2010 CCNC
Pyles et al. [227] 2012 UbiComp
Lee et al. [228] 2012 IEEE Transactions
Cheng and Hsiu [229] 2013 INFOCOM
Siekkinen et al. [230] 2013 MoVid
Li et al. [231] 2016 ICSE

System strategies Chen et al. [232] 2015 Mobicom
Martins et al. [233] 2015 ATC

Memory management Duan et al. [40] 2011 IGCC
Nguyen et al. [234] 2013 UbiComp
Hussein et al. [235] 2015 Systor
Zhong et al. [236] 2015 ITCSDI

Programming languages Nagata et al. [99] 2012 UIC
Saborido et al. [45] 2018 EMSE

consumption [149]. Cuervo et al. [149] developed MAUI,
a system that supports automatic and developer-specified
code offload. MAUI determines which method to execute
remotely based on the current state of the device at runtime.
Offloading decisions can be motivated by device status [175],
execution times [171], network conditions [46], [168], [169],
[170] or developer decisions [172]. Bolla et al. [174] proposed
the concept of Application State Proxy (ASP) to offload entire
applications. ASP transfers internet-based applications to
other network devices, when they are kept in the background.
As long as no new events occur (e.g., messages), applications
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are kept in the proxy, which reduces the resource load on the
smartphone. Corral et al. [173] applied offloading to matrix
multiplication and image processing tasks to reduce energy
consumption.

Prefetching, e.g., the caching of data transmissions and
advertisements in advance, can be used to reduce energy
consumption. Balasubramanian et al. [176] distinguished ap-
plications in delay-tolerant and applications that can benefit
from prefetching, to decide which networking technology
(3G, GSM, WiFi) to use. Mohan et al. [178] and Chen et al. [177]
prefetched multiple ads to reduce energy consumption in-
duced by downloads. Dutta and Vandermeer [180] achieved
energy reductions with caching of up to 45%, even with small
cache sizes (e.g., 250MB). Yang and Cao [179] formalized the
prefetching for energy reductions as an optimization problem.
Two approaches (greedy and discrete) are investigated to
minimize energy consumption with regard to the network
condition (LTE).

Antipatterns can be defects such as energy bugs that will
likely drain energy. Pathak et al. [181] defined energy bugs as
errors that cause the system to unexpectedly consume energy.
Banerjee et al. [148] categorized energy inefficiencies into
two categories: energy hotspots and energy bugs. Energy
hotspots cause high battery consumption even though the
hardware utilization is low. Energy bugs prevent the idle
state of smartphones causing undesired battery consumption
without user activity. Pathak et al. [181] categorized energy
bugs caused by hardware (faulty battery, hardware damage)
and software (OS, configurations, applications) and proposed
a framework to detect the causes of energy bugs. Pathak
et al. [182] focused on detecting a particular type of energy
bug (no-sleep bug) via static analysis. A no-sleep bug occurs
when application components are being kept active when a
smartphone is in an idle state, without the necessity of being
kept active. Banerjee et al. [148] created a framework that
automatically generates tests to detect energy bugs. Each test
contains a sequence of user interactions that are aimed at
revealing energy bugs. As system calls are a primary source
for energy bugs, a directed search is used to generate test
cases containing system calls. Zhang et al. [141] developed
ADEL (Automatic Detector of Energy Leaks), to identify
energy leaks caused by network operations. Liu et al. [183]
created GREENDROID, a tool that extends Java PathFinder
(JPF) to automatically detect energy problems and report
actionable information to combat these problems. Jabbarvand
and Malek [184] proposed µDROID, a mutation testing
framework, that can be used to detect energy inefficiencies.
This framework uses 50 different mutation operators and
the similarity of power traces between original application
and mutants is used as the test oracle. The detection and
removal of energy bugs is not simple, as high energy
consumption in applications is not necessarily a sign for
wasted computations [141].

Refactoring, for example, by using energy-efficient algo-
rithms, can be used to reduce energy consumption.

Pathak et al. [185] manually restructured the source code
of applications to make efficient use of high power states of
components. They observed that applications consume I/O
energy in distinct lumps. Bundling these lumps can reduce
energy consumption. Similarly, Alam et al. [187] optimized
the placement of wakelock calls. Lyu et al. [47] refactored

database operations to avoid inefficiencies and reduce energy
consumption. Another approach is to change the choice of
colors used in an application, as the power consumption
of displays is effected by the displayed color [237]. This
goes as far that some applications consume double the
energy as they would do if colors were optimized for energy
consumption [157]. Li et al. [188] proposed an approach to
automatically change the colors used in web applications.
Linares et al. [156], [238] used multi-objective optimization
to reduce the energy consumption of GUIs, while offering
visually similar colors to the original design. Bruce et al. [189]
applied Genetic Improvement (GI) to find a more energy
efficient version of applications. Mutation operations were
applied to the source code of a Boolean satisfiability solver, to
reduce energy consumption as a measure of fitness. Bokhari
et al. [165] applied approximate computing on Rebound,11 a
Java Physics library, to achieve a trade-off between accuracy
and energy consumption.

Another approach to automatically refactor applications
is to follow energy efficiency guidelines [190], [191], [194].
Cito et al. [146] adapted application binaries to adjust
the frequency of network requests to advertisements and
analytics based on the battery status. Anwer et al. [186]
adapted permissions and corresponding source code of
applications based on user requirements, which can for
example prevent the unconscious sending of an SMS.

Morales et al. [143] showed that there is a correlation
between anti-patterns and energy consumption of mobile
applications, and proposed the use of multi-objective search
to find a set of refactoring sequences able to simultaneously
improve code design quality (including the removal of
energy smells) and reduce energy consumption. Banerjee
et al. [192] performed an automatic repair of energy bugs
with static and dynamic analysis. Cruz and Abreu [193]
manually fixed antipatterns based on Android performance-
based guidelines.

Power states determine the operating modes of hardware
components, which require different amount of energy [154].
Power state transitions can be initiated by hardware com-
ponents, but are usually performed by the OS [40]. As idle
power consumption accounts for approximately 50% of the
total energy consumption in a smartphone, it is suggested
that using different power modes to shut down components
is useful to reduce energy consumption [140]. Metri et
al. [142] developed BATTERYEXTENDER, a tool that enables
users to reconfigure device resources to reduce battery
consumption. For this purpose, battery consumption of
components is predicted with little computational overhead,
by using energy profiling. Users are able to pick a period
of time for which they want to reduce energy consumption
and then choose which components to put in an idle power
state to save energy. Bokhari and Wagner [197] proposed
a framework to optimize default settings of smartphone
components to reduce energy consumption. This problem is
formulated as an optimization problem, to minimize energy
consumption by changing settings of components based on
user behavior. Rao et al. [198] dynamically selected system
configurations (CPU frequency and memory bandwidth)
that reduce energy consumption while maintaining a user-

11. https://github.com/facebookarchive/rebound
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specified level of responsiveness. Ding et al. [196] determined
power modes based on wireless signal strength, as a poor
signal strength drains energy. Based on this, network traffic
can be delayed under poor signal strength and continued
when the network strength improves. Kim et al. [195] limited
data transmissions to smartphones (e.g., text, image, and
video) based on battery status. By minimizing the amount
of transferred data in Social Networking Services, energy
consumption can be reduced. For instance, Pyles et al. [150]
switched WiFi to a low power or sleep mode during periods
where it is not being used.

Displays are under constant energy consumption while
mobile devices are used. Dong et al. [199] were the first to
study the transformation of GUI colors of OLED displays to
reduce energy consumption. Their automatic transformation
can be applied on GUI elements (structured) or on pixel
information (unstructured). Anand et al. [200] adjusted
the brightness of screens to reduce the backlight level
of the display. Lin et al. [201] reduced backlight energy
consumption for mobile streaming applications, while other
work dimmed areas of the screen [188], [203], [205], [208].
Other approaches include the adaptation of pixels [202],
reduction of frame refreshes [204], [206], [209], [210], pixel
density [206], [207] and resolution [211].

CPU clock frequency impacts energy consumption [140].
Nagata et al. [99] proposed a method that adjusts CPU
clock frequency based on application requirements. Hsiu
et al. [215] allocated computing resources based on the
sensitivity of different applications. Application sensitivity
states can be HIGH (interactive), MEDIUM (foreground) or
LOW (background). Tseng et al. [214] adapted the allocation of
CPU resources to applications based on their delay-sensitivity.
Further approaches adjust the frequency and voltage of
devices (Dynamic Voltage and Frequency Scaling) [212],
[213], CPU frequency [218] or the number of cores [216].
Muhuri et al. [217] considered linguistic feedback from
users to adapt CPU frequency accordingly. They proposed
the approach Per-C for Personalized Power Management
Approach (Per-C PPMA), which collects user feedback about
their degree of satisfaction when using an application. This
can be applied to not only reduce energy consumption, but
also to improve user satisfaction.

APIs impact energy consumption, as Li et al. [239]
showed that 91.4% of applications consume more than 60%
of their energy with APIs. Linares et al. [224] analyzed
usage patterns of “energy-greedy” APIs and give recipes
to reduce energy consumption. To support their quantitative
and qualitative exploration of API usage pattern, they mined
thousands of method calls and API usage patterns. Among
those, there are usage patterns that have an unavoidable, high
energy consumption, and others which can be improved. An
example for energy-greedy APIs is GPS. Paek et al. [219]
adapted the rate of GPS, and only turns on GPS, when the
current location estimate is uncertain. Turning on GPS indoors
is also avoided. Other approaches reduce the sampling rate
of GPS [220], [221], [222], [223].

Protocols can be used by mobile devices to optimize
the energy consumption of networking technologies. Ra
et al. [225] designed an algorithm to optimize the energy-
delay trade-off of delay-tolerant applications that can benefit
from low-energy WiFi connections. Energy can be reduced

if mobile traffic is delayed to a situation where WiFi is
available [228]. Pyles et al. [227] saved energy by prioritizing
WiFi traffic based on application priority. Li et al. [231] bun-
dled HTTP requests to reduce energy consumption. Cheng
and Hsiu [229] considered signal strength to reduce energy
consumption when fetching location-based information.
Nurminen [226] showed that parallel TCP downloading can
be used to reduce energy consumption. Siekkinen et al. [230]
reduced energy consumption of streaming applications by
shaping LTE traffic into bursts. Hoque et al. [240] surveyed
other approaches for optimizing the energy efficiency of
streaming.

System strategies can be used to manage background
processes. Martins et al. [233] introduced TAMER, an OS
mechanism that allows rate-limiting of background processes
to reduce energy consumption. TAMER imposes on events
and signals that cause background applications to wakeup
and thereby consume a higher amount of energy. Among
others, TAMER can limit the frequency of notifications an
application sends while it runs in the background. Chen et
al. [232] avoided running applications in the background
when they are not beneficial for user experience.

Memory management strategies can be used to change
or increase memory to cope with higher requirements of
applications. However, a larger main memory size leads to
higher energy consumption [40], [132]. Energy reductions
can be achieved by using non-volatile memory [236], Phase
Change Memory [40] or adaptations to the garbage collec-
tion [235] and scheduling algorithms [234].

Programming Languages impact the responsiveness and
energy consumption of applications. Nagata et al. [99]
compared applications developed in different programming
languages (Java, JNI and C) and showed that the energy
consumption for JNI and C is smaller than for Java. A pro-
gramming language construct that impacts energy consump-
tion refers to maps (e.g., using HashMap over ArrayMap can
reduce energy consumption by 16% [45]).

7.3 Summary

Energy consumption is a crucial characteristic of embedded
systems since these devices have a limited battery size.
Energy is consumed by applications (often by multiple
applications at the same time), which use several components
(e.g., GPS, audio, WiFi, display) [25], [40].

To profile energy consumption, two techniques have been
pursued. On one hand, energy has been measured with either
internal or external instruments [145]. On the other hand,
energy consumption has been empirically estimated. For
this purpose, various indicators have been investigated [154],
[156], [161]. However, when profiling energy consumption,
one should consider noise, which impacts the validity of
measurements [165], [166], [167].

Many approaches have been proposed to optimize energy
consumption. The majority of these approaches address
the application source code (38/85). Changes to source
code included the removal of bad coding practices (antipat-
terns) [181], [182], [192], or refactoring to include best prac-
tices [190], [191], [194]. Source code adaptation approaches
can also focus on particular elements of devices, such as the
display. For instance, energy consumption of displays has
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Fig. 4. Timeline of key ideas in non-functional performance optimization and changes to the Android OS.

been reduced by changing colors used in applications [156],
[237], [238]. Adaptions have been also applied to displays
directly. Thereby, display energy consumption has been
reduced by changing brightness, colors and dimming [188],
[199], [200], [203], [205], [208].

Similar to responsiveness optimization, energy ineffi-
cient computations have been offloaded to external devices
with fewer computational restrictions [149]. Adapting the
CPU clock frequency, to adjust computational speed, have
also reduced energy consumption [99]. An adjustment of
components can be performed with different power states
(e.g., setting components in an idle state when they are not
required).

8 DISCUSSION

This section provides an overview and discussion of the
optimization approaches presented in previous sections
(sections 4 to 7). In the following, we present a timeline of
important methods and techniques proposed for advancing
mobile applications’ performance. Additionally, we discuss
current challenges and opportunities in this field.

8.1 Timeline
Important changes to the Android Platform and publications
concerned with optimization of non-functional performance
characteristics are shown in the timeline in Figure 4. The first
commercial Android version was introduced in 2008. In 2009,
Dong et al. [199] studied the transformation of the GUI to
reduce the energy consumption of mobile device displays.

In 2010, Kemp et al. [67] were the first that proposed an
offloading framework for Android applications. This frame-
work can be used to offload computationally expensive parts
of mobile applications and improve both responsiveness and
energy consumption.

In 2011, Pathak et al. [154] extended energy profiling of
hardware utilization based on system-calls to provide fine-
grained energy estimates. In 2012, Yan et al. [102] proposed
an OS extension that preloads applications and application-
specific content to improve the launch time of applications.
In 2013, Android designers applied a big change to the
Android platform, introducing ART over the previously used
DVM. With this change, optimizations such as Ahead-Of-Time
(AOT) compilation are applied by the Android platform to
improve application performance.

In 2014, Liu et al. [13] characterized several types of
performance bugs, which addressed different non-functional

characteristics of Android applications and caused excessive
resource consumption of memory and battery. Examples
of performance bugs include GUI lagging, energy leaks,
and memory bloat. Based on the knowledge of bugs and
antipatterns or guidelines, Banerjee and Roychoudhury [190]
proposed the automated refactoring of application source
code in 2016.

In 2016, Android 7.0-7.1 introduced a new JIT Compiler.
This allowed faster application installations and it reduced
the size of compiled code. The 10th major Android version
was published in 2019.

8.2 Optimization Approaches per Android Layer

Reading the related work, we observed that approaches are
applied to different layers of mobile devices. The distribution
of these approaches differs between the four non-functional
performance characteristics we investigated. In Figure 5, we
organize optimization approaches based on layers (appli-
cation, platform, hardware) to non-functional performance
characteristics (i.e., responsiveness, launch time, memory
and energy).

The majority of approaches to optimize responsiveness
are application-based techniques and apply changes to the
source code (e.g., antipatterns, refactoring or prefetching).
Hardware and I/O optimization approaches are concerned
with increasing the speed of reads and writes, faster fetching
of bytecode as well as correct usages of CPU and GPU.

Launch time has not been improved itself by changes
to applications, but, in majority, by changes in the Android
platform. In particular, the preloading of applications [16],
[38], [48], [49], [101], [102], [107], [108], [109], [241] and
better choices for the LMK [15], [38], [48], [49], [104], [111],
[112], [113], [114], to prevent cold starts from happening,
are investigated frequently. The overall research direction is
concerned with reducing the amount of cold starts rather
than reducing the launch time itself.

Memory is mostly optimized by removing antipat-
terns [51], [52], [122], [124], [125] and applying different
strategies for the garbage collection [39], [52], [96], [110],
[126], [127], [128].

A great deal of research work optimizes energy con-
sumption and almost every optimization category has been
addressed for energy consumption. Unlike the optimization
of responsiveness, launch time and memory usage, a large
portion of approaches apply changes to the hardware,
especially for screens. The power mode of components plays
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an important role as well, which is governed by the Android
OS. Furthermore, API usage has a huge impact on energy
consumption. In particular, the use of GPS. Alike respon-
siveness, changes to application source code contribute to
energy savings. Approaches like offloading optimize both,
responsiveness and energy consumption.

8.3 Relationship of Optimization Approaches

A major trade-off that can be seen is between energy
consumption and responsiveness [198], [216], [242], which
should therefore be evaluated in union. One example for the
relationship of responsiveness and energy consumption can
be seen in the CPU clock frequency, as reducing it leads to
less energy consumption, but lowers responsiveness and vice
versa [99].

Considering application launch, hot starts are preferable
over cold starts, not only to reduce the launch time but also
to reduce energy consumption [26], [38], [243].

The choice of the memory system and storage technique
used impacts energy consumption [40], [244]. One aspect of
this is the size of memory, as a larger main memory size
leads to higher energy consumption [40], [132]. Regardless,
larger memory permits the preloading and prefetching of
more application data, which can improve launch time,
responsiveness and/or energy consumption. Evidence for
potential improvement comes from the observation that the
number of applications cached directly impacts the amount
of blocked memory [111]. Memory leaks [243] or a full
memory [15] limit the number of preloaded applications.
Different memory management strategies for the LMK [49],
[48] have shown to improve application launch.

While there is a relationship among non-functional char-
acteristics, several optimization approaches improve more
than one characteristic at the same time, which we will
present in the following.

Gordon et al. [72], Chun et al. [68], Chen and Hao [74],
Kemp et al. [67] and Kosta et al. [70] performed offloading to
improve responsiveness, and as a result reduced energy con-
sumption. Khairy et al. [171], and Qian and Andresen [175]
proposed offloading systems aimed at reducing energy
consumption, that reduced execution time as well. In order
to achieve improvements with offloading, the saving has

to exceed the additional cost imposed by the offloading
process [245].

Removing antipatterns can reduce the number of garbage
collection calls as well [51], whereas memory leaks reduce
available memory and responsiveness [125].

Nguyen et al. [50] improved both responsiveness and
launch time by optimizing I/O read and write operations.
Kim et al. [133] reduced CPU usage and energy consumption
with a region-based physical memory management scheme.
Hecht et al. [51] improved memory as well as user interface
performance by correcting code smells. The approach of
Han et al. [218] on CPU scheduling could not only reduce
energy consumption but also application launch time. Hsiu
et al. [215] reduced application response time by scheduling
computing resources for energy reduction. Saborido et al. [45]
showed that the choice of different map implementations
impacts memory, energy and responsiveness. Lyu et al. [47]
refactored database operations and thereby improved re-
sponsiveness and energy consumption. By reducing buffer
cache, Kim and Bahn [135] reduced energy consumption at
the same time.

Optimization approaches for responsiveness, launch time
and memory can induce additional energy costs, if they
extend the OS or require additional computations [29], [85],
[95], [102], [107], [109], [129]. Overhead is not only produced
by optimization approaches, but also by profiling and test-
ing [60], [142], [160], [246], as well as by displaying ads [247]
to generate revenue. In addition to causing overhead, non-
functional improvements may come with a trade-off with
regards to functional characteristics, such as the accuracy of
algorithms [151].

8.4 Challenges
Reflecting on the different optimization approaches and the
relationship between non-functional performance character-
istics, we have identified challenges and opportunities for
future work. We begin by outlining three challenges that de-
velopers face when optimizing non-functional performance
characteristics, followed by an overview of future work
targeted by the surveyed publications, and by opportunities
we detected.

Cross-characteristic dependencies. Section 8.3 shows
that a challenge that developers face while optimizing
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applications’ performance refers to the handling of the
dependencies among different performance characteristics.
This means that while improving one characteristic, they
may decrease the performance of another [40], [99], [132].
For example, optimization approaches that extend the OS or
invoke additional computation cause additional energy con-
sumption [29], [85], [95], [102], [107], [109], [129]. Therefore,
there should be a balance that developers need to achieve
among performance characteristics. While we pointed out
works that achieved improvements in more than one perfor-
mance characteristic (Section 8.3), it would be interesting if
adverse relationships and trade-offs between non-functional
performance characteristics receive more attention. One ex-
ample for this is the energy consumption and responsiveness
trade-off when adjusting CPU clock frequency [99].

Testing cost. There are different definitions of the four
non-functional characteristics to determine how performance
is measured (e.g., responsiveness measured in ms [56], [57]
or frames [51], or different definitions of application launch
completion [101], [102]). Another problem arises with noisy
measurements (e.g., due to hardware components [165]),
as we have seen in Section 7. Therefore, testing should
consider variance in measurements to ensure statistical
significance [166], [167].

An attempt to reduce the cost of testing is the usage
of emulators [123], [164] or prediction of non-functional
performance without executing an application. Prediction of
performance has been applied for responsiveness [57], [66]
and energy consumption [7], [154], [155], [156], [157], [158],
[159], [160], [161].

User satisfaction. While improvements in non-functional
characteristics without performance deterioration in other
characteristics, can always be seen as something positive,
quantifying the impact of improvements on user satisfaction
remains challenging.

Two of the surveyed publications attempted to tackle
this issues. For example, Muhuri et al. [217] collected
linguistic feedback about user satisfaction (e.g., ranging from
“very low” to “extremely high”) to examine the impact of
performance on user satisfaction. This information has been
used to adapt the CPU frequency. Zhao et al. [106] stated
that collecting user feedback can be costly and inconvenient
for developers. To overcome this issue, they mapped a
user-perceived satisfaction score about launch times to the
actual launch time delay, which is easily measurable. Such
an incorporation of user satisfaction in the optimization
procedure, could prove to be an interesting consideration for
future work on other performance characteristics.

In addition to these challenges, the reviewed publications
distinguished several fields of future work, including:

• Improvement and extension of prediction methods
(e.g., for offloading, prefetching, and preloading) [38],
[66], [67], [86], [115], [116], [132], [221];

• Investigation of antipatterns [13], [51], [58], [123],
[224];

• Automation of the optimization process [51], [148]
• Extension of testing (e.g., usage of more devices and

applications) [51], [183], [207];
• Improvement of measurements (profiling) [132], [189].

In particular, extensions of prediction methods include
the consideration of additional information, such as the
context (e.g., location, time) [38], behavioral patterns [86]
and information about remote resources for offloading (e.g.,
processor speed, available memory) [67]. Future work on
antipatterns is concerned with investigating a broader range
of antipatterns [51], [58] and discovering new antipatterns
or categories [13], [123], [224]. Automation could be applied
to time-consuming tasks, such as finding causes for energy
wastage [148] or the correction of antipatterns [148].

Based on our results, including Figure 5, we identified
further gaps in the literature. For once, changes to applica-
tions are not investigated for launch time improvements.
It could be investigated whether antipatterns, that exist
for responsiveness, memory and energy usage, exist for
application launch as well.

Automatic refactoring has been applied for both respon-
siveness and energy, individually. It could therefore be
interesting to apply refactoring in a multi-objective setting,
to optimize both. Lastly, changes to the platform have
scarcely been used to improve responsiveness. There could
be the potential to apply ideas from other non-functional
characteristics, such as APIs for energy consumption.

9 RELATED WORK

In the following, we give an overview of literature related to
the non-functional performance optimization of Android ap-
plications. At first, we look into optimization approaches for
software engineering. We furthermore describe the developer
and user perspective on mobile-application optimization.

9.1 Optimization in Software Engineering

This survey outlined optimization approaches for mobile ap-
plications. In the following, we present studies and insights
on optimization with regards to software engineering.

During the development and optimization of software, it
is important to consider software requirements [248], which
can contain functional, non-functional, business and user
requirements. Different techniques for prioritizing require-
ments [249], [250] can be applied to determine the importance
of non-functional over functional characteristics.

Nonetheless, the performance of software is difficult to be
measured, as it is pervasive and affected by various different
aspects (e.g., the platform used) [251]. Software Performance
Engineering (SPE) is an approach to measure and improve
system performance [251]. SPE subsumes software engineer-
ing activities that are applied to meet performance require-
ments and achieve improvements. Profiling tools can be used
to measure performance (e.g., for energy consumption [252],
[253], GPUs [254], responsiveness [255], and memory [256]).

Building upon performance profilers, optimization and
improvement techniques can be applied to software. Petke
et al. [33] conducted a survey on genetic improvement of
software. They mention improvements for non-functional
characteristics for energy and memory consumption as well
as functional improvements including repairs and addition
of new functionalities.

Following, we outline representative publications on
software optimization. Mao and Humphrey [257] analyzed
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long, unexpected startup times of Virtual Machines on the
cloud. Kaminaga [258] discussed techniques to achieve a
faster startup time for embedded Linux systems. Van Emden
and Moonen [259] analyzed code smells in Java source
code. Baer and Chen [260] proposed a hardware scheme for
preloading data. Sahin et al. [261] analyzed the impact of code
refactoring on the energy consumption of 197 applications.
Chen et al. [262] used flash drives in mobile computers
for caching and prefetching data to save energy. Chen et
al. [263] reduced writes to memory by using deduplication.
Hauswirth and Chilimbi [264] detected memory leaks with
low computational overhead. Padmanabhan and Mogul [265]
investigated latency reductions by prefetching web docu-
ments.

9.2 Developer Perspective

In the following, we outline the developer perspective
on optimization and development of mobile applications,
including challenges during the development process. While
certain characteristics of smartphones and PCs are simi-
lar [105], developers encounter differences to conventional
software development as mobile applications are smaller
than traditional software [266].

Developers use tools to support the development of
applications [267], profiling, and debugging [268]. Static
analysis can be used to support developers to find bugs
and inspect code [269]. Other tools perform security as-
sessment, automated test case generation and detection of
non-functional issues such as energy consumption [270],
[271]. While fixing non-functional performance bugs, devel-
opers need to consider the threat of introducing functional
bugs [272] and hindering code maintainability [273]. In this
context, Linares et al. [274] suggested that developers rarely
implement micro-optimizations (e.g., changes at statement
level).

When developing an application, developers need to
decide which and how many platforms to use (e.g., Android,
iOS, Windows OS). Note that each platform faces non-
functional issues alike (e.g., antipatterns can be found in
iOS [275], [276]). This impacts the development effort, as
multiple codebases need to be maintained. Development
of applications for multiple platforms can be supported by
cross-platform tools (CPTs) [277]. By doing so, developers
compromise between user experience and the ability to
publish an application on multiple platforms. Willocx et
al. [55] found that CPTs lead to an increased launch time of
applications.

Furthermore, devices vary in their available memory,
CPU, and display size, which has implications on application
performance [278]. Therefore, developers need to test their
applications on multiple devices.

Further changes and added functionality to the Android
OS can be imposed by phone vendors [279]. This leads to
varying behavior across different smartphone types [280].
Khalid et al. [281] analyzed the number of different phones
that use applications in order to help developers to decide
how many devices to use when testing applications, as the
rating varies for different phone types. Often, applications
run on more than hundred different phone types, implying a
huge computational effort if all devices would be tested for.

They found that around a third of the devices account for
80% of the reviews and thereby usage, which can be used to
prioritize which devices to use during testing. Lu et al. [282]
prioritized devices to test applications based on the amount
of user activity rather than the number of devices.

In order to analyze the performance of applications,
the Google Play Store provides developers with pre-launch
reports after an application is published. Tests are carried
out on different devices and for up to five languages [283].
Another tool that developers can use to judge the quality and
performance of applications are Android Vitals. Statistics
including battery consumption, and crashes are collected
from real users and reported to developers [30]. Comparisons
with regard to non-functional performance characteristics,
such as energy consumption, can also be measured with
applications of the same category [284].

Frequently, developers use user reviews and test applica-
tions manually to detect performance issues and bugs [268].
Developers can change applications based on user reviews.
Those reviews contain among others information about
performance, bugs, problems or new features [3], [31]. There
is a huge number of reviews that are written for applications,
where some of them contain relevant information for de-
velopers [285]. For this purpose, Chen et al. [19] developed
a framework to filter informative reviews by applying text
mining and ranking methods. Furthermore, reviews can be
analyzed for trends [286], [287] and emerging issues [288].

Even though developer identities do not often impact
the choice of applications (only 11% of users choose an
application based on who developed it [2]), they significantly
impact the quality and success of applications [1]. Other
factors that are correlated with the rating of applications
include the apk size, minimum required SDK, and number of
images on the application description page [289].

9.3 User Perspective

In the context of mobile applications, user shows a high
degree of individualism [290]. Therefore, not every optimiza-
tion approach can be applied in a general fashion. This is why
understanding user behavior and differences among users
and user groups is important when improving performance.
Ultimately it is the user who decides the changes to an
application result in a higher level of satisfaction.

The user-perceived quality of an application is not only
determined by the application itself, but also by the device
and attributes of its components [291]. Aspects that lead
to the most negative complaints in reviews are related to
privacy, hidden costs and features of the application [3].

Users’ behavior varies in terms of number of interactions,
amount of data received, interaction length and number
of applications used [7]. Some users even show addictive
behavior [292]. Approaches that aim to improve user expe-
rience (e.g., by reducing energy consumption or improving
the responsiveness), should therefore be adaptive to user
behavior. Making matters more difficult to predict, usage
patterns can change within a few days [117].

Additionally, user behavior across countries shows sig-
nificant differences as well [2]. Users of different countries
prioritize other aspects of applications and show variations
in rating applications as well as writing reviews [2]. For

Authorized licensed use limited to: University College London. Downloaded on April 22,2021 at 10:58:48 UTC from IEEE Xplore.  Restrictions apply. 



0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3071193, IEEE
Transactions on Software Engineering

18

example, users in China are more likely to rate an application,
while users in Brazil are more likely to abandon a slow
or buggy application. While there exist differences among
Android users based on countries, a study on application
launch performed by Morrison et al. [293] showed that
similarities between Android and iOS exist.

Application usage can be seen as a sequence, with
multiple applications used consecutively in a short period
of time, whereas 68.2% of sequences only contain a single
application [115]. Application usage varies based on the
context, such as location [294] and/or time [115], [295].

10 THREATS TO VALIDITY

In this section, we discuss potential threats to our survey
based on internal and external validity.

Internal validity refers to problems of our methods that
could threat the validity of results and claims made in this
survey [9]. A potential threat to internal validity is the com-
pleteness of the reviewed literature. Ideally, every relevant
publication is included after the search process; however,
the risk of missing a publication cannot be eliminated. A
relevant publication can be missed if the respective data
source containing the publication is not properly searched.
Another cause for missing a publication is that corresponding
keywords are not included in our searching criteria. To
address both causes, we performed a preliminary search to
gather relevant keywords and venues to guide the literature
search. Moreover, two authors independently carried out the
filtering process and their results were cross-checked, in order
to ensure reliability and reduce researchers’ bias. A different
threat to internal validity refers to the precision of our results
(e.g., the inclusion of irrelevant publications). To mitigate
the impact of irrelevant publications, we check the title,
abstract, and body of the publications examined as outlined
in Section 3.1.3. Furthermore, there is a risk of drawing
incorrect conclusions or claims. For this purpose, every stage
of the search and analysis of results (e.g., repository search
and categorization of approaches) has been performed by
one author and cross-checked by another.

External validity describes the generalizability of our
results outside of the given scope [296]. A potential, external
threat is that the chosen non-functional performance charac-
teristics are insufficient to describe optimization techniques
for embedded systems. Through our preliminary search and
analysis of related work (Section 9) we found that the selected
four non-functional characteristics (responsiveness, launch
time, memory and energy consumption) are representative.
Another threat is the applicability of our study to other
mobile platforms (e.g., iOS). While there are differences
between iOS and Android, the general organization and
functionality within embedded systems remain the same.
We therefore argue that our categorization can be applied to
mobile platforms, other than Android.

11 CONCLUSIONS

In this paper, we have provided an overview of the existing
research work on non-functional performance optimiza-
tion for Android applications published between 2008 and
2020. Our survey presents optimization approaches for non-
functional performance characteristics (e.g., responsiveness,

launch time, memory, and energy). It also shows relation-
ships among these characteristics, and identifies research
gaps for potential future works. We hope that this survey
will help researchers and developers to have a holistic
perception on optimization approaches for mobile devices,
the impact of these approaches, and the significance of
different performance characteristics.
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