310 research outputs found

    Machine learning algorithms for monitoring pavement performance

    Get PDF
    ABSTRACT: This work introduces the need to develop competitive, low-cost and applicable technologies to real roads to detect the asphalt condition by means of Machine Learning (ML) algorithms. Specifically, the most recent studies are described according to the data collection methods: images, ground penetrating radar (GPR), laser and optic fiber. The main models that are presented for such state-of-the-art studies are Support Vector Machine, Random Forest, Naïve Bayes, Artificial neural networks or Convolutional Neural Networks. For these analyses, the methodology, type of problem, data source, computational resources, discussion and future research are highlighted. Open data sources, programming frameworks, model comparisons and data collection technologies are illustrated to allow the research community to initiate future investigation. There is indeed research on ML-based pavement evaluation but there is not a widely used applicability by pavement management entities yet, so it is mandatory to work on the refinement of models and data collection methods

    Automated Safety Assessment of Rural Roadways Using Computer Vision

    Get PDF
    228094Roadside elements play an important role in the number and severity of crashes. Rigid obstacles (trees, rocks, embankments, etc.), guardrails, clear zones, and side slopes are among the factors that might affect roadside safety. The Federal Highway Administration (FHWA) presented a rating system to help DOTs and transportation agencies make better decisions about improving road segments. However, the manual process of rating road segments is time consuming, inconsistent, and labor intensive. To this end, this project proposed an automated rating system based on images taken from Utah roadways. Utilizing machine-learning algorithms and Mandli images, the developed approach employs the FHWA rating system as the primary standard for assessing roadside safety. To provide more detailed information about safety conditions on the roadside, various computer vision algorithms have been developed to detect each roadside feature. The pre-trained models for available clear zone detection and side slope classification have also been established. A shape-file has been generated by assigning a safety ranking to road segments on five state roads. This product can assist traffic engineers in decision-making to improve road safety by prioritizing projects that address problematic locations. The results show a promising approach to enhancing road safety and preventing crashes

    Transform- and statistical-based image analysis for assessment of deterioration in concrete infrastructure

    Get PDF
    The evaluation of the condition of infrastructure requires the development and optimization of alternative inspection methods for assessing surface deterioration in order to obtain accurate and quantitative information to supplement visual inspections. To this end, non-destructive methods that produce image data show great potential and are increasingly being used in concrete applications. These methods, based on IR thermography and greyscale and colour imaging, are generally cost and time effective and are relatively easy to employ. There is, however, a need for efficient image analysis techniques to extract relevant damage information from the imagery. In this context, this research proposes the use of grey level co-occurrence matrix statistical texture analysis in combination with Haar's wavelet analysis for improved defect detection. Two classifiers are proposed, the supervised multi-layer perceptron artificial neural network and the unsupervised K -means clustering approach, for evaluation of their effectiveness in characterizing the deterioration from the imagery. These techniques are applied to thermographic, colour and greyscale imagery of laboratory specimens and field samples exhibiting different levels of concrete deterioration. Further experiments are conducted on borehole acoustic imagery involving the additional techniques of spatial filters and edge-detectors in an effort to determine their efficiency in detecting concrete damage.The results demonstrate that the hybrid texture approach is quite effective for defect discrimination. They also indicate that the lowpass and median spatial filters performed better than the gradient-based and Laplacian edge-detectors; however, the texture approaches outperformed all of the other techniques.The artificial neural network was found to provide better classification accuracies compared with the K -means algorithm. Concerning the imagery, the thermography produced more accurate results than the colour and greyscale imagery.The information derived from the imagery consists of total surface damage; for map-crack imagery, the total length of cracks and range of crack width openings were also computed.The damage quantities obtained for the laboratory specimens show good correlation with test measurements recorded for the specimens, such as expansion and impact-echo velocities

    Techniques for automatic large scale change analysis of temporal multispectral imagery

    Get PDF
    Change detection in remotely sensed imagery is a multi-faceted problem with a wide variety of desired solutions. Automatic change detection and analysis to assist in the coverage of large areas at high resolution is a popular area of research in the remote sensing community. Beyond basic change detection, the analysis of change is essential to provide results that positively impact an image analyst\u27s job when examining potentially changed areas. Present change detection algorithms are geared toward low resolution imagery, and require analyst input to provide anything more than a simple pixel level map of the magnitude of change that has occurred. One major problem with this approach is that change occurs in such large volume at small spatial scales that a simple change map is no longer useful. This research strives to create an algorithm based on a set of metrics that performs a large area search for change in high resolution multispectral image sequences and utilizes a variety of methods to identify different types of change. Rather than simply mapping the magnitude of any change in the scene, the goal of this research is to create a useful display of the different types of change in the image. The techniques presented in this dissertation are used to interpret large area images and provide useful information to an analyst about small regions that have undergone specific types of change while retaining image context to make further manual interpretation easier. This analyst cueing to reduce information overload in a large area search environment will have an impact in the areas of disaster recovery, search and rescue situations, and land use surveys among others. By utilizing a feature based approach founded on applying existing statistical methods and new and existing topological methods to high resolution temporal multispectral imagery, a novel change detection methodology is produced that can automatically provide useful information about the change occurring in large area and high resolution image sequences. The change detection and analysis algorithm developed could be adapted to many potential image change scenarios to perform automatic large scale analysis of change

    DEEP LEARNING-BASED VISUAL CRACK DETECTION USING GOOGLE STREET VIEW IMAGES

    Get PDF
    DEEP LEARNING-BASED VISUAL CRACK DETECTION USING GOOGLE STREET VIEW IMAGE

    Deep Learning Methods for 3D Aerial and Satellite Data

    Get PDF
    Recent advances in digital electronics have led to an overabundance of observations from electro-optical (EO) imaging sensors spanning high spatial, spectral and temporal resolution. This unprecedented volume, variety, and velocity is overwhelming our capacity to manage and translate that data into actionable information. Although decades of image processing research have taken the human out of the loop for many important tasks, the human analyst is still an irreplaceable link in the image exploitation chain, especially for more complex tasks requiring contextual understanding, memory, discernment, and learning. If knowledge discovery is to keep pace with the growing availability of data, new processing paradigms are needed in order to automate the analysis of earth observation imagery and ease the burden of manual interpretation. To address this gap, this dissertation advances fundamental and applied research in deep learning for aerial and satellite imagery. We show how deep learning---a computational model inspired by the human brain---can be used for (1) tracking, (2) classifying, and (3) modeling from a variety of data sources including full-motion video (FMV), Light Detection and Ranging (LiDAR), and stereo photogrammetry. First we assess the ability of a bio-inspired tracking method to track small targets using aerial videos. The tracker uses three kinds of saliency maps: appearance, location, and motion. Our approach achieves the best overall performance, including being the only method capable of handling long-term occlusions. Second, we evaluate the classification accuracy of a multi-scale fully convolutional network to label individual points in LiDAR data. Our method uses only the 3D-coordinates and corresponding low-dimensional spectral features for each point. Evaluated using the ISPRS 3D Semantic Labeling Contest, our method scored second place with an overall accuracy of 81.6\%. Finally, we validate the prediction capability of our neighborhood-aware network to model the bare-earth surface of LiDAR and stereo photogrammetry point clouds. The network bypasses traditionally-used ground classifications and seamlessly integrate neighborhood features with point-wise and global features to predict a per point Digital Terrain Model (DTM). We compare our results with two widely used softwares for DTM extraction, ENVI and LAStools. Together, these efforts have the potential to alleviate the manual burden associated with some of the most challenging and time-consuming geospatial processing tasks, with implications for improving our response to issues of global security, emergency management, and disaster response

    Automatic vehicle detection and tracking in aerial video

    Get PDF
    This thesis is concerned with the challenging tasks of automatic and real-time vehicle detection and tracking from aerial video. The aim of this thesis is to build an automatic system that can accurately localise any vehicles that appear in aerial video frames and track the target vehicles with trackers. Vehicle detection and tracking have many applications and this has been an active area of research during recent years; however, it is still a challenge to deal with certain realistic environments. This thesis develops vehicle detection and tracking algorithms which enhance the robustness of detection and tracking beyond the existing approaches. The basis of the vehicle detection system proposed in this thesis has different object categorisation approaches, with colour and texture features in both point and area template forms. The thesis also proposes a novel Self-Learning Tracking and Detection approach, which is an extension to the existing Tracking Learning Detection (TLD) algorithm. There are a number of challenges in vehicle detection and tracking. The most difficult challenge of detection is distinguishing and clustering the target vehicle from the background objects and noises. Under certain conditions, the images captured from Unmanned Aerial Vehicles (UAVs) are also blurred; for example, turbulence may make the vehicle shake during flight. This thesis tackles these challenges by applying integrated multiple feature descriptors for real-time processing. In this thesis, three vehicle detection approaches are proposed: the HSV-GLCM feature approach, the ISM-SIFT feature approach and the FAST-HoG approach. The general vehicle detection approaches used have highly flexible implicit shape representations. They are based on training samples in both positive and negative sets and use updated classifiers to distinguish the targets. It has been found that the detection results attained by using HSV-GLCM texture features can be affected by blurring problems; the proposed detection algorithms can further segment the edges of the vehicles from the background. Using the point descriptor feature can solve the blurring problem, however, the large amount of information contained in point descriptors can lead to processing times that are too long for real-time applications. So the FAST-HoG approach combining the point feature and the shape feature is proposed. This new approach is able to speed up the process that attains the real-time performance. Finally, a detection approach using HoG with the FAST feature is also proposed. The HoG approach is widely used in object recognition, as it has a strong ability to represent the shape vector of the object. However, the original HoG feature is sensitive to the orientation of the target; this method improves the algorithm by inserting the direction vectors of the targets. For the tracking process, a novel tracking approach was proposed, an extension of the TLD algorithm, in order to track multiple targets. The extended approach upgrades the original system, which can only track a single target, which must be selected before the detection and tracking process. The greatest challenge to vehicle tracking is long-term tracking. The target object can change its appearance during the process and illumination and scale changes can also occur. The original TLD feature assumed that tracking can make errors during the tracking process, and the accumulation of these errors could cause tracking failure, so the original TLD proposed using a learning approach in between the tracking and the detection by adding a pair of inspectors (positive and negative) to constantly estimate errors. This thesis extends the TLD approach with a new detection method in order to achieve multiple-target tracking. A Forward and Backward Tracking approach has been proposed to eliminate tracking errors and other problems such as occlusion. The main purpose of the proposed tracking system is to learn the features of the targets during tracking and re-train the detection classifier for further processes. This thesis puts particular emphasis on vehicle detection and tracking in different extreme scenarios such as crowed highway vehicle detection, blurred images and changes in the appearance of the targets. Compared with currently existing detection and tracking approaches, the proposed approaches demonstrate a robust increase in accuracy in each scenario

    A Comprehensive Review on Computer Vision Analysis of Aerial Data

    Full text link
    With the emergence of new technologies in the field of airborne platforms and imaging sensors, aerial data analysis is becoming very popular, capitalizing on its advantages over land data. This paper presents a comprehensive review of the computer vision tasks within the domain of aerial data analysis. While addressing fundamental aspects such as object detection and tracking, the primary focus is on pivotal tasks like change detection, object segmentation, and scene-level analysis. The paper provides the comparison of various hyper parameters employed across diverse architectures and tasks. A substantial section is dedicated to an in-depth discussion on libraries, their categorization, and their relevance to different domain expertise. The paper encompasses aerial datasets, the architectural nuances adopted, and the evaluation metrics associated with all the tasks in aerial data analysis. Applications of computer vision tasks in aerial data across different domains are explored, with case studies providing further insights. The paper thoroughly examines the challenges inherent in aerial data analysis, offering practical solutions. Additionally, unresolved issues of significance are identified, paving the way for future research directions in the field of aerial data analysis.Comment: 112 page
    corecore