
SHERBROOKE 

Faculte de genie 
Departement de genie civil 

METHODES D'ANALYSE D'IMAGES POUR 
DEVALUATION DE LA DEGRADATION DES 

STRUCTURES EN BETON 

(Transform- and Statistical-based Image Analysis for 
Assessment of Deterioration in Concrete Infrastructure) 

These de doctorat 
Speciality : genie civil 

Jury: 

Patrice Rivard 
Dong Chen He 
Gerard Ballivy 
Marie-Flavie Auclair-Fortier 
Kaveh Saleh 

Directeur de recherche 
Codirecteur de recherche 
Rapporteur 
Examinateur 
Examinateur 

Shahid KABIR 

Sherbrooke (Quebec), Canada Juillet 2008 

V 



1*1 Library and 
Archives Canada 

Published Heritage 
Branch 

395 Wellington Street 
Ottawa ON K1A0N4 
Canada 

Bibliotheque et 
Archives Canada 

Direction du 
Patrimoine de I'edition 

395, rue Wellington 
Ottawa ON K1A0N4 
Canada 

Your file Votre reference 
ISBN: 978-0-494-42626-5 
Our file Notre reference 
ISBN: 978-0-494-42626-5 

NOTICE: 
The author has granted a non­
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non­
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

AVIS: 
L'auteur a accorde une licence non exclusive 
permettant a la Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par I'lnternet, prefer, 
distribuer et vendre des theses partout dans 
le monde, a des fins commerciales ou autres, 
sur support microforme, papier, electronique 
et/ou autres formats. 

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission. 

L'auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these. 
Ni la these ni des extraits substantiels de 
celle-ci ne doivent etre imprimes ou autrement 
reproduits sans son autorisation. 

In compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis. 

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis. 

•*• 

Canada 

Conformement a la loi canadienne 
sur la protection de la vie privee, 
quelques formulaires secondaires 
ont ete enleves de cette these. 

Bien que ces formulaires 
aient inclus dans la pagination, 
il n'y aura aucun contenu manquant. 



Resume 

La connaissance de l'etat des infrastructures civiles requiert l'elaboration et l'optimisation de 
methodes alternatives devaluation de la deterioration de surface afin d'obtenir de rinformation 
precise et quantitative complementaire aux inspections visuelles. A cet effet, les methodes 
reposant sur la prise d'images numeriques montrent un grand potentiel et sont de plus en plus 
employees pour evaluer l'etat du beton. Ces methodes, telles la thermographie infrarouge, les 
images en tons de gris et les images en couleur, offrent des rendements interessant en termes de 
cout-efficacite et sont relativement faciles a utiliser. II y a neanmoins un besoin enorme pour le 
developpement et l'optimisation de techniques efficaces d'analyse d'images afin d'extraire 
1'information pertinente relative a l'endommagement du beton a partir d'images brutes. 

Dans ce contexte, cette recherche propose l'utilisation de l'analyse statistique texturale de matrice 
de cooccurrence en tons de gris (GLCM) en combinaison avec l'analyse par l'ondelette de Haar 
afin d'ameliorer la detection des defauts recherches. Deux classificateurs d'elements de 
deterioration sont proposes; le reseau supervise de neurones artificiels par perceptron 
multicouche et une classification non supervisee, le K-means clustering. Ces techniques ont ete 
appliquees a des images thermographiques, couleur et en tons de gris prises a partir de specimens 
de laboratoire et de terrain montrant differents niveaux de deterioration du beton. D'autres 
traitements ont ete realises sur des images provenant de sondes de diagraphie acoustiques et 
optiques (imagerie en trou de forage), impliquant des techniques additionnelles de filtrages. 

Les resultats montrent que l'approche hybride d'analyse textural est efficace pour la 
discrimination des types de defauts recherches. lis indiquent egalement que les filtres passe-bas 
et les filtres spatiaux medians sont mieux adaptes que les operateurs de type edge-detector ou 
gradient de Laplace; cependant, les approches par analyse texturale ont surpasse toutes les autres 
techniques. La classification des defauts par reseau de neurones artificiels s'est averee superieur a 
celle par K-means. En ce qui concerne l'imagerie, la thermographie a produit des resultats plus 
precis que la couleur et les tons de gris. Parmi les parametres quantifies sur les images, on note la 
surface totale degradee, la longueur et Pouverture des fissures. Ces parametres ont bien correle 
l'endommagement evalue par d'autres methodes, comme la mesure de 1'expansion du beton ou 
les vitesses d'ondes ultrasonores. 
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Abstract 

The evaluation of the condition of infrastructure requires the development and optimization of 

alternative inspection methods for assessing surface deterioration in order to obtain accurate and 

quantitative information to supplement visual inspections. To this end, non-destructive methods 

that produce image data show great potential and are increasingly being used in concrete 

applications. These methods, based on IR thermography and greyscale and colour imaging, are 

generally cost and time effective and are relatively easy to employ. There is, however, a need for 

efficient image analysis techniques to extract relevant damage information from the imagery. In 

this context, this research proposes the use of grey level co-occurrence matrix statistical texture 

analysis in combination with Haar's wavelet analysis for improved defect detection. Two 

classifiers are proposed, the supervised multi-layer perceptron artificial neural network and the 

unsupervised AT-means clustering approach, for evaluation of their effectiveness in characterizing 

the deterioration from the imagery. These techniques are applied to thermographic, colour and 

greyscale imagery of laboratory specimens and field samples exhibiting different levels of 

concrete deterioration. Further experiments are conducted on borehole acoustic imagery 

involving the additional techniques of spatial filters and edge-detectors in an effort to determine 

their efficiency in detecting concrete damage. 

The results demonstrate that the hybrid texture approach is quite effective for defect 

discrimination. They also indicate that the lowpass and median spatial filters performed better 

than the gradient-based and Laplacian edge-detectors; however, the texture approaches 

outperformed all of the other techniques. The artificial neural network was found to provide 

better classification accuracies compared with the AT-means algorithm. Concerning the imagery, 

the thermography produced more accurate results than the colour and greyscale imagery. The 

information derived from the imagery consists of total surface damage; for map-crack imagery, 

the total length of cracks and range of crack width openings were also computed. The damage 

quantities obtained for the laboratory specimens show good correlation with test measurements 

recorded for the specimens, such as expansion and impact-echo velocities. 
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Executive Summary 

Imaging techniques for non-destructive testing are increasingly being employed for evaluating 

the condition of and assessing damage in concrete infrastructure. These methods can provide 

objective, quantitative information while reducing the time and cost involved, thus 

complementing inspections based on conventional visual approaches. However, in order to 

extract accurate data from the images, efficient image analysis methods need to be developed. 

This study proposes the application of a hybrid scheme based on Haar's discrete wavelet 

transform and statistical texture analysis using first-order statistics and second-order grey-level 

co-occurrence matrix (GLCM) approaches in order to extract deterioration features from the 

concrete imagery. Also employed, are an artificial neural network (ANN) supervised classifier, 

and the unsupervised AT-means clustering technique, in order to evaluate their effectiveness in 

characterizing the deterioration and deriving damage information, such as the total amount of 

surface damage. 

These methods are applied to thermographic, colour and greyscale imagery of concrete blocks 

that were exposed outdoors to the elements, and concrete slabs that were kept in the laboratory in 

controlled environments; all specimens exhibit various levels of damage due to the alkali-

aggregate reaction. Imagery of field samples were also employed, which consist of concrete 

components from various bridges located in the cities of Montreal and Sherbrooke, Quebec. In 

addition, borehole acoustic imagery obtained from a concrete lock was analyzed using the same 

techniques, as well as various spatial filters and edge-detection operators, with a view to 

assessing the efficiency of the different approaches. 

Experiments are conducted using imagery processed with texture analysis methods alone, as well 

as with images processed with the combined approach of the wavelet transform and texture 

analysis, in an effort to determine the contribution of the wavelet approach to the detection of 

concrete damage. The impact of first-order information is studied through classifications 

involving only second-order data, as well as a combination of first- and second-order data. 

Classifications for the imagery are also carried out on three different datasets: a spatial dataset 

consisting of only textural information, a spectral dataset containing only the unprocessed image 
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samples, and a combination dataset of both spatial and spectral data. This is done in order to 

determine the impact of the textural and spectral data in characterizing concrete damage. 

The results of the experiments show that the hybrid approach of texture analysis and the wavelet 

transform is more effective than the texture analysis method alone. Also, the addition of the first-

order texture data improved classification accuracies compared with classifications using only 

second-order texture information. Furthermore, the combined datasets achieved higher overall 

classification accuracies than the purely spectral and spatial datasets, indicating the positive 

contribution of the texture and spectral information in the analysis of concrete imagery. Among 

the spatial filters and edge-detection algorithms, the spatial and median filters performed better 

than all of the other techniques, and the gradient-based methods were more effective than the 

Laplacian; however, the texture approaches produced overall better results. Concerning the 

different classifiers, the supervised ANN classifier provided better classifications than the 

unsupervised ^f-means clustering algorithm. In terms of imagery, the results show that the 

infrared thermography produced more accurate results compared with the colour and greyscale 

images; however, the greyscale imagery is more computationally-effective. 

The classifications using the ANN classifier and the combination datasets were used to quantify 

damage in the concrete. The resulting damage quantities obtained for the laboratory specimens 

through the image analysis approach presented in this study show good correlation with test 

measurements recorded for the specimens, such as expansion measurements and impact-echo 

velocities. In the case of images manifesting cracking, the total length of cracks, and range of 

crack widths were also calculated. 

This research indicates the validity of the hybrid approach of texture analysis described in this 

thesis for application to the evaluation of concrete infrastructure through non-destructive testing 

imaging. Future studies can focus on the incorporation of this image analysis model as a damage 

assessment component of an automated monitoring system for concrete infrastructure, which 

could be employed to classify a collection of concrete images according to the level of damage. 

Since the imaging and inspection data can be stored in a digital format, a history of inspection 

results can be examined and compared in order to quantitatively establish changes that occur 

with time. 

v 



ACKNOWLEDGMENTS 

I would like to gratefully acknowledge the valuable assistance and advice provided for this 

research project and in the writing of this thesis by my director Dr. Patrice Rivard, as well as the 

support, confidence and encouragement shown by my co-directors Dr. Dong-Chen He and Dr. 

Gerard Ballivy. 

I would also like to thank Dr. Benoit Fournier from CANMET for allowing the use of the 

CANMET concrete specimens. This project was supported by a grant from the Fonds quebecois 

de recherche sur la nature et les technologies (FQRNT). Special thanks to "Groupe de recherche 

sur P auscultation et P instrumentation (GRAI)" for supplying the image data as well as the 

laboratory and in-situ data. 

I greatly appreciate the helpful discussions and suggestions, as well as the aid of various 

professors, colleagues and personnel at GRAI of the University of Sherbrooke. 

vi 



Table of Contents 

Preface 

Resume iv 

Abstract v 

Executive Summary vi 

Acknowledgements viii 

Table of Contents ix 

List of Figures xv 

List of Tables xxi 

List of Publications xxiii 

Part I Theoretical Framework 

CHAPTER 1: Introduction 

1.1 NDT Imaging for Concrete Deterioration 2 

1.2 Research Overview 3 

1.3 Research Significance 4 

1.4 Theoretical Framework 5 

1.4.1 Problematic 5 

1.4.2 Hypotheses 8 

1.4.3 Objectives 8 

1.4.3.1 Global Objectives 8 

1.4.3.2 Specific Objectives 9 

vii 



Part II Review of Image Analysis and Concrete Infrastructure 

CHAPTER 2: Imaging for Concrete Infrastructure 

2.1 Texture Analysis 11 

2.1.1 Image Texture 12 

2.1.2 Statistical Texture Approaches 14 

2.1.2.1 First-order Statistics 15 

2.1.2.2 Second-order Statistics 16 

2.2 Signal Processing 17 

2.2.1. Wavelet Transforms 18 

2.2.1.1 Haar's Wavelet 20 

2.2.1.2 The Discrete Wavelet Transform (DWT) 22 

2.2.1.3 Wavelet Reconstruction 24 

2.3 Spatial Image Filters 25 

2.3.1 Lowpass Filter 25 

2.3.2 Median Filter 26 

2.3.3 Edge-detectors 26 

2.3.3.1 Roberts Operator 27 

2.3.3.2 Sobel Edge-Detector 27 

2.3.3.3 Marr-Hildreth Algorithm 28 

2.3.4 Directional Filter 28 

2.4 Image Classification 28 

2.4.1 Artificial Neural Networks (ANNs) 29 

2.4.1.1 The Multi-layer Perceptron (MLP) 30 

2.4.2 AT-means Clustering Technique 30 

2.4.3 Classification Precision: the Kappa Coefficient 33 

2.4.4 Post Classification 33 

2.5 Concrete Deterioration 34 

2.5.1 Alkali-Aggregate Reactions (AAR) 35 

vin 



2.5.2 Steel Corrosion 37 

2.5.3 Freeze-Thaw Cycles 39 

2.5.3.1 Concrete Scaling 40 

2.5.3.2 Concrete Spalling 41 

2.5.3.3 Aggregate Popouts 42 

2.5.4 Erosion of Concrete Surfaces 43 

2.5.5 Stains and Efflorescence 44 

2.6 Non-Destructive Testing of Concrete 45 

2.6.1 NDT Principles and Applications 46 

2.6.2 Concrete Imaging using NDT 46 

2.6.2.1 Acoustic Techniques 46 

2.6.2.2 Infrared Thermography. 47 

2.6.2.3 Greyscale Imagery. 48 

2.6.2.4 Colour Imagery. 49 

Part III Methodology and Results 

CHAPTER 3: Methodology, Study Area, and Data Descriptions 

3. Introduction 51 

3.1 Study Sites 54 

3.1.1 St. Lambert Lock 55 

3.1.2 Joffre Bridge 56 

3.1.3 Jacques-Cartier, Terrill and Train Bridges 56 

3.2 Laboratory Concrete Specimens 57 

3.2.1 CANMET Specimens 57 

3.2.2 GRAI Specimens 58 

3.2.3 Concrete Mixture Proportions for Specimens 59 

3.2.4 Test Measurements for Specimens 60 

3.3 Data Acquisition and Description 61 

ix 



3.3.1 Data Acquisition 61 

3.3.2 Input Image Data Description 61 

3.3.2.1 Greyscale Images 61 

3.3.2.2 Colour Images 62 

3.3.2.3 Thermographic Images 63 

3.3.2.4 Acoustic Images 64 

3.4 Haar's Discrete Wavelet Transform 66 

3.4.1 Decomposition 68 

3.4.2 Reconstruction 68 

3.5 Statistical Texture Analysis 69 

3.5.1 First-order Analysis 69 

3.5.1.1 Window Size 70 

3.5.1.2 Selection of First-order Texture Features 70 

3.5.1.3 First-order Texture Images 71 

3.5.2 Grey Level Co-occurrence Matrix (GLCM) 71 

3.5.2.1 GLCM Parameters 74 

3.5.2.2 Selection of Second-order Texture Features 76 

3.5.2.3 Second-order Texture Images 77 

3.6 Spatial Filtering 77 

3.6.1 Lowpass Filtering 77 

3.6.2 Median Filtering 78 

3.6.3 Edge-detection 78 

3.6.4 Gradient Methods (First-order) 79 

3.6.4.1 Roberts Algorithm 79 

3.6.4.2 Sobel Operator 79 

3.6.5 Laplacian Approaches (Second-derivative) 80 

3.6.5.1 Marr-Hildreth Edge-detector 80 

3.6.6 Directional Filtering 81 

3.7 Classification 81 

x 



3.7.1 The Multi-layer Perceptron (MLP) 84 

3.7.2 AT-means Classifier 87 

3.7.3 Results of the Classification 87 

3.7.4 Classification Accuracy 88 

3.7.5 Kernel Filtering 88 

3.7.6 Binary Images 88 

CHAPTER 4: Results and Discussion 

4.1 Damage Analysis of Map-crack Imagery from Field Samples 90 

4.1.1 Application of Haar's Wavelet Transform 90 

4.1.1.1 Image Decomposition 90 

4.1.1.2 Image Reconstruction 91 

4.1.2 Application of Texture Analysis 92 

4.1.2.1 Selection of Appropriate Window 92 

4.1.2.2 First-order Statistics for Greyscale Map-crack Image 93 

4.1.2.3 Second-order GLCM for Greyscale Map-crack Image 96 

4.2 Damage Analysis of CANMET and GRAI Laboratory Specimens 99 

4.2.1 CANMET Block Specimens 99 

4.2.2 GRAI Slab Specimens 102 

4.2.3 Damage Analysis of G3 GRAI Slab using Greyscale, Colour and 
Thermographic Imagery 107 

4.3 Damage Analysis of Spalling Imagery from Field Samples 112 

4.4 Damage Analysis of Corrosion Images from Field Samples 116 

4.5 Damage Analysis of Popouts, Erosion, Post-repair Damage, and Efflorescence 
and Corrosion Stains (Field Samples) 119 

4.5.1 Popout Damage 120 

4.5.2 Erosion Damage 121 

4.5.3 Post-Repair Damage 123 

4.5.4 Efflorescence Stains 124 

4.5.5 Corrosion Stains 125 

xi 



4.6 Damage Analysis of Deterioration from Acoustic Imagery. 127 

4.7 Classification Results 132 

4.7.1 Map-crack Imagery from Field Samples 132 

4.7.2 Map-crack Imagery from CANMET Laboratory Specimens 134 

4.7.3 Map-crack Imagery from GRAI Laboratory Specimens 138 

4.7.4 Imagery of Different Types of Damage from Field Samples 141 

4.7.5 Borehole Acoustic Imagery. 151 

4.8 Damage Statistics 153 

4.9 Discussion of Results 158 

4.9.1 Results of Texture Analysis Phase 158 

4.9.2 Results of Classification Phase 160 

4.9.2.1 Results for Map-crack Damage in Field Samples 160 

4.9.2.2 Results for Map-crack Damage in CANMET Blocks 163 

4.9.2.3 Results for Map-crack Damage in GRAI Slabs 166 

4.9.2.4 Discussion of Map-Crack Classification Results 169 

4.9.2.5 Results for Spalling, Corrosion, Popouts, Erosion, Post-repair Damage, and 
Efflorescence and Corrosion Stains 170 

4.9.2.6 Results for Acoustic Imagery 171 

4.10 Cracking Quantification 172 

CHAPTER 5: Conclusions and Recommendations 

5.1 Conclusions 177 

5.2 Recommendations 179 

References 182 

APPENDICES (papers published from this thesis) 

xn 



List of Figures 

Figure 2.1: Examples of Different Types of Textures 

(a) Waves in water, (b) Straw mat, (c) Gravel, (d) Brick wall 11 

Figure 2.2: Texture Pairs with Equal Second-order Statistics 12 

Figure 2.3: Textures at Different Scales in Brick Wall 

(a) Low resolution, (b) High resolution 14 

Figure2.4: Histogram ofCorrosion Image (a) Image Data, (b) Histogram 15 

Figure 2.5: Examples of a Wave and a Wavelet 18 

Figure 2.6: Fourier Transform 19 

Figure 2.7: Wavelet Transform 20 

Figure 2.8: Haar Wavelet Function 21 

Figure 2.9: A Pyramidal Wavelet Decomposition (a) One-level (b) Multi-level 23 

Figure 2.10: Three-level Wavelet Tree-structured Decomposition 24 

Figure 2.11: Three-level Tree Reconstruction 25 

Figure 2.12: Example of an MLP Neural Network 30 

Figure 2.13: Example of AT-means Clustering 31 

Figure 2.14: Example of AT-means Clustering Algorithm 32 

Figure 2.15: AAR Induced Map-cracking in Components at St. Lambert Lock 36 

Figure 2.16: CANMET and GRAI Specimens Exhibiting AAR cracking 37 

Figure 2.17: Corrosion Damage in Component of Jacques-Cartier Bridge 39 

Figure 2.18: Occurrence of Scaling in Components of Train Bridge 41 

Figure 2.19: Spalling Exhibited in Component of Jacques-Cartier Bridge 42 

Figure 2.20: Examples of Popouts in Bridge Components 
(a) Jacques-Cartier Bridge (b) Terrill Bridge 43 

Figure 2.21: Examples of Concrete Erosion 
(a) St. Lambert Lock (b) Train Bridge 44 

Figure 2.22: Examples of Stains 
(a) Corrosion Stains (b) Efflorescence Stains 45 

xin 



Figure 3.1 

Figure 3.2 

Figure 3.3 

Figure 3.4 

Figure 3.5 

Figure 3.6 

Figure 3.7 

Figure 3.8 

Figure 3.9: 

Figure 3.10: 

Figure 3.11-A 

Figure 3.11-B 

Figure 3.12: 

Figure 3.13: 

Figure 3.14: 

Figure 4.1: 

Figure 4.2: 

Figure 4.3: 

Figure 4.4: 

Figure 4.5: 

Figure 4.6: 

Figure 4.7: 

Figure 4.8: 

Methodology Flow Chart 53 

Geographic Location of Study Area 54 

St. Lambert Lock, Montreal, Quebec 55 

Joffre Bridge, Sherbrooke, Quebec 56 

AAR Damage in Bridge Components 

(a) Jacques-Cartier Bridge, (b) Train-bridge Support Beam 57 

Specimens at CANMET Site, Ottawa Region, Canada 58 

Top View ofGRAI Samples at University of Sherbrooke, Quebec 59 

Examples of Greyscale Imagery of Different Types of Damage 
(a) No-damage, (b) Map-cracking, (c) Post-repair Damage (d) Steel 
Corrosion, (e) Erosion, (f) Spalling 62 

Examples of Colour Imagery of Different Types of Damage 

(a) Map-cracking (b) Spalling (c) Erosion 63 

TIR Image ofGRAI Specimen Exhibiting Map-cracks 64 

Optical and Acoustic Image Samples of Damage 65 

Optical and Acoustic Image Samples of Damage (Cont'd) 66 

Haar Wavelet Flow Chart 67 

Texture Analysis Flow Chart 73 

ANN Classification Flow Chart 83 

Decomposition of Greyscale Map-Crack Image 

(a) Input Image (b) One Level (b) Two-level (d) Complete 91 

Different Levels of Reconstruction for Greyscale Map-Crack Image 

(a)l%(b)5%(c)10%(d)25% 92 

Coefficients of Variation Graph for Greyscale Map-crack Image 93 

First-order Texture Features for Greyscale Map-crack Image 

(a) Data Range (b) Entropy (c) Mean (d) Skew (e) Variance 94 

Histograms of First-order Features for Greyscale Map-crack Image 95 

Texture Image of Selected First-order Features for Greyscale Map-crack 
Image: Mean, Variance, Skew 96 
Second-order Texture Features for Greyscale Map-crack Image 
(a) Mean (b) Variance (c) Homogeneity (d) Contrast (e) Dissimilarity 
(f) Entropy (g) Second Moment (h) Correlation 97 

Histograms of Second-order Features for Greyscale Map-crack Image 98 

xiv 



Figure 4.9: Texture Image of Selected Second-order Features for Map-crack Image: 
Mean, Homogeneity, Entropy 99 

Figure 4.10: Image Samples of CANMET Specimens 
(a) CI (b) C2 (c) C3 100 

Figure 4.11: Selected Texture Features from First-order Statistics for C3 Specimen 

(a) Mean (b) Variance (c) Skew 100 

Figure 4.12: Selected Texture Features from Second-order Statistics for C3 Specimen 

(a) Mean (b) Homogeneity (c) Entropy 101 

Figure 4.13: Texture Images of Selected Features for C3 Specimen 
(a) First-order: Mean, Variance, Skew (b) Second-order: Mean, 
Homogeneity, Entropy 101 

Figure 4.14: Image Samples of GRAI Laboratory Specimens 

(a) Gl (b) G2 (c) G3 102 

Figure 4.15: Selected First-order Texture Features for Gl Specimen 
(a) Mean (b) Variance (c) Entropy 103 

Figure 4.16: Texture Image of Selected First-order Features for Gl Specimen: Mean, 
Variance, Entropy 103 

Figure 4.17: Selected First-order Texture Features for G2 specimen 

(a) Mean (b) Variance(c) Data Range 104 

Figure 4.18: Texture Image of Selected First-order Features for G2 Specimen: Mean, 
Variance, Data Range 104 

Figure 4.19: Selected First-order Texture Features for G3 Specimen 
(a) Mean(b) Variance(c) Data Range 105 

Figure 4.20: Texture Image of Selected First-order Features for G3 Specimen: Mean, 
Variance, Data Range 105 

Figure 4.21: Selected Second-order Texture Features for G2 Specimen 
(a) Mean (b) Variance(c) Homogeneity 106 

Figure 4.22: Texture Image of Selected Second-order Features for G2 Specimen: Mean, 
Variance, Homogeneity 106 

Figure 4.23: Original Greyscale and TIR Images of G3 GRAI Slab 
(a) Greyscale (b) Thermographic 107 

Figure 4.24: Resampled Greyscale, Thermographic, and Colour Images for G3 Slab 

(a) Greyscale (b) Thermographic (c) Colour 108 

Figure 4.25: Second-order Texture Features for Greyscale G3 Image 108 

Figure 4.26: Texture Image of Selected Second-order Features for Greyscale G3 Image: 
Mean, Homogeneity, Variance 109 

xv 



Figure 4.27: Some Second-order Texture Features from Red Band of TIR G3 Image 110 

Figure 4.28: Second-order Texture Features from Green Band of TIR G3 Image 110 

Figure 4.29: Texture Image of Selected Second-order Features for TIR G3 Image: Mean 

(red), Homogeneity (blue), Correlation (blue) 111 

Figure 4.30: Second-order Texture Features from Green Band of Colour G3 Image 111 

Figure 4.31: Texture Image of Selected Second-order Features for Colour G3 Image: 
Mean (red), Homogeneity (blue), Correlation (blue) 112 

Figure 4.32: Decomposition of Greyscale Spalling Image 

(a) Image Sample (b) One-level (c) Two-level (d) Complete 113 

Figure 4.33: Different Levels of Reconstruction for Greyscale Spalling Image 

(a) 1% (b) 5% (c) 10% (d) 25% 114 

Figure 4.34: Coefficients of Variation Graph for Greyscale Spalling Image 115 

Figure 4.35: Selected Second-order Features for Spalling Image 
(a) Mean (b) Variance (c) Contrast 115 

Figure 4.36: Texture Image of Selected Second-order Features for Spalling Image: 

Mean, Variance, Contrast 116 

Figure 4.37: Coefficients of Variation Graph for Greyscale Corrosion Image 117 

Figure 4.38: Selected Second-order Texture Features for Corrosion Image-1 
(a) Mean (b) Variance (c) Dissimilarity 117 

Figure 4.39: Texture Image of Selected Second-order Features for Corrosion Image 
Sample-1: Mean, Variance, Dissimilarity 118 

Figure 4.40: Selected Second-order Texture Features for Corrosion Image-2 

(a) Mean(b) Variance (c) Correlation 118 

Figure 4.41: Texture Image of Selected Second-order Features for Corrosion Image 
Sample-2: Mean, Variance, Correlation 119 

Figure 4.42: Selected Second-order Texture Features for Popout Image Sample 

(a) Mean (b) Variance (c) Contrast 120 

Figure 4.43: Texture Image of Selected Second-order Features for Popout Image: 

Mean, Variance, Contrast 120 

Figure 4.44: Coefficients of Variation Graph for Greyscale Erosion Image 121 

Figure 4.45: Selected Second-order Texture Features for Erosion Image Sample 
(a) Mean (b) Variance (c) Homogeneity 122 

xvi 



Figure 4.46: Texture Image of Selected Second-order Features for Erosion Image: 

Mean, Variance, Homogeneity 122 

Figure 4.47: Selected Second-order Texture Features for Post-repair Image Sample 

(a) Mean (b) Homogeneity (c) Second Moment 123 

Figure 4.48: Texture Image of Selected Second-order Features for Post-repair Image 
Sample: Mean, Homogeneity, Second Moment 123 

Figure 4.49: Selected Second-order Texture Features for Efflorescence Stain Sample 
(a) Mean (b) Variance (c) Homogeneity 124 

Figure 4.50: Texture Image of Selected Second-order Features for Efflorescence Stain 
Image Sample: Mean, Variance, Homogeneity 124 

Figure 4.51: Selected Second-order Texture Features for Corrosion Stain Sample-1 
(a) Mean (b) Variance (c) Homogeneity 125 

Figure 4.52: Texture Image of Selected Second-order Features for Corrosion Stain 
Image Sample-1: Mean, Variance, Homogeneity 125 

Figure 4.53: Selected Second-order Texture Features for Corrosion Stain Sample-2 
(a) Mean (b) Homogeneity (c) Contrast 126 

Figure 4.54: Texture Image of Selected Second-order Features for Corrosion Stain 
Image Sample-2: Mean, Homogeneity, Contrast 126 

Figure 4.55: Decomposition of Acoustic Image Sample 

(a) Input Image (b) One-level (c) Two-level (d) Complete 128 

Figure 4.56: Reconstruction of Acoustic Image Sample 129 

Figure 4.57: Selected Second-order Texture Features for Acoustic Image Sample 
(a) Mean (b) Homogeneity (c) Variance 130 

Figure 4.58: Texture Image of Selected Second-order Features for Acoustic Image 
Sample: Mean, Homogeneity, Variance 130 

Figure 4.59: Images Resulting from Application of Different Filters on Acoustic Image 
Sample 131 

Figure 4.60: AT-means and ANN Classifications for Greyscale Map-crack Image 

Sample 132 

Figure 4.61: ANN Classifications for Greyscale Imagery of CANMET Specimens 134 

Figure 4.62: ANN Classifications for Greyscale, Colour and TIR Images of C3 
Specimen 136 

Figure 4.63: ANN Classifications for Greyscale, Colour and TIR Images of G3 
Specimen 139 

xvu 



Figure 4.64: AT-Means and ANN Classifications for Greyscale Spalling Image 

Sample-1 141 

Figure 4.65: £-Means and ANN Classifications for Greyscale Spalling Image 

Sample-2 143 

Figure 4.66: ANN Classifications for Greyscale Corrosion Image Sample-1 and 
Sample-2 145 

Figure 4.67: ANN Classifications for Greyscale Images of Different Types of 
Damage 147 

Figure 4.68: ANN Classifications for Greyscale Images of Efflorescence Stain, and 

Corrosion Stain Sample-1 and Sample-2 149 

Figure 4.69: A"-means Classifications for Acoustic Image Sample 152 

Figure 4.70: Comparison of Damage Statistics for the Three Different Types of 
CANMET Imagery 155 

Figure 4.71: Comparison of Damage Statistics for the Three Different Types of GRAI 

Imagery. 156 

Figure 4.72: Comparison of Damage Statistics for Acoustic Imagery 157 

Figure 4.73: Crack Width Measurements for CANMET-C3; Pixel Resolution 0.26 mm... 173 

Figure 4.74: Comparison o f Total Crack Damage and Expansion Levels 174 

Figure 4.75: Comparison of Crack Length and Expansion Levels 175 

Figure 4.76: Comparison of Total Crack Damage and P-wave Velocities 175 

Figure 4.77: Crack-width Ranges from Binary Image of Train Bridge Component 176 

xviii 



List of Tables 

Table 2.1: Thermal Conductivity of Some Materials 47 

Table 3.1: Concrete Mixture Proportions 59 

Table 3.2: Average Measurements of P-wave Velocities and Expansion 60 

Table 4.1: Correlation Matrix of First-order Texture Features for Greyscale Map-crack 
Image 95 

Table 4.2: Correlation Matrix of Second-order Texture Features for Greyscale Map-
crack Image 98 

Table 4.3: Class Statistics Summary Report for Greyscale Map-crack Image using K-
means and ANN Classifier 133 

Table 4.4: Class Statistics Summary Report for Greyscale Imagery of CANMET 
Specimens using ANN Classifier 135 

Table 4.5: Class Statistics Summary Report for Imagery of CANMET C3 Specimen 
using ANN Classifier 137 

Table 4.6: Class Statistics Summary Report for Greyscale Imagery of GRAI Slabs using 
ANN Classifier 138 

Table 4.7: Class Statistics Summary Report for Thermographic, Colour and Greyscale 
Images of GRAI G3 Specimen using ANN Classifier 140 

Table 4.8: Class Statistics Summary Reports for Greyscale Spalling Image Sample-1 
using £-means and ANN Classifiers 142 

Table 4.9: Class Statistics Summary Reports for Greyscale Spalling Image Sample-2 
using i£-means and ANN Classifiers 144 

Table 4.10: Class Statistics Summary Report for Greyscale Corrosion Image Sample-1 
and Image Sample-2 using ANN Classifier 146 

Table 4.11: Class Statistics Summary Reports for Greyscale Images of Popout, Erosion 
and Post-repair Damage using ANN Classifier 148 

Table 4.12: Class Statistics Summary Reports for Greyscale Images of Efflorescence 
Stain and Corrosion Stain Sample-1 and Sample-2 using ANN Classifier 150 

Table 4.13: Class Statistics, Classification Accuracies, and Kappa Coefficients for 
Different Input Images using £-means Classifier 153 

Table 4.14: Optimum Window Size and Optimum First-order and Second-order Texture 
Features for Each Type of Damage 158 

xix 



Table 4.15: ANN Classification Accuracies for Greyscale Image of Map-crack Damage 
from Field Sample With and Without Haar Transform 160 

Table 4.16: ANN Classification Accuracies for Greyscale Image of Map-crack Damage 
from Field Sample With and Without First-order Data 161 

Table 4.17: K-means Classification Accuracies for Greyscale Image of Map-crack 
Damage from Field Sample 162 

Table 4.18: ANN Classification Accuracies for Greyscale Image of Map-crack Damage 

from Field Sample 162 

Table 4.19: .K-means Classification Accuracies for CANMET Specimens 164 

Table 4.20: ANN Classification Accuracies for CANMET Specimens 165 

Table 4.21: A -̂means Classification Accuracies for GRAI Specimens 167 

Table4.22: ANN Classification Accuracies forGRAI Specimens 168 

Table 4.23: Overall ANN Classification Accuracies and Kappa Coefficients for Different 
Types of Damage and Accuracies for Each Class 171 

xx 



List of Peer-reviewed Publications in Journals and International 
Conferences Pertaining to this Thesis 

List of Journal Publications 

Kabir, S., Rivard, P. and Ballivy, G. (2008) Neural Network-Based Damage Classification in 

Bridge Infrastructure using Texture Analysis, Canadian Journal of Civil Engineering, vol. 35, no. 

3, pp. 258-267. 

Kabir, S. and Rivard, P. (2007) Classification of Crack-Damage in Bridges based on Grey Level 

Co-occurrence Matrix using Haar's Discrete Wavelet Transform, Computers & Concrete 

International Journal, vol. 4, no. 3, pp. 243-257. 

Kabir, S., Rivard, P. and Ballivy, G. (2006) Detection of AAR Deterioration Patterns in 

Concrete using Wavelets for Multiscale Texture Analysis, Durability of Concrete, ACI Special 

Publication, vol. 234, p. 127-146. 

Kabir, S., Rivard, P. and He, D-C. (2007) Acoustic Borehole Imaging for Inspection of Concrete 

Dam, International Journal of Advances in Civil Engineering (Submitted in April, 2008). 

List of Conference Proceedings 

Kabir, S. (2008) Image Processing in Concrete Applications: Review and Prospective, 2nd 

International Structural Specialty Conference on Partnership for Innovation: Instrumentation and 

Monitoring of Structures, CSCE Annual Conference, Quebec City, Accepted for CSCE 

Conference, June 10-13, 2008. 

Kabir, S. and Rivard, P. (2008) Optical Borehole Acoustic Imagery for Structural Damage 

Analysis, 2nd International Structural Specialty Conference on Partnership for Innovation: 

Instrumentation and Monitoring of Structures, CSCE Annual Conference, Quebec City, 

Accepted for CSCE Conference, June 10-13, 2008. 

Kabir, S. and Rivard, P. (2008) Statistical- and Transform-based Methods for Recognition and 

Quantitative Analysis of Deterioration in Concrete Infrastructure, 12th International Conference 

xxi 



on Computing and Decision Making in Civil and Building Engineering, Structural Damage-

assessment, Beijing, ICCCBE, October 15-17, 2008. 

Kabir, S. and Rivard, P. (2006) Analysis of Surface-Damage through Concrete Imaging, 

Proceedings of 2nd International RILEM Symposium on Advances in Concrete through Science 

and Engineering, Quebec City, Sep 11-13, 2006. 

Kabir, S., Rivard, P., Ballivy, G. and He, D-C. (2006) Textural Analysis for Crack-Detection 

Using Infrared Thermography, Visual Colour, and Greyscale Concrete Imagery, Proceedings of 

11th International Conference on Computing and Decision Making in Civil and Building 

Engineering on Structural Damage-assessment, Montreal, June 14-16, 2006, pp. 3296-3305. 

Kabir, S., He, D-C. and Rivard, P. (2006) Urban Classification of High Resolution IKONOS 

Imagery using Texture, Proceedings of 11 International Conference on Computing and 

Decision Making in Civil and Building Engineering on IT in Urban Planning, Montreal, June 14-

16, 2006, pp. 326-335. 

Kabir, S. and Rivard, P. (2009) A Mathematical Model for Structural Damage Assessment based 

on Hybrid methods using Statistical and Signal Processing, Third International Conference on 

Modeling, Simulation and Applied Optimization (ICMSAO'09), American University of Sharjah 

(AUS), Sharjah, United Arab Emirates January 20-22, 2009 (Submitted in April 2008). 

Kabir, S., Rivard, P. and Ballivy, G. (2009) Content-based Damage Retrieval Method using 

Colour Histograms, Texture Measures, and Local Features for Concrete NDT Imagery, 7th 

International Symposium on Non Destructive Testing in Civil Engineering (NDT-CE' 09), 

Nantes (France), June 30th - July 3rd, 2009 (accepted) 

xxn 



Parti 
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CHAPTER 1 

Introduction 

1.1 NDT Imaging for Concrete Deterioration 

The durability of concrete has increasingly become the focal point of research in the concrete 

community throughout the world. How to make durable concrete, and what maintenance 

procedures must be implemented to extend the service life of concrete, are regularly discussed at 

concrete related meetings, seminars, workshops, as well as major international conferences 

(Rhim, 2001). This is due to the fact that deterioration in concrete severely affects the service 

life, safety and maintenance costs of concrete structures. 

In order to rehabilitate damaged concrete infrastructure, or even to determine whether the 

concrete is worthy of repair, it is often necessary to carry out a systematic evaluation of the state 

of the concrete prior to specifying any kind of repair procedure. Concrete distress may be 

detected at an early stage, before the functionality of a structure is seriously damaged. At any 

age, the quality of a structure, in the sense of integrity and potential durability, is almost totally 

dependent on the quality of construction. Assessment of the condition of the concrete structure 

should, therefore, be carried out at as early as possible, preferably immediately following 

construction. 

The deteriorating condition of concrete infrastructure and the prohibitive costs required for 

upgrading them require the development of innovative and effective decision support tools. Such 

tools will enable predictions about the condition and future performance of concrete structures 

and the allocation of limited funds for optimized maintenance that yields improved reliability 

and minimum life cycle costs. Furthermore, improved control on the variability between 

predicted and actual repair quantities would tend to reduce the long-term unit price of repair 

work as contractors adapt to less instances of work shortfalls. 
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There is a growing need for precise and reliable methods that use non-destructive testing (NDT) 

techniques to assess the deterioration in concrete structures and the extent of associated damage. 

Current use and development of monitoring methods and imaging techniques employing NDT is 

limited due to the unavailability of enough experimental data and field applications. The lack of 

this type of research is largely due to the fact that traditionally civil engineering has shown little 

interest in these techniques mainly because of insufficient knowledge of the available methods, 

as well as technical limitations and their related high costs. Over the years, though, many 

technological obstacles, such as computer efficiency, infrared camera resolution, equipment 

transportability, as well as the price of equipment, have been greatly reduced. The development 

of NDT imaging methods is very promising because it also provides a better understanding of 

the physio-chemical phenomena that interact within the concrete. 

Certain imaging methods have proven to be very efficient in collecting concrete data. However; 

acquiring data is only the first step in assessing and evaluating concrete deterioration. This data 

has to be processed and interpreted in order to present the information in a more meaningful and 

useful format. If efficient and accurate imaging techniques can be developed, this approach can 

be a highly potential source of reliable information concerning the actual condition of concrete, 

which can be used to predict the safety and serviceability of concrete structures. 

1.2 Research Overview 

This thesis is broadly divided into three sections. Part I consists of an introduction to the need of 

NDT imaging for concrete infrastructure; it also consists of the theoretical framework of the 

research, which includes an elaboration of the problems related to concrete deterioration, and the 

evaluation of concrete structures. In addition, this section includes the hypothesis and objectives 

formulated to overcome the specific challenges associated with concrete assessment, which are 

enumerated in this study. 

Part II of the thesis deals with a review of image analysis techniques; it presents some 

fundamental concepts specifically about texture analysis, signal processing, edge-detection, and 

classification approaches, along with details as to how these techniques function. The second 

part also discusses the mechanisms and their effects of the major concrete deterioration factors of 
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the alkali-aggregate reaction, steel corrosion, freeze-thaw cycles, and erosion, as well as non­

destructive testing methods that employ concrete imaging. 

Part III of this thesis is composed of a description of the study area, laboratory specimens and 

field samples employed, and the different types of data, including acoustic, thermographic, 

greyscale, and colour imagery, used in this research. Also included in this section, is the 

methodology steps employed in the experimental stage of this research: signal processing 

through the Haar's wavelet transform, texture analysis using the first-order statistical technique 

and the second-order grey level cooccurrence matrix (GLCM), spatial filters based on various 

approaches, and classifications based on the artificial neural network (ANN), and AT-means 

clustering techniques. Finally, chapter four presents the results and discussion, and chapter five 

provides the conclusions and recommendations of this thesis. 

1.3 Research Significance 

Surface damage, such as cracks, in images are usually treated as objects, and are thus quantified 

through techniques that first segment the objects from the background to extract shape or object 

features, and then classify the images based on those features. However, in their study on the 

classification of pits and cracks in corrosion images, Livens et al. (1996) found that segmentation 

approaches worked well on individual images, but proved unsatisfactory when applied to a large 

set of samples due to the variability in the background. So they adopted a method based on 

analysis of the textured appearance of the pits and cracks in the images, which was successfully 

employed to discriminate between the two types of damage. The present research aims at finding 

a new application for texture methods in the analysis of concrete damage from NDT imagery. 

Different types of concrete damage each have a specific texture typical of the type of 

deterioration, which should permit their discrimination through texture analysis methods. 

There are few studies that have applied image processing techniques, such as texture analysis, to 

extract textural features in order to obtain concrete deterioration information from optical 

imagery and there have so far been even fewer efforts to combine two approaches, such as 

statistical methods and signal processing methods. Since, there are no obvious quantitative 

measures to characterize texture, texture analysis can prove to be quite difficult to implement. 
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Nevertheless, a good understanding or a more satisfactory interpretation of an image should 

include the description of both spectral and textural aspects of the image (He and Wang, 1991); 

thus, the door for research in computer vision remains wide open. Consequently, texture analysis 

techniques, usually used in the field of medical imagery and remote sensing, can find new and 

original applications in civil engineering. 

The use of image processing methods on NDT imagery for the extraction of concrete 

deterioration information can be compared with visual inspection approaches that were 

traditionally employed to evaluate the condition of a concrete structure in service. Contrary to 

visual inspections, which, in most cases, remain qualitative, the proposed methods employ 

classification techniques, which present the greater advantage of providing quantitative 

information due to their capacity to analyze images, pixel by pixel, based on their numerical 

properties. Also, acquiring most of the types of NDT imagery employed in this research is not 

relatively costly, time consuming, or a disruption to traffic, thus allowing for more frequent 

monitoring, which is another important factor in effective bridge maintenance (Abudayyeh et al., 

2004). As a result, the information obtained from the approaches described in this study can be 

used to supplement visual inspections. The quantitative nature of this data and its regular 

collection can promote the establishment of deterioration criteria through the determination of 

correlation between deterioration factors and damage within concrete. Furthermore, these 

techniques present the potential to be incorporated into an automated monitoring system for 

concrete infrastructure. Up to now, automated recognition of deterioration modes in concrete 

from monitoring data has been the object of very few research projects. In this context, this study 

constitutes an important contribution to a better understanding of automated image analysis, and 

how such tools can be used to assist inspectors in the assessment of the condition of concrete 

structures in order to provide more reliable concrete monitoring and decision making. 

1.4 Theoretical Framework 

1.4.1 Problematic 

Concrete researchers are constantly developing innovative methods for condition assessment, 

performance prediction, and maintenance management for the cost-effective rehabilitation of 
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aging and deteriorating concrete structures, which are major components of urban infrastructure 

systems. The research undertaken covers different types of concrete structures; however, its main 

thrust is on concrete bridge systems, which constitute a critical link in the urban transportation 

network. 

Concrete bridge deck deterioration is a significant problem that must be addressed to preserve 

highway infrastructure investments in bridges around the world (Scott et al, 2003). According to 

the Institute for Research in Construction (IRC, 2003), chloride-induced corrosion is the major 

cause of bridge deterioration in Canada and elsewhere. Along with being exposed to severe 

environments, concrete structures in Canada are also subject to increasing mechanical loading, 

and the majority are approaching the end of their service lives. These problems, combined with 

design and construction deficiencies, inadequate protection, and lack of systematic approaches to 

inspection and maintenance, have led to structural deterioration resulting in loss of serviceability 

and functionality, and a reduction in safety. 

It is estimated that over 40% of all bridges in Canada are older than 35 years (IRC, 2003) and in 

need of maintenance, rehabilitation or replacement, the backlog for which is estimated at about 

ten billion dollars (IRC, 2003). Consequently, a primary challenge facing our local, provincial 

and federal governments is effective allocation of limited funding for the maintenance and repair 

of transportation assets. 

One of the most pressing problems facing bridge management is the lack of accuracy and the 

variability between traditional deck deterioration estimates and the actual quantities of repair 

work required on a given bridge. Conventional evaluation methods for concrete structures, are 

mainly based on visual inspections, where trained inspectors examine the various components of 

a structure using non-destructive testing techniques, such as visual observation of cracks, 

efflorescence, and staining of the deck underside and curbs, to evaluate the condition of the 

components, and give them a ranking (Washer, 1998). This type of evaluation is subjective in 

nature and strongly depends on the experience and skill of the inspectors (Abdel-Qader, 2003); 

the lack of objective and quantitative information can produce significant differences between 

the estimated and the actual condition of a structure, and the amount of repair work needed. 

Although visual inspection may be effective in many cases, it is costly, time-consuming, and 
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often a disruption to traffic. Also, none of these methods have demonstrated the ability to predict 

deck deterioration problems six to eight years in advance, the desired time period for project 

planning (U.S. Department of Transportation, 2003). 

Non-destructive testing (NDT) of materials is the characterization, discrimination and prediction 

of material defects non-destructively (Chen, 1998). This is a desirable approach because it does 

not change or destroy the usefulness of the material, which is essential for applications to bridge 

deck and highway infrastructure inspections. Compared to metal, however, NDT of concrete is a 

relatively immature discipline. One reason for this is that concrete itself has a very 

heterogeneous nature; in addition to this, concrete is often reinforced with steel rebar. These 

factors make detection of defects difficult to separate from naturally occurring, and generally 

safe, inclusions. Furthermore, universal failure criteria do not exist for concrete structures. As a 

result, there is a need for the study of correlation between deterioration factors and damage 

within concrete in order to establish such criteria, as well as for the development of more reliable 

NDT techniques for concrete structures (Chong et al., 1990). 

After the arrival of digital signal processing, pattern recognition techniques have been 

increasingly used in NDT problems. In general, the goals of pattern recognition and signal 

processing in NDT are to improve inspection reliability, to improve damage detection and 

characterization, to automate inspection tasks, and to generate information about the material 

properties in order to assess the remaining life of a structure (Chen, 1998). These methods of 

inspection, which generate waveform or image data, have several advantages, the most important 

being that the extent of deterioration can be detected, characterized and measured more 

accurately. 

Interpreting image data of concrete, however, is a very challenging task, since concrete is highly 

heterogeneous. Concrete is generally produced in the field with limited quality control. Grain 

size distribution is highly variable and properties of the constituent material are greatly varied 

making it difficult to obtain accurate images. Other sources of difficulties in interpreting images 

of concrete structures include the generally complex physical geometry, existence of inclusions, 

restricted accessibility to the object, and the problems related to the sensitivity of the method 

used to the heterogeneities in concrete. 
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1.4.2 Hypotheses 

Several hypotheses were formulated in order to address the problems elaborated in this thesis. 

The research conducted within the scope of this thesis is founded on the following hypotheses: 

• Detection of deterioration and its extent from concrete imagery can be achieved 

through statistical texture analysis; 

• Detection of defects based on statistical texture analysis can be enhanced through the 

use of the wavelet transform, which allows for a multiresolution analysis, where the 

low scales show the coarse details and the higher scales show the finer details of the 

image; 

• Discrimination of concrete damage can be enhanced by employing both first- and 

second-order texture information; 

• Combination of spectral and spatial information can provide better characterization of 

concrete deterioration compared to spectral or spatial data alone. 

1.4.3 Objectives 

The following objectives were developed to support the hypotheses formulated for this study; 

further justification for these can be found throughout the methodology in chapter 3. 

1.4.3.1 Global Objectives 

• Optimization of image processing techniques in order to extract quantitative 

deterioration information from concrete images obtained using various NDT imaging 

methods; 

• Establishment of correlation between the level of damage in the concrete and the 

information obtained from processing of the NDT data. 
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1.4.3.2 Specific Objectives 

• Application of the multi-resolution analysis using Haar's wavelet transform on 

different types of NDT image data of concrete in order to analyse textures contained 

in the images at different scales; 

• Extraction of first- and second-order texture information from the images using the 

texture analysis methods of first-order statistics and second-order grey level co­

occurrence matrix (GLCM) approaches in order to optimize textural discrimination; 

• Establishment of optimum texture features for different types of concrete damage; 

• Combination of spatial and spectral data in the classification process in order to 

improve accuracy; 

• Detection of damage from acoustic concrete images using spatial filters and edge-

detection operators in order to evaluate the different filters for their efficiency in 

distinguishing crack damage compared with the transform- and statistical-based 

methods; 

• Characterization of different types of concrete deterioration through the supervised 

classification technique of artificial neural networks, as well as the unsupervised K-

means classifier in order to evaluate the effectiveness of each classification method in 

discriminating concrete damage; 

• Evaluation of the efficiency of the various types of NDT imaging methods of 

thermographic, colour, and greyscale imagery, in detecting different types of concrete 

deterioration. 

• Establishment of correlation between damage quantities obtained from processing of 

the concrete imagery and test measurements recorded for the laboratory specimens. 
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Part II 

Review of Image Analysis and 
Concrete Infrastructure 



CHAPTER 2 

Imaging for Concrete Infrastructure 

2.1 Texture Analysis 

Texture is described by the spatial distribution of the local tonal variations in a scene and can be 

found in abundance in the visual world, at all scales of perception. As soon as there is enough 

detail in an adequate visual angle, a texture becomes distinguishable. Figure 2.1 presents some 

examples of visual textures (Brodatz, 1966). 

(a) Waves in water (b) Straw mat (c) Gravel (d) Brick wall 

Figure 2.1: Examples of Different Types of Textures 

Humans have a powerful innate ability to recognize textural differences. Although the complex 

neural and psychological processes by which this is accomplished have so far evaded detailed 

scientific explanation (Hay and Niemann, 1996), studies concerning texture perception by the 

human visual system have provided useful insights into the importance of textural information, 

as well as the complex nature of texture discrimination. Studies conducted by Julesz (1962) 

found that humans perceive textures using a low-level mechanism that performs an analysis of 

second-order statistics of intensities in texture fields, based on his hypothesis that textures with 

identical second-order statistics are not preattentively distinguishable, such as the texture pair in 
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Figure 2.2(a). Later on though, Julesz found a few counterexamples to his theory; he discovered 

a set of textures with equal second-order statistics, which are preattentively discriminable based 

on perceived local geometrical features, as seen in Figure 2.2(b) (Julesz et al., 1973). 
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Figure 2.2: Texture Pairs with Equal Second-order Statistics. 

These notions are very significant in the study of texture analysis, which deals with various 

techniques for modeling textures and extracting texture features that can then be applied to such 

tasks as, classification, segmentation, texture synthesis and shape extraction. The concepts of 

human texture perception are meaningful to other fields as well, such as image processing and 

pattern recognition, which attempt to solve problems involving visual data through the use of 

texture (Tomita and Tsuji, 1990). Pattern recognition is a very common method used in 

discriminating objects. In order to recognize different types of objects in the visual world, we can 

use the texture of an object that has its own specific visual pattern as an indication. According to 

Pickett (1970), the basic requirement for an optical pattern to be seen, as texture, is that there be 

a large number of elements (spatial variations in intensity or wavelength), each to some degree 

visible and on the whole, densely and evenly arrayed over the field of view. 

2.1.1 Image Texture 

Texture is an important aspect for the analysis of many types of images. Texture analysis is a 

major technique used in image processing and pattern recognition, mainly because of the fact 
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that it can provide information about the arrangement and spatial properties of image 

fundamental elements. Such texture information is complementary to multispectral analysis and 

is sometimes the only way in which a digital image can be characterized (He and Wang, 1991). 

In fact, Haralick et al. (1973) demonstrated this concept through their study, which showed that 

spectral classification precisions of an image could be increased with the integration of textural 

data. This conclusion caused texture analysis to become an extremely interesting field of 

research, especially for applications in remote sensing. Since texture plays a key role in all types 

of images, from remotely sensed, biomedical, and microscopic images to printed documents, 

texture analysis has a very wide range of practical applications that are useful to a variety of 

domains, from mature fields, such as remote sensing (Shaban and Dikshit, 2001) to more recent 

disciplines, such as medical imaging (Zizzari et al. 2001), document processing (Jain and 

Bhattacharjee, 1992) and automated inspection (Li et al., 2001). 

There is no straight forward definition for texture. One definition taken from literature on image 

processing is as follows (Coggins, 1982): An image texture is described by the number and types 

of its (tonal) primitives and the spatial organization or layout of its (tonal) primitives... A 

fundamental characteristic of texture: it cannot be analyzed without a frame of reference of tonal 

primitives being stated or implied. For any smooth grey-tone surface, there exists a scale such 

that when the surface is examined, it has no texture. Then as resolution increases, it takes on a 

fine texture and then a coarse texture (Haralick, 1979). 

For applications in image processing, texture is generally described as the group of relationships 

between grey levels of neighbouring pixels that contribute to the overall appearance and visual 

characteristics of an image. This description takes into account the forms and periodicities 

contained in the image; however, it does not provide a rigorous mathematical description for 

texture with which a quantitative evaluation of textures present in natural images can be made. 

With this in mind, Haralick et al. (1973) proposed the texture definition that images are 

represented by the spatial distribution of objects of a specific size and having reflectance or 

emmitance characteristics. The spatial organization and the relationships between these objects 

correspond to the spatial distribution of grey levels in the image. Thus, texture can be considered 

as the pattern of the spatial distribution of grey levels. 
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One important factor that is usually overlooked in the definition of texture is the scale of 

observation, or resolution, at which the texture is viewed. This is significant because texture is a 

complex multiscale phenomenon (Ahearn, 1988); it has a recursive nature. A primitive at one 

scale may contain a micro-texture composed of primitives defined at a smaller scale. For 

example, consider the texture represented in a brick wall (Tuceryan and Jain, 1998). When 

viewed at a low resolution, the texture of the wall is perceived as formed by primitives, which 

are the bricks, as seen in Figure 2.3(a). When viewed at a higher resolution, texture is perceived 

as the details present in the surface of each individual brick, as seen in Figure 2.3(b). 

(a) Low resolution (b) High resolution 

Figure 2.3: Textures at Different Scales in a Brick Wall 

2.1.2 Statistical Texture Approaches 

Texture analysis techniques can generally be divided into two broad categories: structural 

methods and statistical methods (Haralick, 1979; Sali and Wolfson, 1992). Structural methods of 

texture analysis consider texture to be composed of texture primitives that are arranged 

according to a specific placement rule. Different types of primitives, their orientation and shape, 

along with other properties are considered to determine the appearance of texture. This type of 

analysis includes the extraction of texture primitives in the image, shape analysis of the texture 

primitives, and estimation of the placement rule of the texture primitives. Structural texture 

analysis approaches can derive much more detailed textural information and are generally used 

for the analysis of coarse macro-textures (Tomita and Tsuji, 1990). 
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Statistical texture methods analyze the spatial distribution of grey values by computing local 

features at each point in the image, and deriving a set of statistics from the distributions of the 

local features. Depending on the number of pixels defining the local feature, statistical methods 

can be further classified into first-order (one pixel), second-order (two pixels) and higher-order 

(three or more pixels) statistics. The basic difference is that first-order statistics estimate 

properties, such as average and variance, of individual pixel values, while ignoring the spatial 

interaction between image pixels, whereas second- and higher-order statistics estimate properties 

of two or more pixel values occurring at specific locations relative to each other. Various texture 

features can then be extracted from these statistics. This type of analysis is usually employed for 

fine micro-textures (Tomita and Tsuji, 1990). 

2.1.2.1 First-order Statistics 

First-order statistics can be computed from a probability function, known as a histogram, which 

measures the probability of a pixel with a certain grey value occurring in an image. Figure 2.4(a) 

presents an image and Figure 2.4(b) provides its corresponding histogram. 

(a) Image Data (b) Histogram 

Figure 2.4: Histogram of Corrosion Image 

A class of texture measures can be derived from first-order statistics of primitives or local 

features of a texture pattern. The simplest primitives, called pixels, may be used; however, 

moments (means, variances, etc) of pixel intensity distributions convey only crude textural 

information. More meaningful textural information can be captured from a structural description 
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of the texture pattern. The texture is considered as being composed of more complex local 

features (such as edges, lines, blobs, relative intensity extrema, regions of uniform intensity, 

etc.), each having particular attributes (orientation, size, contrast, area, etc.). First-order statistics 

of these attributes may be used to characterize the texture. 

2.1.2.2 Second-order Statistics 

A second-order histogram is an array that is formed based on the probabilities that pairs of 

pixels, separated by a certain distance and a specific direction, will have co-occurring grey 

levels. This array, or second-order histogram, is also known as the grey level co-occurrence 

matrix (GLCM). Use of co-occurrence matrices for the extraction of textural information from an 

image is based on the hypothesis that image texture can be defined by the spatial relationships 

between pixel grey levels of the image (Haralick, 1979). Since the co-occurrence matrix 

expresses the two-dimensional distribution of pairs of grey-level occurrences, it can be 

considered a summary of the spatial and spectral frequencies of the image. 

Let /be a rectangular, discrete image containing a finite number of grey levels;/is defined over 

the domain: 

D = {(i, j ) : i e [0, n;), j e [0, n j), i, j e 1} (2.1) 

by the relation: 

/ = {(ft j), k ) : ft J) G D, k =/(i , j), k e [0, ng), k e 1} (2.2) 

where I denotes the set of integers, nj and nj are the horizontal and vertical dimensions of/, and 

ng is the number of grey levels inf. 

The grey level co-occurrence matrix (GLCM), G, is a square matrix of dimension ng and is a 

function of both the image,/, and a displacement vector, d: 
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d = { [ i J ] : ( | i | , l J I ) e D , | | [ i , j ] | | > 0 } (2.3) 

in the image plane (i, j), which constitutes the second-order spatial relation: 

G if, d) = [ gjj (f, d)] (2.4) 

Each element g,j of the matrix represents an estimate of the probability that two pixels separated 

by d have grey levels i and j . 

2.2 Signal Processing 

Signal processing deals with the analysis, interpretation and manipulation of signals, which are 

streams of information that represent some particular type of data. Signal processing is one of the 

most powerful technologies to shape science and engineering in the twenty-first century, in a 

broad range of fields, such as communications, and imaging, to name a few (Smith, 1998). In 

digital signal processing, engineers usually study digital signals in one of the following domains: 

time domain for one-dimensional signals, spatial domain for multidimensional signals, frequency 

domain, autocorrelation domain, and wavelet domain. 

The transform of a signal is just another form of representing the signal. The wavelet transform 

provides a time-frequency representation of a signal. While the Fourier transform uses waves to 

analyze signals, the wavelet transform uses wavelets of finite energy. A wave is an oscillating 

function of time or space and is periodic (Figure 2.5(a)). In contrast, wavelets are localized 

waves (Figure 2.5(b)); they have their energy concentrated in time or space and are suited to the 

analysis of transient signals. 
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(a) Wave (b) Wavelet 

Figure 2.5 Examples of a Wave and a Wavelet 

2.2.1 Wavelet Transforms 

Recent psycho-visual studies indicate that the human visual system processes images in a multi-

scale manner (Daugman, 1990). In the past, one difficulty of texture analysis was the lack of 

adequate tools to characterize different scales of texture effectively (Zhu and Yang, 1998). 

Developments in multi-resolution analysis techniques, such as Gabor and Haar transforms, 

Gaussian and Laplacian pyramids, have helped to overcome this difficulty. In the last decade, the 

wavelet theory in particular, became a mathematical framework that provides a more formal, 

solid and unified approach to multi-resolution representations (Scheunders et al., 1997). This was 

achieved through the work of Mallat (1989), who established the connection between wavelets 

and the multi-resolution theory. 

One of the standard approaches in the field of analysis is to break up a complicated phenomenon 

into many simpler pieces to be studied individually. Earlier methods of analysis relied mostly on 

Fourier transform techniques, but due to their lack of localization in the time domain, and their 

limited resolutions, these were not found useful for applications that require time information. 

Figure 2.6 shows the Fourier transform of a signal. 
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Figure 2.6: Fourier Transform 

The wavelet transform is one of the most recent solutions to overcome the drawbacks of the 

Fourier transform, as well as those of multi-resolution representations. Although the theory 

behind wavelets has been around for several decades, it was not until the early 1980s, when 

Stromberg (1981) discovered the first orthogonal wavelets that researchers began to understand 

the potential of this powerful technique (Jawerth and Sweldens, 1994). The wavelet transform 

was inspired by the idea that the scale of the basis functions could be varied instead of their 

frequency: a subtle yet powerful modification. Instead of representing a function as a sum of 

weighted delta functions, as in the time domain, or as a sum of weighted sinusoids, as in the 

frequency domain, the function is represented as a sum of time-shifted and scaled representations 

of some arbitrary function, otherwise known as the mother wavelet (Perkins and Fricke, 2000). 

In wavelet analysis, the use of a fully scalable modulated window solves the problem of time 

resolution. The window is shifted along the signal and for every position the spectrum is 

calculated. The wavelet transform first compares the entire function to the wavelet, and then 

compares smaller pieces of the function to the wavelet. This process is completed on 

successively smaller and smaller scales. This forms a representation of the original function as a 

sum of wavelets of various scales and positions in time, achieving a balance between locality in 

time and locality in frequency or scale. The result of the wavelet transform is a collection of 

time-frequency representations of the signal, all with different resolutions, as demonstrated in 

(Figure 2.7). This collection of representations provides for a multiresolution analysis. 
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Signal Constituent wavelets of different scales and positions 

Figure 2.7: Wavelet Transform 

The continuous wavelet transform is provided by the equation: 

X r f T (r, .s-) = \x(t) • w' \ \dt (2 5) 

where x(Y) is the signal to be analyzed, and y/(t) is the mother wavelet or the basis function. 

The mother wavelet used to generate all the basis functions is designed based on some desired 

characteristics associated with that function. The translation parameter r relates to the location of 

the wavelet function as it is shifted through the signal. Thus, it corresponds to the time 

information in the wavelet transform. The scale parameter s is defined as |1/frequency! anQ* 

corresponds to frequency information. Scaling either dilates (expands) or compresses a signal. 

Large scales (low frequencies) dilate the signal and provide detailed information hidden in the 

signal, while small scales (high frequencies) compress the signal and provide global information 

about the signal. As a result, the wavelet transform simply performs the convolution operation of 

the signal and the basis function. 

2.2.1.1 Haar's Wavelet 

A Hungarian mathematician by the name of Alfred Haar (1910) discovered the first wavelet with 

orthogonal properties in 1910. In recent years the Haar theory has been improved and applied to 

various fields in engineering and science (Hsiao, 2004). The Haar wavelet is simply a step 
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function (Figure 2.8); nevertheless, it forms an orthonormal wavelet basis, and due to its 

simplicity and place in history, it has become the standard example used in introducing wavelets. 
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Figure 2.8: Haar Wavelet Function 

This wavelet uses a process called averaging and differencing. For example, take a data sample 

of a string of numbers, which might represent the first row of an 8x8 pixel image or even the 

functional values of a discrete signal: 

12 20 16 28 32 32 22 14 

These numbers are grouped into pairs of two adjacent numbers, where pair one will be (12, 20), 

pair two will be (16, 28), and so on. First the average of the numbers in each pair is taken and the 

four resulting averages are placed at the beginning of a new row. Then the difference of the 

numbers is taken; the two numbers are subtracted and divided by two. The differences, known as 

the detail elements, are placed on the same row after the averages. 

12 

16 

19 

22 

20 

22 

25 

-3 

16 

32 

-3 

-3 

28 

18 

7 

7 

32 

-4 

-4 

-4 

32 

-6 

-6 

-6 

22 

0 

0 

0 

14 

4 

4 

4 

Thus, the first four numbers in the second row are the averages and the last four are the detail 

elements. This process is repeated on the averages until there is only one average left. Detail 

elements are carried down from the above row and the new differences are placed in front of the 

old ones. Since there are eight numbers in the above sample, the process of averaging and 
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differencing will occur three times because 8 = 23. The bottom row represents the transformed 

data sample. In the transformed row, there is one average and seven detail elements. This is how 

the process works on one-dimensional data. For two-dimensional data, such as an image matrix, 

the transform is performed on each row and each column of the matrix. This is equivalent to 

performing averaging and differencing on each row then performing the process on each row of 

the transpose of the row-transformed matrix (Fontenot, 2001). 

2.2.1.2 The Discrete Wavelet Transform (DWT) 

The discrete wavelet transform (DWT) is a linear transformation that operates on a data vector 

whose length is an integer power of two, transforming it into a numerically different vector of 

the same length. In this approach, the mother wavelet is scaled and dilated in discrete steps 

(Kociolek et al, 2001). For a two-dimensional digital image, Haar's discrete wavelet transform 

is applied to the pixel values in each row, and then in each column, thus decomposing an image 

into low frequency and high frequency components. 

The Haar wavelet can be described as/(x) where: f(x) 

The DWT scales, or decomposes an image into one low-resolution image (LLi), which 

corresponds to coarse-scale coefficients, and three detail images (LHi, HLi and HHi), which 

represent the fine-scale coefficients, thus producing a set of four sub-band images, as in Figure 

2.9(a). The process iteratively blurs the original image, eliminating fine texture details while 

retaining the coarse texture details, to obtain the low-resolution image; the three detailed images 

contain the information lost during this process. Every sub-image can be sampled by a factor of 

2, hereby retaining the possibility of a complete reconstruction. This leads to a representation 

with an equal amount of pixels as the original image (Livens et al., 1997). 

The low-resolution image can further be decomposed into the next level of low-resolution and 

detailed images. Therefore, depending on the number of resolution steps required /, 1+3/ sub-

band images will be produced, resulting in a multi-level decomposition as shown in Figure 

i d<i< 1/2, 

- 1 1/2 < x < 1, (2.6) 

0 otherwise. 
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2.9(b). The LL image results from a low-low-pass filter, the LH image from a low-high-pass 

filter, the HL image from a high-low-pass filter, and the HH image from a high-high-pass filter. 

In a pyramidal decomposition, only the low-resolution image (LL) is further decomposed. This 

allows for the analysis of texture at different scales, known as multi-resolution analysis (Mallat, 

1989). 

LLi 

LHi 

HLi 

HHi 

LH2 

HL2 

HH2 

LHi 

HL! 

HHi 

(a) One-level (b) Multi-level 

Figure 2.9: A Pyramidal Wavelet Decomposition 

Among the advantages of DWT when applied to image processing, are the similarities of the data 

structure with respect to the resolution, where the higher resolution images include the lower 

resolution images, and the possibility of decomposition at any level. This approach can be 

especially useful when applied to remote sensing data, such as radar and IR thermographic 

images, when analysis is to be carried out on coarse textures of the image using a low resolution 

level, or in detail on the fine textures of the image using an appropriate higher resolution level. 

The transform separates the fine and coarse textures, which aid in their analysis. 

When the detail images are also decomposed further, we obtain the tree-structured or wavelet 

packet decomposition. Figure 2.10 shows the scheme for the tree-structured decomposition. It is 

significant due to the manner in which it connects the continuous-time multiresolution to 

discrete-time filters. In the figure, the signal is denoted by the sequence x[n], where n is an 

integer. The low-pass filter is denoted by G0 while the high-pass filter is denoted by H0. At each 

level, the high pass filter produces detail information; d[n], while the low pass filter associated 

with scaling function produces coarse approximations, a[n]. 
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Figure 2.10: Three-level Wavelet Tree-structured Decomposition 

2.2.1.3 Wavelet Reconstruction 

The process, by which the discrete wavelet transform breaks down and separates signals and 

images into components of successively smaller resolutions, is known as decomposition or 

analysis. The procedure where the components are assembled back into the original signal, 

without loss of information, is called reconstruction, or synthesis. The mathematical 

manipulation that results in synthesis is called the inverse discrete wavelet transform (IDWT). 

Basically, the reconstruction is the reverse process of decomposition (Figure 2.11). The 

approximation and detail coefficients at every level are upsampled by two, passed through the 

low-pass and high-pass synthesis filters and then added. This process is continued until a 

resolution is obtained at which the texture of interest is isolated, or it can continue through the 

same number of levels as in the decomposition process to obtain the original signal. 
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Figure 2.11: Three-level Tree Reconstruction 

2.3 Spatial Image Filters 

Spatial filters are area operators that create new map values as a function of values of existing 

neighbouring pixels. Spatial filtering is used to enhance images by applying filter functions in 

the image space. Filters suppress or de-emphasize certain image frequencies and pass or 

emphasize others. The emphasized frequencies are combined into an enhanced image. The filters 

usually summarize the original classified image using a moving window or kernel. According to 

the size of the kernel, the window scans the neighbourhood of each pixel in the classified image. 

Depending on the type of kernel, a value is computed for each pixel based on its neighbourhood, 

which is then used to create the output image. 

2.3.1 Lowpass Filter 

Filters that pass low frequencies are called lowpass filters. They suppress high frequencies, 

which correspond to fine details, such as speckle, known as salt and pepper noise in an image. 

Lowpass filtering reduces deviations in the image from local averages by replacing the original 

values with their local averages, thus smoothing the grey level values of the original image. The 

larger the size of the kernel employed, the more drastic the smoothing is. 
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2.3.2 Median Filter 

Median filters are a group of filters based on ranking pixel grey-values. They smooth an image 

while preserving edges larger than the kernel size by replacing each centre pixel with the median 

value found within the neighbourhood of the filter. These filters are good at eliminating 

impulsive noise, such as salt and pepper noise or speckle, while preserving edge data. The usual 

square median filter eliminates fine vertical or horizontal lines; this can be overcome through the 

use of a cross-shaped mask. 

2.3.3 Edge-detectors 

Edge-detection is an important area of research in the field of image processing and computer 

vision. Edges are considered to be areas with strong intensity contrasts, causing a jump in 

intensity from one pixel to the next. The goal of edge-detection is to identify the points in a 

digital image at which the luminous intensity changes sharply. Detecting edges significantly 

reduces the amount of data, filtering out useless information, while preserving the important 

structural properties of the image. 

For example, consider the detection of an edge to be one-dimensional; take a data sample of a 

string of numbers, which may be a single line of pixel intensities. It appears that there should be 

an edge between the 4th and 5th pixels in the following one-dimensional data: 

5 7 6 4 152 148 149 

However, a specific threshold must be selected concerning how large the intensity change must 

be between two neighbouring pixels in order to state that there is an edge between the two. As a 

result, this is one of the factors that can make detecting edges quite difficult, unless the objects in 

the scene are particularly simple and the illumination conditions can be easily controlled. 

Based on the concept that an edge is characterized by a change in intensity over a number of 

pixels, edge-detection algorithms generally calculate a derivative of this intensity change. Most 

approaches may be grouped into two categories: gradient (first-order) and Laplacian (second-

order). The gradient methods detect edges by searching for the maximum and minimum in the 
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first derivative of the image (Hutchinson and Chen, 2006). Gradient methods comprise such 

approaches as the Canny, Prewitt, Roberts, and Sobel operators. Laplacian methods look for 

zero-crossings in the second derivative of the image to find edges (Laws, 1980). A frequently 

employed Laplacian operator is the Marr-Hildreth approach. 

2.3.3.1 Roberts Operator 

The Roberts edge-detection algorithm (Roberts, 1965) is one of the earliest operators used in 

computer vision. This gradient technique works by computing the sum of the squares of the 

differences in intensity between diagonally adjacent pixels. This can be accomplished by 

convolving the image with two 2x2 kernels, which provide a simple approximation to the 

gradient magnitude: 

0 

-1 

+1 

0 

+1 

0 

0 

-1 

Computations, though, are carried out at an interpolated point; consequently, the Roberts 

operator is an approximation to the continuous gradient at this interpolated point and not at an 

actual point. However, it is a useful technique and is still in use due to the speed of its 

computations. 

2.3.3.2 Sobel Edge-Detector 

Another gradient method of edge-detection is the Sobel algorithm (Parker, 1997; Davis, 1975). 

This is a discrete differentiation operator, computing an approximation of the gradient of the 

image intensity function. At each point in the image, the result of the Sobel operator is either the 

corresponding gradient vector or the norm of this vector. It uses intensity values in a 3x3 region 

around each image point to approximate the corresponding image gradient and integer values for 

the coefficients, which weight the image intensities to produce the gradient approximation. The 

3x3 kernels are as follows: 
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2.3.3.3 Marr-Hildreth Algorithm 

The Marr-Hildreth edge-detection method (Marr and Hildreth, 1980) is also known as the 

Laplacian edge-detector. This simple technique operates by convolving the image with the 

Laplacian of the Gaussian function, or, as a fast approximation by Difference of Gaussians. 

Then, zero-crossings are detected in the filtered result to obtain the edges. The Laplacian of the 

Gaussian operator is sometimes also referred to as the Mexican hat wavelet due to its visual 

shape when turned up side down. 

2.3.4 Directional Filter 

Other edge enhancement filters that selectively enhance image features having specific direction 

components are directional filters. The sum of the directional filter kernel elements is zero; the 

result is that areas with uniform pixel values are zeroed in the output image, while those that are 

variable are presented as bright edges. 

2.4 Image Classification 

Image classification is used to improve the qualitative visual analysis of image data with a 

quantitative analysis through automated identification of features in a digital image. This is 

desired because of the fact that a computer can analyse at the pixel level and can examine and 

identify as many pixels as needed, thus taking full account of the spatial and spectral details 

present (Schowengerdt, 1997). This type of image interpretation is considered a quantitative 

analysis due to its capacity to identify pixels based on their numerical properties and to provide 

area estimates by counting pixels (Jensen, 1996). 

There are two general approaches to the classification process: supervised and unsupervised 

classification. Supervised classification is closely controlled by the image analyst and requires 
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extensive knowledge of the data and of the classes desired. The supervised artificial neural 

network is an example of a supervised classification technique. Unsupervised classification is 

more computer-automated and is dependent upon the data itself for the determination of the 

object classes; the analyst then identifies these classes after classification (Richards and Jia, 

1999). A commonly employed unsupervised classification approach is the K-means clustering 

algorithm. 

2.4.1 Artificial Neural Networks (ANNs) 

Artificial neural networks are mathematical models originally designed to mimic aspects of how 

biological nervous systems, such as the brain, are believed to process information. These models 

grew out of research in Artificial Intelligence, where attempts were made to imitate the fault-

tolerance and capacity to learn by modeling the low-level structure of the brain (Patterson, 1996). 

It is known that the human brain learns by experience, and so the neural network approach uses a 

non-algorithmic computing model, which is based on a process of learning from examples in 

order to store experiential knowledge to be used for specific tasks (Haykin, 1999). 

ANNs appear to be a recent development; however, this field was established before the advent 

of computers. The first model of artificial neurons was developed in 1943 by the 

neurophysiologist Warren McCulloch and the logician Walter Pitts, based on their understanding 

of neurology. In 1958, Frank Rosenblatt (1958) produced considerable interest and activity in the 

field when he designed the Perceptron. This model had three layers, with the middle layer known 

as the association layer. This system was capable of learning to connect or associate a given 

input to a random output unit. However, it was not until the early 1980s that the field of ANNs 

saw some significant progress as research interest increased with the recognition of its 

application potential (Bishop, 1995). In recent years, ANNs have become a popular alternative to 

traditional statistical classification methods and have been successfully used in a variety of 

fields. There are about thirty different ANN models that have been developed, of which the 

multi-layer perceptron (MLP) is the most popular (Sarle, 1994). 
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2.4.1.1 The Multi-layer Perceptron (MLP) 

The multi-layer perceptron network is a popular supervised ANN classification approach. The 

MLP (Figure 2.12) is usually composed of three layers: an input layer, a hidden layer and an 

output layer. In the input layer, the number of nodes corresponds to the number of input features. 

The number of nodes in the output layer corresponds to the number of target classes. The number 

of hidden nodes, however, depends on the type of data. Usually, the more there are hidden nodes, 

the more complex a phenomena the network can model. If not enough hidden nodes are used, the 

network will not be trained sufficiently. 

"~*V \ <* 

Input Nodes Hidden Nodes Output Nodes 

Figure 2.12: Example of an MLP Neural Network 

If there are too many hidden nodes, the network will be over-trained; it will produce perfect 

results on training data but poor results on new data or testing data (Liu et al., 2003). As a result, 

the agreement or disagreement between the results of the training data and the testing data can 

serve as an indicator of the classification accuracy for various network set-ups (Lek and Guegan, 

1999). 

2.4.2 JT-means Clustering Technique 

Clustering techniques are unsupervised classification methods that are used to find natural 

similarities in data, in order to organize and group the data based on those similarities. Clustering 

approaches can be broadly divided into four groups: exclusive, overlapping, hierarchical and 

probabilistic techniques. The simplest of these are the exclusive clustering algorithms, which 
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group data in an exclusive way, so that if any data belongs to one cluster then it cannot be 

included in another cluster (Jain and Dubes, 1988). The K-means classifier is one such technique. 

The AT-means clustering algorithm is an iterative process that groups pixels into classes of 

interest that are defined by determining the optimal partitioning of pixels into a specified number 

of object classes (Figure 2.13). In general, the first step is to specify the number of classes or 

clusters, as well as a set of points for the centres of the clusters; these points are often chosen so 

that they are as far apart as possible. Then the algorithm assigns an arbitrary initial cluster 

vector. The second step classifies each pixel to the closest cluster. In the third step the new 

cluster mean vectors are calculated based on all the pixels in one cluster. 

Figure 2.13: Example of A-means Clustering 

The second and third steps are repeated until the data is classified into the predefined number of 

clusters and the change between the iteration is small. This change can be defined in several 

different ways: either by measuring the distances by which the mean cluster vectors have 

changed or by the percentage of pixels that have changed between iterations. The objective of the 

A"-means algorithm is to minimize the variability within clusters and to maximize variability 

between clusters (Awcock and Thomas, 1996). 

In order to accomplish this, the algorithm aims at minimizing the objective function, also 

referred to as the squared error function. The objective function is the sum of squares of 

distances between each pixel and its assigned cluster center. What this basically does is to find 
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the square of the Euclidian distance of each data point from the centre of its currently assigned 

cluster. The number derived from there is summed with all the other distances, as shown in 

Figure 2.14. 
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Figure 2.14: Example of A-means Clustering Algorithm 

That sum is defined as the sum of squares, and is given by the following equation: 

(2.7) 

where C(x) is the mean of the cluster that pixel x is assigned to. Minimizing the distances is 

equivalent to minimizing the Mean Squared Error (MSE). The MSE is a measure of the within 

cluster variability: 

ZMOOP 
MSB' _ TO _ ""tibstmcti (2.8) 

(N-c)b (N-c)b 

where N is the number of pixels, c indicates the number of clusters, and b is the number of 

spectral bands. The main advantages of this algorithm are its simplicity and speed, which allows 

it to run on large datasets. Since the algorithm is extremely fast, a common method to obtaining 

better results is to run the algorithm several times and return the best clustering found. 
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2.4.3 Classification Precision: the Kappa Coefficient 

The final step of the classification process is the evaluation of the precision of the results. This 

indicates how well the classification performed and whether or not the objectives have been 

achieved. One of the most common methods of expressing classification accuracy is the 

preparation of a classification error matrix, also known as the confusion matrix. The error matrix 

compares the relationship between known reference data, obtained from verification sites 

selected from the imagery, and the corresponding results of the classification. 

Once the image is classified into different objects classes, each pixel in the verification sites is 

compared with the label of the class that represents it in the classified spectral space. The overall 

result of this process is presented in the form of a confusion matrix (Richards and Jia, 1999). 

From this matrix many classification precision indexes can be calculated. In a comparative study 

done on the different methods of evaluating the classification accuracy, it was found that the 

most appropriate index to provide an exact classification precision is the Kappa coefficient, 

because it takes account of all the elements of the confusion matrix (Fung and Ledrew, 1988). 

N ^ x k k - X X k s X 2 k 

Kappa Coefficient K= —^ * (2.9) 

N 2 - £ X k S x 2 k 
k 

where E is the sum over all rows in the matrix, xkk is the total of marginal rows, xk is the total of 

marginal columns, and N is the number of observations. 

2.4.4 Post Classification 

After performing the classifications, the resulting data can be manipulated in order to derive 

further information, to highlight certain aspects of the results or to improve the appearance of the 

classified image. There are various ways to further process the results, such as manually editing 

the classification, converting classified images into binary images, improving the classification 
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using auxiliary data, or filtering and smoothing the classification when there is high spectral 

variability in the original classification results. 

In order to smooth out the classified image, kernal filters can be employed to reduce the number 

of spurious pixels in the image. There are many standard kernel operators, of which some are: 

maximum, minimum, majority, minority, mean, median, mode, standard deviation, and diversity. 

The majority analysis kernel operator changes spurious pixels within a large single class by 

selecting a kernel size; the centre pixel in the kernel is replaced with the class value of the 

majority of the pixels in that kernel. Larger kernel sizes produce more smoothing of the 

classified image. 

2.5 Concrete Deterioration 

There are many factors that contribute to the deterioration of concrete. Mechanical stress and 

fatigue, and chemical and environmental conditions are among the major causes of concrete 

distress. Environmental conditions, such as freeze and thaw cycles, winter de-icing, and water 

intrusion, in turn lead to other factors such as the alkali-aggregate reaction (AAR) and the 

corrosion of steel reinforcement. However, water is at the heart of most of these physical and 

chemical factors (Mehta et al. 1992). Moisture levels in the concrete determine the risk of 

corrosion attack occurring on cast-in steel and reinforcement. The amount of moisture also 

controls the rate of harmful mechanisms such as AAR. 

When a structure is newly taken into service, there may already be damage, which can be 

attributed to unsatisfactory construction practices. Cracks in the concrete, which is one of the 

major types of deterioration, can exist even before the structure is subjected to any external 

loading. An excessive water-cement ratio, improper curing, and creation of high temperatures 

during the hardening process, may result in shrinkage, which is the direct cause of cracking. 

Those cracks, which exist in concrete at early stages, later expand and widen during service 

conditions after hardening. This deterioration is further accelerated by weathering factors, such 

as freeze and thaw cycles, the intrusion of water, and the corrosion of steel reinforcement, which 

ultimately lead to the fracture of concrete due to excessive tensile stress (Rhim, 2001). Thus, 
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poor construction, combined with environmental conditions, usually lead to reduced durability 

and service life of the concrete structure, which may manifest itself years later. 

2.5.1 Alkali-Aggregate Reactions (AAR) 

The most common type of concrete damage is cracking. Map-like surface cracking may indicate 

an adverse reaction between cementitious alkalis and aggregates. This reaction, known as the 

alkali-aggregate reaction (AAR) is a potentially harmful process in concrete containing reactive 

aggregates, and can lead to varying degrees of cracking in structures, as well as differential 

movement and misalignment of concrete elements and mechanical installations (Fournier and 

Berube, 2000). Structural problems related to AAR have been detected in concrete structures 

since the beginning of the 20th century, but it was not before the 1940s that it was first identified 

(Stark, 1995). Subsequently, AAR has been recognized in more than 50 countries around the 

world; it is likely that the problems associated with AAR exist in a larger number of countries, 

but concrete distress in several instances may have been attributed to other causes. AAR has 

been determined to be one of the most common causes of concrete deterioration in Eastern 

Canada (Rivard et al., 2000). 

AAR is a form of chemical reaction in concrete, which occurs between alkali-reactive 

constituents present in the aggregates and sodium and potassium alkali hydroxides released from 

Portland cement, or from other sources, in the pore water of the concrete. The reaction involves 

two phases: the production of a hygroscopic gel, and, in the presence of moisture, the absorption 

of water by the gel and its expansion. If there is enough void space to accommodate the gel, such 

as pores and cracks, then the concrete volume remains unchanged. However, the reaction is 

potentially harmful when the swelling gel expands significantly, causing tensile stress and 

ultimately cracking in the concrete, which often results in a "map pattern" of cracks on the 

concrete surface (Figure 2.15). Therefore, gel secretion, swelling, and surface map-cracking in 

concrete are often associated with AAR development. The consequences of AAR, apart from 

reduced durability due to cracking, are global swelling and expansion of concrete leading to 

severe operational problems (Capra and Sellier, 2001). 
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Any kind of structure can be affected by AAR; however, most of the structures that are severely 

distressed are exposed to extreme weather, or are underground in contact with damp soil, where 

a sufficient amount of moisture is available for significant expansion to occur. Also, structures in 

direct contact with water, such as dams, locks, and bridges, are particularly susceptible to AAR. 

Over 104 cases of alkali-aggregate reaction in dams and spillways have been reported around the 

world. 

AAR can cause significant damage to concrete structures, which can be costly to rectify (IRC, 

2003). The swelling of the gel produced as a result of the reaction can generate excessive tensile 

stress in the concrete, leading to slow but progressive expansion, and internal and external 

cracking, which can result in a decrease in structural safety (Bakker and Postema, 2003), as well 

as serious operational and serviceability problems. Indications of the presence of harmful alkali-

aggregate reactivity may be in the form of a complex network of micro-cracks within the 

affected concrete element, as well as macro-cracks at the surface that develop in a map-like 

pattern influenced by the presence of restraint and reinforcement (Figure 2.16). Other typical 

signs of AAR are closed or spalling joints, relative displacement of different portions of a 

structure, or fragments breaking out of the surface of the concrete, known as pop-outs. 
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(a) CANMET Specimen (b) GRAI Specimen 

Figure 2.16: CANMET and GRAI Specimens Exhibiting AAR cracking 

Because deterioration due to alkali-aggregate reaction is a slow process, the risk of catastrophic 

failure is low. In fact, in Canada, much of the concrete made with reactive aggregates remains in 

service. However, concrete affected by the alkali-aggregate reaction can cause serviceability 

problems and aggravate other deterioration mechanisms, such as those that occur in frost, de-

icing, or sulphate exposures. Consequently, bridges designed for 100 years of service are 

exhibiting concrete cracking due to AAR just seven years after construction. 

2.5.2 Steel Corrosion 

Corrosion of reinforcing steel in concrete is a growing international problem. Many studies have 

identified steel corrosion as one of the main degradation mechanisms in concrete highway 

bridges and parking decks, especially in maritime areas and places where de-icing salts are used 

during the winter season. The cost of corrosion damage caused by de-icing and sea salt on 

highway bridges was estimated at over $150 billion in the U.S. (Broomfield, 1997). In Canada, 

50% of the estimated 70 000 bridges have an average age of between 30 and 45 years, and are in 

need of major rehabilitation and/or total replacement (Carter, 1999) due to corrosion distress. 

The environment provided by good quality concrete to steel reinforcement is one of high 

alkalinity due to the presence of the hydroxides of sodium, potassium and calcium produced 
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during the hydration reactions. The bulk of surrounding concrete acts as a physical barrier to 

many of the steel's aggressors. In such an environment steel is passive and any small breaks in its 

protective oxide film are soon repaired. If the alkalinity of its surroundings is reduced, however, 

such as by neutralisation with atmospheric carbon dioxide, or by depassivating anions, such as 

chloride, which are able to reach the steel, then severe corrosion of the reinforcement can occur. 

The permeability of the concrete is important in determining the extent to which aggressive 

external substances can attack the steel. 

Corrosion occurs when reinforcing steel that has been placed too close to the surface of the 

concrete, or that has been exposed by spalling, erosion, or cracking, oxidizes in the presence of 

moisture that is rich in salt. It is an electrochemical process that involves the transfer of 

electrically charged ions between two areas of the reinforcing steel surface with different 

potentials (anode and cathode) through the concrete pore solution, which serves as an electrolyte. 

The corrosion rate of the steel reinforcement depends on the ease with which the ions 

participating in the electrochemical process can flow. Various factors such as electrical 

resistivity of the concrete, electrochemical potential of the cathodic area, and the ratio of 

cathodic area to anodic area, control the flow of the electrically charged ions in the concrete 

(Ismail and Soleymani, 2002). The electrons produced during this process are conducted through 

the metal, while the ions that are formed are transported via the pore water. 

Corrosion can damage or reduce the serviceability of concrete structures in several ways. Firstly, 

corrosion produces expansive products that generate tensile stress in the concrete surrounding the 

reinforcing steel, which may cause the concrete to crack (Figure 2.17). Secondly, corrosion 

products are highly porous, weak, and often form around steel reinforcement, reducing its cross-

sectional area and decreasing the bond strength between the reinforcing steel and the concrete 

(Wang and Monteiro, 1997), which in turn can result in staining of the concrete by rust, and a 

decrease in the ultimate load bearing capacity and flexibility of the structure (Ismail and 

Soleymani, 2002). With the progress of corrosion, the corrosion product grows in size and 

applies increasing mechanical forces to the surrounding concrete that eventually cracks. Further 

corrosion causes these cracks to propagate followed by spalling and delamination of concrete 

cover due to the increase in volume associated with the conversion of iron to iron oxide. 
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Figure 2.17: Corrosion Damage in Component of Jacques-Cartier Bridge 

2.5.3 Freeze-Thaw Cycles 

The most destructive weathering factor in concrete deterioration is the freeze-thaw cycles that 

are typical of the climate in northern areas. In Canada, changing temperatures have a significant 

effect on the condition of road networks; each year, Canada invests $17 billion in transportation 

infrastructure, and it is estimated that $1.7 billion of this is spent adapting to current climate 

conditions (Andrey and Mills, 2003). Temperature differences and increased frequencies of 

freeze-thaw cycles are related to premature deterioration of pavement structures (Schmidlin et 

al., 1999), resulting in increased surface roughness (Haas et al., 1994), as well as a loss of 

pavement strength (Croney and Croney, 1999). 

Deterioration of concrete from freeze-thaw actions occurs when significant saturation of the 

concrete causes internal tensile stress. Although any concrete infrastructure may be susceptible 

to freeze-thaw distress, those that are particularly affected are highways and bridge decks, airport 

pavements, dams, locks, and other hydraulic structures. It may be difficult to diagnose 

deterioration of concrete due to freeze-thaw actions because other types of deterioration 

mechanisms, such as AAR, often go hand in hand with freezing and thawing. However, the 

typical signs of freeze-thaw damage are evident in the form of scaling of the concrete surface, 

spalling or popping-out of large chunks of concrete, sub-parallel cracks or severe cracking on the 

exposed concrete surface, known as durability cracking, and internal damages in the form of 
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exposure of usually un-cracked aggregates, gaps around aggregates, and deterioration commonly 

initiating at joints and free edges where moisture is more readily available. 

Concrete is critically saturated when approximately 71% of its pores, the paste, the aggregate 

particles, or all three, are filled with water. When water freezes to ice, it occupies 7% more 

volume than that of water. As ice forms in the pore system, the resulting volume expansion 

causes the surrounding unfrozen water to be expelled from the freezing sites. Depending on the 

nature of the pore system, excessive internal stresses can develop from hydraulic pressures that 

result due to resistance to this flow (Powers, 1975). 

More recent theories consider osmotic potential to be the primary cause of excess internal stress. 

As pure water in the larger pores freeze, the liquid remaining in the pores becomes a more 

concentrated ionic solution. To maintain thermodynamic equilibrium, the less concentrated 

solution in the surrounding paste is drawn to the freezing sites. If adequate air void space is 

available, all of the freezable water will eventually diffuse to the freezing sites inside the air 

voids, reaching a state of equilibrium. If the air void space is inadequate, equilibrium cannot be 

reached and osmotic pressures sufficient to fracture the paste can result (Powers, 1975). The 

most widely accepted theories consider the development of internal tensile stress as a result of 

hydraulic pressures, osmotic pressures, or a combination of the two during freezing (U.S. 

Department of Transportation, 2003). 

2.5.3.1 Concrete Scaling 

The process of compacting and finishing concrete produces a rich layer of cement paste, mortar 

or concrete at the surface. Scaling occurs when portions of this surface layer break away, causing 

delamination of the concrete surface. The primary mechanisms of this type of concrete distress 

are high thermal strains, which are produced when salts from de-icing chemicals intrude into the 

concrete or high osmotic pressures, which are induced when relatively pure surface water 

attempts to equalize highly concentrated salt solutions present in the concrete during freeze-thaw 

cycles (Mindess and Young, 1991; Pigeon and Pleau, 1995). The layer may become detached if 

the stresses occurring exceed the tensile or bond strength holding the layer to the substrate. As a 

result, the concrete manifests flaking or peeling away of the surface layer of the concrete or 

mortar, causing a loss of fine aggregate; more extensive scaling can result in the loss of larger 
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aggregate. In severe cases, scaling can lead to deterioration that extends deep into the concrete. 

Successive freeze-thaw cycles during the winter seasons usually result in repeated loss of 

concrete surface (see Figure 2.18). 
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Figure 2.18: Occurrence of Scaling in Components of Train Bridge 

Scaling can take place as a general condition over a large area or be isolated to locations of high 

water or air content near the surface. It may not even be apparent until other stresses, such as 

traffic and grinding action, break the detached layer into fragments, especially in the wheel 

paths, removing surface concrete. 

2.5.3.2 Concrete Spalling 

Spalling is the loss of large pieces of concrete of various sizes, and is typically caused by stress 

in the concrete that exceeds the design capacity, such as when expansive forces within the 

concrete and near the surface of the concrete act along a weak plane or create a weakened plane. 

Expansive forces can be caused by the stress of corrosion of reinforcing steel or imbedded metal 

items, where the corroded steel bars expand and exert a force on the surrounding concrete 

causing the concrete to bulge and crack, and ultimately lose a chunk of concrete, as seen in 

Figure 2.19. 
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Figure 2.19: Spalling Exhibited in Component of Jacques-Cartier Bridge 

Internal expansion can also be caused by moisture absorbed by porous aggregates or by moisture 

trapped inside the matrix of the concrete by paints or sealants that do not allow moisture to 

migrate and escape at the surface; this moisture expands and contracts during freeze-thaw cycles. 

Spalling can also occur due to a condition called laitance where concrete, during placement, was 

mixed too wet and cement rich paste rises to the surface of the concrete thereby depriving other 

portions of the mix of cement-related cohesion and consolidation. 

Spalling can result in the loss of a piece of the concrete pavement from the surface or along the 

edges of cracks and joints, and may be limited to small pieces in isolated areas or be quite deep 

and extensive. Corrosion of steel reinforcement can produce a large amount spalling on highway 

bridge decks. The spalling reduces the riding quality of the bridge and may affect the reliability 

of the structure. If a spall is large and causes structural damage, then repair or rehabilitation may 

be required in order to keep the structure in service. 

2.5.3.3 Aggregate Popouts 

When spalling occurs on a smaller scale, the resulting damages are known as popouts. A popout 

is a small volume of concrete, which has separated from the main body of the concrete leaving a 

roughly conical depression. Concrete popouts are generally caused by aggregate particles, near 
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the surface of the concrete, that absorb so much water they become critically saturated and 

cannot accommodate the expansion and hydraulic pressure that occurs during the freezing of 

water. 

The stress is relieved through cracking of the particle and simultaneous bursting of the concrete 

between the particle and the nearest concrete surface. The offending aggregate particles are 

often coarse with high porosity values and medium-sized pores, between 0.1 to 5 mm, that are 

easily saturated. Larger pores do not normally become saturated or cause concrete distress, and 

water in very fine pores may not freeze readily. 

Popouts usually do not exceed 50 mm diameter and 15 mm depth, consisting of the top of the 

aggregate and surrounding mortar that break out of the concrete surface, creating a shallow 

depression; examples of this can be seen in Figure 2.20. When a popout is reasonably flat at the 

bottom, and does not contain a fragment of the coarse aggregate, it is more likely to be an 

example of scaling. Popouts are typically not a structural problem, but they are unattractive and 

can be dangerous if they occur on walls, roads, highways and airport runways. 

'w l̂S#*, 

(a) Jacques-Cartier Bridge (b) Terrill Bridge 

Figure 2.20: Examples of Popouts in Bridge Components 

2.5.4 Erosion of Concrete Surfaces 

Weathering of concrete surfaces by wind, rain, snow, or other mechanical action can cause 

surface loss. Temperature-related expansion and contraction of surface moisture exerts a 
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mechanical action and results in the gradual wearing away of the concrete surface, as in Figure 

2.21. Exposed aggregates are particularly susceptible due to differences in the rates of expansion 

among the various constituent materials. 
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Figure 2.21: Examples of Concrete Erosion 

Erosion due to abrasion results in a worn concrete surface. It is caused by the rubbing and 

grinding of aggregates or other debris on the concrete surface of a spillway channel or stilling 

basin. Cavitation is a process in which sub-atmospheric pressures, turbulent flow and impact 

energy are created, causing damage to the concrete. Erosion due to cavitation results in a rough 

pitted concrete surface; minor erosion is not a problem but severe erosion can jeopardize the 

structural integrity of the concrete (Ohio Department of Natural Resources Division of Water 

Fact Sheet, 1999). 

2.5.5 Stains and Efflorescence 

Stains on concrete surfaces may indicate internal problems such as corrosion or adverse chemical 

reactions. Corrosion usually involves reinforcing steel and the resulting stains are rust-colour. 

Alkali-aggregate reactions are usually seen as a white, crystallized substance, known as 

efflorescence. Moisture-related stains may appear as a variety of colors (see Figure 2.22). 
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(b) Efflorescence Stains 

Figure 2.22: Examples of Stains 

Efflorescence is formed by water seeping through the pores or thin cracks in the concrete. When 

the water evaporates, it leaves behind some minerals that have been leached from the soil, fill, or 

concrete. Efflorescence is typically not a structural problem. Efflorescence should be monitored 

because it can indicate the amount of seepage finding its way through thin cracks in the concrete 

and can signal areas where problems, such as inadequate drainage behind the wall or 

deterioration of concrete, could develop. Also, water seeping through thin cracks in the wall will 

make the concrete more susceptible to deterioration due to freezing and thawing of the water. 

2.6 Non-Destructive Testing of Concrete 

With the increasing concern about the aging and deteriorating condition of concrete 

infrastructures worldwide (Chong et al., 1990) accurate testing methods for evaluating the 

current condition of these structures are necessary in order to plan appropriate maintenance or 

repair procedures for the efficient allocation of resources (Scott et al., 2003). As such, trends are 

shifting away from the traditional destructive sampling of concrete for material analysis, towards 

the use of sophisticated non-destructive methods. The development of techniques, such as non­

destructive testing of materials and state-of-repair assessments of concrete structures, has thus 

become a major subject of interest within the structural engineering community (Derobert et al., 

2002). 
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2.6.1 NDT Principles and Applications 

Non-destructive testing (NDT) is a descriptive term used for the inspection of materials and 

components in such a way that allows them to be examined without changing or destroying their 

usefulness. For applications in concrete, they do not alter the concrete or impair the function of 

the structure. Although the development of NDT approaches for concrete began in the early 

1930's, it has seen slow progress compared to methods such as those applied to metal, because 

concrete is an inherently more difficult material to test (Carino, 2003). The highly heterogeneous 

nature of concrete makes it very difficult to detect defects, such as voids, honeycombing, 

delaminations, cracks, etc., as well as to distinguish between flaws and naturally occurring 

inclusions. Thus, from an NDT perspective, it is still uncertain what to look for and how to see it. 

Nevertheless, in recent years, there has been an increase in the use of NDT methods to detect 

defects and anomalies in various civil engineering structures (Clark et. al., 2003). NDT 

techniques used to inspect concrete and make assessments are constantly being improved and 

developed, particularly in an effort to maintain and rehabilitate deteriorating structures. Some 

NDT approaches that are currently being used in civil engineering applications are the acoustic 

method, seismic, ultrasonic, ground penetrating radar (GPR), and infrared (IR) thermography. 

2.6.2 Concrete Imaging using NDT 

2.6.2.1 Acoustic Techniques 

The acoustic or stress wave NDT methods are generally based on the idea of stress (elastic) wave 

propagation in solids, where the presence of an internal defect interferes with the propagation of 

the sound waves. The presence of a flaw or anomaly can be inferred by analysing the response of 

the test object when it is subject to stress waves. The stress waves are usually generated by a 

mechanical impact on the surface of the test object, or by transmission of ultrasound waves into 

the test object using a transducer in contact with its surface. This produces a stress pulse that 

travels into the object along spherical wave fronts as compression (P) and shear (S) waves. At 

the same time, Rayleigh (R) waves, which are surface waves, travel away from the impact or 

transmission point. The P- and S-waves are reflected back by boundaries separating materials 

with different densities and elastic properties (internal interface) or external boundaries. The 
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reflected waves, or echoes, return to the surface, and cause displacements that are recorded by a 

receiving transducer, which is located adjacent to the point of impact or transmitting transducer 

(Carino, 2003). 

Acoustic technology is especially well suited for sub-surface NDT applications, such as borehole 

imaging. Acoustic borehole scanner tools generate an image of the borehole wall by transmitting 

ultrasound pulses from a rotating sensor and recording the amplitude and travel time of the 

signals reflected at the interface between mud and formation of the borehole wall. This image is 

actually generated by software that takes the recorded signals and produces a three-dimensional 

image that resembles a real core. There are two ways of obtaining an image: using the travel time 

of the ultrasonic wave or the amplitude of the reflection. The data is displayed as an unrolled 

picture of the wall starting at 0° to 360°, at a resolution of less than 2 mm. 

2.6.2.2 Infrared Thermography 

Infrared (IR) thermography is a remote sensing method that is based on two principles: one is 

that a material with a temperature greater than absolute zero emits electromagnetic radiation, the 

wavelength of which depends on the temperature of the material; the other is that the presence of 

subsurface irregularities in a material interferes with the flow of heat due to the different rates of 

thermal conductivity and result in differences in surface temperature at the defective zones. The 

values of thermal conductivity coefficients for different materials are provided in Table 2.1 

(Halliday and Resnik, 1978): 

Table 2.1: Thermal Conductivity of Some Materials 

Material 

Steel 

Ice 

Concrete 

Air 

Thermal Conductivity (J/s-m-°C) 
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1.8 

0.8 

0.024 
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At about room temperature, the radiation is in the infrared region of the electromagnetic 

spectrum, between visible light and microwaves. Therefore, by measuring the surface 

temperature, the location of subsurface defects can be determined (Buyiikozturk, 1998). 

In civil engineering, IR thermography is usually used to locate and determine the extent of voids, 

debonding, honeycombing, and corrosion-induced delaminations in reinforced concrete. It is a 

tool used in predictive maintenance and condition monitoring that can detect subsurface damage 

that is typically missed during visual inspections (Vavilov and Demin, 2002). Early applications 

of this technique were studied in the late 1970s using hand held scanners and photographic 

cameras to record the thermographic images. Later on, scanning was accomplished from a boom 

attached to a truck, and then from an airborne scanner onboard a helicopter (Clark et. al., 2003). 

Measurement of the surface temperature of a test object is done during periods of relatively rapid 

heating or cooling to achieve the heat flow condition that is necessary to detect the differences in 

thermal conductivity within the material and locate the regions containing subsurface 

irregularities. This occurs naturally by solar heating and night-time cooling; thus the best time 

for infrared surveys is two to three hours after sunrise or sunset (Weil, 1995). The heat flow can 

also be created artificially through heating lamps, if necessary. 

In general, IR thermography applications use an imaging infrared scanner, composed of an 

optical scanning device and a processing unit, which senses the emitted thermal radiation from 

the surface of the material, and produces a thermographic image of the temperature differences 

(Figure 8.2). This image is usually displayed on a monitor, and simultaneously recorded on 

videotape. A visual record of the test object can also be obtained, using a conventional video 

camera, for comparison with the infrared data (Weil and Rowe, 1998). 

2.6.2.3 Greyscale Imagery 

Greyscale images are typically composed of shades of grey, varying from black at the weakest 

intensity to white at the strongest, though in principle the samples could be displayed as shades 

of any colour, or even coded with various colours for different intensities. Greyscale images are 

distinct from black-and-white images, which, in the context of computer imaging, are images 

with only two colours, black and white; greyscale images have many shades of grey in between. 
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The reason for differentiating such images from any other sort of colour image is that less 

information needs to be provided for each pixel. In fact a grey colour is one in which the red, 

green and blue components all have equal intensity in RGB space, and so it is only necessary to 

specify a single intensity value for each pixel, as opposed to the three intensities needed to 

specify each pixel in a full colour image. Greyscale images intended for visual display are 

typically stored with 8 bits per sampled pixel, which allows 258 intensities, or shades, or levels 

of grey, to be recorded, usually on a non-linear scale. The accuracy provided by this format is 

barely sufficient to avoid visible banding artefacts, but very convenient for programming. If the 

greylevels are evenly spaced, however, then the difference between successive greylevels is 

significantly better than the greylevel resolving power of the human eye. 

2.6.2.4 Colour Imagery 

It is possible to construct practically all visible colours by combining the three primary colours 

red, green and blue, because the human eye has only three different colour receptors, each of 

them sensitive to one of the three colours. Different combinations in the stimulation of the 

receptors enable the human eye to distinguish approximately 350 000 colours. An RGB colour 

image is a multispectral image with one band for each colour, red, green and blue, thus 

producing a weighted combination of the three primary colours for each pixel. 

A full 24-bit colour image contains one 8-bit value for each colour, thus being able to display 18 

888 218 different colours. However, it is computationally expensive and often not necessary to 

use the full 24-bit image to store the colour for each pixel. Therefore, the colour for each pixel is 

often encoded in a single byte, resulting in an 8-bit colour image. The process of reducing the 

colour representation from 24-bits to 8-bits, known as colour quantization, restricts the number 

of possible colours to 258. However, there is normally no visible difference between a 24-colour 

image and the same image displayed with 8 bits. 

As a result, colour images greatly increase natural vision capabilities in terms of colour 

perception. Since human vision is relatively poor at differentiating the brightness and colour 

features in the scene being viewed, the range of quantitative differentiation allowed by colour 

digital imaging is extremely useful for image analysis, where the additional discrimination can 

provide better results compared with greyscale images. 
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Part III 

Methodology and Results 



CHAPTER 3 

Methodology, Study Area, and Data 
Descriptions 

3. Introduction 

In order to accomplish the objectives of this study, a methodology was developed based on the 

major elements of this research extending from the hypothesis and objectives formulated for this 

thesis, found in sections 1.4.2 and 1.4.3: 

• A signal processing approach based on Haar's discrete wavelet transform; 

• Statistical methods of texture analysis using first-order statistics and second-order 

greylevel co-occurrence matrices; 

• Spatial filters and edge-detection algorithms for processing borehole acoustic imagery; 

• Classification techniques using the supervised classification approach of the multilayer 

perceptron artificial neural network and the unsupervised classification method of K-

means clustering. 

The first step of the methodology is the signal processing phase, in which Haar's wavelet 

transform is applied to the images in order to decompose them and obtain the wavelet 

coefficients. These coefficients are then used to reconstruct the images in order to define the 

texture of the damage contained in the images. The statistical texture analysis phase of the 

methodology involves the extraction of first-order and second-order statistics from the images of 

the damaged concrete. First-order texture features are derived from the histogram of the images, 

and second-order texture features are obtained from the second-order histogram, also known as 
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the grey level co-occurrence matrix (GLCM). A process is then employed for selecting the most 

useful texture features, which are used to create texture images. The texture analysis phase is 

performed individually on the images, as well as in combination with the signal processing 

phase, in order to evaluate the contribution of the signal processing approach to the damage 

analysis. These two phases constitute the damage analysis process of the methodology, which is 

applied to all of the different types of imagery. 

The first stage of the damage analysis involves the assessment of map-crack damage present in 

greyscale and colour imagery of the field samples. In the second stage, the damage analysis is 

applied to map-crack imagery from the CANMET and GRAI laboratory specimens. Greyscale, 

colour and thermographic imagery of the CANMET blocks and the GRAI slabs were employed. 

Further stages of the damage analysis deal with various other types of damage found in greyscale 

imagery of the field samples, such as spalling, corrosion of steel reinforcement, aggregate 

popouts, surface erosion, post-repair damage, and efflorescence and corrosion stains. 

Another aspect of this study consists of a slightly different methodology developed for 

application to borehole acoustic optical imagery obtained from a concrete lock. This 

methodology employs the signal processing and statistical texture analysis approaches outlined 

above, as well as a process based on different edge-detection techniques, in order to evaluate 

their relative effectiveness in distinguishing crack damage from the acoustic imagery. 

The classification phase, which is the final stage of the methodology, consists of employing a 

supervised classification approach, namely the multi-layer perceptron (MLP) artificial neural 

network, as well as the K-means unsupervised classifier. The two techniques are evaluated for 

their efficiency in characterizing different types of damage contained in the various images. 

The phases of the above methodology, as well as the steps within each phase are presented in the 

methodology flow chart (Figure 3.1). Details of the methodology phases are further elaborated in 

different sections throughout the rest of this thesis, and presented in flow charts corresponding to 

each phase. The signal processing flow chart representing the steps for the wavelet transform is 

presented in Figure 3.12, a flow chart for the statistical texture analysis phase can be seen in 

Figure 3.13, and a classification flow chart is presented in Figure 3.14. 
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3.1 Study Sites 

Various concrete components from one lock and five different bridges were selected as field 

samples for this research. The lock is located in the city of Montreal and the bridges are situated 

in the city of Sherbrooke, in the southern region of Quebec, Canada (Figure 3.2). 

Bridge infrastructure in Montreal is subject to extreme loading, due to its port location and rapid 

increase in population. In Sherbrooke, although bridges may experience lighter loading, they are 

exposed to slightly harsher winters, with generally greater amounts of snowfall and colder 

temperatures. Consequently, the bridge components selected from these study areas manifest 

different types of concrete damage, such as cracking, steel rebar corrosion, erosion, spalling and 

post-repair damage, all with varying degrees of deterioration, making them ideal samples for the 

purposes of this study. 
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Figure 3.2: Geographic Location of Study Area 
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3.1.1 St. Lambert Lock 

The St. Lambert Lock, which is situated in Eastern Canada, in Montreal, Quebec, is one of four 

navigation locks built in the 1950's, that form part of the St. Lawrence Seaway, which runs along 

the St. Lawrence River between the port of Montreal and Lake St. Francois. Concrete 

infrastructure at the lock is regularly exposed to different factors, such as freezing and thawing 

cycles, watering and de-watering cycles, thermal effects, hydro-mechanical effects, ship impact, 

and extreme weather conditions typical of the region. These factors result in deterioration in the 

concrete, which range from surface cracks to steel reinforcement corrosion. Parts of the lock 

infrastructure are also severely affected by AAR, with various rates of concrete swelling 

(Gaudreault, 2000); other damage, in the form of concrete erosion, is apparent on the outer walls 

of the lock chamber. 

The data used in this research consists of very high resolution acoustic imagery taken from two 

boreholes drilled in the St. Lambert Lock. The boreholes, with diameters of 3 and 4 inches, were 

drilled for a previous seismic tomography study and the recovered cores were tested for 

mechanical properties. The boreholes were not washed prior to logging and parts of the borehole 

wall were covered with a thin mud cake made of concrete laitance. Images of the lock are shown 

in Figure 3.3. 

Figure 3.3: St. Lambert Lock, Montreal, Quebec 
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3.1.2 Joffre Bridge 

Some of the other components used as field samples in this study are from the Joffre Bridge, 

which crosses the St-Francois River in Downtown Sherbrooke, in the Eastern Townships of 

Quebec. The Joffre Bridge was constructed with fully integrated fibre-optic sensors, embedded 

in a new composite material made of fibre-reinforced polymers created to perform in a wide 

range of environmental conditions and designed for normal use, such as heavy truck traffic (see 

Figure 3.4). 

Figure 3.4: Joffre Bridge, Sherbrooke, Quebec 

3.1.3 Jacques-Cartier, Terrill, and Train Bridges 

Components from the Jacques-Cartier Bridge, which is one of the major bridges in Sherbrooke, 

as well as the Terrill Bridge and two train bridges, also located in Sherbrooke, were selected as 

field samples. The components from these bridge infrastructure all exhibit different kinds and 

amounts of concrete distress: map-cracking, spalling, corrosion of reinforcement, erosion and 

damage due to efflorescence and corrosion stains. Figure 3.5 presents some damage due to AAR 

and corrosion and the resulting stains and efflorescence. 
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(a) Jacques-Cartier Bridge (b) Train-bridge Support Beam 

Figure 3.5: AAR Damage in Bridge Components 

3.2 Laboratory Concrete Specimens 

For the purposes of this study, two sets of concrete specimens, one from the CANMET (Canada 

Centre for Mineral and Energy Technology) site in Ottawa, Canada, and the other from GRAI 

(Group for Research and Analysis in Instrumentation) at the University of Sherbrooke, Quebec, 

Canada, were employed as laboratory samples in order to establish some correlation with and 

validation of results obtained from the field samples. The specimens were prepared in the 

laboratory with varying mixture proportions; all of them demonstrate various levels of surface 

cracking associated with the alkali-aggregate reaction. 

3.2.1 CANMET Specimens 

The set of CANMET specimens is composed of three concrete blocks, measuring 40 cm x 40 cm 

x 90 cm in size, which were batched in the laboratory and then left outdoors to the elements for 

over ten years at the CANMET site in the Ottawa region (Figure 3.6). One block, referred to in 

this research as CI, exhibits the lowest amount of damage. The block that has a moderate amount 

of concrete damage is referred to as C2, and the last block, which shows signs of the most 

deterioration, is referred to as C3. 
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Figure 3.6: Specimens at CANMET Site, Ottawa Region, Canada 

3.2.2 GRAI Specimens 

The GRAI specimens show concrete damage exclusively associated with AAR. They contain 

three concrete slabs that measure 100 cm x 100 cm x 25 cm in size (Figure 3.7). The slabs are 

referred to as Gl, G2 and G3 in this study, in order of increasing concrete distress, where Gl has 

the least amount of deterioration and G3 has the most. After concrete hardening, the slabs were 

wrapped in damp terry cloth and stored at ambient air (20 ± 2°C) in the GRAI laboratory, at the 

University of Sherbrooke, Sherbrooke, Quebec. 
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Figure 3.7: Top View of GRAI Samples at University of Sherbrooke, Quebec 

3.2.3 Concrete Mixture Proportions for Specimens 

The CANMET specimens were prepared with the same reactive limestone as a coarse aggregate 

at approximately the same proportions, with the same water content; however, the total alkali 

content ranges from 1.99 to 5.31 kg/m3. Among the GRAI specimens, the Gl slab was made out 

of a non-reactive aggregate, with lower cement and water content than the G2 and G3 slabs, but 

with a higher total alkali content. The other two slabs were produced from a reactive limestone. 

Details of the mixture proportions are given in Table 3.1. 

Table 3.1: Concrete Mixture Proportions 

Concrete Mixtures 

Density (kg/m3) 

Cement content (kg/m3) 

Total Na2Oeq (kg/m3) 

W/C 

CANMET 

CI 

2303 

423 

1.69 

0.42 

C2 

2303 

423 

3.81 

0.42 

C3 

2317 

425 

5.31 

0.42 

GRAI 

Gl 

2223 

210 

3.81 

0.75 

G2 

2326 

390 

3.25 

0.66 

G3 

2340 

390 

5.25 

0.66 
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3.2.4 Test Measurements for Specimens 

The amount of damage resulting from AAR is closely related to the expansion level and other 

indicators of concrete deterioration, such as loss of rigidity, decreasing mechanical properties, 

etc. (Rivard and Ballivy, 2005). Therefore, tests were carried out on the laboratory specimens in 

order to estimate the amount of inner damage. Expansion was measured using stainless steel 

studs that were fixed on the top surfaces and on the sides of the specimens. Since it is known that 

compression (P) wave velocities decrease with increasing amounts of damage (Carino, 2003), P-

wave velocities were also measured through the Impact-echo method. These test measurements 

were recorded at regular intervals; the average measurements are given in Table 3.2. 

Table 3.2: Average Measurements of P-wave Velocities and Expansion 

Measurements 

Avg. P-wave velocities (m.s-1)* 

Avg. expansion (%)** 

CANMET 

CI 

4909 

0.025 

C2 

4513 

0.283 

C3 

4402 

0.340 

GRAI 

Gl 

3810 

0.000 

G2 

3590 

0.060 

G3 

3440 

0.100 

* Based on 11 measurements 
** Based on side and surface measurements 
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3.3 Data Acquisition and Description 

3.3.1 Data Acquisition 

Three types of imagery, grayscale, colour, and thermographic, were taken of the CANMET and 

GRAI laboratory specimens. Greyscale and colour images were obtained for all of the field 

samples as well. A digital camera was employed to acquire the greyscale and colour images, and 

the thermographic images were obtained through the use of the ThermaCAM PM595 infrared 

camera of FLIR Systems. 

Acoustic image data from a borehole in a concrete lock was also employed in this study. Optical 

images of the borehole were obtained with the OBI-40 camera, and acoustic imagery was 

acquired using the ABI-40 Televiewer camera, developed by Mount Sopris. Basic processing 

was performed using the WellCAD software of Advance Logic Technology. 

3.3.2 Input Image Data Description 

All images of the CANMET and GRAI specimens were taken with a constant pixel resolution of 

0.26 mm; however, images of the different bridge components have pixel resolutions that vary 

with the location of the component. All images were cropped to an image matrix of 512x512, 

1024x1024 or 2048x2048 pixels, due to the needs of the wavelet transform algorithm, which 

requires that the image matrix be to the order of 2"; for the purposes of this study, n has a value 

of 9, 10 or 11, depending on the image matrix. 

3.3.2.1 Greyscale Images 

Greyscale images of the different types of concrete deterioration, and their various levels of 

damage, present in the laboratory specimens and the field samples where obtained for image 

analysis in an effort to obtain quantitative information concerning the type and amount of 

damage present in the image. Figure 3.8 shows some examples of the greyscale imagery. The 

types of damage concerned are: map-cracks, spalling, steel corrosion, erosion, popouts, post-

repair damage, and efflorescence and corrosion stains. A digital camera was employed to obtain 

the images; the laboratory samples have a pixel resolution of 0.26 mm. 
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Figure 3.8: Examples of Greyscale Imagery of Different Types of Damage 

3.3.2.2 Colour Images 

Colour images portraying the same types of concrete damage as the greyscale imagery were 

obtained for the laboratory specimens as well as the field samples. A digital camera was also 

employed for these images, with the same resolution of 0.26 mm for the laboratory specimens. 

Figures 3.9 show the colour images of different types of damage. 
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Figure 3.9: Examples of Colour Imagery of Different Types of Damage 

3.3.2.3 Thermographic Images 

Thermography is a technique that converts the measurement of steady or transient infrared 

energy, which is emitted by the target and is invisible to the human eye, into a two-dimensional 

pattern, or visual image, through the use of an infrared camera (Clark et al. 2003). High spatial 

resolution thermographic images of the laboratory specimens were obtained using the 

ThermaCAM PM595 of FLIR Systems. These 14-bit fully dynamic raw images have a spectral 

range of 9.5-13um, and a built-in atmospheric filter with a cut-off at 9.5(im. Figure 3.10 is an 

example of a thermographic image taken of a GRAI specimen. 
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Figure 3.10: TIR Image of GRAI Specimen Exhibiting Map-cracks 

3.3.2.4 Acoustic Images 

Acoustic borehole scanner tools generate an image of the borehole wall by transmitting 

ultrasound pulses from a rotating sensor and recording the amplitude and travel time of the 

signals reflected at the interface between mud and formation, which is the borehole wall. The 

amplitude is mainly affected by the reflecting material while the travel time is affected by the 

distance between the probe and the borehole wall. These images are not flat; the data is displayed 

as an unrolled picture of the borehole wall starting at 0° to 360°. This has in influence on the 

measurements of some parameters, such as crack length or orientation. 

Optical images of the borehole were obtained with the OBI-40 camera, and acoustic imagery was 

acquired using the ABI-40 Televiewer camera, developed by Mount Sopris. The up-hole mode 

was employed at a logging speed of 2 m/minute for a vertical sample rate of 1 sample/1.7mm. 

The horizontal sample rate was fixed at 252 samples/revolution. The image resolution is < 2 mm, 

with an acoustic calliper that can measure fractures to 0.05 mm. Some examples of images 

exhibiting various types of damage are shown in Figure 3.11. 
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Figure 3.11-A: Optical and Acoustic Image Samples of Damage 
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(b) Foundation Damage 

Figure 3.11-B: Optical and Acoustic Image Samples of Damage (Cont'd) 

3.4 Haar's Discrete Wavelet Transform 

The wavelet transform allows a signal to be converted and manipulated while keeping resolution 

across the entire signal and still be based in time. Haar's transform is the simplest form of 

wavelets; it is essentially a process of averaging and differencing of values. The wavelet 

decomposition of a two-dimensional signal, such as an image, is obtained by performing the 

filtering consecutively along horizontal and vertical directions (rows and columns). In order to 

isolate fine variations in texture, very short-duration basis functions (high-frequency filters) are 

used; at the same time, very long-duration basis functions (low-frequency filters) are used for 

separating coarse details of texture (Masad et. al., 1999). Figure 3.12 presents a flowchart 

showing the different steps in the Haar wavelet transform. 
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3.4.1 Decomposition 

The discrete wavelet transform initially decomposes an image into one approximation image and 

three detailed images. It filters the original image with complementary low-pass and high-pass 

filters in each dimension. The filtered images are down sampled at every other pixel producing 

four images of half the resolution of the original (Tonsmann and Tyler, 1999). In a pyramidal 

decomposition, the approximation image is further decomposed. 

For analysis of the field data with map-crack damage, greyscale and colour imagery was 

employed. The first step in the analysis is the application of Haar's discrete wavelet transform on 

the imagery. The images were completely decomposed through Haar's wavelet transform; this 

resulted in the separation of coarse and fine texture details. A greyscale image sample of a bridge 

component with a high level of map-cracking is seen in Figure 4.1(a), with all texture 

information present. Figure 4.1(b) shows a one-level pyramidal decomposition of the image, 

resulting in four sub-band images, where the low-resolution image appears in the top left-hand 

corner surrounded by the three detail images. A two-level decomposition is presented in Figure 

4.1(c), and Figure 4.1(d) is the full decomposition. The number of resolution steps required for 

the full decomposition depends on the image resolution; images with a dimension of 512x512 

pixels take nine steps (29 =512), ten steps are needed for images with a resolution of 1024x1024 

pixels (210=1024), and eleven resolution steps are required for images with a dimension of 

2048x2048 pixels (10n=2048). 

3.4.2 Reconstruction 

In order to exploit the texture information isolated in the decomposed components of the image, 

the components are assembled to form reconstructed images, using the inverse discrete wavelet 

transform (IDWT). The wavelet coefficients obtained from the decomposition are upsampled and 

filtered. Upsampling is the process of lengthening a signal component by inserting zeros between 

samples. The level of upsampling can be controlled in order to produce a reconstructed image 

that presents the desired texture information. 

After decomposition of the map-crack image sample, the resulting detail wavelet coefficients 

were used to produce reconstructed images for each input image; these reconstructed images 
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contain the coarse details, such as narrow cracks, wide cracks, and spalling damage. Images 

reconstructed to various levels for the same greyscale map-crack image sample shown for the 

decomposition step are presented in Figure 4.2. The 1% reconstruction seen in Figure 4.2(a) is 

produced using 99% of the wavelet coefficients, so it is almost identical to the input image. 

Figure 4.2(b) is the 5% reconstruction, using 95% of the coefficients; some of the fine details in 

the background have been removed due to the suppressed coefficients. More of the fine texture 

details are removed in the 10% reconstruction presented in Figure 4.2(c). For the purposes of this 

study, the 25% reconstructions shown in Figure 4.2(d) were employed, because at this 

compression most of the fine texture, also known as background noise, has been removed by the 

image reconstructions, while retaining the coarse details, which in this case are the cracks in the 

concrete surface. 

3.5 Statistical Texture Analysis 

Statistical texture analysis is based on the spatial distribution of grey level values in an image. 

First-order statistics estimate properties of individual pixel grey values and do not take into 

account the grey values of neighbouring pixels. Second-order statistics evaluate the grey values 

of two pixels occurring at a specific distance and direction from each other. Various texture 

features are then calculated from these statistics in order to distinguish the different classes of 

texture within the image. 

3.5.1 First-Order Analysis 

First-order statistics measure the likelihood of observing a grey value at a randomly chosen 

location in the image. They can be computed from the histogram of pixel intensities in the image. 

These depend only on the values of individual pixels, and not on the interaction or co-occurrence 

of neighbouring pixel values. A class of texture measures can be derived from these first-order 

statistics of a texture pattern. 

Texture analysis rarely uses individual properties of the statistics. Instead, statistical features are 

derived for the extraction of textural information from the image. The following simple features 

are often used to characterize the first-order histogram: entropy, mean, standard deviation, third 
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moment, and variance. The entropy feature measures the uniformity of the histogram; when the 

distribution is uniform, entropy takes the maximal value, but when there is a dense cluster in the 

histogram, the value approaches zero. The mean reflects the average intensity of the pixel grey-

levels. However, when classifying texture imagery, the images are usually normalized to have 

the same mean and standard deviation because these statistics are affected by the input image 

conditions. The third moment measures the skew of the histogram; when the histogram is 

symmetrical, the value is zero, and when the skew is left or right, the value is accordingly 

negative or positive. The variance feature measures the deviation from the mean value of the 

grey-levels (Tomita and Tsuji, 1990). 

3.5.1.1 Window Size 

In order to carry out the analysis, a moving window is employed, which refers to the size of the 

pixel neighbourhood around a reference pixel that represents the area of the image being 

analyzed. The accuracy of statistical texture analysis depends on the size of the window used. 

The homogeneity texture feature was randomly chosen for computing the coefficients of 

variation for the greyscale map-crack image, given in Figure 4.3, which shows that the 

coefficients stabilized around the 1 lxl 1 window for the majority of the object classes. 

3.5.1.2 Selection of First-order Texture Features 

In this study, the following first-order statistical information or texture features were derived 

from the input images, as well as from the reconstructed images produced from the wavelet 

coefficients obtained through the decomposition of the input images: data range, entropy, mean, 

skew and variance. Figure 4.4 presents these five texture features derived using an 11x11 

window from the reconstructed image of the greyscale map-crack image sample shown in the 

wavelet transform phase. 

Many of the texture features obtained from the first-order statistics are redundant and capture 

similar concepts. Consequently features that do not aid in texture discrimination are discarded. 

There exist various methods for selecting the most effective features; in this study, the features 

are selected through a process of visual analysis, histograms analysis, and analysis of correlation 

matrices. The visual analysis consists of examining the texture images individually in order to 
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determine which images do not provide adequate discriminatory information. After making some 

initial selections, the histograms of the texture features are then analysed to confirm the 

selections, as well as to decide if any other features should be discarded. Finally, the correlation 

matrix is examined for final selection of the most effective features. This process is performed 

for each of the different types of imagery. The histograms of the texture features derived from 

the reconstructed greyscale map-crack image are given in Figure 4.5, and the correlation matrix 

for the texture features is presented in Table 4.1. 

3.5.1.3 First-order Texture Images 

Once the most effective texture features are selected, they are displayed as a texture image, 

which are employed as the spatial data in the classification process. The texture image of the 

first-order texture features selected for the reconstructed greyscale map-crack image sample can 

be seen in Figure 4.6. 

3.5.2 Grey Level Co-occurrence Matrix (GLCM) 

A further improvement of the first-order statistics may be obtained through the use of the 

second-order statistics, which are described using the grey level co-occurrence matrix (GLCM) 

of the image. Texture analysis based on the method of the co-occurrence matrix employs 

statistical features that are derived from the matrix for the extraction of textural information from 

the image. These features are obtained through processes that take measured grey values to 

compute new values. For second-order statistics, the grey values of pixels in a window of 

specific size are taken and the result of the computations is written back on the central pixel; this 

process is repeated for all pixels in the image. The outputs of the derived features are images in 

which the pixel values have been changed to reflect a particular feature, or texture; therefore, the 

resulting feature images are also known as texture features. 

A large number of texture features have been proposed; as many as fourteen different features 

that can be derived from these matrices are described by Haralick et al. (1973), however, only 

some of these are widely used. This is because many of the features are redundant, due to their 

high correlation. Thus they are not all useful for describing a particular texture. Some of the 

texture features that can be extracted from the GLCM are: contrast, correlation, dissimilarity, 
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energy, entropy, homogeneity, mean, second moment, standard deviation, and variance. A 

flowchart illustrating the steps of the GLCM texture analysis is presented in Figure 3.13. 

72 



Input Imagery Reconstructed Imagery 

Selection of GLCM Parameters 

Selection of direction 
between pixels 

Calculation of 
Coefficients of 

Variation 

Selection of distance 
between pixels 

Selection of appropriate 
window size 

Extraction of Texture Features: 

Mean 
Variance 
Homogeneity 
Contrast 

Dissimilarity 
Entropy 
Second Moment 
Correlation 

Histograms of 
Texture Features 

Calculation of 
Correlation Matrix 

Analysis of Texture Features: 

• Visual quality 
• Histograms 
• Correlation Matrix 

Selection of Texture Features for Integration into 
the Classification 

Combination of Selected Features to Produce Texture 
Image 

Figure 3.13: Texture Analysis Flow Chart 



For the contrast feature, when a pixel has the same grey level as its neighbour, it is given a 

weight of 0. When a pixel differs from its neighbour's grey level by 1, there is a small contrast, 

and the weight is 1. If neighbouring pixels have grey levels that differ by 2, the contrast is 

increasing and the weight is 4. The weights continue to increase exponentially as the difference 

in grey levels of neighbouring pixels increases. 

The correlation texture feature measures the linear dependency of grey levels on those of 

neighbouring pixels. It is independent of the other texture measures described here. The value 0 

means the image is uncorrected, and 1 means it is perfectly correlated. 

In the dissimilarity feature, the computations are similar to that of contrast; however, the weights 

increase linearly. The dissimilarity and contrast features result in larger values for windows with 

more contrast. If weights decrease away from the diagonal, the result will be larger for windows 

with little contrast; conversely, homogeneity weights values by the inverse of the contrast 

weight, with weights decreasing exponentially away from the diagonal. 

The mean of the GLCM is based on the grey level of the reference pixels, and calculates the 

average of the probabilities for that pixel. The variance feature is a measure of the dispersion of 

the values around the mean, and is similar to entropy. The standard deviation provides basically 

the same information as variance, but gives a different range of values. 

The second moment uses the probability of pairs of pixels with the same grey level occurring as 

a weight for itself. High values of second moment occur when the image window is very orderly. 

The square root of the second moment is sometimes used as a texture measure, called energy, 

which is also used to measure order in the image. On the other hand, entropy is a texture measure 

that is used to calculate the disorderliness of the image. 

3.5.2.1 GLCM Parameters 

The success of the GLCM method of texture analysis is directly related to the appropriate choice 

concerning three parameters: the distance between pixels, the direction between pixels, and the 

size of the window to be used. Classification results performed using textural data are greatly 
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influenced by these variables; therefore, many factors need to be considered in order to make 

suitable selections for these. 

In an image scene, there exist numerous textures with greatly varying degrees of smoothness or 

coarseness. An appropriate distance is usually influenced by how fine or coarse the texture of 

interest is. Thus, the choice of a distance between pixels depends on the texture of the object; 

textures that are fine generally require smaller distances, since pixels close to each other present 

enough variation in their grey values to characterize these textures, whereas larger distances are 

usually used for textures that are coarse because variations in the grey values occur in pixels 

farther away from each other. However, it has been found that small distances produce the best 

results (Karathanassi et al., 2000), since they are appropriate for textures that are fine, as well as 

for those that are coarse. As a result, a distance equal to 1 pixel, which is also the most 

commonly used, was chosen for this study. 

Selecting the appropriate direction between pixels can be difficult as there are four different 

directions that can be used: 0° (horizontal), 45° (diagonal), 90° (vertical) and 135° (diagonal). 

One method consists of calculating the features of the co-occurrence matrix for the four 

directions and then taking their averages (Haralick, 1979). Another study has shown that certain 

directions can provide a better discrimination between classes than the method of taking the 

average of all the directions (Franklin and Peddle, 1989). However, the most common choice for 

the direction between pixels found in literature is 0°; consequently, this is what was used in this 

study by default of the image processing system employed. 

The accuracy of the classification process using texture features also depends on the size of the 

pixel window used. This refers to the size of the pixel neighbourhood around a reference pixel 

that covers a certain area in the image to be analyzed at a time; after analysis of this area, the 

window is shifted by one pixel to the next area in the image for analysis. A 3x3 window for 

example, represents an area in the image that is 3 pixels x 3 pixels. If the window is too small, 

enough spatial information will not be extracted in order to characterize a certain object of 

interest. On the other hand, if the window is too large, it will either overlap onto two objects of 

interest and introduce the wrong spatial information (Pultz and Brown, 1987), or it will create 

transition limits that are too large between two types of neighbouring objects (Gong, 1990). If 
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the window size is too small or too large relative to the texture structure, then texture features 

will not accurately reflect real textural properties (Mather et al., 1998). 

In order to choose an appropriate size for the window, there is a method that is based on the 

calculation of the coefficients of variation for each class as a function of the window size, using a 

given texture feature (Laur, 1989). The appropriate window size will be that for which the 

coefficients of variation start to stabilize for the majority of the classes, while having the lowest 

value. In this study, the homogeneity texture feature was randomly chosen for the calculation of 

the coefficients of variation for each class according to different window sizes. The coefficients 

of variation calculated for the greyscale map-crack image started to stabilize at the 11x11 pixel 

window for the majority of the classes (Figure 4.3). Table 4.14 gives the most appropriate 

window size selected for imagery of the other types of damage employed in this study. 

3.5.2.2 Selection of Second-order Texture Features 

After establishing the most effective window size and selecting the pixel distance and direction, 

texture features were produced for each input image, as well as for the reconstructed images. 

Figure 4.7 presents the eight second-order texture features extracted using an 11x11 window 

from the reconstructed greyscale map-crack image sample used in the first-order texture analysis 

step. Since it is sensible economically to ensure no more features than necessary are utilized 

when performing a classification, features that do not help discrimination should be discarded 

(Richards and Jia, 1999). Consequently, a feature selection process similar to the one used for 

selection of the first-order features was conducted based on visualization of the texture features, 

analysis of their histograms, and evaluation of the correlation matrix. Histograms of the second-

order texture features for the reconstructed greyscale map-crack image are shown in Figure 4.8; 

Table 4.2 provides the correlation matrix for these features. 

For the first step in the process of elimination, the visual quality of these texture images was 

analysed and three features, Contrast, Dissimilarity, and Correlation, were initially considered 

for discarding due to their poor quality in terms of visual information. 

After displaying the histograms of all the texture images, it was confirmed that these three 

features, Contrast, Dissimilarity, and Correlation, were to be eliminated due to the narrow peaks 
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they presented. The possible elimination of another two features, Variance and Second Moment, 

was also considered from the histogram analysis because of the same reason. 

Finally, through calculation of the correlation matrix, it was confirmed that these two features, 

Variance and Second Moment, as well as the first three features, Contrast, Dissimilarity and 

Correlation, were to be discarded due to their relatively high correlation with the other features. 

As a result, only three texture features, Mean, Homogeneity, and Entropy were selected for the 

greyscale image sample of map-crack damage taken from the field data. 

3.5.2.3 Second-order Texture Images 

After selecting the optimal second-order texture features, texture images are produced using the 

features. Figure 4.9 presents the texture image of the selected second-order texture features for 

the reconstructed greyscale map-crack image sample. 

3.6 Spatial Filtering 

Spatial filters are functions that are applied to images in order to enhance them. A window 

function is usually employed to perform convolutions of the image in order to yield an output 

image. The window function or kernel uses a square pixel neighbourhood around each pixel in 

order to replace its value by the average over the area centered on that pixel. The square window 

sizes are usually odd numbers, such as 3x3 pixels, 5x5 pixels etc., however, other values may 

also be employed. There are many different types of filters that produce various results; they are 

employed depending on the desired output. 

3.6.1 Lowpass Filtering 

Low pass filtering preserves the low frequency components of an image by removing the high 

frequency components, such as noise. These filters reduce deviations from local averages, thus 

smoothing the grey level values of the original image by replacing the original values with their 

local averages. The larger the size of the kernel employed, the more drastic the smoothing is. An 

output image resulting from a 5x5 kernel lowpass filter applied to the acoustic image sample can 

be seen in Figure 4.59 (a). 
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3.6.2 Median Filtering 

Median filters are a group of filters based on ranking pixel grey-values. They smooth an image 

while preserving edges larger than the kernel size by replacing each centre pixel with the median 

value found within the neighbourhood of the filter. These filters are good at eliminating 

impulsive noise, such as salt and pepper noise or speckle, while preserving edge data. The usual 

square median filter eliminates fine vertical or horizontal lines; this can be overcome through the 

use of a cross-shaped mask. An output image from the application of a 7x7 median filter can be 

seen in Figure 4.59 (b). 

3.6.3 Edge-detection 

Edges are considered to be areas with strong intensity contrasts in an image, causing a jump in 

intensity from one pixel to the next. In image data of damaged concrete, these edges would 

characterize boundaries between areas of sound concrete and deterioration, such as cracks. 

Possible causes for an intensity edge are discontinuities in surface, depth, surface-reflectance, 

and illumination. 

In order to identify edges within an image, edge-detection operators analyse the grey level of 

each pixel and its neighbour to determine which ones belong to areas with sharp contrast in grey-

level intensity. The basic edge-detection operator is a matrix area gradient operation that is 

calculated by forming a matrix centered on a pixel chosen as the center of the matrix area. If the 

value of this matrix area is above a given threshold, then the middle pixel is classified as an edge. 

The slope and direction of the edge, also known as the magnitude and the orientation of the 

gradient vector, are usually used to establish the areas of contrast. 

Most edge-detection approaches may be categorized as first- or second-order methods. First-

order operators, also known as gradient methods, find edges by calculating an estimate of the 

gradient magnitude in the first derivative, and comparing this estimate to a fixed threshold to 

determine edge points (Hutchinson and Chen, 2006). Some common first-order methods consist 

of such approaches as the Roberts and Sobel operators. Second-order techniques, often called 

Laplacian operators, search for zero-crossings in the second derivative of the image to detect 

edges. A frequently employed second-order operators is the Marr-Hildreth approach. 
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3.6.4 Gradient Methods (First-order) 

Edge detection based on gradient methods assumes that edges are pixels with a high gradient. A 

fast rate of change of intensity at some direction given by the angle of the gradient vector is 

observed at edge pixels. The magnitude of the gradient indicates the strength of the edge. All the 

gradient-based algorithms have kernel operators that calculate the strength of the slope in 

directions, which are orthogonal to each other, commonly vertical and horizontal. Later, the 

contributions of the different components of the slopes are combined to give the total value of 

the edge strength. 

3.6.4.1 Roberts Algorithm 

Since the intensity function of a digital image is only known at discrete points, derivatives of this 

function cannot be defined unless we assume that there is an underlying continuous intensity 

function, which has been sampled at the image points. With some additional assumptions, the 

derivative of the continuous intensity function can be computed as a function on the sampled 

intensity function, in this case, the digital image. It turns out that the derivatives at any particular 

point are functions of the intensity values at virtually all image points. However, approximations 

of these derivative functions can be defined at lesser or larger degrees of accuracy. The Roberts 

edge-detection algorithm works by computing the sum of the squares of the differences in 

intensity between diagonally adjacent pixels. This is accomplished by convolving the image with 

two 2x2 kernels, which provides a simple approximation to the gradient magnitude. The 

application of the Roberts algorithm on the research data is presented in Figure 4.59 (d). 

3.6.4.2 Sobel Operator 

The Sobel operator is an edge-detection technique used extensively in image processing. 

Technically, it is a discrete differentiation operator, computing an approximation of the gradient 

of the image intensity function. At each point in the image, the result of the Sobel operator is 

either the corresponding gradient vector or the norm of this vector. The algorithm calculates the 

gradient of the image intensity at each point, giving the direction of the largest possible increase 

from light to dark and the rate of change in that direction. Consequently, the results show how 
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abruptly or smoothly the image changes at that point, and how likely it is for that part of the 

image to represent an edge, as well as what the most likely orientation of that edge is. 

The Sobel edge-detector uses simple 3x3 convolution kernels to create a series of gradient 

magnitudes; one kernel is used to detect changes in vertical contrast and another to detect 

horizontal contrast. This data is represented as a vector, known as the gradient vector. The 

vertical and horizontal gradients computed can be regarded as the x and y components of the 

vector, which represent the gradient magnitude and direction. Figure 4.59 (c) shows the result of 

applying the Sobel operator on the resampled acoustic image data. 

3.6.5 Laplacian Approaches (Second-derivative) 

Laplacian-based edge detectors assume that a maximum of the first derivative will occur at a 

zero crossing of the second derivative; thus, the edge points of an image can be detected by 

finding the zero crossings of the second derivative of the image intensity. To obtain both 

horizontal and vertical edges, the Laplacian of the image is computed, resulting in second 

derivatives for both the x and y directions. Since the calculation of second derivatives is very 

sensitive to noise, the image must be smoothed before edge detection. This can be performed in 

two ways: the image is first smoothed with a Gaussian mask and then filtered with the Laplacian 

to obtain the second derivatives, or the image is convolved with the Laplacian of the Gaussian 

function, which is a hybrid filter made by convolving the Gaussian smoothing filter with the 

Laplacian filter. As a result of the smoothing, isolated noise points and small structures are 

filtered out. Then, the zero crossings are detected; those pixels that have locally maximum 

gradient are considered as edges by the edge detector in which zero crossings of the second 

derivative are used. To avoid detection of insignificant edges, only the zero crossing whose 

corresponding first derivative is above some threshold, are selected as edge points. The edge 

direction is obtained using the direction in which the zero crossing occurs. 

3.6.5.1 Marr-Hildreth Edge-detector 

The Marr-Hildreth edge-detection method is a simple algorithm that operates by convolving the 

image with the Laplacian function to obtain the second derivatives for the horizontal and vertical 

directions. Since the calculation of second derivatives is very sensitive to noise, the image is 
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usually smoothed with a Gaussian mask first and then filtered with the Laplacian to obtain the 

second derivatives, or the image is convolved with the Laplacian of the Gaussian function, also 

known as the LoG operator, in one step, or as a fast approximation, by the Difference of 

Gaussians, often called the DoG operator. This edge-detector is sometimes also referred to as the 

Mexican hat operator due to the visual shape of the function when turned up-side-down. Zero-

crossings are then detected in the filtered result to obtain the edges. The Marr-Hildreth method 

applied to the input image produces the result seen in Figure 4.59 (f). 

3.6.6 Directional Filtering 

Other edge enhancement filters that selectively enhance image features having specific direction 

components are directional filters. The sum of the directional filter kernel elements is zero; the 

result is that areas with uniform pixel values are zeroed in the output image, while those that are 

variable are presented as bright edges. The acoustic imagery contains damage with specific 

orientation, such as horizontal, vertical, and sub-vertical cracks. Thus, this filter was employed in 

order to distinguish those types of damage. Figure 4.59 (e) shows the result of a 3x3 directional 

filter with a 5° angle. 

3.7 Classification 

Classification is a method by which labels are attached to pixels according to their spectral 

characteristics by a computer, which is trained beforehand to recognize pixels with similar 

spectral properties. Typically, this process involves the analysis of digital image data and the 

application of statistically based decision rules for determining the object class of each pixel in 

an image; the pixels are then classified into their respective classes (Richards and Jia, 1999). 

This type of automated image interpretation is considered a quantitative analysis due to its 

capacity to identify pixels based on their numerical properties and to provide area estimates by 

counting pixels. In the process of classification, pixels are sorted into a finite number of 

individual object classes based on the spectral pattern present within the data for each pixel. The 

spectral pattern is composed of the set of brightness values, obtained in the various spectral 

bands for each pixel. These object classes are what the computer works with in order to perform 

the quantitative analysis (Richards and Jia, 1999). 
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Pixels are assigned to object classes through a specific set of criteria, composed of the decision 

rules, which are developed during the training phase of the classification. These decision rules 

are based on the spectral radiances observed in the data. Object classes may be associated with 

known features in the image or they may only represent areas that appear different to the 

computer. The intent of the classification process is to label all pixels in a digital image as 

belonging to one of several object classes; the categorized data can subsequently be used to 

produce summary statistics of the areas covered by each class (Jensen, 2000). 

Classification of the concrete imagery is the final step in the methodology for this study. Two 

classifiers were employed in order to evaluate their effectiveness in distinguishing the various 

types of concrete deterioration in the different imagery: a supervised technique based on the 

multi-layer perceptron artificial neural network (ANN), and the unsupervised £-means approach. 

Figure 3.14 presents the flowchart for the ANN classifier. Different datasets were used in the 

classification process to determine the contribution of each type of information to the 

characterization of concrete damage. 
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3.7.1 The Multi-layer Perceptron (MLP) 

The artificial neural network approach (ANN) has become an increasingly common alternative to 

traditional statistical classification methods. Among the many different kinds of supervised ANN 

techniques, the multi-layer perceptron (MLP) is one of the most popular methods. As such, the 

MLP artificial neural network was selected as the supervised classification technique used to 

extract the deterioration information from the concrete imagery. 

MLP Architecture 

The MLP normally consists of three layers: an input layer, a hidden layer and an output layer. 

The nodes in one layer are all connected to the nodes in the adjacent layers; however, feedback 

connections are not possible in the MLP. Signals travel forward from the input layer, through 

any hidden layers, then to the output layer. Thus, the MLP is also known as a multilayer feed­

forward neural network. 

Number of Input, Hidden and Output Nodes 

The number of nodes used in the input layer of the ANN should correlate with the number of 

input features, and the number of nodes in the output layer should reflect the number of target 

classes. In the hidden layer, the number of hidden nodes depends on the data; generally data that 

does not contain too many variables will require a smaller number of hidden nodes compared to 

more complex data. 

For classification of the various datasets in this study, a different number of input nodes were 

used. For the spectral datasets, the MLP network was composed of one input node to represent 

the unprocessed image sample. For the spatial datasets, three input nodes were used for the three 

selected first-order texture features, and three input nodes representing the three selected second-

order texture features were employed, for a total of six input nodes. Seven input nodes 

representing the original image sample and the six selected texture features were used for the 

combined datasets. For the classifications used to evaluate the significance of the first-order 

texture information, three input nodes were used for the three first-order features, and for the 
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second-order texture information, three input nodes were employed to represent the three 

second-order features. 

The number of output nodes used in the MLP depends on the type of damage and the number of 

object classes associated with it. For the images of the laboratory specimens containing map-

cracking, three output nodes were used corresponding to the three object classes: wide-crack, 

narrow-crack and no-crack; for the field sample images, two output nodes were employed, in 

order to represent the two object classes of map-crack and no-crack. For most of the other types 

of damage two output nodes were used, one for representing the damage class and the other for 

representing the no-damage class. Some of the other types of damage, however, required the use 

of three output nodes, such as corrosion, popouts, post-repair damage, and efflorescence stains, 

because these images actually contained two types of damage classes along with the no-damage 

class. Since the data is not of a very complex nature, eight hidden nodes were employed in all of 

the MLP networks. 

Selection of Activation Function 

In the ANN, the input signal travels from the input layer to the hidden layer, where it passes 

through an activation function in order to compute the output from the hidden nodes. This output 

signal from the hidden nodes becomes the net input signal, which then travels from the hidden 

layer to the output nodes, where it again passes through an activation function to calculate the 

predicted output. There are different activation functions that can be used in an MLP network, 

such as logistic, Gaussian, linear, hyperbolic and threshold. When calculating the output from the 

hidden layers and the output layers, it is possible to use different activation functions for each 

layer; however, the same activation function is usually used. The most widely used activation 

function for the MLP network is the logistic function, which was also employed in this study. 

Training Algorithm: Error Back Propagation 

To minimize the error between the predicted output and the actual output of the ANN, a training 

algorithm is used to adjust the network's weights and thresholds during the training stage. 

Supervised feed-forward networks usually employ the error-back propagation approach, which 

was also used in this study. 
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Selection of Training Rate and Momentum 

The training rate weights the change in the connections between the network layers. If it is too 

high, the training algorithm will overshoot the minimum of the error surface. If it is too low, the 

algorithm will take too long to reach the minimum. The training momentum is a term that tends 

to alter the change in the connections in the direction of the average gradient. It can prevent the 

learning algorithm from stopping at a local minimum instead of at a global minimum. In order to 

find appropriate values for the training rate and the training momentum, different values for 

these two can be tested for their effects on the classification accuracy. Consequently, a value of 

0.2 was selected for the training rate, and 0.9 was selected for the training momentum. 

Selection of Training Threshold and Number of Iterations 

A value is selected for the training threshold in order to indicate when the training should stop. 

The training procedure usually continues until the value of the network errors is less than the 

training threshold. The number of training iterations indicates the number of iterations the 

training procedure should perform. For the training threshold, a value of 0.9 was employed and 

for the training iterations, a value of 1000 iterations was selected. 

Training and Verification Dataset 

The application of a neural network usually requires a training data set and a verification data 

set. In supervised training, both data sets should contain known input and output patterns. The 

training data set is used to train the network and must be both representative and complete. The 

verification data set should be independent of the training data; it is used to assess the 

classification accuracy of the network after training. 

In order to train the MLP, regions of interest (ROIs) representing the object classes were selected 

from the image sample. These training ROIs consist of areas that manifest deterioration for the 

classes representing concrete damage, and regions of sound concrete for the no-damage classes. 

Verification ROIs were also created for each class from areas on the image where the training 

ROIs were not produced. The verification data is used to validate the training outputs of the 

MLP. The size of the training and verification datasets differed from image to image, as well as 
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with the type of damage, due to the variation of the amount of deterioration present in the 

images. In order to avoid poor classifications or inaccurate estimates of the elements, efforts 

were made to choose a sufficient number of training pixels for each class, in order to ensure 

adequate representation. 

3.7.2 JT-means Classifier 

Clustering algorithms usually locate the centre of a class of data, which is a point that is the 

average of all the points in the cluster. This is determined by taking the mean of the coordinates 

of all the points in the clusters. To determine cluster membership, most algorithms evaluate the 

distance between a point and the cluster centres. Generally, the distance between two points is 

taken as a common metric to assess the similarity among the instances of a population. There are 

many different distance measures, the most popular being the Euclidean metric, which defines 

the distance between two points. The output from a clustering algorithm is basically a statistical 

description of the cluster centres with the number of components in each cluster, or an image in 

which the pixels in each group are assigned a symbol or colour to show that they belong to the 

same cluster. 

The .K-means classifier groups pixels into classes of interest by determining the optimal 

partitioning of pixels into a specified number of object classes. Applying the classifier usually 

consists of selecting the number of object classes and a set of points for the initial centre of each 

class. Then the classifier assigns an initial cluster vector and classifies each pixel to the closest 

cluster. New cluster mean vectors are calculated based on the pixels in each cluster, and then the 

classification is carried out again. These last two steps are repeated until the data is classified 

into the predefined number of clusters. 

3.7.3 Results of the Classification 

The results of the classification can be presented in two forms: a table that provides the 

classification statistics of the number of pixels in the whole image that belongs to each class, or a 

classified image. The classified image is also known as a thematic map, which shows the spatial 

distribution of the various classes present in the region of interest, in which each pixel is 

assigned a symbol or colour that relates it to a specific class. Thematic maps are often 

87 



represented according to a pseudo-colour table, which provides for a better visualization of the 

classified data. 

3.7.4 Classification Accuracy 

At the completion of a classification process, it is necessary to assess the accuracy of the results 

obtained. This provides a degree of confidence relating to the results and serves to indicate 

whether or not the analysis objectives have been achieved. 

Accuracy is determined empirically, by selecting a sample of pixels from the classified image 

and checking their labels against classes determined from verification data (ground truth data). 

From these checks, the percentage of pixels from each class in the image labelled correctly by 

the classifier can be estimated, along with the proportions of pixels from each class erroneously 

labelled into every other class. The result of this procedure is presented in the form of a matrix, 

from which many classification precision indexes can be calculated. The Kappa coefficient, 

which is a common index used to assess classification accuracy, is the method that was adopted 

in this study. 

3.7.5 Kernel Filtering 

To smooth out the classified images, a Majority Analysis filter was applied. The Majority 

Analysis is used to change spurious pixels within a large single class to that class by selecting a 

kernel size; the centre pixel in the kernel will be replaced with the class value that the majority of 

the pixels in the kernel has. 

It was found that the same kernel size did not produce the desired smoothing effect for all of the 

classified images, probably due to the variability among the different types of damage. 

Therefore, various kernel sizes were used for the different imagery. 

3.7.6 Binary Images 

In order to better represent the damage class and to further analyse surface damage, the classified 

images were converted into binary images. This process simplifies the image by assigning the 
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pixels that represent the damage in the concrete a value of 1 (black) and the background pixels a 

value of 0 (white). Manual or automated methods are then used to count or sum the pixels to 

calculate total wide-crack length, as well as average wide-crack width. 

Chapter Four provides examples of classified images for the different types of concrete 

deterioration using the different types of imagery, along with their corresponding binary images. 

Tables providing the class statistic summary, which indicates the number of pixels classified into 

each object class, and the percentage of the image occupied by each class, are also given in 

Chapter Four. 
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CHAPTER 4 

Results and Discussion 

4.1 Damage Analysis of Map-crack Imagery from Field 
Samples 

The first stage of the damage analysis of the map-crack imagery examines images obtained from 

field samples, which consist of deteriorated concrete components from various bridges, as 

described in section 3.1. All of the images exhibit different degrees of map-crack damage due to 

the alkali-aggregate reaction. 

4.1.1 Application of Haar's Wavelet Transform 

4.1.1.1 Image Decomposition 

Figure 4.1 presents an example of image decomposition through the wavelet transform using a 

sample of a greyscale map-crack image taken from the field samples. Figure 4.1(a) is the input 

image, Figure 4.1(b) is the result of a one-level pyramidal decomposition of the image, Figure 

4.1(c) is what the image looks like after several levels of decomposition, and Figure 4.1(d) is the 

fully decomposed image. 
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(a) Input Image (b) One-level 

(c) Two-level (d) Complete 

Figure 4.1: Decomposition of Greyscale Map-Crack Image 

4.1.1.2 Image Reconstruction 

Figure 4.2 shows an example of image reconstruction using the same greyscale map-crack image 

sample presented for the decomposition step. Figure 4.2(a) is the 1% reconstruction, Figure 

4.2(b) is the 5% reconstruction, Figure 4.2(c) is the 10% reconstruction, and Figure 4.2(d) is the 

25% reconstruction; the 25% reconstruction is the level employed for all of the reconstructed 

images in this study. 
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Figure 4.2: Different Levels of Reconstruction for Greyscale Map-Crack Image 

4.1.2 Application of Texture Analysis 

4.1.2.1 Selection of Appropriate Window 

In order to determine the most appropriate window size, the homogeneity texture feature was 

randomly chosen for computing the coefficients of variation for each class according to different 

window sizes. The coefficients of variation calculated for the greyscale map-crack image are 

given in Figure 4.3, which shows that the coefficients stabilized around the 11x11 window for 

the majority of the object classes. 
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Figure 4.3: Coefficients of Variation Graph for Greyscale Map-crack Image 

4.1.2.2 First-order Statistics for Greyscale Map-crack Image 

First-order statistics are calculated from the histogram of an image; texture features are then 

extracted from these statistics. Figure 4.4 presents the five first-order texture features obtained 

for the reconstructed image of the greyscale map-crack image sample employed in the signal 

processing phase. The most effective texture features are selected through visual analysis of the 

texture features, histogram analysis and calculation of the correlation matrix. Figure 4.5 shows 

the histograms of the first-order texture features and Table 4.1 gives the correlation matrix for 

the features. Figure 4.6 is an example of a texture image resulting from the first-order texture 

features selected through the feature selection process. This texture image was produced using 

the mean, variance and skew texture features, which were selected for the greyscale map-crack 

image sample. 
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Figure 4.4: First-order Texture Features for Greyscale Map-crack Image 
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Figure 4.5: Histograms of First-order Features for Greyscale Map-crack Image 

Table 4.1: Correlation Matrix of First-order Texture Features for Greyscale Map-crack 
Image 

Features 

Data Range 

Mean 

Variance 

Entropy 

Skew 

Data Range 

1.000 

-0.229 

0.812 

0.669 

0.100 

Mean 

-0.229 

1.000 

-0.322 

0.246 

-0.111 

Variance 

0.812 

-0.322 

1.000 

0.499 

0.077 

Entropy 

0.669 

0.246 

0.499 

1.000 

0.122 

Skew 

0.100 

-0.110 

0.077 

0.122 

1.000 
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Figure 4.6: Texture Image of Selected First-order Features for Greyscale Map-crack 
Image: Mean, Variance, Skew 

4.1.2.3 Second-order GLCM for Greyscale Map-crack Image 

The GLCM was calculated for each image sample using one pixel distance, a direction of 0° 

between pixels, and the most appropriate window size, which in the case of the greyscale map-

crack image sample employed in the signal processing phase, was an 1 lxl 1 window. Figure 4.7 

shows the second-order texture features that were extracted from the GLCM for the 

reconstructed image of the greyscale image sample. 

A feature selection process was also employed for selecting the most useful second-order texture 

features. Figure 4.8 presents the histograms of the eight texture features and Table 4.2 gives the 

correlation matrix for the features. Figure 4.9 is an example of the texture image produced using 

the most effective second-order texture features, selected through the feature selection process. 

This texture image displays the mean, homogeneity and entropy second-order texture features 

that were selected for the greyscale map-crack image sample. 
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(a) Mean (b) Variance 

(d) Contrast (a) Dissimilarity 

(c) Homogeneity 

(b) Entropy 

(c) Second Moment (d) Correlation 

Figure 4.7: Second-order Texture Features for Greyscale Map-crack Image 
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Figure 4.8: Histograms of Second-order Features for Greyscale Map-crack Image 

Table 4.2: Correlation Matrix of Second-order Texture Features for Greyscale Map-
crack Image 

Features 

Mean 

Var 

Homo 

Con 

Diss 

Ent 

SM 

Mean 

1 

-0.312 

0.684 

-0.240 

-0.229 

0.174 

0.425 

Var 

-0.312 

1 

-0.515 

0.833 

0.857 

0.500 

-0.360 

Homo 

0.684 

-0.515 

1 

-0.512 

-0.617 

-0.324 

0.797 

Cont 

-0.240 

0.833 

-0.512 

1 

0.942 

0.470 

-0.338 

Diss 

-0.229 

0.857 

-0.617 

0.942 

1 

0.679 

-0.486 

Ent 

0.174 

0.500 

-0.324 

0.470 

0.679 

1 

-0.571 

SM 

0.425 

-0.360 

0.797 

-0.338 

-0.486 

-0.571 

1 

Corr 

0.228 

-0.376 

0.450 

-0.391 

-0.525 

-0.454 

0.335 
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Figure 4.9: Texture Image of Selected Second-order Features for Map-crack Image: 
Mean, Homogeneity, Entropy 

4.2 Damage Analysis of CANMET and GRAI Laboratory 
Specimens 

The second stage of the map-crack damage analysis deals with images of laboratory specimens. 

The methodology described in sections 3.4 and 3.5 was applied to imagery of the CANMET 

blocks and GRAI slabs. Descriptions of these specimens can be found in section 3.2; these 

images also manifest map-crack damage typical of AAR. 

4.2.1 CANMET Block Specimens 

Figure 4.10 shows raw image samples of the three CANMET blocks, referred to in this study as 

CI, C2, and C3. The least amount of damage is displayed by CI, whereas C2 has a moderate 

amount of cracking, and C3 demonstrates the highest amount of map-crack damage. 

In this analysis, the methodology was applied on imagery of the CANMET laboratory 

specimens. Haar's wavelet transform was applied on the imagery, as described in section 3.4, 

after which the 25% reconstructions were produced according to the steps in section 3.4.2. The 

texture features selected through the first-order statistical analysis, described under section 3.5.1, 

for the greyscale image of the C3 CANMET specimen is presented in Figure 4.11. 

99 



' • ' . . ' ' : ; - ^ . ' ' 

' • • • . • • + • . " 

\ ''' 

; . • • • • ; 

< ':::+.;-
(a) CI (b) C2 (c) C3 

Figure 4.10: Image Samples of CANMET Specimens 
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Figure 4.11: Selected Texture Features from First-order Statistics for C3 Specimen 
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The second-order texture features selected for the same C3 image through the GLCM analysis 

outlined in section 3.5.2 are provided in Figure 4.12. Figure 4.13(a) is an example of the texture 

image obtained by selecting the most effective first-order texture features, mean, variance and 

skew; Figure 4.13(b) is an example of the texture image produced using the selected second-

order texture features, mean, homogeneity and entropy. 
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1 • • ' . •« . . . . . . . vsr* • 

(a) Mean 

. . . . ! . i «f , •• ! 1 

(b) Homogeneity (c) Entropy 

Figure 4.12: Selected Texture Features from Second-order Statistics for C3 Specimen 

(a) First-order: Mean, Variance, Skew (b) Second-order: Mean, Homogeneity, 
Entropy 

Figure 4.13: Texture Images of Selected Features for C3 Specimen 
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4.2.2 GRAI Slab Specimens 

Figure 4.14 shows image samples of the three GRAI slabs, labelled Gl, G2, and G3. As with the 

CANMET blocks, Gl has the least amount of damage, G2 shows a moderate amount, and G3 

manifests the highest amount of crack damage. 

(a) Gl (b) G2 (c) G3 

Figure 4.14: Image Samples of GRAI Laboratory Specimens 

Haar's wavelet transform was applied on the imagery, as described in section 3.4, after which the 

25% reconstructions were produced according to the steps in section 3.4.2. Texture features were 

then selected through the first-order statistical analysis, described under section 3.5.1. The 

selected first-order texture features for the reconstructed greyscale image of the Gl slab are 

presented in Figure 4.15, and the texture image is given in Figure 4.16. For the reconstructed 

greyscale image of the G2 slab, the most effective first-order texture features are provided in 

Figure 4.17, and the texture image of the selected features can be seen in Figure 4.18. The first-

order texture features selected for the reconstructed greyscale image of the G3 specimen and the 

texture image of the features are given in Figure 4.19 and Figure 4.20, respectively. 

For the second-order texture features, the features selected for the reconstructed greyscale image 

of the G2 specimen are given in Figure 4.21, and the texture image of the selected features is 

presented in Figure 4.22. 
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(a) Mean (c) Entropy 

Figure 4.15: Selected First-order Texture Features for Gl Specimen 

Figure 4.16: Texture Image of Selected First-order Features for Gl Specimen: Mean, 
Variance, Entropy 
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(a) Mean (b) Variance (c) Data Range 

Figure 4.17: Selected First-order Texture Features for G2 specimen 

Figure 4.18: Texture Image of Selected First-order Features for G2 Specimen: Mean, 
Variance, Data Range 
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(a) Mean (b) Variance (c) Data Range 

Figure 4.19: Selected First-order Texture Features for G3 Specimen 

Figure 4.20: Texture Image of Selected First-order Features for G3 Specimen: Mean, 
Variance, Data Range 
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(a) Mean (b) Variance (c) Homogeneity 

Figure 4.21: Selected Second-order Texture Features for G2 Specimen 

Figure 4.22: Texture Image of Selected Second-order Features for G2 Specimen: Mean 
Variance, Homogeneity 
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4.2.3 Damage Analysis of G3 GRAI Slab using Greyscale, Colour and 
Thermographic Imagery 

Damage analysis was carried out on thermographic (TIR) and colour images of the laboratory 

specimens in order to determine the contribution of such imagery to the analysis of crack 

damage. The analysis conducted for the G3 GRAI slab is presented in this section. Figure 4.23 

presents the original greyscale image with the corresponding thermographic image. The black 

line seen around the image is a wire that was used as a reference to set the layout of the image. 

(a) Greyscale (b) Thermographic 

Figure 4.23: Original Greyscale and TIR Images of G3 GRAI Slab 

Figure 4.24 shows the resampled greyscale, thermographic, and colour images that were 

employed in this damage analysis. Haar's wavelet transform was applied on the imagery, as 

described in section 3.4, after which the reconstructions were produced according to the steps in 

section 3.4.2. Texture features were extracted through the first-order statistical analysis, 

described under section 3.5.1. The selected first-order texture features for the reconstructed 

greyscale G3 image, along with the texture image are shown in section 4.2.2 above, in Figures 

4.19 and 4.20, respectively. The eight second-order texture features extracted through the GLCM 

analysis outlined in section 3.5.2 for the greyscale image of the G3 specimen are given in Figure 

4.25; Figure 4.26 shows the texture image of the second-order texture features, mean, 

homogeneity and variance, selected for the greyscale image of the G3 specimen. 
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(a) Greyscale (b) Thermographic (c) Colour 

Figure 4.24: Resampled Greyscale, Thermographic, and Colour Images for G3 Slab 
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Figure 4.25: Second-order Texture Features for Greyscale G3 Image 
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Figure 4.26: Texture Image of Selected Second-order Features for Greyscale G3 Image: 
Mean, Homogeneity, Variance 

For the thermographic and colour imagery, the texture analysis results in three times the number 

of texture features as the greyscale images. This is due to the fact that these two types of imagery 

are encoded in three colour bands, red, green and blue, compared to grey levels used in encoding 

greyscale images. Consequently, the GLCM texture analysis of the thermographic and colour 

imagery resulted in 24 second-order texture features for each image. 

Figure 4.27 displays some of the eight second-order texture features extracted from the red band 

of the thermographic image of the G3 specimen. Figure 4.28 presents all eight of the second-

order texture features derived from the green band of the thermographic image, and Figure 4.29 

shows the texture image of the selected second-order features. Some of the second-order texture 

features derived from the GLCM analysis for the colour image of the G3 specimen are given in 

Figure 4.30, and the texture image of the second-order features selected for the colour G3 image 

is presented in Figure 4.31. 

Figure 4.29 is the texture image of the second-order features, the mean feature from the red band, 

the homogeneity feature from the blue band, and the correlation feature from the blue band, 

selected as the most effective features for the thermographic image of the G3 specimen. 
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Figure 4.27: Some Second-order Texture Features from Red Band of TIR G3 Image 
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Figure 4.28: Second-order Texture Features from Green Band of TIR G3 Image 
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Figure 4.29: Texture Image of Selected Second-order Features for TIR G3 Image: Mean 
(red), Homogeneity (blue), Correlation (blue) 
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Figure 4.30: Second-order Texture Features from Green Band of Colour G3 Image 
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Figure 4.30 displays the eight second-order texture features derived through the GLCM analysis 

from the green band of the colour image for the G3 specimen. Figure 4.31 presents the texture 

image of the selected second-order features for the colour image: the mean feature from the red 

band, the homogeneity feature from the blue band, and the correlation feature from the blue 

band. 

Figure 4.31: Texture Image of Selected Second-order Features for Colour G3 Image: 
Mean (red), Homogeneity (blue), Correlation (blue) 

4.3 Damage Analysis of Spalling Imagery from Field Samples 

Another stage of the damage analysis consists of application of the methodology outlined in 

sections 3.4 and 3.5 for the analysis of spalling damage from images of field samples. In this 

stage, greyscale images of deteriorated concrete components from various bridges were 

processed using Haar's discrete wavelet transform, which is explained in section 3.4. Figure 4.32 

presents the decomposition of an image sample of a bridge component exhibiting spalling 

damage: Figure 4.32(a) is the input image, Figure 4.32(b) is a one-level pyramidal 

decomposition of the image, Figure 4.32(c) is the result after several levels of decomposition, 

and Figure 4.32(d) is the complete decomposition. The reconstruction process described in 

section 3.4.2 was applied to produce reconstructions using the wavelet coefficients obtained from 
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the decomposed imagery. Figure 4.33 displays the various reconstructions of the greyscale 

spalling image shown in the decomposition step. Figure 4.33(a) is the image reconstructed to 

1%, Figure 4.33(b) is the 5% reconstruction, Figure 4.33(c) is the 10% reconstruction, and 

Figure 4.33(d) is the image reconstructed to 25%. The 25% reconstructions were employed in 

the subsequent analysis steps. 
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(a) Image Sample (b) One-level 

(c) Two-level (d) Complete 

Figure 4.32: Decomposition of Greyscale Spalling Image 
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(c) 10% (d) 25% 

Figure 4.33: Different Levels of Reconstruction for Greyscale Spalling Image 

The first-order and second-order statistical texture analysis processes, explained in sections 3.5.1 

and 3.5.2, were applied on the spalling imagery. The coefficients of variation graph that was 

calculated for the GLCM analysis of the spalling image is given in Figure 4.34. The selected 

second-order texture features for the spalling image are presented in Figure 4.35, and the texture 

image of the second-order features is presented in Figure 4.36. 
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Figure 4.34: Coefficients of Variation Graph for Greyscale Spalling Image 

(a) Mean (b) Variance (c) Contrast 

Figure 4.35: Selected Second-order Features for Spalling Image 
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Figure 4.36: Texture Image of Selected Second-order Features for Spalling Image: Mean, 
Variance, Contrast 

4.4 Damage Analysis of Corrosion Images from Field 
Samples 

The damage analysis methodology explained in sections 3.4 and 3.5 was also applied for the 

investigation of corrosion damage in field samples. Greyscale images of bridge components 

exhibiting corrosion damage were resampled and decomposed using the Haar wavelet transform. 

The reconstructed images were further analyzed through the first- and second-order texture 

analysis process. Figure 4.37 provides the coefficients of variation calculated for establishing the 

most appropriate window size to be used in extracting the second-order texture features for a 

greyscale corrosion image sample. The graph for the coefficients of variation indicates that the 

1 lxl 1 window is where the coefficients start to stabilize for the two classes. 
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Figure 4.37: Coefficients of Variation Graph for Greyscale Corrosion Image 

The following figures show the second-order texture features selected for two samples of 

greyscale corrosion imagery and the texture images produced from the selected features. Figure 

4.38 shows the most effective texture features, mean, variance and dissimilarity, selected for 

greyscale corrosion image sample-1 from the eight second-order features derived through the 

texture analysis process; Figure 4.39 is the texture image of the second-order texture features 

selected for corrosion image sample-1. The texture features selected for image sample-2 of 

corrosion damage, mean, variance and correlation is presented in Figure 4.40, and the texture 

image of the texture features for corrosion image sample-2 is shown in Figure 4.41. 

(a) Mean (b) Variance (c) Dissimilarity 

Figure 4.38: Selected Second-order Texture Features for Corrosion Image-1 
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Figure 4.39: Texture Image of Selected Second-order Features for Corrosion Image 
Sample-1: Mean, Variance, Dissimilarity 

(a) Mean (b) Variance 
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Figure 4.40: Selected Second-order Texture Features for Corrosion Image-2 
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Figure 4.41: Texture Image of Selected Second-order Features for Corrosion Image 
Sample-2: Mean, Variance, Correlation 

4.5 Damage Analysis of Popouts, Erosion, Post-repair 
Damage, and Efflorescence and Corrosion Stains (Field 
Samples) 

Other types of damage portrayed by the images of the deteriorated concrete bridge components 

were also analysed using the methodology outlined in sections 3.4 and 3.5. These include 

aggregate popouts, surface erosion, post-repair damage, and efflorescence and corrosion stains. 

Greyscale images of the different types of deterioration were resampled; the Haar wavelet 

transform was applied in order to obtain the reconstructed images, following which the texture 

analysis approach was implemented. The most effective second-order texture features selected 

through the texture analysis phase for image samples of the various types of damage, as well as 

the texture images, are presented below. 
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4.5.1 Popout Damage 

Figure 4.42 presents the second-order texture features, mean, variance and contrast, selected 

from the eight texture features of the GLCM computed for a greyscale image sample of popout 

damage, and Figure 4.43 is the texture image. 

(a) Mean (b) Variance (c) Contrast 

Figure 4.42: Selected Second-order Texture Features for Popout Image Sample 

Figure 4.43: Texture Image of Selected Second-order Features for Popout Image: Mean, 
Variance, Contrast 
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4.5.2 Erosion Damage 

Figure 4.44 shows the coefficients of variation calculated for determining the best window size 

to use in the GLCM texture analysis of greyscale imagery of erosion damage. The graph 

indicates that the 1 lxl 1 window is the point where the coefficients start to stabilize for the two 

classes. Figure 4.45 presents the second-order texture features, mean, variance and homogeneity, 

selected as the most effective from the eight features calculated in the texture analysis process 

for an image sample of erosion damage. The texture image of these selected features for the 

erosion image sample is given in Figure 4.46. 
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Figure 4.44: Coefficients of Variation Graph for Greyscale Erosion Image 
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(a) Mean (b) Variance (c) Homogeneity 

Figure 4.45: Selected Second-order Texture Features for Erosion Image Sample 

Figure 4.46: Texture Image of Selected Second-order Features for Erosion Image: Mean, 
Variance, Homogeneity 
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4.5.3 Post-Repair Damage 

Figure 4.47 shows the second-order texture features, mean, homogeneity and second moment, 

selected for an image sample of post-repair damage. The texture image for the post-repair image 

sample is presented in Figure 4.48. 

(a) Mean (b) Homogeneity (c) Second Moment 

Figure 4.47: Selected Second-order Texture Features for Post-repair Image Sample 

Figure 4.48: Texture Image of Selected Second-order Features for Post-repair Image 
Sample: Mean, Homogeneity, Second Moment 
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4.5.4 Efflorescence Stains 

The second-order texture features, mean, variance and homogeneity, selected for an image 

sample of efflorescence stain are given in Figure 4.48, and the texture image for the sample is 

shown in Figure 4.50. 
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Figure 4.49: Selected Second-order Texture Features for Efflorescence Stain Sample 

Figure 4.50: Texture Image of Selected Second-order Features for Efflorescence Stain 
Image Sample: Mean, Variance, Homogeneity 
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4.5.5 Corrosion Stains 

Figure 4.51 displays the selected second-order texture features, mean, variance and homogeneity, 

for image sample-1 of corrosion stains. Figure 4.52 presents the texture image. 

(a) Mean (b) Variance (c) Homogeneity 

Figure 4.51: Selected Second-order Texture Features for Corrosion Stain Sample-1 

Figure 4.52: Texture Image of Selected Second-order Features for Corrosion Stain Image 
Sample-1: Mean, Variance, Homogeneity 
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The second-order texture features, mean, homogeneity, and contrast, selected for image sample-2 

of corrosion stains are given in Figure 4.53, and the texture image for sample-2 is displayed in 

Figure 4.54. 

(a) Mean (b) Homogeneity (c) Contrast 

Figure 4.53: Selected Second-order Texture Features for Corrosion Stain Sample-2 

Figure 4.54: Texture Image of Selected Second-order Features for Corrosion Stain Image 
Sample-2: Mean, Homogeneity, Contrast 

126 



4.6 Damage Analysis of Deterioration from Acoustic Imagery 

Another aspect of the damage analysis involves the study of acoustic imagery obtained from 

boreholes drilled in the St. Lambert Lock. Section 3.1.1 gives details of the lock, and section 

3.3.2.4 provides details of the borehole acoustic imagery. Samples of the imagery are presented 

in Figure 3.11. The damage analysis methodology described in sections 3.4 and 3.5 was applied 

to the acoustic imagery; however, in this analysis, the texture phase was applied as a separate 

technique on the raw acoustic imagery and not on the reconstructed images. Furthermore, the 

spatial filtering approaches outlined in section 3.6 were also employed on the acoustic image 

samples. 

The Haar wavelet transform was applied to the imagery in order to obtain the decompositions, as 

explained in section 3.4.1. Figure 4.55 shows the different stages of the decomposition of an 

acoustic image sample: Figure 4.55(a) presents the input acoustic image sample, different levels 

of decomposition are shown in Figures 4.55(b-c), and Figure 4.55(d) is the complete 

decomposition of the image. The image sample was then reconstructed according to the steps 

explained in section 3.4.2. Figure 4.56 shows the image at different levels of reconstructions. 

Application of the GLCM analysis resulted in the selection of the three second-order texture 

features, mean, homogeneity and variance, presented in Figure 4.57; the texture image of the 

second-order features for the acoustic image is given in Figure 4.58. 

The methodology for damage analysis in this stage also includes techniques known as spatial 

filters, which are employed to determine their effectiveness in detecting damage contained in 

acoustic imagery. Six different spatial filters are evaluated: the low-pass filter, the median filter, 

the Sobel edge-detector, the Roberts edge-detector, the directional edge-enhancement filter, and 

the Marr-Hildreth edge-detection operator. Application of the filters on the acoustic image 

sample resulted in the images presented in Figure 4.59. 
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(a) Input Image (b) One-level 

(c) Two-level (d) Complete 

Figure 4.55: Decomposition of Acoustic Image Sample 
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(a) 1% Reconstruction (b) 5% Reconstruction 

(c) 10% Reconstruction (d) 25% Reconstruction 

Figure 4.56: Reconstruction of Acoustic Image Sample 
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(a) Mean (b) Homogeneity (c) Variance 

Figure 4.57: Selected Second-order Texture Features for Acoustic Image Sample 

Figure 4.58: Texture Image of Selected Second-order Features for Acoustic Image 
Sample: Mean, Homogeneity, Variance 
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(a) Lowpass filter (b) Median Filter 
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(c) Sobel edge-detector 

(d) Roberts edge-detector (e) Directional Filter (f) Marr-Hildreth operator 

Figure 4.59: Images Resulting from Application of Different Filters on Acoustic Image 
Sample 
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4.7 Classification Results 

4.7.1 Map-crack Imagery from Field Samples 

Figure 4.60(a) is the classified image of a greyscale map-crack image sample using the /C-means 

clustering method, and Figure 4.60(b) is the classification of the same image using the ANN 

classifier. 

(a) jfiT-means Classified Image (b) Af-means Binary Image 

(c) ANN Classified Image (d) ANN Binary Image 

Figure 4.60: K-means and ANN Classifications for Greyscale Map-crack Image Sample 
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Table 4.3 gives the class statistics summary reports for the A -̂means and ANN classifications for 

the greyscale map-crack image sample. 

Table 4.3: Class Statistics Summary Report for Greyscale Map-crack Image using K-
means and ANN Classifier 

iT-means Classifier 

Classes 

Map-crack (Blue) 

No-crack (Green) 

Pixels 

338 900 

3 855 404 

Percentage (%) 

8.1 

91.9 

ANN Classifier 

Map-crack (Black) 

No-crack (Green) 

617 402 

3 576 902 

14.7 

85.3 

Total Number of Pixels: 4 194 304 (2048x2048) 
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4.7.2 Map-crack Imagery from CANMET Laboratory Specimens 

Figure 4.61 presents the ANN classifications for the greyscale imagery of the three CANMET 

specimens, CI, C2 and C3, as well as their corresponding binary images. 

(a) CI Classified (b) C2 Classified (c) C3 Classified 

(d) CI Binary (e) C2 Binary (f) C3 Binary 

Figure 4.61: ANN Classifications for Greyscale Imagery of CANMET Specimens 
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Table 4.4 gives the class statistics summary for the ANN classifications of the greyscale imagery 

of the three CANMET blocks, CI, C2 and C3. 

Table 4.4: Class Statistics Summary Report for Greyscale Imagery of CANMET 
Specimens using ANN Classifier 

CI Specimen 

Classes 

Wide-crack (Red) 

Narrow-crack (Blue) 

No-crack (Green) 

Pixels 

0 

10119 

252 025 

Percentage (%) 

0 

3.9 

96.1 

Total Number of Pixels: 262 144 (512x512) 

C2 Specimen 

Wide-crack (Red) 

Narrow-crack (Blue) 

No-crack (Green) 

8 939 

18 927 

234 278 

3.4 

7.2 

89.4 

Total Number of Pixels: 262 144 (512x512) 

C3 Specimen 

Wide-crack (Red) 

Narrow-crack (Blue) 

No-crack (Green) 

21548 

30 173 

210 423 

8.2 

11.5 

80.3 

Total Number of Pixels: 262 144 (512x512) 
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Figure 4.62 provides the classified images for the greyscale, colour and thermographic imagery 

of the CANMET C3 specimen, using the ANN approach. 

' } ' i . 

(a) Greyscale Classified (b) Colour Classified (c) TIR Classified 

• ^ -A 

(d) Greyscale Binary (e) Colour Binary (f) TIR Binary 

Figure 4.62: ANN Classifications for Greyscale, Colour and TIR Images of C3 Specimen 
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Table 4.5 gives the class statistics summary for the ANN classifications for the three types of 

imagery of the CANMET C3 block. 

Table 4.5: Class Statistics Summary Report for Imagery of CANMET C3 Specimen 
using ANN Classifier 

Greyscale Image 

Classes 

Wide-crack (Red) 

Narrow-crack (Blue) 

No-crack (Green) 

Pixels 

21 548 

30 173 

210 423 

Percentage (%) 

8.2 

11.5 

80.3 

Total Number of Pixels: 262 144 (512x512) 

Colour Image 

Wide-crack (Red) 

Narrow-crack (Blue) 

No-crack (Green) 

26 136 

27 892 

208 116 

9.9 

10.6 

79.5 

Total Number of Pixels: 262 144 (512x512) 

Thermographic Image 

Wide-crack (Red) 

Narrow-crack (Blue) 

No-crack (Green) 

24 720 

26 608 

210 816 

9.4 

10.2 

80.4 

Total Number of Pixels: 262 144 (512x512) 
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4.7.3 Map-crack Imagery from GRAI Laboratory Specimens 

Table 4.6 shows the class statistics summary of the ANN classifications for the greyscale 

imagery of the Gl, G2 and G3 GRAI slabs. Figure 4.63 presents the ANN classifications for the 

thermographic, colour and greyscale imagery of the G3 slab. Table 4.7 provides the class 

statistics summary of the ANN classifications for the three types of imagery of the G3 specimen. 

Table 4.6: Class Statistics Summary Report for Greyscale Imagery of GRAI Slabs 
using ANN Classifier 

Gl Specimen 

Wide-crack (Blue) 

Narrow-crack (Red) 

No-crack (Green) 

0 

7 157 

254 987 

0 

2.7 

97.3 

Total Number of Pixels: 262,144 (512x512) 

G2 Specimen 

Wide-crack (Red) 

Narrow-crack (Blue) 

No-crack (Green) 

9 123 

5 662 

247 359 

3.5 

2.2 

94.3 

Total Number of Pixels: 262,144 (512 x 512) 

G3 Specimen 

Wide-crack (Black) 

Narrow-crack (Red) 

No-crack (Green) 

23 252 

0 

238 892 

8.9 

0 

91.1 

Total Number of Pixels: 262,144 (512x512) 

138 



(a) TIR Classified (b) Colour Classified (c) Greyscale Classified 

y . . * • '•:•< » . , 

(d) TIR Binary (e) Colour Binary (f) Greyscale Binary 

Figure 4.63: ANN Classifications for Greyscale, Colour and TIR Images of G3 Specimen 
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Table 4.7: Class Statistics Summary Report for Thermographic, Colour and 
Greyscale Images of GRAI G3 Specimen using ANN Classifier 

Thermographic Image 

Classes 

Wide-crack (Red) 

Narrow-crack (Blue) 

No-crack (Green) 

Pixels 

25 507 

0 

236 637 

Percentage (%) 

9.7 

0 

90.3 

Total Number of Pixels: 262 144 (512x512) 

Colour Image 

Wide-crack (Black) 

Narrow-crack (Red) 

No-crack (Green) 

23 750 

0 

238 394 

9.1 

0 

90.9 

Total Number of Pixels: 262 144 (512x512) 

Greyscale Image 

Wide-crack (Black) 

Narrow-crack (Red) 

No-crack (Green) 

23 252 

0 

238 892 

8.9 

0 

91.1 

Total Number of Pixels: 262 144 (512x512) 
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4.7.4 Imagery of Different Types of Damage from Field Samples 

The classified images for greyscale image sample-1 of spalling damage, using the K-means 

clustering method and the ANN classifier are presented in Figure 4.64. 

(a) if-M eans Cluster Map (b) JST-Means Binary Image 

&"<? 

'li 
• ^ ••$>.•„"«• . * W M 

?-• 

(c) ANN Classification (d) ANN Binary Image 

Figure 4.64: if-Means and ANN Classifications for Greyscale Spalling Image Sample-1 
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The class statistics summary reports for the AT-means and ANN classifications for the greyscale 

spalling image sample-1 are given in Table 4.8. 

Table 4.8: Class Statistics Summary Reports for Greyscale Spalling Image Sample-1 
using K-means and ANN Classifiers 

A-means 

Classes 

Spalling (Green) 

No-spalling (Red) 

Pixels 

604 085 

444 491 

Percentage (%) 

57.6 

42.4 

ANN 

Spalling (Green) 

No-spalling (Red) 

742 497 

306 079 

70.8 

29.2 

Total Number of Pixels: 1 048 576 (1024x1024) 
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Figure 4.65 presents the AT-means classification for greyscale image sample-2 of spalling 

damage, as well as the ANN classification for the same image. 

(a) Jf-Means Cluster Map 
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(c) ANN Classified Image (d) ANN Binary Image 

Figure 4.65: JT-Means and ANN Classifications for Greyscale Spalling Image Sample-2 
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The class statistics summary reports for the AT-means and ANN classifications for the greyscale 

image sample-2 of spalling damage are provided in Table 4.9. 

Table 4.9: Class Statistics Summary Reports for Greyscale Spalling Image Sample-2 
using K-means and ANN Classifiers 

jK-means 

Classes 

Spalling (Green) 

No-spalling (Red) 

Pixels 

759 064 

289 512 

Percentage (%) 

72.4 

27.6 

ANN 

Spalling (Green) 

No-spalling (Red) 

397 725 

650 851 

37.9 

62.1 

Total Number of Pixels: 1 048 576(1024x1024) 
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The ANN classifications for the greyscale image sample-1 and image sample-2 of corrosion 

damage are displayed in Figure 4.66. 

(a) Sample-1 Classified Image 

* • . . 

(b) Sample-1 Binary Image 

(c) Sample-2 Classified Image (d) Sample-2 Binary Image 

Figure 4.66: ANN Classifications for Greyscale Corrosion Image Sample-1 and Sample-2 
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The class statistics summary reports for the ANN classifications for greyscale image sample-1 

and image sample-2 of corrosion damage is given in Table 4.10. 

Table 4.10: Class Statistics Summary Report for Greyscale Corrosion Image Sample-1 
and Image Sample-2 using ANN Classifier 

Image Sample-1 

Classes 

Corroded-steel (Red) 

Spalling (Green) 

No-damage (Blue) 

Pixels 

49 703 

400 661 

598 212 

Percentage (%) 

4.7 

38.2 

57.1 

Total Number of Pixels: 1 048 576(1024x1024) 

Image Sample-2 

Corroded-steel (Black) 

Spalling (Blue) 

No-damage (Green) 

1 842 

12 989 

50 705 

2.8 

19.8 

77.4 

Total Number of Pixels: 65 536 (256x256) 
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Figure 4.67 presents the ANN classifications for greyscale image samples of popout damage, 

erosion damage, and post-repair damage 

(a) Popout Classified (b) Erosion Classified (c) Post-repair Classified 
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(d) Popout Binary (e) Erosion Binary (f) Post-repair Binary 

Figure 4.67: ANN Classifications for Greyscale Images of Different Types of Damage 
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Table 4.11 gives the class statistics summary reports for the ANN classifications for the image 

samples of the different types of damage. 

Table 4.11: Class Statistics Summary Reports for Creyscale Images of Popout, 
Erosion and Post-repair Damage using ANN Classifier 

Popout Damage 

Classes 

Popout-centre (Black) 

Popout-edges (Red) 

No-damage (Green) 

Total Number of Pixels: 

Pixels 

7 471 

12 426 

242 247 

262 144(512x512) 

Percentage (%) 

2.9 

4.7 

92.4 

Erosion Damage 

Eroded (Red) 

Non-eroded (Green) 

Total Number of Pixels: 

475 319 

573 257 

1 048 576(1024x1024) 

45.3 

54.7 

Post-repair Damage 

Crack (Blue) 

Repaired (Green) 

No-damage (Red) 

Total Number of Pixels: 

57 986 

251 239 

739 350 

1048 576(1024x1024) 

5.5 

23.9 

70.6 
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The ANN classification for a greyscale image sample of efflorescence stain damage is provided 

in Figure 4.68(a); ANN classifications for greyscale image sample-1 and sample-2 of corrosion 

stain damage are presented in Figures 4.68(b)-(c), respectively. 

(a) Classified Efflorescence 
Stain 

(b) Classified Corrosion 
Stain Sample-1 

(c) Classified Corrosion 
Stain Sample-2 

(b) Binary Efflorescence 
Stain 

(b) Binary Corrosion Stain 
Sample-1 

(b) Binary Corrosion Stain 
Sample-2 

Figure 4.68: ANN Classifications for Greyscale Images of Efflorescence Stain, and 
Corrosion Stain Sample-1 and Sample-2 
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Table 4.12 gives the class statistics summary reports for the ANN classifications for the 

efflorescence stain damage image sample, as well as image sample-1 and sample-2 of corrosion 

stain damage. 

Table 4.12: Class Statistics Summary Reports for Greyscale Images of Efflorescence 
Stain and Corrosion Stain Sample-1 and Sample-2 using ANN Classifier 

Efflorescence Stain 

Classes 

Cracks (Black) 

Efflorescence-Stains (Red) 

No-damage (Green) 

Pixels 

3 585 

14 746 

47 205 

Percentage (%) 

5.5 

22.5 

72.0 

Total Number of Pixels: 65 536 (256x256) 

Corrosion Stain Sample-1 

Corrosion-Stains (Red) 

No-damage (Green) 

29 334 

232 810 

11.2 

88.8 

Total Number of Pixels: 262 144 (512x512) 

Corrosion Stain Sample-2 

Corrosion-Stains (Red) 

No-damage (Green) 

390 699 

657 877 

37.3 

62.7 

Total Number of Pixels: 1 048 576(1024x1024) 
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4.7.5 Borehole Acoustic Imagery 

After application of the texture analysis, the Haar wavelet transform, as well as the various 

spatial filters and edge-detectors to the borehole acoustic image sample, the resulting processed 

images were employed as input images in order to perform the classifications. Figure 4.69 

presents the AT-means classifications of the different input images resulting from the various 

processing techniques. Table 4.13 provides the class statistic summaries, the individual 

classification accuracies for each class, the Kappa coefficients, and the overall classification 

accuracies obtained for the classification of each input image. 
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(a) Haar 

(c) Lowpass (d) Roberts 

(b) Texture 

(e) Sobel 

(f) Directional (g) Median (h) Marr-Hildreth 

Figure 4.69: A-means Classifications for Acoustic Image Sample 
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Table 4.13: Class Statistics, Classification Accuracies, and Kappa Coefficients for 
Different Input Images using K-means Classifier 

Input Image 

Texture 

Haar 

Lowpass 

Roberts 

Sobel 

Directional 

Median 

Marr-Hildreth 

Classes 

Damage 
No-damage 
Damage 
No-damage 
Damage) 
No-damage 
Damage 
No-damage 
Damage 
No-damage 
Damage 
No-damage 
Damage 
No-damage 
Damage 
No-damage 

Pixels 

40 606 
221 538 

39 558 
222 586 

38 352 
223 792 

47 500 
214 644 

45 849 
216 295 

24 039 
238 106 

35 861 
226 283 

30 618 
231 526 

Percentage 
(%) 

15.5 
84.5 
15.1 
84.9 
14.6 
85.4 
18.1 
81.9 
17.5 
82.5 
9.2 
90.8 
13.7 
86.3 
11.7 
88.3 

Accuracy 
(%) 

81.9 
83.5 
81.3 
82.0 
79.8 
81.9 
74.1 
73.6 
74.8 
75.7 
67.3 
66.9 
81.6 
78.4 
72.6 
70.9 

Kappa 
Coefficient 

0.83 

0.82 

0.79 

0.74 

0.76 

0.67 

0.77 

0.70 

Overall 
Accuracy 

(%) 

82.4 

81.7 

80.6 

75.0 

76.2 

68.5 

79.7 

72.1 

Total Number of Pixels per Image: 262 144 (512x512) 

4.8 Damage Statistics 

Along with the thematic maps, the results of the classification are also described by the class 

statistics summary report. This report summarizes how many pixels have been classified into 

each object class, as well as what percentage out of the total number of pixels in the image they 

represent. These class statistics can be employed to derive damage quantities present in the 

various images. Since the results of the classification phase indicated that the combination 

dataset was more effective than the spatial or spectral datasets, and that the supervised ANN 

classifier was more efficient than the unsupervised AT-means clustering algorithm, only the class 

statistics summary reports for the ANN classifications using the combination datasets produced 

from the greyscale imagery are employed for the purposes of damage quantification. However, 

in the case of the acoustic imagery, the statistics from the AT-means classifications were used in 

order to quantify damage. 
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For the imagery of map-crack damage from field samples, Table 4.3 gives the class statistics 

summary of the X-means and ANN classifications. The ANN statistics show that the image 

contains 14.7% surface deterioration from map-cracks. 

The class statistics of the classifications carried out for the CANMET blocks demonstrated 

different levels of AAR damage. The summary report for the greyscale imagery is given in Table 

4.4 in section 4.7.2 above, which shows that the CI specimen presented the least amount of 

surface deterioration at 3.9%, the C2 specimen had a moderate amount of narrow cracks at 7.2% 

and wide cracks at 3.4%, for a total of 10.6% surface deterioration, and the C3 specimen 

revealed a greater amount of narrow cracks at 11.5%, as well as a higher percentage of wide 

cracks at 8.2%, for a total surface deterioration of 19.7%. The thermographic imagery indicated 

5.9% narrow-crack damage in the CI image, 8.6% narrow-cracks and 4.1% wide-cracks for a 

total of 12.7% crack damage for the C2 image, and a total of 19.6% damage for the C3 image, 

consisting of 10.2% narrow-cracks and 9.4% wide-cracks. The colour imagery revealed 4.2% 

narrow-cracks for CI, 7.8% narrow-cracks and 3.9% wide-cracks for a total of 11.7% crack 

damage for C2, and 10.6% narrow-cracks and 9.9% wide-cracks, totalling 20.5% crack damage 

for C3. The differences in the amounts of damage found for the colour and greyscale imagery 

compared with that of the thermography may be due to pixel misclassifications, since these two 

types of images contain greater variations within object classes. Figure 4.70 presents a 

comparison of damage statistics for the three different types of imagery of the CI, C2, and C3 

CANMET blocks. 
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Comparison of Damage Statistics for CANMET 
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Figure 4.70: Comparison of Damage Statistics for the Three Different Types of 
CANMET Imagery 

Table 4.6 in section 4.7.3 above shows the class statistics summary for the greyscale imagery of 

the GRAI slabs using the ANN classifier. These statistics also indicate different levels of 

deterioration due to AAR. The Gl specimen had the lowest total for surface damage at 2.7%, 

consisting only of narrow cracks. The G2 specimen presented a slightly higher level of surface 

deterioration with a total of 5.7%, composed of a moderate amount of wide cracks and narrow 

cracks at 3.5% and 2.2% respectively. The G3 specimen had the highest amount of surface 

deterioration among the three slabs, with a total of 8.9% damage consisting of wide cracks. 

Figure 4.71 presents a comparison of these results. 
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Figure 4.71: Comparison of Damage Statistics for the Three Different Types of GRAI 
Imagery 

For the borehole acoustic imagery, the iT-means clustering approach was employed to classify 

the variously processed input images. The classifications done for the acoustic image sample 

resulted in different amounts of damage, as presented in Table 4.13 in section 4.7.5 above. 

According to the percentage of pixels classified as the damage class, the texture image indicated 

15.5% damage, and the Haar wavelet image presented 15.1% damage. The lowpass-filtered 

image resulted in 14.6% damage, the median filter indicated 13.7% damage, and the directional 

filter presented 9.2% damage. Among the edge-detection algorithms, the Marr-Hildreth operator 

showed 11.7%, the Sobel method presented 17.5%, and the Roberts approach indicated 18.1% 

damage. The directional and Marr-Hildreth images indicated much lower amounts of damage 

than the texture image because many pixels were misclassified into the no-damage class, 

whereas for the Sobel and Roberts images, a number of pixels were misclassified as belonging to 

the damage class, resulting in higher amounts of damage. Figure 4.72 provides a comparison of 

the different damage amounts. 
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Figure 4.72: Comparison of Damage Statistics for Acoustic Imagery 

157 



4.9 Discussion of Results 

4.9.1 Results of Texture Analysis Phase 

Table 4.14 gives the optimum window size and texture features selected for the different types of 

damage described in sections 3.1, 3.2 and 3.3. 

Table 4.14: Optimum Window Size and Optimum First-order and Second-order 
Texture Features for Each Type of Damage 

Damage Type 

Map-crack (Field) 

Map-crack CI 

Map-crack C2 

Map-crack C3 

Map-crack Gl 

Map-crack G2 

Map-crack G3 

Spalling 

Corrosion-1 

Corrosion-2 

Post-repair 
Damage 

Erosion 

Efflorescence 
Stain 

Corrosion Stain-1 

Corrosion Stain-2 

Popout Damage 

Cracking 
(Acoustic) 

Optimum 
Window 

Size 

11x11 

7x7 

9x9 

11x11 

7x7 

9x9 

11x11 

11x11 

9x9 

9x9 

11x11 

11x11 

5x5 

7x7 

7x7 

5x5 

9x9 

Optimum First-order 
Texture Features 

Mean, Variance, Skew 

Data Range, Mean, Variance 

Mean, Variance, Skew 

Mean, Variance, Skew 

Homogeneity, Mean, 
Variance 

Data Range, Mean, Variance 

Data Range, Mean, Variance 

Entropy, Mean, Variance 

Entropy, Mean, Variance 

Entropy, Mean, Variance 

Data Range, Mean, Skew 

Entropy, Mean, Variance 

Entropy, Mean, Variance 

Entropy, Mean, Variance 

Entropy, Mean, Variance 

Entropy, Mean, Variance 

Entropy, Mean, Variance 

Optimum Second-order 
Texture Features 

Mean, Homogeneity, Entropy 

Mean, Homogeneity, 
Dissimilarity 

Mean, Homogeneity, Entropy 

Mean, Homogeneity, Entropy 

Mean, Homogeneity, 
Dissimilarity 

Mean, Variance, Homogeneity 

Mean, Variance, Homogeneity 

Mean, Variance, Contrast 

Mean, Variance, Dissimilarity 

Mean, Variance, Correlation 

Mean, Homogeneity, Second 
Moment 

Mean, Variance, Homogeneity 

Mean, Variance, Homogeneity 

Mean, Variance, Homogeneity 

Mean, Homogeneity, Contrast 

Mean, Variance, Contrast 

Mean, Variance, Homogeneity 
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The results of the feature selection process indicated that the same texture features are not always 

the best ones for a particular kind of damage; the characteristics and extent of the damage also 

influence the efficiency of the features. However, certain features do consistently provide better 

discrimination. Among the images of map-crack damage from the laboratory specimens, the C2 

and C3 CANMET blocks were found to have the same set of most effective first- and second-

order texture features, whereas the CI block had a slightly different set of selected features. For 

the GRAI slabs, the Gl slab had a somewhat different set of effective features compared with the 

G2 and G3 specimens, which had the same set of texture features selected for first- and second-

order features. These results reflect the varying levels of damage found in the specimens: 

compared with the C2 and C3 blocks, the CI block has a much lower level of damage (see Table 

4.4 in section 4.7); the same was found for the GRAI slabs, where the Gl slab has a lower 

amount of damage compared with the G2 and G3 slabs (see Table 4.6 in section 4.7). The 

imagery of map-crack damage from the field sample had the same set of selected first- and 

second-order texture features as the C2 and C3 CANMET blocks. This field sample was found to 

have a similar amount of damage as the two CANMET blocks (see Table 4.3). 

The Mean and Variance first-order texture features were selected as two of the most effective 

features for all of the imagery exhibiting map-crack damage. This indicates that these two 

features are appropriate for isolating map-crack defects from first-order statistics. For the third 

first-order texture feature, only the Gl GRAI slab had the Entropy feature selected. This is due to 

the lower level of crack damage, and higher level of sound concrete found for the Gl slab, which 

may be an indication that the entropy feature is appropriate for distinguishing areas of the 

imagery that are more uniform. For the second-order features, Mean and Homogeneity were 

common to all of the map-crack imagery. Consequently, when employing first- or second-order 

statistics for texture analysis of map-crack damage, the Mean, Variance and Homogeneity 

texture features should provide the most effective discrimination. 

For imagery of all of the other types of damage, the first-order texture features, Entropy, Mean 

and Variance, were consistently the same with the exception of the post-repair damage, which 

only had the Mean feature in common with the others. Concerning the optimum second-order 

texture features, the post-repair damage again had only the Mean feature in common with the 

other types of damage. This is due to the fact that in imagery of post-repair damage, the original 
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concrete and repaired concrete do not have the same texture, which makes the deterioration seem 

larger and more spread out than in imagery of the other types of defects. Overall, for images of 

these types of damage, the Entropy, Mean, Variance and Homogeneity features appear to be the 

most effective when employing first- or second-order statistics for texture analysis. Since Mean, 

Variance and Homogeneity are also the best features for map-crack damage, it can be concluded 

that these features would be the most efficient for detecting most types of defects in concrete 

imagery. 

The optimum window size was found to depend very much on the size of the damage class 

within each image sample; consequently, larger window sizes should be used for more spread-

out damage and smaller window sizes should be employed for more localized damage. 

4.9.2 Results of Classification Phase 

4.9.2.1 Results for Map-crack Damage in Field Samples 

£-means and ANN classifications were carried out on the texture dataset of map-crack damage 

imagery from field samples that were processed using Haar's wavelet transform in combination 

with texture analysis, as well as using texture analysis alone. This was done in order to evaluate 

the combined approach of the wavelet transform and texture analysis. Table 4.15 gives the 

results of the ANN classification performed on the spatial dataset of a greyscale map-crack 

image sample, which was processed with and without the Haar Transform; the table provides the 

Kappa coefficient and overall accuracy for the image, along with the accuracies for each class. 

Table 4.15: ANN Classification Accuracies for Greyscale Image of Map-crack Damage 
from Field Sample With and Without Haar Transform 

Kappa Coefficient 

Overall Accuracy (%) 

Classes 

Map-Crack 

No-Crack 

Texture + Haar 

0.72 

78.1 

Texture 

0.68 

75.9 

Accuracy (%) 

74.8 

76.3 

73.2 

74.5 
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The overall classification accuracy for the spatial data obtained with the Haar transform was 

78.1% with a range of 74.8% to 76.3% for individual class accuracies, which is significantly 

higher than the overall accuracy of 75.9% and individual class accuracies between 73.2% and 

74.5% acquired by the spatial data without the Haar transform. 

Classifications were also carried out on the spatial dataset of map-crack imagery, for which the 

texture data was produced using a combination of first-order and second-order statistics, as well 

as using second-order statistics alone. This was done in order to evaluate the effectiveness of 

combining the first- and second-order statistics. Table 4.16 provides the ANN classification 

results for an image sample of map-crack damage. 

Table 4.16: ANN Classification Accuracies for Greyscale Image of Map-crack Damage 
from Field Sample With and Without First-order Data 

Kappa Coefficient 

Overall Accuracy (%) 

Classes 

Map-Crack 

No-Crack 

First-order + Second-order 

0.72 

78.1 

Second-order 

0.69 

76.3 

Accuracy (%) 

74.8 

76.3 

72.9 

75.1 

The combination of first- and second-order texture information provided a higher overall 

classification accuracy compared to the second-order data alone, at 78.1% and 76.3% 

respectively. Class accuracies were also higher for the combined dataset at a range of 74.8% to 

76.3% compared to a range of 72.9% to 75.1% for the second-order data. 

The results of the K-means and ANN classifications done for a greyscale image sample of map-

crack damage processed with the Haar transform are presented in Table 4.17 and Table 4.18 

respectively, which show the Kappa coefficients and overall accuracies for the three datasets, 

spectral, spatial, and combined, as well as the classification accuracies obtained for each class. 

For the AT-means classifications, the overall accuracy for the spectral dataset was 76.2%, the 

spatial dataset had an overall classification accuracy of 73.7%, and the combined dataset had an 

overall accuracy that was somewhat higher than that of the other two datasets, at 78.3%. 
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Classification accuracies for the individual damage classes ranged from 77.8% to 78.9% for the 

spectral dataset, 74.8% to 76.3% for the spatial dataset, and 79.4% to 81.7% for the combined 

dataset. 

The ANN classifications resulted in an overall accuracy of 79.6% for the spectral dataset, the 

spatial dataset had an overall accuracy of 78.1%, and the combined dataset had an overall 

accuracy that was once again relatively higher, at 83.2%. Individual class accuracies ranged from 

83.1% to 84.8% for the spectral dataset, 81.8% to 82.7% for the spatial dataset, and 85.3% to 

86.5% for the combined dataset. 

Table 4.17: UT-means Classification Accuracies for Greyscale Image of Map-crack 
Damage from Field Sample 

Kappa Coefficient 

Overall Accuracy (%) 

Classes 

Map-Crack 

No-Crack 

Spectral Dataset 

0.71 

76.2 

Spatial Dataset 

0.69 

73.7 

Combined Dataset 

0.75 

78.3 

Accuracy (%) 

77.8 

78.9 

74.8 

76.3 

79.4 

81.7 

Table 4.18: ANN Classification Accuracies for Greyscale Image of Map-crack Damage 
from Field Sample 

Kappa Coefficient 

Overall Accuracy (%) 

Classes 

Map-Crack 

No-Crack 

Spectral Dataset 

0.76 

79.6 

Spatial Dataset 

0.72 

78.1 

Combined Dataset 

0.81 

83.2 

Accuracy (%) 

83.1 

84.8 

81.8 

82.7 

86.5 

85.3 
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These classifications for map-crack damage in field data indicate that the classifications 

performed on images, which have been processed with texture analysis in combination with the 

Haar transform, provided better classification accuracies compared with classifications 

performed on imagery processed without the Haar transform. 

In terms of texture information, the combination of first- and second-order spatial data resulted 

in higher classification accuracies than classifications done with only second-order texture 

information. The results also indicate that the spectral dataset is more effective than the spatial 

dataset, which consistently had lower overall classification accuracies, as well as accuracies for 

each damage class. This may be due to the fact that in general, texture features are highly 

correlated and do not provide enough information to distinguish more homogeneous areas in an 

image. The combined dataset, however, provided comparatively higher classification accuracies, 

both overall and on an individual basis, than the purely spectral and spatial datasets. 

Between the two types of classifications carried out on the map-crack field data, the ANN 

approach produced higher overall classification accuracies with a range of 78.1% to 83.2%, 

compared with the £-means classifier, which had overall classification accuracies between 

73.7% and 79.3%. 

4.9.2.2 Results for Map-crack Damage in CANMET Blocks 

Results of the AT-means classifications done for the three CANMET blocks using the 

thermographic, colour and greyscale imagery in the spatial, spectral and combination datasets are 

presented in Table 4.19. This table provides the Kappa coefficients and overall accuracies for 

each specimen, CI, C2 and C3, along with the classification accuracies for each class. The 

spatial data for these classifications was obtained through texture analysis in combination with 

the Haar transform. 

The overall accuracies obtained through the AT-means classifications for the CANMET 

specimens using the spectral dataset ranged from 78.9% to 81.2%. The spatial dataset had overall 

classification accuracies between 70.3% and 73.4%. For the combination dataset, the overall 

accuracies ranged from 80.7% to 83.1%. Classification accuracies for the individual classes were 

between 79.5% and 83.3% for the spectral dataset, between 72.3% and 78.6% for the spatial 
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dataset, and between 82.9% and 87.6% for the combination dataset. In terms of imagery, the 

overall K-means classification accuracies obtained for the three types of CANMET imagery 

differed slightly with respect to each other. The thermographic imagery had overall accuracies 

between 71.5% and 83.1%. For the colour imagery, the overall accuracies ranged from 70.8% to 

82.6%. The greyscale imagery had an overall classification accuracy range of 69.7% to 81.8%. 

Table 4.19: /T-means Classification Accuracies for CANMET Specimens 

Spectral Dataset 

CANMET Blocks 

Kappa Coefficient 

Overall Accuracy (%) 

Classes 

Wide Crack 

Narrow Crack 

No Crack 

Thermographic 

CI 

0.75 

80.8 

C2 

0.76 

81.2 

C3 

0.73 

79.7 

Colour 

CI 

0.75 

80.3 

C2 

0.72 

79.1 

C3 

0.75 

79.5 

Greyscale 

CI 

0.73 

81.0 

C2 

0.74 

78.9 

C3 

0.72 

79.3 

Accuracy (%) 

82.3 

81.7 

82.6 

81.5 

83.1 

82.0 

81.9 

82.5 

83.3 

82.8 

81.4 

80.8 

80.5 

82.2 

81.6 

80.7 

81.0 

82.7 

79.5 

80.9 

81.3 

81.8 

82.1 

79.8 

80.6 

79.7 

81.2 

Spatial Dataset 

Kappa Coefficient 

Overall Accuracy (%) 

Classes 

Wide Crack 

Narrow Crack 

No Crack 

0.71 

72.7 

0.70 

71.5 

0.71 

73.4 

0.68 

70.8 

0.69 

73.1 

0.70 

72.5 

0.68 

69.7 

0.67 

70.3 

0.69 

71.6 

Accuracy (%) 

77.4 

76.8 

74.9 

75.8 

74.3 

75.0 

78.6 

75.9 

74.8 

76.4 

74.7 

75.6 

74.5 

75.2 

73.4 

76.1 

73.8 

75.1 

74.0 

73.7 

72.3 

72.8 

73.9 

74.2 

73.3 

72.9 

72.5 

Combined Dataset 

Kappa Coefficient 

Overall Accuracy (%) 

Classes 

Wide Crack 

Narrow Crack 

No Crack 

0.80 

83.1 

0.81 

82.8 

0.79 

82.2 

0.81 

81.7 

0.78 

82.6 

0.80 

81.4 

0.79 

81.8 

0.77 

80.7 

0.78 

80.9 

Accuracy (%) 

87.2 

85.2 

84.9 

85.5 

84.7 

86.3 

84.3 

86.1 

87.6 

86.7 

84.1 

85.0 

83.9 

86.0 

84.2 

84.4 

85.6 

85.7 

84.8 

83.7 

84.0 

83.6 

84.6 

85.1 

82.9 

83.4 

83.1 
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Table 4.20 presents the results of the ANN classifications for each of the three CANMET blocks, 

CI, C2 and C3, providing the classification accuracies obtained for each class, as well as the 

Kappa coefficients and overall accuracies for the three types of imagery, thermographic, colour 

and greyscale, employed in the spectral, spatial, and combined datasets. 

Table 4.20: ANN Classification Accuracies for CANMET Specimens 

Spectral Dataset 

CANMET Blocks 

Kappa Coefficient 

Overall Accuracy (%) 

Classes 

Wide Crack 

Narrow Crack 

No Crack 

Thermogra 

CI 

0.81 

83.9 

C2 

0.78 

84.2 

)hic 

C3 

0.79 

82.7 

Colour 

CI 

0.78 

83.5 

C2 

0.80 

82.4 

C3 

0.76 

81.3 

Greyscale 

CI 

0.77 

82.6 

C2 

0.79 

80.6 

C3 

0.78 

83.1 

Accuracy (%) 

84.6 

85.0 

84.9 

85.2 

83.8 

84.1 

84.4 

83.6 

82.3 

83.9 

84.0 

82.6 

83.3 

82.1 

83.5 

82.7 

83.4 

81.9 

82.9 

81.5 

83.1 

82.0 

83.2 

82.5 

83.0 

81.7 

81.2 

Spatial Dataset 

Kappa Coefficient 

Overall Accuracy (%) 

Classes 

Wide Crack 

Narrow Crack 

No Crack 

0.73 

74.5 

0.73 

73.1 

0.74 

76.3 

0.69 

71.4 

0.71 

75.2 

0.74 

74.1 

0.74 

72.3 

0.73 

76.5 

0.76 

75.4 

Accuracy (%) 

81.3 

79.7 

82.4 

79.9 

78.6 

76.7 

83.5 

81.5 

80.6 

78.6 

77.7 

75.3 

78.1 

73.9 

74.6 

78.4 

77.5 

74.2 

76.8 

76.3 

73.6 

78.1 

72.9 

71.4 

78.4 

77.5 

74.2 

Combined Dataset 

Kappa Coefficient 

Overall Accuracy (%) 

Classes 

Wide Crack 

Narrow Crack 

No Crack 

0.85 

88.7 

0.84 

86.2 

0.84 

87.5 

0.86 

85.6 

0.83 

88.1 

0.86 

86.9 

0.83 

85.5 

0.84 

87.6 

0.85 

84.8 

Accuracy (%) 

89.2 

87.6 

88.9 

86.4 

89.9 

87.3 

87.9 

89.7 

89.0 

86.9 

85.3 

87.0 

88.4 

87.8 

86.7 

87.5 

84.9 

85.8 

86.3 

85.1 

84.2 

85.7 

84.6 

86.6 

84.1 

85.9 

84.2 
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The overall ANN classification accuracies obtained for the CANMET blocks using the spectral 

dataset were between 80.6% and 84.2%. For the spatial dataset, the overall accuracies ranged 

from 71.4% to 76.5%. The combined dataset, on the other hand, had overall classification 

accuracies ranging from 84.8% to 88.7%. For the individual classes, the classification accuracies 

ranged from 81.2% to 85.2% for the spectral dataset, 71.4% to 83.5% for the spatial dataset, and 

84.1% to 89.9% for the combined dataset. 

Overall classification accuracies for the different types of CANMET imagery using the ANN 

classifier varied somewhat, with a range of 73.1% to 88.7% for the thermography, 71.4% to 

88.1% for the colour imagery, and 72.3% to 87.6% for the greyscale imagery. 

As with the classifications of map-crack imagery from the field samples, these classifications 

performed with map-crack imagery of the CANMET laboratory specimens also indicate that the 

combination dataset is more effective in characterizing the damage than the spatial or spectral 

datasets, obtaining higher overall classification accuracies, as well as higher accuracies for the 

individual damage classes, than the other two datasets. 

Another finding similar with that of the classifications for the map-crack field data is that the 

ANN classifier performed better than the AT-means approach, with overall classification 

accuracies ranging between 71.4% and 88.7%, compared with an overall classification accuracy 

range of 69.7% to 83.1% for the AT-means classifier. 

4.9.2.3 Results for Map-crack Damage in GRAI Slabs 

Results of the K-means classifications done for the three GRAI specimens using the 

thermographic, colour and greyscale imagery in the spatial, spectral and combination datasets are 

presented in Table 4.21. This table provides the Kappa coefficients and overall accuracies for 

each specimen, along with the classification accuracies for each class. The spatial data employed 

in these classifications was obtained through texture analysis with the Haar transform. 

The AT-means classifications for the GRAI slabs produced overall classification accuracies that 

ranged between 75.7% and 79.4% for the spectral dataset. For the spatial dataset, the overall 

accuracies ranged from 71.5% to 73.9%. The combined dataset had overall classification 
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accuracies ranging from 80.4% to 82.8%. Classification accuracies for individual damage classes 

ranged between 75.3% and 79.5% for the spectral dataset, between 70.5% and 75.3% for the 

spatial dataset, and between 80.3% and 83.7% for the combined dataset. For the different types 

of GRAI imagery, the overall classification accuracies obtained using the A -̂means classifier 

ranged from 72.3% to 82.8% for the thermographic imagery, 72.7% to 81.9% for the colour 

imagery, and 71.5% to 82.1% for the greyscale imagery. 

Table 4.21: K-means Classification Accuracies for GRAI Specimens 

Spectral Dataset 

GRAI Slabs 

Kappa Coefficient 

Overall Accuracy (%) 

Classes 

Wide Crack 

Narrow Crack 

No Crack 

Thermographic 

Gl 

0.76 

77.8 

G2 

0.74 

78.2 

G3 

0.75 

79.4 

Visual Colour 

Gl 

0.73 

75.7 

G2 

0.75 

77.9 

G3 

0.74 

76.6 

Greyscale 

Gl 

0.73 

76.3 

G2 

0.72 

75.9 

G3 

0.75 

76.5 

Accuracy (%) 

78.7 

76.4 

78.6 

77.5 

78.4 

79.1 

78.3 

77.9 

79.5 

77.7 

76.2 

78.2 

76.8 

78.5 

77.8 

78.1 

75.7 

76.5 

76.9 

77.2 

78.0 

77.4 

76.3 

75.6 

75.8 

75.3 

77.1 

Spatial Dataset 

Kappa Coefficient 

Overall Accuracy (%) 

Classes 

Wide Crack 

Narrow Crack 

No Crack 

0.73 

72.3 

0.72 

73.2 

0.71 

73.9 

0.71 

72.8 

0.70 

73.1 

0.72 

72.7 

0.70 

71.5 

0.71 

72.0 

0.71 

72.6 

Accuracy (%) 

73.9 

72.8 

73.3 

75.3 

73.6 

72.4 

74.6 

71.7 

75.0 

72.4 

72.9 

71.3 

73.7 

70.6 

74.6 

74.2 

72.2 

73.1 

70.8 

71.6 

72.7 

71.5 

70.5 

70.9 

72.1 

71.2 

71.8 

Combined Dataset 

Kappa Coefficient 

Overall Accuracy (%) 

Classes 

Wide Crack 

Narrow Crack 

No Crack 

0.78 

80.9 

0.80 

82.8 

0.81 

81.7 

0.79 

81.3 

0.77 

80.7 

0.80 

81.9 

0.78 

80.4 

0.77 

81.2 

0.79 

82.1 

Accuracy (%) 

83.7 

82.6 

80.3 

82.2 

81.9 

83.5 

80.8 

81.6 

82.1 

82.5 

81.7 

82.7 

81.4 

80.1 

80.6 

83.0 

82.6 

81.3 

81.8 

80.3 

82.9 

82.0 

82.6 

81.1 

80.5 

81.5 

82.8 
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Table 4.22 presents the results of the ANN classifications for each of the three GRAI blocks, 

providing the classification accuracies obtained for each class, as well as the Kappa coefficients 

and overall accuracies for the GRAI specimens, using the thermographic, colour and greyscale 

imagery in the three datasets. 

Table 4.22: ANN Classification Accuracies for GRAI Specimens 

Spectral Dataset 

GRAI Slabs 

Kappa Coefficient 

Overall Accuracy (%) 

Classes 

Wide Crack 

Narrow Crack 

No Crack 

Thermographic 

Gl 

0.79 

82.4 

G2 

0.79 

80.8 

G3 

0.80 

83.1 

Visual Colour 

Gl 

0.78 

81.7 

G2 

0.76 

79.8 

G3 

0.79 

78.6 

Greyscale 

Gl 

0.77 

81.5 

G2 

0.75 

80.4 

G3 

0.78 

77.4 

Accuracy (%) 

82.6 

81.9 

83.4 

83.8 

82.7 

82.1 

82.9 

83.2 

84.2 

83.0 

80.9 

82.5 

82.3 

81.6 

83.3 

81.7 

80.4 

81.5 

80.6 

81.3 

82.5 

81.8 

79.9 

81.0 

81.4 

80.2 

79.7 

Spatial Dataset 

Kappa Coefficient 

Overall Accuracy (%) 

Classes 

Wide Crack 

Narrow Crack 

No Crack 

0.75 

75.6 

0.74 

76.9 

0.76 

74.2 

0.72 

73.9 

0.74 

72.6 

0.74 

73.0 

0.73 

71.9 

0.72 

74.3 

0.74 

75.3 

Accuracy (%) 

76.7 

74.7 

76.6 

78.1 

75.2 

74.9 

80.0 

73.8 

79.1 

73.4 

74.1 

72.6 

76.1 

72.9 

76.4 

78.9 

73.4 

78.2 

73.2 

73.7 

73.9 

77.1 

72.9 

71.4 

75.7 

73.6 

77.0 

Combined Dataset 

Kappa Coefficient 

Overall Accuracy (%) 

Classes 

Wide Crack 

Narrow Crack 

No Crack 

0.81 

85.9 

0.84 

82.9 

0.85 

84.7 

0.83 

84.9 

0.84 

82.2 

0.82 

85.1 

0.83 

83.2 

0.80 

84.5 

0.82 

83.6 

Accuracy (%) 

86.6 

85.4 

82.8 

84.3 

83.9 

87.4 

82.4 

86.9 

88.2 

83.2 

84.7 

85.9 

86.0 

82.2 

83.8 

84.5 

86.3 

85.2 

83.7 

82.0 

84.7 

85.1 ' 

82.6 

83.1 

84.0 

84.3 

85.8 
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The overall classification accuracies obtained for the GRAI slabs using the ANN classifier on the 

spectral dataset ranged from 77.4% to 83.1%. The overall accuracies for the spatial dataset were 

between 71.9% and 76.9%. For the combined dataset, the overall classification accuracies ranged 

from 82.2% to 88.7%. The classification accuracies for the individual classes were between 

79.7% and 84.2% for the spectral dataset, between 71.4% and 80.0% for the spatial dataset, and 

between 82.0% and 88.2% for the combined dataset. 

Application of the ANN classifier on the different types of GRAI imagery produced overall 

classification accuracies that ranged from 73.1% to 88.7% for the thermography, from 71.4% to 

88.1% for the colour imagery, and from 72.3% to 87.6% for the greyscale imagery. 

Once again, the results of the classifications performed with imagery of the GRAI laboratory 

specimens indicate the efficiency of the combined dataset over the spatial or spectral datasets; 

overall classification accuracies, and accuracies for the individual damage classes, were 

relatively higher for the combined dataset compared with the other two datasets. 

These classifications also demonstrate that the ANN classifications produced higher overall 

classification accuracies than the £-means classifier, with accuracies ranging between 71.9% and 

85.9%, compared with an accuracy range of 71.5% to 82.8% for the ^T-means approach. 

4.9.2.4 Discussion of Map-Crack Classification Results 

The results of the classifications done for the field samples and laboratory specimens exhibiting 

map-crack damage show the importance of signal processing to the spatial data acquired through 

texture analysis. The wavelet transform effectively separated the coarse texture information, 

which consists of the defects in the concrete, from the finer textures in the imagery, improving 

the extraction of these deterioration features in the texture analysis process. Also, better 

classifications produced by the combination of first- and second-order texture information 

demonstrate the value of the different statistics to the spatial data. Since first-order statistics 

provide information concerning individual pixels and second-order statistics present information 

about pairs of pixels, it was expected that the combination of this information would produce 

better classifications, although the process of extracting and selecting both first- and second-
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order texture features requires slightly more computational time than working with second-order 

statistics alone. 

Improved classification accuracies resulting from the combined dataset for the map-crack 

imagery indicate the significant contribution of texture information to the characterization of 

concrete damage. The additional information provided by the spatial data improved the 

characterization of the heterogeneous areas in the image. These results are similar to those found 

by Shaban and Dikshit (2001) who conducted an in-depth study on the use of texture features to 

improve the classification of remote sensing imagery of urban areas. Furthermore, the ANN 

classifier appears to be more efficient than the K-mems clustering technique, achieving higher 

overall classification accuracies for all the image samples. 

Among the different types of imagery, the thermography produced overall classification 

accuracies that were slightly higher than the colour and greyscale imagery. Although the 

thermographic images do not have the same resolution as the optical imagery, this does not affect 

the results of the classifications, because each image is processed separately with the wavelet 

transform and the texture analysis according to the individual image properties. 

4.9.2.5 Results for Spalling, Corrosion, Popouts, Erosion, Post-repair Damage, and 
Efflorescence and Corrosion Stains 

Since the discussion for map-crack damage found that the combined approach of texture analysis 

and the wavelet transform, as well as classifications involving both first- and second-order 

textural data along with the spectral-spatial dataset provided improved results, discussions for 

imagery of concrete damage exhibiting spalling, corrosion, popouts, erosion, post-repair damage, 

and efflorescence and corrosion stains focus on results obtained using these techniques. The 

results of the classifications for the other types of concrete damage are provided in Table 4.23. 

This table shows the Kappa coefficient and overall classification accuracy for each type of 

damage, as well as the classification accuracy for each damage class, based on the ANN 

classifications using the greyscale image samples and the combined spatial-spectral dataset, since 

these were found to be the most effective in the map-crack damage classifications. 
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Table 4.23: Overall ANN Classification Accuracies and Kappa Coefficients for 
Different Types of Damage and Accuracies for Each Class 

Damage Type 

Spalling 

Corrosion 

Popouts 

Erosion 

Post-repair Damage 

Efflorescence Stains 

Corrosion Stains 

Classes 

Spalling 

No-spalling 

Corroded-steel 

Spalling 

No-damage 

Popout-centre 

Popout-edges 

No-damage 

Eroded 

Non-eroded 

Crack 

Repaired 

No-damage 

Cracks 

Stains 

No-damage 

Stains 

No-damage 

Accuracy (%) 

83.2 

84.7 

83.8 

82.5 

83.2 

85.1 

81.9 

84.3 

78.4 

79.1 

75.9 

76.5 

77.1 

79.4 

77.9 

81.7 

77.3 

78.0 

Kappa Coefficient 

0.82 

0.81 

0.84 

0.78 

0.75 

0.79 

0.76 

Overall Accuracy 

83.4 

84.7 

85.5 

77.6 

76.8 

82.1 

78.6 

4.9.2.6 Results for Acoustic Imagery 

For the borehole acoustic imagery, classifications were carried out on the Haar transformed 

image, on the texture image, as well as on the output images resulting from the application of the 

various spatial filters and edge-detectors. The overall classification accuracies, the Kappa 

coefficients, and the individual classification accuracies for each class obtained through the ANN 

classifier are presented in Table 4.13 in section 4.7.5 above. 

Results of the classification indicate that among the different image processing techniques, the 

GLCM texture analysis method produced the highest overall classification accuracy at 82.4%. 
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The next most effective approach was the Haar wavelet transform, with an overall accuracy of 

81.7%. Among the spatial filters, the lowpass filter provided an overall accuracy that was 

slightly lower than that of the Haar transform, at 80.6%. The median filter produced better 

classification accuracies than the remaining techniques, with an overall accuracy of 79.7%. The 

Sobel and Roberts edge-detection algorithms obtained overall accuracies of 76.2% and 75.0%, 

respectively, which were somewhat higher than the 72.1% overall accuracy of the Marr-Hildreth 

edge-detector. The directional filter was the least effective technique, with an overall 

classification accuracy of 68.5%. 

The four techniques of GLCM, Haar transform, lowpass filter and median filter produced better 

results than the other four approaches; this is probably due to the fact that the acoustic image had 

very little background noise, which resulted in distinct textural classes for the GLCM method 

and good separation of texture details through the Haar transform. Since the lowpass filter and 

the median filter essentially smooth an image and reduce noise, they were quite efficient in 

defining the crack damage. The low amount of noise in the acoustic image also resulted in 

relatively higher overall accuracies for the Roberts and Sobel operators compared with the 

directional filter; however, the Marr-Hildreth algorithm was expected to produce better results 

among the edge-detectors. Applying the Laplacian without the Gaussian filtering may increase 

the effectiveness of this technique with acoustic imagery. 

4.10 Cracking Quantification 

In order to further analyse surface damage, the classified images were converted into binary 

images. This process simplifies the image by assigning the pixels that represent damage a value 

of 1 (black) and the background pixels a value of 0 (white). Manual or automated methods are 

then used to count or sum the pixels to calculate total crack length, as well as average crack 

width. 

In order to quantify the total length of cracks from the imagery of the laboratory specimens, the 

number of pixels along the length of each branch of the cracks was summed and the total 

multiplied by the pixel resolution of 0.26 mm. For the CANMET blocks, a total length of 237 

mm of wide cracks was calculated for the C3 specimen, for the C2 specimen, the total length was 
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found to be 98 mm, and for the CI specimen, the total length was 0 mm. Among the GRA1 slabs, 

the total length of wide cracks was calculated to be 0 mm, 39 mm and 107 mm for the Gl, G2 

and G3 specimens, respectively. The average crack width was determined by measuring the 

width at several points along the cracks. Figure 4.73 is an example of this analysis applied on the 

classification of the CANMET C3 specimen; Figure 4.73(a) shows the crack damage with 

examples of crack segments. Figure 4.73(b) provides examples of crack width measurements for 

the specimen; each square represents one pixel at a resolution of 0.26 mm. As a result, the 

average width of cracks in the CANMET blocks was found to be 1.6 mm in the C3 specimen, 0.8 

mm in the C2 specimen, and 0 mm for the CI specimen. For the GRAI slabs, the average crack 

widths were 0 mm for Gl, 0.3 mm for G2 and 0.8 mm for the G3 specimen. 

+ 

(a) Examples of crack segments 

(b) Examples of crack width measurements 

Figure 4.73: Crack Width Measurements for CANMET-C3; Pixel Resolution 0.26 mm 
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These findings are supported by concrete mixture data and test measurements recorded for the 

CANMET and GRAI specimens. The concrete mixture data found in Table 3.1 show that among 

the CANMET blocks, the C3 sample was prepared with the highest alkali content, and the CI 

sample with the lowest. This corresponds well with the higher percentage of damage found in the 

C3 sample and the lowest percentage found for the CI sample. The highest values for the total 

length of wide cracks as well as for the average width of cracks found for the C3 sample also 

relate well to its having the lowest average for the P-wave velocity tests, provided in Table 3.2, 

indicating the presence of the most deterioration. 

As for the GRAI slabs, the absence of wide cracks in the Gl specimen, which had a value of 0 

mm for the average width of cracks, as well as for the total length of cracks, is corroborated by 

its having the lowest expansion level, indicating very little damage. A higher level of expansion 

was measured on the G2 specimen, with the G3 specimen having the highest measurement for 

expansion level among the slabs. Figure 4.74 presents a comparison of the total amount of crack 

damage and expansion levels among the three CANMET blocks and the three GRAI slabs. 

Figure 4.75 is a comparison of the total crack length and expansion levels for all the specimens. 
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Figure 4.74: Comparison of Total Crack Damage and Expansion Levels 
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Comparison of Crack Length and Expansion Levels 

! 

0.400 
0.350 
0.300 
0.250 
0.200 
0.150 
0.100 
0.050 
0.000 I I — 

•._. 
I 

• CANMET • GRAI 

• 

— -

i i 

' - •"" : 

i 

- — ; 

i i 

50 100 150 
Crack Length (mm) 

200 250 

Figure 4.75: Comparison of Crack Length and Expansion Levels 
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This process was also conducted for the imagery of the field samples. Figure 4.76 shows the 

binary image of the classification for the train bridge component along with zoomed areas 

indicating the different ranges of crack widths: Rl is from 0.10 mm to 0.15 mm, R2 is between 

0.15 mm and 0.20 mm, R3 is from 0.20 mm to 0.30 mm, and R4 is above 0.30 mm. 

(a)R3 (b)R4 (c)R2 (d)Rl 

_ H J J UE^J LE^_J I I _ 
(e)R3 (f)R4 (g)R2 (h)Rl 

Figure 4.77: Crack-width Ranges from Binary Image of Train Bridge Component; 

(a)-(d) Zoomed to lx and (e)-(h) Zoomed to 20x with a Grid of 1 Pixel per Square 
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CHAPTER 5 

Conclusions and Recommendations 

5.1 Conclusions 

The main goal of this thesis was to improve image processing methods through hybridization in 

order to extract quantitative information concerning concrete damage from images obtained 

through different NDT approaches. It was hypothesised that statistical texture analysis would 

provide a good basis that could be improved upon through hybridization with the wavelet 

transform, through the combination of first- and second-order statistics, and through the addition 

of spectral data. 

The results of this research confirm the major hypothesis of this thesis, that statistical texture 

analysis is quite an efficient method for the discrimination of different types of deterioration, 

such as cracks, spalling, corrosion, popouts, erosion, post-repair damage, as well as efflorescence 

and corrosion stains, from optical and thermographic concrete imagery. The experiments 

demonstrate that the combined transform and statistical-based approach of Haar's discrete 

wavelet and GLCM texture analysis was more effective in reducing the amount of background 

noise and unwanted texture information usually present in concrete imagery compared with only 

the GLCM approach. This affirms the hypothesis that through this hybrid technique, the 

detection of deterioration from concrete imagery can be improved. 

Classifications conducted with the different statistics indicate that the combination of first-order 

and second-order statistics allow for the extraction of more representative texture features to 

characterize different types of concrete damage than the second-order statistics alone. It was also 

found that the spectral data contributed significantly to the classifications of the different damage 
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classes, as revealed by the experiments conducted with the three datasets, in which the combined 

dataset of spectral and spatial information produced the highest classification accuracies. These 

results verify the hypotheses that both first- and second-order texture features, as well as a 

combination of spectral and spatial data can provide better discrimination of concrete damage. 

Selection of the optimum texture features for images of the different types of damage indicated 

that certain features work best for defects with similar characteristics. The same first- and 

second-order texture features were found to be most effective for images of map-crack damage 

with similar amounts of deterioration; images that had very little crack damage had a different 

set of optimum features. For imagery of the other types of concrete damage, the same first-order 

features were established as the most efficient, except for the post-repair damage. The optimum 

second-order statistics were mostly the same for all of the other damage types, except for the 

post repair damage. The characteristics for this damage were quite different than the other types, 

resulting in different optimum first- and second-order texture features. However, it was found 

that some texture features are generally effective for most types of concrete damage. 

Results of the classifications show that the supervised ANN classifier produced classification 

accuracies that were higher compared with the unsupervised £-means clustering algorithm. 

However, application of the ANN requires more computational time due to the selection of 

training and verification ROIs. 

In terms of imagery, the thermographic classifications produced higher accuracies than the 

colour and greyscale classifications. This is partly due to the fact that thermographic images 

contain less variability within the concrete imagery, and at the same time increase the visibility 

of deterioration that may be otherwise imperceptible, even in colour or greyscale imagery. 

However, using thermography or even colour imagery in texture applications is computationally 

costly and results in a large number of features. There are also some limitations involved in 

acquiring thermographic imagery: the thermographic camera is still somewhat expensive and 

image quality is highly influenced by weather conditions. Consequently, due to the 

dimensionality of the thermographic imagery and the limitations in acquiring them, the use of 

greyscale imagery appears to be quite acceptable, since classification accuracies resulting from 

these images are only slightly lower than those of thermographic imagery. 
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Application of the spatial filters and edge-detection techniques on the borehole acoustic imagery 

indicated that the lowpass filter outperformed the other methods, along with the median filter, 

which produced classification accuracies slightly lower than the lowpass filter. Among the edge-

detectors, the gradient approaches worked best; the Sobel operator produced higher classification 

results compared to the Roberts algorithm. The Laplacian edge-detector and the directional filter 

had lower classification accuracies than all other methods. However, the texture analysis 

approach and the wavelet transform produced classification results that were significantly higher 

than any of the spatial filters and edge-detection operators, with the texture analysis method 

being the most effective of all the techniques. As a result, it was concluded that the texture 

analysis approach is comparatively more effective for detecting concrete damage. 

Quantification of the amount of surface deterioration present in the image samples was 

effectively performed using class statistics summaries from the classifications. Further damage 

quantities were obtained for the map-crack imagery after conversion of the thematic maps into 

binary images, such as total crack length and average crack width, by using pixel summations. 

The damage quantities obtained for the CANMET and GRAI laboratory specimens demonstrated 

good correlation with test measurements done for the specimens. For this type of analysis, high 

resolution imagery is desirable in order to obtain accurate damage estimates; consequently, 

close-up images of the concrete surface would be more appropriate. For a flexible image 

acquisition system, greyscale or colour imaging should be considered, since these can be 

acquired even from a distance and are less dependant on weather conditions compared with IR 

thermography. As a result, this type of quantitative information obtained through NDT imaging 

can improve the quality of concrete condition information used for making decisions concerning 

maintenance and repairs. 

5.2 Recommendations 

The image processing methods outlined in this research for analysing NDT imagery appear to be 

quite efficient in providing cost- and time-effective quantitative evaluations of concrete damage 

from optical imagery; these approaches allow assessments to be carried out more often, and can 

be used to supplement visual inspections. 
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The quantitative analysis resulting from these approaches can also be used for the development 

of an automated system for damage assessment to determine the different levels of deterioration 

from concrete imagery. An automated system would facilitate the analysis and classification of a 

large volume of image data. Consequently, the parameters that were found to be most 

appropriate through this research could be used to develop a model for image analysis; such a 

model would employ the specific level of reconstruction for the wavelet transform, the first- and 

second-order texture features found to be globally appropriate for the texture analysis, and a 

combination of first- and second-order statistics and a combination of spectral and spatial data 

for the classifications. 

There are some factors that require further study, however, in order to make the system more 

automated. One factor is a window size that would be appropriate for imagery of concrete 

damage in general, since this was not established through this research. It would be interesting to 

see if any window size can be used that would be acceptable for damage that is spread out as 

well as localized in the imagery. Another factor is the type of classifier to be employed. 

Although this research found that the supervised ANN classifier produced better classification 

accuracies compared with the unsupervised £-means clustering algorithm, it required significant 

analyst input. An effective classification method that functions with less analyst intervention 

would be desirable, such as an unsupervised neural network that does not require the analyst to 

select the ROIs for training. A third factor that requires more study is the type of imagery. This 

image analysis model would be based on the use of greyscale NDT imagery, since this research 

found limitations concerning computation time and dimensionality for thermographic and colour 

imagery. However, studies can be conducted in order to determine which bands of RGB are 

more suitable for these two types of images in an effort to reduce the number of features that 

need to be computed, and results compared with those of greyscale imagery to see if there is any 

significant difference. 

Other topics for future studies can also be considered. One topic concerns the application of the 

statistical analysis. This research dealt with only first- and second-order statistics; higher-order 

statistics were not commonly employed with remote-sensing imagery previously due to the 

computational costs involved when working with large image dimensions. Since concrete 

imagery has relatively much smaller image dimensions, and computer efficiency has steadily 
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increased, the use of third-and higher-order statistics for the texture analysis of concrete imagery 

can also be further experimented. Another subject is the development of a standard set-up for 

data acquisition, which would control the resolution and uniformity of large-scale data. 

Additional studies can comprise the development of a model for incorporating concrete image 

data from various NDT imaging techniques, such as optical images, which present image data of 

the surface, infrared thermography and acoustics, which are used for subsurface conditions, and 

ground penetrating radar, which is employed to obtain below-surface information of a structure. 

Furthermore, the image analysis model employed in this research has the potential to be 

developed as a component for automated damage assessment, which can be incorporated into a 

structural health monitoring system for concrete infrastructure. Automation of the system would 

allow for the assessment of a large volume of data, which could be used to establish a database 

of monitoring imagery, inspection results, etc. Since the imaging and inspection data can be 

stored in a digital format, image and data retrieval using metadata and content-based methods 

can be employed in order to compare the damage characteristics with previous inspection results 

and information. Data concerning a particular structure can be put together to form a three-

dimensional representation of the condition using GIS techniques. This can aid in monitoring the 

condition of a structure; a history of inspection results can thus be examined and compared in 

order to quantitatively establish changes that occur with time. 
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