
University of Memphis University of Memphis

University of Memphis Digital Commons University of Memphis Digital Commons

Electronic Theses and Dissertations

2019

DEEP LEARNING-BASED VISUAL CRACK DETECTION USING DEEP LEARNING-BASED VISUAL CRACK DETECTION USING

GOOGLE STREET VIEW IMAGES GOOGLE STREET VIEW IMAGES

Mohsen Maniat

Follow this and additional works at: https://digitalcommons.memphis.edu/etd

Recommended Citation Recommended Citation
Maniat, Mohsen, "DEEP LEARNING-BASED VISUAL CRACK DETECTION USING GOOGLE STREET VIEW
IMAGES" (2019). Electronic Theses and Dissertations. 2660.
https://digitalcommons.memphis.edu/etd/2660

This Dissertation is brought to you for free and open access by University of Memphis Digital Commons. It has
been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of University of
Memphis Digital Commons. For more information, please contact khggerty@memphis.edu.

https://digitalcommons.memphis.edu/
https://digitalcommons.memphis.edu/etd
https://digitalcommons.memphis.edu/etd?utm_source=digitalcommons.memphis.edu%2Fetd%2F2660&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.memphis.edu/etd/2660?utm_source=digitalcommons.memphis.edu%2Fetd%2F2660&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:khggerty@memphis.edu

DEEP LEARNING-BASED VISUAL CRACK DETECTION USING GOOGLE STREET

VIEW IMAGES

by

Mohsen Maniat

A Dissertation

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

 Major: Engineering

 The University of Memphis

December 2019

ii

Copyright © 2019 Mohsen Maniat

All rights reserved

iii

Acknowledgements

I sincerely appreciate all the supports that I have received during the completion

of this dissertation from Civil Engineering Department and Herff College of Engineering

at the University of Memphis. I especially would like to thank my main advisor Dr. Charles

Camp who his continuous support and invaluable mentoring. He gave me the freedom to explore

and always encouraged me to be creative. I am very grateful for having the chance to be his stu-

dent. I would like to express my sincere appreciation to Dr. Roger Meier for his helpful sugges-

tions and comments to improve this research. I would like to thank Dr. Shahram Pezeshk, Dr.

Masoud Sanayei, Dr. Mihalis Golias, and Dr. Adel Abdelnaby for their help and advice. I would

like to thank my good friends Nima Nazemi and Mohammad Farshchin for supporting me when-

ever I needed it. I Also like to thank Christie Moore and Melish Kayastha for their help in this

study.

iv

Abstract

The need for developing an economical and efficient quality assessment system for pave-

ment motivates this study to take advantage of available new technologies and provide a novel

approach to address this need. In this study, the utility of using Google Street View (GSV) for

evaluating the quality of pavement is investigated. GSV is a technology featured in Google Maps

and Google Earth that provides interactive panoramas along many streets throughout the world.

This technology provides a large data set of pavement images that can be used for pavement

evaluation. Advanced deep learning algorithms are utilized to automate the pavement assessment

process of these GSV images. These algorithms autonomously learn to find the important fea-

tures in a data set to perform a particular task. A convolutional neural network (CNN) is one of

the deep learning algorithms that has been shown to be very effective in learning from digital im-

ages. Several CNNs are used in this study to perform image classification on GSV pavement im-

ages. Training an effective CNN with many learning parameters requires a large image data set.

To provide the required data for training a CNN, a large number of pavement images are ex-

tracted from GSV are then divided to smaller image patches to form a larger data set. Each image

patch is visually classified into different categories of pavement cracks based on the standard

practice. A comparative study of pavement quality assessment is conducted between the results

of the CNN classified images patches obtained from GSV and those from a sophisticated com-

mercial visual inspection company. The result of the comparison indicates the feasibility and ef-

fectiveness of using GSV images for pavement evaluation. An effective CNN is designed and

trained on the image data set to automate the crack detection process. The trained network is then

v

tested on a new data set. The results of this study show that the designed CNN is effective in

classifying the pavement images into different defined crack categories.

vi

Table of Contents

Content Page

 List of Figures………………………………………………………………………………… ix

1. Chapter 1 Introduction ...14

 Literature Review on Automation in Image Acquisition16

 Literature Review on Automation in Image Processing21

 Literature Review on Deep Learning and Crack Detection23

 Problem Statement ...25

2. Chapter 2 Data Collection ..27

 Data Acquisition ..27

 Data Representation ...29

 Labeling Images ...32

 Working with Imbalanced Data ...40

2.4.1. Singular Assessment Metrics ...40

2.4.2. Resampling ..41

2.4.3. Adjusting Class Weights ..43

 Data Visualization ..43

 Image Pre-processing ...45

3. Chapter 3 Deep Learning ...48

 History of Deep Learning ..49

 Machine Learning ..50

 What is learning? ...52

vii

 Bias-Variance Tradeoff ..54

 Interpretation vs. Performance ...59

 Convolutional Neural Network (CNN) ..59

3.6.1. Working with Digital Images...60

3.6.2. Convolution Layers ..62

3.6.3. Activation Function ...63

3.6.4. Pooling Layers ...64

3.6.5. Dropout ..65

3.6.6. Cost Function ...66

3.6.7. Optimization ..67

 The Overall CNN Architectures ..68

3.7.1. VGG Network ..69

3.7.2. GoogLeNet ...73

 Transfer Learning...74

 Implementation ..76

3.9.1. Data Management ..77

3.9.2. Computing Power ..77

3.9.3. Deep Learning Software Platform ...79

4. Chapter 4 Vision-Based Pavement Crack Detection ...81

 GSV Images for Crack Detection ..81

 Binary Crack Classification Experiment ...86

 Multi-crack classification experiment..94

viii

5. Chapter 5 Conclusion and Future work ...103

 Conclusion ...103

 Future work ..105

References ..107

Appendix A – Details of the VGG-16 network ...116

Appendix B – Details of the Inception network ..118

ix

List of Figures

Figure Page

Figure 1. Human conducted visual inspection with simple equipment [6]. 2

Figure 2. Human conducted visual inspection and safety risks [7,8]. 3

Figure 3. Schematic hardware configuration of the image-based inspection system [11]. 4

Figure 4. The adjustable boom for image acquisition under bridges [12]. 4

Figure 5. Mobile laboratory for pavement image acquisition [16]. ... 6

Figure 6. Diagrams of the developed scanner, Road-Kill [20]. ... 6

Figure 7. Using smart phones for collecting pavement images [23]. .. 7

Figure 8. Using smart camera for data collection [24]. ... 7

Figure 9. Spatial and frequency domain of two Gabor filters (a and b). Real and imaginary part

range is from –1 to 1, magnitude range is from 0 to 1, and phase range is from –180◦ to 180◦. (a)

Central frequency is 0.010 and orientation is 45◦. (b) Central frequency is 0.010 and orientation

is 45◦. (b) Central frequency is 0.013 and orientation is 0◦ [57]. ... 10

Figure 10. Shown at left, the camera mounted in the back of a slowly-moving car, and at right is

the constructed panorama [86]. .. 15

Figure 11. Google street view cars [87]. .. 15

Figure 12. Data representation [92]. .. 18

Figure 13. Illustration of a DL model [92]. ... 19

Figure 14. Splitting one image into small patches. .. 20

Figure 15. Labeling image patches into cracked or not cracked.. 21

Figure 16. Data points on the Route 28. .. 22

x

Figure 17. Sample of 5 different classes. ... 23

Figure 18. The interactive program for labeling images. ... 24

Figure 19. A color-coded image for double checking the labels. .. 24

Figure 20. Distribution of discrepancies between the labels of the two students. 25

Figure 21. Percentage of labeling discrepancies among different classes. 26

Figure 22. Number of samples in each class. ... 26

Figure 23. Over-sampling and under-sampling techniques to overcome data imbalancement [96].

.. 29

Figure 24. A sample of synthesized images (H: horizontal, V: vertical). 30

Figure 25. Visualizing 1,024 images of the first data set (with two classes). 33

Figure 26. Visualizing 1024 images of the second data set (with two classes). 33

Figure 27. Visualizing 1,024 images of the second data set (0: alligator crack, 1: not pavement, 2:

longitudinal crack, 3: transverse crack, 4: no crack). .. 34

Figure 28. Visualizing 1,024 images of the second data set with three principal components.34

Figure 29. An estimation generated data by few companies [103].. 36

Figure 30. Different categories of ML problems [112]. .. 38

Figure 31. Concept of generalization and intelligence. ... 40

Figure 32. Bias and variance illustration. .. 42

Figure 33. Bias and variance tradeoff [118]. ... 42

Figure 34. Approximating the sinusoidal function based on two learning data points [113]. 44

Figure 35. Constant approximation of the target function based on two learning data points

[113]. .. 45

xi

Figure 36. Linear approximation of the target function based on two learning data points [113].

.. 45

Figure 37. Bias and variance of constant and linear model [113]. .. 45

Figure 38. A typical Neural Network with two hidden layers. .. 47

Figure 39. Convolution operation in CNN. ... 50

Figure 40. Common activation functions in DL. ... 51

Figure 41. Max pooling mechanism [126]. .. 52

Figure 42. Dropout Neural Net Model. (a) Standard neural net with 2 hidden layers. (b) An

example of applying dropout. Crossed units have been dropped [127]. 52

Figure 43. Top-1 accuracy vs. operations (in giga), and size of the model (number of

parameters) [144]. .. 56

Figure 44. The effect of stacking convolutional layers. ... 58

Figure 45. VGG-16 based model. .. 59

Figure 46. An example of Inception module for an input size of 28×28×256. 61

Figure 47. Inception module with 1 by 1 filter. ... 62

Figure 48. GoogLeNet based model. ... 62

Figure 49. A typical graphic computing unit [153]. .. 65

Figure 50. Comparison of CPU and GPU processing time in DL applications [152]. 66

Figure 51. GSV images form the same location on I-40 at different times (part one). 69

Figure 52. GSV images form the same location on I-40 at different times (part two). 70

Figure 53. Comparison of total cracked cells evaluated by iPAVe and by GSV images. 72

Figure 54. Comparison of longitudinal cracked cells evaluated iPAVe and by GSV images. 72

xii

Figure 55. Comparison of transverse cracked cells evaluated by iPAVe and by GSV images.73

Figure 56. Comparison of alligator cracked cells evaluated by iPAVe and GSV images. 73

Figure 57. Accuracy of the model on the leaning set versus each epoch (binary VGG-16). .. 75

Figure 58. Confusion matrix for binary classification (C: Cracked, N: Not-cracked) (VGG-16).

.. 76

Figure 59. A sample of misclassified images. ... 76

Figure 59. ROC for binary classification (VGG-16). .. 78

Figure 60. Visualizing 1024 images of the first data set in a transformed space. 79

Figure 61. ROC for binary classification (Inception). ... 80

Figure 62. An example of binary crack classification. .. 81

Figure 63. Accuracy of the model on the leaning set versus each step (multiclass VGG-16). 82

Figure 64. Confusion matrix for multiclass crack classification (5 classes)............................ 84

Figure 65. Confusion matrix for multiclass crack classification (3 classes)............................ 84

Figure 66. Visualizing 1024 images of the second data set in a 3D transformed space using PCA.

.. 86

Figure 67. Visualizing 1024 images of the second data set in a 2D transformed space using PCA.

.. 87

Figure 68. Visualizing 850 images of the second data set in a 3D transformed space using PCA.

.. 88

Figure 69. Visualizing 850 images of the second data set in a 2D transformed space using PCA.

.. 89

xiii

Figure 70. Visualizing 300 images of the second data set in a 2D transformed space using PCA.

.. 89

14

1. Chapter 1

Introduction

It is crucial to monitor and inspect infrastructure systems to ensure safety and reduce the

maintenance cost. Roads are among the most visible and familiar forms of infrastructure with

over four million miles crisscrossing the United States. Based on 2017 Infrastructure Report

Card, one out of every five miles of highway pavement is in poor condition and have a major and

increasing backlog of rehabilitation needs [1]. The first step in improving the current condition is

to provide a comprehensive assessment of the roads. This assessment would help the decision

makers to effectively plan short and long-term goals. Performing a large-scale monitoring and

assessment on roads with conventional methods is a time-consuming process and requires large

investments of time and money. Thus, it is crucial to invest in developing assessment systems

that can be applied efficiently on a large scale. In this study, a novel, time efficient, and eco-

nomic approach is proposed for pavement assessment.

Among different nondestructive evaluation (NDE) techniques, visual inspection is the

most common method and often serves as a baseline to confirm observations obtained from other

NDE methods [2,3]. In this method, a trained inspector looks over a system using naked eye to

search for flaws. The inspector may be equipped with measuring devices to evaluate the severity

of the flaws (see Figure 1). A visual inspection of pavement surface can provide valuable data

that could be utilized to estimate the current and future pavement performance and to determine

and prioritize pavement maintenance and rehabilitation necessities [4]. Although visual inspec-

tion conducted by humans is among one of the lowest-cost and most reliable NDE methods, per-

forming this type of inspection for large systems such as roads has several drawbacks. The U.S.

15

Federal Highway Administration conducted a comprehensive study of reliability of visual in-

spection of highway bridges which discovered a great discrepancy in the results of several in-

spectors for the same structure [2]. Although, to some extent, this discrepancy is attributed to

negligence or improper training of inspectors, there are many factors that cannot be overcome by

humans in the current visual inspection process. Also, visual inspection poses safety risks to both

inspectors and the general public [5]. For example, when inspecting highway infrastructure in-

spectors are often exposed to traffic or dangerous climbing scenarios (see Figure 2) which also

can be a distraction to passing drivers. Furthermore, visual inspection of large areas such as

roads is a time-consuming and expensive process. These factors have led many researches to

propose and develop various partially automated systems for visual inspection. The automation

can happen in both image acquisition and image processing.

Figure 1. Human conducted visual inspection with simple equipment [6].

16

Figure 2. Human conducted visual inspection and safety risks [7,8].

 Literature Review on Automation in Image Acquisition

Advancements and availability of optical devices and vision-based sensing technology

gained great attention of many researchers in damage detection [9,10]. Typically, image acquisi-

tion systems involve using a camera to capture images of the surface of an object. The camera

sensor may work in the visible light or beyond (vision-based sensing is usually based on visible

light). Jahanshahi et al. [11] developed a visual monitoring system by mounting several inexpen-

sive digital cameras (capable of zooming and rotation in three directions) to collect images (see

Figure 3). This system allows an inspector to compare the current situation of the structure with

the results of previous inspections, which would help to evaluate the changes of the structure at

different locations. They also provide a panoramic reconstruction of various view cases by using

an image stitching algorithm.

17

Figure 3. Schematic hardware configuration of the image-based inspection system [11].

 To improve the accessibility to large bridges, Lee et al. developed devices for operating

from the underside of superstructure during inspection [12]. This system is similar to an under

bridge inspection vehicle but replaces a bucket with several cameras (see Figure 4) [13]. They

used commercial digital cameras with auto focusing functionality to collect images. The device

has an adjustable boom which could be employed for bridges with 2 lanes (each way).

Figure 4. The adjustable boom for image acquisition under bridges [12].

18

The widespread availability of commercial unmanned aerial vehicles (UAV) (particu-

larly, quadcopter drones) has been a key driver of inspection robotics research [5,14]. In these

systems quadcopter drones are used to capture a video of a structure. In some methods, the sys-

tem will also record the location of the drone and will use it to reconstruct a 3D model of the

structure. Lattanzi and Miller provided a review of robotic infrastructure inspection and image

acquisition methods over the past two decades [5]. Dorafshan and Maguire were also reviewed

the state of practice of U.S. bridge inspection programs and summarized current and future ca-

pabilities of unmanned aerial systems in automated bridge inspections [15]. In their review pa-

per, they discussed the challenges of using UAV for bridge inspection and concluded that the re-

cent advances of UAV could potentially shift the bridge inspection paradigm by providing low

cost options for image acquisition.

For pavement image acquisition, using a digital camera with strobe or halogen lights

which are mounted on a mobile laboratory is very common (see Figure 5) [16–19]. Lopes et al.

developed a system for scanning road surface called Road-Kill for surveying mortality of am-

phibians in Portuguese roads [20]. They used a camera with 35mm lens and a LED lighting sys-

tem in their image acquisition system (see Figure 6). Their system can scan a 1 m width of road-

way in every pass at 30 km/h and with a 250 µm/pixel resolution.

19

Figure 5. Mobile laboratory for pavement image acquisition [16].

Figure 6. Diagrams of the developed scanner, Road-Kill [20].

Due to the advances in smart phone cameras and their widespread availability, several re-

searches have used this technology for data acquisition [21–23]. Zhang et al. used smart phones

to collect more than 500 pavement pictures of size 3,264×2,448 pixels at the Temple University

campus for pavement evaluation [22]. Maeda et al. installed a smart phone on the dashboard of a

car, as shown in Figure 7, and drove the car to capture images of 600×600 pixels once per second

20

[23]. The average speed of the car was 40 km/h. The images were captured in a wide variety of

weather and illuminance conditions. Varadharajan et al. used a Samsung Galaxy Camera for im-

age acquisition that almost has all functionalities of a smartphone [24]. The camera was mounted

on the windshield of a personal vehicle (see Figure 8). They collected more than 100 hours of

video with 1080p and 10 Hz (about 4 million images), over a period of one year in Pittsburgh

area.

Figure 7. Using smart phones for collecting pavement images [23].

Figure 8. Using smart camera for data collection [24].

21

 Literature Review on Automation in Image Processing

Many researchers have developed and applied different computer vision techniques for

damage detection in civil infrastructure. Most of the early works in crack detection were mainly

based on thresholding intensity values of pixels [25–28]. In these methods, the pixels are parti-

tioned depending on their intensity value. The main assumption of these methods is that the

cracked areas are darker. Although these methods are effective in some applications, they are

generally too simplistic to be applicable to images with variety of artifacts. Shi et al. [28] classi-

fied the most recent studies in crack detection into five categories: methods based on saliency de-

tection, textured-analysis, wavelet transform, minimal path, and machine learning (ML). Critical

assessment of some of these categories can be found in [29,30]. Salient detection is more visible

due to the contrast of a crack with its surroundings [31,32], but has poor performance on as-

sessing the completeness and continuity of a detected crack. Some researchers used textured-

analysis methods for road crack detection since the pavement images are often highly textured

[33–35]. For detecting cracked area, these methods use a local binary pattern operator. Since the

local neighbor information is not considered, the cracks with intensity inhomogeneity will not be

detected with high accuracy [28]. Wavelet transform is applied to pavement images for noise re-

duction [36] and crack detection [37]. Because wavelets have anisotropic characteristic, wavelet

transform methods may not work well in detection of the cracks with high curvature or with low

continuity [38]. In minimal path methods, simple open curves in images can be extracted by

providing the endpoints of the curve [39]. Several researchers have applied these methods in

crack detection [40–42]. The availability of large datasets encouraged several researchers to ap-

22

ply ML methods to crack detection [43–48]. Many of the studies in crack detection use edge de-

tection techniques to extract useful information form the images [13,49–51]. Over the history of

digital image processing, a variety of edge detectors have been developed which differ in their

mathematical and algorithmic properties [52–55]. Abdel-Qader at al. compared four different

edge detection methods and showed that the Fast Haar transform was more reliable than the

other three edge-detection techniques in identifying cracks [56]. Additionally, Zalama et al. uti-

lized Gabor filters to detect the longitudinal and transverse cracks in road images [57]. They used

4 Gabor filters with different orientations to detect cracks. Figure 9 shows two of the Gabor fil-

ters that they used in their study. They reasoned that the drastic differences will help to cover the

widest possible range with the filters.

The images used in these studies were typically high-resolution and clear images with

minimum artifacts. Edge detection requires smoothing and differentiation of the image using dif-

ferent filters. Differentiation is an ill-conditioned problem so the presence of artifacts in images

significantly alter the result. Additionally, smoothing results in a loss of information, which may

lead to total loss of useful information in low-resolution images. Considering these issues, it is

difficult to design a general filter which performs well in many contexts [13]. Instead of explic-

itly engineering a filter that may work well under certain conditions, many researchers, in the re-

cent years, have attempted to use convolutional neural network (CNN) architectures to train lay-

ers of filters that can extract useful information from the images.

23

Figure 9. Spatial and frequency domain of two Gabor filters (a and b). Real and imaginary part

range is from –1 to 1, magnitude range is from 0 to 1, and phase range is from –180◦ to 180◦. (a)

Central frequency is 0.010 and orientation is 45◦. (b) Central frequency is 0.010 and orientation

is 45◦. (b) Central frequency is 0.013 and orientation is 0◦ [57].

 Literature Review on Deep Learning and Crack Detection

In recent years, deep learning (DL) methods have been proven to be very effective in

solving many practical problems [58–61]. By relying more on automatic learning and less on

heuristics, LeCun at al. showed that better pattern recognition systems can be built [62]. By in-

troducing AlexNet in 2012, Krizhevsky et al. achieved record-breaking results in an image clas-

sification contest (ImageNet challenge [63]) and demonstrated the power of CNN architectures

24

[64]. Since then, several researchers have applied AlexNet and other CNN architectures to dam-

age detection of civil infrastructure. Cha et al. developed a classic CNN for detecting concrete

cracks and compared their results with Canny and Sobel edge detection methods [65]. They used

40,000 images with 256×256 pixel resolutions for training the network and 55 images of

5,888×3,584 pixel resolutions for testing. They have showed that CNN performs better in finding

concrete cracks in realistic situations [65]. In another study, Cha et al. applied Faster Region-

based CNN for detecting multiple damage types [66]. Huang et al. used fully convolutional net-

work for semantic segmentation of crack and leakage defects on inner surface of concrete tunnels

[67]. Chen and Jahanshahi proposed Naive Bayes CNN to analyze individual video frames for

crack detection on nuclear power plant components [68]. Wang et al. proposed a CNN architec-

ture for pavement crack detection on 3D asphalt surfaces that removed pooling layers in typical

CNNs to ensure pixel-perfect accuracy [69]. Zhang et al. utilized a simple CNN with three con-

volutional layers to detect pavement cracks [22]. They evaluated their method on 500 images

(size 3,264×2,448 pixels) collected by a low-cost smart phone and showed the superiority of DL

framework when compared to existing hand engineered methods. Maeda et al. collected 9,053

road damage images captured with a smartphone installed on a car, and applied Single shot

multibox detector (SSD) Inception V2 and SSD MobileNet (two CNN architectures) for detect-

ing the location and type of cracks in road images [23]. Eisenbach et al. evaluated both com-

puter vision and DL crack detection approaches with the German Asphalt Pavement Distress

data set [70]. Pauly et al. investigated the effectiveness of having more layers in CNN architec-

tures for pavement crack detection [71]. They also showed how variations in location of training

and testing data sets affect the performance of the DL.

25

 Problem Statement

To train a deep CNN with many hidden layers, a large data set is required. In fact, the

benefit of using a deep network are only revealed when a large data set is available for training.

In the crack detection literature, there are few large labeled image data sets which are suitable for

DL applications. Most of the pavement crack detection studies use road images taken directly

from above the road [24]. It is difficult to reproduce these images and it is costly to maintain a

dedicated car for taking road images [24]. In 2017, Eisenbach et al. stated that there were only

three different data sets available for crack detection of pavement images, all of which have less

than 300 total images [70]. In the summer of 2018, the need for a large data set of images for

classification of structural objects, inspired Pacific Earthquake Engineering Research Center

(PEER) to organize the first image-based structural damage identification competition, namely

PEER Hub ImageNet (PHI) Challenge [72]. All these factors indicate that there is an immediate

need for building a proper data set of images for damage detection of civil infrastructure.

In this study, the main objective is to develop a reliable, inexpensive, accurate and auto-

mated system for identifying cracks in a surface. Due to the importance of identifying cracks in

pavements, this study will focus on crack detection in asphalt pavements. However, the devel-

oped system will readily be applicable for crack detection on concrete surfaces in a structure. By

reviewing the recent literature of visual inspection automation, it is easy to observe a growing

interest in using neural network (NN) algorithms in civil infrastructure applications. While NN

algorithms have proven themselves to be reliable and efficient in solving complex problems, the

affordability of powerful graphics processing units (GPUs) have advanced the research by

26

providing the computational speed required for training a deep network. In this study, two differ-

ent deep CNN architectures are developed and applied to pavement image classification. To train

and test the network, a data set is collected containing pavement images captured from Google

Street View (GSV). GSV provides panoramic 360-degree views from positions along many

streets in the world and forms a massive data set that is well-suited for DL applications. GSV has

been successfully used in many fields of research [73–75]; however, this study is the first attempt

to use GSV technology for damage detection. The main challenge in using the GSV data are the

presence of many artifacts and low quality of the images. Therefore, an effective crack detection

method is implemented to address these challenges.

The chapters of this dissertation are structured in a way that provide an overview of the

important concept and methods in this study. Chapter 2 provides an extensive discussion of the

data collection process and the nature of the data. In this chapter, the practical challenges are ex-

plained when working with data collected from GSV. In Chapter 3, the fundamental concepts of

DL are introduced along with the building blocks of the CNN used for solving the image classifi-

cation problem. Chapter 4 provides a detailed discussion of the designed experiments for crack

detection and their results. Lastly, in Chapter 5, a summary is provided on the overall crack de-

tection process, conclusions, and some comments on topics for future study.

27

2. Chapter 2

Data Collection

This study is the first attempt in using Google Street View (GSV) images for civil engi-

neering applications. The data collection portion of this study posed multiple challenges that that

were addressed with innovative and unique solutions. In this section, the details are presented for

data acquisition, data representation, data preprocessing, data labeling, complexity analysis, and

some of the pragmatic challenges in collecting the data.

 Data Acquisition

There are four million miles of roads in the United States and collecting data for pave-

ment evaluation is a time-consuming and expensive task which makes it almost impractical to

perform in a large scale for the whole network. To overcome this challenge, GSV is used to col-

lect the required data. In this subsection, information is presented on GSV and methods for col-

lecting data using GSV.

The Sandford City Block project [76,77] was the origin of GSV. The purpose of the pro-

ject was to build a technology for multi-perspective panoramas from sideways-looking video

taken from a vehicle driving on a street (Figure 10). This project was folded into Google Street

View project to provide an interactive panorama from positions along many streets and roads in

the world. Most of the photography is done by google cars as shown in the Figure 11. For each

single location GSV provides a photo sphere, or set of images, that provides a full 360-degree

view. The resulting 360-degree panoramic image defines a projection on a sphere with the image

wrapped to the two-dimensional surface of that sphere [78]. Since its launch in 2007 [79], the

28

GSV project has captured billions of photos across many countries [80]. In 2012, Google an-

nounced that it has captured 20 petabytes of data for GSV. By increasing the quality of images in

2017 and innovation of variety of methods for capturing images, the size of the GSV database

has been exponentially increased. GSV data has been used by the computer vision community

for testing different methods [81,82] and a source from which data is extracted and analyzed

[83–85]. A large portion of the GSV database is images of pavements. Tapping this massive re-

source of data can provide a unique tool for solving one of the challenging problems in monitor-

ing civil infrastructure.

Figure 10. Shown at left, the camera mounted in the back of a slowly-moving car, and at right is

the constructed panorama [86].

Figure 11. Google street view cars [87].

29

There are several methods for extracting images from GSV. The first method is to save a

view that covers an area of pavement under investigation. For this method, simply go to Google

Map website and find the location that of interest. GSV can be navigated by dragging and drop-

ping the pegman icon on the street, selecting a view that covers the area of the pavement, and

storing the viewed image on a hard disk. There are other websites that might help to perform this

process [88,89]. These websites try to provide a fast and user-friendly interface to work with

GSV. While manually navigating through GSV and saving images is a time consuming and im-

practical method for evaluating a whole network of roadways, for research purposes this method

can provide adequate data for training and testing a DL model. Web browser interactions can be

automated using a Python library called Selenium [90]. Although Selenium can help to extract

data from a straight road, it was found to be ineffective for streets with multiple turns (unless the

GPS coordinates are given). The practical option is to use GSV Static API [91]. The location,

camera angle, and the size of the image can be selected, and the API will provide the image

(Google charges $0.0056 for each image). For this study, images were manually extracted di-

rectly form the GSV website. The images are cropped and spliced into smaller patches to form

both the training and test data sets.

 Data Representation

A digital image is a collection of picture elements or pixels that have been organized in a

grid-shape format with fixed number of rows and columns. Digital images in machines are stored

in a simple 2D array (for gray images) of numbers which represent the intensity of light at the

pixel. A typical color image consists of three layers (channels) of 2D arrays for red, green, and

30

blue light for the additive RGB color model. The intensity values in each array can be digitized

in 8 bits (256 intensity levels). This forms a typical 32-bit images. Although images have a well-

defined structure, in data science they will be considered as unstructured data for the classifica-

tion task.

Many ML problems can be solved by identifying the correct set of features. These fea-

tures will be provided to a ML algorithm to perform the required task. For example, a useful fea-

ture for identifying a speaker from their sound is the speaker’s vocal tract. This feature of the

sound provides a good indicator for identifying if the speaker is a man, a woman, or a child.

However, for many tasks it is difficult to know what features should be extracted. For example, it

is difficult to describe what a crack looks like in terms of pixel values. One solution to this prob-

lem is to utilize ML to not only learn the mapping form input to output but also learn how to rep-

resent the data to make it possible to map. To illustrate the importance of data representation,

consider the following example: classifying data presented in cartesian coordinates with a linear

classifier. In Figure 12(a), there is no linear line that can correctly separate the data points into

two unique subsets. In Figure 12(b) the same data is presented in polar coordinates and a linear

classifier can easily separate the data points.

31

(a) (b)

Figure 12. Data representation [92].

A deep network model learns how to represent data in different forms in each layer of the

network and make it possible for the model to correctly learn the general pattern. Particularly, in

CNN, the network learns to represent the raw pixel values into different forms. DL breaks down

a complicated mapping into series of nested simple mappings (Figure 13). In other words, the

network learns to put a structure on the unstructured data. Figure 13 shows a graphically simpli-

fied DL model that has been trained for object classification. Since it is not possible to directly

extract all the important features of a complex object from pixel values, the network breaks a

complex feature down to series of simpler features in each layer. In the first layer, the network

learns to transform the raw pixel values to a space defined by edges. The output of the first layer

is edges of an input image. In the next layer, the output of the previous layer is transformed to a

space defined by corners and contours. Then, in the third layer it learns to represent the corners

32

and contours in a space defined by object parts and from this last layer the model can decide

about the class of the image.

Figure 13. Illustration of a DL model [92].

 Labeling Images

The first part of this study was to identify if there is a crack in the image or not. This is a

binary classification problem. For solving this problem, 1,500 images of 1,800×800 pixels were

extracted from GSV for several roads in Memphis, TN. These images were than split into

patches of 200×200 pixels (see Figure 14) and labeled as “cracked” or “not cracked” as is illus-

trated in Figure 15. Overall, 48,000 images were manually labeled and cleaned. The number of

images in each class is in the same range for both classes.

33

Figure 14. Splitting one image into small patches.

The second part of this study is a multiclass classification problem where the different

types of pavement cracks are identified. For this classification problem 2,346 GSV images of

3,750×500 pixels were collected from a part of Route 28 in Virginia. The length of the road is

around 13 miles. Figure 16 depicted the locations of the captured images of Route 28. The crack

evaluation for this part of the road was performed by a commercial company (ARRB [93]) and

was available for this study. The company uses intelligent Pavement Assessment Vehicle

(iPAVe), fully automated crack detection system that uses 3D sensors combining lasers and

high-speed 3D cameras, to provide data on the quality and quantity cracks in pavement. To be

able to compare the result of GSV with the result of the company, the images were split into

patches of 250×250 pixels, and labeled into 5 categories with the following simplified descrip-

tion:

34

• Not cracked, when there is no crack in the image

• Longitudinal crack, when there is just one horizontal crack in the image

• Transverse crack, when there is just one vertical crack in the image

• Alligator crack, when there is more than one crack or when the shape of the crack

is similar to alligator crack

• Not pavement, when the image is not pavement

Figure 15. Labeling image patches into cracked or not cracked.

35

Figure 16. Data points on the Route 28.

Figure 17 shows samples of images of the five classes. An interactive tool was developed

in MATLAB and used to speed up the labeling process and minimize the human error (see Fig-

ure 18). For each image, the MATLAB program starts from the top-left corner the image and one

by one draws a red rectangular around border of each patch. The user can zoom on the image to

observe more details. Also, a magnified view of the current patch is also plotted alongside of the

whole image to help the user decide which category best classifies the pavement conditions of

36

the presented patch. Each patch was labeled with an integer number (0, 1, 2, 3, 5) cracks condi-

tions. By pressing each of these numbers on the keyboard the selected number is stored and the

red rectangular slides to the next patch. After labeling all the patches in an image, the MATLAB

program shows the entire image with the selected labels for all patches in order to allow the user

to double check the labels (see Figure 19). Patches are then color coded to help spot errors in the

labeling. The user will be asked to rate their level of certainty about their selections. In this

study, two civil engineering graduate students to perform the labeling process. Each student was

given the same instructions, data, and MATLAB program for labeling the data. In addition, to

help them perform the task correctly a relativity long lead time (about a month) was given for the

labeling process. Based on rough estimates, each student spent around 20-30 hours to complete

the entire labeling process.

Figure 17. Sample of 5 different classes.

Not cracked Longitudinal

crack

Transverse

crack

Alligator

crack

Not Pavement

37

Figure 18. The interactive program for labeling images.

Figure 19. A color-coded image for double checking the labels.

After comparing the labels identified by each of the two students, the frequency of mis-

matches for each class are analyzed. Overall 8,546 mismatches were indentified which is around

12% of the entire data (70,380 patches). This is an important number which is a rough estimate

of human error in classifying Google Street View images. Figure 20 shows the distribution of the

38

mismatches. In this figure, the number of patches with incongruent labeling is plotted based on

the different ten possible combinations (C(5, 2)=
5!

(5-2)!2!
=10). Since the number of samples in

each class is different, the percentage of the discrepancy is presented for each combination of

mismatches in Figure 21. The highest discrepancies are associated with the longitudinal-alligator

cracks and transverse-alligator cracks, with percent discrepancies of 22.4% and 13.3%, respec-

tively. In practice many longitudinal and transverse cracks will develop into alligator cracks, and

based on severity, environmental factor, and other information, the class of the crack can be esti-

mated. Here, the information is limited to one picture which result in high discrepancy.

Figure 20. Distribution of discrepancies between the labels of the two students.

3,682

515

1,259
1,408

88

559

912

13 55 55

N-L N-T N-A L-A L-T T-A C-N C-T C-L C-A

N: Not cracked

L: Longitudinal crack

T: Transverse crack

A: Alligator crack

C: Not pavement

39

Figure 21. Percentage of labeling discrepancies among different classes.

In this study, the mismatched images are eliminated from the training data set. Figure 22

shows the number of images reaming in each of the five classes. It appears that in this data set

that most of the images have no cracks. This is not an unexpected result since Route 28 is an im-

portant highway that has been routinely maintained. Since the labeled data distribution is not bal-

anced; therefore, several techniques will be applied to that help with imbalanced data sets.

Figure 22. Number of samples in each class.

6.8%

1.0%
2.4%

22.4%

3.5%

13.3%

1.6%
0.2% 0.6% 0.5%

N-L N-T N-A L-A L-T T-A C-N C-T C-L C-A

N: Not cracked

L: Longitudinal crack

T: Transverse crack

A: Alligator crack

C: Not pavement

7,949

3,050

603

1,837

48,319

Not pavement

Alligator crack

Transverse crack

Longitudinal crack

Not cracked

40

 Working with Imbalanced Data

Most ML models are designed to maximize accuracy and reduce error; therefore, they

work best when the number of samples in each class are in the same range. The first step in man-

aging imbalanced data is to choose a proper metric for measuring the performance of the model.

2.4.1. Singular Assessment Metrics

The most frequently used metrics are accuracy and error rate (1-accuracy). Accuracy is

defined as the number of correct predictions over the total number of predictions. To illustrate

the shortcoming of accuracy in working with imbalanced data consider this example: a data set

with 1,000 samples labeled A and 10 samples labeled B. If a model predicts every samples as A,

the accuracy of the model is
1000

1010
=0.99. However, this model is not accurate at predicting B and

accuracy is not a good metric to measure the performance of the overall model. In this situation,

metrics such as precision, recall, and Fβ are better metrics to represent the performance of the

model. For the previous example, both precision and recall for the class B is zero. The formula-

tions of these metrics are as follows [94]

precision=
TP

TP+FP
 (1)

recall=
TP

TP+FN
 (2)

Fβ=(1+β
2)

Precision*Recall

(β
2
*Precision)+Recall

 (3)

where TP, FP, and FN are true positive, false positive, and false negative, respectively.

Model performance is analyzed using the Receiver Operating Characteristics (ROC) curve

41

[94,95]. By plotting true positive rate (recall) against false positive rate for varying prediction

threshold, a ROC curve visualizes the ability of the model to discriminate the positive class from

the rest of the data. False positive rate is defined as:

 false positive rate =
TN

TN+FP
 (4)

ROC plots along with the value of area under the curve (AUC) are a good way to analyze

the performance of a model, especially for a binary classification.

2.4.2. Resampling

One effective technique to help overcome imbalancment in data is resampling, which in-

cludes over-sampling and under-sampling. In over-sampling, samples are collected or synthe-

sized to increase the number of samples in the minority class. In under-sampling, some samples

are randomly eliminated in the majority class to reduce the number of samples. Figure 23 illus-

trate these resampling concepts. For this study the difference between the number of samples in

minority and majority class is significant. For example, there are 75 times more samples in not-

cracked class than in the transverse class. By performing under-sampling, a significant portion of

the labeled data will be removed. Since NN models need large data set to train the model, this

option is not considered in this study. Additionally, collecting more data is time consuming and

there is no guarantee that the new data will increase the minority class significantly. Thus, in this

study more samples were synthesized from the minority classes to increase the number of sam-

ples.

42

Figure 23. Over-sampling and under-sampling techniques to overcome data imbalancement [96].

There are several methods to synthesize new images from a minority class [97–101].

Typically, in these methods the original image is transformed with a combination of affine trans-

formations to generate a new image. In this process, the arrangement or the values of pixels in

the new image is slightly changed, without losing the important features of the original image.

Some of these methods are flipping, rotating, scaling, cropping, translating, shearing, zooming,

distorting, shading with a hue, and applying gaussian noise. Since the color of most of images

are close to gray, changing the hue will not generate a new image. Cropping and translating, may

remove a crack from the image. The GSV images are highly noisy and adding more noise to the

images could reduce the performance of the classifier. Thus, a combination of shearing, rotating,

and flipping (on both side) is used to generate new images. Figure 24 shows a sample set of the

generated images based on the original image.

43

Original V flip and shear H and V flip Rotate

H flip and shear H and V flip and shear H and V flip and rotate H flip and shearing

Figure 24. A sample of synthesized images (H: horizontal, V: vertical).

2.4.3. Adjusting Class Weights

Another method for mitigating imbalanced data is to consider class weights. By consider-

ing higher weights for minority class more value is placed on these samples, and if the predicted

value is not correct the cost function will get more penalized.

 Data Visualization

One of the effective ways of understanding the important features of a dataset is to repre-

sent the data in a graphical form. Data visualization can help in understating difficult concepts

and discovering new patterns. While there are many ways to visualize structured data with a lim-

ited number of variables, visualization of unstructured data remains a challenging problem. In

44

this study, the database is a set of images. Although an image is a graphical representation by it-

self, considering thousands of images in a data set requires an effective method to visualize the

image data set. One way to plot image data in a graph is to consider each image as a high dimen-

sional vector. Each pixel value is a variable in the vector. Using this method, if the images only

consisted of three pixels, one can plot them in the conventional 3D cartesian system. However, in

reality the number of pixels is much higher than three, so the dimensions of the data need to be

reduced. There are different ways to reduce dimensionality. In this study, the Principal compo-

nent analysis (PCA) is used to reduce the dimensionality of the data while minimizing infor-

mation loss by projecting the data on its principal components (eigenvectors) [102]. This method

allows us to visualize the image data set in a cartesian system.

 In Figure 25, a sample of the first image data set (binary classification images) is plotted.

Each point in the figure is a 200×200 pixels gray image where the dimensionality has been re-

duced from 40,000 dimensions to two dimensions. For this data, first and second principal com-

ponents explain 36.4% and 5.6% of the variation in the data. It can be seen in Figure 25 that the

points with colored cyan and red are mix together and there is no clear pattern to classify the

points. In Figure 26, a sample of the second image data set is plotted where all three cracked

classes in the dataset are combined to form a general class for cracked images, and the not pave-

ment class is excluded. Based on these results, the multiclass data with 5 classes are changed to a

binary class data set containing only with cracked and not cracked. In this data set, the images

are 250×250 pixels, and the overall dimensionality of gray images is 62,500. For this data, first

and second principal components explain 62.4% and 5.9% of the variation in the data which is

higher than the first data set. The reason for the higher values is the variation in collecting the

45

data. In the first data set, images were collected from different roads and with different features;

however, the second data set is collected from one specific roadway. Thus, the variation of data

in the first data set is higher and the first principal component is only able explain 36.4% of the

variation. Similar to the binary classification shown Figure 25, in the Figure 26 points are mixed

together and there is no clear pattern to classify the points. By training a DL model, the model

learns how to transform (represent) the data into a new space that the classifier can effectively

classifies the data.

Figure 28 shows a visualization of a sample (same number of points in each class) of the

second image data set. For this data, first, second, and third principal components explain 64.8%,

8.3%, and 3.6% of the variation in the data. Figure 28 shows the same data in a 3D graph with

three principal components as the axes. As expected, there is no clear pattern in the points, and a

DL model is needed to learn the complicated patterns in the image data set.

 Image Pre-processing

Since the GSV images are captured in different times of year and in different hours, the

color and the luminosity of images may have drastic change. Time of day and the color of as-

phalt are some features that should not affect the classification results. Additionally, for optimi-

zation and stability considerations, the dataset is normalized such that the mean value of each im-

age would be equal to zero. The mean value is calculated across the whole image and subtracted

from each pixel value.

46

Figure 25. Visualizing 1,024 images of the first data set (with two classes).

Figure 26. Visualizing 1024 images of the second data set (with two classes).

47

Figure 27. Visualizing 1,024 images of the second data set (0: alligator crack, 1: not pavement, 2:

longitudinal crack, 3: transverse crack, 4: no crack).

Figure 28. Visualizing 1,024 images of the second data set with three principal components.

48

3. Chapter 3

Deep Learning

Today, many aspects of modern society are enabled by ML methods. A massive amount

of data is being constantly generated (see Figure 29), and this amount will become even larger in

the future. A large portion of the available data (80%-90%) is not structured enough for most

tasks (unstructured data). Traditional ML methods (such as logistic regression, support vector

machine, decision tree, and k-nearest neighbors) were limited in their ability to process unstruc-

tured data. For decades, building a ML system required careful engineering and considerable do-

main expertise to transform the unstructured data (such as the pixel values of an image) into a

suitable internal representation from which the ML algorithm could perform a task on the input

data [61]. Representation learning is a set of methods that allows a machine to explore unstruc-

tured data and to automatically discover the representations needed to perform a specific task.

DL algorithms are representation learning methods with multiple levels of representation [61].

This happens by combining simple but non-linear units that each transforms the input from one

representation into another representation at slightly more abstract level. With the arrangement

of enough such units, very complex functions can be learned [61]. Therefore, DL has gained a

growing interest among many researchers in different fields. In this study, these new technolo-

gies are utilized to solve a challenging problem in civil engineering. In this section, the funda-

mental concepts in DL are discussed and different building blocks are presented that are required

to build an effective DL model. From these concepts and tools, a model is developed for crack

classification in asphalt pavements.

49

Figure 29. An estimation generated data by few companies [103].

 History of Deep Learning

In the early days of making machines intelligent, the field of artificial intelligence (AI)

rapidly attempted to solve problems that were intellectually difficult for a human; problems de-

fined by a of list of formal and mathematical rules, but relatively straight-forward for machine

computation. The true challenge to AI is in solving tasks that are easy for a human, tasks that are

intuitive, but difficult to describe in a formal machine language [104]. DL is a powerful approach

to solve these challenges. DL not only attempts to discover the mapping from data representation

to the output but also to learn the representation itself [104].

The term “artificial neural network” or “neural network” have been used interchangeably

with DL since some of the earliest learning algorithms were intended to be models of how learn-

ing happens in the brain. In the early 1960s, Rosenblatt popularized neural network (NN) by de-

scribing many different kinds of perceptron networks [105]. Later in 1969, Minsky and Papert

analyzed the limitations of perceptrons [106]. Many people overgeneralized these limitations to

all NN models which led to a major drop in NN popularity. Many methods in DL were devel-

Company Size of daily processed data

eBay 100 PB*

Google 100 PB

Facebook 30+ PB

Twitter 0.1 PB

Spotify 0.064 PB

50

oped between 1980s–1990s, such as the long short-term memory [38] and back-propagation al-

gorithm [39]. In mid-1990s, the AI community began to make unrealistic claims, which led to

disappointments when AI research did not satisfy these unreasonable expectations. Simultane-

ously, other fields of ML such as Kernel machines and graphical models achieved good results

on many important problems. These two factors led to another decline in the popularity of NN

that lasted up until 2007 [104]. In 2006, Hinton et al. showed that deep belief network could be

efficiently trained using greedy layer-wise pretraining [107]. Other researchers implement the

same strategy to train other kinds of deep networks [108,109]. These studies helped bring DL out

of dormancy. Today, by outperforming other ML methods in many AI challenges, DL has placed

itself among the most successful methods in supervised, unsupervised, and reinforcement learn-

ing.

 Machine Learning

Since DL is a part of a broader family of ML methods, it is necessary to discuss some of

the fundamental concepts in ML. The algorithms and models in ML have been used in many

fields, and thus, there are multiple definition of ML. The term “machine learning” was coined in

1959 [110], and it can be defined as the scientific study of algorithms and statistical models that

computer systems use to perform specific tasks by learning from experience (data) [111]. Learn-

ing from data is used in situations where there is a pattern in the data, and an analytical solution

does not exist or is too complicated to be derived. In these situations, ML provides some tools to

explore the data and learn the pattern. ML problems are often categorized in three general clas-

ses: supervised learning, unsupervised learning, and reinforcement learning (see Figure 30).

51

In supervised learning, an algorithm learns from a set of data (learning set) that contains

both the inputs and the outputs and builds a mathematical model for estimating a desired output

for a new input (test set). For instance, if the task were determining whether an image contained

a particular object, the training data would include images with and without that object (the in-

put), and each image would have a label (the output) entitling whether it contained the object or

not[111]. In contrast, unsupervised learning methods are used when the outputs are not available.

Unsupervised learning studies how systems can infer a function to describe a hidden structure

from unlabeled data. Reinforcement learning is a type of ML technique that enables a software

agent to learn in an interactive environment by trial-and-error using feedback from its own ac-

tions and experiences. The agent automatically determines the ideal behavior within a specific

context to maximize its performance.

Figure 30. Different categories of ML problems [112].

52

 What is learning?

Traditional statistical frameworks explain many aspects of learning algorithms, and pro-

vides mathematical proves for the feasibility of learning [113,114]. Shai Shalev-Shwartz and

Shai Ben-David [115] presented examples to explain the basics of the learning process and some

of the most fundamental issues in ML. The first example is how rats learn to avoid poisonous

food. Rats, when they encounter a new food with a new look and smell, will first eat very small

amount of the food and will process the physiological effect of it. If the food results a negative

effect the new food will be associated with the illness, and the rats will avoid the food. The ani-

mal used experience to detect a safe food. If the experience was negatively labeled, the animal

predicts that it will also have a negative effect. Now, consider writing a program to detect spam

emails. A naive solution is to memorize all previous spam emails labeled by user, and when a

new email arrives the machine will search the spam set to find a match. If there is a match the

new email is a spam, otherwise it will be moved to the inbox folder. While learning by memori-

zation is sometimes useful, it lacks an important aspect of learning – the ability to generalize. A

successful intelligent learner should be able to achieve a broader generalization from individual

examples. The ability to generalize, in that sense, refers to the abstract term of intelligence. One

of the factors that makes humans more intelligent than other animals is their exceptional ability

to generalize. Humans, as young as two years old, have the capacity to appreciate features in one

object and to generalize it to other instances. For example, a child who has been showed a pic-

ture of a real elephant, can easily identify the abstract image of an elephant, although the two

pictures were substantially different (see Figure 31).

53

Figure 31. Concept of generalization and intelligence.

Another issue arises when the learner has a false conclusion. Pigeon superstition experi-

ments by Skinner is a good example to illustrate this concept [116]. Skinner placed a series of

hungry pigeons in a cage attached to an automatic machine that delivered food to the pigeon “at

regular intervals with no reference whatsoever to the bird's behavior.” He discovered that the pi-

geons associated the delivery of the food with whatever chance actions they had been performing

as it was delivered, and they subsequently continued to perform these same actions. “One bird

was conditioned to turn counter-clockwise about the cage, making two or three turns between re-

inforcements. Another repeatedly thrust its head into one of the upper corners of the cage. A

third developed a 'tossing' response, as if placing its head beneath an invisible bar and lifting it

repeatedly. Two birds developed a pendulum motion of the head and body, in which the head

was extended forward and swung from right to left with a sharp movement followed by a some-

what slower return” [117]. While humans rely on common sense to filter out random meaning-

less learning conclusions or patterns, well defined principles are needed to guide a machine out

of reaching meaningless conclusions in the learning process. In other words, a algorithm should

I can generalize!

54

be able to learn the pattern in the data while ignores the pattern in the noise. Bias and variance

are two concepts that help to reach this goal.

 Bias-Variance Tradeoff

The goal of a learning model is to find a function f̂(x) that approximates a target function

f(x) as well as possible. If the available data has zero mean noise with variance σ2 (irreducible

error), for real-valued targets and using mean squared error, expected error on an unseen sample

(x, y) can be decomposed as follow:

E [(y-f̂(x))
2

] = (E[f̂(x)]-f(x))
2

+E[f̂(x)2]-E[f̂(x)]
2
+σ2 (4)

The left side of the equation is the expected error between the hypothesis f̂(x) and the tar-

get values. In the learning process the expected error will be minimized. The right side of the

equation consist of three parts, bias (E[f̂(x)]-f(x))
2

, variance E[f̂(x)2]-E[f̂(x)]
2
, and irreducible

noise. Figures 32 and 33 illustrate the concept of bias and variance. High bias in a model indi-

cates that it is diverging from the target like the superstitious pigeons who have learned patterns

that are far from the target. Low bias is the symptoms of a too simplistic model. High variance

indicates that the model is unstable, and instead of learning the general patterns, memorizes each

data points which is a symptom of a model that is too complex.

55

 Figure 32. Bias and variance illustration.

Figure 33. Bias and variance tradeoff [118].

56

As mentioned in the previous subsections, the purpose of learning from experience is to

learn to generalize. By increasing the complexity of a model, more sample are needed to effec-

tively introduce a function that can generalize well. Having over complex models will lead to

high variance and over-fitting. Such models will not generalize well and will have low perfor-

mance in during testing. On the other hand, a model which is too simple for a given data set,

does not have the ability to learn the complex structures that might be represented in the training

data. The amount of available data that one can use is a critical factor for choosing the complex-

ity of a model. To illustrate this point, consider the following example [113]. Assume that the

target function is f(x)= sin(πx), and just two data points are given for training the model and ap-

proximating the function. Next, consider two models with different complexities, constant (ℋ0)

and linear (ℋ1). Here the question is which of these two models will provide a better approxima-

tion based on the given data. Depending on where the two points are located, different models

can be proposed. Figure 34 shows two of the possible models. Considering the possibility of the

two points anywhere on the target function, a set of hypotheses can be generated for constant and

linear models (see Figures 35 and 36 where g̅(x)=E[f̂(x)]). To compare the two model, bias and

variance values are calculated and shown in Figure 37. It can be observed that the bias of the lin-

ear model is less than constant model, but its variance is significantly larger. Thus, the constant

model is a better model for approximating the sinusoidal function given two data points. This

may sound counterintuitive, since the linear model is better for approximating the sinusoidal

function; however, when the number of given training data points is limited to two points, the

linear model overfit the data and consequently result is higher level error. By increasing the num-

ber of data points the linear model becomes outperforms the constant model.

57

The notion of using the simplest model come from the famous principle of Occam's ra-

zor, which states: that “among competing hypotheses, the simplest is the best” [119]. One of the

methods that reduces the complexity of a model and the variance is regularization. Regulariza-

tion put some extra constraints on the parameters of the model and, consequently, reduces the

complexity of the model. There are different ways of applying regularization: early stopping, L1

regularization, L2 regularization, elastic net, max norm, and dropout are some of the methods

that have a regulatory effect [120]. In this study, the L2 and dropout regularizations are imple-

mented.

Figure 34. Approximating the sinusoidal function based on two learning data points [113].

58

Figure 35. Constant approximation of the target function based

on two learning data points [113].

Figure 36. Linear approximation of the target function based

on two learning data points [113].

Figure 37. Bias and variance of constant and linear model [113].

59

 Interpretation vs. Performance

Although the primary interest of most practical ML examples is to improve the model

performance, a secondary interest may be to interpret the model and understand why the model

works. For instance, in the case of choosing treatment therapies for a cancer patient, the doctor

and the patient might like to discuss other factors such as potential side effects and survival rates.

In this case, not being able to interpret the model may be considered as unethical. The unfortu-

nate reality is that in a quest to have higher performance, the complexity of the resulting models

increase and their interpretability becomes challenging [121]. In most of the real-word problems

the primary goal is to have a better prediction; therefore, if a complex model can be validated,

the interpretability will be sacrificed.

 Convolutional Neural Network (CNN)

In this section, the basic concepts of NNs are presented, then different components of

CNNs are discussed, and the advantages of each architecture are explained. Figure 38 shows a

typical NN where an input i is a single vector of the features xk. The input is fed into a sequence

of hidden layers to predict an output ŷ. Each hidden layer consists of a set of nodes (neurons)

where each node is fully connected to all nodes in the previous and next layers. Each node in a

layer functions independently and does not share any information with other nodes. At each

node, the output of the previous layer ak

[l-1]
 is multiplied by a weight ωjk

[l]
 and added to a bias term

bj
[l]

. Then, the result is fed to an activation function g[l] to determine the output of the node aj

[l]
.

The general formulation for output of each node is

60

aj

[l]
=g[l] (∑ ωjk

[l]
ak

[l-1]

k

+bj
[l]
) (5)

where a[0] is the input vector. In this example, the last fully-connected layer a[3] is called the

“output layer”, and in classification problems it represents the class probabilities. Both the

weights ωjk

[l]
and the bias terms bj

[l]
are the parameters of the model that are determined during

training.

Figure 38. A typical Neural Network with two hidden layers.

3.6.1. Working with Digital Images

To process a digital image with a typical network a tensor with the order of 3 (a matrix

with 3 channels) is converted to a tensor with the order of one (a vector). For instance, an image

with 100×100 pixel resolution and 3 channels (red, green, and blue) turns to a vector with 30,000

elements. Each element is an input feature or variable. For building the NN model, 30,000

61

weight parameters would be required for each node in the first layer of the network. It follows

that the number of parameters will increase when using larger images or by adding extra nodes to

the first layer. This framework is not an efficient way of developing NN models for images. A

CNN is another class of NN that takes advantage of the shape of the inputs and designs an archi-

tecture that uses the weights more efficiently. CNNs leverages two important ideas to help im-

prove the performance of the network: sparse interactions and parameter sharing.

In a typical NN, every output unit aj

[l]
 interacts with every input unit ak

[l-1]
; however,

CNNs typically have sparse interactions. This is accomplished by choosing a smaller filter size

than the input. For instance, the input image might have thousands of pixels, but small, mean-

ingful features such as edges can be detected with filters that sample only tens or hundreds of

pixels. This reduces both the number network parameters and the required memory while im-

proving statistical efficiency [104]. Unlike a traditional NN where weights are used exactly once

in one forward pass, in CNNs, weights apply to different part of an input (parameter sharing)

[104]. This strategy is based on the reasonable assumption that if a filter (feature detector) is use-

ful in one part of an image, then it may also be useful in a different part of the image.

A deep CNN architecture is developed by assembling (stacking) several layers, such as

input, convolution, pooling, fully connected, and output layers. There are other techniques such

as a dropout layer that that can enhance performance and avoid overfitting of the data. Details on

each of the layers and their configuration in the CNN are explained in the following sections.

62

3.6.2. Convolution Layers

In CNNs the main computational elements are the convolution layers. Each convolutional

block includes a set of filters with learnable weights. These filters convolve with the output of

the previous layer and search for a useful pattern or feature in the entire image. The network de-

signs each filter in a way that minimizes an error function (objective function). A convolution

operation in a CNN is the same as the cross-correlation operation (convolution operation with-

out flipping the filter) in 2D signal processing (image processing). Figure 39 illustrates the con-

volution operation on a 2D image I of 5×5 pixels, with a filter K of size 3×3 pixels. The result of

the convolution operation when passing the filter one pixel in each step to compute the next pixel

in the output (which is called stride of one), is smaller than the input image. To have consistent

size, a zero-padding technique is used on the edges of the input (see Figure 39). The result of the

convolution operation is added to a bias b and passed through an activation function a to com-

pute the output of the convolutional layer. The formula of the convolutional layer Conv(I, K)xy

for a pixel in (x, y) coordinate is

Conv(I,K)
xy

=a (b+ ∑∑∑ Kijk* Ix+i-1,y+j-1,k

d

k=1

w

j=1

h

i=1

) (6)

where h and w are the size of the filter and d is the number of channels in the input.

63

Figure 39. Convolution operation in CNN.

3.6.3. Activation Function

To introduce nonlinearity, a nonlinear activation function should be implemented in the

network. Figure 40 shows three common activation functions used in DL. In the early days of

DL, the sigmoid function was very popular but now the tanh function has been shown to have

better performance [122]. One drawback of these two functions is that they saturate at the tail of

the function and the gradient at these regions is almost zero which significantly slows down the

learning process when a gradient based optimizer is used. In the last few years, the rectified lin-

ear unit (ReLU) function (a non-saturating function) has become very popular. Using the ReLU

function has been shown to improve the performance of the network [123,124]. In this study, the

ReLU function is used for all activation functions except for the activation of the last layer of the

network. To classify the input data, a softmax activation function will be used in the last layer of

the CNN network. The softmax function si(x⃗) for class i which returns the probabilities of the

input belonging to each of the classes is given as

64

si(x⃗)=
exi

∑ exj2
j=1

 (7)

Figure 40. Common activation functions in DL.

3.6.4. Pooling Layers

CNNs typically use pooling layers to reduce the size of the input layers which will speed

up the computation and increase the robustness of feature detection. Among different pooling op-

tions, max-pooling and average-pooling are common in DL. Max-pooling has been shown to be

vastly superior for image-like data [125]. In this study, all the pooling layers are max-pooling un-

less otherwise stated. Figure 41 illustrates the max-pooling mechanism using a 2×2 window and

stride of 2. As shown in the figure, the maximum value is selected within the 2×2 window as it

passes through the input data. The 2×2 window shifts by two pixels, and the process is repeated

over the whole input. By performing this operation, the size of the input data is reduced (in this

example, the output data is half the size of the input data).

65

Figure 41. Max pooling mechanism [126].

3.6.5. Dropout

Dropout is a technique that helps to prevent overfitting and provides a way of combining

many different neural network architectures [127]. The term “dropout” refers to randomly drop-

ping out neurons in a NN. Figure 42 shows how dropped-out neurons are temporarily removed

from the network, along with all their incoming and outgoing connections. In this study, dropout

will be implemented at each fully connected layer using the recommended probability of 0.5

[127].

Standard NN (b) After applying dropout

Figure 42. Dropout Neural Net Model. (a) Standard neural net with 2 hidden layers. (b) An ex-

ample of applying dropout. Crossed units have been dropped [127].

66

3.6.6. Cost Function

The main objective of training a CNN is to find a set of weights and biases (parameters)

which minimizes the error between prediction and the actual value. A loss function is defined to

quantitively measure the error. Here, categorical cross entropy (Equation 8) will be used as the

loss function Li to estimate the difference between the true class y and the probability distribu-

tion of predicted class ŷ for one image. The probability distribution of the predicted class is cal-

culated by softmax function.

Li(ŷ
i
,y

i
)= ∑ -y

i
ln ŷ

i

k

i=1

 (8)

It is typical to use one-hot encoding for introducing the image labels to the network. For

example, to encode binary classification, (0, 1) and (1, 0) are used for class one and two. The

output of the network is the probability of each class, (ŷ
1
, ŷ

2
). For instance, with this definition,

the output of (0.3, 0.7) for an image means that 30% chance the image is class one and %70

chance the image is class two. Assuming the actual class is one, the loss value for this example

based on Equation (8) is 0.36 (-0* ln(0.3) -1*ln(0.7)). For the same example, a bad prediction

such as (0.6, 0.4) will result in a loss value of 0.92 and for a good prediction such as (0.05, 0.95)

the loss is 0.05. The cost function which is the average of the loss function applied to all images

(N is the number of images) is

Cost=
1

N
∑ Li(ŷ

i
,y

i
)

N

i

 (9)

67

To apply regularization in the model, the L2 regularization formula, which defines as the

sum of the squares of the feature weights, is added to the cost function with an associated coeffi-

cient.

3.6.7. Optimization

In general, the learning problem is an optimization problem. The objective of the optimi-

zation is to find the best parameters (weights and biases) that minimizes the cost function. For

large NNs there is no closed form optimization solution, so the optimization problem is solved

with iterative algorithms that use a variety of methods, such as gradient descent. The search

space of a common NN is non-convex, and it is reasonable to use a variation of a stochastic gra-

dient descent algorithm. The proposed CNNs will have millions of parameters that need to be ad-

justed to minimize the cost function. In this study, the Adam (derived from adaptive moment es-

timation) algorithm is utilized to minimize the cost function. Adam is an algorithm for first-order

gradient-based optimization of stochastic objective functions. This optimization algorithm is

computationally efficient, has little memory requirements, is invariant to diagonal rescaling of

the gradients, and is well suited for non-convex optimization problems in ML that are large in

terms of data and/or parameters [128,129]. Thus, Adam optimizer is implemented as the optimi-

zation algorithm in the training phase [128,130]. Since a gradient based optimizer is being used,

calculations are required for the gradient of the learning parameters. Backpropagation is an effec-

tive algorithm for calculating the gradients of the parameters using a recursive application of the

chain rule along with a computational graph. After each forward pass through the network, the

68

cost function is calculated. Based on the value of the cost and the inputs, derivatives of the learn-

ing parameters are calculated using back propagation. These derivatives are used in the Adam

optimizer to update the learning parameters.

Vectorization increase the computational parallelism which results in faster computation

when using graphics processing unit (GPU) processors. However, training on a large data set not

only requires a large amount of memory for vectorization, it slows down the computation. To

solve the issue, the training data is split into smaller mini-batches [131]. While the use of large

mini-batches increases the available computational parallelism, small batch training has been

shown to provide improved generalization performance and allows for a significantly smaller

memory footprint, which might also be exploited to improve machine throughput [132]. Masters

and Luschi showed that smaller mini-batch sizes provide more up-to-date gradient calculations,

which yields more stable and reliable training [132]. Thus, this study will use mini-batches of 32

images (N in Equation (9) will be 32 instead of number of all images).

 The Overall CNN Architectures

There are different ways of assembling convolutional layers to build a CNN model. The

most straightforward way of improving the performance of a network is to increase the size of

the network by increasing the depth (number of layers) and width (number of neurons) of the

network [133]. However, a larger network typically requires not only more computational re-

sources, but also increases the number of parameters which makes the network more prone to

overfitting, especially if the number of labeled examples is limited. To deal with these issues re-

searchers have proposed different CNN architectures [62,64,133–143]. Canziani et al. analyzed

69

and compared some of the popular CNN architectures for practical applications [144]. Figure 43

compares different CNN models for image classification for ImageNet challenge [145]. This

graph shows the accuracy of the first prediction (Top-1) versus the number of operations and

number of parameters in the models. In this study, two CNN models were developed based on

the architectures introduced by the Visual Geometry Group (VGG) [135] and Google Inc. [133].

These two architectures are explained in the following sections.

Figure 43. Top-1 accuracy vs. operations (in giga), and size

of the model (number of parameters) [144].

3.7.1. VGG Network

In 2015, the VGG at University of Oxford proposed several networks and investigated

the effect of depth of CNNs on their accuracy for a the ImageNet Challenge image classification

problem [135]. VGG examined six CNNs with different depths (number of layers). Instead of us-

ing relatively large filter sizes (receptive fields), they used small 3×3 receptive fields throughout

70

the whole network. They showed that stacking two or three 3×3 convolutional layers (without

pooling layer in between) has an effective receptive field of 5×5 and 7×7 which makes the net-

work more flexible and discriminative while decreases the number of parameters. This concept is

illustrated in Figure 44. Applying a 5×5 filter (with no zero-padding) to a 6×6 pixel image will

result in a 2×2 output. In this layer one 5×5 filter with 25 parameters is used to generate the re-

sult, and the number of operations is 100 (25*4). Now, instead of one 5×5 filter, the layer is bro-

ken to two layers of applying 3×3 filters. Applying a 3×3 filter to a 6×6 pixel image will result in

a 4×4 output, and applying another 3×3 filter will result in a 2×2 output. With this method the

number of parameters is reduced to 18 (2 filter with 9 parameters). The number of operations for

the second method is 180 (9*16+9*4). In this method, by stacking two layers of 3×3 convolu-

tional layers, the similar effect of a 5×5 convolutional layer is achieved, while the number of pa-

rameters is reduced. VVG also showed that their deepest networks with 16 and 19 weight layers

achieved the best accuracy. In this study, a network with 16 learnable layers based on VGG-16 is

designed as shown in the Figure 45. The network has 13 convolutional layers denoted as “conv

<receptive field size> - <number of channels> - <stride length>”, 5 max pooling layers denoted

as “maxpool”, and 4 fully connected layers denoted as “FC- <number of nodes>” (the last fully

connected layer calculates the probability of each class and is not considered as a weighted

layer). The original VGG-16 presented in [135] has more than 138 million parameters. Since the

data set in the present study is not large enough to properly train a network with this number of

parameters, the last layers of the original network are adjusted to reduce the number of parame-

ters to less than 20 million parameters. While this network has a simple structure, it performs

well in image classification. The number of parameters in each layer along with other details are

71

presented in Appendix 1. For multiclass classification the last layer needs to be adjusted based on

the number of classes.

Figure 44. The effect of stacking convolutional layers.

72

Figure 45. VGG-16 based model.

73

3.7.2. GoogLeNet

The core of GoogLeNet architecture is the Inception module [133]. In the Inception mod-

ule, instead of selecting one specific filter size for the convolutional layers, the convolutional

layer is applied with filter sizes of 1 and 3 and 5 to an input and the results are concatenated to

build an output of the module. Figure 46 illustrates an example of the concepts of the Inception

module [146]. Using 1×1 filter size enables the model to change the depth of the output and re-

duces the number of operations. Based on the GoogLeNet architecture (see Figure 47), a network

is designed by stacking 3 convolutional layers and two pooling layers at the beginning, followed

by nine inception modules with two pooling layers between Inception modules 2 and 3, and an-

other between 7 and 8. The output of last inception module is a 7×7×1,024 tensor which feeds to

an average pooling layer and then to a fully connected layer. This network, unlike the VGG net-

work, does not have fully connected layers at the end of the network which reduces the number

of parameters to 5.4 million parameters. Szegedy et. al modified GoogLeNet architecture by in-

corporating the idea of stacking smaller convolutional layers from VGG group and a technique

of normalizing output of each layer [147]. They called the new network Inception-V3 (version 3

of Inception). This network is modified by adding two fully connected layers at the end of the

Inception-V3 which increased the number of parameters to 30 million. The number of parame-

ters in each layer along with other details of the designed network are presented in Appendix 1.

74

Figure 46. An example of Inception module for an input size of 28×28×256.

 Transfer Learning

In the first step of training, the weights in the model need to be initialized. There are dif-

ferent ways for generating the initial values. Since in learning process a gradient based optimizer

is used, selecting proper initialization can mitigate the chance of exploding or vanishing gradi-

ents [148,149]. Instead of randomly generating the initial weights, it is possible to transfer

weights from a pretrained network on different data set. In this method the knowledge that has

been gain through training the model on a large data set can be transferred to the new model.

This way, the model will have a good starting point for learning. Gao and Mosalam investigated

this method for image-based structural damage recognition [150].

75

F
ig

u
re

 4
7
.
In

ce
p
ti

o
n
 m

o
d

u
le

 w
it

h
 1

 b
y
 1

 f
il

te
r.

F
ig

u
re

 4
8
.
G

o
o
g
L

eN
et

 b
as

ed
 m

o
d
el

.

76

In this study, the weights that are publicly available for image classification models are

transferred to the model [151]. These weights are the result of training on large image database

(ImageNet) with more than 14 million images of different objects [145]. Depending on the num-

ber and the nature of an image data set, there are several common methods for implementing

transfer learning. In one method, after transferring the pretrained weights, the whole model is

freezed (the learnable weights are disabled) except the last few layers. The model is not changing

its weights in the freezed layers. This method works well when the number of data points are

very limited, and they have the same characteristics of the data the model has been pretrained.

Therefore, with this method the number of learnable parameters are limited to the parameters of

the few last layers which reduces the chance of overfitting. By getting access to more data more

layers can be unfreezed. In working with a data set that is very different than the pretrained

model data set, it is better to train the whole network. In this study, since the nature of the images

of pavements are drastically different from pictures of objects and animals (ImageNet images)

the model exhibits a better performance when the whole network considered for training after

transferring the weights. Thus, the pretrained weights are used as the initial weight for the whole

network except the last layers which initialized with random weights.

 Implementation

Training a DL model is a computationally expensive task and requires a large input data

set. Additionally, building a complex DL model is challenging to program. Data management,

computational power, and software framework are three important aspects of implementing a DL

model. Some of the challenges to developed DL are discussed in the section.

77

3.2.1. Data Management

In practice, DL models require massive amounts of data for the training process. Storing

and reading data for large data sets (more than the size of a hard disk) is a challenging problem.

In this study, the size of the data set is not large enough to raise any practical issues (less than

500 GB). However, this could easily be a big data problem if this method is implemented to the

large system of roadways. In general, data is considered to be “big” when it cannot be stored on a

typical data storage system (typically more than 10 TB). To store GSV images for the 4 million

miles of road in the US would require 4 PB (4,000 TB) of data storage capacity. In addition to

the hardware, data management software should be implemented to make parallel writing and

reading of the data possible.

3.2.2. Computing Power

In last decade, there has been a great advancement in the capacity of computing power .

There are several companies that provide processing units such as Intel, AMD and NVIDIA. In

the past, the main processing unit for computation was a central processing unit (CPU) which is

able to carry out the instructions of a computer program by performing basic arithmetic, logic,

controlling, and input/output (I/O) operations specified by the instructions. IN general, a CPU

can do any form of computation. A graphic computing unit (GPU) (see Figure 49) is a pro-

cessing unit specially designed and optimized to perform single-instruction-multiple-data opera-

tions needed to display (render) graphics much faster than a regular CPU. In a simple terms,

GPUs are suitable for processing simple operations in parallel. Most of the operations in DL are

matrix multiplication which can be easily parallelized. This ability makes the GPU processors

78

much faster in training a deep network. Johnson performed simple experiments on different CNN

benchmark problems and showed how GPUs can speed up the training process. [152]. Figure 50

provides a comparative summary of his result. For these benchmark problems, the performance

of a GPU is 60-70 times faster than a CPU.

Figure 49. A typical graphic computing unit [153].

Parallel programming could be challenging to optimize; thus, several GPU companies has

developed platforms to help this process. CUDA (Compute Unified Device Architecture) is an

extension of the C programming language and was created by NVIDIA to help perform parallel

computing on NVIDIA GPUs. The NVIDIA CUDA Deep Neural Network library (cuDNN) is a

GPU-accelerated library of primitives for DL programming. The cuDNN library provides highly

optimized implementations for many standard layers such as convolution, pooling, normaliza-

tion, and activation [154]. In the comparison showed in Figure 50, network models implementing

cuDNN showed a speedup of 2 to 3.

79

Figure 50. Comparison of CPU and GPU processing time in DL applications [152].

All the computations in this study were performed on a computer system with the follow-

ing configuration:

CPUs: 2 processors of Intel (R) Xenon (R) Gold 6130 @ 2.10 GHz

RAM: 64 GB DDR4

GPU: NVIDIA, Quadro P6000 with 3,840 cores and 24 GB DDR5

3.2.3. Deep Learning Software Platform

Implementing a complex DL model can be a time consuming and complicated process.

The are several software platforms that provide high level abstractions for implementing differ-

ent blocks of a DL model. TensorFlow is an open source software library for high performance

numerical computation [155]. TensorFlow has a comprehensive, flexible system of tools, librar-

ies, and community resources that allows researcher to easily build their ML and DL models in

many languages. It also provides a visualization toolkit for inspecting and understanding models

and their performance. Keras is an open-source high-level DL API that uses TensorFlow as the

80

backend. Keras is written in Python programming language, and allows for easy and fast proto-

typing of complex DL models for researchers and practitioners [156].

81

4. Chapter 4

Vision-Based Pavement Crack Detection

The objective of this study is to provide an economical, reliable, and accurate automated

system for identifying and classifying cracks in pavements. In this study GSV is used as a source

of locating and extracting images of pavements. Each image extracted from GSV is split into a

series of small patches and examined as whether it displays a crack in the pavement. Since these

GSV images are low resolution and are contaminated with significant levels of noise, a DL

model is implemented to analyze these patches for cracks. Results of the DL model should pro-

vide information like a pavement condition index [149]. Two experiments were designed to in-

vestigate the proposed method. In the first experiment, a binary classification problem was de-

signed to identify whether a patch had a crack or not. In the second experiment, the problem is

extended to a multiclass classification to identify not only if a patch has a crack, but the type of

the crack. In this section, the result of these two experiments are discussed and validated.

 GSV Images for Crack Detection

One of the fundamental questions in this study was the feasibility of using GSV images

for crack detection on pavement. In attempt to answer this question, the following concerns were

addressed: first, will GSV images be updated in future to provide the required images? and sec-

ond, will these GSV images provide a good representative of cracks in pavements?

To answer the first question, an analysis was performed on the sequence intervals Google

used to capture images. After examining visiting several road sections, no organized pattern was

82

found in the sequence of intervals. However, for high traffic and important roads such as inter-

state highways Google updated their images more frequently than low traffic roads. Figures 51

and 52 show different GSV images at the same location for different times. With the advances in

camera devices and the expansion of the GSV project, it highly likely that Google or other com-

panies will continue this imaging project in future.

Figure 51. GSV images form the same location on I-40 at different times (part one).

83

Figure 52. GSV images form the same location on I-40 at different times (part two).

84

The second question is investigated by considering the crack detection data developed by

the ARRB Group using their iPAVe survey method [93]. ARRB has a fully automated crack de-

tection system that uses 3D sensors combining lasers and high-speed 3D cameras to provide data

on the quality and quantity cracks in pavement. In their system, each section of a roadway is di-

vided into segments about 31-37 feet long (sometimes smaller depending on the geometry of the

road) and then each segment is subdivided into10 cells (each cell is about 3 feet or longer). From

their survey of the pavement, cracks in each cell are categorized as either longitudinal, trans-

verse, or alligator cracks. The percentage of the crack in a segment was calculated by counting

the number of cells with cracks divided by the total number of cells. This data was valuable in

validating the results using GSV images. Although a GSV image and an iPAVe segment are not

exactly the same size (in average each image covers 33.8 feet of the roads), each GSV image was

split into a number of patches that closely matched the iPAVe data. Figure 53 shows the distribu-

tion of the cracked cells in 6.5 miles of Route 28 in near Sterling, Virginia. Since the changes

from one image to another image or from one segment to another segment are drastic, the data

was averaged, and the curve was smoothed to make the trend more visible. As shown in Figure

53, there is a high correlation between the iPAVe results and results based on GSV images.

Some of the dissimilarities can be attributed to differences in pavement coverage contained in the

GSV images.

Figures 54, 55, and 56 compare the iPAVe results with data from the GSV images for dif-

ferent types of cracks. It appears that there is a meaningful correlation between the two graphs

especially for longitudinal and alligator cracks. In Figure 55, although the number of identified

transverse cracked cells of the GSV images are lower than those based on the iPAVe estimate,

85

the shapes of the graphs are meaningfully correlated. The lower estimate may be attributed to the

difference in the definition of a transverse crack. Additionally, there is discrepancy in scale of

the cells and the segments used in iPAVe and the patches and images from GSV.

Figure 53. Comparison of total cracked cells evaluated by

iPAVe and by GSV images.

Figure 54. Comparison of longitudinal cracked cells evaluated iPAVe and by GSV images.

86

Figure 55. Comparison of transverse cracked cells evaluated by iPAVe and by GSV images.

Figure 56. Comparison of alligator cracked cells evaluated by iPAVe and GSV images.

 Binary Crack Classification Experiment

The first experiment is a supervised binary image classification problem designed to de-

termine if there is a crack in a pavement image or not. Two CCN architectures were designed for

this binary image classification problem. In general, designing an effective deep CNN network is

87

a complex process and requires theoretical and practical knowledge in different fields such as

statistic, programming, ML, computer engineering, optimization, data science, and computer vi-

sion. There are several hyperparameters of the networks that needs to be determined for each

specific project (such as number of epochs, learning rate, optimization parameters, number of

layers, number of nodes, combination of layers, dropout rate, type of regularization, regulariza-

tion rate, batch size, and activation function). These hyperparameters were selected based on nu-

merous try-and-error experiments, recommendations of experts in the field, and data published in

the current literature.

The first data set with 48,000 image patches is used to perform the binary classification.

After cleaning the data from unwanted images, the data set is reduced to 27,000. The data set is

divided to testing, training, and developing sets each containing 5,000, 17,000, and 5,000 ran-

domly selected images respectively. Since the number of samples in each class is in the same

range (12,000 not-cracked and 15,000 cracked), accuracy can be considered as a metric to com-

pare performance of the models.

A VGG-16 model as described in the previous chapter is used to solve the classification

problem. The model for is trained for 100 epochs. Figure 57 shows the gradual increase of accu-

racy of the model after each epoch. During the first few steps, the accuracy is close to 50%

which indicate the model is randomly classifying the images. Most like this is due to the fact that

the model weights were initialized with the pretrained weights from ImageNet problem; how-

ever, after few steps the model reach 90% accuracy in the first epoch. After few epochs the

model learned from the input data and the accuracy increases. The final accuracy of the model on

the training set is close to 99.9%, and on the test set it is 98.9%.

88

Figure 57. Accuracy of the model on the leaning set versus each epoch (binary VGG-16).

Figure 58 shows the color-coded confusion matrix [157] (error matrix) for the binary

classification based on the VGG-16 model. Each row of the matrix represents the number of in-

stances in a predicted class and each column represents the number of instances in a true class. It

can be observed that the majority of the data is concentrated at the main diagonal of the matrix

which are true positive and true negative. The model has only 55 mistakes out of 5,000 patches

which result in 1.1% error rate. Figure 59 shows some of misclassified patches. The existence

and nonexistence of crack in most of these patches is very subtle. In some of the images, the im-

age is significantly distorted, and it has lost its continuity. There are some images that were mis-

labeled the data acquisition phase by the human operator (for example, two patches indicated by

a red border in Figure 59). It is very common to have a level of human error in the data set.

While the accuracy of the model will increase by reducing the human error, DL models are not

too sensitive to these errors as long as they are provided with large data set.

89

Figure 58. Confusion matrix for binary classification (C: Cracked, N: Not-cracked) (VGG-16).

Not cracked images classified as cracked

Cracked images classified as not cracked

Figure 59. A sample of misclassified images.

90

Table 1 lists a summary of the performance of the VVG-16 model. In the test data set,

2,817 of the images are not-cracked and 2,181 images are cracked. The model has a high perfor-

mance based on the values of different metrics. The number of false negative and false positive

or recall and precision can be changed by considering different threshold for classification. As

mentioned in the previous section the output of the SoftMax function is a value between zero and

one which represent the probability of each class. It is typical to consider 0.5 as a threshold for

binary classification; however, for some applications it is important to minimize the false posi-

tive as much as possible. In these situations, a threshold other than 0.5 can be selected to meet

the need. ROC curves can be useful to choose a proper threshold based on the true positive and

false positive rates. Additionally, the area under the ROC curve is helpful metric when compar-

ing the performance of models. Figure 59 shows the ROC curve for the VGG-16 model. In this

study, the goal is to minimize both false positive and false negative to provide a fair evaluation

of a road. Thus, the threshold of 0.5 is selected. The AUC value is a good indicator of the perfor-

mance of the model, and it is typically used for comparing two models. The AUC for VGG-16

model is close to one which is an indication of high performance.

Table 1. Summary of the performance of the binary classification (VGG-16).

Precision Recall F1-Score # of images

Not cracked 0.99 0.99 0.99 2,817

Cracked 0.98 0.99 0.99 2,181

Overall 0.99 0.99 0.99 4,998

91

Figure 59. ROC for binary classification (VGG-16).

As mentioned in the previous chapter, DL is a representational learning algorithm. In Fig-

ure 60, the output of the second fully connected layer with 2,048 neurons is visualized for the

same images presented in Figure 25. PCA is used to reduce 2,048 dimensions to 3 dimensions to

show the points in a 3D graph. Each axes of the graph represent a principal component. The first

three principal components describe 99.7%, 0.28%, and 0.02% of the variation in the data. As

originally shown in Figure 25, there was no detectable pattern to distinguish the two classes. Us-

ing DL, the VGG-16 model has learned to present the data in a space that a simple classifier can

easily categorize the images. In Figure 60, it can be seen that after representing the data into the

new space, there is a distinguishable pattern that can be defined by a simple function.

92

Figure 60. Visualizing 1,024 images of the first data set in a transformed space.

For comparison, the Inception model presented in the previous chapter is applied to to

the binary image classification problem., After 100 epochs of training, the accuracy of the Incep-

tion model on the test data set is 97.2%. Table 2 lists a summary of the performance of the model

and shows lower performance metrics when compared to the VGG-16. Figure 61 shows the ROC

graphs for inception model. The AUC value showed at the bottom of the figure indicates the per-

formance of the model. By comparing the results of VGG-16 and Inception model, it can be con-

cluded that VGG-16 model significantly out performs the Inception model when solving this

93

classification problem. Although Inception architects has been shown to have a great perfor-

mance in image classification, when considering the nature and number of the images in this

problem, the complexity of the Inception architecture lead to the model overfitting the data. It is

worth mentioning that by adjusting the hyperparameters of the Inception model, the performance

may improve. However, since transfer learning from the pretrained model on ImageNet was uti-

lized in this study, changing some the hyperparameters of the network associated with the con-

figuration of the layers was not possible.

Table 2. Summary of the performance of the binary classification (Inception).

Precision Recall F1-Score # of images

Not cracked 0.96 0.98 0.97 2,817

Cracked 0.97 0.95 0.96 2,181

Overall 0.96 0.96 0.96 4,998

Figure 61. ROC for binary classification (Inception).

94

Figure 62 shows a sample of 4 images analyzed by the VGG-16 model. The patches col-

ored green indicate correctly identified cracked images (true positive), red patches are false nega-

tives, yellow patches are false positives, and patches with no color are true negatives (images

that correctly identified as not cracked).

Figure 62. An example of binary crack classification.

 Multi-crack classification experiment

The second experiment is a supervised multiclass classification on the second data set. In

this experiment, a classifier is designed to identify 5 classes typically used to categorize pave-

ments: alligator crack (A); longitudinal crack (L); transverse crack (T); not cracked (N); not

pavement (C). Since the VGG-16 model in the previous experiment had a better performance,

the same network is modified to be used for multiclass image classification. The second data set

has around 75,000 image patches of 250×250 pixels. Two graduate students labeled the data and

due to discrepancies between the labels 8,546 of the images were removed to develop a con-

sistent data set. For this subset, 12,332 images are considered for testing, 37,170 images for

training, and 12,332 images for validation. Since the number of images in each of the five classes

was different, the up-sampling method was applied to the data. Since the N class constitutes the

majority of the data, the number of samples for each of the other classes is increased to 10,000

95

images. In addition, a weight proportion is applied to provide more value to samples in the mi-

nority classes. Figure 63 shows the accuracy of the VVG-16 model after each epoch of training.

The final accuracy on the training set is 99% and on the testing set is 97.2%.

Figure 63. Accuracy of the model on the leaning set versus each step (multiclass VGG-16).

As discussed before, accuracy is not a good metric for evaluating the performance of

models using highly imbalanced data. ROC curves are typically plotted for binary classification;

however, they become too complicated for evaluating the performance of multiclassification

models. Figure 64 shows the color-coded confusion matrix for the crack classification. It can be

seen that most of the images are concentrated at the main diagonal of the matrix which represent

a correct classification. In addition, this figure illustrates that the classifier can successfully dis-

tinguish between images from the N and C classes. From the 1,589 patches of images of the C

class, 38 samples are incorrectly classified as N and 1,551 sample correctly classified. There is

no instance of misclassifying a C class as one of the classes of cracked images, and there is only

96

one example of misclassifying a L crack as a C image. In order to better visualize the perfor-

mance on the three cracked classes, the confusion matrix related to these classes is isolated in a

separate figure (see Figure 65). It can be seen from this figure that the most misclassified images

are L images classified in the A class. There are two reasons for these misclassifications. First, as

it is showed in Figure 20 and 21, there is a large discrepancy in labeling longitudinal cracks to

alligator crack and vice versa. Although the mislabeled images were removed from the test and

training data, there may have been addition images that were mislabeled. The second reason is

the similarity of the two image classes which result in short distances between the images of

these two classes. The short distance of samples makes it more difficult for the model to classify

the images correctly. This point will be examined further when an analysis of the PCA figures is

presented later in this section.

N: Not cracked

L: Longitudinal crack

T: Transverse crack

A: Alligator crack

C: Not pavement

97

Figure 64. Confusion matrix for multiclass crack classification (5 classes).

Figure 65. Confusion matrix for multiclass crack classification (3 classes).

Table 3 lists the performance of the VVG-16 model. For this multiclassification model, a

macro-average metric is computed independently for each class as well as an average where all

classes are considered equal. A micro-average will aggregate the contributions of all classes to

compute the average metric (preferred for imbalanced data). In Table 3, it can be seen that all of

the metrics for both the N and C classes are outstanding. Since these two classes are the majority

of the test set, micro weighted average values are also high. The lowest performance is associ-

ated with T class and is associated with the low number of samples in the training set.

L: Longitudinal crack

T: Transverse crack

A: Alligator crack

98

In Chapter 2, the human level error is approximated to be around 12%. Although, one ex-

periment is not statistically significant to have a conclusion on human error rate (which is not the

aim of this study) this number provides a rough approximation of the level of error that a person

might have in a similar classification. The error rate of the proposed model is 2.8% which is sig-

nificantly lower than the estimated human error rate. It is worth mentioning that, the graduate

students who labeled the images had the advantage of looking at each patch in a context of the

whole image while the model considered each patch out of the context.

Table 3. Summary of the performance of the multiclass crack classification (VGG-16).

Precision Recall F1-Score # of images

Not cracked (N) 0.98 0.99 0.99 9,640

Longitudinal crack (L) 0.86 0.56 0.68 373

Transverse crack (T) 0.82 0.52 0.63 120

 Alligator crack (A) 0.86 0.95 0.9 610

Not pavement (C) 0.98 0.98 0.98 1,589

Micro Average 0.97 0.97 0.97 12,332

Macro Average 0.9 0.8 0.84 12,332

Weighted Average 0.97 0.97 0.97 12,332

The power of DL is the ability to learn a correct representation. As illustrated in Figure

27 and 28 there is no clear pattern in the raw data at the pixel level. In Figures 66 and 67 the

same 1,024 images are transformed by the network and are represented in a space with 2,048 di-

mensions in the last fully connected layer with 2,048 neurons. PCA is used to plot the trans-

formed images in a 2D and 3D graphs. Each axes of the graph represent a principal component.

The first three principal components describe 53%, 32%, and 7.4% of the variation in the data.

Both Figures 66 and 67 show a clear separation of images of each class. The images associated

99

with the C class have a considerable distance from the other points. This distance is due to the

fact that these images typically have different texture and color. For example, many of the sam-

ples in the C class are patches that include portions of a car which present a very different look

than other pavement images.

Figure 66. Visualizing 1,024 images of the second data set in a 3D transformed space using

PCA.

100

Figure 67. Visualizing 1,024 images of the second data set in a 2D transformed space using

PCA.

To explore the details of these graphs, 850 of the patches that are in the upper swarm

(mostly pavement images) are selected and replotted in 2D and 3D PCA graphs (see Figures 68

and 69). These graphs show that there is a significant distance between the points associated

with N class and the other cracked classes. In order to see the patterns in the crack classes, a sub-

set of 300 the data points are selected and replotted in a 2D PCA graph (see Figure 70). In this

101

graph, which is mostly consist of images with cracks, it can be seem the model has learned to

represent the pixel values into a space where these images can be classified. As it is described in

the confusion matrix, some of the L images are classified in the A class. This misclassification

can be observed in the Figure 70 as well, as there is a region where some orange points (L class

cracks) are mixed with purple points (A class cracks).

Figure 68. Visualizing 850 images of the second data set in a 3D transformed space using PCA.

102

Figure 69. Visualizing 850 images of the second data set in a 2D transformed space using PCA.

Figure 70. Visualizing 300 images of the second data set in a 2D transformed space using PCA.

103

5. Chapter 5

Conclusion and Future work

 Conclusion

The importance of pavement evaluation motivates this study to develop a novel technique

for identifying and classifying cracks in pavement. The developed method provides an efficient

and economical alternative for evaluating pavement quality on a large scale. In this method

Google Street View (GSV) technology is used to extract images of pavement. The images were

divided into small patches to increase the level of accuracy. Based on the GSV image patches, an

image classification was designed to identify the existence of a crack in a small patch. The exist-

ence of high level of noise in the images lead to use of deep learning (DL) models for image

classification. Two convolutional neural network (CNN) models were developed for classifying

the image patches. The available image patches were preprocessed and manually labeled to form

a supervised learning problem. The labeled patches were divided into training, developing, and

testing sets. The CNN models were then trained by using developing and training sets and were

validated on the testing set.

A comparative investigation is performed on the result of the labeled images from GSV

with the result from the iPAVe automated crack detection system developed by ARRB for 6.5

miles of the Route 28 near Sterling, Virginia. By approximately scaling the crack detection on

GSV images to the results obtained from iPAVe, a highly correlated result in the overall crack

detection was observed. Although the ARRA did not provide any additional information about

their crack detection procedure and its level of its accuracy, their data gave enough information

104

to conclude that images of the GSV are great resource for estimating the quality of pavement

based on crack detection.

In order to automate the crack detection on GSV images, two experiments were per-

formed with two classes (cracked and not cracked) and five classes (not cracked, longitudinal

crack, transverse crack, alligator crack, not pavement). In the first experiment, two models were

developed for solving the image classification problem. The first model was based on VGG-16

architecture and the second model was based on a version of Inception architecture. For binary

classification, both types of models showed exceptional accuracy (98.9% for VGG-16 and 97.2%

for Inception). Considering the low resolution of the images and high level of noise in the im-

ages, these are outstanding results. By plotting the output of the fully connected layer for each

image, the behavior of the model as a representational learning method was analyzed. In the sec-

ond experiment, the problem was expanded to multiclass crack classification by considering five

classes. The number of samples in each class obtained from GSV were drastically different.

Thus, several techniques were implemented to overcome the imbalances in the data. For solving

the image classification problem, a model based on VGG-16 architecture was developed and

trained on an augmented training set. A high level of performance for multiclass crack detection

was achieved with the accuracy of 97.2% on the testing data set. By providing the output of the

final hidden layer, the transformed image patches using PCA graphs were presented. A clear sep-

aration of the data points of the five classes in the transformed space was observed that illustrate

the ability of the DL in learning the correct representation.

105

After in depth review of the result of the proposed models, it is concluded that the DL

models presented in this study are effective in solving crack classification problem on pavement

images extracted from GSV.

 Future work

This study is the first attempt in using GSV in a civil engineering application, and the ex-

ceptional result of this study should rightfully motivate many researchers to implement this great

resource of data in their work. Additionally, DL methods have been significantly advanced in the

past few years and are provide powerful techniques to solve many problems in civil engineering.

In this study, two civil engineering graduate students performed the labeling task. Alt-

hough they both had a good understanding of the types of cracks in pavement, identifying a

crack type based on an observation of a single image, requires years of experience. In order to

reduce the error rate and increase the reliability of the result, labeling should be performed by a

group of experienced visual inspectors. These inspectors not only can provide useful information

about types of cracks, but also can estimate the severity of cracks based on the common standard

[158]. One other way to increase the reliability of result is to compare it with other computer

vision techniques on pavement. As mentioned in the introduction, there are many research pro-

jects and companies that use video cameras along with other sensors for pavement crack detec-

tion (which is very expensive to perform). These videos could be used to be matched with GSV

images and provide an accurate prediction of cracks and a reliable ground truth data set for train-

ing and testing a deep learning model.

106

In this study, each GSV image was divided into small patches for image classification.

Instead of defining crack detection as an image classification problem, the problem can be de-

fined as an object detection or an instance segmentation problem. The aim of these problems is

to identify locations as well as types of cracks by drawing several rectangular shapes (object de-

tection) or pixel-accuracy masks (instance segmentation) around each crack. Results of these

problems provide more details about cracks which is useful to evaluate the overall quality of

pavement. The challenge in using these methods is that they typically require much more data

and the labeling process could be more time-consuming than classification problem.

As it was discussed, the labeling process is time-consuming and requires an expert

knowledge to be reliable for pavement evaluation. Instead of defining the problem as a super-

vised learning problem, the crack detection problem can be defined as an unsupervised learning

problem (without the need of labeled data) or a semi-supervised learning problem (with small la-

beled data and large unlabeled data). In an unsupervised method, a DL model will be used to

cluster images to a limited number of classes based on features that it can find in the images. By

performing clustering, the model may cluster the data into similar standard crack classes, or it

may introduce a new system of crack classification. The new system can be scaled to the conven-

tional standard system to provide a practical and meaningful evaluation. In a semi-supervised

learning problem the correct label of a given unlabeled data may be inferred based on the labeled

data (transductive learning) or the correct mapping from input to output may be inferred (induc-

tive learning).

107

References

[1] Roads. ASCEs 2017 Infrastruct Rep Card n.d. https://www.infrastructurereport-

card.org/cat-item/roads/ (accessed August 3, 2018).

[2] Phares BM, Rolander DD, Graybeal BA, Washer GA. RELIABILITY OF VISUAL

BRIDGE INSPECTION. Public Roads 2001;64.

[3] Lenz H, Weichers B. Applications of Specialized Visual Inspection Techniques on Nu-

clear Components n.d.

[4] Broten M, De Sombre R. The airfield pavement condition index (PCI) evaluation proce-

dure: Advantages, common misapplications, and potential pitfalls. Fifth Int. Conf. Manag.

PavementsWashington State Dep. Transp. Pavement Preserv. Soc. Asph. PavementsFed-

eral Highw. Adm. Res. Board, 2001.

[5] Lattanzi D, Miller G. Review of robotic infrastructure inspection systems. J Infrastruct

Syst 2017;23:04017004.

[6] TRANSPORTATION: Ratings focus attention on problem bridges. Press Enterp 2014.

https://www.pe.com/2014/11/23/transportation-ratings-focus-attention-on-problem-

bridges/ (accessed May 17, 2019).

[7] EMA Bridge Inspection Florida, Tampa, Orlando, Jacksonville. Struct Forensic Eng Houst

Corpus Christi Austin Forensic Eng Struct Eng Beaumont Forensic Eng Beaumont Struct

Eng n.d. http://www.emaengineers.com/building-condition-surveys/bridge-inspection/ (ac-

cessed May 17, 2019).

[8] Georgia Dept. of Transportation Makes Successful Early Delivery of Bridge Data to

FHWA. AgileAssets 2015. https://www.agileassets.com/blog/georgia-dept-of-transporta-

tion-makes-successful-early-delivery-of-bridge-data-to-fhwa/ (accessed May 17, 2019).

[9] Ye XW, Dong CZ, Liu T. A Review of Machine Vision-Based Structural Health Monitor-

ing: Methodologies and Applications. J Sens 2016. doi:10.1155/2016/7103039.

[10] Review of machine-vision based methodologies for displacement measurement in civil

structures | SpringerLink n.d. https://link.springer.com/article/10.1007/s13349-017-0261-4

(accessed January 8, 2019).

[11] Jahanshahi MR, Masri SF, Sukhatme GS. Multi-image stitching and scene reconstruction

for evaluating defect evolution in structures. Struct Health Monit 2011;10:643–657.

[12] Lee BJ, Shin DH, Seo JW, Jung JD, Lee JY. Intelligent bridge inspection using remote

controlled robot and image processing technique. Int. Symp. Autom. Robot. Constr.

ISARC Seoul Korea, 2011, p. 1426–1431.

[13] Yeum CM, Dyke SJ. Vision-based automated crack detection for bridge inspection. Com-

put-Aided Civ Infrastruct Eng 2015;30:759–770.

[14] Mosly I. Applications and Issues of Unmanned Aerial Systems in the Construction Indus-

try. Int J Constr Eng Manag 2017;6:235–239.

[15] Dorafshan S, Maguire M. Bridge inspection: human performance, unmanned aerial sys-

tems and automation. J Civ Struct Health Monit 2018;8:443–76. doi:10.1007/s13349-018-

0285-4.

[16] Cafiso S, Graziano RD, Battiato S. Evaluation Of Pavement Surface Distress Using Digi-

tal Image Collection And Analysis. n.d.

108

[17] Gavilán M, Balcones D, Marcos O, Llorca DF, Sotelo MA, Parra I, et al. Adaptive Road

Crack Detection System by Pavement Classification. Sensors 2011;11:9628–57.

doi:10.3390/s111009628.

[18] Roadware n.d. https://www.fugro.com/our-services/asset-integrity/roadware (accessed Au-

gust 16, 2018).

[19] Road Crack Detection. Quant Imaging n.d. https://research.csiro.au/qi/road-crack-detec-

tion/ (accessed August 16, 2018).

[20] Lopes G, Ribeiro AF, Sillero N, Gonçalves-Seco L, Silva C, Franch M, et al. High Resolu-

tion Trichromatic Road Surface Scanning with a Line Scan Camera and Light Emitting

Diode Lighting for Road-Kill Detection. Sensors 2016;16. doi:10.3390/s16040558.

[21] Tedeschi A, Benedetto F. A real-time automatic pavement crack and pothole recognition

system for mobile Android-based devices. Adv Eng Inform 2017;32:11–25.

doi:10.1016/j.aei.2016.12.004.

[22] Zhang L, Yang F, Zhang YD, Zhu YJ. Road crack detection using deep convolutional neu-

ral network. Image Process. ICIP 2016 IEEE Int. Conf. On, IEEE; 2016, p. 3708–3712.

[23] Maeda H, Sekimoto Y, Seto T, Kashiyama T, Omata H. Road Damage Detection Using

Deep Neural Networks with Images Captured Through a Smartphone. ArXiv Prepr

ArXiv180109454 2018.

[24] Varadharajan S, Jose S, Sharma K, Wander L, Mertz C. Vision for road inspection. IEEE

Winter Conf. Appl. Comput. Vis., Steamboat Springs, CO, USA: IEEE; 2014, p. 115–22.

doi:10.1109/WACV.2014.6836111.

[25] Oliveira H, Correia PL. Automatic road crack segmentation using entropy and image dy-

namic thresholding. 2009 17th Eur. Signal Process. Conf., 2009, p. 622–6.

[26] Cheng HD, Miyojim M. Automatic pavement distress detection system. Inf Sci

1998;108:219–40. doi:10.1016/S0020-0255(97)10062-7.

[27] Zhao H, Qin G, Wang X. Improvement of canny algorithm based on pavement edge detec-

tion. 2010 3rd Int. Congr. Image Signal Process., vol. 2, 2010, p. 964–7.

doi:10.1109/CISP.2010.5646923.

[28] Shi Y, Cui L, Qi Z, Meng F, Chen Z. Automatic Road Crack Detection Using Random

Structured Forests. Undefined 2016. /paper/Automatic-Road-Crack-Detection-Using-Ran-

dom-Forests-Shi-Cui/ce711e917b9f6a4abd2d3555714a90a280c9fa44 (accessed August

17, 2018).

[29] Tsai Yi-Chang, Kaul Vivek, Mersereau Russell M. Critical Assessment of Pavement Dis-

tress Segmentation Methods. J Transp Eng 2010;136:11–9. doi:10.1061/(ASCE)TE.1943-

5436.0000051.

[30] Chambon S, Moliard J-M. Automatic Road Pavement Assessment with Image Processing:

Review and Comparison. Int J Geophys 2011. doi:10.1155/2011/989354.

[31] Achanta R, Estrada F, Wils P, Süsstrunk S. Salient Region Detection and Segmentation.

Comput. Vis. Syst., Springer, Berlin, Heidelberg; 2008, p. 66–75. doi:10.1007/978-3-540-

79547-6_7.

[32] Achanta R, Hemami S, Estrada F, Susstrunk S. Frequency-tuned salient region detection.

2009 IEEE Conf. Comput. Vis. Pattern Recognit., 2009, p. 1597–604.

doi:10.1109/CVPR.2009.5206596.

109

[33] Petrou M, Kittler J, Song KY. Automatic surface crack detection on textured materials. J

Mater Process Technol 1996;56:158–67. doi:10.1016/0924-0136(95)01831-X.

[34] Song KY, Petrou M, Kittler J. Texture crack detection. Mach Vis Appl 1995;8:63–75.

doi:10.1007/BF01213639.

[35] Hu Y, Zhao C. A Novel LBP Based Methods for Pavement Crack Detection. J Pattern

Recognit Res 2010;5:140–7. doi:10.13176/11.167.

[36] Zhou J, Huang PS, Chiang F-P. Wavelet-based pavement distress detection and evalua-

tion. Opt Eng 2006;45. doi:10.1117/1.2172917.

[37] Subirats P, Dumoulin J, Legeay V, Barba D. Automation of Pavement Surface Crack De-

tection using the Continuous Wavelet Transform. 2006 Int. Conf. Image Process., 2006, p.

3037–40. doi:10.1109/ICIP.2006.313007.

[38] Zou Q, Cao Y, Li Q, Mao Q, Wang S. CrackTree: Automatic crack detection from pave-

ment images. Pattern Recognit Lett 2012;33:227–38. doi:10.1016/j.patrec.2011.11.004.

[39] Kass M, Witkin A, Terzopoulos D. Snakes: Active contour models. Int J Comput Vis

1988;1:321–31. doi:10.1007/BF00133570.

[40] Amhaz R, Chambon S, Idier J, Baltazart V. A new minimal path selection algorithm for

automatic crack detection on pavement images. 2014 IEEE Int. Conf. Image Process.

ICIP, 2014, p. 788–92. doi:10.1109/ICIP.2014.7025158.

[41] Amhaz R, Chambon S, Idier J, Baltazart V. Automatic Crack Detection on Two-Dimen-

sional Pavement Images: An Algorithm Based on Minimal Path Selection. IEEE Trans In-

tell Transp Syst 2016;17:2718–29. doi:10.1109/TITS.2015.2477675.

[42] Nguyen TS, Begot S, Duculty F, Avila M. Free-form anisotropy: A new method for crack

detection on pavement surface images. 2011 18th IEEE Int. Conf. Image Process., 2011, p.

1069–72. doi:10.1109/ICIP.2011.6115610.

[43] Cord A, Chambon S. Automatic Road Defect Detection by Textural Pattern Recognition

Based on AdaBoost. Comput-Aided Civ Infrastruct Eng 2012;27:244–59.

doi:10.1111/j.1467-8667.2011.00736.x.

[44] Lee BJ, Lee H “David.” Position-Invariant Neural Network for Digital Pavement Crack

Analysis. Comput-Aided Civ Infrastruct Eng 2004;19:105–18. doi:10.1111/j.1467-

8667.2004.00341.x.

[45] Delagnes P, Barba D. A Markov random field for rectilinear structure extraction in pave-

ment distress image analysis. Proc. Int. Conf. Image Process., vol. 1, 1995, p. 446–9 vol.1.

doi:10.1109/ICIP.1995.529742.

[46] Oliveira H, Correia PL. Supervised strategies for cracks detection in images of road pave-

ment flexible surfaces. 2008 16th Eur. Signal Process. Conf., 2008, p. 1–5.

[47] Nguyen TS, Avila M, Begot S. Automatic detection and classification of defect on road

pavement using anisotropy measure. 2009 17th Eur. Signal Process. Conf., 2009, p. 617–

21.

[48] Cheng H, Wang J, Hu Y, Glazier C, Shi X, Chen X. Novel Approach to Pavement Crack-

ing Detection Based on Neural Network. Transp Res Rec J Transp Res Board

2001;1764:119–27. doi:10.3141/1764-13.

[49] Anand RS, Kumar P. Flaw detection in radiographic weldment images using morphologi-

cal watershed segmentation technique. Ndt E Int 2009;42:2–8.

110

[50] Nishikawa T, Yoshida J, Sugiyama T, Fujino Y. Concrete crack detection by multiple se-

quential image filtering. Comput-Aided Civ Infrastruct Eng 2012;27:29–47.

[51] Yamaguchi T, Nakamura S, Saegusa R, Hashimoto S. Image-based crack detection for

real concrete surfaces. IEEJ Trans Electr Electron Eng 2008;3:128–135.

[52] Ziou D, Tabbone S. Edge detection techniques-an overview. Pattern Recognit Image Anal

CC Raspoznavaniye Obraz Anal Izobr 1998;8:537–559.

[53] Peli T, Malah D. A study of edge detection al—gorithms. Comput Graph Image Process

2009;20:1–21.

[54] Chandrakar N, Bhonsle D. Study and comparison of various image edge detection tech-

niques. Int J Manag IT Eng 2012;2:499–509.

[55] Sharifi M, Fathy M, Mahmoudi MT. A classified and comparative study of edge detection

algorithms. Inf. Technol. Coding Comput. 2002 Proc. Int. Conf. On, IEEE; 2002, p. 117–

120.

[56] Abdel-Qader I, Abudayyeh O, Kelly ME. Analysis of edge-detection techniques for crack

identification in bridges. J Comput Civ Eng 2003;17:255–263.

[57] Zalama E, Gómez‐García‐Bermejo J, Medina R, Llamas J. Road Crack Detection Using

Visual Features Extracted by Gabor Filters. Comput-Aided Civ Infrastruct Eng

2014;29:342–58. doi:10.1111/mice.12042.

[58] Lee S, Ha J, Zokhirova M, Moon H, Lee J. Background Information of Deep Learning for

Structural Engineering. Arch Comput Methods Eng 2018;25:121–9. doi:10.1007/s11831-

017-9237-0.

[59] Liu R, Yang B, Zio E, Chen X. Artificial intelligence for fault diagnosis of rotating ma-

chinery: A review. Mech Syst Signal Process 2018;108:33–47.

doi:10.1016/j.ymssp.2018.02.016.

[60] Ross ZE, Meier M-A, Hauksson E, Heaton TH. Generalized Seismic Phase Detection with

Deep Learning. Bull Seismol Soc Am 2018;108:2894–901. doi:10.1785/0120180080.

[61] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521:436–44. doi:10.1038/na-

ture14539.

[62] LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document

recognition. Proc IEEE 1998;86:2278–2324.

[63] Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L. ImageNet: A large-scale hierarchical

image database. 2009 IEEE Conf. Comput. Vis. Pattern Recognit., 2009, p. 248–55.

doi:10.1109/CVPR.2009.5206848.

[64] Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional

neural networks. Adv. Neural Inf. Process. Syst., 2012, p. 1097–1105.

[65] Cha Y-J, Choi W, Büyüköztürk O. Deep learning-based crack damage detection using

convolutional neural networks. Comput-Aided Civ Infrastruct Eng 2017;32:361–378.

[66] Cha Y-J, Choi W, Suh G, Mahmoudkhani S, Büyüköztürk O. Autonomous structural vis-

ual inspection using region-based deep learning for detecting multiple damage types.

Comput-Aided Civ Infrastruct Eng 2017.

[67] Huang H, Li Q, Zhang D. Deep learning based image recognition for crack and leakage

defects of metro shield tunnel. Tunn Undergr Space Technol 2018;77:166–176.

111

[68] Chen F-C, Jahanshahi MR. NB-CNN: deep learning-based crack detection using convolu-

tional neural network and naive Bayes data fusion. IEEE Trans Ind Electron

2018;65:4392–4400.

[69] Zhang A, Wang KC, Li B, Yang E, Dai X, Peng Y, et al. Automated pixel-level pavement

crack detection on 3D asphalt surfaces using a deep-learning network. Comput-Aided Civ

Infrastruct Eng 2017;32:805–819.

[70] Eisenbach M, Stricker R, Debes K, Gross H-M. Crack Detection with an Interactive and

Adaptive Video Inspection System. Arbeitsgruppentagung Infrastrukturmanagement

2017:94–103.

[71] Pauly L, Hogg D, Fuentes R, Peel H. Deeper networks for pavement crack detection. Proc.

34th ISARC, IAARC; 2017, p. 479–485.

[72] PEER Hub ImageNet n.d. http://apps.peer.berkeley.edu/spo/.

[73] Shapiro A. Street-level: Google Street View’s abstraction by datafication. New Media Soc

2018;20:1201–1219.

[74] Rundle AG, Bader MD, Richards CA, Neckerman KM, Teitler JO. Using Google Street

View to audit neighborhood environments. Am J Prev Med 2011;40:94–100.

[75] Torii A, Havlena M, Pajdla T. From google street view to 3d city models. Comput. Vis.

Workshop ICCV Workshop 2009 IEEE 12th Int. Conf. On, IEEE; 2009, p. 2188–2195.

[76] Roman A, Garg G, Levoy M. Interactive design of multi-perspective images for visualiz-

ing urban landscapes. IEEE Vis. 2004, Austin, TX, USA: IEEE Comput. Soc; 2004, p.

537–44. doi:10.1109/VISUAL.2004.50.

[77] Román A, Lensch HPA. Automatic Multiperspective Images n.d.:10.

[78] Street View for Mobile | Street View. Google Dev n.d. https://develop-

ers.google.com/streetview/android (accessed May 8, 2019).

[79] Anguelov D, Dulong C, Filip D, Frueh C, Lafon S, Lyon R, et al. Google street view: Cap-

turing the world at street level. Computer 2010;43:32–38.

[80] Vincent L. Taking online maps down to street level. Computer 2007;40.

[81] Xiao J, Quan L. Multiple view semantic segmentation for street view images. Comput.

Vis. 2009 IEEE 12th Int. Conf. On, IEEE; 2009, p. 686–693.

[82] Jae Lee Y, Efros AA, Hebert M. Style-aware mid-level representation for discovering vis-

ual connections in space and time. Proc. IEEE Int. Conf. Comput. Vis., 2013, p. 1857–

1864.

[83] Goodfellow IJ, Bulatov Y, Ibarz J, Arnoud S, Shet V. Multi-digit number recognition from

street view imagery using deep convolutional neural networks. ArXiv Prepr

ArXiv13126082 2013.

[84] Zamir AR, Shah M. Accurate image localization based on google maps street view. Eur.

Conf. Comput. Vis., Springer; 2010, p. 255–268.

[85] Movshovitz-Attias Y, Yu Q, Stumpe MC, Shet V, Arnoud S, Yatziv L. Ontological super-

vision for fine grained classification of street view storefronts. Proc. IEEE Conf. Comput.

Vis. Pattern Recognit., 2015, p. 1693–1702.

[86] The Stanford CityBlock Project n.d. http://graphics.stanford.edu/projects/cityblock/ (ac-

cessed May 8, 2019).

112

[87] Į Lietuvos kelius grįžta „Google Street View“ automobiliai. Tv3Lt n.d.

https://www.tv3.lt/naujiena/lietuva/967514/i-lietuvos-kelius-grizta-google-street-view-au-

tomobiliai?utm_source=facebook.com&utm_medium=recommend&utm_cam-

paign=naujiena (accessed May 8, 2019).

[88] Instant Google Street View. Instant Google Str View n.d. http://www.in-

stantstreetview.com (accessed May 8, 2019).

[89] showmystreet.com - fast & easy street viewing n.d. https://showmystreet.com/ (accessed

May 23, 2019).

[90] Selenium - Web Browser Automation n.d. https://www.seleniumhq.org/ (accessed May 8,

2019).

[91] Developer Guide | Street View Static API. Google Dev n.d. https://develop-

ers.google.com/maps/documentation/streetview/intro (accessed May 8, 2019).

[92] Deep Learning Book n.d. https://www.deeplearningbook.org/contents/intro.html (accessed

May 8, 2019).

[93] ARRB Group Inc. - Road Survey Equipment. ARRB Group n.d. http://arrbgroup.net/ (ac-

cessed May 24, 2019).

[94] He H, Garcia EA. Learning from Imbalanced Data. IEEE Trans Knowl Data Eng

2009;21:1263–84. doi:10.1109/TKDE.2008.239.

[95] Chawla NV. Data mining for imbalanced datasets: An overview. Data Min. Knowl. Dis-

cov. Handb., Springer; 2009, p. 875–886.

[96] Karagod V. How to Handle Imbalanced Data: An Overview n.d. https://www.datasci-

ence.com/blog/imbalanced-data (accessed May 10, 2019).

[97] Wu R, Yan S, Shan Y, Dang Q, Sun G. Deep Image: Scaling up Image Recognition

n.d.:12.

[98] Inoue H. Data Augmentation by Pairing Samples for Images Classification.

ArXiv180102929 Cs Stat 2018.

[99] Frid-Adar M, Klang E, Amitai M, Goldberger J, Greenspan H. Synthetic data augmenta-

tion using GAN for improved liver lesion classification. 2018 IEEE 15th Int. Symp. Bio-

med. Imaging ISBI 2018, 2018, p. 289–93. doi:10.1109/ISBI.2018.8363576.

[100] Perez L, Wang J. The Effectiveness of Data Augmentation in Image Classification using

Deep Learning. ArXiv171204621 Cs 2017.

[101] Miko\lajczyk A, Grochowski M. Data augmentation for improving deep learning in image

classification problem. 2018 Int. Interdiscip. PhD Workshop IIPhDW, IEEE; 2018, p.

117–122.

[102] Abdi H, Williams LJ. Principal component analysis. Wiley Interdiscip Rev Comput Stat

2010;2:433–59. doi:10.1002/wics.101.

[103] Introduction to Big Data. Coursera n.d. https://www.coursera.org/learn/big-data-introduc-

tion/ (accessed May 13, 2019).

[104] Goodfellow I, Bengio Y, Courville A, Bengio Y. Deep learning. vol. 1. MIT press Cam-

bridge; 2016.

[105] Rosenblatt F. Principles of neurodynamics. perceptrons and the theory of brain mecha-

nisms. CORNELL AERONAUTICAL LAB INC BUFFALO NY; 1961.

113

[106] Minsky M, Papert SA. Perceptrons: An introduction to computational geometry. MIT

press; 2017.

[107] Hinton GE, Osindero S, Teh Y-W. A fast learning algorithm for deep belief nets. Neural

Comput 2006;18:1527–1554.

[108] Bengio Y, LeCun Y. Scaling learning algorithms towards AI. Large-Scale Kernel Mach

2007;34:1–41.

[109] Ranzato MA, Poultney C, Chopra S, Cun YL. Efficient learning of sparse representations

with an energy-based model. Adv. Neural Inf. Process. Syst., 2007, p. 1137–1144.

[110] Samuel AL. Some Studies in Machine Learning Using the Game of Checkers. IBM J Res

Dev 1959;3:210–29. doi:10.1147/rd.33.0210.

[111] Machine learning. Wikipedia 2019.

[112] Heidenreich H. What are the types of machine learning? Data Sci 2018. https://to-

wardsdatascience.com/what-are-the-types-of-machine-learning-e2b9e5d1756f (accessed

May 5, 2019).

[113] Abu-Mostafa YS, Magdon-Ismail M, Lin H-T. Learning from data. vol. 4. AMLBook

New York, NY, USA:; 2012.

[114] Cherkassky V, Mulier FM. Learning from data: concepts, theory, and methods. John

Wiley & Sons; 2007.

[115] Shalev-Shwartz S, Ben-David S. Understanding machine learning: From theory to algo-

rithms. Cambridge university press; 2014.

[116] B. F. Skinner. Wikipedia 2019.

[117] Skinner BF. ’Superstition’in the pigeon. J Exp Psychol 1948;38:168.

[118] Saunders D. The Bias-Variance Tradeoff. Minds Brains Programs 2017.

https://djsaunde.wordpress.com/2017/07/17/the-bias-variance-tradeoff/ (accessed May 6,

2019).

[119] Occam’s razor. Wikipedia 2019.

[120] Noble B&. Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms,

Worked Examples, and Case Studies|Hardcover. Barnes Noble n.d.

https://www.barnesandnoble.com/p/fundamentals-of-machine-learning-for-predictive-

data-analytics-john-d-kelleher/1126353364/2661627131683 (accessed May 18, 2019).

[121] Kuhn M, Johnson K. Applied predictive modeling. vol. 26. Springer; 2013.

[122] Activation functions - deeplearning.ai. Coursera n.d. https://www.coursera.org/learn/neu-

ral-networks-deep-learning/lecture/4dDC1/activation-functions (accessed July 26, 2018).

[123] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. Proc.

27th Int. Conf. Mach. Learn. ICML-10, 2010, p. 807–814.

[124] Zeiler MD, Ranzato M, Monga R, Mao M, Yang K, Le QV, et al. On rectified linear units

for speech processing. 2013 IEEE Int. Conf. Acoust. Speech Signal Process., 2013, p.

3517–21. doi:10.1109/ICASSP.2013.6638312.

[125] Scherer D, Müller A, Behnke S. Evaluation of pooling operations in convolutional archi-

tectures for object recognition. Artif. Neural Networks–ICANN 2010, Springer; 2010, p.

92–101.

114

[126] Spark C. Deep learning for complete beginners: convolutional neural networks with keras

n.d. http://cambridgespark.com/content/tutorials/convolutional-neural-networks-with-

keras/index.html (accessed July 26, 2018).

[127] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple

way to prevent neural networks from overfitting. J Mach Learn Res 2014;15:1929–1958.

[128] Kingma DP, Ba J. Adam: A method for stochastic optimization. ArXiv Prepr

ArXiv14126980 2014.

[129] Reddi SJ, Kale S, Kumar S. ON THE CONVERGENCE OF ADAM AND BEYOND

2018:23.

[130] An Open Source Machine Learning Framework for Everyone: tensorflow/tensorflow. ten-

sorflow; 2019.

[131] Bengio Y. Practical recommendations for gradient-based training of deep architectures.

Neural Netw. Tricks Trade, Springer; 2012, p. 437–478.

[132] Masters D, Luschi C. Revisiting Small Batch Training for Deep Neural Networks. ArXiv

Prepr ArXiv180407612 2018.

[133] Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. Going deeper with con-

volutions. Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2015, p. 1–9.

[134] Zeiler MD, Fergus R. Visualizing and Understanding Convolutional Networks. In: Fleet

D, Pajdla T, Schiele B, Tuytelaars T, editors. Comput. Vis. – ECCV 2014, vol. 8689,

Cham: Springer International Publishing; 2014, p. 818–33. doi:10.1007/978-3-319-10590-

1_53.

[135] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image

recognition. ArXiv Prepr ArXiv14091556 2014.

[136] He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition.

ArXiv151203385 Cs 2015.

[137] Lin M, Chen Q, Yan S. Network In Network. ArXiv13124400 Cs 2013.

[138] Iandola FN, Han S, Moskewicz MW, Ashraf K, Dally WJ, Keutzer K. SqueezeNet:

AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size.

ArXiv160207360 Cs 2016.

[139] Zagoruyko S, Komodakis N. Wide Residual Networks. ArXiv160507146 Cs 2016.

[140] Xie S, Girshick R, Dollár P, Tu Z, He K. Aggregated Residual Transformations for Deep

Neural Networks. ArXiv161105431 Cs 2016.

[141] Huang G, Sun Y, Liu Z, Sedra D, Weinberger K. Deep Networks with Stochastic Depth.

ArXiv160309382 Cs 2016.

[142] Larsson G, Maire M, Shakhnarovich G. FractalNet: Ultra-Deep Neural Networks without

Residuals. ArXiv160507648 Cs 2016.

[143] Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely Connected Convolutional

Networks. CVPR, vol. 1, 2017, p. 3.

[144] Canziani A, Paszke A, Culurciello E. An Analysis of Deep Neural Network Models for

Practical Applications. ArXiv160507678 Cs 2016.

[145] ImageNet n.d. http://www.image-net.org/ (accessed May 10, 2019).

[146] Convolutional Neural Networks. Coursera n.d. https://www.coursera.org/learn/machine-

learning (accessed May 10, 2019).

115

[147] Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the Inception Architec-

ture for Computer Vision. ArXiv151200567 Cs 2015.

[148] Fernandez-Redondo M, Hernandez-Espinosa C. A comparison among weight initialization

methods for multilayer feedforward networks. Proc. IEEE-INNS-ENNS Int. Jt. Conf. Neu-

ral Netw. IJCNN 2000 Neural Comput. New Chall. Perspect. New Millenn., vol. 4, 2000,

p. 543–8 vol.4. doi:10.1109/IJCNN.2000.860828.

[149] Thimm G, Fiesler E. Neural network initialization. In: Mira J, Sandoval F, editors. Nat.

Artif. Neural Comput., Springer Berlin Heidelberg; 1995, p. 535–42.

[150] Gao Y, Mosalam KM. Deep Transfer Learning for Image‐Based Structural Damage

Recognition. Comput Civ Infrastruct Eng 2018;33:748–68. doi:10.1111/mice.12363.

[151] vgg16_weights.h5. Google Docs n.d. https://drive.google.com/file/d/0Bz7KyqmuG-

silT0J5dmRCM0ROVHc/view?usp=sharing&usp=embed_facebook (accessed May 19,

2019).

[152] Li F-F, Johnson J, Yeung S. Convolutional Neural Networks for Visual Recognition, Lec-

ture 8 n.d.:http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture8.pdf.

[153] Introducing The GeForce GTX 1080 Ti, The World’s Fastest Gaming GPU n.d.

http://www.geforce.co.uk/whats-new/articles/nvidia-geforce-gtx-1080-ti (accessed May

13, 2019).

[154] NVIDIA cuDNN. NVIDIA Dev 2014. https://developer.nvidia.com/cudnn (accessed May

13, 2019).

[155] TensorFlow White Papers. TensorFlow n.d. https://www.tensorflow.org/about/bib (ac-

cessed July 19, 2018).

[156] Home - Keras Documentation n.d. https://keras.io/ (accessed May 13, 2019).

[157] Glossary of Terms Journal of Machine Learning n.d. http://ai.stanford.edu/~ronnyk/glos-

sary.html (accessed May 28, 2019).

[158] E17 Committee. Practice for Roads and Parking Lots Pavement Condition Index Surveys.

ASTM International; n.d. doi:10.1520/D6433-18.

116

Appendix A – Details of the VGG-16 network

Layer (type) Output Shape Param #

===

Image (InputLayer) (None, 200, 200, 3) 0

block1_conv1 (Conv2D) (None, 200, 200, 64) 1792

block1_conv2 (Conv2D) (None, 200, 200, 64) 36928

block1_pool (MaxPooling2D) (None, 100, 100, 64) 0

block2_conv1 (Conv2D) (None, 100, 100, 128) 73856

block2_conv2 (Conv2D) (None, 100, 100, 128) 147584

block2_pool (MaxPooling2D) (None, 50, 50, 128) 0

block3_conv1 (Conv2D) (None, 50, 50, 256) 295168

block3_conv2 (Conv2D) (None, 50, 50, 256) 590080

block3_conv3 (Conv2D) (None, 50, 50, 256) 590080

block3_pool (MaxPooling2D) (None, 25, 25, 256) 0

block4_conv1 (Conv2D) (None, 25, 25, 512) 1180160

block4_conv2 (Conv2D) (None, 25, 25, 512) 2359808

block4_conv3 (Conv2D) (None, 25, 25, 512) 2359808

block4_pool (MaxPooling2D) (None, 12, 12, 512) 0

block5_conv1 (Conv2D) (None, 12, 12, 512) 2359808

block5_conv2 (Conv2D) (None, 12, 12, 512) 2359808

block5_conv3 (Conv2D) (None, 12, 12, 512) 2359808

117

block5_pool (MaxPooling2D) (None, 6, 6, 512) 0

global_average_pooling2d_1 ((None, 512) 0

features1 (Dense) (None, 2048) 1050624

dropout_1 (Dropout) (None, 2048) 0

features2 (Dense) (None, 2048) 4196352

dropout_2 (Dropout) (None, 2048) 0

Prediction (Dense) (None, 2) 4098

===

Total params: 19,965,762

Trainable params: 19,965,762

Non-trainable params: 0

118

Appendix B – Details of the Inception network

__

Layer (type) Output Shape Param # Connected to

===

=============================

Image (InputLayer) (None, 200, 200, 3) 0

__

conv2d_1 (Conv2D) (None, 99, 99, 32) 864 Image[0][0]

__

batch_normalization_1 (BatchNor (None, 99, 99, 32) 96 conv2d_1[0][0]

__

activation_1 (Activation) (None, 99, 99, 32) 0 batch_normalization_1[0][0]

__

conv2d_2 (Conv2D) (None, 97, 97, 32) 9216 activation_1[0][0]

__

batch_normalization_2 (BatchNor (None, 97, 97, 32) 96 conv2d_2[0][0]

__

activation_2 (Activation) (None, 97, 97, 32) 0 batch_normalization_2[0][0]

__

conv2d_3 (Conv2D) (None, 97, 97, 64) 18432 activation_2[0][0]

__

batch_normalization_3 (BatchNor (None, 97, 97, 64) 192 conv2d_3[0][0]

__

activation_3 (Activation) (None, 97, 97, 64) 0 batch_normalization_3[0][0]

__

max_pooling2d_1 (MaxPooling2D) (None, 48, 48, 64) 0 activation_3[0][0]

__

conv2d_4 (Conv2D) (None, 48, 48, 80) 5120 max_pooling2d_1[0][0]

119

__

batch_normalization_4 (BatchNor (None, 48, 48, 80) 240 conv2d_4[0][0]

__

activation_4 (Activation) (None, 48, 48, 80) 0 batch_normalization_4[0][0]

__

conv2d_5 (Conv2D) (None, 46, 46, 192) 138240 activation_4[0][0]

__

batch_normalization_5 (BatchNor (None, 46, 46, 192) 576 conv2d_5[0][0]

__

activation_5 (Activation) (None, 46, 46, 192) 0 batch_normalization_5[0][0]

__

max_pooling2d_2 (MaxPooling2D) (None, 22, 22, 192) 0 activation_5[0][0]

__

conv2d_9 (Conv2D) (None, 22, 22, 64) 12288 max_pooling2d_2[0][0]

__

batch_normalization_9 (BatchNor (None, 22, 22, 64) 192 conv2d_9[0][0]

__

activation_9 (Activation) (None, 22, 22, 64) 0 batch_normalization_9[0][0]

__

conv2d_7 (Conv2D) (None, 22, 22, 48) 9216 max_pooling2d_2[0][0]

__

conv2d_10 (Conv2D) (None, 22, 22, 96) 55296 activation_9[0][0]

__

batch_normalization_7 (BatchNor (None, 22, 22, 48) 144 conv2d_7[0][0]

__

batch_normalization_10 (BatchNo (None, 22, 22, 96) 288 conv2d_10[0][0]

__

activation_7 (Activation) (None, 22, 22, 48) 0 batch_normalization_7[0][0]

120

__

activation_10 (Activation) (None, 22, 22, 96) 0 batch_normalization_10[0][0]

__

average_pooling2d_1 (AveragePoo (None, 22, 22, 192) 0 max_pooling2d_2[0][0]

__

conv2d_6 (Conv2D) (None, 22, 22, 64) 12288 max_pooling2d_2[0][0]

__

conv2d_8 (Conv2D) (None, 22, 22, 64) 76800 activation_7[0][0]

__

conv2d_11 (Conv2D) (None, 22, 22, 96) 82944 activation_10[0][0]

__

conv2d_12 (Conv2D) (None, 22, 22, 32) 6144 average_pooling2d_1[0][0]

__

batch_normalization_6 (BatchNor (None, 22, 22, 64) 192 conv2d_6[0][0]

__

batch_normalization_8 (BatchNor (None, 22, 22, 64) 192 conv2d_8[0][0]

__

batch_normalization_11 (BatchNo (None, 22, 22, 96) 288 conv2d_11[0][0]

__

batch_normalization_12 (BatchNo (None, 22, 22, 32) 96 conv2d_12[0][0]

__

activation_6 (Activation) (None, 22, 22, 64) 0 batch_normalization_6[0][0]

__

activation_8 (Activation) (None, 22, 22, 64) 0 batch_normalization_8[0][0]

__

activation_11 (Activation) (None, 22, 22, 96) 0 batch_normalization_11[0][0]

__

activation_12 (Activation) (None, 22, 22, 32) 0 batch_normalization_12[0][0]

121

__

mixed0 (Concatenate) (None, 22, 22, 256) 0 activation_6[0][0]

 activation_8[0][0]

 activation_11[0][0]

 activation_12[0][0]

__

conv2d_16 (Conv2D) (None, 22, 22, 64) 16384 mixed0[0][0]

__

batch_normalization_16 (BatchNo (None, 22, 22, 64) 192 conv2d_16[0][0]

__

activation_16 (Activation) (None, 22, 22, 64) 0 batch_normalization_16[0][0]

__

conv2d_14 (Conv2D) (None, 22, 22, 48) 12288 mixed0[0][0]

__

conv2d_17 (Conv2D) (None, 22, 22, 96) 55296 activation_16[0][0]

__

batch_normalization_14 (BatchNo (None, 22, 22, 48) 144 conv2d_14[0][0]

__

batch_normalization_17 (BatchNo (None, 22, 22, 96) 288 conv2d_17[0][0]

__

activation_14 (Activation) (None, 22, 22, 48) 0 batch_normalization_14[0][0]

__

activation_17 (Activation) (None, 22, 22, 96) 0 batch_normalization_17[0][0]

__

average_pooling2d_2 (AveragePoo (None, 22, 22, 256) 0 mixed0[0][0]

__

conv2d_13 (Conv2D) (None, 22, 22, 64) 16384 mixed0[0][0]

__

conv2d_15 (Conv2D) (None, 22, 22, 64) 76800 activation_14[0][0]

122

__

conv2d_18 (Conv2D) (None, 22, 22, 96) 82944 activation_17[0][0]

__

conv2d_19 (Conv2D) (None, 22, 22, 64) 16384 average_pooling2d_2[0][0]

__

batch_normalization_13 (BatchNo (None, 22, 22, 64) 192 conv2d_13[0][0]

__

batch_normalization_15 (BatchNo (None, 22, 22, 64) 192 conv2d_15[0][0]

__

batch_normalization_18 (BatchNo (None, 22, 22, 96) 288 conv2d_18[0][0]

__

batch_normalization_19 (BatchNo (None, 22, 22, 64) 192 conv2d_19[0][0]

__

activation_13 (Activation) (None, 22, 22, 64) 0 batch_normalization_13[0][0]

__

activation_15 (Activation) (None, 22, 22, 64) 0 batch_normalization_15[0][0]

__

activation_18 (Activation) (None, 22, 22, 96) 0 batch_normalization_18[0][0]

__

activation_19 (Activation) (None, 22, 22, 64) 0 batch_normalization_19[0][0]

__

mixed1 (Concatenate) (None, 22, 22, 288) 0 activation_13[0][0]

 activation_15[0][0]

 activation_18[0][0]

 activation_19[0][0]

__

conv2d_23 (Conv2D) (None, 22, 22, 64) 18432 mixed1[0][0]

__

batch_normalization_23 (BatchNo (None, 22, 22, 64) 192 conv2d_23[0][0]

123

__

activation_23 (Activation) (None, 22, 22, 64) 0 batch_normalization_23[0][0]

__

conv2d_21 (Conv2D) (None, 22, 22, 48) 13824 mixed1[0][0]

__

conv2d_24 (Conv2D) (None, 22, 22, 96) 55296 activation_23[0][0]

__

batch_normalization_21 (BatchNo (None, 22, 22, 48) 144 conv2d_21[0][0]

__

batch_normalization_24 (BatchNo (None, 22, 22, 96) 288 conv2d_24[0][0]

__

activation_21 (Activation) (None, 22, 22, 48) 0 batch_normalization_21[0][0]

__

activation_24 (Activation) (None, 22, 22, 96) 0 batch_normalization_24[0][0]

__

average_pooling2d_3 (AveragePoo (None, 22, 22, 288) 0 mixed1[0][0]

__

conv2d_20 (Conv2D) (None, 22, 22, 64) 18432 mixed1[0][0]

__

conv2d_22 (Conv2D) (None, 22, 22, 64) 76800 activation_21[0][0]

__

conv2d_25 (Conv2D) (None, 22, 22, 96) 82944 activation_24[0][0]

__

conv2d_26 (Conv2D) (None, 22, 22, 64) 18432 average_pooling2d_3[0][0]

__

batch_normalization_20 (BatchNo (None, 22, 22, 64) 192 conv2d_20[0][0]

__

batch_normalization_22 (BatchNo (None, 22, 22, 64) 192 conv2d_22[0][0]

124

__

batch_normalization_25 (BatchNo (None, 22, 22, 96) 288 conv2d_25[0][0]

__

batch_normalization_26 (BatchNo (None, 22, 22, 64) 192 conv2d_26[0][0]

__

activation_20 (Activation) (None, 22, 22, 64) 0 batch_normalization_20[0][0]

__

activation_22 (Activation) (None, 22, 22, 64) 0 batch_normalization_22[0][0]

__

activation_25 (Activation) (None, 22, 22, 96) 0 batch_normalization_25[0][0]

__

activation_26 (Activation) (None, 22, 22, 64) 0 batch_normalization_26[0][0]

__

mixed2 (Concatenate) (None, 22, 22, 288) 0 activation_20[0][0]

 activation_22[0][0]

 activation_25[0][0]

 activation_26[0][0]

__

conv2d_28 (Conv2D) (None, 22, 22, 64) 18432 mixed2[0][0]

__

batch_normalization_28 (BatchNo (None, 22, 22, 64) 192 conv2d_28[0][0]

__

activation_28 (Activation) (None, 22, 22, 64) 0 batch_normalization_28[0][0]

__

conv2d_29 (Conv2D) (None, 22, 22, 96) 55296 activation_28[0][0]

__

batch_normalization_29 (BatchNo (None, 22, 22, 96) 288 conv2d_29[0][0]

__

activation_29 (Activation) (None, 22, 22, 96) 0 batch_normalization_29[0][0]

125

__

conv2d_27 (Conv2D) (None, 10, 10, 384) 995328 mixed2[0][0]

__

conv2d_30 (Conv2D) (None, 10, 10, 96) 82944 activation_29[0][0]

__

batch_normalization_27 (BatchNo (None, 10, 10, 384) 1152 conv2d_27[0][0]

__

batch_normalization_30 (BatchNo (None, 10, 10, 96) 288 conv2d_30[0][0]

__

activation_27 (Activation) (None, 10, 10, 384) 0 batch_normalization_27[0][0]

__

activation_30 (Activation) (None, 10, 10, 96) 0 batch_normalization_30[0][0]

__

max_pooling2d_3 (MaxPooling2D) (None, 10, 10, 288) 0 mixed2[0][0]

__

mixed3 (Concatenate) (None, 10, 10, 768) 0 activation_27[0][0]

 activation_30[0][0]

 max_pooling2d_3[0][0]

__

conv2d_35 (Conv2D) (None, 10, 10, 128) 98304 mixed3[0][0]

__

batch_normalization_35 (BatchNo (None, 10, 10, 128) 384 conv2d_35[0][0]

__

activation_35 (Activation) (None, 10, 10, 128) 0 batch_normalization_35[0][0]

__

conv2d_36 (Conv2D) (None, 10, 10, 128) 114688 activation_35[0][0]

__

batch_normalization_36 (BatchNo (None, 10, 10, 128) 384 conv2d_36[0][0]

__

126

activation_36 (Activation) (None, 10, 10, 128) 0 batch_normalization_36[0][0]

__

conv2d_32 (Conv2D) (None, 10, 10, 128) 98304 mixed3[0][0]

__

conv2d_37 (Conv2D) (None, 10, 10, 128) 114688 activation_36[0][0]

__

batch_normalization_32 (BatchNo (None, 10, 10, 128) 384 conv2d_32[0][0]

__

batch_normalization_37 (BatchNo (None, 10, 10, 128) 384 conv2d_37[0][0]

__

activation_32 (Activation) (None, 10, 10, 128) 0 batch_normalization_32[0][0]

__

activation_37 (Activation) (None, 10, 10, 128) 0 batch_normalization_37[0][0]

__

conv2d_33 (Conv2D) (None, 10, 10, 128) 114688 activation_32[0][0]

__

conv2d_38 (Conv2D) (None, 10, 10, 128) 114688 activation_37[0][0]

__

batch_normalization_33 (BatchNo (None, 10, 10, 128) 384 conv2d_33[0][0]

__

batch_normalization_38 (BatchNo (None, 10, 10, 128) 384 conv2d_38[0][0]

__

activation_33 (Activation) (None, 10, 10, 128) 0 batch_normalization_33[0][0]

__

activation_38 (Activation) (None, 10, 10, 128) 0 batch_normalization_38[0][0]

__

average_pooling2d_4 (AveragePoo (None, 10, 10, 768) 0 mixed3[0][0]

__

conv2d_31 (Conv2D) (None, 10, 10, 192) 147456 mixed3[0][0]

127

__

conv2d_34 (Conv2D) (None, 10, 10, 192) 172032 activation_33[0][0]

__

conv2d_39 (Conv2D) (None, 10, 10, 192) 172032 activation_38[0][0]

__

conv2d_40 (Conv2D) (None, 10, 10, 192) 147456 average_pooling2d_4[0][0]

__

batch_normalization_31 (BatchNo (None, 10, 10, 192) 576 conv2d_31[0][0]

__

batch_normalization_34 (BatchNo (None, 10, 10, 192) 576 conv2d_34[0][0]

__

batch_normalization_39 (BatchNo (None, 10, 10, 192) 576 conv2d_39[0][0]

__

batch_normalization_40 (BatchNo (None, 10, 10, 192) 576 conv2d_40[0][0]

__

activation_31 (Activation) (None, 10, 10, 192) 0 batch_normalization_31[0][0]

__

activation_34 (Activation) (None, 10, 10, 192) 0 batch_normalization_34[0][0]

__

activation_39 (Activation) (None, 10, 10, 192) 0 batch_normalization_39[0][0]

__

activation_40 (Activation) (None, 10, 10, 192) 0 batch_normalization_40[0][0]

__

mixed4 (Concatenate) (None, 10, 10, 768) 0 activation_31[0][0]

 activation_34[0][0]

 activation_39[0][0]

 activation_40[0][0]

__

conv2d_45 (Conv2D) (None, 10, 10, 160) 122880 mixed4[0][0]

128

__

batch_normalization_45 (BatchNo (None, 10, 10, 160) 480 conv2d_45[0][0]

__

activation_45 (Activation) (None, 10, 10, 160) 0 batch_normalization_45[0][0]

__

conv2d_46 (Conv2D) (None, 10, 10, 160) 179200 activation_45[0][0]

__

batch_normalization_46 (BatchNo (None, 10, 10, 160) 480 conv2d_46[0][0]

__

activation_46 (Activation) (None, 10, 10, 160) 0 batch_normalization_46[0][0]

__

conv2d_42 (Conv2D) (None, 10, 10, 160) 122880 mixed4[0][0]

__

conv2d_47 (Conv2D) (None, 10, 10, 160) 179200 activation_46[0][0]

__

batch_normalization_42 (BatchNo (None, 10, 10, 160) 480 conv2d_42[0][0]

__

batch_normalization_47 (BatchNo (None, 10, 10, 160) 480 conv2d_47[0][0]

__

activation_42 (Activation) (None, 10, 10, 160) 0 batch_normalization_42[0][0]

__

activation_47 (Activation) (None, 10, 10, 160) 0 batch_normalization_47[0][0]

__

conv2d_43 (Conv2D) (None, 10, 10, 160) 179200 activation_42[0][0]

__

conv2d_48 (Conv2D) (None, 10, 10, 160) 179200 activation_47[0][0]

__

batch_normalization_43 (BatchNo (None, 10, 10, 160) 480 conv2d_43[0][0]

129

__

batch_normalization_48 (BatchNo (None, 10, 10, 160) 480 conv2d_48[0][0]

__

activation_43 (Activation) (None, 10, 10, 160) 0 batch_normalization_43[0][0]

__

activation_48 (Activation) (None, 10, 10, 160) 0 batch_normalization_48[0][0]

__

average_pooling2d_5 (AveragePoo (None, 10, 10, 768) 0 mixed4[0][0]

__

conv2d_41 (Conv2D) (None, 10, 10, 192) 147456 mixed4[0][0]

__

conv2d_44 (Conv2D) (None, 10, 10, 192) 215040 activation_43[0][0]

__

conv2d_49 (Conv2D) (None, 10, 10, 192) 215040 activation_48[0][0]

__

conv2d_50 (Conv2D) (None, 10, 10, 192) 147456 average_pooling2d_5[0][0]

__

batch_normalization_41 (BatchNo (None, 10, 10, 192) 576 conv2d_41[0][0]

__

batch_normalization_44 (BatchNo (None, 10, 10, 192) 576 conv2d_44[0][0]

__

batch_normalization_49 (BatchNo (None, 10, 10, 192) 576 conv2d_49[0][0]

__

batch_normalization_50 (BatchNo (None, 10, 10, 192) 576 conv2d_50[0][0]

__

activation_41 (Activation) (None, 10, 10, 192) 0 batch_normalization_41[0][0]

__

activation_44 (Activation) (None, 10, 10, 192) 0 batch_normalization_44[0][0]

130

__

activation_49 (Activation) (None, 10, 10, 192) 0 batch_normalization_49[0][0]

__

activation_50 (Activation) (None, 10, 10, 192) 0 batch_normalization_50[0][0]

__

mixed5 (Concatenate) (None, 10, 10, 768) 0 activation_41[0][0]

 activation_44[0][0]

 activation_49[0][0]

 activation_50[0][0]

__

conv2d_55 (Conv2D) (None, 10, 10, 160) 122880 mixed5[0][0]

__

batch_normalization_55 (BatchNo (None, 10, 10, 160) 480 conv2d_55[0][0]

__

activation_55 (Activation) (None, 10, 10, 160) 0 batch_normalization_55[0][0]

__

conv2d_56 (Conv2D) (None, 10, 10, 160) 179200 activation_55[0][0]

__

batch_normalization_56 (BatchNo (None, 10, 10, 160) 480 conv2d_56[0][0]

__

activation_56 (Activation) (None, 10, 10, 160) 0 batch_normalization_56[0][0]

__

conv2d_52 (Conv2D) (None, 10, 10, 160) 122880 mixed5[0][0]

__

conv2d_57 (Conv2D) (None, 10, 10, 160) 179200 activation_56[0][0]

__

batch_normalization_52 (BatchNo (None, 10, 10, 160) 480 conv2d_52[0][0]

__

batch_normalization_57 (BatchNo (None, 10, 10, 160) 480 conv2d_57[0][0]

131

__

activation_52 (Activation) (None, 10, 10, 160) 0 batch_normalization_52[0][0]

__

activation_57 (Activation) (None, 10, 10, 160) 0 batch_normalization_57[0][0]

__

conv2d_53 (Conv2D) (None, 10, 10, 160) 179200 activation_52[0][0]

__

conv2d_58 (Conv2D) (None, 10, 10, 160) 179200 activation_57[0][0]

__

batch_normalization_53 (BatchNo (None, 10, 10, 160) 480 conv2d_53[0][0]

__

batch_normalization_58 (BatchNo (None, 10, 10, 160) 480 conv2d_58[0][0]

__

activation_53 (Activation) (None, 10, 10, 160) 0 batch_normalization_53[0][0]

__

activation_58 (Activation) (None, 10, 10, 160) 0 batch_normalization_58[0][0]

__

average_pooling2d_6 (AveragePoo (None, 10, 10, 768) 0 mixed5[0][0]

__

conv2d_51 (Conv2D) (None, 10, 10, 192) 147456 mixed5[0][0]

__

conv2d_54 (Conv2D) (None, 10, 10, 192) 215040 activation_53[0][0]

__

conv2d_59 (Conv2D) (None, 10, 10, 192) 215040 activation_58[0][0]

__

conv2d_60 (Conv2D) (None, 10, 10, 192) 147456 average_pooling2d_6[0][0]

__

batch_normalization_51 (BatchNo (None, 10, 10, 192) 576 conv2d_51[0][0]

132

__

batch_normalization_54 (BatchNo (None, 10, 10, 192) 576 conv2d_54[0][0]

__

batch_normalization_59 (BatchNo (None, 10, 10, 192) 576 conv2d_59[0][0]

__

batch_normalization_60 (BatchNo (None, 10, 10, 192) 576 conv2d_60[0][0]

__

activation_51 (Activation) (None, 10, 10, 192) 0 batch_normalization_51[0][0]

__

activation_54 (Activation) (None, 10, 10, 192) 0 batch_normalization_54[0][0]

__

activation_59 (Activation) (None, 10, 10, 192) 0 batch_normalization_59[0][0]

__

activation_60 (Activation) (None, 10, 10, 192) 0 batch_normalization_60[0][0]

__

mixed6 (Concatenate) (None, 10, 10, 768) 0 activation_51[0][0]

 activation_54[0][0]

 activation_59[0][0]

 activation_60[0][0]

__

conv2d_65 (Conv2D) (None, 10, 10, 192) 147456 mixed6[0][0]

__

batch_normalization_65 (BatchNo (None, 10, 10, 192) 576 conv2d_65[0][0]

__

activation_65 (Activation) (None, 10, 10, 192) 0 batch_normalization_65[0][0]

__

conv2d_66 (Conv2D) (None, 10, 10, 192) 258048 activation_65[0][0]

__

batch_normalization_66 (BatchNo (None, 10, 10, 192) 576 conv2d_66[0][0]

133

__

activation_66 (Activation) (None, 10, 10, 192) 0 batch_normalization_66[0][0]

__

conv2d_62 (Conv2D) (None, 10, 10, 192) 147456 mixed6[0][0]

__

conv2d_67 (Conv2D) (None, 10, 10, 192) 258048 activation_66[0][0]

__

batch_normalization_62 (BatchNo (None, 10, 10, 192) 576 conv2d_62[0][0]

__

batch_normalization_67 (BatchNo (None, 10, 10, 192) 576 conv2d_67[0][0]

__

activation_62 (Activation) (None, 10, 10, 192) 0 batch_normalization_62[0][0]

__

activation_67 (Activation) (None, 10, 10, 192) 0 batch_normalization_67[0][0]

__

conv2d_63 (Conv2D) (None, 10, 10, 192) 258048 activation_62[0][0]

__

conv2d_68 (Conv2D) (None, 10, 10, 192) 258048 activation_67[0][0]

__

batch_normalization_63 (BatchNo (None, 10, 10, 192) 576 conv2d_63[0][0]

__

batch_normalization_68 (BatchNo (None, 10, 10, 192) 576 conv2d_68[0][0]

__

activation_63 (Activation) (None, 10, 10, 192) 0 batch_normalization_63[0][0]

__

activation_68 (Activation) (None, 10, 10, 192) 0 batch_normalization_68[0][0]

__

average_pooling2d_7 (AveragePoo (None, 10, 10, 768) 0 mixed6[0][0]

134

__

conv2d_61 (Conv2D) (None, 10, 10, 192) 147456 mixed6[0][0]

__

conv2d_64 (Conv2D) (None, 10, 10, 192) 258048 activation_63[0][0]

__

conv2d_69 (Conv2D) (None, 10, 10, 192) 258048 activation_68[0][0]

__

conv2d_70 (Conv2D) (None, 10, 10, 192) 147456 average_pooling2d_7[0][0]

__

batch_normalization_61 (BatchNo (None, 10, 10, 192) 576 conv2d_61[0][0]

__

batch_normalization_64 (BatchNo (None, 10, 10, 192) 576 conv2d_64[0][0]

__

batch_normalization_69 (BatchNo (None, 10, 10, 192) 576 conv2d_69[0][0]

__

batch_normalization_70 (BatchNo (None, 10, 10, 192) 576 conv2d_70[0][0]

__

activation_61 (Activation) (None, 10, 10, 192) 0 batch_normalization_61[0][0]

__

activation_64 (Activation) (None, 10, 10, 192) 0 batch_normalization_64[0][0]

__

activation_69 (Activation) (None, 10, 10, 192) 0 batch_normalization_69[0][0]

__

activation_70 (Activation) (None, 10, 10, 192) 0 batch_normalization_70[0][0]

__

mixed7 (Concatenate) (None, 10, 10, 768) 0 activation_61[0][0]

 activation_64[0][0]

 activation_69[0][0]

 activation_70[0][0]

135

__

conv2d_73 (Conv2D) (None, 10, 10, 192) 147456 mixed7[0][0]

__

batch_normalization_73 (BatchNo (None, 10, 10, 192) 576 conv2d_73[0][0]

__

activation_73 (Activation) (None, 10, 10, 192) 0 batch_normalization_73[0][0]

__

conv2d_74 (Conv2D) (None, 10, 10, 192) 258048 activation_73[0][0]

__

batch_normalization_74 (BatchNo (None, 10, 10, 192) 576 conv2d_74[0][0]

__

activation_74 (Activation) (None, 10, 10, 192) 0 batch_normalization_74[0][0]

__

conv2d_71 (Conv2D) (None, 10, 10, 192) 147456 mixed7[0][0]

__

conv2d_75 (Conv2D) (None, 10, 10, 192) 258048 activation_74[0][0]

__

batch_normalization_71 (BatchNo (None, 10, 10, 192) 576 conv2d_71[0][0]

__

batch_normalization_75 (BatchNo (None, 10, 10, 192) 576 conv2d_75[0][0]

__

activation_71 (Activation) (None, 10, 10, 192) 0 batch_normalization_71[0][0]

__

activation_75 (Activation) (None, 10, 10, 192) 0 batch_normalization_75[0][0]

__

conv2d_72 (Conv2D) (None, 4, 4, 320) 552960 activation_71[0][0]

__

conv2d_76 (Conv2D) (None, 4, 4, 192) 331776 activation_75[0][0]

136

__

batch_normalization_72 (BatchNo (None, 4, 4, 320) 960 conv2d_72[0][0]

__

batch_normalization_76 (BatchNo (None, 4, 4, 192) 576 conv2d_76[0][0]

__

activation_72 (Activation) (None, 4, 4, 320) 0 batch_normalization_72[0][0]

__

activation_76 (Activation) (None, 4, 4, 192) 0 batch_normalization_76[0][0]

__

max_pooling2d_4 (MaxPooling2D) (None, 4, 4, 768) 0 mixed7[0][0]

__

mixed8 (Concatenate) (None, 4, 4, 1280) 0 activation_72[0][0]

 activation_76[0][0]

 max_pooling2d_4[0][0]

__

conv2d_81 (Conv2D) (None, 4, 4, 448) 573440 mixed8[0][0]

__

batch_normalization_81 (BatchNo (None, 4, 4, 448) 1344 conv2d_81[0][0]

__

activation_81 (Activation) (None, 4, 4, 448) 0 batch_normalization_81[0][0]

__

conv2d_78 (Conv2D) (None, 4, 4, 384) 491520 mixed8[0][0]

__

conv2d_82 (Conv2D) (None, 4, 4, 384) 1548288 activation_81[0][0]

__

batch_normalization_78 (BatchNo (None, 4, 4, 384) 1152 conv2d_78[0][0]

__

batch_normalization_82 (BatchNo (None, 4, 4, 384) 1152 conv2d_82[0][0]

__

137

activation_78 (Activation) (None, 4, 4, 384) 0 batch_normalization_78[0][0]

__

activation_82 (Activation) (None, 4, 4, 384) 0 batch_normalization_82[0][0]

__

conv2d_79 (Conv2D) (None, 4, 4, 384) 442368 activation_78[0][0]

__

conv2d_80 (Conv2D) (None, 4, 4, 384) 442368 activation_78[0][0]

__

conv2d_83 (Conv2D) (None, 4, 4, 384) 442368 activation_82[0][0]

__

conv2d_84 (Conv2D) (None, 4, 4, 384) 442368 activation_82[0][0]

__

average_pooling2d_8 (AveragePoo (None, 4, 4, 1280) 0 mixed8[0][0]

__

conv2d_77 (Conv2D) (None, 4, 4, 320) 409600 mixed8[0][0]

__

batch_normalization_79 (BatchNo (None, 4, 4, 384) 1152 conv2d_79[0][0]

__

batch_normalization_80 (BatchNo (None, 4, 4, 384) 1152 conv2d_80[0][0]

__

batch_normalization_83 (BatchNo (None, 4, 4, 384) 1152 conv2d_83[0][0]

__

batch_normalization_84 (BatchNo (None, 4, 4, 384) 1152 conv2d_84[0][0]

__

conv2d_85 (Conv2D) (None, 4, 4, 192) 245760 average_pooling2d_8[0][0]

__

batch_normalization_77 (BatchNo (None, 4, 4, 320) 960 conv2d_77[0][0]

__

activation_79 (Activation) (None, 4, 4, 384) 0 batch_normalization_79[0][0]

138

__

activation_80 (Activation) (None, 4, 4, 384) 0 batch_normalization_80[0][0]

__

activation_83 (Activation) (None, 4, 4, 384) 0 batch_normalization_83[0][0]

__

activation_84 (Activation) (None, 4, 4, 384) 0 batch_normalization_84[0][0]

__

batch_normalization_85 (BatchNo (None, 4, 4, 192) 576 conv2d_85[0][0]

__

activation_77 (Activation) (None, 4, 4, 320) 0 batch_normalization_77[0][0]

__

mixed9_0 (Concatenate) (None, 4, 4, 768) 0 activation_79[0][0]

 activation_80[0][0]

__

concatenate_1 (Concatenate) (None, 4, 4, 768) 0 activation_83[0][0]

 activation_84[0][0]

__

activation_85 (Activation) (None, 4, 4, 192) 0 batch_normalization_85[0][0]

__

mixed9 (Concatenate) (None, 4, 4, 2048) 0 activation_77[0][0]

 mixed9_0[0][0]

 concatenate_1[0][0]

 activation_85[0][0]

__

conv2d_90 (Conv2D) (None, 4, 4, 448) 917504 mixed9[0][0]

__

batch_normalization_90 (BatchNo (None, 4, 4, 448) 1344 conv2d_90[0][0]

__

activation_90 (Activation) (None, 4, 4, 448) 0 batch_normalization_90[0][0]

__

139

conv2d_87 (Conv2D) (None, 4, 4, 384) 786432 mixed9[0][0]

__

conv2d_91 (Conv2D) (None, 4, 4, 384) 1548288 activation_90[0][0]

__

batch_normalization_87 (BatchNo (None, 4, 4, 384) 1152 conv2d_87[0][0]

__

batch_normalization_91 (BatchNo (None, 4, 4, 384) 1152 conv2d_91[0][0]

__

activation_87 (Activation) (None, 4, 4, 384) 0 batch_normalization_87[0][0]

__

activation_91 (Activation) (None, 4, 4, 384) 0 batch_normalization_91[0][0]

__

conv2d_88 (Conv2D) (None, 4, 4, 384) 442368 activation_87[0][0]

__

conv2d_89 (Conv2D) (None, 4, 4, 384) 442368 activation_87[0][0]

__

conv2d_92 (Conv2D) (None, 4, 4, 384) 442368 activation_91[0][0]

__

conv2d_93 (Conv2D) (None, 4, 4, 384) 442368 activation_91[0][0]

__

average_pooling2d_9 (AveragePoo (None, 4, 4, 2048) 0 mixed9[0][0]

__

conv2d_86 (Conv2D) (None, 4, 4, 320) 655360 mixed9[0][0]

__

batch_normalization_88 (BatchNo (None, 4, 4, 384) 1152 conv2d_88[0][0]

__

batch_normalization_89 (BatchNo (None, 4, 4, 384) 1152 conv2d_89[0][0]

__

batch_normalization_92 (BatchNo (None, 4, 4, 384) 1152 conv2d_92[0][0]

140

__

batch_normalization_93 (BatchNo (None, 4, 4, 384) 1152 conv2d_93[0][0]

__

conv2d_94 (Conv2D) (None, 4, 4, 192) 393216 average_pooling2d_9[0][0]

__

batch_normalization_86 (BatchNo (None, 4, 4, 320) 960 conv2d_86[0][0]

__

activation_88 (Activation) (None, 4, 4, 384) 0 batch_normalization_88[0][0]

__

activation_89 (Activation) (None, 4, 4, 384) 0 batch_normalization_89[0][0]

__

activation_92 (Activation) (None, 4, 4, 384) 0 batch_normalization_92[0][0]

__

activation_93 (Activation) (None, 4, 4, 384) 0 batch_normalization_93[0][0]

__

batch_normalization_94 (BatchNo (None, 4, 4, 192) 576 conv2d_94[0][0]

__

activation_86 (Activation) (None, 4, 4, 320) 0 batch_normalization_86[0][0]

__

mixed9_1 (Concatenate) (None, 4, 4, 768) 0 activation_88[0][0]

 activation_89[0][0]

__

concatenate_2 (Concatenate) (None, 4, 4, 768) 0 activation_92[0][0]

 activation_93[0][0]

__

activation_94 (Activation) (None, 4, 4, 192) 0 batch_normalization_94[0][0]

__

mixed10 (Concatenate) (None, 4, 4, 2048) 0 activation_86[0][0]

 mixed9_1[0][0]

 concatenate_2[0][0]

141

 activation_94[0][0]

__

global_average_pooling2d_1 (Glo (None, 2048) 0 mixed10[0][0]

__

features1 (Dense) (None, 2048) 4196352 global_average_pooling2d_1[0][0]

__

dropout_1 (Dropout) (None, 2048) 0 features1[0][0]

__

features2 (Dense) (None, 2048) 4196352 dropout_1[0][0]

__

dropout_2 (Dropout) (None, 2048) 0 features2[0][0]

__

Prediction (Dense) (None, 2) 4098 dropout_2[0][0]

===

=============================

Total params: 30,199,586

Trainable params: 30,165,154

Non-trainable params: 34,432

__

	DEEP LEARNING-BASED VISUAL CRACK DETECTION USING GOOGLE STREET VIEW IMAGES
	Recommended Citation

	Harvard Thesis Template

