589 research outputs found

    Reconfigurable Inverted Index

    Full text link
    Existing approximate nearest neighbor search systems suffer from two fundamental problems that are of practical importance but have not received sufficient attention from the research community. First, although existing systems perform well for the whole database, it is difficult to run a search over a subset of the database. Second, there has been no discussion concerning the performance decrement after many items have been newly added to a system. We develop a reconfigurable inverted index (Rii) to resolve these two issues. Based on the standard IVFADC system, we design a data layout such that items are stored linearly. This enables us to efficiently run a subset search by switching the search method to a linear PQ scan if the size of a subset is small. Owing to the linear layout, the data structure can be dynamically adjusted after new items are added, maintaining the fast speed of the system. Extensive comparisons show that Rii achieves a comparable performance with state-of-the art systems such as Faiss.Comment: ACMMM 2018 (oral). Code: https://github.com/matsui528/ri

    GGNN: Graph-based GPU Nearest Neighbor Search

    Full text link
    Approximate nearest neighbor (ANN) search in high dimensions is an integral part of several computer vision systems and gains importance in deep learning with explicit memory representations. Since PQT and FAISS started to leverage the massive parallelism offered by GPUs, GPU-based implementations are a crucial resource for today's state-of-the-art ANN methods. While most of these methods allow for faster queries, less emphasis is devoted to accelerate the construction of the underlying index structures. In this paper, we propose a novel search structure based on nearest neighbor graphs and information propagation on graphs. Our method is designed to take advantage of GPU architectures to accelerate the hierarchical building of the index structure and for performing the query. Empirical evaluation shows that GGNN significantly surpasses the state-of-the-art GPU- and CPU-based systems in terms of build-time, accuracy and search speed

    Survey of Vector Database Management Systems

    Full text link
    There are now over 20 commercial vector database management systems (VDBMSs), all produced within the past five years. But embedding-based retrieval has been studied for over ten years, and similarity search a staggering half century and more. Driving this shift from algorithms to systems are new data intensive applications, notably large language models, that demand vast stores of unstructured data coupled with reliable, secure, fast, and scalable query processing capability. A variety of new data management techniques now exist for addressing these needs, however there is no comprehensive survey to thoroughly review these techniques and systems. We start by identifying five main obstacles to vector data management, namely vagueness of semantic similarity, large size of vectors, high cost of similarity comparison, lack of natural partitioning that can be used for indexing, and difficulty of efficiently answering hybrid queries that require both attributes and vectors. Overcoming these obstacles has led to new approaches to query processing, storage and indexing, and query optimization and execution. For query processing, a variety of similarity scores and query types are now well understood; for storage and indexing, techniques include vector compression, namely quantization, and partitioning based on randomization, learning partitioning, and navigable partitioning; for query optimization and execution, we describe new operators for hybrid queries, as well as techniques for plan enumeration, plan selection, and hardware accelerated execution. These techniques lead to a variety of VDBMSs across a spectrum of design and runtime characteristics, including native systems specialized for vectors and extended systems that incorporate vector capabilities into existing systems. We then discuss benchmarks, and finally we outline research challenges and point the direction for future work.Comment: 25 page

    The IceCube Neutrino Observatory: Instrumentation and Online Systems

    Get PDF
    The IceCube Neutrino Observatory is a cubic-kilometer-scale high-energy neutrino detector built into the ice at the South Pole. Construction of IceCube, the largest neutrino detector built to date, was completed in 2011 and enabled the discovery of high-energy astrophysical neutrinos. We describe here the design, production, and calibration of the IceCube digital optical module (DOM), the cable systems, computing hardware, and our methodology for drilling and deployment. We also describe the online triggering and data filtering systems that select candidate neutrino and cosmic ray events for analysis. Due to a rigorous pre-deployment protocol, 98.4% of the DOMs in the deep ice are operating and collecting data. IceCube routinely achieves a detector uptime of 99% by emphasizing software stability and monitoring. Detector operations have been stable since construction was completed, and the detector is expected to operate at least until the end of the next decade.Comment: 83 pages, 50 figures; updated with minor changes from journal review and proofin

    Operational experience, improvements, and performance of the CDF Run II silicon vertex detector

    Full text link
    The Collider Detector at Fermilab (CDF) pursues a broad physics program at Fermilab's Tevatron collider. Between Run II commissioning in early 2001 and the end of operations in September 2011, the Tevatron delivered 12 fb-1 of integrated luminosity of p-pbar collisions at sqrt(s)=1.96 TeV. Many physics analyses undertaken by CDF require heavy flavor tagging with large charged particle tracking acceptance. To realize these goals, in 2001 CDF installed eight layers of silicon microstrip detectors around its interaction region. These detectors were designed for 2--5 years of operation, radiation doses up to 2 Mrad (0.02 Gy), and were expected to be replaced in 2004. The sensors were not replaced, and the Tevatron run was extended for several years beyond its design, exposing the sensors and electronics to much higher radiation doses than anticipated. In this paper we describe the operational challenges encountered over the past 10 years of running the CDF silicon detectors, the preventive measures undertaken, and the improvements made along the way to ensure their optimal performance for collecting high quality physics data. In addition, we describe the quantities and methods used to monitor radiation damage in the sensors for optimal performance and summarize the detector performance quantities important to CDF's physics program, including vertex resolution, heavy flavor tagging, and silicon vertex trigger performance.Comment: Preprint accepted for publication in Nuclear Instruments and Methods A (07/31/2013

    Advanced electronic structure theory: from molecules to crystals

    Get PDF
    In dieser Dissertation werden ab initio Theorien zur Beschreibung der ZustĂ€nde von perfekten halbleitenden und nichtleitenden Kristallen, unter BerĂŒcksichtigung elektronischer Korrelationen, abgeleitet und angewandt. Als Ausgangsbasis dient hierzu die Hartree-Fock Approximation in Verbindung mit Wannier-Orbitalen. Darauf aufbauend studiere ich zunĂ€chst in Teil I der Abhandlung den Grundzustand der wasserstoffbrĂŒckengebundenen Fluorwasserstoff und Chlorwasserstoff zick-zack Ketten und analysiere die langreichweitigen KorrelationsbeitrĂ€ge. Dabei mache ich die Basissatzextrapolationstechniken, die fĂŒr kleine MolekĂŒle entwickelt wurden, zur Berechnung von hochgenauen Bindungsenergien von Kristallen nutzbar. In Teil II der Arbeit leite ich zunĂ€chst eine quantenfeldtheoretische ab initio Beschreibung von ElektroneneinfangzustĂ€nden und LochzustĂ€nden in Kristallen her. Grundlage hierbei ist das etablierte algebraische diagrammatische Konstruktionsschema (ADC) zur Approximation der Selbstenergie fĂŒr die Bestimmung der Vielteilchen-Green's-Funktion mittels der Dyson-Gleichung. Die volle Translationssymmetrie des Problems wird hierbei beachtet und die LokalitĂ€t elektronischer Korrelationen ausgenutzt. Das resultierende Schema wird Kristallorbital-ADC (CO-ADC) genannt. Ich berechne damit die Quasiteilchenbandstruktur einer Fluorwasserstoffkette und eines Lithiumfluoridkristalls. In beiden FĂ€llen erhalte ich eine sehr gute Übereinstimmung zwischen meinen Resultaten und den Ergebnissen aus anderen Methoden.In this dissertation, theories for the ab initio description of the states of perfect semiconducting and insulating crystals are derived and applied. Electron correlations are treated thoroughly based on the Hartree-Fock approximation formulated in terms of Wannier orbitals. In part I of the treatise, I study the ground state of hydrogen-bonded hydrogen fluoride and hydrogen chloride zig-zag chains. I analyse the long-range contributions of electron correlations. Thereby, I employ basis set extrapolation techniques, which have originally been developed for small molecules, to also obtain highly accurate binding energies of crystals. In part II of the thesis, I devise an ab initio description of the electron attachment and electron removal states of crystals using methods of quantum field theory. I harness the well-established algebraic diagrammatic construction scheme (ADC) to approximate the self-energy, used in conjunction with the Dyson equation, to determine the many-particle Green's function for crystals. Thereby, the translational symmetry of the problem and the locality of electron correlations are fully exploited. The resulting scheme is termed crystal orbital ADC (CO-ADC). It is applied to obtain the quasiparticle band structure of a hydrogen fluoride chain and a lithium fluoride crystal. In both cases, a very good agreement of my results to those determined with other methods is observed

    Lycoris -- a large-area, high resolution beam telescope

    Full text link
    A high-resolution beam telescope is one of the most important and demanding infrastructure components at any test beam facility. Its main purpose is to provide reference particle tracks from the incoming test beam particles to the test beam users, which allows measurement of the performance of the device-under-test (DUT). \LYCORIS, a six-plane compact beam telescope with an active area of ∌\sim10×\times\SI{10}{\square\centi\metre} (extensible to 10×\times\SI{20}{\square\centi\metre}) was installed at the \DIITBF in 2019, to provide a precise momentum measurement in a \SI{1}{\tesla} solenoid magnet or to provide tracking over a large area. The overall design of \LYCORIS will be described as well as the performance of the chosen silicon sensor. The \SI{25}{\micro\metre} pitch micro-strip sensor used for \LYCORIS was originally designed for the \SID detector concept for the International Linear Collider. It adopts a second metallization layer to route signals from strips to the bump-bonded \KPIX ASIC and uses a wire-bonded flex cable for the connection to the DAQ and the power supply system. This arrangement eliminates the need for a dedicated hybrid PCB. Its performance was tested for the first time in this project. The system has been evaluated at the \DIITBF in several test-beam campaigns and has demonstrated an average single-point resolution of \SI{7.07}{\micro\meter}.Comment: 43 pages, 37 figure

    An Analysis of Muon Neutrino Disappearance from the NuMI Beam Using an Optimal Track Fitter

    Get PDF
    Thesis (Ph.D.) - Indiana University, Physics, 2015The NOvA experiment is a long-baseline neutrino oscillation experiment based out of Fermilab National Accelerator Laboratory that uses two liquid scintillator detectors, one at Fermilab (the "near" detector) and a second 14 kton detector in northern Minnesota (the "far" detector.) The primary physics goals of the NOvA experiment are to measure neutrino mixing parameters through both the ΜΌ\nu_{\mu} disappearance and Îœe\nu_{e} appearance channels using neutrinos from the newly upgraded NuMI beam line. The NOvA ΜΌ\nu_{\mu} disappearance analysis can significantly improve the world's best measurement of sin⁥2Ξ23\sin^{2}\theta_{23}. This analysis proceeds by using the measured ΜΌ\nu_{\mu} charged-current energy spectrum in the near detector to predict the spectrum in the far detector, and comparing this to the measured spectrum to obtain a best fit for the oscillation parameters sin⁥2Ξ23\sin^{2}\theta_{23} and Δm322\Delta m^{2}_{32}. Since this fit is governed by the shape of the energy spectrum, the best fit will be maximized by obtaining the best possible energy resolution for the individual neutrino events. This dissertation describes an alternate ΜΌ\nu_{\mu} disappearance analysis technique for the NOvA experiment, based on the idea that estimating the energy resolution of the individual events will allow them to be separated into different energy resolution samples in order to improve the final fit. This involves using an optimal tracker to reconstruct particle tracks and momenta, and multivariate methods for estimating the event energies and energy resolutions. The data used for this analysis was taken by the NOvA experiment from February 2014 to May 2015, representing approximately 3.52×10203.52 \times 10^{20} protons on target from the NuMI beam. The best fit oscillation parameters obtained by this alternate technique are ∣Δm322∣=2.49−0.17+0.19|\Delta m^{2}_{32}| = 2.49^{+0.19}_{-0.17}~[×10−3eV2][\times 10^{-3} {\rm eV}^{2}] and sin⁥2Ξ23=\sin^{2} \theta_{23} =~0.51±0.080.51 \pm 0.08 which is consistent with the hypothesis of maximal mixing, and with the results from T2K and MINOS+ published in 2015
    • 

    corecore