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Michael David Baird

AN ANALYSIS OF MUON NEUTRINO DISAPPEARANCE FROM THE NUMI BEAM

USING AN OPTIMAL TRACK FITTER

The NOvA experiment is a long-baseline neutrino oscillation experiment based out of

Fermilab National Accelerator Laboratory that uses two liquid scintillator detectors, one

at Fermilab (the “near” detector) and a second 14 kton detector in northern Minnesota

(the “far” detector.) The primary physics goals of the NOvA experiment are to measure

neutrino mixing parameters through both the νµ disappearance and νe appearance

channels using neutrinos from the newly upgraded NuMI beam line. The NOvA νµ

disappearance analysis can significantly improve the world’s best measurement of sin2 θ23.

This analysis proceeds by using the measured νµ charged-current energy spectrum in the

near detector to predict the spectrum in the far detector, and comparing this to the

measured spectrum to obtain a best fit for the oscillation parameters sin2 θ23 and ∆m2
32.

Since this fit is governed by the shape of the energy spectrum, the best fit will be

maximized by obtaining the best possible energy resolution for the individual neutrino

events.

This dissertation describes an alternate νµ disappearance analysis technique for the NOvA

experiment, based on the idea that estimating the energy resolution of the individual events

will allow them to be separated into different energy resolution samples in order to improve

the final fit. This involves using an optimal tracker to reconstruct particle tracks and

momenta, and multivariate methods for estimating the event energies and energy resolu-

tions. The data used for this analysis was taken by the NOvA experiment from February

2014 to May 2015, representing approximately 3.52 × 1020 protons on target from the
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NuMI beam. The best fit oscillation parameters obtained by this alternate technique are

|∆m2
32| = 2.49+0.19

−0.17 [×10−3eV2] and sin2 θ23 = 0.51 ± 0.08 which is consistent with the

hypothesis of maximal mixing, and with the results from T2K and MINOS+ published in

2015.
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CHAPTER 1

A Brief History of Neutrinos and Neutrino Oscillations

1.1 The Absence of Evidence

The physicist views the universe as a very large collection of particles that do nothing but

exchange other particles back and forth while traveling through space-time. Specifically, all

of the matter around us is composed of or can be built from a list of 12 fermions (6 quarks

and 6 leptons) that interact through fields mediated by a short list of bosons: the photon,

the W and Z particles, the gluons, and of course, the Higgs. Together, this list of fermions

and the descriptions of how they interact through these bosons is what we (somewhat

boringly) refer to as “The Standard Model” [1]. It is known that the Standard Model is

an incomplete theory since it does not include a description of things such as dark matter,

dark energy, gravity, or in fact the phenomenon of neutrino oscillations (the subject of this

thesis) in which neutrinos are observed to change back and forth between their three types.

However, it has achieved great success by accurately explaining how particles interact and

correctly predicting the existence of many particles that have been discovered in the past

decades.

The neutrino (a member of the lepton family) has proven itself to be one of the most

interesting Standard Model particles. As described below, we have discovered that there

are (at least) three species of them and that they interact very weakly with other matter.

When we say that they interact weakly with matter, we mean that they interact ONLY
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through the so called “weak nuclear” force (and of course gravity as all particles do) which

is responsible for certain reactions that allow one particle species to turn into another

through a decay process. The weak force is so weak (roughly 100 million times weaker than

the electromagnetic force) that neutrinos can easily pass through vast distances of solid

matter without leaving a trace. For example, several trillion neutrinos created by our Sun

pass through you every second, day and night. Yet over the course of your entire lifetime,

perhaps only ten of them will interact with an atom in your body. So in the absence of any

reasonably measurable evidence for their existence, it is a small miracle that we were ever

able to discover the neutrino in the first place.

1.2 The Evidence of Absence

The story of how we first discovered the neutrino despite its almost undetectable interac-

tions with matter begins in the late 1920’s. Back then, physicists were only aware of three

“particles” the photon, the electron, and the proton. Thanks to the work of Rutherford,

Becquerel, and the Curies, it was known by then that the nucleus of an atom was a densely

packed concentration of protons and that certain unstable nuclei could “transmute” into en-

tirely different elements through radioactive decay. This process of course typically involves

the ejection of one or more particles from the nucleus. It was through studying radioactive

decay that hints of the existence of the neutrino were first found.

At the time, nuclear β decay was thought to involve the emission of an electron from

the nucleus of an atom through the following reaction:

N → N ′ + e, (1.1)

where N is the parent nucleus and N ′ is the daughter. In this decay, there are only two

bodies in the final state. This leaves us with two unknown kinematic variables, the final

2



velocities of each of the two final particles. Fortunately there are exactly two equations

of constraint that can provide us with a solution. The first of which is derived from the

conservation of energy, and the second is derived from the conservation of momentum. In

this situation, provided this reaction is energetically allowed, we will have a unique solution.

This means that the electrons emitted from nuclear β decay should produce a monoenergetic

spectrum.

Of course, the electrons given off in β decay are not emitted monoenergetically. If they

were, I wouldn’t be taking the time to describe this to you! The electrons are emitted

with a continuous distribution of energies from zero up to (but not exceeding) the expected

value from the two-body decay assumption. So some energy has gone missing in this

reaction. As an interesting side note, Niels Bohr advocated for abandoning the principle

of the conservation of energy as a possible explanation. The correct explanation however,

came from Pauli.

Pauli proposed the existence of a third, undetected particle given off during β decay. The

presence of a third particle in the final state would add one additional unknown kinematic

variable (the final velocity of the third particle) without adding an additional equation of

constraint. This would explain the observed continuous distribution for the energy spectra

of the emitted electrons, making the correct form of equation 1.1:

N → N ′ + e+ ν. (1.2)

By conservation of electric charge, this particle must be electrically neutral. The fact that

this particle had yet to be observed in conjunction with β decay demonstrated that it

interacted only weakly with matter. Lastly, we can deduce that this particle must have a

very small mass because the spectrum for emitted electrons terminates at or very close to

the predicted energy from a two-body decay. Pauli originally proposed calling this particle
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the “neutron” but that name did not stick, and was repurposed for the particle discovered

by Chadwick in the early 1930’s. The name that did stick was the one proposed by Fermi,

“neutrino”, which translated from Italian means “the little neutral one.”

1.3 First Detection of the Neutrino

The direct observation of the neutrino did not occur for almost another 20 years through an

experiment conceived by Fred Reines and Clyde Cowan [2, 3]. This experiment was based

on the detection of the neutrino by inverse β decay through the reaction

p+ ν̄ → n+ e+, (1.3)

which was carried out in Hanford, Washington in the early 1950’s. Their neutrino source

was a small nuclear reactor that gives off a reasonably high neutrino flux from the β decay

of its fission fragments. Their detector consisted of a volume of cadmium-loaded scintil-

lator instrumented with photomultiplier tubes for light detection. The detector itself was

surrounded by thick layers of paraffin and lead to help ensure that the neutrinos were the

only particles entering from outside. Since the reaction in equation 1.3 results in both a

neutron and a positron, the characteristic signal that they looked for was a prompt pair

of photons from positron-electron annihilation followed by a photon delayed by a few µsec

emitted during neutron capture.

The initial results demonstrated an increase in the number of neutrino-like signals seen

when the reactor was on, but on top of a much higher background rate than expected. The

experiment was therefore redesigned so that information about the spatial origin of the event

within the detector could be obtained thus giving more power to reject background events

entering from outside. The experiment was repeated using a different nuclear reactor in

Savannah River with much greater success producing an interaction rate consistent with the
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expected results, allowing Reines and Cowan to definitively demonstrate the first detection

of the neutrino. Their results were published in 1956 resulting in Reines being awarded the

1995 Nobel Prize. Cowan unfortunately, passed away in 1974.

1.4 Missing Solar Neutrinos

The first indication that something strange was afoot regarding neutrinos came from Ray

Davis’ attempt to observe them coming from the Sun. Prior to the first detection of the

neutrino described above, it was known that the Sun was fueled by nuclear fusion reactions

and should therefore be a source of neutrinos. The net result of these reactions is the

combination of four protons to make one helium nucleus, two positrons, two neutrinos, and

lots of energy in the form of photons. Because they are so easily absorbed and re-emitted,

these photons can take thousands of years to work their out to the surface of the Sun and

by then, all information about what is happening in the interior is effectively lost. The

neutrinos however, escape very easily thanks to their incredibly weak interactions with

matter and can therefore serve as a probe to the interior of the Sun.

Ray Davis’ experiment [4] was an attempt to make use of this fact to verify the flux of

Solar neutrinos first predicted by John Bahcall in reference [5]. Davis’ detector consisted of

a 390,000 liter tank filled with liquid tetrachloroethylene (basically cleaning fluid) located

deep underground in the Homestake mine in South Dakota. Conducting the experiment

deep underground helped to reduce backgrounds from radiation and cosmic rays that are

found in copious amounts on the surface. The neutrino detection mechanism was an inverse

β decay similar to that used by Reines and Cowan through the reaction

Cl37 + ν → Ar37 + e−. (1.4)

However, unlike Reines and Cowan’s experiment which detected signals immediately, Davis
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used an ultra-pure chlorine solution and simply counted the number of argon atoms accu-

mulated within the tank after a month or more had passed. Davis succeeded in making this

rather difficult measurement and found a rate of roughly one third of the predicted rate,

publishing his first results in 1968 [4].

The large uncertainties on the predicted solar neutrino flux combined with the difficulty

in believing the claim of being able to count tens of argon atoms within a very large tank

led to an initial reluctance to take Davis’ results seriously. However, his measurement

turned out to be accurate and was confirmed many years later by the SNO experiment [6,7]

with supporting results from many other experiments such as Homestake, GALLEX, GNO,

SAGE, Super-K, and Borexino [8]. In retrospect, we can interpret Davis’ results as the

first indication that neutrinos oscillate between their flavor states. For this work, Davis was

finally awarded the Nobel Prize in 2002.

1.5 Confirmation of Neutrino Oscillations

The reduced rate of expected neutrino interactions first observed by Ray Davis can be

explained through the phenomenon of neutrino oscillations. The idea that Solar neutrinos

could be changing from one type to another in mid-flight was first proposed by Bruno

Pontecorvo in 1968 [9]. We now know that there are (at least) three flavors of neutrino, one

paired with each of the three charged leptons: electron, muon, and tauon, with each having

been experimentally observed in 1953 [2], 1962 [10], and 1999 [11] respectively. These flavor

states are defined dynamically in the sense that a neutrino created in conjunction with an

electron or positron is considered to be of the electron flavor. Similarly, a neutrino that

interacts in your detector and produces an electron or a positron is also considered to be

of the electron flavor. The neutrinos created by the Sun through a reaction such as that

shown in equation 1.2 should all therefore be of the electron flavor, which is the only flavor to
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which Davis’ experiment was sensitive. So if electron neutrinos created in the Sun oscillate

between the three flavor states as they travel, then the observed rate would be expected to

be smaller by the time these oscillated neutrinos arrived at Earth.

The complete mathematical formalism governing neutrino oscillations is explained in

detail in Chapter 2, but the oscillation probability for a neutrino created in one flavor

and observed in another is roughly proportional to sin(CL/Eν) where C is a handful of

factors (derived in Chapter 2), L is the distance that the neutrino has traveled, and Eν

is the neutrino energy. Any experiments aiming to confirm neutrino oscillations should

measure neutrinos from the same or similar sources that correspond to different values of

L or different values of Eν . Variations in either of these quantities should produce a plot

with the expected oscillatory behavior and would confirm the oscillation model.

The first experiment credited with “officially” observing neutrino oscillations is the

Super-Kamiokande (Super-K) [12] experiment based in Japan. This experiment used a 50-

kiloton water Cherenkov detector outfitted with photomultiplier tubes for light detection.

Much like Davis’ setup, the detector was situated deep underground to minimize the con-

tamination from background events. The Super-K experiment was capable of observing

what are known as “atmospheric” neutrinos. These neutrinos are created when high-energy

cosmic rays strike atoms in Earth’s upper atmosphere, creating muons and muon-flavored

neutrinos. Since cosmic rays are bombarding the Earth from all directions at all times, the

Super-K detector was able to observe neutrinos entering the detector from above and below.

Of course, the neutrinos entering from below have crossed some reasonable fraction of the

Earth’s diameter and are therefore susceptible to oscillations as compared to the neutrinos

entering from above, which have only traveled a “short” distance through the atmosphere.

By measuring the total number of muon neutrino events seen as a function of the angle with

which they entered the detector, the Super-K collaboration was able to demonstrate a clear
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depletion of the number of events entering from below compared to the number entering

from above that was consistent with a neutrino flavor oscillation model.

Another experiment credited with early confirmation of neutrino oscillations is Kam-

LAND [13]. Much like the first experiments of Reines and Cowan, KamLAND used neu-

trinos produced in nuclear reactors as a source and detected them through the reaction

shown in equation 1.3. The KamLAND detectors used liquid scintillator and photomulti-

plier tubes to detect the prompt electron-positron annihilation and delayed neutron capture

signals and was positioned underground roughly 180 km from the source reactors. With an

energy resolution of better than 10%, KamLAND was able to construct a neutrino energy

spectrum that clearly demonstrated the expected energy-dependent oscillation behavior.

Taken together, the observations made by these two experiments are consistent with the

mathematical models that predict neutrino oscillations with changes in L and Eν .

1.6 The Importance of Neutrino Physics

A great deal of progress has been made over the last 60 years towards understanding the

nature of the neutrino; however, many questions still remain. We know that neutrinos have

mass (or at least two of them do) because the oscillation framework as described in chapter

2 shows that if neutrinos were massless, they would not oscillate. However, we have yet to

measure their absolute masses. Any attempts to do so have so far only yielded an upper

limit and demonstrated that they are at least six orders of magnitude smaller than the

electron mass. We also do not know the complete ordering of the three neutrino masses m1,

m2, and m3. From measurements of Solar neutrinos [8] it is known that m1 is smaller than

m2 but whether m3 is smaller or larger than these two has yet to be determined. Answering

this question would resolve the so-called neutrino “mass ordering.”

Another unanswered question is whether or not neutrinos are Majorana fermions (the
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neutrino and the anti-neutrino are the same particle) or Dirac fermions (the neutrino and

anti-neutrino are distinct particles) [14]. It is also not known if neutrinos exhibit CP

violation or not, which could be observed through a non-zero measurement of the CP-

violating phase factor δ. Lastly, while the three neutrino flavor mixing framework has had

great success in explaining almost all experimental results, it has yet to be fully validated and

verified. It is quite possible that more precise measurements of the parameters that govern

neutrino oscillations could reveal phenomena beyond this framework, possibly even the

existence of additional flavor states as some experiments such as LSND have suggested [15].

A question that the astute reader may be wondering at this point is “why should we

bother studying a particle whose presence in our universe is barely noticeable?” This of

course is a valid question, and one that we should often ask. Neutrinos are not only

interesting, but related to many of the current big questions in particle physics. For example,

CP violation within the neutrino sector could be linked to the problem of the baryon

asymmetry in the universe. Neutrinos therefore have the potential to explain why the

universe is filled with far more particles than anti-particles. As electrically neutral objects

that only interact weakly with matter, neutrinos could also be a component of dark matter.

Of course, their very small masses, and therefore ultra-relativistic nature, means that they

cannot be the dominant component of dark matter since we know that most dark matter

must be “cold” [8]. However they could still be part of the solution to the dark matter

question and therefore contribute to structure formation in the early universe. Neutrinos

are also thought to play a critical role in supernova explosions and are therefore responsible

for helping to seed the galaxy with carbon, nitrogen, oxygen, and other essential ingredients

for life as we know it [16].

Clearly neutrinos are tied to many phenomena that strongly suggest there is more to

particle physics beyond what we currently know. In fact, since neutrinos are massless within
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the Standard Model, one could argue that the existence of mass-induced neutrino oscillations

is currently our best connection to possible new physics beyond the Standard Model. But

apart from that, by being linked to the baryon asymmetry, dark matter, and the mechanisms

that spread heavy elements into the galaxy, neutrinos have demonstrated themselves to be

directly related to the origins of this planet and the life that clings delicately to its surface.

Having a better understanding of neutrino physics can therefore help us strive towards the

ultimate philosophical question of how did we get here in the first place.
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CHAPTER 2

Neutrino Oscillations and Summary of the Experimental Status of the Field

This chapter gives a basis for understanding neutrino oscillations and provides a simple

derivation of the appropriate expressions. As is the way of the particle physicist, I will

work entirely with natural units in which ~ = c = 1. For the purposes of these derivations,

it is assumed that there are three flavors of neutrino. A more in depth derivation of the

oscillation equations can be found in [1, 8, 17, 18]. I highly recommend reference [1] for

its simplicity. Neutrino physics presents a rich landscape of questions, many of which

are currently unanswered. This chapter will only focus on the topics directly relevant to

the NOvA experiment. The equations and parameters related to many other important

and fascinating topics such as neutrino-less double beta decay and the possibility of sterile

neutrino flavors are not discussed.

2.1 Neutrino Eigenstates and the PMNS Mixing Matrix

We can describe the neutrino states using two different bases. The first is composed of the

set of eigenstates that diagonalize the weak interaction Hamiltonian, the so-called flavor

eigenstates, and are written as |να〉 where α = e, µ, τ . The second basis is formed from the

eigenstates of the free particle Hamiltonian. These are referred to as the mass eigenstates

and are written as |νj〉 with j = 1, 2, 3. Given these two bases, we can construct a unitary

rotation matrix that takes one from an expression in one of them to an expression in the
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other. This means that a neutrino of a given flavor can be expressed as a linear combination

of the mass states:

|να〉 =
∑
j

U∗αj |νj〉 , (2.1)

where U∗αj is an element of this unitary rotation matrix, commonly known as the PMNS

mixing matrix after Pontecorvo, Maki, Nakagawa, and Sakata [8].

It can be shown that with three neutrino flavors, the PMNS mixing matrix can be

described by three real rotation angles θ12, θ13, and θ23, and one complex CP-violating

phase factor δ [8]. The standard way to parameterize the PMNS matrix is to split it into

three matrices, each of which characterizes the mixing between two of the three mass states

through one of the real rotation angles. There is then some freedom to choose where to place

the complex phase factor δ and the convention is to associate it with the second matrix. In

this factored form, the PMNS matrix appears as

U =


1 0 0

0 c23 s23

0 −s23 c23




c13 0 s13e
−iδ

0 1 0

−s13eiδ 0 c13



c12 s12 0

−s12 c12 0

0 0 1

 , (2.2)

which when multiplied out becomes

U =


c13c12 c13s12 s13e

−iδ

−c23s12 − s13s23c12eiδ c23c12 − s13s23s12eiδ c13s23

s23s12 − s13c23c12eiδ −s23c12 − s13c23s12eiδ c13c23

 . (2.3)

Here I have used the shorthand notation cij ≡ cos θij and sij ≡ sin θij .

For completeness, I should note that if neutrinos are Majorana fermions, then the PMNS

matrix shown in equation 2.2 includes a fourth matrix P that contains the Majorana phases

of the form P = diag
(
1, eiα1/2, eiα2/2

)
where α1,2 are the Majorana phases. Because of the

diagonal nature of this matrix, these phases are unobservable when considering flavor oscil-
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lation experiments that measure the transition probabilities between flavors. The Majorana

matrix P can therefore be safely ignored for the derivations that follow.

2.2 Three-Flavor Neutrino Oscillations in a Vacuum

Neutrino mass states propagating through vacuum are governed by the free particle Hamil-

tonian, with the time-dependent piece of the solution to the Schrödinger equation given by

exp (−iEt). From equation 2.1, the evolution in time (t) of a neutrino flavor state can be

written as:

|να (t)〉 =
∑
j

e−iEjtU∗αj |νj〉 , (2.4)

with Ej given by the relativistic free particle energy E2
j = p2 +m2

j . Since neutrino masses

are very small with respect to their energies (which are typically ≥ a few MeV) we can

approximate the neutrino energy Ej as

Ej ≈ |p|+
m2
j

2|p|
. (2.5)

Here we are making an assumption about the 3-momenta, namely pi = pj ≡ p which is

justified in references [9,19]. The probability of oscillation from flavor α to flavor β is then

given by

Pα→β (t) = | 〈νβ (t) |να (t)〉 |2 = |
∑
j

U∗αjUβje
−i

m2
j

2|p| t|2. (2.6)

Note that the phase i|p|t which is common to all terms, has been dropped. Under the

assumption that the neutrinos are ultra-relativistic, we can use t ≈ L to write t/|p| as L/E

where L is the distance traveled by the neutrino.

13



Taking advantage of the unitary nature of U , equation 2.6 can be expanded into

Pα→β = δαβ − 4
∑
i>j

<
[
U∗αiUαjUβiU

∗
βj

]
sin2

(
∆m2

ij

4E
L

)

+ 2
∑
i>j

=
[
U∗αiUαjUβiU

∗
βj

]
sin2

(
∆m2

ij

2E
L

)
,

(2.7)

where ∆m2
ij ≡ m2

i − m2
j . Neutrino oscillations are therefore governed not only by the

four angles in the matrix U , but also by the “squared mass splittings” ∆m2
21, ∆m2

31, and

∆m2
32. Experimentally, it has been shown [8] that |∆m2

21|, is very small with respect to

either |∆m2
31| or |∆m2

32| which allows for expressions of flavor oscillation probability to be

simplified assuming |∆m2
32| ≈ |∆m2

31|. This is often referred to as the “one-mass-scale-

dominance” approximation or OMSD.

Two specific examples of equation 2.7 relevant to the NOvA experiment are the νµ

survival probability, Pµ→µ and the νe appearance probability, Pµ→e. The νµ survival prob-

ability is given by

Pµ→µ ≈ 1− sin2 2θ23 sin2 ∆31 + 4 sin2 θ13 sin2 θ23 cos 2θ23 sin2 ∆31, (2.8)

where ∆ij ≡ ∆m2
ijL/2E. For this derivation, a few reasonable approximations such as

dropping terms proportional to sin2 ∆12 due to the much longer oscillation frequency of

∆12 relative to ∆32 have been used [20]. Given the known small value of θ13, the νµ survival

probability is dominated by the term proportional to sin2 2θ23 and is more commonly quoted

using the OMSD assumption as

Pµ→µ ≈ 1− sin2 2θ23 sin2 ∆32. (2.9)

The νe appearance probability is a much richer expression as it involves δ as well as all
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three mixing angles. For vacuum oscillations, Pµ→e is given by

Pµ→e ≈ Patm + Psol + 2
√
PatmPsol [cos ∆32 cos δ ∓ sin ∆32 sin δ] , (2.10)

with

Patm ≡ sin2 θ23 sin2 2θ13 sin2 ∆31, (2.11)

and

Psol ≡ cos2 θ23 cos2 θ13 sin2 2θ12 sin2 ∆21 ≈ cos2 θ23 cos2 θ13 sin2 2θ12∆
2
21, (2.12)

where the ∓ in equation 2.10 is − for neutrinos and + for anti-neutrinos [17]. However, we

will see in section 2.3 that this expression will need to be modified due to the effects on

electron neutrinos passing through matter.

Armed with equation 2.7, a qualitative interpretation of neutrino oscillations now be-

comes clear. Neutrinos produced in charged-current (CC) interactions (interactions involv-

ing the exchange of a W± boson) always begin their life in a definite flavor state, which

behind the scenes is a superposition of the three mass states. Since m1 6= m2 6= m3, as the

neutrino travels through space, these three components of the wave function will “beat”

against each other like sound waves of slightly different frequencies traveling together. The

“beating” of these quantum-mechanical amplitudes corresponds to the oscillating proba-

bility to detect the neutrino in one of the three flavor states, with ∆m2
ij/E playing a role

analogous to the “beat frequency.” Neutrinos should not be thought of as having a definite

flavor any more than a coin should be thought of as being either heads or tails. Like the

coin, the neutrino may start out in a definite flavor state and be detected in a definite flavor

state, but the initial and final states need not be the same.
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2.3 Matter Effects

Even though neutrinos only weakly interact with other particles, they can be affected by

passing through large quantities of matter such as the Earth or the Sun in a way that is not

the same for the three flavors. This is caused by the fact that macroscopic objects contain

electrons and not muons, or tauons. Therefore when passing through matter, there is a

coherent forward scattering amplitude shown in figure 2.1 only associated with the electron

neutrino. Of course when passing through matter, all three neutrino flavors will participate

in neutral-current (NC) interactions (interactions involving the exchange of a Z0 boson) but

these scattering amplitudes are flavor independent and therefore do not affect oscillations

(excluding cases of extremely high density [18].) The net result of this additional scattering

amplitude is a change in the effective index of refraction for electron neutrinos when passing

through matter. Any oscillation probabilities involving νe or νe will therefore be measurably

different from the vacuum oscillation case.

Figure 2.1: Feynman diagram depicting the coherent forward scattering of an electron
neutrino off of an electron via a charged current interaction. This interaction sets electron
neutrinos apart from the other two flavors for neutrinos traveling through a macroscopic
object such as the Earth, producing the so called “matter effect.”

The mathematics of the matter effect can be treated by adding a potential term to the

Hamiltonian that accounts for this additional electron neutrino scattering. In the flavor
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basis, this new Hamiltonian can be written as

H = U


m2

1
2E 0 0

0
m2

2
2E 0

0 0
m2

3
2E

U † +


√

2GFNe 0 0

0 0 0

0 0 0

 , (2.13)

whereGF is the Fermi constant andNe is the matter electron number density. For simplicity,

Ne is assumed here to be constant, which is a reasonable assumption for the NOvA beam

neutrinos that only pass through the Earth’s crust, but not for neutrinos escaping from the

Sun’s core. For anti-neutrinos, equation 2.13 stays the same with the changes
√

2GFNe →

−
√

2GFNe and U → U∗. This Hamiltonian can then be re-diagonalized to obtain a new

set of mass eigenstates for neutrinos propagating through matter, and the flavor oscillation

probabilities described in section 2.2 can be rewritten in terms of these states.

After many hours (and several chalkboards) one can then make the appropriate mod-

ifications to the expression for Pµ→e described above, which has been worked out nicely

in [17]. Equation 2.10 remains unchanged, and equations 2.11 and 2.12 become

Patm = sin2 θ23 sin2 2θ13
sin2 (∆31 ∓ aL)

(∆31 ∓ aL)2
∆2

31, (2.14)

and

Psol = cos2 θ23 sin2 2θ12
sin2 (∓aL)

(∓aL)2
∆2

21, (2.15)

with a ≡ GFNe/
√

2 and the − (+) again referring to neutrinos (anti-neutrinos.) For the

810 km NOvA baseline, aL ≈ 0.23 which makes the matter effect significant for the νe

appearance channel.

Lastly, it should be noted that since the addition of the potential term in the Hamiltonian

in equation 2.13 produces a new set of mass eigenstates, the νµ disappearance probability

will not be completely unchanged by the matter effect. However, an expansion in sin2 θ13
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and the term α ≡ ∆m2
21/∆m

2
31 shows that these types of corrections to the νµ disappearance

probability are typically < 1% for experiments with neutrino energies and baselines similar

to NOvA or T2K [18]. Therefore, equations 2.8 and 2.9 can safely be used for measurements

dominated by limited statistics.

2.4 Experimental Results

2.4.1 Current Global Best Fits

Neutrino oscillation experiments are typically divided into three categories based on the

types of neutrino source, energy scales, and oscillation parameter sensitivities involved.

“Solar experiments” are those that strive to measure neutrinos created in the Sun’s core

probing very long baselines at typical energies of a few MeV. These experiments are most

sensitive to ∆m2
21 and sin2 θ12, and include experiments such as Homestake, GALLEX,

GNO, SAGE, Super-K, SNO, and Borexino. “Reactor experiments” follow in the spirit of

Reines and Cowan’s original 1956 detection of the first neutrinos. These experiments are

primarily designed to measure θ13 through the disappearance of νe created in the β− decay

of reactor fission fragments, with energies of a few MeV over baselines of a kilometer or so.

The most prominent reactor results come from Double Chooz, Daya Bay, and RENO.

The last category of neutrino experiments (to which NOvA belongs) is the “acceler-

ator/atmospheric experiments.” Through measuring neutrinos with higher energies (GeV

and up) over longer baselines (hundreds to thousands of kilometers) these experiments have

sensitivity to ∆m2
31 or ∆m2

32, and sin2 2θ23 in the νµ disappearance channel. Through the

νe appearance channel, the accelerator experiments also have some sensitivity to sin2 2θ13,

sin2 θ23, and δ, potentially giving them access to the unanswered questions of the matter

hierarchy and the octant of θ23 (described in section 2.4.2). Prominent experiments in this

last category besides NOvA include Super-K, T2K, and MINOS. More information about
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any of the experiments listed in this section and their results can be found in [8].

As described above, the three flavor neutrino oscillation parameters have all been mea-

sured by many different experiments, covering both appearance and disappearance mea-

surements, over a variety of different baselines and different energy scales. Combining their

results therefore represents a reasonable validation of the PMNS mixing matrix framework.

A global fit to these experiments using the most recent data (as of 2014) has been performed

and is summarized in [8, 21]. For this analysis, the “one-mass-scale-dominance” (OMSD)

assumption, ∆m2
31 ≈ ∆m2

32, has been used. The results from this global fit are summarized

in table 2.1.

parameter best fit (±1σ) NH best fit (±1σ) IH

∆m2
21

[
10−5eV2

]
7.54+0.26

−0.22 -
|∆m2|

[
10−3eV2

]
2.43± 0.06 2.38± 0.06

sin2 θ12 0.308± 0.017 -
sin2 θ13 0.0234+0.0020

−0.0019 0.0240+0.0019
−0.0022

sin2 θ23 0.437+0.33
−0.023 0.455+0.039

−0.031
δ/π (2σ range) 1.39+0.38

−0.27 1.31+0.29
−0.33

Table 2.1: The best fit values for the neutrino oscillation parameters within a three flavor
model. Shown (when appropriate) are the fits assuming normal hierarchy (NH) and inverted
hierarchy (IH). Within the OMSD assumption, measurements for |∆m2

31| and |∆m2
32| have

been combined into one measurement of |∆m2|. These values have been taken from [8,21].

2.4.2 Remaining Unknowns

The measurements of the neutrino oscillation parameters as outlined in section 2.4.1 present

a reasonably complete picture of the PMNS mixing matrix framework. However, simply

knowing these parameters is not all that there is to it as there are (at least) two more

relevant questions whose answers will help complete our picture of neutrino oscillations.

The first of these is the question of the neutrino “mass ordering.” From the vacuum

oscillation equations discussed in section 2.2, we can see that it is not possible to obtain
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information about the sign of the ∆m2 terms by measuring vacuum oscillations alone.

However, due to the presence of ∓aL in the matter oscillation equations discussed in section

2.3, with some knowledge about your source (whether it is emitting neutrinos or anti-

neutrinos) then the matter effect can give you access to information about the sign of ∆m2.

For solar neutrinos (which are all created as νe) the high density of the Sun’s interior plus the

largeness of its radius produces a matter effect significant enough to allow us to determine

that ∆m2
21 > 0 [8]. However, the sign of ∆m2

31 and ∆m2
32 have yet to be determined.

We have discovered that the magnitude of these two quantities is much greater than ∆m2
21

leaving us with two possible scenarios: m1 < m2 < m3 referred to as the “normal” ordering,

or m3 < m1 < m2 referred to as the “inverted” ordering.

The second question deals with the so-called “octant” of θ23. Our current best mea-

surements tell us that θ23 ≈ 45◦. However due to the ambiguity introduced by the 2θ23 in

equation 2.9, it is not possible to determine if θ23 > 45◦ (putting it in the “upper” octant) or

θ23 < 45◦ (putting it in the “lower” octant) without a measurement far beyond our current

level of precision that would allow one to fit with the smaller terms in 2.8. Another avenue

for determining the θ23 octant (discussed in more detail in section 2.6) would be to use a νe

appearance measurement that could take advantage of the sin2 θ23 term in equation 2.14.

The value of θ23 governs the relative proportions of νµ and ντ in the three mass states.

Knowing the octant of θ23 will determine how strongly each of these state couples to νµ and

ντ .

2.5 Measurements of |∆m2
32| and sin2 2θ23

Since this thesis is dedicated to a measurement of θ23 through the νµ disappearance channel,

it is worth taking a moment to discuss the other experiments that have contributed to this

measurement. I begin with a discussion of measurements from atmospheric neutrinos with
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the Super-K experiment and include the most recent results from the νµ beam oscillation

experiments T2K and MINOS+. I will conclude with a quick summary of the ντ appearance

results from the OPERA experiment.

2.5.1 Results From Super-K

The Super-K collaboration used the same 50-kiloton water Cherenkov detector built origi-

nally for the Kamiokande experiment, which is now being used for the T2K experiment [22].

Super-K detects “atmospheric” neutrinos that come from the decay of pions into muons cre-

ated in the Earth’s upper atmosphere by cosmic rays as described in section 1.5. Each pion

decay produces three neutrinos, a νµ, a νµ, and either a νe or νe depending on whether a π+

or π− was originally produced. For the purposes of their νµ disappearance measurement,

Super-K treated νµ and νµ oscillations as the same, combining all muon-like events into one

data sample.

By examining the “fuzziness” of the Cherenkov rings, the Super-K collaboration was

able to develop a multivariate method for separating electron-like events from muon-like

events. These events were grouped into two energy categories, sub-GeV and multi-GeV

based on whether the reconstructed neutrino energy was less than or greater than 1.33

GeV, and counted as a function of the reconstructed lepton direction. The lepton direction

is of course closely related to the fraction of the Earth’s diameter that the neutrino traversed

prior to entering the detector, and therefore is a proxy for the oscillation baseline. The full

analysis separated the muon-like events further into single-ring, multi-ring, and partially

contained, to help improve their overall sensitivity. The distribution for the single-ring

events is shown in the left plot of figure 2.2.

The method described here of using the lepton direction with respect to θzenith is referred

to as the “zenith angle analysis.” Super-K also performed an analysis separating events by
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Figure 2.2: Top: The expected distributions for sub-GeV and multi-GeV single-ring
electron- and muon-like events. The boxes indicate a prediction based on a model with-
out oscillations and the solid line indicates the best fit to a two flavor oscillation model.
Bottom: Measurement contours for 68, 90, and 99% confidence intervals showing the best
fit for |∆m2| and sin2 2θ with a two flavor oscillation model for both the θzenith and L/E
analyses. These plots were taken from reference [22].
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L/E instead of θzenith which is outlined in [23]. For both of these methods, a two flavor

νµ → ντ disappearance model was used to fit for |∆m2| and sin2 2θ. The best measurement

of θ (which is really θ23) comes from the zenith angle analysis which obtained a measurement

of sin2 2θ > 0.92 at the 90% confidence level using a total exposure of 1489 days [22]. Due

to the fact that binning in L/E gives a better depiction of the shape of the disappearance

spectrum, the L/E analysis resulted in a better measurement of |∆m2| but a less constrained

measurement of sin2 2θ. A measurement contour for the two-flavor oscillation fit parameters

is shown in figure 2.2 for both methods.

2.5.2 Recent Results from T2K and MINOS+

As of May 2015, additional neutrino oscillation results have been published that are not

reflected in the numbers presented in the previous sections. Specifically relevant to the

NOvA experiment are the most recent results published by T2K [24] and MINOS+ (an

extended run of the original MINOS experiment) [25]. Both experiments are similar to

NOvA in terms of the general design and the main physics goals. Each is a beam neutrino

oscillation experiment, using a primarily νµ beam to probe oscillations in both the νµ

disappearance and νe appearance channels. T2K takes place in Japan using a neutrino

beam created at the J-PARC facility, and MINOS+ is based out of Fermilab using the same

beam line that is being used for NOvA. Each of them can make a measurement of |∆m2
32|

and sin2 2θ23 through νµ disappearance, and sin2 θ13 through νe appearance. Through the

matter effect on the νe appearance measurement, they also have some sensitivity to δ, the

mass hierarchy, and possibly the octant of θ23.

Both experiments combined νµ and νe measurements to perform a full three-flavor fit

for the oscillation parameters. T2K measures sin2 θ23 = 0.514+0.055
−0.056 (0.511 ± 0.055) and

|∆m2
32| = 2.51 ± 0.10

[
×10−3eV2

]
(|∆m2

31| = 2.48 ± 0.10
[
×10−3eV2

]
), and sin2 θ13 =

23



0.042+0.013
−0.021 (0.049+0.015

−0.021) assuming the normal (inverted) hierarchy. By combining their

results with results from reactor experiments, they are also able to exclude δ = [0.15, 0.83]π

([−0.08, 1.09]π) at the 90% confidence level and show a weak preference for the normal

hierarchy and the upper octant of θ23 (although the maximal value is not excluded.) By

including measurements of atmospheric neutrinos, MINOS+ presented sin2 θ23 = 0.43+0.16
−0.04

(0.43+0.19
−0.05) and |∆m2

32| = 2.34±0.09
[
×10−3eV2

]
(2.37+0.11

−0.07
[
×10−3eV2

]
) with a slight pref-

erence for the inverted hierarchy and the lower octant of θ23. Measurement contours for

these values from both experiments are shown in figure 2.3.

Figure 2.3: Left: Sensitivity contours taken from [24] showing the current T2K mea-
surements of sin2 θ23 and sin2 θ13 vs. ∆m2

32. Right: Sensitivity contours taken from [25]
showing the most recent MINOS+ measurement of sin2 θ23 vs. ∆m2

32 as compared to an
earlier result from T2K published in 2014.
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2.5.3 Results from OPERA

The OPERA experiment is a νµ beam oscillation experiment similar to T2K, MINOS, and

NOvA. However, OPERA was designed to look for a νµ → ντ appearance signal using the

CERN Neutrinos to Gran Sasso (CNGS) beam. In July of 2015, they reported on five

candidate ντ events that allow they to claim detection of a νµ → ντ appearance signal with

a significance larger than 5σ [26]. They performed a fit for ∆m2
23 resulting in a value of

∆m2
23 = 3.3 × 10−3 eV2 with a 90% confidence interval of [2.0, 5.0] × 10−3 eV2. While

this measurement did not allow them to fit for θ23, it is an important confirmation of the

three-flavor mixing paradigm and is relevant to NOvA whose νµ are disappearing into ντ .

2.6 Physics Goals of the NOvA Experiment

The NOvA experiment will primarily study neutrino oscillations with two detectors placed

810 km apart in what begins as a coherent beam of muon neutrinos. As these neutrinos

travel from the near detector to the far detector, they will mostly oscillate from νµ → ντ

but some will also oscillate from νµ → νe. The science that will be done with NOvA can

be divided into three basic analysis categories. The first is the νµ disappearance analysis

which will measure sin2 θ23 and |∆m2
32|. The second is the νe appearance analysis which will

measure sin2 θ13, δ, and can provide insight into the questions of the matter hierarchy and

the octant of θ23, depending on what values Nature has chosen for some of these parameters.

Lastly, there are a wide variety of other physics goals outside of the scope of the standard

beam-neutrino oscillation analyses that are put into a category appropriately labeled “exotic

studies.” This category includes studying atmospheric neutrinos, supernova neutrinos, dark

matter, magnetic monopoles, sterile neutrinos, etc. These topics, while fascinating, are not

discussed further in this document.

As discussed in section 2.3, the beam neutrinos traveling through the Earth’s crust will
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affect the νe and νe appearance probabilities differently. Getting the most out of equations

2.10, 2.14, and 2.15 requires measuring the difference between these two probabilities, which

creates the need for taking separate data with a νµ beam and a νµ beam. Fortunately, the

beam provided to NOvA by Fermilab (the NuMI beam) can run in either a ν or a ν mode.

The details of the NuMI beam are discussed further in section 3.1. The current plan for

the full NOvA exposure is to run for 3 years in each of these modes, which will maximize

the potential physics reach of the νe appearance analysis. The absence of δ and the matter

effects in equation 2.8 will allow the νµ disappearance analysis to treat νµ and νµ interactions

as the same, combining all 6 years of data into one data set.

2.6.1 The νµ Disappearance Measurement

The νµ disappearance analysis will proceed by creating an energy spectrum out of data

selected as νµ CC events. An example of the true energy spectra for contained νµ CC

events in the far detector is shown in figure 2.4 with the unoscillated spectra in black

and an oscillated spectra (assuming the maximal value for θ23) in red. A fit can then be

performed to the shape of the measured energy spectrum for |∆m2
32| and sin2 2θ23 using

equation 2.9, or to |∆m2
31| and sin2 θ23 using equation 2.8. For this second more precise fit,

sin2 θ13 must be an input parameter which can be taken for example, from the high-precision

reactor neutrino measurements.

Shown in the left plot in figure 2.5 are true neutrino energy spectra for contained νµ CC

events for two different values of sin2 θ23. These plots are scaled to the expected exposure for

the first 3 years of running with the NuMI beam in ν mode. Note that the relative difference

between these two curves is greatest near 1.5 GeV which corresponds roughly to the first

oscillation maximum for the 810 km NOvA baseline. Distinguishing the two possible values

of sin2 θ23 shown in this plot therefore depends greatly on accurate energy reconstruction
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Figure 2.4: Simulated true energy spectra for contained νµ CC events in the NOvA far
detector. The exposure is assuming 3 years of nominal data taking with a 14 kiloton detector
while running the NuMI beam in ν mode.

and an accurate count of the events in this region. With reconstructed energy resolutions

of 5 - 10%, and assuming what is expected to be only a small contamination from cosmic

and NC background events, the expected sensitivities for the full 6 year exposure are shown

in the right plot of figure 2.5 for these two possible values of sin2 θ23. Note that while it

is technically possible to acquire information about the octant of θ23 using equation 2.8,

this sensitivity is beyond the NOvA νµ disappearance measurement alone. The greatest

sensitivity to the octant will come from the νe appearance measurement which is described

in the next section. A full description of event reconstruction, energy estimation, and

background estimations can be found in chapters 6, 7, and 8.

As compared to the contours shown in figure 2.2, NOvA has the potential to surpass the

Super-K measurement producing the world’s best measurement of sin2 θ23 with constraints

on |∆m2
32| being comparable to values from other experiments. While it is not correct to say

that the T2K and MINOS+ results presented in section 2.5.2 are in conflict, it is interesting

to note that T2K has a preference for the maximal value of θ23 and a slight preference

27



23θ2sin
0.2 0.3 0.4 0.5 0.6 0.7

)2
 e

V
-3

 (
10

322
m∆

2.2

2.3

2.4

2.5

2.6

2.7

 modesν+18e20 POT ν18e20 POT 

σ2 

σ1 

A Sensitivity (14 kton)νNO

Figure 2.5: Top: An example of the expected true energy spectra for contained νµ CC
events in the NOvA far detector under two different assumptions for sin2 θ23. The exposure
is assuming 3 years of nominal data taking with a 14 kiloton detector while running the
NuMI beam in ν mode. Bottom: Example of the expected sensitivity contours for the
full NOvA exposure (3 years running the NuMI beam in ν mode plus 3 years running in ν
mode) for the two values of sin2 θ23 shown in the top plot.

for the normal hierarchy and the upper octant, while MINOS+ has a slight preference

for the opposite (non-maximal θ23, inverted hierarchy, and lower octant.) The NOvA νµ
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disappearance measurement has the potential to clarify these measurements.

2.6.2 The νe Appearance Measurement

The reactor experimental results of the past few years have measured a small, but non-zero

value of θ13. For NOvA, this means potential access to δ and the questions of the mass

ordering and the octant of θ23 through fitting to the νe appearance measurements using

equations 2.10, 2.14, and 2.15. This analysis will proceed by separately counting νe and νe

events to obtain both appearance probabilities. These two measurements can be plotted

together to form what is know as a “bi-probability” plot.

An example of two bi-probability plots, generated for the full 6 year expected exposure,

are shown in figure 2.6. Several things become clear from these plots. First, while the

size of the Psol term in equation 2.10 is small, the size of the interference term between

Patm and Psol is comparable to the dominant term Patm, which can allow for a large CP-

induced asymmetry (depending on the value of δ.) Second, the matter effect separates

these ellipses into the blue and red curves for the normal and inverted hierarchies, which

can cause potential confusion with any effects from CP asymmetry.

An example of a case that would allow us to make strong statements about the mass

hierarchy and δ, would be the normal ordering with δ = 3π/2 (the starred points in figure

2.6.) This case would allow us to claim to > 2σ that the ordering was normal. If on the

other hand, Nature has chosen the inverted ordering and δ = 3π/2, then we will not be

able to distinguish a best fit of inverted ordering with δ = 3π/2 from normal ordering with

δ = π/2. In this case, input from another experiment with a different baseline such as

T2K, would be needed to have hope of distinguishing the ordering. However, we can still

claim that we have observed CP violation in this case since a non-zero value of δ would be

required to cancel out the matter effect producing equal νe and νe appearance probabilities.
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Figure 2.6: Examples of bi-probability plots for different values of sin2 2θ23. The top
plot assumes θ23 is maximal and the bottom plot assumes it is non-maximal, with two sets
of ellipses for each of the two possible octants. The star on each plot indicates the “best
possible scenario” for making the strongest statements about δ and the matter hierarchy.
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If θ23 is non-maximal, then the hierarchy ellipses in the left plot in figure 2.6 split into

the ellipses shown in the right plot, with the upper two ellipses representing θ23 > 45◦. As

with the case of resolving the ordering, determining the correct octant for θ23 depends on

the choice of hierarchy and the best fit value for δ. Shown in figure 2.7 are two possible

sensitivities to the octant as a function of δ. The top plot corresponds to the case of

maximum ambiguity between the hierarchy and δ (measuring the point where the two

upper ellipses touch in the right plot in figure 2.6) and the bottom plot corresponds to a

best-case scenario (measuring the starred point in the bottom plot in figure 2.6.)

2.6.3 Improving the Measurement of θ23

As outlined above, θ23 has already been measured by several experiments. So one might

ask why is it interesting to make this measurement again. First, despite the fact that

θ23 was the first mixing angle to be measured, it is currently the one that we know to

the least precision. The results discussed in section 2.5.2 show that some (very minor)

tension exists between the current best measurements from T2K and MINOS+ which a

more precise measurement could help to resolve. Second, a precision measurement of θ23

can help to determine the correct texture for the PMNS mixing matrix. There exists the

possibility that θ23 is maximal which may be suggestive of a new symmetry within the

lepton sector. New symmetries are of great interest to the world of particle physics since

they hold potential insight into new physics, and a precision measurement of θ23 is necessary

to either strengthen or rule out this idea. Lastly, since θ23 appears in equations 2.14 and

2.15, a more accurate measurement of this parameter from the NOvA νµ disappearance

analysis will improve information obtained through the NOvA νe appearance analysis. As

described in section 2.6.2, this analysis has the potential to shed significant light on many

outstanding issues such as resolving the mass ordering and determining the value of the
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Figure 2.7: Examples sensitivities to the octant of θ23 as functions of δ, assuming
sin2 2θ23 = 0.95 and θ23 > 45◦.

CP-violating phase factor δ.
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CHAPTER 3

Design of the NOvA Experiment

The design of the NOvA experiment varies little from what was outlined originally in the

technical design report (TDR) [27]. The main details are summarized in this chapter with

an emphasis on the items relevant to the later chapters.

3.1 The NuMI Beam

The NOvA experiment uses the NuMI (Neutrinos at the Main Injector) beam provided

by the Fermilab accelerator division as our neutrino source. The Main Injector accelerates

protons up to 120 GeV which are grouped together into six batches (see figure 3.1) that

span a spill window of 10 µsec. The protons in each spill collide with a graphite target to

create mesons (primarily pions) that produce muon neutrinos as decay products.

As of the writing of this document, the NuMI beam was operating around 300 kW which

corresponds to roughly 2.1 × 1013 POT (protons on target) per spill. However, Fermilab

is currently engaged in continuing efforts to upgrade the NuMI beam to bring the power

up to 700 kW providing 5.0 × 1013 POT per spill, roughly doubling the total NuMI beam

power provided for the majority of the MINOS experiment. This will be accomplished by

reducing the intervals between spills from 2.2 seconds to 1.33 seconds and simultaneously

increasing the beam intensity by 10%. To achieve this increase in total beam power, the

Recycler ring (previously used for anti-proton storage for the Tevatron collider program)
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Figure 3.1: The distribution of times for all hits seen with the NOvA near detector with
respect to a trigger time issued 218 µsec before the start of the beam spill. This plot includes
data from 525,899 NuMI spills taken between Feb. 14, 2015 and Feb. 17, 2015.

has been re-purposed into a pre-injector to the Main Injector. This allows for protons from

the Booster to be collected by the Recycler while the Main Injector ramps. These protons

are “slip-stacked” into the Main Injector which reduces the cycle time to 1.5 seconds. The

final step to bring the cycle time to 1.33 seconds is accomplished by increasing the maximum

proton acceleration from 204 GeV/sec to 240 GeV/sec through upgrading the existing power

supplies and adding two more RF stations. When complete, the NuMI beam will deliver an

estimated 6.0× 1020 POT per year, assuming 60% beam-up time for 10 operating months.

Once the protons have been bunched together and accelerated up to 120 GeV, they

are directed to a 95 cm long graphite target. The target is water cooled and the cooling

system has been modified to handle the increase in beam intensity. Proton collisions with

the carbon atoms in the target produce a plethora of pions and kaons which are focused

into a coherent beam by two parabolic magnetic horns (see figure 3.2) These horns can be

run in forward or reverse current mode allowing for the selection of positively or negatively

charged mesons leading to either a neutrino or an anti-neutrino beam. The focused meson
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beam then travels through a 675 m long evacuated pipe where the mesons decay producing

charged leptons and neutrinos. This decay pipe is followed by various hadron and muon

detectors for monitoring and roughly 250 m of rock which absorbs all remaining beam

products (except of course for the neutrinos) prior to reaching the near detector.

Figure 3.2: A cartoon representation of the NuMI beam.

The NOvA experiment was designed to have both detectors situated off of the main axis

of the neutrino beam. While this reduces the overall event rate seen at either detector, it has

several main advantages. Given the medium-energy focusing horn configuration (described

below) a detector situated 14 mrad off-axis will see a flux of neutrinos produced from pions

with a broad spectrum of different energies. However, the decay kinematics of these boosted

pions creates neutrinos whose energy is relatively independent of the parent pion energy.

For small angles, the flux of neutrinos created by the π → µ + ν in flight decay, seen by a

detector with cross-sectional area A and at a distance z from the pion source is given by

Φ =

[
2γ

1 + γ2θ2

]2
A

4πz2
, (3.1)

where θ is the angle between the pion direction and the neutrino direction and γ = Eπ/mπ.

The neutrino energy as a function of the parent pion energy is given by

Eν =
0.43Eπ

1 + γ2θ2
. (3.2)
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Both of these equations are plotted as functions of Eπ for several values of θ in figure 3.3.

The choice of being 14 mrad off-axis therefore creates the narrowly peaked neutrino spectra

seen in the right plot in figure 3.4.

Figure 3.3: Left: Neutrino flux as a function of the energy of the parent pion for different
off-axis angles. Right: Neutrino energies as a function of the parent pion energy for different
angles with respect to the original pion direction.

The focusing horn positions are configurable and can be chosen to provide a neu-

trino beam with different characteristics. Three different horn configurations (low-energy,

medium-energy, and high-energy) were considered when designing the NOvA experiment,

each affecting the total beam flux as well as the shape of the energy spectra. Depicted in

figure 3.4 are the expected spectra for the low-energy and medium-energy configurations.

The medium-energy tune was chosen for NOvA since at 14 mrad off-axis, it produces the

highest neutrino flux at 2 GeV (roughly the oscillation maximum for a detector situated

810 km from the beam source.) The narrowness of this distribution has the advantage that

it helps reduce our neutral-current background events which have the potential to fake a

signal in the 2 GeV region by “feeding down” from higher energies.
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Figure 3.4: Expected charged current νµ event spectra for the low-energy (left) and
medium-energy (right) horn configurations, calculated prior to oscillations for a detector
810 km from the beam source.

3.2 The NOvA Detectors

3.2.1 Physical Design

As a beam neutrino oscillation experiment, NOvA is designed to function with two separate

detectors, a near detector and a far detector (see figure 3.5.) The main purpose of the far

detector is to measure the energy spectra for our beam neutrinos, separating muon and

electron charged-current interactions from neutral-current interactions. The near detector

is designed to measure the unoscillated beam spectra so that it can be extrapolated to

the far detector, and to measure the inherent electron neutrino component in the beam.

The two detectors are as close to being functionally identical in physical structure and data

acquisition architecture as possible to help minimize the impact of systematic uncertainties.

The NOvA detectors are constructed from extruded PVC tubes called “cells” (discussed

in section 3.3.1) that span either the full width or the full height of the detector. Both of

the detectors are composed of flat planes constructed from multiple modules glued together

side-by-side. These planes are arranged in alternating, orthogonal layers oriented normal
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Figure 3.5: Both NOvA detectors shown to scale with each other (and with a cartoon
person.) The inset shows the alternating, orthogonal plane structure. The far and near
detectors are approximately 60 m and 16 m long respectively.

to the neutrino beam (see figure 3.5) which allows for our reconstruction software to track

a particle in three dimensions as it passes through multiple planes. In the far detector,

32 planes (24 for the near detector) are glued together into one solid piece called a block.

Blocks are stacked together to complete the physical structure of the detectors.

Since NOvA is aiming to simultaneously perform a νµ disappearance and a νe appear-

ance measurement, it is important for the NOvA design to be able to identify muons and

electrons, the signatures of the respective neutrino charged-current interactions. In addi-

tion, NOvA must also be able to distinguish electrons from π0s which are a common element

in neutral-current interactions and will be a component in the backgrounds for the νe ap-

pearance measurement. To achieve these goals, NOvA was designed to use relatively low

Z materials (PVC and mineral oil are both primarily carbon.) The Moliere radius [8] for

the NOvA detectors is approximately 11 cm (equivalent to the width of 2 cells) which gives

electron showers sufficient width to be distinguished from non-showering particle tracks

created by muons, charged pions, and protons. The radiation length for the detectors is
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approximately 40 cm. When a π0 is created in a neutrino interaction, the two photons

produced from the very rapid (10−17 s) decay of the π0 will on average travel a reasonable

distance from the interaction vertex before they convert (see figure 3.6.) This gap is the

hallmark sign of a π0 in the NOvA detectors and will help to distinguish electrons from π0s

provided that the neutrino interaction vertex can be identified.

Figure 3.6: Three simulated events showing NOvA’s ability to distinguish muons, elec-
trons, and π0s. The distinguishing feature of the electron over the muon is the shower-like
nature of its track, and the distinguishing feature of the π0 over the electron is the gap
between the event vertex and the start of the shower.

3.2.2 The Far Detector

The NOvA far detector has been constructed at a site near Ash River, MN. This site was

chosen because it is the furthest point away from Fermilab along the NuMI beam line still

accessible by road within the United States. At 810 km away from the beam origin, this

site is situated at the oscillation maximum for neutrinos produced with the medium-energy

horn tune. The detector is built at approximately 10 m below ground level and the neutrino

39



beam enters traveling upwards at an angle of 3◦. The detector itself is composed of a total

of 344,064 cells each of which is 15.5 m long. These cells are arranged into 896 planes placed

normal to the beam, making the full detector dimensions approximately 15.5 m × 15.5 m ×

60.0 m. The total mass of the far detector is 14 kilotons, which is roughly 65% scintillator

and 35% plastic.

Since the far detector is built on the surface at an elevation of 1220 ft above sea level,

cosmic rays have the potential to be a burdensome source of background events. For the νµ

disappearance analysis, this background is primarily muons most of which can be removed

with an appropriate set of cuts (see section 8.1.3.) For the νe appearance analysis, cosmic-

ray photons will be the background source as they can mimic electron-like showers in the

detector. To help reduce this background, the building that houses the far detector was

designed with a concrete enclosure supporting an overburden composed of barite (barium

sulfate.) This mineral was chosen for its availability and its photon stopping power due

to its high Z nuclei. Together, the 122 cm of concrete and 15 cm of barite provide an

equivalent thickness greater than 12 radiation lengths which is sufficient to reduce the

expected background from cosmic-ray photons to an acceptable level.

3.2.3 The Near Detector

The NOvA near detector is located on site at Fermilab in a small cavern adjacent to the

existing MINOS underground area (see figure 3.7.) It sits 105 m below the surface and 1015

m from the NuMI target hall, and therefore sees a much lower flux of cosmic rays and a

much higher flux of neutrino events than at the far detector. The detector is roughly 50

times smaller than the far detector with only 20,192 cells and is approximately 4 m × 4 m

× 16 m bringing its total mass to 300 tons. Much like the far detector, the neutrino beam

enters the near detector at an angle of 3◦ but these neutrinos are headed downwards instead
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of upwards.

Figure 3.7: Overhead view of the location of the NOvA near detector in the MINOS
underground area.

The smaller near detector is functionally identical to the far detector with two important

distinctions. First, the electronics for the near detector have been designed to sample each

channel every 125 ns, which is four times faster than the sampling rate at the far detector.

The data pileup in the near detector will be greater than in the far detector due to the fact

that the near detector sees 5-10 neutrino interactions in a 10 µsec window where as the

far detector sees 60-70 cosmic rays in a 550 µsec window spread out over an object that

is 50 times larger. Faster sampling helps improve the timing resolution of hits in the near

detector which in turn improves our ability to handle pileup (see section 6.3.) Second, since

the near detector is much smaller, the downstream end has been designed to include higher

density materials to help muons range out more quickly, increasing its effective fiducial

volume. This “muon catcher” is composed of eleven layers each of which contains a 10 cm

thick plane of steel followed by two orthogonal planes of standard NOvA cells. For economic

reasons, the steel for the muon catcher was re-purposed from the muon catcher used with

the NOvA prototype detector, NDOS. This means that the near detector muon catcher is

the same width as the rest of the detector, but only two thirds of the height (see figure 3.8.)
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Figure 3.8: Technical drawing of the near detector showing the smaller size of the muon
catcher (right end.) For picture clarity, only some planes in the main body of the detector
have been drawn.

3.3 The Smallest Unit of NOvA Readout

3.3.1 The NOvA Cell

The smallest physical unit with which we read out data in the NOvA experiment is the cell

as shown in figure 3.9. The basic design is a long plastic tube filled with a liquid scintillator

with a plastic fiber to capture the scintillation light. This light is transmitted down the

length of the fiber and is converted into an electronic signal by an avalanche photodiode

(APD) at the far end of the cell.

The cell itself is made out of extruded PVC, and has interior dimensions of 3.8 cm

transverse to the beam, 5.9 cm parallel to the beam, and 15.5 m in length for the far

detector and 4.0 m for the near detector. The thickness of the cell walls varies across

different types of cells from 2 to 5 mm due to structural and load-bearing considerations.

Scintillation light typically bounces off of the cell walls an average of 8 times (determined

from simulations) before it is absorbed by the transmitting fibers, so titanium dioxide was

added to the PVC to increase the cell wall reflectivity. Cells are not extruded individually

but together in groups of 16 as one plastic object (see figure 3.9.) Altogether, the PVC
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used to make the cells represents roughly 35% of the mass of the detector.

Figure 3.9: Left: Schematic of the PVC cell filled with liquid scintillator. A charged
particle induces scintillation light (blue line) that bounces around until it is absorbed by
the transmission fiber (green line.) The light is then transmitted through the fiber to the
APD. Right: Cross section of an extruded PVC group of 16 cells. The dimensions shown
are the exterior dimensions of the cell.

The scintillator inside the cells represents most of the remaining 65% of the detector

mass and is primarily mineral oil with 4.1% pseudocumene as the scintillant. The peak of

the scintillation light is emitted at 375 nm, so a mixture of PPO and bis-MSB is added

to shift these wavelengths to 425 nm to match the absorption spectra of the transmission

fibers. The attenuation length of the scintillator was measured to be 5 m and from Monte

Carlo simulations, the average path length traveled by a photon before being absorbed by

the fiber was found to be 40 cm. Some amount of Stadis-425 is also added to the scintillator

to increase its conductivity, which helps reduce the build up of static charge that occurs

when filling the PVC cells with the non-conductive mineral oil.

The transmitting fiber is 0.7 mm in diameter and is roughly twice the length of a cell. It

is composed of a core of polystyrene with R27 dye added as a wave-shifter to push the peak
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of the transmitted light to 520 nm where the attenuation length of the fiber is longer. This

core is surrounded by two layers of acrylic each of which has a higher index of refraction

than the core to facilitate total internal reflection of the transmitted light. Each fiber is

looped within the cell with both ends being read out by the same APD pixel. This allows

for scintillation light captured by the fiber (which is transmitted in both directions) to be

more efficiently detected. Light with a wavelength of 520 nm that travels 15.5 m in a fiber

is attenuated by roughly a factor of 10.

3.3.2 The Avalanche Photodiode

The detection of photons transmitted by the fibers is done with an avalanche photodiode

(APD). The NOvA APDs are custom built by Hamamatsu to match the physical design of

our fiber readout. Each is composed of an array of 32 pixels with each pixel reading out

both ends of a single fiber (see figure 3.10.) A single APD reads out 32 cells or exactly one

module. The quantum efficiency is 85% for light between 520 and 550 nm, corresponding

to the peak wavelengths transmitted by the fibers. To reduce thermal noise, each APD

is cooled to −15◦C by a thermo-electric device and the excess heat is taken away by a

continuously flowing supply of cold water.

Figure 3.10: Left: The custom designed NOvA APD showing the 32 pixel array. Right:
Close up of the end of the module that interfaces with the APD in which all 32 fibers have
been bundled together. In this picture, an individual fiber has been illuminated.
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The design of the readout system is such that the trigger threshold and pedestal level

can be set for each APD pixel individually. The pedestals are determined by measuring

a baseline noise level for each channel by rapidly sampling them when running in a non-

triggering mode. This process is know as a “Digital Oscilloscope” or DSO scan. Determining

the right triggering threshold to use for each channel is a slightly more complicated decision.

A channel’s threshold should be low enough to maximize the detection efficiency at the far

end of the 15.5 m long cells, but high enough to prevent degrading our data quality by

flooding valid information about real physics with meaningless noise. More importantly,

the thresholds should not be so low as to prevent the electronics from being able to keep

up with a data rate that is too high. The data acquisition system can handle a maximum

data rate equivalent to 6.2 kHz per channel which is roughly 50 times greater than the

nominal rate caused by cosmic ray muons in the NOvA far detector. For each channel, the

distribution of signal amplitudes from noise is measured and the width of this distribution is

used to determine the threshold. Currently, the thresholds are set to 3.9 standard deviations

above the pedestal level for each channel resulting in an overall data rate that is comfortable

for the data acquisition system [28]. The end result is that the majority of the data we read

out is noise, but this allows us to detect low levels of light from real physics at the far end

of the NOvA cells. The NOvA reconstruction software described in chapter 6 has proven

itself robust enough to be able to reliably remove high levels of noise at the offline stage,

leaving typically less than 1 noise hit in spatial and temporal coincidence with a cluster of

hits from a neutrino event.

Each APD is connected to a front-end electronics board (FEB) which serves as the

intermediary between the APD and the data acquisition system. The APDs are read out

continuously by the FEBs removing the need for an external trigger. Internally, the FEBs

automatically handle the pedestal subtraction for each channel as well as pulse shaping
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for every measured signal. The signal pulses are shaped to give them a characteristic rise

time of 460 (140) ns and a fall time of 7000 (4500) ns for the far (near) detector. This

is done for three reasons. First, it allows for light detected from individual scintillation

photons to be integrated into a single signal. Second, since the FEBs use a multiplexer to

sample each channel once every 500 ns for the far detector and every 125 ns for the near

detector, the shaping allows for a signal that occurs between two samplings to be seen.

Third, when a signal is triggered, we read out a total of four samples for the triggered

channel that included the sample that was triggered and the three samples immediately

before that. These four samples can then be fit offline using the known pulse shaping

parameters to obtain improved timing resolutions on the order of 10 ns (see section 6.1.4

for more information.) This process is known as “multi-point readout.”

3.4 The Data Acquisition System

3.4.1 Overview of the DAQ

The NOvA electronics operate in a continuous readout mode with all APD information

being being recorded in a buffer farm. The basic purpose of the data acquisition system

(DAQ) is to coordinate the readout of all APDs into one concentrated data stream to be

transmitted to the memory banks of this buffer farm for temporary storage. Here the data

can await a decision about whether it should be kept or rejected. These decisions can be

made by online processing modules or by receiving a trigger from an external source such

as the accelerator signal from Fermilab indicating a successful NuMI beam spill.

The DAQ system begins with the front end boards (FEBs) that interface with each APD,

with one FEB servicing exactly one APD. The FEB takes each shaped, pedestal-subtracted,

and time-stamped signal pulse from an APD pixel, digitizes it into 12 bits, then transmits

the digitized data to a data concentrator module (DCM). Each DCM communicates with
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up to 64 FEBs. The DCMs collect all of the information received from their FEBs within a

50 µsec window and transmits that packet of information (called a “microslice”) to a buffer

farm where the data can await a decision about whether or not it will be kept.

3.4.2 The NuMI Triggers

At the NOvA far detector, the ratio of expected signal events to cosmic rays is low enough

that a data-driven trigger system is insufficient to ensure that all neutrino events are

recorded. Therefore, an external trigger must be issued that corresponds to the occur-

rence of a NuMI beam spill. When a successful NuMI beam spill is generated at Fermilab,

a trigger signal is time stamped and a network packet is sent to both detectors (with the far

detector signal corrected for time of flight) so that the correct data can be recorded from

the buffer farm. Each NuMI spill trigger consists of a time stamp (T0) and a spill duration

(∆T .) When one of these triggers is received by the DAQ, the buffer nodes are searched

for all microslices from all DCMs that touch the trigger window (defined as the the time

between T0 and T0 + ∆T .) That data is then assembled together into a “data event” and

written to disk for permanent storage. For the NuMI beam spills, T0 occurs roughly 218

µsec before the actual 10 µsec beam spill and ∆T is 500 µsec. This results in the NuMI

beam data being roughly centered in time in the data event with a reasonable amount of

out-of-time data which can be used for side-band assessment of backgrounds. The size of

the out-of-time window on either side of the beam spill also serves as comfortable padding

in the event that our timing system is discovered to have drifted by small amounts.

3.4.3 The Timing System

To record accurate time information, NOvA requires a timing system to ensure that the

internal clocks of various DAQ hardware components are accurate and remain in sync with

each other. Naturally, it is also required that both the near and far detectors (which are
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separated by 810 km) be synchronized to an absolute wall clock so that information from

the NuMI triggers will be accurately recorded. The absolute wall clock is derived from a

GPS signal and has been verified to be correct through the laborious process of moving

an atomic clock synced to the MINOS far detector (verified to be in sync with the NuMI

beam) from the Soudan mine to the NOvA far detector in Ash River, MN and back [29].

Both the near and far detectors use two identical timing systems with one being the

primary and the other serving as a backup. Each system has a master timing unit that

is connected directly to a GPS antenna from which it derives absolute time. The master

unit drives the clock ticks for the entire system in addition to issuing reset and synchro-

nization commands when necessary. All timing information derived from the master unit

is transmitted to the DCMs where it is distributed to each of the FEBs. By issuing timing

pings from the master unit throughout the system, timing offsets for each DCM (caused by

different lengths of cable) can be reliably determined and applied to the data offline. These

DCM offsets have been checked and validated by comparing the times for hits on tracks

that cross DCM boundaries to the expected values. For more information on the timing

system, see [30].
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CHAPTER 4

Performance of the NOvA Detectors

An important part of ensuring that a particle physics experiment is a success is appropriate

monitoring of detector performance. Outlined in this chapter are the tools used for this

task, beginning with a description of the online monitoring system which provides live

feedback on basic performance metrics. Next I described the nearline monitoring system

which processes the data within an hour of it being written to disk. The nearline provides

a record of various metrics that can be used to monitor detector performance over longer

periods of time and for decisions about which data is of high enough quality to be used for

analysis. Both the online and nearline monitoring systems have been an integral part of

detector commissioning and are monitored by shifters on a regular basis. Following this I

discuss the metrics used for data quality decisions and the cuts applied to these metrics to

select periods of good detector performance.

The following is a list of terms used liberally throughout this chapter. Some of them are

defined elsewhere, but to ease the reader’s burden, I have collected their definitions here.

For more information about the physical structure of the detector or the DAQ system, see

chapter 3, specifically section 3.4.

• pixel: The smallest unit of NOvA readout. One pixel reads out one NOvA cell.

• APD: “Avalanche Photo-Diode” - One APD is used to collect the data from 32 pixels.

• FEB: “Front End Board” - The FEB performs real-time manipulation of the APD
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signals such as pulse-shaping and digitization. Each FEB services exactly one APD.

• DCM: “Data Concentrator Module” - One DCM collects the data from up to 64

FEBs.

• diblock: A physical unit of 64 detector planes. DCMs are always associated with a

specific diblock.

• data event: All detector activity associated with a specific trigger. A data event is

typically 550 µsec of readout.

• subrun: A collection of data events that occurred in succession (often represents tens

of minutes of real time data taking.)

• run: A collection of subruns that occurred in succession (often represents hours of

real time data taking.)

4.1 Online Monitoring

The online monitoring (OnMon) software provides close to real time displays of the detector

data. It is designed to leverage the framework used for offline processing by receiving events

from the live data stream. The OnMon suite has two main programs: a producer that fills

a set of histograms to track data quality, and a viewer that organizes and displays these

histograms in a meaningful way. The producer and the viewer are designed to be run

together (although they can be run independently) in an environment that gives shifters

immediate access to the data as it is being taken.

4.1.1 The OnMon Producer

The producer is the main work-horse of the OnMon framework. It can receive data either

by spooling over a file on disk, or directly from the live event dispatcher (part of the

DAQ system) through an IO module that accepts data from a socket and casts it into the
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format expected by the offline framework. The purpose of the producer is to sift through

the raw detector data, organize it into meaningful histograms, and provide access to those

histograms by writing them to disk for later use and by serving them to copies of the OnMon

viewer running at the same time. When the producer receives the data, it unpacks it into

summary classes that are passed to histogram-making classes. The goal of this organization

is to do all of this within a single set of loops, rather than force each histogram-making class

to re-implement the unpacking, making the code cleaner, more efficient, and more easily

extendable.

There are four summary classes: Raw Event, Data Block, Microslice, and Nanoslice,

which represent the “nested” organizational structure of the raw data. The raw event con-

tains all of the information for the whole event which is broken into multiple data blocks,

each data block is composed of multiple microslices, and each microslice contains multiple

nanoslices. Each nanoslice summary is therefore associated with a specific microslice sum-

mary and so on. The nanoslice summary represents the “smallest” summary object and

contains the readout information from a single triggered channel. This includes the time

and total charge for that hit, the hardware address in terms of FEB and pixel number,

and a few status bits associated with the state of the FEB. While nanoslices are associated

with individual channels, microslices are associated with individual DCMs. The microslice

summary contains all of the information reported by a DCM during a 50 µsec interval,

which includes the detector, diblock, and DCM, as well as error codes associated with the

state of the DCM. Data block summary objects are rather simple, and only contain a single

error code pertaining to missing data. Lastly, the raw event summary object contains the

highest-level information about the event such as the run, subrun, and event numbers, the

trigger type, and an error code set by the DAQ about the completeness of the entire event.

Each of the histogram-making classes must be a subscriber to one of these four levels
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of summary information. After each summary level is unpacked by the producer, a call is

made to the subscribers for that level, passing them the appropriate summaries. Because

of the nested structure of the raw data, a subscriber to one summary level receives the

information from all of the levels above it as well. For example, a microslice summary

subscriber will receive the microslice summary object in addition to the data block and raw

event summary objects. With the appropriate summary objects in hand, each histogram

making class can then fill its specific set of histograms.

Since the channel hits represent the majority of the information reported by the detector,

most of the histogram making classes are nanoslice summary subscribers. One such example

is the class that makes the “hit maps” which are two-dimensional histograms that record

channel information displayed in a grid of hardware coordinates, which can be either diblock,

DCM, FEB, and pixel, or plane and cell. Two examples of hit maps that record total hit

rates are shown in figure 4.4 in the plot gallery (section 4.4) at the end of this chapter.

Descriptions of the major relevant metrics recorded in the OnMon histograms can be found

in section 4.1.3.

In addition to storing the current state of the detector, the producer automatically

retains a series of histograms that represent recent snapshots of the detector state. These

are referred to within OnMon as “look-back” histograms. Each histogram that the producer

makes has associated with it a schedule used to refresh the look-back copies and a number

representing how many look-back copies to keep. The refresh schedules can be for example,

every 5 minutes, 30 minutes, 24 hours, or at run or subrun boundaries. When a set of

histograms with N look-backs is to be refreshed, the N − 1 look-back is copied to the N

look-back histogram, the N − 2 look-back is copied to the N − 1 histogram, etc. until

the current version of the histogram is copied to the first look-back, leaving the current

histogram blank and ready to be filled with new information. As an example, the hit maps
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displayed in figure 4.4 are refreshed every 30 minutes with 6 look-back copies kept in history.

Refreshing the look-back copies for each histogram according to their individual schedules,

is done by a single histogram management class. This class maintains control over all of the

histograms that the producer makes and handles requests made by the histogram making

classes such as the booking of a new histogram.

Many histogram parameters, including the look-back schedule, are stored in a text file

that is read by the producer at run-time. This run-time configuration is used to handle

differences between histograms required for the near and far detectors, so that identical

versions of the OnMon software can be easily deployed for each detector. Organizing things

in this way also makes changing or adding new histograms relatively easy by keeping all

histogram information, which needs to be accessed from multiple places within the code,

stored in one location. The information in this text file is parsed into a form that is made

available to the histogram management class so that booking new histograms is as easy

as possible. The information about each histogram in the text file includes things like the

binning for each axis, titles, and a variety of display options used by the viewer (described

in section 4.1.2.)

4.1.2 The OnMon Viewer

The OnMon viewer is a GUI that makes heavy use of many of the classes and objects

available through the ROOT software platform [31, 32]. It can be operated by itself by

reading a set of histograms from a file on disk that the producer created, or by commu-

nicating directly with an instance of the OnMon producer running on the same machine.

This communication is facilitated through a block of shared memory created and managed

by the producer. Multiple instances of the viewer can connect as clients to the same shared

memory segment. However in typical running, only one copy of the viewer is attached to
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the producer at any given time.

A complete picture of the OnMon viewer window is shown in figure 4.1. The majority of

the window is taken up by the canvas displaying the current histogram. In this example, the

histogram being displayed shows for all hits reported by a specific DCM, the hit time with

respect to the event trigger time T0 vs. the hit charge (ADC.) The empty box immediately

above the canvas will display information about the coordinates and contents of a histogram

bin selected by the user by single clicking on the canvas. To the left of that box are

a variety of buttons that allow the user to navigate forwards and backwards through a

history of recently viewed histograms. If the viewer is not reading histograms from a file,

then continually updated information about the current status of the producer is displayed

in the text seen directly above the navigation buttons.

Figure 4.1: The OnMon viewer.

The upper box immediately to the left of the canvas contains three tabs with different
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features. The tab being shown (labeled “Histograms”) allows the user to easily browse

through all of the available histograms which have been organized into folders. The other

two tabs, labeled “Comparisons” and “Watch List”, offer special features that are described

below. The box immediately below displays additional information about the current his-

togram useful to the user. This information includes a descriptive sentence about what

the histogram means and how it is filled, the look-back schedule, the number of look-back

histograms kept in memory, and information about how the histogram is binned. The last

box spanning the width of the viewer window at the very bottom, displays general messages

from the viewer to the user, including errors and warnings.

The OnMon viewer has a variety of other features that provide assistance to the user that

are worth mentioning. A short list of the most important features includes the following:

1. Comparison Plots: These plots are generated on demand by the user for any of

the histograms made by the producer. Reference histograms used to generate com-

parisons can either be from the look-back list or loaded from an example file on disk.

Comparison options include differences, ratios, and asymmetries which are computed

bin-by-bin for the entire histogram.

2. Watch List Plots: A suite of plots can be generated for only a selected set of

hardware, allowing the user to monitor the behavior of individual pixels or FEBs, etc.

that may be acting suspiciously. The desired hardware is selected from the viewer,

and a command is issued to the producer through the shared memory block with

instructions to begin filling plots for that hardware. The watch list plots include

distributions of times and charge for all hits reported by the selected hardware.

3. Bin Content Projections: This option will generate a one-dimensional histogram

filled with the bin contents of the current histogram, and can be coupled with options

like the comparison plots.
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4. Bin Content Descriptions: As mentioned above, single-clicking within the main

canvas on a histogram bin, will display the bin contents and bin coordinates in the

box immediately above the canvas. In the case of a hit map, the bin coordinates

are translated into the appropriate hardware coordinates (diblock, DCM, FEB, pixel,

plane, and cell.)

5. Drill-Down Navigation Assistance: All of the hit maps that OnMon produces are

created at two levels: displaying the entire detector and showing a more detailed view

for each individual DCM (figure 4.4.) By double-clicking on a specific DCM in the

detector-level hit map, the user will automatically be directed to the corresponding

DCM-level hit map. For the NOvA far detector, which has 168 DCMs, this option

makes navigating hit maps much easier.

Much of the information about the individual histograms contained in the text file

described in section 4.1.1 is relevant to the viewer as well. As is the case with the producer,

this file is read and parsed at run-time so that the viewer has immediate access to important

information specific to each histogram. For the viewer, the relevant information includes any

text to be displayed in the description box in the lower left corner of the viewer, information

about which organizational folder(s) each histogram belongs in, plot drawing options such

as a zoom range or the use of a log scale for a specific axis, and special drawing options

such as the additional lines and labels drawn on the plots in figure 4.4. Collecting these

options all in one place allows for quick and easy changes to any of the OnMon histograms.

Another advantage of using a single text file to specify all of the histogram information

is that by specifying a different set of histograms and histogram configurations in a different

text file, the OnMon viewer can display histograms created by other programs. This flexi-

bility allows any program that generates histograms about the detectors to take advantage

of the viewer features listed above, especially if those histograms are arranged in the style
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of the hit maps. For example, when a DSO scan is performed, the results are cast into the

format of the OnMon hit maps, written to a file, and opened with the OnMon viewer. A

shifter can perform visual inspections of thresholds and pixel masks generated by this scan

before applying them to the detector, using the familiar interface of the OnMon viewer.

4.1.3 OnMon Metrics

OnMon keeps track of a large number of histograms, 76 for the whole detector plus 2 for

each diblock and up to 23 for each DCM. This brings the grand total to a maximum of

406 for the near detector and 3968 for the far detector. Only 78 of these require a unique

description since the each of the 23 DCM-level plots is a version of the one of the main 76

made for the whole detector. Of course, 76 descriptions is still too much information for

this document. Described below are only the most useful or interesting metrics, specifically

the ones used to make decisions about data quality. For space conservation, all of the plots

described in this section appear in the plot gallery (section 4.4) at the end of this chapter.

1. Hit Counts: Hits are counted at three hardware levels: DCM, FEB, and pixel and

are displayed in the hit map style. Since a total hit count does not give a complete

picture of the information being reported by by a specific piece of hardware, these hit

counts are broken into three additional categories by the charge (ADC) reported for

each hit: low (ADC < 175), “MIP” (175 ≤ ADC ≤ 3200), and high (3200 < ADC).

2. Live Time: A count of the total live time summed over all processed events.

3. Hit Rates: For each hit count plot described above, there is a corresponding hit

rate plot computed by dividing the hit counts by the total live time. While the hit

count histograms are filled continuously, the hit rates are recomputed after every 100

processed events. Two examples of hit rate plots are shown in figure 4.4.

4. FEB Rates vs. Time: This plot displays the total hit rates for each FEB as a

function of time (see figure 4.5.) Each horizontal stripe is a single FEB, indicating
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fluctuations in performance and possible drop-outs.

5. Reporting Hardware vs. Time: For each data event, OnMon counts the number

of hardware elements (DCM, FEB, and pixel) that report information, and plots those

numbers vs. time. These plots can be sensitive to hardware drop-outs and can show

long-term fluctuations in the detector noise or data rates.

6. Hit Times Within the Trigger Window: This plot displays the time for all hits

with respect to the start of the trigger window (T0.) Two versions of this plot are

made, one showing the full trigger window, and one zoomed in on the NuMI beam

spill window. For the near detector, large-scale timing problems can be evident by

spikes of activity outside of the normal NuMI beam spill window. An example of the

zoomed version of this plot can be seen in figure 4.12. The version showing the full

trigger window can be seen in figure 4.14. This particular example was taken during

a time when the beam spill was outside of the expected window (indicated by the

vertical lines.)

7. Microslice Counts vs. Time: This plot displays the total number of microslices in

each data event as a function of time. For a typical 550 µsec data event, this number

should be 11× the number of DCMs being read out. A departure from this number is

an indication that some DCMs are having trouble reporting all of their information.

An example from near detector data (where the total number of microslices should

be 154) is shown in figure 4.5.

8. Alerts and Errors: The status bits (alerts) and error codes (errors) are reported by

different hardware elements as discussed in section 4.1.1. Errors represent informa-

tion reported intermittently whereas alerts, which represent the status of a particular

hardware element, are reported continuously. OnMon keeps track of 5 different alerts

and 10 errors. Both alerts and errors are recorded in two different ways: by which

hardware element reported the alert/error in the hit map style, and by a total count

58



in each category vs. time. An example of each of these can be seen in figure 4.6.

In this example, the plot of all alerts vs. time shows that an FEB somewhere in the

detector has the alert bit “FEB buffer empty” set high. The corresponding hit map

shows the offending FEB in red.

4.2 Nearline Monitoring

While the online monitoring system processes the live data stream, the nearline monitoring

system processes the data within a few minutes of it being written to disk. The main purpose

of the nearline is to create a permanent record of detector performance, including some

basic reconstruction metrics, for each subrun. This permanent record serves two primary

purposes. First, it is used for long-term (weeks to months) detector performance monitoring.

Displaying the long-term detector behavior, including some simple reconstruction metrics,

offers a different view of the data not apparent through the live version of OnMon. Second,

this permanent record is used for general data quality decisions, including determining which

subruns represent good data and which channels should be masked prior to reconstruction.

The entire nearline system functions through a series of fully automated scripts that handle

everything from data processing and transfer through the generation of performance plots

that are regularly published to a website.

4.2.1 Nearline Processing

The nearline metrics are generated by processing the raw data after it has been written

to disk through the OnMon producer and a simple set of reconstruction algorithms. As

discussed in section 4.1.1, the OnMon producer leverages the offline framework to process

data and can be run independently of the viewer using files on disk as input. Even though

a version of the OnMon producer is often processing the live data stream, rerunning it over
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the data on disk is necessary for a couple of reasons. First, the live version depends on being

properly operated by the shifter and is often started after data taking has already begun.

Second, only a fraction of the total data is seen by the live version due to the fact that

the rate at which OnMon processes data and the rate at which the dispatcher serves data

to OnMon are not the same. Nearline reprocessing of the raw data through the OnMon

producer provides a controlled way of generating reliable OnMon metrics that includes all

data taken.

The reconstruction used for nearline processing includes a clustering algorithm and a

simple tracker. The clustering algorithm (described in detail in section 6.3) is designed to

group hits together based on their spatial and temporal proximity, isolating clusters that

originated from individual physics events and separating hits judged to be noise. These

clusters are referred to as “slices” and are typically individual neutrino interactions or cosmic

rays. All hits labeled as noise are put into a single cluster called the “noise slice.” The tracker

was written specifically for quick processing of cosmic ray data and is appropriately referred

to as “cosmic tracker.” It works by fitting a straight line to the slice hits in each view to

create two, two-dimensional tracks which are then merged into a single three-dimensional

track. If the quality of the 2D tracks is sufficiently low, which can be caused by a variety

of different problems, then the 2D tracks can remain unmerged. This tracking method

works well for cosmic rays given their highly linear topology. Both algorithms are relatively

simple and very quick, and are therefore appropriate for generating nearline reconstruction

metrics.

Nearline processing takes place across multiple computers that are dedicated to this

task. On these machines, an automated set of scripts checks for new data on disk every few

minutes, and spawns jobs to process any new files. These scripts have checks in place to

ensure that files are not processed more than once and that a maximum number of running
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jobs is not exceeded. The output from these nearline processing jobs includes an OnMon

histogram file and a separate file containing histograms filled with reconstruction metrics

based off of slices and cosmic tracks. An additional set of automated scripts handles the

regular transfer of these files to a permanent storage location and clean up of old files on

the local disks.

The raw data files processed by the nearline contain data events separated by trigger

type. Since different triggers can represent data with different topologies (number of hits

per slice, average charge deposited per hit, etc.) a decision must be made to process triggers

that present a clear picture of the detector behavior so that accurate data quality metrics

can be obtained. A good choice of highly consistent data for both of the detectors are cosmic

rays. Since the far detector sits on the surface, any 550 µsec readout of data will contain

a snapshot of cosmic ray activity. Therefore, the far detector nearline processing combines

both the calibration and NuMI beam triggers. Cosmic rays are rare enough in the near

detector that they must be captured through one of the data-driven trigger streams (called

the “DDT-Activity” trigger.) The NuMI beam spill triggers also represent important yet

qualitatively different information about the near detector performance. Processing the

NuMI triggers can give insight into things like the detector response as a function of beam

power and the synchronization of the timing system with respect to the NuMI beam spills.

The beam events themselves occur in high enough quantities per subrun that they can

be used in place of the DDT-Activity triggers to determine many of the OnMon metrics

such as the hit rates. Currently, we process both the NuMI and DDT-Activity trigger files

independently but we use only the information from the NuMI trigger files to assess near

detector data quality.

Once the nearline output files have been transferred to the permanent storage location,

they can be used for a variety of tasks. The three primary uses are to generate performance
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plots that are posted to a monitoring website, to generate a list of good subruns to be used

for analysis, and to determine bad channel masks. The monitoring website is discussed

in section 4.2.2 and determining the list of good subruns is discussed in section 4.3. The

bad channel masks are determined from the hit rate histograms like the ones shown in

figure 4.4 in the OnMon files. The information in these histograms is used to determine

which channels are too hot or too cold and should be masked prior to reconstruction.

Through these three operations, the files created by the nearline processing framework have

provided the foundation for all data quality decisions and have been absolutely essential for

commissioning both of the NOvA detectors.

4.2.2 Nearline Metrics

Once the nearline output files have been transferred into permanent storage, they can be

used to assemble plots that monitor the long-term performance of the detectors. On a

dedicated machine, another series of automated scripts looks for new nearline files and

spools over them to generate a set of performance metric plots that are regularly posted

to a website. These scripts make plots for three time intervals: the past 24 hours (which

are refreshed every 10 minutes), the past week (refreshed every hour), and the past 30 days

(refreshed once per day.) The total time delay between the raw data originally being written

to disk and information about that data appearing in the nearline 24-hour plots, is on the

order of one hour.

There are two nearline websites available, the main nearline page and what is referred to

as the nearline “frontpage.” The main nearline page displays a total of 56 plots broken into

8 categories for each detector and for each of the three time intervals. The near detector

contains one additional category with 4 plots related to the NuMI beam time peak. This

page includes a short description of each plot, links to related websites, and java-enabled
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buttons that allow the user to easily select and view only a specific set of plots. The nearline

frontpage includes just the 4 “most important” plots, collected in one place for a simple

overview of detector health. Each of these plots is accompanied by an example of what

the plot should look like (i.e. through a reference plot) with a link to instructions on what

actions to take if this is not the case.

Described below is a sample of some of the most informative nearline plots. All of the

corresponding pictures have been assembled in the plot gallery (section 4.4) at the end of

this chapter.

1. FEB Hit Rate Spectra vs. Time: This plot shows the FEB hit rate spectrum

computed from the first histogram shown in figure 4.4, for each subrun as a function of

the subrun start time. An example of typical behavior during good running is shown

in figure 4.7. A “bad” example, taken during early commissioning when the detector

electronics were not yet being cooled, is shown in figure 4.14.

2. Average Number of Noise Hits per Subrun vs. Time: This plot shows the

average number of noise slice hits for each subrun as a function of the subrun start

time. Large scale oscillations (days to weeks) in this plot have been linked to envi-

ronmental factors such as the humidity level in the detector hall [33]. An example is

shown in figure 4.7.

3. Number of Active FEBs per Subrun: This plot shows for each subrun, a count

of how many FEBs were active (had a hit rate > 0) for that subrun plotted as a

function of the subrun start time. Similar plots are kept for the number of active

DCMs and active pixels. The example in figure 4.8 shows the typical behavior for the

far detector: over a period of a few hours, a small number of FEBs will stop reporting

information but can be brought back through issuing a refresh signal from the timing

system. Determining which FEBs are dropping out is accomplished with the FEB

63



Dropout Counts plot.

4. FEB Dropout Counts: With information from multiple successive subruns, the

nearline keeps track of how many times each FEB switches from a reporting state to

a non-reporting state (classified as an “FEB dropout.”) For each FEB, the number of

dropouts is recorded in the OnMon hit map style. These FEBs can then be added to

a list to be monitored and possibly replaced. An example is shown in figure 4.8.

5. Percentage of Empty Spills: For each subrun, the number of events that contain

zero hits is counted and plotted as a percentage of the total number of events in that

subrun as a function of the subrun start time. This plot normally hovers at or very

near zero. An example of a period when the DAQ was experiencing trouble is shown

in figure 4.14.

6. Number of Slices per Spill: This plot shows the 1D distribution of the number of

slices per “spill” (i.e. - trigger) for all spills within the 24-hour, week, or 30-day time

interval. An example is shown in figure 4.9.

7. Average Number of Slices per Spill vs. Time: This plot shows the mean of

the Number of Slices per Spill histogram for each subrun plotted as a function of the

subrun start time. An example is shown in figure 4.9. Many types of poor detector

behavior (DCMs out of time sync, partially complete or empty events, unusually high

noise rates, etc.) can have a large impact on the total number of slices produced.

8. Trigger and Spill Rates vs. Time: This plot shows the rate of recorded cal-

ibration and NuMI triggers for each subrun as a function of the subrun start time.

Superimposed is the delivered beam spill rate determined from a database maintained

by the accelerator division. This plot helps ensure that beam trigger signals at both

detectors are not being missed. An example is shown in figure 4.10.

9. Track Fractions vs. Time: This plot shows the percentage of 2D, 3D, and contained

3D tracks produced by the cosmic tracker for each subrun as a function of the subrun

64



start time. An example of typical far detector behavior in which > 99% of tracks are

3D is shown in figure 4.10 and an example from an early commissioning period when

this metric was much less stable is shown in figure 4.14. Many types of poor detector

behavior (DCMs out of time sync, partially complete or empty events, unusually high

noise rates, etc.) can be seen in this plot through an increase the percentage of 2D

tracks.

10. Track Start Positions: Shown in this plot are XZ and YZ projections for the

starting positions of all 3D tracks produced by the cosmic tracker. An example from

far detector data, which shows the dominance of top and side entering cosmic rays,

can be seen in figure 4.11.

11. Timing Peak Distribution: This plot shows the distribution of the hit times for

all hits with respect to the trigger time (T0) taken directly from the OnMon files (see

the description of the “Hit Times Within the Trigger Window” plot in section 4.1.3).

An example of the version zoomed in on the NuMI beam spill window is shown in

figure 4.12. This example was taken from a time when the NuMI beam was running

in a 6 + 2 batches, partial slip-stacking mode.

12. Timing Peak Distribution vs. Time: Shown in this plot is the timing peak

distribution for each subrun as a function of the subrun start time. This plot can

show not only variations in the intensity of the beam over time, but any drifts or

jumps in the location of the beam window as well. An example is shown in figure

4.12.

13. PE Distribution for Slices and Tracks: This plot shows the PE distributions for

all hits broken into 3 categories: all hits in the noise slice, all hits in non-noise slices,

and all hits on tracks made by the cosmic tracker. “PE” is the number of photo-

electrons seen in a given hit (a simple conversion from units of ADC.) An example
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from far detector data is shown in figure 4.13. Problems with channel thresholds,

APD gains, and increased noise rates can be seen in this plot.

4.3 Data Quality Selection

Because of the way that the nearline processing is done (described in section 4.2.1), the

output files are representations of the average detector behavior over a subrun. The major

data quality decisions, which are based on the nearline output files, are therefore made on a

subrun by subrun basis. A subrun for the far (near) detector is approximately five minutes

(one hour) of real-time data taking. Intermittent failures, such as temporary interruptions

in the DAQ, can happen during an otherwise stable subrun. Additional data quality cuts

are therefore made at the data event level to remove these problems.

4.3.1 Subrun Level Cuts

Many of the OnMon and nearline metrics described in this chapter expose the interesting

subtleties of detector behavior and have been extremely helpful in diagnosing problems,

and commissioning both of the NOvA detectors. However a simple and reliable set of data

quality cuts can be created from just a small subset of the nearline information. The major

data quality cuts were optimized for each detector through a series of studies [34, 35]. The

cuts for each detector are described below. More information about the subrun-level data

quality cuts can be found in [36].

Far Detector Cuts:

1. Diblock Cut: This cut is designed to determine how much of the active hardware can

be labeled as “good” and works through a bottom-up series of hardware assessments

starting with the pixels. A pixel is considered good if the total hit rate is between

100.5 Hz and 103.5 Hz. An FEB is considered good if the number of bad pixels is < 7.
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A DCM is considered good if the number of bad FEBs is < 9. A diblock is considered

good if all DCMs are good. Lastly, the subrun is considered good if there are at least

four good consecutive diblocks.

2. Median Detector MIP Hit Rate: For all reporting pixels in the detector, the

median hit rate in the MIP range (see the description of the “Hit Counts” plot in

section 4.1.3) is required to be between 13 Hz and 23 Hz.

3. Live Time: This cut was designed to ensure that a subrun was long enough to obtain

reliable information about pixel hit rates, and to remove short subruns which are in

general, indicative of bad data. Subruns are required to have a total live time > 1.0

sec, which results in approximately 20 MIP hits per pixel and is roughly 1800 events

(if each event is 550 µsec long.)

4. Reconstruction: There are two reconstruction cuts used. The first ensures that the

number of slices produced (normalized to the number of active channels) is neither too

low nor too high, and the second removes data in which the cosmic tracker produced

too many bad tracks. The slice cut requires the number of slices per event per 104

active channels to be between 1.2 and 3.2, and the track cut requires the fraction of

2D tracks to be < 15%. Subruns that fail these cuts typically represent extremely

noisy data, or data taken with all detector DCMs out of time sync.

5. File Time Stamp: This category of cuts removes the very small number of subruns

that have experienced failures that can occur within the DAQ when assembling nano

and microslices together into data events and writing the events to disk. The cut

requires the subrun start time to be before the end time, the time stamp for the

subrun to be after the year 2012, and the subrun to have at least one non-empty data

event. In figures 4.2 and 4.3, this category is labeled as “other.”

Near Detector Cuts:
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1. Diblock Cut: The criteria for a “good diblock” is the same as for the far detector

with two exceptions. First, not all near detector DCMs have 64 FEBs, so a near

detector DCM is considered good if > 80% of the FEBs are good. Second, for the

subrun to be considered good, all 4 diblocks (that is, the whole detector) must be

good.

2. Median Detector MIP Hit Rate: This is the same as for the far detector, with the

accepted hit rate range being 12 Hz to 20 Hz. Since hit rates in the near detector are

proportional to the beam intensity, these rates are normalized to a “nominal” NuMI

spill of 2.5× 1013 POT.

3. Number of Triggers: The near detector cuts use a count of the number of NuMI

triggers seen within the subrun as a proxy for live time.

4. Reconstruction: The near detector reconstruction cut only requires the mean num-

ber of slices per event to be between 3.5 and 5.5. This number is also normalized to

a “nominal” NuMI spill since the number of slices is also proportional to the beam

intensity.

5. Fraction of Empty Spills: Empty spills (a data event with no slices) can be recorded

for the near detector when global DAQ failures occur, or when the NuMI beam is not

running. Near detector good subruns are required to have a fraction of empty spills

< 3%.

6. Timing Peak: This cut determines whether or not there were any shifts in the near

detector timing system by examining the times at which beam events occurred. To do

this, a fit is performed to a plot of the subrun slice times (the average of all hit times

within the slice) to determine the start and end of the NuMI timing peak. The start

time is required to be between 217 µsec and 219 µsec, and the end time is required to

be between 227 µsec and 229 µsec.

7. File Time Stamp: This category is the same as for the far detector.
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Figure 4.2: Example distribution of far detector subruns in terms of the median MIP hit
rate variable. “Other” refers to the file time stamp cut.

Figure 4.3: Example distribution of far detector subruns in terms of the 2D track fractions
variable. “Other” refers to the file time stamp cut.

Two examples of the subrun distributions from far detector data with respect to the

cuts listed above are shown in figures 4.2 and 4.3. Each plot is color coded by which cut

caused each subrun to fail, showing that often a bad subrun fails multiple cuts. Plots

of this type are also posted regularly to the main nearline website. For the far detector,
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an additional group of subruns identified by shifters as “untrustworthy” due to alternate

detector running conditions, are manually labeled as bad. For the far detector, a total of

approximately 250,000 subruns were recorded, 72.4% of which were labeled as good. For

the near detector, a total of approximately 3,400 subruns were recorded, 86.7% of which

were labeled as good. A summary of the number of far and near detector subruns that

failed each of these cuts is listed in table 4.1.

cut category far det. (%) near det. (%)

file time stamp 0.1 0.1
live time < 0.1 -
number of triggers - 6.0
timing peak - 3.9
empty spills - 7.0
hit rates 0.7 5.1
good diblocks 23.5 3.2
2D track fraction 0.2 -
number of slices 0.7 4.0
manual removal 3.0 -

total bad subruns 27.6 13.3

Table 4.1: Percentage of subruns for both detectors that failed each of the subrun-level
data quality cuts. The percentages do not add up to the totals due to subruns failing
multiple cuts.

4.3.2 Event Level Cuts

The first of the data event level cuts is based on the “DCM edge metric” [37]. This metric

was designed to catch intermittent failures in which multiple DCMs are out of time sync

with the other DCMs in the detector, resulting in broken tracks that could mimic contained

events. This occasionally happened at the beginning of a run and was often resolved after a

period of unsynced running. The metric is a count of the fraction of the tracks within a data

event that successfully cross the boundary between two DCMs. For a typical far detector

event, this number is relatively stable near 0.6. A cut of 0.2 was found to be sufficient to

70



remove out of sync data events for the detector [37]. This cut is only applied to the far

detector.

The near detector uses a different metric to remove data events in which information

from DCMs was missing. It was found from a sample of near detector subruns that 0.03%

of NuMI trigger events had one or more DCMs that reported no hits [38]. To remove these

events, the number of hits in each DCM is counted on an event-by-event basis. Events with

no hits reported by one or more DCMs are cut. Of course, having a properly functioning

DCM that reports no hits within a 550 µsec NuMI beam event can happen by chance if

no particles pass through that DCM and no noise hits are reported by any of the APDs

connected to that DCM. However, DCMs typically report 10-20 noise hits every 550 µsec,

so a properly functioning DCM reporting no hits will be rare enough that cutting these

events was judged to be an acceptable loss. In addition to this, a specific group of near

detector cells were found to be susceptible to light leaks [38]. This was discovered during a

period of running with the lights turned on in the near detector cavern. To remove these

events, a cut is applied that requires the fraction of hits outside of the NuMI beam spill

window in the affected cells out of the total number of hits to be less than 45%. A physical

“light-blocking” mechanism has since then been installed to prevent future light leaks.

A variety of metrics regarding the quality of the NuMI beam are provided to all Fermilab

experiments by the Accelerator Division on a spill by spill basis. Several of these metrics

were chosen for the event level cuts to ensure that the beam was of high enough intensity

and on target [39,40]. These cuts require the number of POT to be > 2×1012, the measured

current in the focusing horns to be between −202 and −198 kA, the X and Y position of

the beam to not stray more than 2.0 mm from the center of the target, and the beam width

to be between 0.57 and 1.58 mm.
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4.4 Gallery of OnMon and Nearline Plots

This section includes the plots fully described in sections 4.1.3 and 4.2.2.

Figure 4.4: OnMon Plots - Hit map for the NOvA near detector displaying the average
pixel hit rate for each FEB (top.) Hit map representing DCM 2 in diblock (DB) 2 show-
ing the hit rates for each individual pixel (bottom.) The large boxes represent a single
DCM and the small boxes are an individual FEB. White spaces are either non-reporting or
uninstrumented hardware.
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Figure 4.5: OnMon Plots - FEB rates vs. time (top) and total number of microslices per
data event vs. time (bottom.)
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Figure 4.6: OnMon Plots - All alerts reported vs. time (top) and a DCM-level hit map
for the “FEB buffer empty” alert (bottom.)
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Figure 4.7: Nearline Plots - FEB hit rate spectra vs. time (top) and average number of
noise hits per subrun vs. time (bottom.)
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Figure 4.8: Nearline Plots - Number of active FEBs per subrun vs. time (top) and FEB
dropout counts (bottom.)
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Figure 4.9: Nearline Plots - Distribution of the number of slices per spill (top) and average
number of slices per spill vs. time (bottom.)
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Figure 4.10: Nearline Plots - Calibration and NuMI trigger rates vs. time (top) and track
fractions vs. time (bottom.)
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Figure 4.11: Nearline Plot - Track start positions.
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Figure 4.12: Nearline Plots - NuMI timing peak (top) and NuMI timing peak vs. time
(bottom.)
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Figure 4.13: Nearline Plot - PE distribution for slices and tracks.

Figure 4.14: Nearline examples of bad detector performance. They are (clockwise from
the top left) FEB hit rate spectra vs. time, track fractions vs. time (3D tracks in red, 2D
in blue, contained 3D in green), percent empty spills, and timing peak distribution (from
OnMon.)

81



CHAPTER 5

Simulating NOvA Data

The full NOvA simulation suite includes many steps, which are run sequentially saving the

output from each step to reduce the complexity and total computational time. The first

step is to simulate the NuMI beam. This is followed by modeling the generation of neutrino

interactions and cosmic rays within the detectors, and the propagation of any particles

through the detector geometry. The last simulation step is to model the detector response

to these particles ending with files that match the output format of the raw data. This

chapter briefly describes these steps and includes examples of both real and simulated data.

5.1 Simulating the NuMI Beam

The simulation of the NuMI beam begins by modeling the hadrons produced when 120

GeV protons collide with the graphite target, and tracking them as they pass through the

magnetic focusing horns and subsequently decay into neutrinos. All of this is handled by

FLUKA [41] and Geant4 [42] through the FLUGG [43] interface. The output from the beam

simulation is a flux file filled with neutrino “rays” where each ray is a neutrino of a given

flavor and energy, traveling in a specific direction. Each of these rays retains information

about its parentage such that downstream reweighting of the hadron production models

can occur if desired.
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5.2 Simulating Detector Events

Neutrino interactions within the NOvA detectors are simulated using GENIE [44], with

some additional code that interfaces with GENIE to serve the specific NOvA simulation

needs. Taking the flux files as input, GENIE combines information about interaction cross

sections with a user supplied geometry to determine if an individual neutrino ray interacts

within the detector. If it does, then GENIE will determine the relevant information about

the interaction including the vertex location and the interaction kinematics. The default

νµ CC interaction cross section used by GENIE is shown in figure 5.1. GENIE also handles

propagating the primary particles created by the neutrino interaction through the nucleus,

modeling inter-nuclear scattering and absorption. The output from GENIE is a list of

the particles that escaped the nucleus and their kinematic variables. For cosmic rays, the

generation of initial particle 4-vectors is done using the CRY [45, 46] simulation package.

This package generates the flux list of particles created in cosmic ray showers well above

the detector that can be handed off to the next simulation step.

Neutrino interactions are sufficiently rare in the far detector (approximately one for

every 10,000 spills) to be simulated one at a time. The beam flux at the near detector

however, is high enough to produce multiple neutrino interactions within the detector per

spill as well as a large amount of activity from interactions that occur in the surrounding

rock (“rock events.”) Accurately simulating the near detector data events therefore requires

including a large volume of rock in the detector geometry model. Full simulations of NuMI

beam spills (assuming a 700 kW beam) for the near detector with a sufficient amount of

rock typically produce 700-800 neutrino interactions, of which only about 20 result in any

energy deposited in the detector [47,48]. Of these 20 interactions, roughly 3-4 have a vertex

within the detector with the rest being rock events.

To save computational time and to dramatically reduce file sizes, we developed an alter-
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Figure 5.1: The GENIE default cross section for νµ CC interactions on an isoscalar target,
taken from [44]. The shaded band indicates an estimated uncertainty on the free nucleon
cross section.

nate strategy for generating the near detector interactions. First, a large sample of single

rock events was assembled by generating neutrino interactions one at a time, only keeping

those that originated in the surrounding rock and deposited energy in the detector. Next,

full beam spills were simulated with a geometry that included the detector but not the

surrounding rock. Each of these beam spill simulations was then mixed with a Poisson-

distributed random number of rock single events to emulate the expected near detector

data. The mean for this Poisson distribution was determined by simulating single rock

events, counting only the ones that touched the detector, and normalizing by the ratio of

the expected number of protons-on-target (POT) per spill to the total accumulated num-

ber of POT for all of the rock singles generated. A cross-check of the mean computed by

this method was done by simulating roughly 10,000 spills with the full rock plus detector

geometry and counting only the relevant rock events per spill [48].

The next stage of simulation takes all particles created by either GENIE or CRY and
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propagate them through the detector geometry model, simulating particle trajectories and

energy deposition through processes such as multiple scattering, decays, and secondary

particle generation. Geant4 [42] is used again for this step with the output being a list of

“Fiber in Liquid Scintillator Hits” (FLSHits) which represent true energy deposited in the

detector.

5.3 Simulating the NOvA Readout Response

The response of the NOvA detectors is modeled with two software modules specific to the

NOvA experiment [49,50]. The first converts FLSHits into scintillation light and determines

how many of those photons are collected by the fibers in the cells. The fiber collection

efficiency is a function of the position along the cell and was determined from a ray tracing

simulations. The collected photons are split, with half traveling in each direction along

the fiber, and attenuated according to measured results from fiber quality control tests, in

order to compute the number of photons that are expected to arrive at the APD. The true

number of photons captured by the APD is calculated through Poisson sampling, using the

expected number as the Poisson mean. The final simulated APD signal combines the signals

from the photons arriving at the APD with a model of the known APD noise response.

The second module simulates the readout response of the NOvA FEBs to the APD

signals. As described in section 3.3.2 the FEBs perform in real time the pulse-shaping

and pedestal subtraction, resulting in a digital output signal. This module simulates these

processes while introducing electronic noise. For cells with FLSHits, Gaussian-Markov

processes are used to add noise to the shaped pulse from both current and voltage sources.

Noise in cells without FLSHits is modeled by drawing from a distribution of unclustered

hits taken from real data. Shown in figure 5.2 is a comparison of the ADC distribution for

cosmic-ray hits between simulations and far detector data.
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Figure 5.2: A comparison of the ADC distribution for hits on cosmic tracks that cross
more than 20 planes between simulations made with CRY and far detector data. Cosmic
tracks are produced by the tracking algorithm described in section 4.2.1.

5.4 Fine Tuning the Simulations With Data

There are often unanticipated detector response effects not modeled by the simulation.

Through a comparison to the near detector data, two such effects have been discovered that

have been incorporated into the simulation. Those effects are the quenching of scintillation

light modeled by Birk’s Law, and a reduction in the overall APD output caused by large

energy deposits in a single channel referred to as the “APD sag” effect.

5.4.1 Tuning the Birks-Chou Suppression Parameters

In a scintillating material, the observed light yield is proportional the the energy deposition

rate dE/dx. However at high energies, the light yield begins to quench due to not enough

charge being present in the surrounding medium. This is well modeled by an empirically

derived relationship known as Birks-Chou attenuation [51] in which the light yield is taken

to be

LY ∝
dE
dx

1 + kB
dE
dx + kC

(
dE
dx

)2 , (5.1)
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where kB and kC are material dependent parameters. The original NOvA simulation model

used only the Birks parameter kB with a number that did not appear to match measured

values of dE/dx for protons in data [52]. A study was done that showed that including the

second order Chou parameter kC allowed the simulation to be tuned so that it matched the

near detector data. This tuning produced values of kB = 0.04 cm/MeV and kC = −0.0005

cm2/MeV2 which matched the data well [53, 54].

5.4.2 Modeling the APD Sag Effect

Through testing the APD response with a light-injection system, it was discovered that a

large amplitude pulse on one APD channel caused the baseline for all other channels on the

APD to drop, resulting in a lower pulse height for any signals seen in those channels [55,56].

Figure 5.3 shows an example of this “APD sag” behavior, which is likely a simple effect

caused by the limitations of the electronics. Bench measurements of the APD response in

Figure 5.3: Results showing the readout for all 32 channels on a single APD when light
was injected into just channel 11. Channel response was measured in units of ADC as a
function of time in units of 125 ns. The plot on the right zooms in on the y-axis showing
the sag effect on the other 31 channels. This plot was taken from [56].

this situation showed that the sag effect was consistently 1.86% across different channels

and for different amounts of injected light [56]. Modeling this behavior in the simulation was

achieved by incorporating a function of the shape shown in figure 5.3. This model performed

well when tested against the data by looking for cell hits with large energy deposits and
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examining the response of the other cells on the same APD [57,58].

5.5 Event Displays

The end result of all of the stages of the simulation described above are files containing

simulated events that have been cast into the same format as the raw data, which allows

the simulations and the data to be easily treated in the same way for the purposes of

reconstruction and analysis. Figures 5.4 through 5.7 show real and simulated data drawn

with the NOvA event display tool for both detectors. The event display is a basic ROOT

[31,32] GUI that draws the information about the event on four main “canvases.” The top

two canvases display the hits in the XZ and YZ planes which are reading out the vertical and

horizontal cells respectively. The bottom left canvas shows a 1D histogram of the hit times

with respect to the trigger time T0, and the bottom right canvas shows a 1D histogram of

the ADC spectrum for all hits.

Figure 5.4 shows a 550 µsec readout of far detector cosmic ray data and figure 5.5 shows

a simulation generated with CRY for the same amount of time. In each event display, the

hits are colored and scaled by their ADC values. Small, dark blue hits are primarily noise

hits and large, red hits are primarily caused by high energy physics. Long cosmic ray tracks

are clearly visible in each picture, with large energy deposits caused by stopping particles

or by tracks with long path lengths through a cell. The 1D hit time histogram shows spikes

of activity from each cosmic ray on top of a relatively constant background of noise hits.

Figure 5.6 shows NuMI beam data taken with the near detector and figure 5.7 show

a NuMI beam simulation generated with GENIE assuming a 350 kW beam to match the

average beam power at the time the data was taken (the beam enters from the left.) Each

of these event displays shows the hits scaled by their ADC values but colored by time and

is zoomed in on the 10 µsec NuMI beam spill window. Hits that occurred outside of this
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window are drawn in gray. The large gray hits in figure 5.6 are caused by particularly

hot pixels or FEBs that will be masked off prior to reconstruction. Both the data and the

simulation clearly show neutrino interactions inside the detector volume with activity from

rock events, mostly in the form of through-going muon tracks. The apparent sparsity of

tracks at the far right side is due to the larger gaps between the near detector planes in the

muon catcher.
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are colored and scaled by charge.
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Figure 5.7: An event display showing simulated NuMI beam data for the near detector.
Hits are scaled by charge and colored by time.
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CHAPTER 6

Calibration and Event Reconstruction

This chapter describes in detail all of the steps necessary to reconstruct a NOvA neutrino

event. It describes the calibration processes for the individual hits, how those hits are clus-

tered, how major event features are identified, and how particle tracks are reconstructed

from subgroups of hits within each cluster. Particle identification and event energy estima-

tion are discussed in chapter 7.

6.1 Calibration

There are really two main parts to the calibration of the cell hits in the NOvA detectors;

the energy calibration and the timing calibration. The purpose of the energy calibration

is (obviously) to put all cells in the detector on an equal footing such that light measured

by any one of them can be properly converted into an amount of energy deposited in

the detector. This occurs in three parts. First, the light attenuation properties for each

individual fiber in the cells must be measured which accounts for cell to cell variations

in fibers and scintillator quality. Second, an absolute energy scale must be derived to

convert attenuation-corrected signals into GeV. Third, the response of each channel must

be monitored for changes over time due to things like seasonal temperature variations and

scintillator degradation. The purpose of the timing calibration is to compute offsets between

each DCM’s clock within the detector and to compute the timing resolution of the cell hits.
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More information on the attenuation and absolute energy calibrations, the drift calibration,

and the timing calibration can be found in [59,60], [61], and [30] respectively.

The units of cell hit readout described in this section are as follows:

• ADC: The peak value readout by the electronics in the raw data.

• PE: A simple linear conversion of the ADC value into a unit intended to approximate

the number of photo-electrons seen in the readout.

• PECorr: The number of photo-electrons seen corrected for attenuation.

• GeV: PECorr converted into absolute energy units.

6.1.1 Attenuation Calibration

The attenuation calibration is done separately for each cell in both of the NOvA detectors

using cosmic-ray muons. At a rate of approximately 100,000 Hz, these muons are available

in great excess at the far detector and the DAQ need only take any random 550 µsec

snapshot to capture of order 50 of them. For the near detector, the rate is only 5 Hz but

cosmic-ray muons can still be captured using an appropriate data-driven trigger.

A sample of through-going muon tracks are selected for the attenuation calibration.

Muons are chosen because the rate at which they loose energy (dE/dx) is well known and

relatively flat for energies between 1 and 100 GeV. Picking through-going tracks helps avoid

the end of the track where the dE/dx curve rises rapidly. This selects a sample of muons

that are depositing a relatively consistent amount of energy in the detector. As a quality

cut, only the cell hits along these tracks for which the muon path length through the cell is

considered reliable are used. These cells are chosen based on whether or not the two adjacent

cells within the same plane were also hit. After taking a substantial amount of data, a data

set for each cell is accumulated of ADC/cm as a function of where the hit occurred along

the length of the cell as determined through three-dimensional track reconstruction. An

example of this kind of data set is shown in figure 6.1.
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Figure 6.1: Left: Attenuation fit for a specific cell with cosmic-ray data taken using the
near detector. The ends of the cell are indicated by the vertical dashed lines. Data outside
of these regions comes from various track reconstruction failures and is not used in the fit.
The attenuation fit is shown in blue. Right: Example plot of PECorr/cm vs. distance from
the track end, generated from far detector cosmic-ray data used to compute the absolute
energy scale.

The mathematical form of the fit shown in the left plot in figure 6.1 is given by

y = C +A
(
ex/X + e−(3L/2+x)/X

)
, (6.1)

where X is the attenuation length, L is the length of the cell, and x is the distance measured

from the center of the cell. The 3L/2 in the second exponential term accounts for the fact

that any light absorbed by the fibers will propagate in both directions to the readout. Bench-

top measurements of the fibers showed that they have both a long and a short attenuation

length. Using the constant term C was found to account for the longer attenuation length

sufficiently well in the data.

It was also seen in the data that the attenuation curves, like the one shown in figure 6.1,

have a “rolloff” feature near either end of the cells which can be explained by the geometric

properties of reflected light in different locations within the cell. A good fit to this feature
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was found empirically with the following function

y′ =


1− αR (x− xR) x > +xR

1 otherwise

1− αL (x− xL) x < −xL

(6.2)

with the full attenuation fit being the product of equations 6.1 and 6.2. Lastly, any remain-

ing small deviations from this fit model are accounted for by applying a locally weighted

scatterplot smoothing (LOWESS) method described in [60]. This method uses 20 points

spread out equally across the cell to fit the residuals. The seven free parameters in equations

6.1 and 6.2 along with the 20 LOWESS points for each cell are then stored in a database.

This allows any cell hit measured in PE to be converted into PECorr provided an estimate

of the hit location within the cell during offline processing.

6.1.2 Absolute Energy Calibration

Once the attenuation calibration is complete, then all light detected by any cell can be

treated equally. The next step then is to determine the absolute energy scale that will

allow measurements of PECorr to be converted into GeV. This process is not done for the

individual cells, but for the detector as a whole using a sample of cosmic-ray muons that

stop within the detector. These muons are selected by requiring that the track end point

(taken as the lowest point) be within the fiducial volume of the detector.

Cells along this track are selected using the same good path length requirement described

above. This selection allows for the construction of a plot of PECorr/cm vs. distance from

the end of the track, with this distance being measured from the track end point to the

center of the cell. These values are compared to a set of expected values calculated by

integrating up the Bethe-Bloch curve walking back along the track from the end so as to

properly account for energy loss in the different detector materials. A fit scales the measured
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PECorr/cm values to these expected values in GeV/cm. To ensure consistent light levels,

only the cells between 1 and 2 meters from the track end are used in generating this fit [62].

An example of this distribution generated with far detector data is shown in figure 6.1.

6.1.3 Drift Calibration

The drift calibration provides a correction for any effects that may alter the light levels seen

in the detector over the duration of the experiment. Such effects could include things like

degradation of the scintillator and the aging of other detector materials, or changes in the

response of the electronics. Corrections are computed at the level of individual FEBs using

cell hits from through-going cosmic ray muon tracks selected by the same criteria used for

selecting the cell hits used in the attenuation calibration.

The cell hits selected for the drift calibration are organized by FEB. For all of the cell

hits associated with each FEB, the mean PECorr/cm is computed, truncating the upper

10% of the values to avoid effects of long tails on the mean. This mean is then tracked on

a run-by-run basis, where a “run” represents roughly one hour of data for the far detector

and roughly three days of data for the near detector. A piece-wise linear fit is applied to

this data to correct the response of each FEB over time. An example plot from far detector

data and the fit correction is shown in figure 6.2.

6.1.4 Timing Calibration

The timing calibration has two main purposes. The first is to compute the timing offsets

between the DCMs. This is done by examining the hit times from cosmic ray tracks that

cross through multiple DCMs and is double checked by comparing the computed numbers

to pings issued to the DCMs by the timing distribution units. In short, the timing offsets

are accurately computed and the process is described in detail in [30]. Of more relevance

to the reconstruction algorithms described below is the determination of a function that
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Figure 6.2: An example of the drift calibration as applied to far detector data for Diblock
3, DCM 6, FEB 24. The mean channel response and error on the mean is shown in black
with the fit for the drift correction shown in red.

predicts a cell hit’s timing resolution based on the measured PE for that hit.

As described in section 3.3.2, the FEB shapes each signal pulse from the APDs with a

460 (140) ns rise time and a 7000 (4500) ns fall time for the far (near) detector readout.

The FEBs are multiplexed to readout each channel once every 500 ns in the case of the

far detector and every 125 ns in the case of the near detector. Simply taking the time of

the first triggered sample as the the cell hit time (known as “single-point readout”) the

expected timing resolution for each hit will be 500/
√

12 ≈ 144 ns for the far detector and

125/
√

12 ≈ 36 ns for the near detector. However by reading out four consecutive samples

(known as “multi-point readout”) an offline fit for the light arrival time can be applied to

the shaped pulse to get a much better estimate of the true hit time.

The timing resolution for the hits is determined empirically from the data using through-

going cosmic ray muon tracks in the case of the far detector, and through-going “rock” muon

tracks in the case of the near detector. Once the offline timing shape fit has been applied,

the times for the hits on these tracks have additional corrections applied for the time of

flight of the particle along the track and the time for the light to propagate through the fiber
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to the APD readout. After these corrections, the time difference between a given hit and

all other hits (within 25 PE) in that DCM is computed and plotted in a two-dimensional

histogram verses the charge Q measured in PE for the hit. For each Q bin, the RMS is

calculated and taken as the timing resolution for that Q. These RMS values are then plotted

as a function of Q and fit with a function of the form

σt =
p0

p1 +Qp2
+ p3, (6.3)

where the four pi values are fit parameters. The results for these timing fits are shown

for both detectors in figure 6.3. Note that for single-point readout, the timing resolution

flattens out to the expected value for high Q hits. For multi-point readout, the timing

resolution for higher Q hits is around 10 ns for the far detector and around 5 ns for the

near detector.

Figure 6.3: Timing resolution plots determined from far detector (top two plots) and near
detector (bottom two plots) data. The two plots on the left show the single-point readout
mode and the two plots on the right show the multi-point readout mode.
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6.2 NOvA Reconstruction Challenges

As described in the previous chapters, the fundamental unit of NOvA data is the cell hit.

Since each cell spans the full width of the detector, each cell hit represents information from

2 spatial coordinates; X,Z or Y,Z. To achieve full three-dimensional event reconstruction,

information from each view must be combined, which can only be done if hits that originated

from the same particle are appropriately grouped together across both views. The first step

in NOvA event reconstruction is to sort all of the hits from a 550 µsec readout window into

clusters, identify which hits within those clusters are likely to have come from the same

particles, and apply an algorithm to create the individual particle tracks. Once proper

three-dimensional tracks have been reconstructed, this information can be used to identify

particle types and estimate the total event energy.

The reconstruction philosophy described in this chapter centers around first identifying

a global event vertex for each cluster of hits, so that tracks (specifically short tracks) ema-

nating from this point are easier to find. Identifying both long tracks (such as those created

by a primary lepton) and short tracks (such as those created by a recoiling proton) is im-

portant to achieve the best possible reconstructed event energy resolution. I have outlined

below a summary of the major event reconstruction steps, with each of these steps occu-

pying a section of this chapter. Naturally, a heavy emphasis has been placed on describing

the steps that I contributed to (indicated in bold.)

1. Grouping cell hits into clusters that are spatially and temporally separated.

2. Identifying simple but major, linear event features.

3. Choosing a global vertex based on these linear event features.

4. Making sub-clusters of hits that represent a single track or shower.

5. Creating 3D tracks from these sub-clusters.
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6.3 The Slicer4D Clustering Algorithm

For the NOvA experiment, a “hit” is the information from a single channel that was trig-

gered by being above threshold. As outlined in section 6.1, each hit contains the information

from four consecutive samplings of that channel so that an offline timing fit can be applied

to achieve an improved timing resolution. Each hit contains five additional pieces of infor-

mation: the plane and cell numbers for that channel, the total ADC and improved hit time

(determined from the offline timing fit) and the estimated timing resolution for each hit.

In the NOvA detector, a data event is a collection of hits that occurred within a specified

time interval (typically 550 µsec.) The hits in these data events can be divided into two

categories, signal (originating from high energy particles traveling through the detector) and

noise. Within a given data event, the signal hits can come from multiple independent physics

events. For example, in the NOvA near detector, we anticipate hits from multiple neutrino

interactions and in the NOvA far detector, we anticipate hits from neutrino interactions

and hits from cosmic rays together in the same data event. This initial process of separating

hits into groups is referred to within the NOvA experiment as “slicing.”

The goal of any slicing module is to accurately separate the signal hits from the noise

and to further separate the signal hits into clusters of hits that originated from the same

source (ideally, one cluster for each neutrino interaction or cosmic ray.) The true clusters

can often overlap in both space and time, therefore an intelligent algorithm that can make

the best use of both spatial and temporal information is required. I designed the “Slicer4D”

clustering algorithm to do this by using an expanding, density-based clustering algorithm

initially outlined in [63].
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6.3.1 The Expanding Density-Based Clustering Method

The clustering algorithm outlined in [63] is designed for scenarios in which clusters are

separable from each other by regions in which the density of points in some parameter

space drops below some critical density. This algorithm works well even when the clusters

have irregular shapes and when the density of background noise hits is relatively constant

within the parameter space. A local density is computed for each hit by counting the

number of neighbors that are within a certain “distance” of that hit. A strength of this

algorithm is that this “distance” can be calculated with any kind of score function that is

appropriate for the specific clustering application. The score function I used for clustering

events in NOvA uses information about the spatial and temporal separation between two

hits to determine if they are neighbors and is described in the next subsection.

The clusters that this algorithm makes have two types of points: core points and border

points. Core points have at least the minimum number of neighbors within the critical

distance. Border points have less than the minimum number of neighbors, but are included

in the cluster if and only if they are the neighbor of a core point. The algorithm makes

clusters by expanding the cluster around the core points. It begins by looping over all

points. When it finds a core point, it begins a cluster and adds that point and its neighbors

to the cluster. It then expands out to all of the neighbors of that core point and asks if

they are also core points. If so, then it adds their neighbors to the cluster and continues

expanding. The clustering is done when every expanding branch terminates in a border

point. The algorithm then returns to the original list of points and seeks out then next

unassigned core point. At the end, any point not assigned to a cluster is labeled as noise.
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6.3.2 The Neighbor Score Function

The neighbor score function is what determines whether or not two hits are to be considered

neighbors. Most of the particles passing through the NOvA detector are all traveling at or

very close to the speed of light. Therefore, hits that originated with the same individual

physics event (one neutrino or one cosmic ray) are those that are separated by light-like

intervals in 4D space. To take advantage of this, the neighbor score (NS) for a pair of hits

includes a causality term, two terms to penalize hits that are far separated in space, and a

term to penalize hits that have low PE. It is defined as follows:

NS =

(
|∆T | − |∆~r|/c

Tres

)2

+

(
∆Z

Dpen

)2

+

(
∆XY

Dpen

)2

+

(
PEpen
PE

)5

(6.4)

where Tres is the timing resolution of the two hits added in quadrature, Dpen is the distance

penalty, PEpen is the PE penalty, and PE is the number of photo electrons for both hits

added in quadrature. These parameters are described below in 6.3.4.

For hits that occur in the same view, the neighbor score is calculated as shown above

with ∆~r being a two-dimensional quantity. For hits that are in opposite views, ∆XY is

zero and Dpen in the ∆Z term is replaced with a smaller term, OppViewPlPen (opposite

view plane penalty) with ∆~r reducing to 1D. The charge spectrum of the noise in the NOvA

detector falls off roughly like Q−2.5 which is why the PE penalty term is raised to the power

of 5. The timing resolution is calculated on a hit-by-hit basis based on the PE for each

hit according to a fit function outlined in [30]. Two hits are considered to be neighbors if

their neighbor score is less than a parameter ε. This parameter is adjustable, represents

the overall sensitivity of the algorithm, and fulfills the role of “distance” in the causality

neighborhood space.
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6.3.3 Algorithm Speed Optimization

For the far detector, the number of hits (both physics hits and channel noise) that occur

within a 550 µsec readout window is expected to be of order 10,000. As one might expect,

computing the neighbor score function for every pair of hits is incredibly time consuming

and unnecessary. In fact, most hits are way too far apart in time to have any chance of being

related by a light-like space-time interval. To optimize the code, I skip this computation

for hits that are too far apart in time.

First, I sort the hits by time. Then while looping over the pairs of hits, I compute

their time difference ∆T and if that difference is greater than 1000 ns, I skip the remaining

computations for that hit pair. Since the hits are sorted by time, the remaining hits in the

list must also be more than 1000 ns apart so they are skipped as well. I chose the time

interval of 1000 ns based on the assumption that all particles in a given event are traveling

at or close to the speed of light. A particle traveling at the speed of light would traverse

the long axis of the far detector (roughly 60 m) in 200 ns, so five times this interval is an

appropriately safe choice. I tested these changes over some simulated cosmic rays for the

far detector and found that the algorithm was roughly 50 times faster while maintaining

identical performance [64].

6.3.4 Tuning the Parameters

All of the adjustable parameters within the slicing algorithm are listed in table 6.1. The

main parameters that had the biggest impact on the performance were the two distance

penalty terms Dpen and OppViewPlPen, and the neighbor score cutoff value ε.

I set three of the parameters listed in 6.1 prior to performance tuning based on prior

knowledge of the detector performance, PEpen, MinPts, and MinHitsPerView. Through my

initial explorations of the Slicer4D algorithm, I found that changes to the PEpen term had
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variable description

MinPts The minimum number of points within a distance of
ε to be considered a core cluster point.

ε The neighbor score cutoff value for two hits to be
considered neighbors.

Dpen The distance (in cm) for which the distance penalty
terms will be 1.

OppViewPlPen The distance (in planes) for which the Z-distance
penalty term will be 1 for hits in opposite views.

PEpen The number of photo electrons for which the PE
penalty term will be equal to 1.

MinHitsPerView The minimum number of hits in a given view in
order to make a slice.

Table 6.1: Input parameters used by Slicer4D.

essentially no impact on the algorithm performance. With the far detector cells being 15

m long, significant attenuation will occur for physics hits produced at the far end of one of

these cells resulting in a signal amplitude on par with the level of electronic channel noise.

To eliminate the possibility of penalizing real physics hits at the far end of the NOvA cells

with low photo-electron counts, the PEpen term was set to a value of 0, effectively turning

off that piece of the neighbor score function. Since the Slicer4D algorithm is a density

based algorithm, one needs to decide the critical density that defines the slice borders. In

terms of the Slicer4D parameters, this is a combination of the variables ε and MinPts. To

determine the optimal critical density, one has the freedom to set one of those two variables

and tune the other. After experimenting with a few values and closely examining the data,

I set MinPts to 4 leaving ε to be tuned. Lastly, since MinHitsPerView represents a lower

limit on the size of the slices that we considered to be of interest, it was set to 3. I made

this choice based on the observation that the vast majority of slices made out of randomly

coincident noise hits had less than 3 hits in each view. All of the other parameters listed in

table 6.1 were first tuned to the Monte Carlo, then to the data as described below.

To test any set of these parameters, I used two primary metrics. The first is “complete-
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ness” and represents the extent to which a slice includes all of the hits that belong to a

single physics event (neutrino interaction or cosmic ray.) Completeness is defined as

completeness =
Eevt,sl
Eevt,tot

. (6.5)

Eevt,sl is defined as the visible energy from the event within the slice where “visible energy”

is energy deposited only in the scintillator. Eevt,tot is defined as the total visible energy

deposited by the physics event in the detector. The other metric I used is “purity” which

represents the extent to which a slice is contaminated by hits from other physics events.

Purity is defined as

purity =
Eevt,sl
Etot,sl

, (6.6)

where Etot,sl is defined as the total visible energy deposited by all physics events within

that slice.

My first attempt at tuning the algorithm was done with a Monte Carlo method, using

simulated neutrino interactions for the near detector and simulated cosmic rays for the

far detector. For this method, I defined a primary figure of merit as the number of slices

for a fixed data set with completeness > 0.9 and purity > 0.9. I varied the configurable

parameters not initially set over ranges that caused the algorithm to perform poorly, then

to perform well, then to perform poorly again so as to ensure that the optimal values were

covered. I did a basic grid search within this parameter space to pick out the parameters

that maximized the figure of merit. Examples of the distributions of the figure of merit for

different values of ε and Dpen are shown in figure 6.4. This method was effective at picking

out a reasonable set of numbers, however a data-driven method was developed due to the

obvious fact that the data and the Monte Carlo are never quite the same. More information

on the initial Monte Carlo tuning method can be found in [65].
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Figure 6.4: Distributions of the FOM from the Monte Carlo method for tuning Slicer4D
vs. two of the Slicer4D configurable parameters, ε (top) and Dpen (bottom). The plot colors
correspond to the number of parameter set combinations with a specific value of ε or Dpen

that resulted in that particular FOM. Both plots were made with near detector simulations
that included rock events and were used in the initial grid-search method for tuning the
Slicer4D parameters.

The fundamental premise behind the data-driven tuning method was that the “right”

values for the parameters are functions of the NOvA event topologies and various aspects

of the DAQ system, and we should therefore be able to determine them from the data. The

exception being the neighbor score cutoff value ε, but this can be chosen through extensive

hand-scanning once the other parameters have been set and double checked for acceptable

performance with the completeness and purity metrics.
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With the parameter MinPts set to 4, the distance to the third closest neighbor plays a

critical role for each hit in determining whether or not that hit belongs in a slice or will be

labeled as noise. To determine Dpen and OppViewPlPen, I ran Slicer4D with very liberal

parameters to ensure that all hits that belong together were in fact within the same slice.

Then for all hits in a given slice, I plotted the two-dimensional distance between each hit and

the third closest neighbor for hits within the same view and the difference in plane numbers

for each hit and the third closest neighbor for hits in opposite views. My assumption was

that these plots will have a Gaussian distribution for hits that belong together sitting on

top of a power law distribution created by the random coincidence of hits that do not

belong together. Kinks in these plots should give an indication of the correct values of Dpen

and OppViewPlPen that separate these two populations. Examples generated from near

detector data are shown in figure 6.5.

Figure 6.5: Distance to the third closest neighbor for hits within the same view used for
determining the Slicer4D parameter Dpen (left) and for determining OppViewPlPen (right).
Lines are superimposed on each plot illustrating the “kink” used to choose the values for
Dpen and OppViewPlPen.

Through this data-driven method, I determined the near and far detector values for

Dpen to be 75 cm and 100 cm respectively. Given that the strong interaction length in

scintillator is between 90 and 100 cm, these numbers are within a sensible range. The final

values for OppViewPlPen were 8 and 4 for the near and far detectors. The full list of final
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tuned values can be found in table 6.2.

The last number to be tuned is the neighbor score cutoff value ε. The original paper [63]

upon which I based the Slicer4D algorithm provides a procedure for determining ε from a

set of sample data as follows:

1. Compute the neighbor score for the third closest neighbor (called the “3-dist”) for all

points in your sample and store these numbers in a list.

2. Sort the list of 3-dist values in descending order and plot those numbers as a function

of position in the list (hit index).

Since the noise hits occupy regions of lower density, then the sorted list should be almost

entirely noise at the top and almost entirely signal at the bottom. Plotting this list should

then give some indication of an appropriate value for ε.

An example of a 3-dist plot and the data I used to generate it are shown in figure 6.6.

It is evident from this 3-dist plot that two characteristic scales emerge, indicated by kinks

in the data. The first kink occurs around 1 on the vertical axis, indicating the beginning of

the boundary between signal and noise, and is taken as a minimal value of ε. The second

kink occurring around 103 on the vertical axis represents the typical spacing of noise hits.

The drawback with this plot is that it gives you an indication of how far apart signal hits

are from other signal hits that belong together in the same cluster, without giving you any

indication of how far apart separate clusters are from each other. The goal of the slicing

algorithm is to minimize event pileup by putting as many hits together from the same

physics events as it can while not being so greedy as to combine separate clusters into one.

So we want to set ε to be larger than 1 but not so large that it merges groups of hits that

do not belong together.

To determine the best number for ε, I processed a set of data events with a range of

different values. I scanned each of these events and recorded any “failures” of the algorithm.

“Failures” were clusters that I judged by eye to have certain undesirable characteristics such
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Figure 6.6: Event display (top) for the data event used to generate the 3-dist plot shown
on the bottom.

as inappropriately split or merged clusters or clusters that excluded (included) hits that

clearly did (not) belong. From the compiled list of these failures, I calculated an overall

efficiency as the ratio of the number of slices without mistakes to the total number of slices

for each of the different values of ε. I took the best number for ε to be the central value in

the region of highest efficiency. More information on this method can be found in [66].
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parameter ND value FD value

MinPts 4 4
ε 5.0 2.0
Dpen 75.0 100.0
OppViewPlPen 8 4
PEpen 0 0
MinHitsPerView 3 3

Table 6.2: Parameter values used by Slicer4D for both the NOvA near and far detectors.

6.3.5 Results and Performance

The results of slicing a single far detector data event (defined as the full readout from a 550

µsec window of time) are shown in figure 6.7. This particular data event was was the result

of a NuMI beam spill trigger and was taken at a time when the far detector construction

was not yet complete (thus the empty space on the right-hand side.) In the first picture in

this figure, the hits are colored by time and multiple cosmic tracks on a uniform (in time

and space) background of noise hits are evident. The second picture shows the results of

applying the slicing algorithm. In this picture, hits that have been grouped together into

the same slice are shown in the same color and hits labeled as noise are drawn in light gray.

The completeness and purity numbers defined in equations 6.5 and 6.6 for near and far

detector simulations are shown in table 6.3. These simulation samples include near and

far detector neutrino interactions, as well as simulated cosmic rays for the far detector. I

generated the numbers in this table with the parameters listed in table 6.2 using roughly

100,000 data events for each sample. Since slices typically contain hits from multiple physics

events, the best matched physics event for a given slice is defined as the event with the

highest purity. The numbers listed in table 6.3 are for the best matched physics event for

each slice.

It is possible to have a random group of coincident noise hits that end up in the same
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Figure 6.7: Event display from a far detector data event prior to (first picture) and after
(second picture) slicing has been applied.

slice together with no hits from a legitimate physics event. Naturally, the probability for

this to occur drops dramatically as the size of one of these noise-only slices increases. For

the completeness and purity metrics however, this leads to an excess of very small slices that

have completeness and purity values of zero. To remove these slices from consideration, a

simple cut requiring a slice to have at least 10 hits in each view is also applied. This is a

reasonably safe cut for any analysis. For comparison, a typical 1 GeV beam-induced muon
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is expected to leave more than 50 hits in each view. Applying this cut improves the numbers

in table 6.3 and is a better representation of the slices that are used for physics analysis.

simulation type number of slices mean comp. (%) mean purity (%)

All Slices:
Near Det. GENIE 3.93× 105 89.1 98.7
Far Det. GENIE 2.86× 105 31.8 34.1
Far Det. CRY 5.80× 106 95.4 96.5

Slices with at least
10 hits per view:
Near Det. GENIE 2.66× 105 94.4 98.5
Far Det. GENIE 8.53× 104 97.6 100.0
Far Det. CRY 4.92× 106 99.3 99.3

Table 6.3: Completeness and purity numbers (expressed as percents) for near and far
detector simulated neutrino interactions (GENIE) and far detector simulated cosmic rays
(CRY.) Shown are all slices and all slices passing the requirement of at least 10 hits per
view.

Figure 6.8: Completeness and purity distributions for near detector GENIE events with
at least 10 hits in each view.

Shown in figures 6.8, 6.9, and 6.10 are the completeness and purity distributions for the

near detector GENIE, far detector GENIE, and far detector CRY events respectively. Each

of these plots shows only the slices with at least 10 hits in each view. The relatively sharp

cut off for purity values less than 0.5 is caused by the choice described above to pick the

best-matched physics event for each slice by purity. Since the far detector GENIE events
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Figure 6.9: Completeness and purity distributions for far detector GENIE events with at
least 10 hits in each view.

Figure 6.10: Completeness and purity distributions for far detector CRY events with at
least 10 hits in each view.

are generated in a mode that places one and only one neutrino interaction in each data

event, we expect the purity numbers for the far detector GENIE sample to be 1.0.

6.4 The Multi-Hough Transform

Once clusters of hits that belong to the same physics event have been formed, the next

step is to identify the event vertex. The Hough transform is a relatively standard algorithm

used for pattern recognition problems. It is designed to identify major lines or features in a

two-dimensional image composed of points or pixels. Since the NOvA data is composed of

a two-dimensional image for each view, this makes the Hough transform an ideal algorithm

as a first step to finding the global event features and the vertex. The method described
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below is based off of a modified, two-point Hough transform originally outlined in [67].

6.4.1 Filling the Hough Space Parameter Map

The Hough transform works by parameterizing lines in a polar coordinate space where ρ is

the perpendicular distance from the origin to the line and θ is the angle between ρ and the

x-axis. The relationship between x, y, ρ, and θ is given by

ρ = x cos θ + y sin θ. (6.7)

This modified Hough transform is applied to each individual detector view (XZ and YZ)

by taking pairs of hits in our event, calculating the line that passes through this pair in

terms of ρ and θ, and filling a parameter space map (Hough map) with a Gaussian smeared

weight. The Gaussian weight is calculated according to

weight = e
− (ρ−ρ0)

2

2σ2ρ e
− (θ−θ0)

2

2σ2
θ (6.8)

σρ =
3√
12

[cm] (6.9)

σθ =
3[cm]

d
√

6
, (6.10)

where d is the distance between the two hits in the detector in cm. In this manner, major

event features will cause a build up of votes in certain regions of the Hough map resulting

in peaks at the location of each of the lines that characterize the event.

I placed some restriction on which pairs of hits are allowed to vote together. First, pairs

of hits that are farther apart than
√

15000 (cm) are prevented from voting together. This

distance cutoff is a tune-able parameter and it serves two purposes; it cuts down on the

number of pair combinations, and it prevents too heavy of an emphasis from being placed

on hits that are far apart since the uncertainty in θ is smaller for hits that are farther away
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from each other. Second, since hits in the same horizontal row can have exactly the same

x or y coordinate, these hits are also not allowed to vote together unless they are farther

apart than 0.25
√

15000 (cm). I found this restriction necessary to reduce an otherwise

strong tendency to produce lines that were completely horizontal and not representative of

the data.

Once the Hough space map is created, I apply some smoothing by averaging hits in the

map using a Gaussian smoothing weight. The size of the window over which the smoothing

is applied is an adjustable parameter and is currently set to ±3 bins on either side of the

bin to be smoothed in both ρ and θ, with the bins in the Hough space map being 1 cm wide

in ρ and 1◦ wide in θ. I found that this smoothing increased the accuracy of the lines, but

it reduced the overall speed of the algorithm. Since the majority of the Hough space map

is empty, I only apply the smoothing calculation to the non-zero bins which increases the

speed without compromising the performance.

6.4.2 Calculating the Threshold

I require the peaks in the Hough space map to be above a threshold value in order to be

labeled as a valid line. Since each event can be composed of a different number of hits, I

calculate this threshold value separately for each Hough map. To calculate the threshold, I

loop over all bins in the Hough map and calculate both the average and standard deviation,

σ, of the bin heights. I take the threshold to be the average bin height plus Nσ where N is

an adjustable parameter. I found through some “hand tuning” that N could be lowered to

zero (allowing for small legitimate peaks in the Hough map to be found) while maintaining

good results.
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6.4.3 Refining the Peak Value

After the Hough map is created, filled with votes, and smoothed, I use the center of the

tallest bin in the Hough map as the ρ and θ values for the line of interest. But, since the

center of the bin is not necessarily the true ρ and θ value that best represents the line, I

apply some refinement of the peak value by averaging over a 7×7 square of bins (centered

on the peak bin) where the average is weighted by the bin value and de-weighted by the

distance (in terms of number of bins) to the central bin. So that the central bin carries

more weight than the four immediately adjacent bins, I set the de-weight distance for the

central bin (which would normally be zero) to
√

2/2.

6.4.4 The Multi-Hough Loop

If all peaks above the threshold value are taken as legitimate lines, then the modified Hough

transform described above has a strong tendency to produce too many lines. After trying

many different values for the Hough map threshold, I discovered that there was no clear

value that consistently kept the good lines and rejected the lines that did not belong. So

I developed a procedure for removing the hits associated with an already identified Hough

line and regenerating the Hough map to look for smaller lines. With the hits associated with

the first line removed, the dominant features in the new Hough map are less representative

of noise and much more representative of shorter, legitimate, physics tracks.

After a line is identified from the tallest peak in the Hough map, I loop over the list

of all hits to determine which ones are associated with that line. Any hit within 6 cm of

the line will be reassigned a weight of zero (each hit in the hit list has a weight assigned

to it, with the default values all being set to one.) This 6 cm cutoff distance is another

configurable parameter, which I chose because it represents roughly the size of one cell.

After the hits are removed, I reset the weights of the most upstream and most downstream
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hits (as determined by the Z coordinate and allowing for ties between at most two hits)

to one, so as to not remove hits potentially associated with another line. Lastly, I “scrub”

the hit list by removing hits that have no neighbors within 30 cm. I use this new list to

generate the next iteration of the Hough map.

The same procedure outlined above is applied to the new Hough map, the tallest peak

is taken to be a legitimate line, that peak value is refined, and the hits associated with that

line are removed. In addition to these steps, I test the new line against all the other lines

found so far to determine if it is identical to any of the others. I consider two lines to be

identical if their ρ values are within 15 cm and their θ values are within 0.02 radians. If a

line is found to be identical to another by this definition, then I remove the hits associated

with it but do not add it to the list of Hough lines before proceeding to the next iteration.

Finally, I repeat this “Multi-Hough” loop. To exit the loop, one of two criterion must be

met. Either no more peaks are found above the threshold value, or a maximum number of

lines is reached. The maximum number of lines is a configurable parameter with a default

value of 10.

6.4.5 Results and Performance

Figure 6.11 depicts the results of the Multi-Hough transform from a simulated, νµ CC event

in the NOvA near detector on the surface (NDOS). For simplicity, only one view (the YZ

view) is shown as the algorithm steps through its iterative process. Shown next to each

event is the corresponding Hough map. Note that by removing the hits on each good line,

the noise is drastically reduced in the Hough map for the following iteration.

Given that the main goal of this algorithm is to provide input to a vertex finding

algorithm, one of the primary metrics that I used to asses performance is the perpendicular

distance from the Hough lines to the true Monte Carlo interaction vertex. Since the Hough
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Figure 6.11: An example of the Multi-Hough algorithm. Shown are the results after four
iterations through the peak finding loop. The figure on the right is the corresponding Hough
space map for each event on the left.

transform works in two dimensions, I calculate this separately for each view in the detector.

In general, this can be thought of as an indication of how correct the intercept of the line

is. The validation data sample I used was composed of simulated events in our far detector
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and was divided into 8688 νµ CC, 8802 νe CC, and 9343 NC events. Shown in figure 6.12

are the plots for the perpendicular distance to the first and second Hough lines found in

the event for the XZ view. The results for the Hough lines in the YZ view are essentially

the same.

Figure 6.12: Perpendicular distance from the first (left) and second (right) Hough lines
to the true vertex in the X view (area normalized to 1).

data type number of entries mean [cm] RMS [cm] overflow

νµCC 1st line 8688 4.1 5.1 113
νeCC 1st line 8802 2.7 5.0 145
νXNC 1st line 9343 6.7 8.5 761

νµCC 2nd line 7844 8.2 10.0 1419
νeCC 2nd line 8366 8.8 10.1 1493
νXNC 2nd line 7100 9.9 10.2 1482

νµCC 3rd line 5758 8.4 10.3 1002
νeCC 3rd line 6533 8.8 10.1 955
νXNC 3rd line 4052 9.8 10.1 802

Table 6.4: Perpendicular distance from the Hough lines to the true vertex in the X-view.

The second validation metric was a matching of Hough lines to simulated particle tra-

jectories using the dot product between the two. The criteria I used for a particle trajectory

to be matched to a Hough line were as follows:
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1. The particle could not have been a neutrino, neutron, or π0.

2. The Hough line must have passed within 10 cm of the origin of the particle.

3. The particle track must have been longer than 20 cm.

4. The particle track can not have been matched to any other Hough line.

I considered a Hough line and particle trajectory with the greatest normalized dot product

to be a match if the above criteria was met. Shown in figure 6.13 are the results of the

dot product matching for the first and second Hough lines in the XZ view (again, the YZ

results are similar.) This metric can be thought of as how correct the slope of the Hough

line is.

Figure 6.13: Dot Product with the first (left) and second (right) Hough lines and the best
matched MC particle trajectory in the X view (area normalized to 1.)

6.5 The Elastic Arms Method

The Elastic Arms algorithm is designed to use the output from the Multi-Hough algorithm

as a seed for finding the global event vertex. It is based on a method of the same name

listed in [68] which is sometimes referred to in the literature as the “method of deformable

templates.” This method is described briefly here. For more information on the method of

Elastic Arms, see [69], [68], [70], and [71].
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data type number of entries mean RMS underflow

νµCC 1st line 8688 0.991 0.058 158
νeCC 1st line 8802 0.996 0.039 92
νXNC 1st line 9343 0.980 0.077 538

νµCC 2nd line 7844 0.948 0.137 401
νeCC 2nd line 8366 0.952 0.139 1741
νXNC 2nd line 7100 0.954 0.125 1002

νµCC 3rd line 5758 0.933 0.156 564
νeCC 3rd line 6533 0.920 0.176 1912
νXNC 3rd line 4052 0.935 0.150 823

Table 6.5: Dot product between the Hough lines and the best matched MC particle
trajectory in the X-view. The numbers in the underflow bin represent unmatched lines.

6.5.1 The Algorithm

The basic template for a NOvA event is a vertex with one or more particle tracks emanating

outwards from that vertex. In the Elastic Arms method, each particle track is approximated

by an “arm” (a vector pointing away from the vertex) whose direction can be adjusted to

match the event topology for an identified vertex seed. For the application of this method

to NOvA data, the number of arms is taken to be the largest number of Hough lines found

for the event in either the XZ or YZ views. To determine the location of the vertex, a list

of vertex candidates must be generated and evaluated.

From this list of vertex candidates, the best vertex is chosen as the one that minimizes

an energy cost function given by

E =

N∑
i=1

M∑
a=1

ViaMia + λ

N∑
i=1

(

M∑
a=1

Via − 1)2 +
2

λv

M∑
a=1

Da. (6.11)

Here Mia is a distance measure from detector hit i to arm a, Via is the strength of the

association between hit i and arm a, and Da is the distance from the vertex to the first hit
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on arm a. The parameters λ and λv control the strength of the second and third terms.

The last term in this equation is unique to the NOvA application of the Elastic Arms

method and penalizes arms whose first hits are far from the vertex. This term was added

to prevent the best vertex from being the one that was always the farthest away from all of

the hits, which in the extreme will always minimize the energy cost function. The hit/arm

association term Via is given by

Via =
e−βMia

e−βλ +
∑M

b=1 e
−βMib

, (6.12)

where e−βλ represents the likelihood that the hit is not associated with any arm and β can

be interpreted as a range over which hits are allowed to be associated with arm a.

The list of vertex candidates is generated from information about the Hough lines and

the spatial distribution of the hits in the event. From the Hough lines, vertex candidates are

formed from the intersection points of the major lines in each view. The hits are sorted by

their Z coordinates and additional vertex candidates are formed from selected hits at fixed

intervals (2%, 5%, ... 50%) in this list. Note that this introduces a bias to favor vertices at

lower values of Z but that this is exactly what one expects for beam neutrino events in the

NOvA detectors.

The next step is to set the directions of the arms for each vertex candidate. To determine

the arm directions, a list of possible vectors is generated from the directions of the Hough

lines (matched between views by their peak heights in the Hough map) plus a minimum

bias sample of vectors formed from the vertices of a dodecahedron. The arms are then

set one-by-one by choosing the direction from this list that minimizes equation 6.11 before

moving on to the next arm. Care is taken to ensure that the same or very similar arms are

not reused for each vertex.

With a list of vertex candidates, each with a set of carefully chosen arms, equation
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6.11 can now be evaluated to determine which vertex candidate will be deemed the “best

one.” Once this vertex has been chosen, a process of simulated annealing is applied to allow

the vertex to settle into an optimal location. The annealing is accomplished by varying

the parameter β in equation 6.12 from low values (representing high temperatures) to high

values (representing low temperatures.) This process allows the vertex to smoothly seek

out the global minimum of equation 6.11 while avoiding potential local minima within that

function.

6.5.2 Results and Performance

Shown in figure 6.14 is an event display from a far detector data event with a selected

neutrino candidate. The Hough lines are drawn in red and the selected Elastic Arms vertex

is drawn as a blue “X”. The Hough lines clearly pick out the major event features and align

with the major particle tracks, and the Elastic Arms vertex sits at or very close to what

appears to be the global event vertex.

Figure 6.14: Reconstructed far detector neutrino candidate event showing the Hough lines
and the Elastic Arms vertex.

Together, the Multi-Hough and Elastic Arms algorithms achieve average event vertex
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resolutions of 11.6, 10.9, and 28.8 cm for νµ CC, νe CC, and NC events respectively. For

both the νµ CC and νe CC events, 68% of the vertices are within 10 cm of the true vertex

(38 cm for the NC events.) This puts the vertex for the CC events within approximately 2

cell widths of the true vertex the majority of the time. The distribution of vertex resolutions

broken into these three categories is shown in figure 6.15.

Figure 6.15: 3D Event vertex resolution with the Elastic Arms algorithm.

6.6 Particle Clustering with Fuzzy-K

Once the global event vertex has been identified by the Elastic Arms method, the next

step is to assign a cluster membership to each cell hit within the event, with each cluster

representing the hits from a single particle track or shower. This is accomplished with a

possibilistic fuzzy-k means algorithm described in this section. The term “possibilistic”

means that the sum of each hit’s membership across all clusters is not forced to be one,

which allows for isolated hits to be treated as noise. Full details on this method can be

found in [72], [73], and [74]. The process of creating reconstructed particle tracks from these

clusters is described in section 6.7.
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6.6.1 The Algorithm

The basic idea behind this method is that when sitting at the global event vertex for either

view, the cell hits within the event should appear as peaks of deposited energy in a one-

dimensional angular space around that vertex. The Fuzzy-K algorithm determines how

many cluster centers (peaks) are present and assigns a cluster membership to the hits in

the event. The first step in this process is to compute an angle and an angular uncertainty

for each hit. The angles range from −π to π with 0 corresponding to the Z-axis of the

detector, and the angular uncertainty is given by

σ =
1.745

d
+ 0.000173d+ 0.0204, (6.13)

where d is the distance from the vertex to the center of the cell hit in cm. This uncertainty

was determined empirically from a simulated sample of 1 and 2 GeV muons by comparing

the computed angle for cell hits with the initial track direction [72]. It was designed to

account for the multiple scattering that will occur for particles as they travel farther from

the global vertex.

Finding the cluster centers and determining the membership for each hit is done with

an iterative process that begins by assuming there is only one cluster centered on the region

of highest density in the one-dimensional hit angular space. A degree of membership for

each hit j in each cluster center i is computed according to

Uij = em
√
cdij/β, (6.14)

where dij is the distance to cluster centers given by

dij =

(
θj − θi
σj

)2

. (6.15)
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Here σj is given for each hit by equation 6.13, m represents the “fuzziness” factor which

allows hits to retain partial membership in multiple clusters, c is the number of cluster

centers, and β can be interpreted as a normalization term that represents how spread out

the hits are expected to be around a “normal” cluster center. The cluster centers are then

updated according to

θ′i = θi +

∑n
j=1

Umij
σ2
j

(θj − θi)∑n
j=1

Umij
σ2
j

(6.16)

and the process is repeated until ∆θ is less than a specified tolerance (currently set to 10−7

radians) for all cluster centers.

As a final step, a check is performed to make sure that multiple cluster center seeds have

not converged onto the same value. Then, a new one-dimensional distribution of cell hits

in angular space is computed from all hits with less than 1% membership in any cluster.

This distribution is used to identify the next most dense peak which is then added to the

list of cluster center seeds. The next iteration of finding cluster centers is started with this

new cluster center added to the list. This iterative process is repeated until either all cells

belong to at least one cluster or until a maximum number of clusters is reached.

Since this clustering process is done separately for each view, the last step is to match

clusters between the views. To do this, a temporary track is formed out of every pair of

two-dimensional clusters from each view. For each of these possible pairings, the cumulative

cell hit energy distribution (normalized to the total energy for each cluster) is computed for

each view as a function of distance along the track. Comparing this distribution between

the views allows for the application of a Kupier metric which takes the sum of the largest

absolute positive and negative vertical distances between the two distributions as a metric

for each of these possible cluster combinations. The view matching proceeds by pairing

together the clusters from each view best matched by this metric, and then continuing in

this fashion until all clusters that can be matched have been matched.
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6.6.2 Results and Performance

Shown in figure 6.16 is an event display from the same selected far detector data event seen

in figure 6.14. The Elastic Arms vertex has been drawn as a blue “X” and the Fuzzy-K

clusters are outlined in red, blue, and green.

Figure 6.16: Reconstructed far detector neutrino candidate event showing the matched,
three-dimensional clusters produced by the Fuzzy-K method.

The metric used to asses the performance is completeness as defined in equation 6.5 for

hits produced by the primary lepton in charged current interactions. For νe CC events,

the average completeness is 88%, 95% for QE events and 86% for non-QE events. For

νµ CC events, these numbers are 93%, 98%, and 92% respectively. The distribution of

completeness values as a function of true, visible, lepton energy is shown in figure 6.17.

6.7 Particle Tracking with Break Point Fitter

The Break Point Fitter (BPF) tracking algorithm relies on the formalism outlined in [75].

Using the Fuzzy-K 3D prongs and Elastic Arms vertex as input, it constructs particle

trajectories using a model of Coulomb multiple scattering and energy loss for each 3D
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Figure 6.17: Distribution of completeness values as a function of visible energy for the
clusters formed by the primary lepton in a CC event produced by the Fuzzy-K method.

prong. It is considered an “optimal” tracker which brings all available information to bear

on the reconstruction of the track parameters, using cell hit locations and measurement

errors, scattering information, and correlations between upstream and downstream hits.

The primary goals of the BPF tracker are to accurately track particles through all 4π

steradians, to incorporate energy loss through different detector materials into the multiple

scattering model, and to allow for tracks to be fit under different particle hypotheses. I will

discuss how these goals are achieved in the sections below.

6.7.1 The Optimal Track Fit Expression

The BPF algorithm works by assuming that particles are traveling primarily along the z

axis of an xyz coordinate system. Within this coordinate system, measurements of the track

location are made in orthogonal planes at fixed locations in z to yield a set of values xi and

yi, each with an associated uncertainty σi. As the track propagates, it is allowed to scatter

at M locations among the n measurement planes. The locations of these scattering planes

are somewhat arbitrary; I will discuss how we optimized the locations of the scattering
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planes for the application of BPF to NOvA in section 6.7.2.

α

α
α

α

(x1,z1)

(x2,z2)

(x3,z3)

scattering planes

measurements

Figure 6.18: Schematic representation of the track model used by BPF. The measurements
xi and their uncertainties σi are shown as dots with error bars. The track is allowed to
scatter through the angles αJ at the scattering planes indicated by the dashed vertical lines.

A schematic representation of the BPF track model is shown in figure 6.18. Using

this model, the location of the track trajectory along the ith measurement plane ξi can be

expressed as

ξi = a+ bzi +
M∑
J=1

αJ(zi − ZJ)Θ(zi − ZJ), (6.17)

where a and b are the intercept and slope of the initial track direction, αJ is the scattering

angle at the J th scattering plane (assumed to be small), and Θ(zi − ZJ) is the Heaviside

function which is 1 for arguments > 0 and 0 otherwise. The use of the Heaviside function

ensures that only the upstream scattering angles (for which ZJ < zi) affect the trajectory

at the ith measurement plane.

The complete track trajectory expressed in equation 6.17 is specified by a, b, and the

set of αJ values. To optimize these parameters, we define a χ2 goodness of fit as

χ2 =

n∑
i=1

(xi − ξi)2

σ2i
+

M∑
J=1

(βJ − αJ)2

σ2J
, (6.18)
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where σi is the error on the ith measurement, σJ is the RMS scattering angle computed for

scattering plane J (given below by equation 6.19) and βJ is the expected scattering angle

at the J th scattering plane. For an unmagnetized detector (such as the NOvA detectors)

particles will scatter left as often as they scatter right, so βJ will be zero at all scattering

planes. Minimizing this χ2 by taking ∂χ2/∂q = 0 with q = a, b, {αJ} results in a set of

linear equations which can be easily solved through a matrix inversion to yield the optimal

track parameters. The details of the construction of this matrix are outlined in [75].

6.7.2 Adapting the Optimal Track Fit Expression for NOvA

To achieve the first major goal of BPF, providing accurate tracking in all 4π steradians, the

track fit is performed in a “track-based” reference frame in which the primary direction of

the track is taken to be the z axis. Determining the track-based frame x′y′z′ begins by fitting

a straight line to all cell hits in the Fuzzy-K 3D prong using the Theil-Sen method [76].

This method uses the median slope between pairs of points, making it more robust against

outliers than a least-squares fit. The new z′ axis is taken to be z′ = unit(mx,my, 1) where

mx and my are the slopes of the fitted lines from each view. The next axis is picked by

computing z′ × x and z′ × y. If z′ × x has the greater magnitude, then the new y′ axis is

taken to be y′ = unit(z′ × x) and vice versa for x′ if z′ × y is bigger. With two axes set,

the third axis is simply the cross product of the first two. The origin of this new coordinate

system is set using the coordinates of the vertex produced by the Elastic Arms algorithm.

The next step constructs the lists of measurements and their errors from the cell hits,

and rotate those lists into the track-based frame. Since an individual cell hit only contains

2D positional information, (x, z) or (y, z), each hit is first converted into a 3D point using

a straight-line interpolation of the 6 closest hits in z from the other view to complete the

third coordinate. The cell hit uncertainties are taken to be the cell width/
√

12 for σx and
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σy, and plane width/
√

12 for σz. The uncertainties for the completed coordinate (x in the

y-view, y in the x-view) are estimated to be the sum in quadrature of the cell width/
√

12

and the interpolated slope m times σz. Based on the distribution of χ2 per degree of

freedom values given by equation 6.18 from fitted tracks, it was found necessary to inflate

these uncertainties by 25% to shift the peak of the χ2 distribution to 1. This was deemed

reasonable since the cross-section for a cell is roughly a square with a hypotenuse that is

approximately 25% longer than the width in z, and assuming a value for σ of width/
√

12

ignores the fact that particles can pass through the corners of the cells. This set of 3D hits

is rotated into the track-based frame and the uncertainties are propagated into σ′x, σ′y, and

σ′z for each hit. The hits are sorted by z′ so that every x′, z′ and y′, z′ pair can be used with

equations 6.17 and 6.18 to determine the track fit parameters.

Once we have rotated into the track-based frame, the next step is to determine where

to place the scattering planes along the z′ axis. A simple solution would be to choose to

put one scattering plane in between each measurement plane. However given the 41 cm

radiation length of the NOvA detectors, the typical Coulomb scattering from one cell to

the next is much smaller than the cell size itself. Including too many scattering planes is

therefore computationally unnecessary. The number of scattering planes should be chosen

to be as small as possible without impacting the accuracy of the tracker results.

The decisions about where to put the scattering planes are made by the BPF algorithm

using a Coulomb multiple-scattering model. It begins by approximating the track trajectory

with a straight line drawn from the first hit to the last hit along the z′ axis. By walking

backwards along this trajectory, the algorithm tabulates the distance traveled in units of

radiation lengths X0 and the total energy loss dE/dx, accounting for the different detector

materials traversed. The end result is a list, as a function of z′, of accumulated radiation

lengths and particle energy estimates, made by assuming that the particle starts with zero
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kinetic energy at the track end.

The algorithms that compute the path-length dE/dx integration through different de-

tector materials are handled by a special BPF class called Path that uses a set of dE/dx

tables taken from [77]. Given a track trajectory, this class will perform the dE/dx integra-

tion as described above, to compute the energy, momentum, and the relativistic variables

βγ for any point along the trajectory. Computing these variables of course relies on knowing

the mass of the particle that made the track. Because of this, and because this knowledge of

particle mass appears again in equation 6.19 discussed below, the BPF algorithm requires

an assumption to be made about the particle type in order to perform the fit for the track

parameters. In the current implementation of BPF, each Fuzzy-K 3D prong is fit three

times under the assumption that the track is a muon, a pion, and a proton. A decision can

be made later as to which of these three track fit assumptions should be used. Using the

Path class achieves the second goal of the BPF tracker; incorporating energy loss through

different materials into the scattering model, and fitting the tracks under different particle

hypotheses satisfies the third BPF goal.

Once the list of radiation lengths and energy estimates for the z′ coordinates along

the approximate track trajectory have been accumulated, the multiple scattering model is

used to place the scattering planes. A particle with charge ±1 that has traveled a distance

s, measured in units of the radiation length X0, is expected to deviate from its original

trajectory by an angle ψ given by

ψ =
13.6 MeV√

3βp

√
s(1 + 0.038 ln s), (6.19)

where β is the particle velocity in units of c, and p is the particle momentum. ψ in this

equation is the angle from a 3D track projected onto a 2D plane, to be in line with the

expressions derived in section 6.7.1. This equation is derived in [8] using a Gaussian approx-
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imation to Coulomb scattering. The scattering surfaces are placed by walking backwards a

distance d along the approximated trajectory from either the track end or the most recently

placed scattering plane, using steps taken between two measurement planes, until one of

two criteria are met:

1. the predicted transverse scattering distance, d · ψ, exceeds 3 mm

2. d becomes greater than 100 cm or greater than 2X0

at which point the algorithm backs up one step, inserts a scattering plane, and sets σJ for

that scattering plane to the value of ψ at that location. The first criteria ensures that a

scattering plane is placed before the particle is expected to scatter by an amount roughly

equivalent to the thickness of the cell walls (picked as the smallest resolvable distance

relevant to the tracking algorithm.) This criteria also results in more scattering planes

being placed in the regions where the particle is expected scatter the most, for example near

the end of the track. The second criteria enforces a maximum allowed distance between

adjacent scattering planes, so that a track can’t propagate too far without being given the

opportunity to scatter. In addition to these criteria, the BPF algorithm dictates that at

least one scattering plane is placed along the track and that no more than one scattering

plane is allowed between two measurement planes. Figure 6.19 shows an example of the

scattering plane placement along a 2 GeV/c muon track.

With the scattering planes and σJ values set, the BPF algorithm can invert the matrix

generated from equations 6.17 and 6.18 to fit for the track trajectory. Since these equations

are derived for a track contained within a 2D plane, a separate matrix is generated for

each detector view resulting in two 2D track fits which are simply projections of the 3D

trajectory into the x′z′ and y′z′ planes. After the track fit is performed, the BPF algorithm

loops over all of the cell hits in the Fuzzy-K prong and computes a χ2 for each hit based on

the first sum in equation 6.18. Any hit with a value greater than 25 for this χ2 is considered

to be an outlier that could possibly throw off the track fit. These outliers are removed from
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the list of cell hits and the entire track fitting procedure is repeated using this scrubbed

list. The final track fit is rotated back into the detector frame.

As discussed above, the BPF algorithm performs the track fit three times under the

assumption that the track was produced by a muon, a pion, and a proton. For each of these

particle assumptions, the track produced includes the trajectory points from equation 6.17,

the energy-momentum 4-vector for the particle computed by the Path class using the full

trajectory, the total χ2 per equation 6.18, and the number of degrees of freedom (NDOF) for

the total χ2. Since equation 6.18 is a sum over the n hits and the M scattering planes, and

the fit trajectory given by equation 6.17 includes M + 4 free parameters (the M scattering

angles plus a value for a and b in each view) the NDOF will be n+M − (M + 4) = n− 4,

where n is the number of hits used for the final track fit after the “outliers” had been

removed. All of this information is stored with each track so that it can be used by any

analysis methods performed later.

6.7.3 Results and Performance

Figure 6.19: This plot shows the location of the scattering planes for the muon fit assump-
tion (tall blue lines) and the proton fit assumption (short purple lines) for a simulated 2
GeV/c muon with a track length of approximately 850 cm. The scattering planes locations
are measured along the track length s.
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The plot in figure 6.19 is an example of where the BPF algorithm chose to put the

scattering planes under the muon fit and proton fit assumptions, for a simulated 2 GeV/c

muon. First, it is clear that the scattering planes get closer together as the particle reaches

the end of its trajectory where it is expected to scatter more. Second, at the beginning

of the track, the proton fit assumption scattering planes are farther apart than the muon

fit assumption scattering planes. This occurs because the proton would have to have more

momentum than the muon in order to produce a track of the same length, and would

therefore be expected to scatter less (under the Coulomb multiple scattering model) at the

beginning of the track. Third, the last four scattering planes for both the muon and proton

fit assumptions occur at exactly the same locations due to the restriction that there can

not be more than one scattering plane in between each measurement plane.

Shown in figure 6.20 is an event display from the same selected far detector data event

seen in figure 6.16. For simplicity, only the tracks made under the muon fit assumption are

drawn. The zoom in on the end of the longer track (assumed to be a real muon) shows the

tracker’s ability to follow the path outlined by the cell hits, and includes a more dramatic

scattering at the track end where the particle had the least momentum.

In an attempt to isolate the performance of BPF from the other reconstruction modules,

I opted to use samples of simulated single particles over using simulated neutrino events,

which can often be difficult to reconstruct and can introduce poor performance caused by

upstream failures in the other modules. Since the analysis I discuss in chapter 7 focuses on

identifying the muon track in νµ CC interactions, I will focus here on the performance of BPF

with respect to reconstructed muons, specifically examining the reconstructed momentum

and track directions.

In generating samples of single muons to use for BPF performance assessment, I discov-

ered that in about 1% of events, the Elastic Arms algorithm showed a tendency to displace
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Figure 6.20: Top: Reconstructed far detector neutrino candidate event showing the tracks
produced by the BPF algorithm. Only the tracks produced by the muon fit assumption are
shown. Bottom: Zoom in on the track trajectory shown in the gray box in the top figure.
Cells borders are outlined in light gray and cell hits are color coded by the charge deposited
according to the scale shown on the bottom right of the top figure.

the event vertex forward along the muon track. This effect is noticeably more pronounced

in single track events where a second track is not present to help identify the vertex. An

example can be seen in figure 6.21. While the longer blue prong in this figure contains most

of the muon track, the short green prong will have a poorly reconstructed value for the muon

momentum, which led to a 6% broadening of the momentum fractional bias plots [78]. Since

this failure occurs within the Elastic Arms algorithm and not within BPF, I removed this

small sample of events by requiring the BPF reconstructed momentum to be at least half of

the true momentum. All performance plots that follow were made using this “half-p” cut.

To asses BPF’s ability to reconstruct the momentum of a muon, I generated four samples

of 1000 single muons in the center of the far detector with momenta of 0.5, 1.0, 2.0, and
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Figure 6.21: An example of the event vertex being pulled forward along the track by the
Elastic Arms algorithm, justifying the “half-p” cut. The event shown is a simulated single
muon with a momentum of 2 GeV/c traveling from left to right. The Elastic Arms vertex
is drawn as a blue “X” with 2 back-to-back Fuzzy-K 3D prongs. The blue prong contains
most of the muon and the short green prong points back towards the true muon origin.

4.0 GeV/c, reconstructing each sample with the BPF muon fit assumption. The 0.5, 1.0,

and 2.0 GeV/c samples were generated with a uniform distribution of initial track angles

between 0 and 60 degrees with respect to the detector z-axis. For containment reasons, the

4 GeV/c sample was restricted to initial angles between 0 and 15 degrees. The distributions

of momentum fractional bias values, defined as (preco − ptrue)/ptrue, for these four samples

are shown in figure 6.22 with the mean and RMS values for each distribution listed in table

6.6. The RMS values in this table indicate that the BPF momentum resolution remains

relatively constant at 5% across a range of muon momenta, with the resolution improving

for larger true momentum values. The mean values in this table suggest that BPF has a

consistent tendency to overestimate the true momentum by about 2%. This effect is most

likely due to differences between the dE/dx tables in [77] used by the BPF Path class and

those used by GEANT4 to simulate the muon samples. These differences will be corrected

in future analyses.
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Figure 6.22: Momentum fractional bias plots for four simulated single muon samples. The
mean and RMS values for these distributions are listed in table 6.6.

sample mean RMS

0.5 GeV/c µ 0.028 0.061
1.0 GeV/c µ 0.019 0.053
2.0 GeV/c µ 0.020 0.050
4.0 GeV/c µ 0.020 0.048

1.0 GeV/c π −0.463 0.226
1.0 GeV/c p −0.040 0.078

Table 6.6: The mean and RMS values for the fractional bias distributions shown in figures
6.22 and 6.23.

As a quick assessment of BPF’s ability to reconstruct pion and proton momenta, I also

generated a sample of 1000 single pions and 1000 single protons each with a momentum

of 1.0 GeV/c with the same 60 degree spread in initial angles. The pion sample was

reconstructed with the BPF pion fit assumption and the proton sample with the BPF

proton fit assumption. I restricted myself to 1.0 GeV/c particles because 0.5 GeV/c protons

leave too few hits to produce a reliable track, and 2.0 GeV/c pions and protons begin to

have strong interactions which are not included in the BPF multiple scattering model. The
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distributions of momentum fractional bias values are shown in figure 6.23 with the mean

and RMS values for each distribution listed in table 6.6. BPF seems to do reasonably well

with the protons, resulting in a momentum resolution of about 8%, but very poorly with

the pions. After examining a few event displays from the single pion sample, it was clear

that this sample suffered from a variety of things that would cause the reconstruction to fail,

including hard scattering of the pion causing improper placement of the vertex, absorption

of the pion into a nucleus resulting in the ejection of one or more protons, and mid-flight

decay of the pion into a muon. Examples of these types of failures can be seen in figure

6.24. Since the reconstruction discussed in this chapter is aimed at events with neutrino-like

topologies which often have vertices well defined by multiple particle tracks, failures seen

in reconstructing isolated single pions might not impact the pions that we expect to see in

real neutrino data. The analysis I discuss in chapter 7 does not use either the BPF pion

or proton reconstruction information, so it is unlikely to be impacted by these kinds of

failures. However, any future analysis that does wish to use this information will require

looking further into the BPF algorithms ability to reconstruct tracks for particles other

than muons.

The other major BPF tracking performance metric I examined was the reconstructed

initial direction of the track. For this assessment, I generated five samples of 1000 single

muons with momenta of 0.5, 1.0, 2.0, 4.0, and 8.0 GeV/c. All muons in these samples were

generated at exactly 5 degrees with respect to the detector z-axis. The distributions of

reconstructed track angles for these samples are shown in figure 6.25 with the mean and

RMS values for each distribution listed in table 6.7. The central values for these distributions

are all around 5 degrees with resolutions less than a few degrees. To test some larger angles,

I generated three more samples of 1000 single muons with 2 GeV/c momenta each, at 30,

60, and 80 degrees with respect to the detector z-axis. The distributions of reconstructed
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Figure 6.23: Momentum fractional bias plots for the 1.0 GeV/c simulated single pion and
single proton samples.

track angles for these samples are shown in figure 6.26 with the mean and RMS values

for each distribution listed in table 6.7. The central values for these distributions all line

up with the true angles with resolutions of a few degrees. The 80 degree sample has an

additional cluster of values centered around 90 degrees. Some of the muons in this nearly

vertical sample will scatter so as to remain within the same detector plane, so a small group

of events with a reconstructed track angle of 90 degrees is expected.

sample mean (degrees) RMS (degrees)

0.5 GeV/c µ, 5◦ 5.83 2.27
1.0 GeV/c µ, 5◦ 5.47 1.37
2.0 GeV/c µ, 5◦ 5.19 0.75
4.0 GeV/c µ, 5◦ 5.15 0.43
8.0 GeV/c µ, 5◦ 5.12 0.25

2.0 GeV/c µ, 30◦ 30.0 0.74
2.0 GeV/c µ, 60◦ 60.3 4.34
2.0 GeV/c µ, 80◦ 80.5 3.88

Table 6.7: The mean and RMS values for the reconstructed track angle distributions
shown in figures 6.25 and 6.26.
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Figure 6.24: Examples of the types of pion reconstruction failures that led to poor esti-
mates of pion momenta. In the top figure, the pion (pink track) has a strong interaction
knocking a proton (purple track) out of a nucleus which deposits the majority of the energy
in the Fuzzy-K 3D prong (blue outline). In the bottom figure, the pion has had several
hard scatters causing the Elastic Arms vertex (blue “X”) to be placed in the wrong spot.
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Figure 6.25: Distribution of reconstructed track angles for five samples of single muons
all generated at 5 degree angles to the detector z-axis. The mean and RMS values for these
distributions are listed in table 6.7.

Figure 6.26: Distribution of reconstructed track angles for three samples of single 2 GeV/c
muons, generated at 30, 60, and 80 degree angles to the detector z-axis. The mean and
RMS values for these distributions are listed in table 6.7.
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CHAPTER 7

The Break Point Fitter Analysis Suite

In this chapter, I outline the details of the analysis steps performed on the reconstruction

products described in chapter 6, that are unique to my analysis. I give a more general

description of the νµ CC disappearance steps (event selection, near-to-far energy spectra

extrapolation, etc.) in chapter 8. The methods described here include using the results of

the Break Point Fitter tracking algorithm (see section 6.7) to identify muon tracks and to

estimate energy and energy resolution on an event by event basis for νµ CC interactions.

At the end of this chapter, I show some examples of performance with respect to simulated

data.

7.1 Summary of Motivations and Methods

The primary motivation behind my development of the BPF νµ CC disappearance analysis

was to improve our event energy estimations and our final sensitivity contours for νµ → νµ

oscillations. Improved event energy estimations can be accomplished by taking advantage of

Fuzzy-K’s ability to pick out hadron tracks, rather than simply accounting for the hadronic

energy in each event calormetrically. The BPF track model can lead to event energy im-

provements using BPF’s built-in momentum estimate for muon tracks which automatically

incorporates energy loss through different detector materials. As shown in figure 2.5 the

difference between measuring sin2 θ23 = 0.4 and sin2 θ23 = 0.5 depends greatly on accurate
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energy estimations of the events specifically near 1.5 GeV. Our final sensitivity contours can

be improved if, in addition to improving the energy estimations for all events, we can also

provide an estimate on an event by event basis of the energy resolution. Events near 1.5

GeV that are estimated to have good energy resolution can be treated as “more important”

for the final fit than events with poor energy resolution, leading to better contours. In prin-

ciple, this could make a bigger difference for the “maximal” oscillation case (sin2 θ23 = 0.5)

where a few improperly binned events at the oscillation maximum would pull the best fit

for the oscillation parameters away from the “maximal” solution.

The first step of this analysis identifies which track is the most “muon-like.” This is

important for νµ CC energy estimation since the muon carries a significant fraction of the

total event energy and muon energies can be well estimated using information about the

track length and dE/dx. To find the muon track, I developed a “muon ID” algorithm based

on variables computed from track parameters. This method, the input variables used, and

the results are discussed in section 7.2. With the most muon-like track identified, the next

step is to estimate the energy and energy resolution for each event. For this step, I developed

a multi-variate regression method which is described in section 7.3 along with some example

results.

7.2 Muon Identification

Accurately identifying the muon track is important for νµ CC event energy estimation, and

will allow the BPF energy estimator to use the momentum computed from the BPF tracks

with the help of the BPF path-length dE/dx integrator, Path (described in section 6.7.2.)

However, determining which track is the most muon-like with greater than 95% accuracy

can be challenging. Any individual characteristic of a true muon track (length, dE/dx, etc.)

often shares a common phase space with tracks made by non-muons. Therefore, I chose a
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method using a k-nearest-neighbor (kNN) algorithm [79], to combine the selective power of

several variables. For this method, I picked four quantities based on their discriminating

power. These variables are track length, the ratio of hits on the track to hits in the Fuzzy-K

prong, the total χ2 from the BPF track fit (equation 6.18), and a dE/dx log-likelihood

value. Track length, the hit ratio variable, and the total χ2 all come straight from the

reconstruction results. However, the dE/dx log-likelihood variable is not part of the re-

construction results and is calculated afterwards. I will discuss the method I developed to

compute this variable in the next section.

7.2.1 The Muon Track dE/dx Log-Likelihood Calculation

Calculating a dE/dx log-likelihood value for each track is based on the idea that particles

will lose energy along the length of their track according to some expected value that will

be different for different particle types. Measuring the energy loss rate (dE/dx) along

a given track and comparing it to the value expected for a muon can therefore help to

determine if the track is “muon-like” or not. For the range of muon energies expected in

NOvA νµ CC events, this energy loss rate (known as the “stopping power”) is dominated

by electromagnetic interactions leading to energy transfer from the penetrating particle to

the surrounding material through atomic excitation and ionization. This is modeled well

by the Bethe formula given by

〈
− dE

dx

〉
=
Kz2Z

2Aβ2

[
ln

2mec
2β2γ2Wmax

I2
− 2β2 − δ(βγ)

]
, (7.1)

where Wmax is the maximum energy transfer in one collision given by

Wmax =
2mec

2β2γ2

1 + 2γme/M + (me/M)2
, (7.2)
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where z and M are the charge and mass of the incident particle, Z, A, and I are the atomic

number, atomic mass, and mean excitation energy of the absorbing material, K = 0.307075

MeV mol−1 cm2, me is the electron mass, and βγ = p/Mc. δ(βγ) is a density effect

correction due to polarization in the absorbing material [8]. Equation 7.1 is accurate to

within a few percent for muons with approximately 0.01 ≤ p ≤ 100 [GeV/c] traveling

through intermediate-Z materials [8]. A derivation and more detailed description of the

Bethe equation can be found in reference [8].

Figure 7.1: Stopping power for µ+ in copper. Equation 7.1 is accurate to within a few
percent in the region labeled “Bethe.” This plot was taken from reference [8].

A plot showing an example of the stopping power of muons in copper is shown in figure

7.1. Equation 7.1 is a reasonable approximation in the region labeled “Bethe” on this plot.

Since this equation represents the mean stopping power, it is pulled towards the larger

values that occur in single, high energy collisions. An expression for the “most-probable”

value of dE/dx would therefore be more desirable. The most-probable accumulated energy

loss for a particle traveling a distance x through a material is derived in [8] using a Landau-
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Vavilov distribution. However, this expression is written in terms of x (which is typically

very different for different cell hits) making its implementation as an estimation of the

instantaneous value of dE/dx difficult.

A log-likelihood approach can be taken by generating a model for the probability of

getting a specific dE/dx value for a particle with a given βγ. I accomplished this by

plotting dE/dx values vs. ln(βγ) measured from true muon tracks reconstructed under

the BPF muon fit assumption. Using βγ instead of the particle momentum allowed me to

make one set of plots that work for particles of different masses. I used the log of βγ which

naturally produces bins of uniform fractional size, picking bin widths of 5% to reflect the

5% BPF muon momentum resolution discussed in section 6.7.3. The values for dE/dx and

ln(βγ) are calculated for each cell intersected by the BPF track trajectory. The value for dx

is calculated by determining the track entrance and exit points within the cell. The value

for dE is taken from the measured energy deposited in the cell, which has been corrected for

attenuation using the middle of the track segment within the cell as the estimated distance

to the APD readout (a coordinate referred to as “W”). The distance along the track from

this middle location to the end of the track is then passed to the BPF path-length dE/dx

integrator Path, which returns the estimated value of βγ for that cell under the muon

fit assumption. These values are plotted in a 2D histogram (referred to hereafter as the

“dEdxLL plot”) and each vertical strip one bin wide is normalized to an area of 1.0 so that

each bin represents for each cell hit, the probability of getting a specific value of dE/dx for

a particle with a given value of βγ.

Before generating the final versions of the dEdxLL plot, I considered the possibility that

my dE/dx calculations could be skewed by two things. First, the W coordinate could affect

dE since tracks passing through cells farther from the readout will be more susceptible to

attenuation and noise. Second, steep tracks (with long path lengths through a cell) will
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likely have less reliable estimates of dx and will be more affected by the fact that the method

for calculating dE/dx described above computes only one value of dE/dx for each cell since

dE/dx will be changing throughout the cell. To test these effects, I generated dEdxLL plots

using four samples of 3 GeV/c muons simulated in the far detector. The first two samples

tested the effects of different W coordinates and were simulated in the upper-West corner

of the detector (i.e. close to the APD readout) and the lower-East corner (i.e. far from

the APD readout.) The dEdxLL plots for these two samples along with an asymmetry

plot comparing the two can be seen in figure 7.2. The last two samples tested the effects

on tracks with different values of dx by comparing a sample of “shallow” muon tracks,

generated between ±15◦ with respect to the detector z-axis, to a sample of “steep” muon

tracks, generated with angles between 70◦ and 90◦. The results of comparing the last two

samples can be seen in figure 7.3.

The plots in figures 7.2 and 7.3 are very similar but the asymmetry comparisons show

some non-trivial differences due to the effects listed above. To get a better representation

of the distributions of dE/dx values for tracks in different locations of the detector and

at different angles, I applied a simple solution of generating four different dEdxLL plots

for two ranges each of W and dx values. The computed values of dE/dx and ln(βγ) for

each cell were used to fill one of these four plots according to value of W and dx for that

particular cell. The W ranges were chosen by simply splitting the cell into the half closer to

the APD readout (W > 0) and the half farther away (W ≤ 0.) For the dx ranges, I picked

a dividing line at dx = 8 cm by examining the distribution of dx values from my simulated

steep muon track sample and from tracks in simulated genie events (shown in figure 7.4.)

To cover the phase space represented in these four dEdxLL plots, I used the recon-

structed tracks from four different simulation samples. The first two samples were each

1× 106 single 10 GeV/c muons generated in the bottom (top) of the detector traveling up
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Figure 7.2: Computed values of dE/dx vs. muon momentum (instead of ln(βγ)) for
simulated 2 GeV/c muons in the upper-West quadrant of the far detector (top left) and in
the bottom-East quadrant (top right.) The bottom plot shows the bin by bin asymmetry
computed as (bottom-East - top-West)/(bottom-East + top-West).

(down) at shallow angles. The last two samples were single 2.7 GeV/c muons (also with

1× 106 in each sample) generated in the bottom (top) of the detector traveling up (down)

at steep angles. Each sample was generated with a spread of different initial angles.

An example of one of the four dEdxLL plots created from the single muon samples

described above, is shown in the top plot of figure 7.5. At the low momentum end of the

muon tracks, some discretization of the computed values for βγ is occurring. This is evident

in the vertical striping pattern that appears around ln(βγ) = −1.2, −0.2, +0.1, etc. For a

muon, ln(βγ) = −1.2 corresponds to a momentum of about 30 MeV/c and ln(βγ) = −0.2

corresponds to about 80 MeV/c. This difference of 50 MeV/c is reasonable for the amount

of energy a muon is expected to lose near the end of its track as it crosses one cell (assuming
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Figure 7.3: Computed values of dE/dx vs. muon momentum (instead of ln(βγ)) for
simulated 2 GeV/c muons in the far detector with shallow tracks (top left) and steep
tracks (top right.) The bottom plot shows the bin by bin asymmetry computed as (steep -
shallow)/(steep + shallow).

a path length of 6 - 10 cm.) Given that my dE/dx calculation is done on a cell-by-cell basis,

this kind of discretization is expected.

Since my intention behind using ln(βγ) on the x-axis instead of momentum was to use

one set of plots for all particle types, this kind of gap can cause difficulties. Naturally, this

gap is not a problem when using this dEdxLL plot to identify tracks from true muons since

hits on muon tracks clearly do not occupy that region of the plot. But trying to use this

plot for particles whose mass is significantly different from the muon could result in missing

information. For example, a dEdxLL plot generated from a sample of 1 GeV/c protons

reconstructed with the BPF proton fit assumption is shown in the bottom plot of figure 7.5.

It is clear from this plot that for protons, most of the relevant dE/dx information falls right
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Figure 7.4: Distribution of computed dx values for the steep track sample (red) and a
sample of tracks from 100 reconstructed GENIE events. The dividing line for the two dx
ranges was chosen to be 8 cm since this broke the steep track sample up into two distinct
populations and most GENIE tracks had cell path length less than this value. Both plots
are normalized to unit area.

in the gap seen in the muon plot, which could result in an inaccurate dE/dx log-likelihood

value.

The solution I applied to the problem of the gaps in the muon plots was to generate four

more single particle samples under the exact same initial conditions as the original muon

samples, using 1 GeV/c protons in place of the muons. I decided to use 1 GeV/c protons

since they filled in the gap in the muon plot well while minimizing the overlapping informa-

tion. Using lower energy protons also minimizes energy losses due to strong interactions,

which are not modeled by equation 7.1.

For the final step in creating the dEdxLL plots, I added the plots created from re-

constructing protons under the BPF proton fit assumption with the plots created from

reconstructing muons under the BPF muon fit assumption, and normalized the results in

vertical strips as described above. An example of the final dEdxLL plot for cell hits with

W > 0 and dx < 8 cm is shown in figure 7.6. Some discretization is still evident in this plot,

but the gap in the muon plot has been significantly filled in and the dE/dx information
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Figure 7.5: Top: Plot of dE/dx vs. ln(βγ) for cell hits with W > 0 and dx < 8 cm,
generated from 10 GeV/c muon tracks reconstructed with the BPF muon fit assumption.
Bottom: Plot of dE/dx vs. ln(βγ) for cell hits with W > 0 and dx < 8 cm, generated
from 1 GeV/c proton tracks reconstructed with the BPF proton fit assumption.

from the protons lines up reasonably well the information from the muons.

Armed with the finished set of dEdxLL plots, I compute a dE/dx log-likelihood value for

each BPF track. Since the purpose is to identify muons, I use only the track reconstructed

under the BPF muon fit assumption. The premise is that for true muon tracks, the muon

fit assumption will give correct values for βγ causing the calculated dE/dx values to line

up with the dEdxLL plots, resulting in a high log-likelihood value. The log-likelihood value
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Figure 7.6: Normalized plot of dE/dx vs. ln(βγ) for cell hits with W > 0 and dx < 8 cm,
created by combining the muon and proton results together.

for each track is calculated as

LL =
1

N

∑
N

L(ln[βγ], dE/dx), (7.3)

where N is the number of cells intersected by the track trajectory, and L(ln[βγ], dE/dx) is

the bin content of the appropriate dEdxLL histogram (determined for each cell by the values

of W and dx.) These dEdxLL plots were generated for the far detector which obviously has

much longer cells than the cells in the near detector, so special handling of the near detector

case is required. In order to use the same plots, for near detector muon identification, I

always assume that W > 0 (i.e. the near detector is assumed to be just like the far detector

but with every hit “close to the APD readout.”) I will discuss the results of applying this

method, including showing plots of the distribution of dE/dx log-likelihood values in the

next section.

7.2.2 Input Variables to the Muon ID

The first input variable to the muon ID algorithm is the dE/dx log-likelihood value calcu-

lated with equation 7.3 according to the procedure described above. By itself, this variable
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has significant discriminating power and is therefore one of the most influential inputs to

the muon ID. Plots showing the distribution of dE/dx log-likelihood values for signal and

background are shown in figure 7.7. For all plots in this section, “signal” refers to a re-

constructed track for which the particle that contributed the most energy was a true muon

(µ− or µ+) and “background” refers to all other tracks. All tracks have been taken from

simulated GENIE events in the far detector, selecting only contained true νµ CC events

with at least 10 cell hits in each view.

The second input variable to the muon ID is the BPF track fit total χ2 per degree of

freedom value discussed in section 6.7.1 and calculated with equation 6.18 from the BPF

muon fit assumption. This variable is a measure of how well the multiple-scattering model

applies to the track fit under this assumption, and should be closer to 1.0 for true muons.

The distribution for signal and background tracks is shown in figure 7.7.

Figure 7.7: Left: Distribution of dE/dx log-likelihood values for muon (signal) and non-
muon (background) tracks. Right: Distribution of BPF muon track fit total χ2 per degree
of freedom values. All distributions are normalized to unit area.

In νµ CC interactions, the muon tends to be the longest track since they typically carry

a significant amount of the total event energy and they do not loose energy by participating

in strong interactions. In fact, simply selecting the longest track in a νµ CC interaction

correctly picks the muon roughly 80% of the time. I chose to include track length as an
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input variable for this reason. The distribution of track lengths for signal and background

tracks is shown in figure 7.8. For this variable, track length is the path length along the

trajectory from the track fit under the BPF muon assumption.

The last input variable to the muon ID algorithm is the ratio of hits intersected by

the track trajectory to hits in the Fuzzy-K prong used to make the track. I discovered in

an early study that it was possible for some shower-like events (mostly photons) to have

reasonably good dE/dx log-likelihood values [80]. This can occur because I am computing

dE/dx by only considering the cells intersected by the track trajectory, and can therefore

be inaccurate for shower-like events with energy deposited off the main track. I picked this

hit ratio variable as a way of helping to distinguish track-like and shower-like events. The

distribution for the hit ratio variable for signal and background tracks is shown in figure 7.8.

Spikes in the background distribution are caused by the fact that this variable is a ratio of

two integers. This is not as prominent in the signal distribution because muon tracks tend

to have enough hits to smooth this discretization out.

Figure 7.8: Left: Distribution of track lengths for muon (signal) and non-muon (back-
ground) tracks. Right: Distribution of track/prong hit ratios. All distributions are nor-
malized to unit area.
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7.2.3 The Muon Identifier

The job of the muon ID algorithm is to select the most muon-like track from all of the

reconstructed tracks within a given slice. Since νµ CC event selection is handled by the

method described in section 8.1.2, the tracks selected by the muon ID from this sample

of events are assumed to be the primary muons generated in the νµ CC interactions. To

select the most muon-like track in a slice, I generated a “muon score” for each track in

the slice, taking the track with the highest score. This “muon score” is computed using a

k-nearest-neighbor (kNN) classification algorithm, generated with the TMVA package [79]

in ROOT [31,32]. I chose this method for its simplicity in implementation.

A kNN classification algorithm works by building up a phase space density-map for both

“signal” and “background” events, distributed according to some group of input variables.

An example of such a distribution is shown in figure 7.9. A collection of signal events

and background events must be fed to the algorithm to build the initial version of this

density map (a process referred to as “training” the kNN.) Once the training is complete,

an unknown event can be classified by searching the density map to find the “k” number of

nearest neighbors. The score for that unclassified event is the relative probability that the

event is of “signal type” calculated as

Ps =

∑Ns
i Ws,i∑Ns

i Ws,i +
∑Nb

j Wb,j

, (7.4)

where Ns (Nb) is the number of signal (background) events among the nearest neighbors,

Ws and Wb are weights that can be set for each individual event, and Ns +Nb = k. In the

simple case of a training sample composed of an equal number of signal and background
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events, all with weight W = 1,

Ps =
Ns

Ns +Nb
=
Ns

k
. (7.5)

A minimum value of Ps can then be chosen to select a sample of signal events that meets

some desired efficiency and purity.

Given that the input variables are likely to have different units, the variable with the

widest distribution will dominate a normal Euclidean metric used to compute distances

within the density-map. Therefore, a weighted Euclidean metric is used when determining

the nearest neighbors to an unclassified event. This weighted distance r between an event

in the density-map x and the unclassified event y is given by

r2 =
d∑
i

1

w2
i

|xi − yi|2, (7.6)

where the index i classifies the d phase space variables, and wi is the width of the xi

distribution for the combined sample of signal and background events. So as to not be

distorted by events out in the tails of the distribution, this width wi can be chosen to contain

only a certain percentage of the events around the central region of the distribution. Overall,

the kNN classification method works well for situations in which the borders between signal

and background are vague or irregularly shaped.

I created the BPF muon ID kNN using version 5.34/25 of ROOT [31, 32] with version

4.2.0 of the TMVA toolkit [79]. The signal and background samples were tracks recon-

structed from far detector events simulated with GENIE. The events (slices) from which

the training samples were picked, were required to have no cell hits within 50 cm of a wall,

at least 10 hits in each view, and to be true νµ CC events. Signal and background tracks

from these events were divided according to whether or not the particle that contributed
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Figure 7.9: An example of the phase space density-map for a kNN with 2 input variables,
x1 and x2 (taken from [79].) The filled circles are the signal events and the open circles
are the background events. The star represents an unclassified event with the “nearest
neighborhood” drawn in a circle around it. In this example, the number of signal and
background events within the circle is roughly the same. Therefore Ps ≈ 0.5.

the most energy to the track was a muon (µ±) or not. The number of signal (background)

tracks passing all cuts in the training sample was roughly 410,000 (460,000). The default

mode for the kNN classification scheme (which was used for this training) is to scale the

background events so that the total sum of the event weights for both signal and back-

ground is the same. Each event in the background sample was therefore given a weight of

Wb = 0.893. The distribution widths (wi) of each of the input variables, was set to the

width of the central 80% of the values for that variable.

To choose the number of neighbors k, I trained several kNNs using k = 20, 40, and 80.

In each case, I examined the percentage of slices in which the track with the best muon ID

value was a true muon for true νµ CC events and for true νµ CC events with a best muon ID

value > 0.4. For both of these samples, these percentages showed essentially no variation

for the different values of k. I chose to use k = 80 since the percentages were slightly higher

for this value in the sample of true νµ CC events.
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The distribution of muon ID values for signal and background tracks is shown in figure

7.10. The data used to generate both plots in this figure was taken from a set of far detector

events simulated with GENIE, separate from the training sample, but selected by the same

criteria used to select the training events. The second plot in figure 7.10 shows the same

distribution for background tracks only, broken down by particle type. The background

track sample was approximately 40% protons, 40% photons, and 20% π±.

Figure 7.10: Top: Distribution of BPF muon ID values for signal and background tracks
(normalized to unit area.) Bottom: Distribution of BPF muon ID values for background
tracks only, broken down into the particle that contributed the most energy to the track.

Since I am using this muon ID value to select the most “muon-like” track from a set of

events selected as νµ CC, the best performance metric for the BPF muon ID value is how
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often it correctly picks the muon in this scenario. Shown in table 7.1 are the percentage

break downs by true particle type, for the most muon-like track in a slice selected by the

BPF muon ID. The break downs are given for νµ CC events selected by truth, νµ CC

events selected by the ReMId algorithm discussed in section 8.1.2, and true νµ CC events

selected by ReMId (included for comparison since the ReMId selected sample does include

a small number of NC events). ReMId also uses a kNN with input variables from a different

tracking algorithm and is used to select events for the standard NOvA νµ CC disappearance

analysis. I use ReMId to select the events for my νµ CC disappearance analysis as well. For

this sample, the BPF muon ID correctly selects a muon track over 96% of the time. The

misidentified non-muon tracks are roughly an equal mixture of protons, photons, and π±.

particle true νµ CC ReMId selected ReMId and true νµ CC

µ± 87.6 96.3 97.9
γ 4.3 1.1 0.7
p 4.9 0.9 0.6
π± 3.0 1.6 0.8

Table 7.1: Percentages for the particle that contributed the most energy to the track
selected by the BPF muon ID to be the most “muon-like” track within a slice. Roughly
one third of all events are NC. The ReMId selection algorithm is discussed in section 8.1.2.

7.3 The BPF Energy Estimator

The BPF energy estimator is the final step in the BPF analysis. It provides an energy

and an estimate of the energy resolution for each neutrino interaction seen in the NOvA

detectors. These reconstructed energies and their resolutions are used to generate the final

sensitivity contours for my νµ CC disappearance analysis, which is described in detail in

chapter 8. The energy estimator takes as input the output from the NOvA reconstruction

steps described in chapter 6. For convenience, a summary of these steps appears below.

• Step 1: The first step produces “slices” (section 6.3) which are clusters of spatially
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and temporally correlated hits.

• Step 2: The next step produces a vertex (sections 6.4 and 6.5) for each slice, repre-

senting the estimated neutrino interaction location.

• Step 3: Following vertex identification is the creation of “prongs” by the Fuzzy-K

algorithm (section 6.6.) Prongs are clusters of hits believed to belong to a single

particle, and include a start point and a direction.

• Step 4: The last step is to make particle tracks from the Fuzzy-K prongs. This

is done by the BPF tracker (section 6.7) which creates three tracks under the three

particle assumptions for each 3D Fuzzy-K prong.

7.3.1 The Energy Estimation Method

To build the BPF energy estimator, I used a multi-variate regression method trained with a

large sample of far detector neutrino events simulated with GENIE. The regression method

is similar to the classification method described above. It must be fed a sample of “train-

ing” events parameterized by some set of input variables, to generate some kind of phase

space mapping. However unlike a classification method, a regression method takes only

signal events and maps the input variables for that event to one or more “target” variables

associated with the event.

For this energy estimator, each input event was a slice associated with a single neutrino

interaction. Each of these events was parameterized by six input variables related to the

event energy, which are described in detail below. To map these six inputs to an estimated

event energy and event energy resolution, I used two target variables. The first was the

true neutrino energy Eν and the second was the true energy squared E2
ν . I estimated the

energy resolution σE for each event using

σ2E = E2
ν − Eν

2
. (7.7)
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To generate the energy estimator, I turned again to the ROOT [31, 32] TMVA toolkit

[79]. In the early development stages, I tried out two different multi-variate techniques: a

“multilayer perceptron” (MLP) and a kNN. The MLP method is an artificial neural network

which uses a “feed-forward” system of layered neurons to generate a value for the target

variables based on the neuron’s response to the inputs. I chose the MLP method because

it worked extremely well with some of my initial toy models. However, the performance

of the MLP was not as good when mapping to more than one target variable and showed

some instability in the situation where the targets were complex functions of the input

variables (as is the case when mapping reconstruction variables to neutrino energies.) On

the other hand, the performance of the kNN regression method was overall more stable

across a variety of different types of event, and the mapping to the first target variable was

totally unaffected by adding a second one.

The kNN regression method works in a similar way to the kNN classification method,

by building a map in the input variable phase space from a set of training events. Each of

these events has a value for the target variable(s) associated with it, and can be assigned an

individual weight. For a test event, the kNN will find the k nearest neighbors and compute

the regression value(s) for the test event as the weighted average of the neighbor’s target

value(s). That is, the regression value V for a test event is given by

V =

∑k
i WiTi∑k
i Wi

, (7.8)

where Wi the individual event weight and Ti is the target value for each event within the

group of nearest neighbors. If multiple target values are associated with each event, then a

regression value can be computed for each one.
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7.3.2 Input Variables to the Energy Estimator

I chose six variables for the inputs to the BPF energy estimator. Some of them were chosen

due to their direct relationship to the original neutrino energy, some were chosen because

they were more closely related to our ability to estimate σE , and some were chosen simply

because they would help the kNN match to events with similar topologies in the training

sample. The six input variables are the reconstructed momentum for the muon track, the

z-component of the muon track direction, the number of 3D Fuzzy-K prongs, the total

summed energy in the 3D Fuzzy-K prongs, the remaining summed energy in the slice, and

the number of photo-electrons (PE) summed over all hits not on the muon track. Plots

showing the distribution of each of these variables are shown in figure 7.11.

The muon momentum (Pµ) and track direction (DirZµ) variables were chosen because of

their direct relationship to the neutrino energy for νµ CC events. In the case of a two-body

QE interaction, these are the only two variables needed to calculate Eν directly with

EQEν =
Mn − 1

2(M2
n +M2

µ +M2
p )

Mn − Eµ +
√
E2
µ −M2

µ cos θ
, (7.9)

where θ is the angle between the incoming neutrino and the outgoing muon. The muon

kinematic variables remain important for non-QE events as well since the muon still carries

a significant fraction of the neutrino energy which helps the kNN match to a region of

the input variable phase space with similar events. The muon track was identified using

the BPF muon ID algorithm described in section 7.2. The momentum for this track was

calculated using the BPF path-length dE/dx integrator Path (described in section 6.7.2)

and DirZµ was simply taken as the z-component of the reconstructed track direction. This

z-component is measured with respect to the z-axis of the detector, which as noted in

chapter 3 is about 3◦ different from the direction of the incoming beam neutrinos due to
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Figure 7.11: Distributions for the six input variables to the BPF energy estimator. Com-
parisons of these variables to data are discussed in chapter 8.

the curvature of the Earth over the 810 km baseline. However this variable is not being

used directly in equation 7.9, and this 3◦ will also be present in all of the events used to

train the kNN, so no negative effects due to this offset are expected.

I divided the remaining energy in the slice (not on the track identified as the muon)

into two categories based on whether or not it came from “trackable” activity. I did this

on the premise that the other reconstructed tracks in the slice represented information of a

166



different quality than a simple collection of hits and should therefore be treated differently.

The first of these categories was the sum of the energy on all 3D Fuzzy-K prongs (E3D)

excluding the one identified as the muon. I computed this variable for each event as the sum

of the absolute energy of the cell hits in these prongs. The absolute energies are corrected

for attenuation using the initial prong direction projected through the cell to compute the

cell’s W coordinate. Since E3D is a sum over all non-muon 3D prongs, I also included

the total number of 3D prongs (N3D) to help distinguish events with different numbers of

hadrons for which E3D might be the same.

All of the remaining energy in the slice was put into the variable Eremain. This variable

is the sum of two contributions. The first contribution is the sum of the absolute energies

over all remaining cell hits in the slice. This includes hits in 2D Fuzzy-K prongs as well

as all remaining slice hits, and will account for energy from things like stray photons,

neutrons, and any non-reconstructable tracks. Since these hits do not belong to 3D prongs,

an accurate estimate of where the hit occurred along the length of the cell is not available.

To compute the absolute energy of these hits, I used the average of the x or y coordinates

from the cell hits in the opposite view (computed from just the non-3D prong hits) for the

cell’s W coordinate.

The second contribution to the Eremain variable comes from hadronic energy found su-

perimposed on the track identified as the muon, which can happen for cells at the beginning

of the track near the neutrino interaction vertex. This energy does not affect my calculation

of muon energy (or momentum) since the BPF algorithm performs a path-length integra-

tion using the expected energy loss. However, a significant amount of hadronic energy can

go unaccounted if it overlaps with the muon track since this energy won’t be included in

the E3D variable.

To compute the hadronic energy contamination on the muon track, I made use of an
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existing algorithm within the NOvA analysis code framework called TrackCleanUpAlg.

This algorithm works by finding a “vertex region” which appears to have energy deposited

above what would be expected from a muon in the “minimum-ionization” region of the

Bethe-Bloch curve (see figure 7.1.) The size of this vertex region is determined dynamically

for each event by computing dE/dx on a plane by plane basis for the hits along the muon

track. This is done by staring at the beginning of the track, and finding the point where

the computed dE/dx values, averaged over three consecutive planes, drop below 0.0022

GeV/cm and stay there. An example of the distribution of dE/dx values along a muon

track leading to a clear identification of the vertex region is shown in figure 7.12. For cell

hits on the muon track in this vertex region, the expected energy deposited by the muon

alone is estimated from the track path length through the cell and an assumed maximum

energy loss rate of 0.0022 GeV/cm. Any energy deposited in the cell above what is expected

based on this estimate is considered to be “hadronic contamination” and is added to the

Eremain variable. An example showing the distribution of hadronic contamination energy

found on true muon tracks is shown in figure 7.12. Further details on the TrackCleanUpAlg

algorithm can be found in [81].

The last variable for the BPF energy estimator is SumPE . As the name implies, this

variable is the sum of the PE from all cell hits in the slice excluding those on the track

identified as the muon. It is similar to E3D and Eremain, but as a raw measurement of PE,

it does not include attenuation corrections. I included this variable to help improve the

estimate of σE by distinguishing the amount of light seen in an event from the estimated

calorimetric energy. Events that occur farther from the APD readout (for example, in the

bottom-East corner of the far detector) will have on average less total PE than similar

events closer to the APD readout, and should therefore have a poorer energy resolution.

Using a kNN regression method makes determining the “importance” of each of these
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Figure 7.12: Left: Example of dE/dx values calculated by the TrackCleanUpAlg algo-
rithm along the muon track used to determine the vertex region. This plot was taken
from [81]. Right: Distribution of hadronic energy contamination computed by the
TrackCleanUpAlg algorithm for muon tracks produced by BPF and identified by the BPF
muon ID. This plot was made from a small sample of contained, true νµ CC events, simu-
lated for the far detector with GENIE.

input variables difficult. However, using the RMS widths of energy fractional bias plots (like

those shown in figures 7.16 and 7.17) divided by truth into QE and non-QE samples as a

metric, I made the following observations. Not including the variable N3D slightly improved

the QE sample and made the non-QE sample worse by about 0.1% each. Not including the

DirZµ variable made the QE sample better by about 0.1% but made the non-QE sample

worse by about 0.5%. Including the variable SumPE improved the non-QE sample by about

0.5% (at the expense of a 0.1% drop for the QE sample) while making improvements to the

width of the ∆E/σE plot (see section 7.3.4 for a description of this plot.) Lastly, including

the hadronic energy contamination in the Eremain variable improved the fractional bias for

both the QE and non-QE samples by almost 1% each.

7.3.3 Examining Bias in the Energy Estimator

I created the BPF energy estimator kNN using version 5.34/25 of ROOT [31, 32] with

version 4.2.0 of the TMVA toolkit [79]. The input events were slices made from neutrino
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interactions simulated with GENIE for the NOvA far detector. As with the events selected

for the muon ID training, I required all training events to have no cell hits within 50 cm of

a detector wall, at least 10 hits in each view, and to be true νµ CC events. After these cuts,

the training sample had a total of approximately 430,000 events. To choose the optimal

value of k, I examined the width of the fractional bias plots and the width of my energy

resolution estimation plot (see figures 7.16 and 7.17.) The fractional bias plots showed some

slight improvement for larger values of k (k = 80) but the energy resolution estimation plot

was clearly worse. The overall shape of the reconstructed energy spectra with respect to

the true energy spectra was also visibly worse for k = 80 due to the training sample biases

discussed in this section. Therefore for the official training, I chose k = 10.

Given a training sample of events with some energy spectrum, matching data events

to a set of nearest neighbors will naturally pull my reconstructed energy spectrum towards

the most heavily populated regions of the training sample, introducing an energy bias.

To explore the effects of this bias, I created three different energy estimators based on

three different neutrino energy spectrum shapes. The spectrum shapes were derived from

three different assumptions about the νµ CC disappearance oscillation parameters. Using

the same set of training events, I was able to change the shape of the energy spectrum

for the training sample by applying an individual weight to each event. These weights

were computed according to equation 2.9 using the true neutrino energy. The first energy

estimator (“kNN-1”) was trained with the assumption of no oscillations (see the true energy

spectrum in figure 2.4.) The second estimator (“kNN-2”) used a “minimum” oscillation

assumption, using |∆m2
32| = 2.4× 10−3[eV 2] and sin2 2θ23 = 0.95, and the third (“kNN-3”)

used a “maximum” oscillation assumption with |∆m2
32| = 2.4 × 10−3[eV 2] and sin2 2θ23 =

1.0. The true energy spectra for these last two assumptions can be seen in figure 2.5.

Figure 7.13 shows the true and reconstructed energy spectra from each of the three
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energy estimators described above, applied to an unoscillated sample of test events. Figures

7.14 and 7.15 show the three estimators applied to the same set of test events using the

“minimal” and “maximal” oscillation assumptions applied to the true event energies. From

these plots, several things stand out very clearly. First, using the “right” kNN produces the

least biased reconstructed energy spectrum (using kNN-1 for the unoscillated test sample,

using kNN-2 for the “minimally” oscillated test sample, etc.) Second, in a similar manner

using the kNN trained with the energy spectrum that is the most different from the test

sample produces the most distorted reconstructed energy spectrum (using kNN-3 for the

unoscillated case and vice versa.) Third, for all cases there is a spectral bias towards the

most densely populated regions of the training sample. This bias is evident in the fact

that the peaks in the reconstructed spectra are always taller and typically skinnier than the

peaks in the true spectra.

It appears that both of the oscillated estimators (kNN-2 and kNN-3) do reasonably well

with the minimally and maximally oscillated cases with only a slight bias towards the shape

of their respective training samples. However, choosing the best one to use for an unknown

far detector spectra can be somewhat tricky. To quantify the response of each training

assumption to the three corresponding truth assumptions, I computed a total χ2 between

the true energy spectra and the reconstructed energy spectra for all 9 possibilities. The χ2

value was based on the assumption that each bin in the energy spectra was an independent

Poisson distributed number [8] using

χ2 = 2

N∑
i=1

[
µi − ni + ni ln

ni
µi

]
, (7.10)

where µi is the model expected value (from the true energy spectra) and ni is the “measured”

value (from the reconstructed energy spectra.) These χ2 values are listed in table 7.2 and

they agree with the above statements about which training oscillation assumption best
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matches each of the true oscillation assumptions. I will note however that for the case

of the maximally oscillated test sample, both kNN-2 and kNN-3 produce very similar χ2

values which is not the case for the minimally oscillated test sample. Of course when

determining the best fit parameters for the data, I will be generating a comparison between

an energy spectrum from data and an energy spectrum from simulations using the same

energy estimator for each. So provided the data and the simulations both respond to the

kNN in the same way, then some of these biases can perhaps be avoided. That being said,

the numbers in table 7.2 imply that kNN-2 might produce the least bias in an unknown

far detector energy spectrum. For this reason, I choose kNN-2 (with the “minimally”

oscillated training sample) to use for far detector energy estimation. In section 7.4, I will

show contours for a true minimal and true maximal oscillation parameter case generated

with kNN-2 that demonstrate its ability to pick out the correct answer in either case. The

near detector energy estimation will naturally be done with the unoscillated training sample

using kNN-1.

kNN training no osc. test sample min osc. test sample max osc. test sample
(sin2 2θ23 = 0) (sin2 2θ23 = 0.95) (sin2 2θ23 = 1.0)

kNN-1 48.8 24.1 51.5
kNN-2 123.7 9.1 16.6
kNN-3 333.9 20.8 15.1

Table 7.2: χ2 values computed between the true and reconstructed energy spectra for the
plots shown in figures 7.13, 7.14, and 7.15. kNN-1,2,3 were trained under the assumption
of sin2 2θ23 = 0, 0.95, 1.0 respectively.

7.3.4 Energy Estimator Performance

The plots shown in figures 7.14 and 7.15 are examples of the spectra created by the BPF

energy estimator. As a test of the overall performance, I used two primary metrics. The
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Figure 7.13: Reconstructed energy spectra for the three energy estimators from an
unoscillated sample of test events. kNN-1,2,3 were trained under the assumption of
sin2 2θ23 = 0, 0.95, 1.0 respectively. Each plot is shown with the same true neutrino en-
ergy spectra of the test sample. All three plots are scaled to the expected exposure for 3
years of nominal data taking with a 14 kiloton detector while running in the NuMI beam ν
mode.

first was the reconstructed energy fractional bias (EFB) defined as:

EFB =
Ereco − Etrue

Etrue
, (7.11)
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Figure 7.14: Reconstructed energy spectra for the three energy estimators from a “min-
imally” oscillated sample of test events. kNN-1,2,3 were trained under the assumption of
sin2 2θ23 = 0, 0.95, 1.0 respectively. Each plot is shown with the same true neutrino energy
spectra of the test sample. All three plots are scaled to the expected exposure for 3 years of
nominal data taking with a 14 kiloton detector while running in the NuMI beam ν mode.

and was obviously a direct measure of the goodness of the energy estimate. To evaluate

the estimate of σE , I plotted ∆E/σE where ∆E ≡ Ereco − Etrue. If σE was an accurate

estimate of the uncertainty on Ereco, then the plot of ∆E/σE should have a Gaussian shape,

centered on 0.0 with an RMS of 1.0. To generate plots of EFB and ∆E/σE , I selected only

contained far detector events (simulated with GENIE using the NuMI ν mode flux files)
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Figure 7.15: Reconstructed energy spectra for the three energy estimators from a “max-
imally” oscillated sample of test events. kNN-1,2,3 were trained under the assumption of
sin2 2θ23 = 0, 0.95, 1.0 respectively. Each plot is shown with the same true neutrino energy
spectra of the test sample. All three plots are scaled to the expected exposure for 3 years of
nominal data taking with a 14 kiloton detector while running in the NuMI beam ν mode.

which passed our basic νµ CC event selection (described in section 8.1.2) and had a value of

Ereco between 0.5 and 3.5 GeV (the region most sensitive to oscillations.) Shown in figures

7.16 and 7.17 are the plots for this sample, generated with kNN-2 for events oscillated with

the minimal and maximal oscillation parameters respectively.

The mean and RMS for each of the plots shown in figures 7.16 and 7.17 are displayed in
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Figure 7.16: Top: Energy fractional bias (EFB) for simulated far detector events oscil-
lated with the “minimal” parameters and reconstructed with kNN-2. The blue curve is for
all events and the green curve is only the NC sample. Bottom: Distribution of ∆E/σE for
the same events. The means and RMSs for both plots and the Gaussian fits (red curves)
are shown in table 7.3.
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Figure 7.17: Top: Energy fractional bias (EFB) for simulated far detector events oscil-
lated with the “maximal” parameters and reconstructed with kNN-2. The blue curve is for
all events and the green curve is only the NC sample. Bottom: Distribution of ∆E/σE for
the same events. The means and RMSs for both plots and the Gaussian fits (red curves)
are shown in table 7.3.
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table 7.3. Since these numbers can be skewed by the events far out in the tails, I have also

included in this table the mean and RMS from a Gaussian fit to the central region (shown in

red on the plots.) For the plots of EFB, I have superimposed in light green the distribution

for the NC events that slipped into this selected νµ CC event sample. As expected, the NC

events are the primary component of the longer tail on the negative side.

plot plot mean plot RMS fit mean fit RMS

EFB (min osc.) −0.022 0.163 −0.0010 0.083
∆E/σE (min osc.) −0.248 1.504 0.0337 0.997
EFB (max osc.) −0.035 0.173 −0.0080 0.081
∆E/σE (max osc.) −0.378 1.536 −0.0526 0.971

Table 7.3: Shown are the numbers corresponding to the plots in figures 7.16 and 7.17.
The variables “plot mean/RMS” were computed from all data in the entire plot, and “fit
mean/RMS” are the parameters from the Gaussian fit to the central region. For the plots
of EFB, the fit range was from -0.2 to 0.2 and for the ∆E/σE plots, the fit range was from
-2.0 to 2.0.

From the fractional bias plots and the numbers in table 7.3, it appears that the energy

estimator performs reasonably well with no large trend towards either over or under estima-

tion. It also appears that the performance of kNN-2 is very similar for both the “minimal”

case (the one it was trained for) and the maximal case, producing an average energy res-

olution of roughly 10% across the selected events. Both plots of ∆E/σE have a slightly

asymmetric non-Gaussian shape, but the Gaussian fit to the central region does have a

mean close to 0.0 and an RMS close to 1.0, suggesting that σE is a reasonable estimate of

the event energy resolution. But the RMS from the whole ∆E/σE distribution indicates

that σE is typically an underestimate of the true uncertainty. However, the purpose of this

variable is to separate events into groups which have similar energy resolutions to provide

more power to the final fits. So even in the case that σE is either an over or under estimate

of the true energy resolution, it can still be used to discriminate events for this purpose.
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7.4 Using Energy Resolution to Improve the Final Contours

The last piece of the puzzle that is unique to my analysis is using the event-by-event energy

uncertainty estimates to improve the final sensitivity contours. Without my estimate of σE ,

I could simply compute the χ2 values between the 1D reconstructed energy spectra from

data and some set of predicted spectra with different assumptions about the oscillation

parameters. To take advantage of my knowledge of σE , I will use a 2D energy spectra,

binning in σE/Ereco on the second axis. Equation 7.10 is still valid in this context if I use

it to compute a χ2 by summing over all bins in the 2D spectrum. This is equivalent to

dividing my events into multiple samples, and computing a total χ2 summed over the 1D

spectrum for each sample.

To explore the best way of using a 2D energy spectra, I created a toy model for making

contours using simulated far detector events. This toy model was designed to be simple

and quick to allow me to easily test out different binnings for my 2D energy spectra, as

well as continue to explore the idea of energy estimator bias discussed in section 7.3.3. It

compares two sets of simulated far detector events, where one is treated as fake data and

the other is used to create the predicted far detector spectrum. It does not include a proper

extrapolation from a simulated near detector spectrum or any systematic uncertainties.

All of the contours in this section were generated with this toy model. The full “proper”

contour-making process with all the bells and whistles is discussed in chapter 8.

7.4.1 Determining the Energy Resolution Binning

The distribution of values for σE and σE/Ereco are shown in figure 7.18. These plots were

generated with a set of contained far detector events simulated with GENIE, that pass

our basic νµ CC event selection and have Ereco between 0.5 and 3.5 GeV. The true energy

spectrum for these events was oscillated with the minimal oscillation parameters and the
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event energy reconstruction was done with kNN-2.

Figure 7.18: Left: Distribution of values for σE for a sample of simulated far detector
events. Right: Distribution of values for σE/Ereco for a sample of simulated far detector
events. All events passed a containment and basic νµ CC event selector cuts and had Ereco
between 0.5 and 3.5 GeV. Both plots are normalized to unit area.

To prevent spreading my data out too thinly and reducing the statistical power, I decided

that for my 2D reconstructed energy spectrum, fewer bins in σE/Ereco was better. I tried

three different binnings: one bin (for a baseline comparison), three bins, and five bins. For

the three and five bin cases, I picked cuts on σE/Ereco that divided the total sample into

roughly equal groups. Examples of these 2D energy spectra for the selected far detector

simulated events are shown in figure 7.19. The RMS of the true energy fractional bias for

each of these samples is shown in table 7.4. The sensitivity contours generated from these

three different binnings for σE/Ereco are discussed in the next section.

7.4.2 Generating the Sensitivity Contours

Using the toy model described above, I generated sensitivity contours in ∆m2
32, sin2 2θ23

space with the 2D energy spectra like those shown in figure 7.19. I divided my total sample

of simulated events in two groups of roughly 130,000 events each (the equivalent of 70

years of data) to use one as “data” to be tested against the other, which was taken as

my simulation sample. For the binning on the energy axis, I used a bin width of 0.1 GeV,
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sample σE/Ereco range % of sample RMS

1 bin - 100.0 0.166

3 bins, bin 1 < 0.06 31.2 0.086
3 bins, bin 2 0.06→ 0.0925 34.7 0.131
3 bins, bin 3 ≥ 0.0925 34.1 0.236

5 bins, bin 1 < 0.0475 16.7 0.070
5 bins, bin 2 0.0475→ 0.065 20.3 0.099
5 bins, bin 3 0.065→ 0.0825 19.5 0.127
5 bins, bin 4 0.0825→ 0.1125 22.1 0.171
5 bins, bin 5 ≥ 0.1125 21.3 0.264

Table 7.4: Showing the energy fractional bias RMS values for the reconstructed events
separated into 1, 3, and 5 samples by σE/Ereco.

which makes the bin width 5% at 2.0 GeV. I chose this width on the premise that separating

events by energy resolution will only have a positive impact if the bins are of the size of

what I believe to be the resolution of my “best” sample. Making bins larger than this will

degrade the effectiveness of this high resolution sample.

To continue to test biases introduced by using an energy estimator trained to a specific

oscillation assumption, I used three different sets of oscillation parameters for the data,

always using kNN-2 to estimate the energy for all events. My three different oscillation

parameter sets included the parameters used to train kNN-2 (the “minimal” parameters),

the parameters used to train kNN-3 (the “maximal” parameters), and an “alternate” set

not used for any training (∆m2
32 = 2.35×10−3[eV2] and sin2 2θ23 = 0.975.) I also generated

contours for two different exposure assumptions, 18 × 1020 POT which is equivalent to 3

nominal years of running, and 2 × 1020 POT which is the estimated exposure for our first

analysis data set. The toy model sensitivity contours are shown in figures 7.20, 7.21, and

7.22.

There are three things that stand out from these contours. First, it appears that kNN-2
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Figure 7.19: 2D distributions of the reconstructed event energies using 1 bin, 3 bins, and
5 bins for σE/Ereco. The cuts on σE/Ereco to separate these samples are listed in table 7.4.
All events passed a containment and basic νµ CC event selector cuts.

does not suffer from any major bias due to the shape of the training sample spectra. The

best-fit value (indicated by the dots in figures 7.20, 7.21, and 7.22) chosen by the bin with

the minimum χ2 in each of the three oscillation assumptions, is always very close to the

true value. Second, improvements in the contours exist for both of the assumed exposures.

Third, using 3 or 5 bins for σE/Ereco both improve the contours over using 1 bin, but they

appear to have roughly the same performance. I expect that this is because what the 5

bin case gains by having better energy resolution in the first bin, is lost by statistics when
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Figure 7.20: Example sensitivity contours for the true “minimal” oscillation case. The
top plot assumes an exposure of 18×1020 POT and the bottom plot assumes 2×1020 POT.
All plots show the 90% confidence intervals for the 1 σE/Ereco bin (black), 3 σE/Ereco
bins (blue), and 5 σE/Ereco bins (red) cases. The green star shows the true oscillation
parameters used for the MC ensemble.

spreading the events out over more bins. Since the performance of the 3 bin and 5 bin

cases appears to be roughly the same, I have chosen to use 3 bins for σE/Ereco with the

cuts outlined in table 7.4 to be on the safe side considering the smaller number of events
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Figure 7.21: Example sensitivity contours for the true “maximal” oscillation case. The
top plot assumes an exposure of 18×1020 POT and the bottom plot assumes 2×1020 POT.
All plots show the 90% confidence intervals for the 1 σE/Ereco bin (black), 3 σE/Ereco
bins (blue), and 5 σE/Ereco bins (red) cases. The green star shows the true oscillation
parameters used for the MC ensemble.

expected in the first analysis.
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Figure 7.22: Example sensitivity contours generated for the true “alternate” oscillation
case. The top plot assumes an exposure of 18 × 1020 POT and the bottom plot assumes
2× 1020 POT. All plots show the 90% confidence intervals for the 1 σE/Ereco bin (black),
3 σE/Ereco bins (blue), and 5 σE/Ereco bins (red) cases. The green star shows the true
oscillation parameters used for the MC ensemble.

7.4.3 Exploring a Set of Toy Experiments

As discussed in this chapter, one of the primary driving factors behind developing an analysis

that uses the estimated event energy resolutions to improve our oscillation parameter fits is
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the idea that the events near 1.5 GeV are extremely important for distinguishing the minimal

and maximal oscillation cases. Seeing a few events in this region with energy resolutions that

are estimated to be good could be either lucky if the energy resolution estimates are accurate

and the true oscillation parameters are the minimal ones, or extremely unlucky if the energy

resolution estimates are not accurate and the true oscillation parameters are the maximal

ones. The contours in section 7.4.2 were generated with a large sample of simulated events

scaled down to our expected exposures. Therefore, any instances of “(un)lucky” events,

such as we might expect in the real data, have been smoothed out. So as a last test of the

method of fitting a 2D reconstructed energy and energy resolution spectra, I generated a

large sample of “toy” experiments, to explore the effects of “(un)lucky” events.

To generate my toy experiments, I took the 2D spectrum from my “fake” data sample

(the middle plot in figure 7.19) using the assumption of maximal oscillations and scaled it

down to an exposure of 2× 1020 POT. A 2D energy spectrum for each toy experiment was

then generated using Poisson-distributed random numbers with a mean drawn from the bin

contents of the scaled down spectrum. I generated sensitivity contours for each of these toy

experiments for the 1 σE/Ereco bin and 3 σE/Ereco bin cases. A sample of these sensitivity

contours are shown in figure 7.23.

I used two metrics as a way of gauging the overall performance of the oscillation pa-

rameter fits across these experiments. The first was “∆ sin2 2θ23 Errors” which was the

magnitude of the difference between the left edge of the 90% confident interval and the best

fit value in sin2 2θ23 space for the 1 bin case, minus the same for the 3 bin case. This is

essentially a measurement of how wide the contours are, with positive values corresponding

to tighter contours using the 3 bin fit. The second metric was “∆ sin2 2θ23 True” which was

the magnitude of the difference between the best fit value and the true value in sin2 2θ23

space for the 1 bin case, minus the same for the 3 bin case. This is a measurement of how
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close the best fit was to the truth, with positive values corresponding to better performance

with the 3 bin fit. Plots for these two metrics for 1000 toy experiments are shown in figure

7.24.

Next I repeated this process of generating 1000 toy experiments using the minimal

oscillation parameters to oscillate the true spectrum of my “fake” data set. A sample of the

contours and the corresponding metric plots are shown in figures 7.25 and 7.26. There are

a couple of things to be learned from this. First, for both metrics in both the maximal and

minimal oscillation cases, there are experiments that fell on both sides of zero. This implies

(as expected) that there are both “lucky” and “unlucky” events that can throw off the best

fits. But, with the exception of the “∆ sin2 2θ23 True” metric for the minimal oscillation

case, the means of these plots are all positive with visible distribution skews towards the

positive side. Second, it appears that the effect of getting lucky is more pronounced in the

maximal oscillation case. However, I would be remiss if I didn’t point out that the true

best fit for the maximal oscillation case is right up against the border of my oscillation

parameter space. It might be possible that the 3 bin fit prefers solutions in the unphysical

region, which could lead to the false conclusion of better performance than with the 1 bin

fit. We must also be cautious in interpreting these results since the RMS of each plot is

bigger than the mean. In general though, I take this to mean that for both the maximal and

minimal cases, we on average get lucky more often than getting unlucky, which of course

agrees with what we would expect given the contours discussed in section 7.4.2.
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Figure 7.23: Examples of the 90% sensitivity contours from generating 1000 toy exper-
iments assuming true maximal oscillation parameters. For each plot, the black curve/dot
represents the 1 σE/Ereco bin fit, and the red curve/dot represents the 3 σE/Ereco bin fit.
The blue dot is the true oscillation parameters.
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Figure 7.24: The two metrics “∆ sin2 2θ23 Errors” and “∆ sin2 2θ23 True” for the 1000 toy
experiments generated assuming true “maximal” oscillation parameters.
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Figure 7.25: Examples of the 90% sensitivity contours from generating 1000 toy exper-
iments assuming true minimal oscillation parameters. For each plot, the black curve/dot
represents the 1 σE/Ereco bin fit, and the red curve/dot represents the 3 σE/Ereco bin fit.
The blue dot is the true oscillation parameters.
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Figure 7.26: The two metrics “∆ sin2 2θ23 Errors” and “∆ sin2 2θ23 True” for the 1000 toy
experiments generated assuming true “minimal” oscillation parameters.
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CHAPTER 8

Results of The νµ Charged-Current Disappearance Analysis Using the Break

Point Fitter Method

This chapter presents the final steps in producing a measurement of |∆m2
32| and sin2 θ23

through the νµ CC disappearance channel, including details specific to the Break Point

Fitter (BPF) analysis. It includes a summary of the algorithms used to select a contained

sample of νµ CC events for both detectors, the rejection of NC and cosmic-ray background

events, a summary of the final data sets used for this analysis, and a description of the

analysis framework used to produce the final results. At the end of this chapter, these

final results are presented including sensitivity contours and the best fits for the oscillation

parameters |∆m2
32| and sin2 θ23.

8.1 Event Selection

The official NOvA νµ CC disappearance analysis has already provided a means for selecting

νµ CC signal events while rejecting backgrounds from NC events, νe CC events, and cosmic

rays. I have opted to use this same event selection criteria for my analysis which I describe

in the sections that follow. The far and near detector analysis sets are chosen by proceeding

through three levels of cuts. The first level includes the basic data quality selection described

in section 4.3. The second level includes selecting activity that is within the NuMI beam

spill window and within the fiducial volume of the detector. Lastly, the third level selects
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νµ CC candidate events and rejects cosmic rays that pass through the second level. The

cuts and algorithms associated with the second and third levels are described below.

8.1.1 Contained Event Selection

As described in chapter 3, a NuMI beam triggered event is a 550 µsec long readout of

detector activity, with the 10 µsec wide beam spill starting roughly 218 µsec after the

trigger start time, T0. An event is required to be between T0 + 217 µsec and T0 + 229 µsec

to be considered a NuMI beam event. Through an automated search for neutrino events in

the far detector data, it was discovered that at least one strong neutrino candidate event

occurred 64 µsec after the NuMI beam spill window [82]. This was traced to a failure mode

that occurs during a reboot of the far detector timing distribution units (TDUs) which

causes them to initialize their clocks offset by exactly 64 µsec. An extensive check of the

log files generated by the timing system revealed strong reasons to be fully confident that

this problem did not affect any data taken during and after October 2014, following the

installation of a timing system calibration device. For the data taken before this time,

there was no way of confirming if or when this problem occurred. It was decided that it

was better to accept more background events than to reduce the already limited number

of far detector signal events. Consequently, a second timing window was opened between

T0 + 281 µsec and T0 + 293 µsec only for the far detector data taken before October 2014.

The next step is to choose events that are well contained within the detectors. Selecting

contained events improves the overall event energy resolution by removing events with

exiting tracks for which the estimate of the event energy will be poor. This selection also

helps remove cosmic-ray events in the far detector and neutrino interactions that occur in

the surrounding rock for the near detector. Decisions about containment are based off of

variables from three reconstruction modules, Slicer4D (described in section 6.3), the cosmic
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tracking algorithm (described in 4.2.1), and the tracking algorithm used for the standard

NOvA νµ CC analysis called “Kalman tracker.” This algorithm was designed to accurately

track non-showering particles such as muons, using a method based on a Kalman filter [83].

The NOvA Kalman tracker works by propagating tracks in a slice starting with the cell

hits with the largest z coordinates, stepping backwards plane by plane using the current

estimate of the track position and slope to estimate the location of expected track hits in the

next plane. A probability score is computed for hits in the next plane and hits with good

scores are included in the track. When a hit is added to a track, the track fit is corrected to

include the measured information on position and slope. For muons with momenta greater

than 0.6 GeV/c, the average track completeness (defined by equation 6.5) is between 90

and 95%, and the reconstructed track length resolution is around 1%. More details on the

NOvA Kalman tracker can be found in [84].

The containment cuts for the far detector were selected to optimize both the recon-

structed neutrino energy resolution and the final sensitivity contours [85]. A few general

cuts are applied which require the number of slice hits to be > 20, the number of continuous

planes (adjacent planes with cell hits) in the slice to be > 4, and the number of 3D cosmic

tracks to be > 0, which ensures that reliable reconstruction is possible. The first two cuts

remove very small slices with little or no useful information and very vertical slices that

are much more likely to be cosmic rays. The third cut ensures that the cosmic tracking

algorithm did not fail, which can happen for slices of extremely low quality. The next cuts

require slices to have no hits in the two outermost cells of a plane and no hits in either the

first two or the last two detector planes. A cut is also placed on the forward (backward)

projected distances from the Kalman and cosmic track end (start) locations to the nearest

detector edge. These distances are quantified in terms of the number of cells that these

projections pass through, using the single track produced by the cosmic tracker and the
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Kalman track selected by the ReMId algorithm (described in section 8.1.2.) The forward

and backward projected distances for the ReMId selected Kalman track are both required

to be > 10 cells. For the cosmic track, these distances must be > 0, which simply requires

the cosmic track to start and stop inside the detector. All distances measured with respect

to the detector edges take into account the varying size of the far detector during early data

taking which is described below in section 8.2.1.

For near detector containment, the same general cuts requiring slices with > 20 hits,

> 4 continuous planes, and at least one cosmic track are applied. The basic cuts on slice

containment are also the same, which require no hits in the two outermost cells and in the

first and last two planes. The projected forward and backward distances for the ReMId

selected Kalman track must be > 4 and 8 cells respectively. No cuts are applied to the

projected distances for cosmic tracks. In addition to these cuts, several tighter requirements

are placed on events that may interact with the muon catcher. The z coordinate of the start

of the ReMId selected Kalman track is required to be at least 125 cm from the upstream

end of the muon catcher. For tracks in the top 1/3rd of the detector, the track must end

prior to the start of the “air gap” above the muon catcher (see figure 3.8.) Lastly, there

must be less than 30 MeV of “hadronic energy” (calorimetric energy not on the ReMId

selected Kalman track) for cell hits in the muon catcher. More details on the near detector

containment cuts can be found in [86].

8.1.2 Signal Event Selection

Identifying νµ CC interactions in both detectors is handled by the Reconstructed Muon

Identification (ReMId) algorithm. This algorithm is very similar to the BPF muon identifi-

cation algorithm described in section 7.2. It uses a k-nearest-neighbor classifier to compute

a “muon score” for each Kalman track produced. Under the premise that a muon is the
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characteristic signal of a νµ CC event, an event ID is assigned to each slice using the highest

muon score from all of the Kalman tracks associated with that slice. The input variables to

the ReMId algorithm are computed from the reconstructed Kalman tracks, and include a

dE/dx log-likelihood value, a multiple scattering log-likelihood value, the track length, and

the ratio of how much of the track overlapped with hadronic activity as computed by the

TrackCleanUpAlg algorithm (described in section 7.3.) The distributions of slice event IDs

for signal (true νµ CC events) and background (true NC and νe CC events) from simulated

events in both detectors is shown in figure 8.1. The νµ CC event sample is selected by

requiring a slice to have an event ID > 0.75. This cut produces a signal selection efficiency

of 82% (69%) and a sample purity of 93% (98%) for the far (near) detector. Further details

on the ReMId algorithm can be found in [87,88].

8.1.3 Rejection of Cosmic Rays in the Far Detector

Since the far detector sits on the surface, it sees a very high flux of cosmic-ray muons,

approximately one every 10 µsec (the size of the NuMI beam spill window.) Given a 24

hour period of NuMI beam running, this equates to 65,000 cosmic-ray muons within the

NuMI beam spill windows per day. For the full 14 kiloton detector, the expected number

of contained νµ CC events per day is on the order of a few. In order to achieve a signal

to background ratio of better that 10:1, cosmic rays must be rejected with an efficiency of

greater than 99.99999% [89]. The containment cuts described above are expected to remove

roughly 99% of cosmic rays in the far detector, therefore additional measures must be taken

to reject as many of the remaining cosmic rays as possible.

The far detector cosmic rejection algorithm uses a multivariate classification method

called a boosted decision tree (BDT) which was developed using the TMVA [79] package

in ROOT [31, 32]. To maximize the performance, the BDT was trained using only signal
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Figure 8.1: Distribution of slice event IDs computed by the ReMId algorithm for GENIE
simulated events in the far (top plot) and near (bottom plot) detectors. For the far detector,
the νµ CC events were oscillated using |∆m2

32| = 2.4× 10−3 [eV2] and sin2 θ23 = 0.5. Both
distributions were normalized to the expected far and near exposures for this analysis of
3.52× 1020 and 1.65× 1020 POT.

(true νµ CC events) and background (simulated cosmic-ray muons) samples that pass the

containment and ReMId selection cuts. There were 11 different input variables to the BDT

which included quantities such as the y component of the direction vector for the ReMId

selected Kalman track, the length, number of hits, and cosine of the angle with respect to

the NuMI beam for this track (cos θKal), and the maximum and minimum y positions of
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the cell hits in the slice. The trained BDT returns a number classifying how “signal-like”

an event is, based on the values for these input variables.

The choice of a cut value to use on the BDT output (referred to the “νµ contained ID”)

was based on defining a figure of merit FOM ≡ S/
√
B where S is the number of signal

events and B is the number of background events. A plot of this FOM for different cuts

on the ReMId event ID value is shown in figure 8.2. The cut was chosen to be νµ contained

ID > 0.535, within the plateau of maximum FOM . In addition to this cut, the full far

detector cosmic rejection algorithm requires the number of hits in the slice to be < 400

and cos θKal to be > 0.5. More information on the design and implementation of the far

detector cosmic rejection algorithm can be found in [89].

Figure 8.2: Figure of merit, defined as S/
√
B, as a function of the cut value applied to

the cosmic rejection BDT output, for different cuts on the ReMId event ID value.

8.1.4 Break Point Fitter Quality Cut

In addition to the cuts described above, I imposed a “BPF quality” cut to ensure that the

results of my energy estimator were sensible. This was necessary because I discovered some
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extremely rare cases in which the Kalman tracker succeeded but the BPF tracker failed.

These cases were typically caused by either the Elastic Arms or Fuzzy-K reconstruction

algorithms producing odd results, such as vertices placed several meters away from the

bulk of the slice, that prevented BPF from making any tracks. The BPF quality cut simply

requires the BPF energy estimator to produce a value ≥ 0 and the best BPF muon ID value

for the slice to be ≥ 0. Applying this cut rejected an additional 0.034% of the near detector

data and near detector simulation, and 0.008% of the far detector simulation. None of the

νµ CC selected far detector data was rejected by this cut.

8.1.5 Event Selection Summary

Given the small size of the near detector, the vast majority of the unoscillated νµ beam

events are not contained. After applying the containment and ReMId selection cuts listed

above, roughly 1.7% of the total number of slices remain. This is in agreement to within 2%

of the prediction made from simulated near detector data. The simulations have shown that

of the remaining events, 97.5% are νµ CC and 2.5% are NC, with negligible contamination

(< 0.1%) from rock events. The out of time data predicts that the contamination from

cosmic rays in the near detector data is approximately 5× 10−5% [86].

For the far detector, the νµ CC signal and cosmic ray efficiencies were determined from

the simulated νµ CC event sample (selecting only truly contained events and oscillating the

νµ CC events using |∆m2
32| = 2.4 × 10−3 [eV2] and sin2 θ23 = 0.5), and out of time NuMI

beam data respectively. For the signal events, the fractions of the original sample that

survives the containment, ReMId selection, and cosmic rejections cuts are 78%, 64%, and

41%. For the cosmic rays, these numbers are 1.0%, 0.5%, and 9× 10−6%. The final sample

of selected far detector events is expected to be 91.0% νµ CC events, 4.1% cosmic rays, and

4.9% NC events. A separate study was done to estimate the number of ντ CC appearance
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events in the far detector event sample. The results of this study predicted 0.04 events per

1020 POT, which equates to a negligible contribution of < 1 event in 3 years of nominal

running and ≈ 0.1 events for the data used in this analysis [90].

8.2 Summary of the Selected Data Sets

8.2.1 Far Detector Data

The far detector data taking was divided into three periods. The first period began on

February 6th, 2014 and ended on September 5th, 2014 during the start of a scheduled

accelerator shutdown. The second period goes from October 24th, 2014 to March 14th,

2015, and the third period goes from March 14th, 2015 to May 15th, 2015. Excluding

subruns and individual data events labeled as “bad” using the data quality cuts described

in section 4.3, the total accumulated POT from these three periods is 3.52× 1020 [91].

During the first two periods, the far detector was still under construction with only part

of it read out into a data stream to be used for analyses. As diblocks were constructed, they

were added to this data stream one at a time after passing a series of commissioning checks.

Figure 8.3 shows the growing detector as a function of time scaled to an approximate fiducial

mass of 11.4 kilotons. All of the containment cuts discussed in section 8.1.1 are adjusted

for the individual detector configurations of each subrun using a software package designed

for this purpose described in [92]. Scaling the POT accumulated during each subrun by the

fraction of the full detector mass, the equivalent POT for a 14 kiloton detector is 2.8× 1020

or roughly 45% of a nominal year [91].

8.2.2 Near Detector Data

The near detector data set consists of data taken during the first two periods described in

section 8.2.1. Unlike the far detector, the near detector was fully built and commissioned
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Figure 8.3: Far detector mass and integrated exposure (mass × POT) as a function
of time. Periods of running with different configurations are evident as is the scheduled
accelerator shutdown September/October 2014. This is scaled to an approximate fiducial
mass of 11.4 kilotons [91].

prior to the start of the first data taking period, so no adjustments due to the growing

size of the detector were required. The total number of POT seen by the near detector

during this time was 1.65 × 1020. After the νµ CC selections cuts described in section 8.1

are applied to the near detector data, roughly 5.1× 105 events remain.

8.2.3 Simulated Data Sets

Chapter 5 contains the details of the NOvA simulation processes. Both the near and far

detector simulated data sets were done with “run-matched” channel masks, taken from the

real data. These masks hide channels labeled as bad according to the nearline output files

(see section 4.2) from all of the downstream reconstruction modules. Naturally, none of the

channels in the simulated data are bad, but this was done to make the simulations as close

to the real data as possible. These masks were especially important for the far detector,

where they ensure that the simulations reflect the changing size of the detector over time.

The near detector simulations consisted of an accumulated total of 9.92 × 1020 POT, or

roughly 6 times the amount of near detector data. The far detector simulations consisted

of 5.76 × 1023 POT (almost 1000 years of NuMI beam!) which is roughly 1600 times the

amount of data.
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8.3 Data Simulation Comparisons

8.3.1 Results from the Kalman Tracker

The near detector data was used to make extensive comparisons to the simulations. Shown

in figure 8.4 are the distributions of track angle with respect to the x and y detector axes

and the x and y coordinates of the track start and stop for the track produced by the

Kalman tracking algorithm with the highest ReMId value in each slice.

Figure 8.5 shows the distributions of track length and number of hits on the track in

the slice with the highest ReMId value, for all slices in the selected νµ CC event sample

in near detector data and simulation. The agreement in these variables is within 10% and

is typically within 5% [85]. Also shown in this figure are the distributions of νµ CC event

IDs (best ReMId value from all tracks in the slice) for contained slices. There is some

disagreement outside of the signal region (for values less than 0.75) but the signal region in

the data is within 10% of the simulation. The agreement for all of the plots shown in figure

8.5 indicates that the out-going muon in νµ CC events is modeled well.

There are however, significant differences in the reconstructed hadronic energies for the

selected νµ CC event sample. For hadronic hits (defined as hits not on the primary muon

track) there are fewer of them with on average less visible energy (energy deposited in the

scintillator) in data than in the simulations. These distributions are shown in figure 8.6.

Also shown in this figure are the distributions of visible on and off track hadronic energy for

each slice. The off-track energy is simply the summed calorimetric energy for all hits not

on the primary muon track. The on-track energy is the hadronic energy contamination on

the primary muon track computed by the TrackCleanUpAlg algorithm described in section

7.3.

The effect of this hadronic energy difference is perhaps most striking in a plot of recon-

structed neutrino energies. Shown in figure 8.7 are the reconstructed energy spectra for the
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Figure 8.4: Distributions of track variables from near detector data and simulations for
the track in the slice with the highest ReMId value. Only tracks from slices that passed the
near detector containment cuts are shown. Plots were taken from [85].
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Figure 8.5: Top Left: Track length distributions for the Kalman track with the highest
ReMId value for near detector data and simulation. Top Right: Distribution of the number
of hits on the track with the highest ReMId value in near detector data and simulation.
Only tracks from slices that passed the near detector νµ CC event selection cuts are shown.
Plots were taken from [93]. Bottom: Distribution of ReMId values for all contained slices
in near detector data and simulation. Plot taken from [85].

selected νµ CC event samples in data and simulation. The energy estimator used to create

these spectra is the one being used for the standard NOvA νµ CC disappearance analysis,

and is described further in [94]. This estimator takes the neutrino energy to be the sum of

the muon energy and the remaining hadronic energy, where the muon energy is determined

from the track length and the hadronic energy is scaled from the visible energy to the true

energy from the simulations using a spline fit. The overall effect of the hadronic energy

difference is a shift to the left for the data in the neutrino energy peak of about 100-150
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Figure 8.6: Distributions of variables associated with hadronic energy. Hadronic hits are
defined as hits in a slice not on the primary muon track. Only tracks from slices that passed
the near detector containment and νµ CC event selection cuts are shown. Plots were taken
from [85].

MeV. I will discuss further the possible origins of this hadronic energy difference between

the data and the simulations and how it will be treated in the νµ CC disappearance analysis

in section 8.4.

8.3.2 Results from the Break Point Fitter Tracker

Figure 8.8 shows the distributions of the six input variables to the BPF energy estimator for

near detector data and simulation, with zoomed versions of some of the plots in figure 8.9.

The distributions of Pµ values are very similar, but do show some slight shape differences
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Figure 8.7: Distributions of reconstructed neutrino energies for slices passing the νµ CC
event selection cuts in near detector data and simulation. Plot was taken from [93].

between 1 and 1.5 GeV/c not immediately apparent in the Kalman track distributions shown

in figure 8.5. However, the differences in this region are less than 10% and the agreement

across the rest of the distribution is good. The N3D variable shows significant differences

between data and simulations. Particularly, the data shows a preference for events with

fewer 3D prongs produced by the Fuzzy-K algorithm, which is in agreement with the general

idea that there is less hadronic energy in the data over the simulations.

The zoomed plots shown in figure 8.9 indicate that the BPF energy estimator sees the

same hadronic energy differences discussed in section 8.3.1. The E3D and SumPE variables

both have shapes similar to the plots of number of hadronic hits and visible off-track energy

shown in figure 8.6. In an attempt to make a more direct comparison, I defined BPF “Ehad”

as the sum of the E3D and Eremain variables. The distribution of values for this variable

in both near detector data and simulation is shown in figure 8.10, and closely resembles

the distribution of the number of hadronic hits. Also shown in this figure is the BPF

reconstructed neutrino energy distribution showing the same shift of 100-150 MeV in data
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Figure 8.8: Distributions of the six input variables to the BPF energy estimator in near
detector data and simulations.

seen in figure 8.7, and the distribution of BPF muon ID values which like the ReMId values,

indicates that muons are being modeled well.

8.4 A Discussion on Hadronic Energy

Comparing the near detector data to the simulations shows that muons in the selected νµ CC

event sample are being modeled well but that a significant difference exists for reconstructed

hadronic energy (see section 8.3.) Many possible causes for this discrepancy were considered

including calibration, beam modeling, and simulations of the detector response, but none

of them were able to explain the observed differences [85, 93]. Additional studies were
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Figure 8.9: Zoomed versions of three of the input variables to the BPF energy estimator
showing comparisons between data and simulations. The top two plots are both distribu-
tions for the variable E3D.

performed looking at the differences between the data and the simulations at the slice level

[95] and looking at the differences between two different neutrino interaction generators:

GENIE and NuWro [96]. Both studies hinted at the idea that GENIE has a tendency to

produce a few too many neutrons. Because no reasonably sized systematic can produce the

hadronic energy discrepancy and because there are known hadronic modeling differences

between different neutrino interaction simulators, it is assumed that the disagreements in

the near detector data and simulations are products of the neutrino interaction model.

A decision was made for the standard NOvA νµ CC analysis to apply a simple scaling to

the hadronic energy component of each event [85,93]. This analysis uses an energy estimator

(described briefly in section 8.3.1) which takes the reconstructed neutrino energy to be

Eν = Eµ + Ehad, (8.1)

where Eµ and Ehad are the reconstructed muon and hadronic energy components of the
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Figure 8.10: Top: Energy spectra generated by the BPF energy estimator for near
detector data and simulation. Bottom Left: BPF “hadronic energy” taken as the sum of
the E3D and Eremain variables. Bottom Right: Distribution of BPF muon ID values for
the BPF track in each slice with the highest BPF muon ID value. All plots include only
the slices that pass the νµ CC selection criteria.

event. For each event in data, the value of Ehad is scaled up by 21% leaving the value of Eµ

unchanged. The decision to scale the data to the simulation was based on the assumption

that we know where the peak in the energy spectrum should be since this is well understood

from two-body pion decay through equations 3.1 and 3.2. The simulation lines up with this

expected peak by construction, but the data does not since the energy reconstruction was

tuned with the simulation. Shifting the data so that the reconstructed energy spectra

lines up with the expected peak accounts for the possible miss-modeling in the simulations.

This shift is applied to both the near and far detector data under the assumption that an

effect from miss-modeling physics will be present in both detectors. Figure 8.11 shows the

near detector hadronic energy spectra before and after shifting and the final reconstructed

neutrino energy spectra as compared to the simulations. Note that the agreement in the
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Ehad variable is better but still shows some shape differences, and that the reconstructed

neutrino energy spectra agrees quite well.

Figure 8.11: Top: Distributions of the Ehad variable in data and simulations, showing the
effect of scaling this variable up by 21% in the data. Bottom: Showing the reconstructed
neutrino energies for data events with Ehad scaled up by 21% as compared to the unaltered
simulated spectra. All plots include only the slices that pass the νµ CC selection criteria.

Since the exact physical reasons behind the need for this correction are not yet well

understood, a conservative estimate of 100% is used for the absolute uncertainty on the

hadronic energy [85,93]. However since the shape of the energy spectra are expected to be

very different in both detectors, a relative uncertainty on the hadronic energy is also applied.

To compute this relative uncertainty, a more complicated three parameter shift was applied

to fit the simulation to the near detector data. This fit broke the simulated events into quasi-

elastic (QE), resonant (RES), and deep-inelastic scattering (DIS) by truth, and allowed the
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hadronic energy component of the RES and DIS events and the overall normalization of

the DIS events to vary independently. The results of this three parameter fit show an

excellent agreement between the data and the simulation for both the total reconstructed

event energy and just the hadronic energy component [97,98]. Taking this shift as a “true”

answer, the relative uncertainty was computed using the double ratio

R = 1 +

(
1 + ∆XFD

1

1 + ∆XFD
2

)(
1 + ∆XND

2

1 + ∆XND
1

)
, (8.2)

where ∆XFD,ND
1,2 is the percent change in either Ehad or the overall normalization for the

far (FD) and near (ND) detectors using method 1 (the simple 21% shift) and method 2 (the

three parameter fit.) Using this method yields a relative uncertainty of 2% on the Ehad

scale and 1% for the normalization [93].

Since the BPF energy estimator uses a k-nearest-neighbor algorithm to produce a recon-

structed neutrino energy from the weighted average of the neighbors in the input variable

phase space, applying the shift described above is not a viable option. So to apply a similar

shift to my energy spectra, I computed for each event the ratio of the shifted energy (from

equation 8.1) to the unshifted energy, and then I multiplied the BPF reconstructed neutrino

energy by this ratio. The near detector reconstructed energy spectra with this shift applied

is shown in figure 8.12. Like the spectra shown in figure 8.11, the peak of the shifted BPF

reconstructed energy spectra for the near detector data lines up with the expected value in

the simulation, but the overall shape agreement is not quite as good. This is to be expected

since the 21% hadronic energy correction was tuned to fit the energy spectrum reconstructed

with equation 8.1. Because I am using a correction to the total energy based on the same

21% hadronic energy shift, I will assume the same energy systematic uncertainties described

above.
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Figure 8.12: Showing the reconstructed neutrino energies with the BPF energy estimator
for data events scaled by the ratio of the shifted to the unshifted reconstructed energy
computed by equation 8.1, as compared to the unaltered simulated spectrum. Only slices
that pass the νµ CC selection criteria have been included.

8.5 The NOvA Analysis Framework

Most NOvA analyses are done using a set of stripped down files that contain a minimal

amount of event information called the Common Analysis Format (CAF) files. These files

store the relevant data from the results of the reconstruction algorithms including infor-

mation about tracks, particle identification algorithm outputs, and neutrino energy esti-

mates. The analysis tools for using these files have been gathered into one place to allow

an analysis to be put together with relative ease and to prevent many unnecessary wheel

reinventions. The framework that provides the tools such as oscillation calculators, near

to far extrapolations, and sensitivity contour generators using the CAF files is called the

CAFAna framework [99]. For simplicity, I used this framework to generate the results of

my analysis.

8.5.1 Background Estimates

For the NOvA νµ CC disappearance analysis, the background events come primarily from

NC events in the near detector and NC and cosmic rays in the far detector, with very small
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contributions from νe and ντ CC events (see the numbers listed in section 8.1.5.) Since

these backgrounds are expected to be small for both detectors, the simulation is used to

subtract the background spectra from the contained, ReMId selected νµ CC event spectrum

in the near detector [85]. This spectrum is then extrapolated to the far detector (described

in section 8.5.2.) The predicted far detector spectrum is formed by adding the beam back-

ground spectra (NC and νe, assuming the ντ contribution to be negligible) determined

from the simulation and the cosmic background spectrum determined from the data, to

the extrapolated far detector spectrum. The CAFAna framework handles the appropriate

subtraction and reapplication of these background spectra from the simulations. The far

detector data-derived cosmic background spectrum is added manually to the predicted νµ

CC spectrum. Since I am using the same event selection as the official νµ CC disappearance

analysis, I have applied this strategy as well.

Figure 8.13 shows the expected background contributions to the near detector recon-

structed neutrino energy spectrum determined from the simulation. The total background

is small and is almost entirely NC events. The 2D spectra shows that the vast majority of

the background events are recognized as having poor energy resolution and are placed into

the “worst” energy resolution bin.

The expected NC and cosmic ray background spectra are shown in figure 8.14. The cos-

mic backgrounds were estimated by using the out of time NuMI beam data, selecting events

from roughly 400 µsec of time that comfortably avoided the NuMI beam spill windows. The

estimates for the cosmic-ray backgrounds were then scaled down by the ratio of the size of

the beam windows to the background selection window, appropriately accounting for both

windows open for beam events prior to October 2014 (see the discussion in section 8.1.1.)

As with the near detector NC background, the 2D energy spectrum shows that the majority

of the cosmic ray data events are placed in the “worst” energy resolution bin. There were
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Figure 8.13: Top: Reconstructed neutrino energy spectra from the near detector simu-
lations for all νµ CC selected events (black) and background events (blue) in the νµ CC
sample as determined by truth. Bottom: Two-dimensional energy vs. energy resolution
plot for only the background events in the νµ CC sample, showing that most background
events are put into the “worst” energy resolution bin.

51 events selected from the out of time data, which scales down to an expected 1.98 cosmic

ray events in the νµ CC analysis sample. Examples of two of these events are shown in

figure 8.15.

8.5.2 Extrapolation

Extrapolating a near detector spectrum to make a prediction for a far detector spectrum can

be a tricky business. Fortunately, the extrapolation machinery is included in the CAFAna

framework as one of the standard analysis tools. The basic premise is that a bin by bin (in

reconstructed energy) extrapolation is performed from the ratio of the near detector data
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Figure 8.14: Top: Reconstructed neutrino energy spectra for the selected νµ CC events in
the far detector. Black and red represent the expected true νµ CC and NC events determined
from the simulations, and blue represents the expected cosmic ray spectrum determined
from out of time data. The true νµ CC events were oscillated using |∆m2

32| = 2.4 × 10−3

[eV2] and sin2 θ23 = 0.5. Bottom: Unscaled two-dimensional energy vs. energy resolution
plot for only the 51 background cosmic ray events determined from the out of time data.

spectrum to the near detector simulation spectrum where the simulation can be oscillated

according to the true energies of the events in the reconstructed energy bin. This bin by

bin ratio is scaled by the reconstructed far detector spectrum from the simulations to yield

a predicted far detector spectra.

To perform this extrapolation, the data and simulation spectra are divided into bins of

reconstructed energy, indexed by j. The simulation spectra have an additional dimension

representing the true neutrino energy, indexed by i, that can be used to calculate the oscil-

lation probabilities of the events populating the reconstructed energy bin j. The predicted
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Figure 8.15: Examples of 2 of the 51 out of time events selected by the νµ CC event
selection criteria from the far detector data. These events were used to estimate the energy
spectrum of the cosmic ray background in the νµ CC analysis sample. Both events occur
near the top of the detector and are likely caused by neutrons entering the detector from
above.

value for the jth reconstructed energy bin for the far detector spectra, FPred(j), is given by

the sum over the true energy bins applying the appropriate oscillation probabilities using,

for example, equation 2.8. That is

FPred(j) =
∑
i

FPred(i, j) · Pνµ→νµ(i), (8.3)
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with FPred(i, j) given by

FPred(i, j) =
NPred(i) · FSim(i, j)

NSim(i)
. (8.4)

Here N refers to a near detector spectra and the superscript Sim indicates a spectra that

came from the simulations. In each true energy bin i, the computed rate of near detector

νµ CC events NPred(i), is given by reweighting by the reconstructed energy bins using

NPred(i) =
∑
j

NData(j) ·NSim(i, j)

NSim(j)
. (8.5)

By using different values for the oscillation parameters in equation 8.3, this extrapolation

can produce a set of predicted far detector spectra that can be used for an oscillation

parameter fit to the far detector data. Further details on the extrapolation machinery can

be found in [100].

8.5.3 Systematic Uncertainties

The CAFAna framework provides the tools to easily handle systematic uncertainties. Given

a set of expected uncertainties, the individual events can be either shifted or reweighted as

they are read in from the CAF files to determine the effects on the shape of the reconstructed

energy spectrum. Shifted spectra are filled for each of the systematics, which are then passed

to the tools that construct the final contours so that each of the systematic uncertainties

can be taken into account during the final fit.

For the νµ CC disappearance analysis, by far the dominant systematic comes from

the hadronic energy shift described in section 8.4. For this analysis, the hadronic energy

systematic was applied as a 6% smearing in |∆m2
32|. All other systematics were fit as

nuisance parameters. The full list of systematics accounted for in this analysis include the
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following:

• background NC: As described in section 8.5.1, the NC contamination in both the

near and far detector spectra is expected to be small and is taken directly from the

simulation. Therefore, a conservative uncertainty of 100% on the number of NC events

is used [85].

• normalization: The uncertainty on the detector mass and the beam flux were es-

timated to be 0.7% [101] and 0.5% [102] with the primary beam uncertainty coming

from the hadron production models. They are added in quadrature for an overall

uncertainty in normalization of 0.9%.

• GENIE: Many of the effects of nuclear modeling are expected to cancel in the extrap-

olation from near detector to far detector. However many parameters within GENIE’s

models can be varied, only 5 of which were shown to have any impact on the νµ CC

energy spectrum [103]. These 5 parameters were the axial masses of the CC QE, CC

RES, NC RES, and NC elastic, and the vector mass for the CC RES cross sections.

The sizes of the uncertainties from varying these parameters are estimated for each

bin in the reconstructed energy spectra, were shown to be small. Examples of the

reconstructed energy spectra with error bars from the GENIE uncertainties can be

seen in [103].

• detector modeling: Many uncertainties are folded into this category, all of which

were shown to have only a small impact due to canceling effects in the near to

far extrapolation [85]. The major effects include uncertainties in modeling with

GEANT [104] and in the simulated light levels in the scintillator and thresholds in

the electronics [105]. Together, these effects are covered with a 1% uncertainty.

• absolute energy scale calibration: The absolute energy scale uncertainty was

estimated to be 5% by propagating the calibration systematics all the way through

the reconstruction and analysis steps [106].
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• hadronic energy shift: As described above, the absolute uncertainty on the 21%

shift to Ehad is taken to be 100%, with a 2% relative uncertainty on the Ehad scale

and 1% on the Ehad normalization [85,93].

Many other possible effects on the reconstructed νµ energy spectrum were studied and

shown to be negligible for this analysis [85]. These include:

• detector alignment: This quantifies the effect of measurements made to determine

the alignment of the detector blocks [107].

• ντ contamination: The number of ντ events in the νµ CC event sample for this

analysis is expected to be < 0.1 [90].

• hadron transport modeling: The beam uncertainties associated with tracking

hadrons from the target to the decay pipe were shown to be much smaller than the

uncertainties associated with hadron production (the overall beam flux), which is

accounted for in the normalization systematic [102].

• Birk’s suppression modeling: The tuning of the Birk’s suppression parameters

described in section 5.4 is not unique and introduces some uncertainty. However, since

muon energies are estimated from track length, using the wrong Birk’s parameters

will only affect contributions to the reconstructed neutrino energies from non-muon

sources. Therefore, this was considered to be accounted for with the hadronic energy

systematics [85].

• time-dependent channel masks: The masks applied to the channels known to

be “bad” (as determined at the subrun level from the nearline metrics) have been

shown to be incorrectly stored in the database tables for a small portion (< 1%) of

subruns [108, 109]. This was studied by applying the wrong channel masks to a set

of near and far detector data with little to no effect on the overall neutrino energy

reconstruction [110].
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8.5.4 Sensitivity Contours

The extrapolation framework described in section 8.5.2 produces a prediction for an un-

oscillated far detector energy spectrum. This prediction is oscillated by the true neutrino

energies of the selected events in the simulated data sets, using different values for the

oscillation parameters to make comparisons to the data. For a given set of oscillation pa-

rameters, a total χ2 is computed using equation 7.10 from the sum over all of the bins in

the reconstructed energy spectra, marginalizing over the list of systematic uncertainties. A

sensitivity contour is constructed by computing a χ2 for each predicted spectrum formed

from a set of different oscillation parameters. Best fit values for any of the individual pa-

rameters are calculated by marginalizing over the other parameters and fitting the resulting

curve to a χ2 distribution. The sensitivity contours for the NOvA νµ CC disappearance

analysis are generated in a two-dimensional |∆m2
32| and sin2 θ23 space.

8.6 Final Results

8.6.1 The Selected Data Events

The total number of far detector data events selected by the νµ CC selection criteria was 48, 4

of which were in the +64 µsec beam spill window from the data taken prior to October 2014.

Of these events, 35 had reconstructed energies < 5 GeV and were used in the final oscillation

parameter fit. Assuming sin2 θ23 = 0.5 and sin2 θ23 = 0.4 with |∆m2
32| = 2.4 × 10−3 [eV2],

the predicted numbers of far detector events for the νµ CC event sample are 31.9 and 39.6

respectively. With no oscillations, this predicted number is 196.

Examples of some of the selected events are shown in figures 8.16 through 8.20. Figures

8.16, 8.18, 8.19 appear to be very clean QE events, with a clear recoiling proton track visible

in the event in figure 8.16. Figures 8.17 and 8.20 are both higher energy events with long

muon tracks and well reconstructed vertices. From the entire sample of 48 events, 5 appear

220



NOvA - FNAL E929

Run:   17953 / 38
Event: 256887 / --

UTC Wed Oct 29, 2014
14:17:32.565656512 sec)µt (

226 226.5 227 227.5 228 228.5 229 229.5 230

hi
ts

1

10

q (ADC)
10 210 310

hi
ts

1
10

210

4000 4200 4400 4600 4800 5000 5200

x 
(c

m
)

400−

300−

200−

100−

z (cm)
4000 4200 4400 4600 4800 5000 5200

y 
(c

m
)

700−

600−

500−

NOvA - FNAL E929

Run:   17953 / 38
Event: 256887 / --

UTC Wed Oct 29, 2014
14:17:32.565656512 sec)µt (

226 226.5 227 227.5 228 228.5 229 229.5 230

hi
ts

1

10

q (ADC)
10 210 310

hi
ts

1
10

210

4000 4200 4400 4600 4800 5000 5200

x 
(c

m
)

400−

300−

200−

100−

z (cm)
4000 4200 4400 4600 4800 5000 5200

y 
(c

m
)

700−

600−

500−

Figure 8.16: Selected far detector data event from the νµ CC analysis sample with and
without reconstruction (showing the Elastic Arms vertex and the 3D Fuzzy-K prongs.)
The reconstructed parameters for this event are Eν = 2.62 GeV, σE = 0.11 GeV (4.2%),
Pµ = 2.33 GeV/c, and a BPF event ID = 0.98.

to have non-neutrino like topologies (by visual inspection) and are very likely to be cosmic

rays. All 5 of these events have energies between 1 and 3 GeV and 3 of them occurred in

221



NOvA - FNAL E929

Run:   18068 / 60
Event: 379778 / --

UTC Fri Nov 7, 2014
13:30:50.305329408 sec)µt (

219 219.5 220 220.5 221 221.5 222

hi
ts

1
10

210

q (ADC)
10 210 310

hi
ts

1
10

210

3500 4000 4500 5000 5500

x 
(c

m
)

0

200

400

z (cm)
3500 4000 4500 5000 5500

y 
(c

m
)

600−

400−

NOvA - FNAL E929

Run:   18068 / 60
Event: 379778 / --

UTC Fri Nov 7, 2014
13:30:50.305329408 sec)µt (

219 219.5 220 220.5 221 221.5 222

hi
ts

1
10

210

q (ADC)
10 210 310

hi
ts

1
10

210

3500 4000 4500 5000 5500

x 
(c

m
)

0

200

400

z (cm)
3500 4000 4500 5000 5500

y 
(c

m
)

600−

400−

Figure 8.17: Selected far detector data event from the νµ CC analysis sample with and
without reconstruction (showing the Elastic Arms vertex and the 3D Fuzzy-K prongs.)
The reconstructed parameters for this event are Eν = 4.99 GeV, σE = 0.4 GeV (8.0%),
Pµ = 1.83 GeV/c, and a BPF event ID = 1.0.

the +64 µsec beam spill window. Two examples of these 5 events are shown in figure 8.21.

Both examples are close to the top of the detector and appear to be entering from above.
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Figure 8.18: Selected far detector data event from the νµ CC analysis sample with and
without reconstruction (showing the Elastic Arms vertex and the 3D Fuzzy-K prongs.)
The reconstructed parameters for this event are Eν = 2.35 GeV, σE = 0.11 GeV (4.7%),
Pµ = 2.11 GeV/c, and a BPF event ID = 1.0.

8.6.2 Oscillation Parameter Fits

The 2-dimensional BPF energy spectrum for the 35 selected far detector data events is shown

in figure 8.22. There were 15 events in the first energy resolution bin, 12 in the second, and
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Figure 8.19: Selected far detector data event from the νµ CC analysis sample with and
without reconstruction (showing the Elastic Arms vertex and the 3D Fuzzy-K prongs.)
The reconstructed parameters for this event are Eν = 0.91 GeV, σE = 0.08 GeV (8.7%),
Pµ = 0.82 GeV/c, and a BPF event ID = 0.98.

8 in the third. Performing the full near to far extrapolation with the analysis framework

described in section 8.5 using the shifted near and far detector data spectra described in

224



NOvA - FNAL E929

Run:   16277 / 3
Event: 17480 / --

UTC Fri Jul 18, 2014
05:53:30.304523744 sec)µt (

223 223.5 224 224.5 225 225.5 226

hi
ts

1
10

210

q (ADC)
10 210 310

hi
ts

1

10

1500 2000 2500 3000 3500

x 
(c

m
)

200

400

600

z (cm)
1500 2000 2500 3000 3500

y 
(c

m
)

600−

400−

200−

NOvA - FNAL E929

Run:   16277 / 3
Event: 17480 / --

UTC Fri Jul 18, 2014
05:53:30.304523744 sec)µt (

223 223.5 224 224.5 225 225.5 226

hi
ts

1
10

210

q (ADC)
10 210 310

hi
ts

1

10

1500 2000 2500 3000 3500

x 
(c

m
)

200

400

600

z (cm)
1500 2000 2500 3000 3500

y 
(c

m
)

600−

400−

200−

Figure 8.20: Selected far detector data event from the νµ CC analysis sample with and
without reconstruction (showing the Elastic Arms vertex and the 3D Fuzzy-K prongs.)
The reconstructed parameters for this event are Eν = 7.68 GeV, σE = 0.66 GeV (8.6%),
Pµ = 2.38 GeV/c, and a BPF event ID = 0.99. This event, while well reconstructed, was
not used in the final fit since Eν > 5.0 GeV.
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Figure 8.21: Selected far detector data events from the νµ CC analysis sample likely to
be cosmic rays.

section 8.4, produced the measurement contours shown in figure 8.23. Contours with and

without the systematic uncertainties are drawn together in this figure. For comparison, the

90% confidence interval contours from this analysis are shown in figure 8.24 overlaid with
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the most recent contours from T2K [24] and MINOS+ [25].
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Figure 8.22: Top: The reconstructed energies for the 35 far detector events with the
predicted spectrum in red from the near detector extrapolation using the best fit values for
the oscillation parameters. Bottom: Two dimensional reconstructed energy spectra for
the 35 selected far detector events.

For each of the two oscillation fit parameters, the other parameter was marginalized

to generate the χ2 distributions shown in figure 8.25. From these plots, the best fits

for the oscillation parameters were determined to be |∆m2
32| = 2.49+0.19

−0.17 [×10−3eV2] and

sin2 θ23 = 0.51 ± 0.08. A one dimensional version of the reconstructed energy spectrum is

shown in figure 8.22 for the far detector data with the predicted spectra from the extrapo-

lation using the oscillation parameter best fit values. With these oscillation parameters, the

integral from 0 to 5 GeV of the predicted far detector spectra is 33.8 events, which includes

the predicted background contributions from NC events and cosmic rays. This solution is
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Figure 8.23: Final measurement contours for the BPF νµ CC disappearance analysis.
The blue contours were made including the systematic uncertainties and the red contours
without them. The dashed (solid) lines are the 1-σ (90%) confidence intervals.

consistent with maximal mixing and with the 2015 results from T2K and MINOS+.

8.6.3 Concluding Remarks

Figure 8.24 demonstrates that the NOvA results using 2.8× 1020 POT (full detector equiv-

alent) is already comparable to the T2K results with 6.6×1020 POT [24] and the MINOS+

results with 15.8 × 1020 POT [25]. With the improved statistics from the data gathered

over the next 6 years, the NOvA results clearly have the potential to make significant

improvements to the world measurement of sin2 θ23.

The BPF analysis performed well producing the measurements

|∆m2
32| = 2.49+0.19

−0.17[×10−3eV2] (8.6)

sin2 θ23 = 0.51± 0.08. (8.7)

Specifically, the technique of separating events by the estimated energy resolution helped
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Figure 8.24: Final measurement contours for the BPF νµ CC disappearance analysis
shown with the most recent results from T2K [24] and MINOS+ [25]. All contours represent
90% confidence intervals.

to minimize the impact of the background samples and emphasize the importance of well

reconstructed events. My initial concerns about using an energy estimator trained under

different oscillation assumptions proved to be unfounded since the data and the simulations

both responded in similar ways to the training used for the energy estimator. Figure 8.26

shows final measurement contours generated with the far detector data sample using each

of the three energy estimators described in section 7.3.3. While the size of the contours

is different for each of the estimators, the best fit values are almost identical. Since the

data appears to favor the maximal mixing solution, the energy estimator trained with max-

imal mixing parameters produces the best contours. Unfortunately, I had already decided

to uses the estimator trained with the minimal mixing parameters, but the measurement

uncertainty associated with this estimator is still quite good.

Moving forward, I anticipate the NOvA analysis will benefit from many things. First,

the number of background cosmic-ray events in the far detector data sample appeared to

be higher than expected, which is most likely due to the necessity of opening up a second
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beam timing window for the data taken prior to October 2014. As more data is taken

with the full detector using only one beam timing window, the proportionate amount of

background events from cosmic rays should be reduced. Second, the systematic uncertainty

associated with the hadronic energy differences discussed in section 8.4 was by far the

dominant uncertainty in this analysis. With more data and further investigation, these

differences can be understood leading to improved models for the simulations and tighter

sensitivity contours.

There are many things on the horizon for the NOvA experiment. Investigating the

hadronic energy differences seen in the near detector data has the potential to provide

important insight into the nuclear models used to simulate neutrino interactions. There are

also modifications that can be made to the reconstruction algorithms discussed in chapter

6 that could not only improve to the NOvA analyses, but could lead to the deployment of

these reconstruction techniques to the next generation of liquid-Argon neutrino detectors.

Finally, many of the unanswered questions in neutrino physics: the mass ordering, the

octant of θ23, the value of the CP-violating phase factor δ, have the potential of being

answered (or at least having some light shed on them) by combining the νµ disappearance

and νe appearance results from 3 years each of running the NuMI beam in the neutrino and

anti-neutrino modes. Since the NOvA experiment is just beginning, all of these exciting
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Figure 8.26: Final measurement contours using each of the three BPF energy estimators
described in section 7.3.3. The green / blue / red contours were created using the unoscil-
lated / “minimal” / “maximal” training assumption. The dashed (solid) lines are the 1-σ
(90%) confidence intervals. These contours do not include systematic uncertainties.

things are hovering on the horizon, and will soon be within our grasp!
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