478 research outputs found

    In-silico Models for Capturing the Static and Dynamic Characteristics of Robustness within Complex Networks

    Get PDF
    Understanding the role of structural patterns within complex networks is essential to establish the governing principles of such networks. Social networks, biological networks, technological networks etc. can be considered as complex networks where information processing and transport plays a central role. Complexity in these net works can be due to abstraction, scale, functionality and structure. Depending on the abstraction each of these can be categorized further. Gene regulatory networks are one such category of biological networks. Gene regulatory networks (GRNs) are assumed to be robust under internal and external perturbations. Network motifs such as feed-forward loop motif and bifan motif are believed to play a central role functionally in retaining GRN behavior under lossy conditions. While the role of static characteristics like average shortest path, density, degree centrality among other topological features is well documented by the research community, the structural role of motifs and their dynamic characteristics are not xiii well understood. Wireless sensor networks in the last decade were intensively studied using network simulators. Can we use in-silico experiments to understand biological network topologies better? Does the structure of these motifs have any role to play in ensuring robust information transport in such networks? How do their static and dynamic roles differ? To understand these questions, we use in-silico network models to capture the dynamic characteristics of complex network topologies. Developing these models involve network mapping, sink selection strategies and identifying metrics to capture robust system behavior. Further, I studied the dynamic aspect of network characteristics using variation in network information flow under perturbations defined by lossy conditions and channel capacity. We use machine learning techniques to identify significant features that contribute to robust network performance. Our work demonstrates that although the structural role of feed-forward loop motif in signal transduction within GRNs is minimal, these motifs stand out under heavy perturbations

    Learning the Regulatory Code of Gene Expression

    Get PDF
    Data-driven machine learning is the method of choice for predicting molecular phenotypes from nucleotide sequence, modeling gene expression events including protein-DNA binding, chromatin states as well as mRNA and protein levels. Deep neural networks automatically learn informative sequence representations and interpreting them enables us to improve our understanding of the regulatory code governing gene expression. Here, we review the latest developments that apply shallow or deep learning to quantify molecular phenotypes and decode the cis-regulatory grammar from prokaryotic and eukaryotic sequencing data. Our approach is to build from the ground up, first focusing on the initiating protein-DNA interactions, then specific coding and non-coding regions, and finally on advances that combine multiple parts of the gene and mRNA regulatory structures, achieving unprecedented performance. We thus provide a quantitative view of gene expression regulation from nucleotide sequence, concluding with an information-centric overview of the central dogma of molecular biology

    From condition-specific interactions towards the differential complexome of proteins

    Get PDF
    While capturing the transcriptomic state of a cell is a comparably simple effort with modern sequencing techniques, mapping protein interactomes and complexomes in a sample-specific manner is currently not feasible on a large scale. To understand crucial biological processes, however, knowledge on the physical interplay between proteins can be more interesting than just their mere expression. In this thesis, we present and demonstrate four software tools that unlock the cellular wiring in a condition-specific manner and promise a deeper understanding of what happens upon cell fate transitions. PPIXpress allows to exploit the abundance of existing expression data to generate specific interactomes, which can even consider alternative splicing events when protein isoforms can be related to the presence of causative protein domain interactions of an underlying model. As an addition to this work, we developed the convenient differential analysis tool PPICompare to determine rewiring events and their causes within the inferred interaction networks between grouped samples. Furthermore, we present a new implementation of the combinatorial protein complex prediction algorithm DACO that features a significantly reduced runtime. This improvement facilitates an application of the method for a large number of samples and the resulting sample-specific complexes can ultimately be assessed quantitatively with our novel differential protein complex analysis tool CompleXChange.Das Transkriptom einer Zelle ist mit modernen Sequenzierungstechniken vergleichsweise einfach zu erfassen. Die Ermittlung von Proteininteraktionen und -komplexen wiederum ist in großem Maßstab derzeit nicht möglich. Um wichtige biologische Prozesse zu verstehen, kann das Zusammenspiel von Proteinen jedoch erheblich interessanter sein als deren reine Expression. In dieser Arbeit stellen wir vier Software-Tools vor, die es ermöglichen solche Interaktionen zustandsbezogen zu betrachten und damit ein tieferes Verständnis darüber versprechen, was in der Zelle bei Veränderungen passiert. PPIXpress ermöglicht es vorhandene Expressionsdaten zu nutzen, um die aktiven Interaktionen in einem biologischen Kontext zu ermitteln. Wenn Proteinvarianten mit Interaktionen von Proteindomänen in Verbindung gebracht werden können, kann hierbei sogar alternatives Spleißen berücksichtigen werden. Als Ergänzung dazu haben wir das komfortable Differenzialanalyse-Tool PPICompare entwickelt, welches Veränderungen des Interaktoms und deren Ursachen zwischen gruppierten Proben bestimmen kann. Darüber hinaus stellen wir eine neue Implementierung des Proteinkomplex-Vorhersagealgorithmus DACO vor, die eine deutlich reduzierte Laufzeit aufweist. Diese Verbesserung ermöglicht die Anwendung der Methode auf eine große Anzahl von Proben. Die damit bestimmten probenspezifischen Komplexe können schließlich mit unserem neuartigen Differenzialanalyse-Tool CompleXChange quantitativ bewertet werden

    {CpG} content-dependent associations between transcription factors and histone modifications

    Get PDF
    Understanding the factors that underlie the epigenetic regulation of genes is crucial to understand the gene regulatory machinery as a whole. Several experimental and computational studies examined the relationship between different factors involved. Here we investigate the relationship between transcription factors (TFs) and histone modifications (HMs), based on ChIP-seq data in cell lines. As it was shown that gene regulation by TFs differs depending on the CpG class of a promoter, we study the impact of the CpG content in promoters on the associations between TFs and HMs. We suggest an approach based on sparse linear regression models to infer associations between TFs and HMs with respect to CpG content. A study of the partial correlation of HMs for the two classes of high and low CpG content reveals possible CpG dependence and potential candidates for confounding factors in our models. We show that the models are accurate, inferred associations reflect known biological relationships, and we give new insight into associations with respect to CpG content. Moreover, analysis of a ChIP-seq dataset in HepG2 cells of the HM H3K122ac, an HM about little is known, reveals novel TF associations and supports a previously established link to active transcription

    Expression data dnalysis and regulatory network inference by means of correlation patterns

    Get PDF
    With the advance of high-throughput techniques, the amount of available data in the bio-molecular field is rapidly growing. It is now possible to measure genome-wide aspects of an entire biological system as a whole. Correlations that emerge due to internal dependency structures of these systems entail the formation of characteristic patterns in the corresponding data. The extraction of these patterns has become an integral part of computational biology. By triggering perturbations and interventions it is possible to induce an alteration of patterns, which may help to derive the dependency structures present in the system. In particular, differential expression experiments may yield alternate patterns that we can use to approximate the actual interplay of regulatory proteins and genetic elements, namely, the regulatory network of a cell. In this work, we examine the detection of correlation patterns from bio-molecular data and we evaluate their applicability in terms of protein contact prediction, experimental artifact removal, the discovery of unexpected expression patterns and genome-scale inference of regulatory networks. Correlation patterns are not limited to expression data. Their analysis in the context of conserved interfaces among proteins is useful to estimate whether these may have co-evolved. Patterns that hint on correlated mutations would then occur in the associated protein sequences as well. We employ a conceptually simple sampling strategy to decide whether or not two pathway elements share a conserved interface and are thus likely to be in physical contact. We successfully apply our method to a system of ABC-transporters and two-component systems from the phylum of Firmicute bacteria. For spatially resolved gene expression data like microarrays, the detection of artifacts, as opposed to noise, corresponds to the extraction of localized patterns that resemble outliers in a given region. We develop a method to detect and remove such artifacts using a sliding-window approach. Our method is very accurate and it is shown to adapt to other platforms like custom arrays as well. Further, we developed Padesco as a way to reveal unexpected expression patterns. We extract frequent and recurring patterns that are conserved across many experiments. For a specific experiment, we predict whether a gene deviates from its expected behaviour. We show that Padesco is an effective approach for selecting promising candidates from differential expression experiments. In Chapter 5, we then focus on the inference of genome-scale regulatory networks from expression data. Here, correlation patterns have proven useful for the data-driven estimation of regulatory interactions. We show that, for reliable eukaryotic network inference, the integration of prior networks is essential. We reveal that this integration leads to an over-estimate of network-wide quality estimates and suggest a corrective procedure, CoRe, to counterbalance this effect. CoRe drastically improves the false discovery rate of the originally predicted networks. We further suggest a consensus approach in combination with an extended set of topological features to obtain a more accurate estimate of the eukaryotic regulatory network for yeast. In the course of this work we show how correlation patterns can be detected and how they can be applied for various problem settings in computational molecular biology. We develop and discuss competitive approaches for the prediction of protein contacts, artifact repair, differential expression analysis, and network inference and show their applicability in practical setups.Mit der Weiterentwicklung von Hochdurchsatztechniken steigt die Anzahl verfügbarer Daten im Bereich der Molekularbiologie rapide an. Es ist heute möglich, genomweite Aspekte eines ganzen biologischen Systems komplett zu erfassen. Korrelationen, die aufgrund der internen Abhängigkeits-Strukturen dieser Systeme enstehen, führen zu charakteristischen Mustern in gemessenen Daten. Die Extraktion dieser Muster ist zum integralen Bestandteil der Bioinformatik geworden. Durch geplante Eingriffe in das System ist es möglich Muster-Änderungen auszulösen, die helfen, die Abhängigkeits-Strukturen des Systems abzuleiten. Speziell differentielle Expressions-Experimente können Muster-Wechsel bedingen, die wir verwenden können, um uns dem tatsächlichen Wechselspiel von regulatorischen Proteinen und genetischen Elementen anzunähern, also dem regulatorischen Netzwerk einer Zelle. In der vorliegenden Arbeit beschäftigen wir uns mit der Erkennung von Korrelations-Mustern in molekularbiologischen Daten und schätzen ihre praktische Nutzbarkeit ab, speziell im Kontext der Kontakt-Vorhersage von Proteinen, der Entfernung von experimentellen Artefakten, der Aufdeckung unerwarteter Expressions-Muster und der genomweiten Vorhersage regulatorischer Netzwerke. Korrelations-Muster sind nicht auf Expressions-Daten beschränkt. Ihre Analyse im Kontext konservierter Schnittstellen zwischen Proteinen liefert nützliche Hinweise auf deren Ko-Evolution. Muster die auf korrelierte Mutationen hinweisen, würden in diesem Fall auch in den entsprechenden Proteinsequenzen auftauchen. Wir nutzen eine einfache Sampling-Strategie, um zu entscheiden, ob zwei Elemente eines Pathways eine gemeinsame Schnittstelle teilen, berechnen also die Wahrscheinlichkeit für deren physikalischen Kontakt. Wir wenden unsere Methode mit Erfolg auf ein System von ABC-Transportern und Zwei-Komponenten-Systemen aus dem Firmicutes Bakterien-Stamm an. Für räumlich aufgelöste Expressions-Daten wie Microarrays enspricht die Detektion von Artefakten der Extraktion lokal begrenzter Muster. Im Gegensatz zur Erkennung von Rauschen stellen diese innerhalb einer definierten Region Ausreißer dar. Wir entwickeln eine Methodik, um mit Hilfe eines Sliding-Window-Verfahrens, solche Artefakte zu erkennen und zu entfernen. Das Verfahren erkennt diese sehr zuverlässig. Zudem kann es auf Daten diverser Plattformen, wie Custom-Arrays, eingesetzt werden. Als weitere Möglichkeit unerwartete Korrelations-Muster aufzudecken, entwickeln wir Padesco. Wir extrahieren häufige und wiederkehrende Muster, die über Experimente hinweg konserviert sind. Für ein bestimmtes Experiment sagen wir vorher, ob ein Gen von seinem erwarteten Verhalten abweicht. Wir zeigen, dass Padesco ein effektives Vorgehen ist, um vielversprechende Kandidaten eines differentiellen Expressions-Experiments auszuwählen. Wir konzentrieren uns in Kapitel 5 auf die Vorhersage genomweiter regulatorischer Netzwerke aus Expressions-Daten. Hierbei haben sich Korrelations-Muster als nützlich für die datenbasierte Abschätzung regulatorischer Interaktionen erwiesen. Wir zeigen, dass für die Inferenz eukaryotischer Systeme eine Integration zuvor bekannter Regulationen essentiell ist. Unsere Ergebnisse ergeben, dass diese Integration zur Überschätzung netzwerkübergreifender Qualitätsmaße führt und wir schlagen eine Prozedur - CoRe - zur Verbesserung vor, um diesen Effekt auszugleichen. CoRe verbessert die False Discovery Rate der ursprünglich vorhergesagten Netzwerke drastisch. Weiterhin schlagen wir einen Konsensus-Ansatz in Kombination mit einem erweiterten Satz topologischer Features vor, um eine präzisere Vorhersage für das eukaryotische Hefe-Netzwerk zu erhalten. Im Rahmen dieser Arbeit zeigen wir, wie Korrelations-Muster erkannt und wie sie auf verschiedene Problemstellungen der Bioinformatik angewandt werden können. Wir entwickeln und diskutieren Ansätze zur Vorhersage von Proteinkontakten, Behebung von Artefakten, differentiellen Analyse von Expressionsdaten und zur Vorhersage von Netzwerken und zeigen ihre Eignung im praktischen Einsatz

    Expression data dnalysis and regulatory network inference by means of correlation patterns

    Get PDF
    With the advance of high-throughput techniques, the amount of available data in the bio-molecular field is rapidly growing. It is now possible to measure genome-wide aspects of an entire biological system as a whole. Correlations that emerge due to internal dependency structures of these systems entail the formation of characteristic patterns in the corresponding data. The extraction of these patterns has become an integral part of computational biology. By triggering perturbations and interventions it is possible to induce an alteration of patterns, which may help to derive the dependency structures present in the system. In particular, differential expression experiments may yield alternate patterns that we can use to approximate the actual interplay of regulatory proteins and genetic elements, namely, the regulatory network of a cell. In this work, we examine the detection of correlation patterns from bio-molecular data and we evaluate their applicability in terms of protein contact prediction, experimental artifact removal, the discovery of unexpected expression patterns and genome-scale inference of regulatory networks. Correlation patterns are not limited to expression data. Their analysis in the context of conserved interfaces among proteins is useful to estimate whether these may have co-evolved. Patterns that hint on correlated mutations would then occur in the associated protein sequences as well. We employ a conceptually simple sampling strategy to decide whether or not two pathway elements share a conserved interface and are thus likely to be in physical contact. We successfully apply our method to a system of ABC-transporters and two-component systems from the phylum of Firmicute bacteria. For spatially resolved gene expression data like microarrays, the detection of artifacts, as opposed to noise, corresponds to the extraction of localized patterns that resemble outliers in a given region. We develop a method to detect and remove such artifacts using a sliding-window approach. Our method is very accurate and it is shown to adapt to other platforms like custom arrays as well. Further, we developed Padesco as a way to reveal unexpected expression patterns. We extract frequent and recurring patterns that are conserved across many experiments. For a specific experiment, we predict whether a gene deviates from its expected behaviour. We show that Padesco is an effective approach for selecting promising candidates from differential expression experiments. In Chapter 5, we then focus on the inference of genome-scale regulatory networks from expression data. Here, correlation patterns have proven useful for the data-driven estimation of regulatory interactions. We show that, for reliable eukaryotic network inference, the integration of prior networks is essential. We reveal that this integration leads to an over-estimate of network-wide quality estimates and suggest a corrective procedure, CoRe, to counterbalance this effect. CoRe drastically improves the false discovery rate of the originally predicted networks. We further suggest a consensus approach in combination with an extended set of topological features to obtain a more accurate estimate of the eukaryotic regulatory network for yeast. In the course of this work we show how correlation patterns can be detected and how they can be applied for various problem settings in computational molecular biology. We develop and discuss competitive approaches for the prediction of protein contacts, artifact repair, differential expression analysis, and network inference and show their applicability in practical setups.Mit der Weiterentwicklung von Hochdurchsatztechniken steigt die Anzahl verfügbarer Daten im Bereich der Molekularbiologie rapide an. Es ist heute möglich, genomweite Aspekte eines ganzen biologischen Systems komplett zu erfassen. Korrelationen, die aufgrund der internen Abhängigkeits-Strukturen dieser Systeme enstehen, führen zu charakteristischen Mustern in gemessenen Daten. Die Extraktion dieser Muster ist zum integralen Bestandteil der Bioinformatik geworden. Durch geplante Eingriffe in das System ist es möglich Muster-Änderungen auszulösen, die helfen, die Abhängigkeits-Strukturen des Systems abzuleiten. Speziell differentielle Expressions-Experimente können Muster-Wechsel bedingen, die wir verwenden können, um uns dem tatsächlichen Wechselspiel von regulatorischen Proteinen und genetischen Elementen anzunähern, also dem regulatorischen Netzwerk einer Zelle. In der vorliegenden Arbeit beschäftigen wir uns mit der Erkennung von Korrelations-Mustern in molekularbiologischen Daten und schätzen ihre praktische Nutzbarkeit ab, speziell im Kontext der Kontakt-Vorhersage von Proteinen, der Entfernung von experimentellen Artefakten, der Aufdeckung unerwarteter Expressions-Muster und der genomweiten Vorhersage regulatorischer Netzwerke. Korrelations-Muster sind nicht auf Expressions-Daten beschränkt. Ihre Analyse im Kontext konservierter Schnittstellen zwischen Proteinen liefert nützliche Hinweise auf deren Ko-Evolution. Muster die auf korrelierte Mutationen hinweisen, würden in diesem Fall auch in den entsprechenden Proteinsequenzen auftauchen. Wir nutzen eine einfache Sampling-Strategie, um zu entscheiden, ob zwei Elemente eines Pathways eine gemeinsame Schnittstelle teilen, berechnen also die Wahrscheinlichkeit für deren physikalischen Kontakt. Wir wenden unsere Methode mit Erfolg auf ein System von ABC-Transportern und Zwei-Komponenten-Systemen aus dem Firmicutes Bakterien-Stamm an. Für räumlich aufgelöste Expressions-Daten wie Microarrays enspricht die Detektion von Artefakten der Extraktion lokal begrenzter Muster. Im Gegensatz zur Erkennung von Rauschen stellen diese innerhalb einer definierten Region Ausreißer dar. Wir entwickeln eine Methodik, um mit Hilfe eines Sliding-Window-Verfahrens, solche Artefakte zu erkennen und zu entfernen. Das Verfahren erkennt diese sehr zuverlässig. Zudem kann es auf Daten diverser Plattformen, wie Custom-Arrays, eingesetzt werden. Als weitere Möglichkeit unerwartete Korrelations-Muster aufzudecken, entwickeln wir Padesco. Wir extrahieren häufige und wiederkehrende Muster, die über Experimente hinweg konserviert sind. Für ein bestimmtes Experiment sagen wir vorher, ob ein Gen von seinem erwarteten Verhalten abweicht. Wir zeigen, dass Padesco ein effektives Vorgehen ist, um vielversprechende Kandidaten eines differentiellen Expressions-Experiments auszuwählen. Wir konzentrieren uns in Kapitel 5 auf die Vorhersage genomweiter regulatorischer Netzwerke aus Expressions-Daten. Hierbei haben sich Korrelations-Muster als nützlich für die datenbasierte Abschätzung regulatorischer Interaktionen erwiesen. Wir zeigen, dass für die Inferenz eukaryotischer Systeme eine Integration zuvor bekannter Regulationen essentiell ist. Unsere Ergebnisse ergeben, dass diese Integration zur Überschätzung netzwerkübergreifender Qualitätsmaße führt und wir schlagen eine Prozedur - CoRe - zur Verbesserung vor, um diesen Effekt auszugleichen. CoRe verbessert die False Discovery Rate der ursprünglich vorhergesagten Netzwerke drastisch. Weiterhin schlagen wir einen Konsensus-Ansatz in Kombination mit einem erweiterten Satz topologischer Features vor, um eine präzisere Vorhersage für das eukaryotische Hefe-Netzwerk zu erhalten. Im Rahmen dieser Arbeit zeigen wir, wie Korrelations-Muster erkannt und wie sie auf verschiedene Problemstellungen der Bioinformatik angewandt werden können. Wir entwickeln und diskutieren Ansätze zur Vorhersage von Proteinkontakten, Behebung von Artefakten, differentiellen Analyse von Expressionsdaten und zur Vorhersage von Netzwerken und zeigen ihre Eignung im praktischen Einsatz

    Computational models of gene expression regulation

    Get PDF
    Throughout the last several decades, many efforts have been put into elucidating the genetic or epigenetic defects that result in various diseases. Gene regulation, i.e., the process of how genes are turned on and off in the right place and at the right time, is a paramount and prevailing question for researchers. Thanks to the discoveries made by researchers in this field, our understanding of interactions between proteins and DNA or proteins with themselves, as well as the dynamics of chromatin structure under different conditions, have substantially advanced. Even though there has been a lot achieved through these discoveries, there are still many unknown aspects about gene regulation. For instance, proteins called transcription factors (TFs) recognize and bind to specific regions of DNA and recruit the transcriptional machinery, which is essential for gene regulation. As there have been more than 2000 TFs identified in the human genome, it is important to study where they bind to or which genes they target. Computational approaches are important, in particular, as the biological experiments are often very expensive and cannot be done for all TFs. In 2016, a competition named DREAM Challenge was held encouraging researchers to develop novel computational tools for predicting the binding sites of several TFs. The first chapter of this thesis describes our machine learning approach to address this challenge within the scope of the competition. Using ensembles of random forest classifiers, we formulated our framework such that it is able to benefit from the tissue specificity inherent in the data leading to better generalization. Also, our models were tailored for spotting cofactors involved in the binding of TFs of interest. Comparing the important TFs that our computational models suggested with protein-protein association networks revealed that the models preferentially select motifs of TFs that are potential interaction partners in those networks. Another important aspect beyond predicting TF binding is to link epigeneomics, such as histone modification (HM) data, with gene expression. We, particularly, concentrated on predicting expression in a subset of genes called bidirectional. Bidirectional genes are referred to as pairs of genes that are located on opposite strands of DNA close to each other. As the sequencing technologies advance, more such bidirectional configurations are being detected. This indicates that in order to understand the gene regulatory mechanisms, it would be beneficial to account for such promoter architectures. In the second and third chapters, we focused on genes having bidirectional promoter architectures utilizing high resolution epigenomic signatures and single cell RNA-seq data to dissect the complex epigenetic architecture at these promoters. Using single-cell RNA-seq data as the estimate of gene expression, we were able to generate a hypothetical model for gene regulation in bidirectional promoters. We showed that bidirectional promoters can be categorized into three architecture types with distinct characteristics. Each of these categories corresponds to a unique gene expression profile at single cell level. The single cell RNA-seq data proved to be a powerful means for studying gene regulation. Therefore, in the last chapter, we proposed a novel approach for predicting gene expression at the single cell level using cis-regulatory motifs as well as epigenetic features. To achieve this, we designed a tree-guided multi-task learning framework that considers each cell as a task. Through this framework we were able to explain the single cell gene expression values using either TF binding affinities or TF ChIP-seq data measured at specific genomic regions. This allowed us to identify distinct TFs that show cell-type specific regulation in induced pluripotent stem cells. Our approach does not only limit to TFs, rather it can take any type of data that can potentially be used in explaining gene expression at single cell level. We believe that our findings can be used in drug discovery and development that can regulate the presence of TFs or other regulatory factors, which lead the cell fate into abnormal states, to prevent or cure diseases.In den letzten Jahrzehnten wurden große Anstrengungen unternommen, um die genetischen oder epigenetischen Defekte aufzuklären, die zu verschiedenen Krankheiten führen. Die Genregulation, d.h. der Prozess der Ein- und Abschaltung der Gene am richtigen Ort und zur richtigen Zeit reguliert, ist für die Forscher eine Frage von zentraler Bedeutung. Dank der Entdeckungen von Forschern auf diesem Gebiet ist unser Verständnis der Wechselwirkungen zwischen zwischen den Proteinen und der DNA oder der Proteine untereinander sowie der Dynamik der Chromatinstruktur unter verschiedenen Bedingungen wesentlich fortgeschritten. Obwohl durch diese Entdeckungen viel erreicht wurde, gibt es noch viele unbekannte Aspekte der Genregulation. Beispielsweise erkennen Proteine, sogenannte Transkriptionsfaktoren (Transcription Factors, TFs), bestimmte Bereiche der DNA und binden an diese und rekrutieren die Transkriptionsmaschinerie, die für die Genregulation erforderlich ist. Da mehr als 2000 TFs im menschlichen Genom identifiziert wurden, ist es wichtig zu untersuchen, wo sie binden oder auf welche Gene sie abzielen. Rechnerische Ansätze sind insbesondere wichtig, da die biologischen Experimente oft sehr teuer sind und nicht für alle TFs durchgeführt werden können. Im Jahr 2016 fand ein Wettbewerb namens DREAM Challenge statt, bei dem Forscher aufgefordert wurden, neuartige Rechenwerkzeuge zur Vorhersage der Bindungsstellen mehrerer TFs zu entwickeln. Das erste Kapitel dieser Arbeit beschreibt unseren Ansatz des maschinellen Lernens, um diese Herausforderung im Rahmen des Wettbewerbs anzugehen. Unter Verwendung von Ensembles von Random Forest Klassifikatoren haben wir unser Framework so formuliert, dass es von der Gewebespezifität der Daten profitiert und damit zu einer besseren Generalisierung führt. Außerdem wurden unsere Modelle auf das Erkennen von Kofaktoren angepasst, die an der Bindung von TFs beteiligt sind, die für uns von Interesse sind. Der Vergleich der wichtigen TFs, die unsere Computermodelle mit Protein-Protein-Assoziationsnetzwerken vorschlugen, ergab, dass die Modelle bevorzugt Motive von TFs auswählen, die potenzielle Interaktionspartner in diesen Netzwerken sind. Ein weiterer wichtiger Aspekt, der über die Vorhersage der TF-Bindung hinausgeht, besteht darin, epigeneomische Faktoren wie Histonmodifikationsdaten (HM-Daten) mit der Genexpression zu verknüpfen. Wir konzentrierten uns insbesondere auf die Vorhersage der Expression in einer Untergruppe von Genen, die als bidirektional bezeichnet werden. Bidirektionale Gene werden als Paare von Genen bezeichnet, die sich auf gegenüberliegenden DNA-Strängen befinden und nahe beieinander liegen. Mit dem Fortschritt der Sequenzierungstechnologien werden immer mehr solche bidirektionalen Konfigurationen erkannt. Dies weist darauf hin, dass es zum Verständnis der Genregulationsmechanismen vorteilhaft wäre, solche Promotorarchitekturen zu berücksichtigen. Im zweiten und dritten Kapitel konzentrierten wir uns auf Gene mit bidirektionalen Promotorarchitekturen, um mit Hilfe von epigenomischen Signaturen und Einzelzell-RNA-Sequenzdaten die komplexe epigenetische Architektur an diesen Promotoren zu analysieren. Unter Verwendung von Einzelzell-RNA-Sequenzdaten als Schätzung der Genexpression konnten wir ein hypothetisches Modell für die Genregulation in bidirektionalen Promotoren aufstellen. Wir haben gezeigt, dass bidirektionale Promotoren in drei Architekturtypen mit unterschiedlichen Merkmalen eingeteilt werden können. Jede dieser Kategorien entspricht einem eindeutigen Genexpressionsprofil auf Einzelzellebene. Die Einzelzell-RNA-Sequenzdaten erwiesen sich als leistungsstarkes Mittel zur Untersuchung der Genregulation. Daher haben wir im letzten Kapitel einen neuen Ansatz zur Vorhersage der Genexpression auf Einzelzellebene unter Verwendung von cis-regulatorischen Motiven sowie epigenetischen Merkmalen vorgeschlagen. Um dies zu erreichen, haben wir ein baumgesteuertes Multitasking-Lernsystem entwickelt, das jede Zelle als eine Aufgabe betrachtet. Durch dieses Gerüst konnten wir die Einzelzellgenexpressionswerte entweder mit TF-Bindungsaffinitäten oder mit TF-ChIP-Sequenzdaten erklären, die in bestimmten Genomregionen gemessen wurden. Dies ermöglichte es uns, verschiedene TFs zu identifizieren, die eine zelltypspezifische Regulation in induzierten pluripotenten Stammzellen zeigen. Unser Ansatz beschränkt sich nicht nur auf TFs, sondern kann jede Art von Daten verwenden, die potentiell zur Erklärung der Genexpression auf Einzelzellebene verwendet werden können. Wir glauben, dass unsere Erkenntnisse für die Entdeckung und Entwicklung von Arzneimitteln verwendet werden können, die das Vorhandensein von TFs oder anderen regulatorischen Faktoren regulieren können, die die Zellen abnormal werden lassen, um Krankheiten zu verhindern oder zu heilen

    PREDICTING AND CLASSIFYING PACKET TRANSMISSION EFFICIENCY IN BIO-INSPIRED WIRELESS SENSOR NETWORKS

    Get PDF
    Biological networks (specifically genetic regulatory networks) are known to be robust to various external perturbations. Bio-inspired wireless sensor networks (WSN) are known to be smart communication structures and have a have high packet transmission efficiency. In earlier work neural network models that correlate the average packet receival rates to the five topological features of the bio-inspired WSN were investigated. These features include the degree index, sink coverage, network density, hub node density, and motif index. In this thesis, an appropriate classification algorithm that works with these five features is investigated. The random forest algorithm is the best classification algorithm compared to other classification methods (APPENDIX B). In addition, a local weighted linear regression algorithm was created to predict the robustness of the network utilizing these five topological features

    Learning the Regulatory Code of Gene Expression

    Get PDF
    Data-driven machine learning is the method of choice for predicting molecular phenotypes from nucleotide sequence, modeling gene expression events including protein-DNA binding, chromatin states as well as mRNA and protein levels. Deep neural networks automatically learn informative sequence representations and interpreting them enables us to improve our understanding of the regulatory code governing gene expression. Here, we review the latest developments that apply shallow or deep learning to quantify molecular phenotypes and decode the cis-regulatory grammar from prokaryotic and eukaryotic sequencing data. Our approach is to build from the ground up, first focusing on the initiating protein-DNA interactions, then specific coding and non-coding regions, and finally on advances that combine multiple parts of the gene and mRNA regulatory structures, achieving unprecedented performance. We thus provide a quantitative view of gene expression regulation from nucleotide sequence, concluding with an information-centric overview of the central dogma of molecular biology
    corecore