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            Biological networks (specifically genetic regulatory networks) are known to be robust to 

various external perturbations. Bio-inspired wireless sensor networks (WSN) are known to be 

smart communication structures and have a have high packet transmission efficiency. In earlier 

work neural network models that correlate the average packet receival rates to the five topological 

features of the bio-inspired WSN were investigated. These features include the degree index, sink 

coverage, network density, hub node density, and motif index. In this thesis, an appropriate 

classification algorithm that works with these five features is investigated. The random forest 

algorithm is the best classification algorithm compared to other classification methods 

(APPENDIX B). In addition, a local weighted linear regression algorithm was created to predict 

the robustness of the network utilizing these five topological features.
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Introduction 

 

     1.1 Problem statement  

 

            As many technological advances are made in the monitoring, collection, and transmission 

of data, it is crucial to ensure that the data is of the highest integrity.  One such technology that has 

allowed for the successful collection of environmental data using a variety of types of sensors is a 

sensor mote. A sensor mote is a collection of tiny devices that includes sensors capable of capturing 

physical data and a transceiver that sends and receives wireless signals to and from other sensor 

motes. Essentially these sensors are arranged in specific terrains, together forming Wireless Sensor 

Networks (WSNs) that continuously monitor physical changes such as temperature, humidity, 

sunlight, wind speed, etc. In military applications, large scale WSNs are deployed to alert the 

military base of any distant foreign intrusions. Another example is the use of WSNs in the SCADA 

system for power plants to achieve the real time logging that would allow warnings to be given to 

the relevant personnel (e.g. an SMS warning message to the supervisor) when a failure occurs in 

the plant and also allow corrective action to be taken before the performance is severely degraded 

(Govt, et al. 2011).  However, with the increased deployment of WSNs structural issues such as 

node failures and channel noise are harder to detect in a timely manner which can adversely impact 

the system for which they have been deployed.   

Much work has been done to minimize transmission issues such as multi-path interference, 

channel inhomogeneity (Savarese, et al., 2002) node failures and congestion (Li, et al., 2007). 

However, more work has to be invested in advances that would insure minimum loss of packets 

resulting from end to end delays and packet multi-hop as a product of structural discrepancies. 

Previous works (Ghosh, et al., 2011, Kamapantula, et al., 2012) showed that particular natural 
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graphs operating as smart routing topologies in bio-inspired WSNs, demonstrate more efficient 

packet transmission rates than that of randomly deployed sensor nets. 

  

1.2 WSN versus Gene Regulatory Network (GRN) 

Biological networks specifically genetic regulatory networks are known to resist external 

perturbations, and have inspired the design of WSNs to maintain packet transmission efficiency.  

 Similarities between GRNs and WSNs can be explained through the biological function of 

transcription, where genes process signals from neighboring nodes in the form of transcription 

factors and forward them to downstream nodes of a GRN. The process is similar in WSNs where 

sensors receive packets from neighbors based on user defined routing protocols with packet 

forwarding instructions to other destination points (sinks). 

 

1.3 Purpose 

       There are two major objectives for this master’s thesis: 

1) Investigate classification methods that will classify the robustness of bio inspired wireless 

sensor networks.  

2) Create an algorithm that can predict the average packet percentage of data received using 

selected topological features of a bio inspired wireless sensor network. Examples of topological 

features include: degree index, network density, motif index, sink coverage and hub node density. 

These topological features will be formally defined in Section 2.2. 
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1.5 Contents of the Thesis 

The remainder of this thesis is organized as follows. Chapter two gives a summary of the 

literature reviewed of similar research and the previous studies conducted on the problem. Chapter 

three provides the theory supporting the Random Forest classification algorithm and the locally 

weighted linear regression algorithm. Chapter four explains the methodology employed during the 

study. Chapter five describes the result received from the study. Chapter six summarizes the 

conclusions and recommendations based on the results. 
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CHAPTER 2 LITERATURE REVIEW and PRELIMINARY WORK 

2.1 Overview 

GRNs exhibit a type of biological robustness as defined by Kitano (2004a) where 

‘robustness is a property that allows a system to maintain its functions against internal and external 

perturbations.’ Several researchers have demonstrated the robustness of GRN’s.  For example, 

Kitano, et al. (2007) demonstrate the GRN’s capability to maintain genetic signaling in the face of 

internal and external cell distresses. Eum, et al. (2007) have shown that there are several optimized 

GRN’s inspired topologies that are not affected by post link failures, nodes failures or link 

congestion.  Kamapantula, et al. (2012) demonstrate that GRN derived sensor networks can out-

perform those of randomly-generated ones with respect to packet-loss rates, but will experience 

longer transmission delays. Due to the existence of different disruption scenarios, researchers have 

yet to announce a unified measure for robustness. For example, Feyessa, et al. (2011) suggest that 

the network efficiency, an inverse function of the magnitude of the average shortest path P 

Crucittia, et al. (2004), should be analyzed for single node deletions. Other work includes the 

assessment of connection failures (Cohen, et al., 2000) and fractional inactivation Agoston, et al. 

(2005). However, in this thesis, it is hypothesized that connectivity measures are not sufficient for 

describing the effects of disruptions, as they do not consider the network’s capability to deliver its 

primary function (i.e. communication). Therefore, attention is given to understanding the 

topological features that affect the networks’ transmission efficiency, i.e. their ability to deliver 

packets to their final destination nodes (sinks).  

Many studies show that classification theory helps in the design and evaluation of WSN in many 

aspects, such as increasing the network life time, reducing false detection and solving deployment 

problems. El-Aaasser, et al. (2013) show that WSN’s can be classified based upon their energy 
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saving approaches: 1) traffic energy based approaches, 2) topology control based approaches, or 

3) reserved base approaches. Wang, et al. (2007) prove that dynamic collaborative support vector 

machines (SVM) have outstanding performance in reducing time delay and improving the energy 

efficiency of WSN. Elbhiri, et al. (2013) show that using new spectral classifications increase the 

life time of whole network and save WSN energy. Classification methods also reduce false 

detection rate in a study by Dai, et al. (2012) by using multi-variate classification and increase 

accurate recovery action by using Hidden Markov Model (HMMs) methods as noted by Warriach, 

et al. (2012).  Deif, et al. (2014) show that classification methods can be used for modeling and 

solving the deployment problem in WSNs. In the preliminary study, it is shown that there are five 

properties which contributed to the robustness of wireless sensor networks by using a random 

forest classification method and locally weighted linear regression. The five properties are: degree 

index, network density, motif index, sink coverage and hub node density.  This thesis continues 

this work in that it uses these five topological features to classify the robustness of a bio inspired 

WSN and create an algorithm that can predict the WSN average packet percentage of data received 

using these selected topological features.  These features are described in depth in the next section. 

 

2.2 WSN Features 

 

            All sample features have been determined computationally, and their concepts are 

described in the following subsections. The equations that characterize the functioning of five 

features will be discussed. Chart and figures are utilized for clarification.   

A. The Degree Index 

Degree Index is assigned as one of features as it combines two characteristics of relative 

importance to the percentage of packets received in the NS-2 simulations (SLC): (1) the degree of 

the sink node, and (2) the relative degrees of every other node. Hence, to calculate the Degree 
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Index, the ratio of the Average Nodal Degree Eq. (1) to the highest degree Eq. (2) is considered as 

follows: 

 𝐾𝑎𝑣𝑔= 
1

𝑛
∑ ∑ 𝐴𝑖𝑗

𝑛
𝑗=1

𝑛
𝑖=1 , and     (1) 

𝐾𝑚𝑎𝑥= 𝑀𝑎𝑥[∑ 𝐴𝑚1
𝑛
𝑚=1 ∑ 𝐴𝑚2, … . ,𝑛

𝑚=1 ∑ 𝐴𝑚𝑛]𝑛
𝑚=1 .  (2) 

Where n is the number of nodes in the network and A is the adjacency matrix of the networks, for  

 

which Aij = 1 for a link between nodes i and j, and Aij = 0 otherwise. 

 

In Figure 1, an experiment performed over 5 networks of different sizes that were simulated for 

packet transmission rates under varying single sink schemes was presented. As shown in the figure, 

the transmission rates depend heavily on the degree of the nodes selected as sinks. Though the 

transmission rates do not monotonically increase with respect to the degree of the sink nodes 

selected (as shown in networks 2 and 5), it is always the case that the highest degree node gives 

the best results. Based on these observations, the Degree Index is considered a suitable metric for 

predicting SLC. The Degree Index is denoted as: 

 DI=
𝐾𝑎𝑣𝑔

𝐾𝑚𝑎𝑥
,  (3) 

which can depict the tightness or looseness of the network. As DI →1, it can be deduced that the 

network’s nodes gain relative closeness to the sinks degree, from which it can be inferred that a 

network is tightly connected. In cases of tightly connected networks, nodes gain less significance 

among themselves in terms of being selected as sinks. Figure 2 shows the results of another 

experiment conducted on 50 networks of varying sizes and DI. Surprisingly, as DI increases, the 

performance of the networks decreases, which makes the benefits of the sink node selection 

(having highest degree) redundant. 
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Figure 1: Scatter plot of percentage packets received vs. the degrees of the sink nodes selected 

for networks 1-5. Abdelzaher, et al. (2012) 

 

 

 

Figure 2: Scatter plot of percentage packets received vs. the Degree Index for different networks 

of sizes 100-500. Abdelzaher, et al. (2012) 

 

 

B. The Network Density 

The Network Density is traditionally a measure of the territorial occupation of a 

communication network, calculated as the ratio of the sum of the edge lengths to the surface area 

occupied by the network grid Beauguitte, et al. (2011). Since the simulations do not account for 

edge weights, the nodes are simplistically considered to be equidistant, having unit lengths of one. 
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The measure accounts for how many links occupy the adjacency matrix (A) grid and determine 

the Network Density as follows: 

ND= 
1

𝑛(𝑛−1)
∑ ∑ 𝐴𝑖𝑗

𝑛
𝑖=1

𝑛
𝑖=1 , (4) 

where ND ranges between (n-1)/𝑛2 for a Star configuration (with a single hub, provided every 

other node is solely connected to the hub with one edge), and 1- (1/n) for a fully connected sub-

graph excluding the self-loops. Table 1 shows a series of simulation results on 4 different sets of 

10”density controlled” WSNs, in order to show the effects of ND on SLC. Density controlled 

networks are generated using the methods of switches Milo, et al. (2002)  - a method of switching 

edges between nodes, thereby preserving the nodes in/out degrees but altering the networks final 

orientation. This way every set will have 10 networks having same ND and nodal degrees, but 

different overall network structures. Note that the performance of the networks having the same 

ND are comparable because the properties of the sink nodes selected after the randomizations are 

still preserved in the sub graphs. Results of this experiment show that there is no direct correlation 

between the network density and the performances of the WSNs. 

 

           Networks      Density (∗ 10−3)    %Packets Received 

              1-10          5.4           33.33 

             11-20         17.9           50.00 

             21-30         19           52.17 

             31-40         25           50.00 

            

               Table 1: Average packet receipt rates for networks having different densities. 
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C. The Motif Index 

Before dwelling into the definition of the Motif Index, it must be acknowledged that these 

repetitive “motif” substructures have significant contributions to WSN performance and 

functionality as is  shown earlier in a study by Kamapantula, et al, (2012) and separately at 

(Hovareshti, et al, 2011), as well as affecting robustness in biological networks (Kitano.et al, 2004; 

Kitano, et al, 2007). Although various types of motifs have been identified previously in biological 

networks, the “most significant” motifs considered for this model are the Feed-Forward Loop 

(FFL) and the Bi-fan (BF) (Milo, et al, 2002). These two motifs significantly outnumber similar 

sub-structures when mined from the GRN of E. coli in comparison to other randomized networks 

and hence are believed to have significance in biological networks in general. Furthermore, FFLs 

are notable for their ability to deliver vital functions such as delay response times in genes, 

irreversible speed up, or create pulses (Mangan, et al, 2003). Similarly, BFs are the building blocks 

of dense overlapping regions, which are considered to be the backbone for GRNs, sharing global 

functions such as: stress response, nutrient metabolism, or bio-synthesis of key classes of cellular 

components (Alon, et al, 2006). Figure 3 shows the FFL and BF structures mentioned above, for 

which it is hypothesized that their relative abundance in the network should make an important 

feature to consider in our regression model. In our data sets, it was observed that the FFL counts 

accompany larger BF counts for any bio-inspired network considered. In order to account for both, 

their counts are converted into a normalized ratio of one motif abundance to the other, which also 

reduces the features’ dimensionality by one parameter. Since directions in the simulated networks 

are ignored, the same conversion is applied to the Motif Index and the occurrences of quadrilaterals 

and triangles are considered (corresponding to BFs and FFLs respectively) in the networks as 

shown in Figure 4(a). 
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To calculate the motif counts, every pattern is considered: 

NT = (< i; j > \ < j; k > \ < i; k >) 2 Rc and  

NQ = (< i; j > \ < i; l > \ < k; j > \ < k; l >) 2 Rc  

for every i; j; k and l < n, for the Triangle and Quadrilateral structures respectively. The hypothesis 

is motivated by the fact that such patterns are ideal for considering cluster formations based on the 

number of nodes that participate in forming them and the ones that do not Fagiolo, et al. (2007) 

and Barmpoutis, et al.(2010). For an undirected non-weighted network stored in an adjacency 

matrix A, these counts can be determined mathematically as; 

 

𝑁𝑇= 
1

6
∑ ∑ ∑ [𝐴𝑖𝑗

𝑛
𝑘  

𝑛
𝑗=1 ∩𝑛

𝑖=1 𝐴𝑖𝑘 ∩ 𝐴𝑗𝑘]                                                (5) 

𝑁𝑄= 
1

8
∑ ∑ ∑ ∑ ∑ [𝑛

𝑖  
𝑛
𝑙=1 𝐴𝑖𝑗

𝑛
𝑘  =1

𝑛
𝑗=1

𝑛
𝑖=1 ∩ 𝐴𝑖𝑙 ∩ 𝐴𝑗𝑘 ∩ 𝐴𝑘𝑙]                    (6). 

An illustration of the motif patterns in the adjacency matrix is given in Figure 4(b). Note that in 

Eq. (5), the occurrence of triangles is divided by 6 to avoid redundancy caused by the symmetry 

of the triangle pattern, similarly with Eq. (6) the occurrence of quadrilaterals is divided by 8. 

Hence, the Motif Index is calculated as: 

 

MI=
𝑁𝑄

𝑁𝑇+𝑁𝑄
, (7) 

which will account for effects of the motif ratios to the packet transmission efficiency of the 

networks considered. 
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                                             Figure 3: The FFL and BF motif structures. 

 

 

     

 

 

 

                

Figure 4: (a) Actual (undirected) structures considered for the Motif Index. (b) The adjacency 

matrix of the structures considered for the Motif Index 
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D. The Sink Coverage 

The sink coverage measures the percentage of nodes that have a direct link to the sink node, 

using Kmax of Eq. (2), 

 

SC=
𝐾𝑚𝑎𝑥

𝑛
         (8) 

 

When node a tries to send packets to node b through node c lying along the path dab, packets are 

queued at c before they get forwarded to b, which in return can be dropped if packets exceed the 

queue length at c. However if c did not exist in the dab path, packets will not be discarded due to 

multi-hops; 

SC is a feature that captures such scenarios. 

 

E. The Hub Nodes Density 

The density of the hub nodes measures the territorial occupation of the adjacency matrix 

grid by the higher degree nodes as a fraction of the total number of edges. It is hypothesized that 

the hub nodes are the hot spot traffic management zones as they have more packets hopping 

through them. This quantity can be determined as follows: 

 

HDN=
1

Ɩ𝑡𝑜𝑡𝑎𝑙
∑ [𝑛ℎ

𝑖 2 ∑ 𝐴𝑖𝑗 +
𝑛𝑔
𝑗=𝑔𝑖 ∑ 𝐴𝑖𝑗

𝑛ℎ
𝑗=ℎ𝑖 ], (9) 

 

where nh is the number of hub nodes, gi is the index of nodes outside the set of hub nodes, hi is 

the index of the hub nodes and ltotal is the total number of edges in the network. 
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2.3 Preliminary work 

2.3.1 Overview 

In the preliminary work different neural network models were proposed to correlate the 

average packet received rates to the five topological features of the bio inspired WSN described in 

section 2.2: degree index, network density motif index, sink coverage and hub density.  In the 

following sections that work is discussed. 

 

2.3.2 Neural Networks 

The essence of neural network modeling emerges from the fact that any function y can be 

approximated using a set of weights w, and a set of features X that are related to the data using the 

famous formula, 

                                                          y = F(wX + b),            (10) 

where b, the bias, represents a constant translation to the curve or the plane, and F(∙) represents an 

nonlinear activation function. Given set of networks (data) with quantifiable network features and 

quantifiable performances depending on those features, a neural network can predict these 

performances. The process known as training is achieved by learning from the features that 

correspond to particular performances, for which the model tries to adjust the weights and bias to 

produce an approximation. Every training iteration shift from data point i to j accompanies 

adjustments of the weights, 

_∆𝑤𝑖𝑗(p + 1) = 𝔶(𝑒𝑗𝑦𝑖) + ∆𝑤𝑖𝑗(p )                         (11)  

Such that the new weight value for pattern  p + 1 is dependent on the weight change associated 

with pattern p. The termination criteria for Eq. (11) depends on the error e, and the learning rate 𝔶. 
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Many artificial neural network algorithms have been considered for predicting and 

enhancing the performance and speed of networks such as the Internet (Cortez, et al, 2006; Nelson, 

et al, 2008). While many have succeeded in predicting the Internet’s traffic using neural networks 

enhanced by genetic algorithms (Wang,, et al, 2008), fundamental multi-layer perceptron (MLP) 

and radial basis functions (RBF) (Rutka., et al, 2006), others succeeded in classifying the traffic 

of sub-networks of the Internet using basic data of packet size, inter-arrival time and classifying 

the traffic over a time frame (Trivedi, et al, 2004). The famous Grey NN model (Wang, et al, 2009) 

integrates the strengths of multiple neural network concepts into one single neural network 

architecture, is known to be the most accurate in terms of predicting network traffic flow. The 

network flow assigns a performance value for traffic emerging from one destination of the network 

to another or many others, which does not describe the networks performance in a congestion 

scenario. Moreover, the solutions above consider particular routes to be taken for optimizing flow 

in a particular direction, and do not consider the effects of the topologies on rerouting the flow in 

other directions. Hence, the networks’ performance is assumed to reflect its ability to continue 

flow in worst case scenarios by targeting one hot spot of the network as a destination point (or 

sink) and every other spot as having traffic emerging from it (i.e. packet source nodes). In WSNs, 

the mentioned routing scheme is known as the “flooding protocol” and it can be used to determine 

the networks performance using the following equation:  

 Per𝑓: =
#𝑃𝑎𝑐𝑘𝑒𝑡𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑏𝑦 𝑠𝑖𝑛𝑘

#packets flooded in the network
∗ 100. (12) 
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Fig.5.a Simplified representation of the Multi-layer Perceptron with a single hidden layer 

Fig.5b Simplified representation of the Radial Basis Function model with a single hidden neuron. 

 

The basic architectures of the multi-layer perceptron and RBF models are depicted in Figure 5. In 

the preliminary study, several MLP architectures, varying in the number hidden layer neurons are 

considered. Additionally, different RBF architectures are considered.  In addition, General 

Regression Neural Networks (GRNN) and Probabilistic Neural Networks (PNN) are investigated 
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GRNNs, implemented in the MATLAB software package, have the advantage of 

combining the strengths of MLPs and RBFs in one structure, as it has two transformation layers: 

a radbas (a radial basis layer) followed by the tansig (a hyperbolic tangent layer) of figures 5 (a)(b) 

- is known to perform better predictions than Multi-layer Perceptron with different layers(MLP-

1,MLP-2,MLP-3) and RBFs (Horng, et al, 2012). PNNs have the exact same structure of RBFs 

followed by a competitive layer which assigns 1 to the pattern which is closest to the target and 0 

otherwise. In this study PNN is used for classification and all other neural networks are used for 

regression analysis. After different neural network models were applied to correlate average packet 

receipt rate to the five topological features, the result as presented in table 2.  The results for the 

classification algorithm are presented in table 3.  The data was partitioned into two classes, three 

classes, and four classes to see which classification worked best.  As noted in table two the PNN 

worked best when the data was only partitioned into two classes.  The resulting two classes were:  

Method Layers/neurons Goal Spread Data error (%) 

MLP-1            5    ----- ------ 3.0933 

MLP-2   10 - 2  ------ 2.3899 

MLP-3 7 – 6 - 4  ------ 2.4537 

RBF 47 2.2 2.25 2.5232 

GRNN ---- --- 0.3 0.92164 

 

Table 2: Different neural network model to correlate average packet receipt rate to five   

topological features  Where MLP-1 is a mutli-layer perceptron network with 1 hidden layer of 5 

neurons, MLP-2 has two hidden layers, the first with 10 neurons and the second with 2 neurons, 

and MLP-3 has three hidden layers, 7 , 6, and 4 neurons respectively. 
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Number of 

classes 

Percentage 

of data 

error in 

class1 

Percentage 

of data 

error in 

class2 

Percentage 

of data 

error in 

class3 

Percentage 

of data 

error in 

class4 

Probabilistic 

Neural 

network 

percentage 

error 

Two 

classification 

1.6978 1.6978 ---- ------ 1.6978 

Three 

classification 

2.5467 4.9236 2.7165 -------- 3.3956 

Four 

Classification 

5.4329 10.6961 11.035 4.5840 7.9372 

 

Table 3: Different neural network models to correlate average packet receipt rate to five 

topological features with classification 
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CHAPTER 3 THEORY 

3.1 Random Forest Algorithm 

3.1.1 Overview of Random Forest 

Combining classifiers is the favored focus in research on improving classification accuracy 

since traditional machine learning algorithms have a tendency towards low accuracy.  Amit, et al 

(1997), researched the use of random selection to search for the best split at each node among a 

large amount of geometric figures. During 1996 and 1998, Dietterich, et al, (1998) advanced the 

Bagging algorithm, an early stage algorithm, and proposed the random split selection theory, 

respectively. Dietterich’s theory stated that “at each node the split is randomly selected from the 

N best splits.” The “random subspace” that Dietterich theorizes about is one that Ho also studied. 

His theory states that “each node that is split is randomly selected form the N best splits.” In 

addition to studying the random subspace, Ho, et al (1998) has also studied the methodology 

behind the random subspace. The method offers that each tree grows by a random selection of a 

“subset of features.”  While Ho utilized Dietterich’s work, Breiman utilized the ideas of Amit, et 

al, (1997), whose output in the original training set led to his creation of new training sets by 

“randomizing the outputs in the original training set.” 

 A combination machine learning algorithm is a random forest. Random forests, or RFs, 

are determined by combining with a series of tree classifiers, giving each tree a unit vote for the 

most popular class, and then combining those results to get the final sort result. RF is one of the 

most popular and reliable research methods for gathering data. High classification accuracy, the 

toleration of outliers and noise, and lack of over-fitting characterize RF. 
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3.1.2 Principle of Operation 

 A random forest is defined as a “collection of tree-structure classifiers” denoted by the 

equation {h(x, Ѳ𝑘), k =1...}. As mentioned above, each tree casts a vote for the most popular class. 

Within the equation, the{Ѳ𝑘} are “independent identically distributed random vectors” and the 

votes are identified at input x. A training sample set and a random variable anchor the planting of 

a tree in Breiman’s RF model. The random variable is equivalent to the kth tree and is identified 

as Ѳ𝑘. Elements between these two random variables are identified as a classifier h(x, Ѳ𝑘). Again, 

x is the input vector. Running the equation k times gives a classifier sequence of {h1 (x), h2 (x)…hk 

(x)}. That sequence is used to establish multiple classification model systems. Ultimately, ordinary 

majority drowns the system and the “decision function” is denoted as H(x) = avg 

max∑ 𝐼(ℎ𝑖(𝑥) = 𝑌)𝑘
𝑖=1 . In this equation, H(x) is a combination of the classification model. hi is a 

single decision tree model, Y is the output variable, and I(.) is the indication function. Any input 

variable gives the decision tree the opportunity to vote for the best classification result.  
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3.1.3 Out-of-Bag Estimation 

Bagging methods impact the use of random feature selection and are used when the tree is 

begun on a new training set. That new training set is taken from the original via bagging methods. 

Whether to enhance accuracy when using random features, or to bring out data that is utilized to 

give continuing estimates of the error of the classifier (PE) of RF, alongside estimates of strength 

and correlation, bagging methods work well with random feature selection. Out-of-bag (OOB) 

data, which uses the OOB estimation algorithm, is used to estimate the performance of 

classification:  

Given an original training set T with N samples, the kth training set is drawn from T with 

replacement by bagging, every Tk contains N samples. Then the probability of each sample 

cannot contain (1 − 1/𝑁)𝑁, when N is large enough, (1 − 1/𝑁)𝑁converges to 𝑒−1. In 

other words, 36.8% samples of the T is not contained in Tk. (Liu, et al, 2011)  

There is an OOB estimate for error for each tree and that estimate of generalization error 

of RF is equivalent to the average of estimations “of all tree error for every tree contained in the 

RF.” Breiman, Tibshirani, Wolpert and Macready all proposed OOB data as being useful. 

Tibshirani, identified its use in estimates of generalization error while Breiman proved it to be 

accurate as using a test set of the same size as the training set. If one were to compare cross-

validation and OOB data, the OOB estimate would be determined as unbiased and faster in its 

calculations. Since the OOB estimate is equivalent to the test set OOB removes the need for such 

a set and is good for strength and correlation estimates as well. Using OOB allows researchers to 

further determine classification accuracy and how to improve it.  
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3.2 Locally weighted linear regression algorithm 

 A locally weighted linear regression algorithm does two things: (1) Fit θ to minimize  

∑ (𝑦𝑖 − 𝜃𝑡
𝑖 𝑥𝑖 )

2
.
 and (2) Output 𝜃𝑇𝑋: 

The 𝑤(𝑖)’s are non-negative valued weights. Intuitively, if 𝑤(𝑖) is large for a particular value of i, 

then in picking θ, the value of (𝑦𝑖 − 𝜃𝑡 𝑥𝑖 )
2
.
 should be minimized. If 𝑤(𝑖) is small, then the (𝑦𝑖 −

𝜃𝑡 𝑥𝑖 )
2
.
 error term will be pretty much ignored in the fit. A fairly standard choice for the weights 

is If x is vector-valued, this is generalized to be 𝑤(𝑖) = exp(−(𝑥(𝑖)−x)𝑇 (𝑥(𝑖)−x)/( 2τ2)), or 𝑤(𝑖)= 

exp((𝑥(𝑖) − x)𝑇 ∑ (−1 𝑥(𝑖) − x)/2), for an appropriate choice of τ or∑. 

𝑤(𝑖) = exp
𝑥(𝑖)−x)2

2τ2     (13) 

If |𝑥(𝑖) − x| is small, then 𝑤(𝑖)is close to 1; and if |𝑥(𝑖) − x| is large, then 𝑤(𝑖) is small. This shows 

that weights are dependent on the point x where x is being evaluated. One chooses θ to give a 

higher weight to the (errors on) training examples. These are close to the query point x. The 

parameter τ determines how quickly the weight of a training example falls off with distance of it’s 

𝑥(𝑖) from the query point x. τ is called the bandwidth parameter.  

 

3.3 K-means Algorithm 

One of the foundational learning algorithms that solves the clustering problem is K-means 

(MacQueen, 1967), which is a simple way to identify a data set through a particular number of 

clusters (assume k clusters) fixed a priori. The central idea is to define a singular k centroid for 

each cluster. Different locations cause different results, so the centroids should be situated in an 
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astute way. Therefore, placing the centroids as far away from each other as possible is the better 

decision and first step. Following the placement of the centroids, each point belonging to a given 

data set must be aligned with the nearest centroid. If no point is pending, there is no need to conduct 

this step; it is already completed. Early groupage is done, so the next step is to re-calculate k new 

centroids as barycenters of the clusters resulting from the previous step. A new binding must be 

done between the same data set points and the nearest new centroid after we have their k new 

centroids. The loop is generated. We may find that the k centroids move step by step until there 

are no more changes as a result of the loop. Simply, the centroids do not move anymore. This 

algorithm aims at minimizing a squared error function, or objective function. The objective 

function  

 

     (14)        

 

where  is a chosen distance measure between a data point and the cluster center 

, is an indicator of the distance of the n data points from their respective cluster centers.  
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CHAPTER 4 METHODOLOGY 

4.1 WSN Data 

WSN data was recorded at Virginia Commonwealth University computer science 

department. The data can be segmented into two deferent sets of values; the target values of the 

NS-2 simulations and the graph features of the GRNs inspired WSN. For training, 590 different 

GRNs of sizes 50 ≤ n ≤1477were extracted from the bacterium GRN of E. coli using the Gene Net 

Weaver tool (Schaffter, et al, 2011). Similarly for testing, 118 deferent GRNs were considered. 

The target values were generated via NS-2 software and the features were determined 

computationally using Java or any other programming language. 

 

4.2 Data Pre-Processing 

In order to improve the performance of the classification algorithm outliers in the data set 

were identified. Determining the outliers or more specifically, determining upper and lower 

quartile values (IQR), is a fairly simple method and can also be used to reveal the interquartile 

range. The lower quartile value, or LQ, is the “value that 25 % of the data set is equal to or less 

than” while the upper quartile value, or UQ, is the “value that 75% of the data set is equal to or 

less than.” From these numbers, one can identify suspect outliers as being 1.5*IQR greater than 

the upper quartile or 1.5*IQR less than the lower quartile. R software can be used as a free software 

environment for statistical computing and graphics because it gathers and computes information 

on a variety of UNIX platforms including Windows and MacOS. (Result in Appendix A) 
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4.3 Clustering method 

The K-means method was efficiently used for clustering data. Two cluster centroids points 

were used for two classifications. Three cluster centroids points were used for three classifications. 

Finally, four cluster centroids points were used for four classifications. The standard deviation was 

used as a cut off points in each class. The results are shown in the table below. 

 Four Classification Three Classification Two Classification 

Class1 cluster centroids 52.974 53.1527 53.9523 

Class1 standard deviation +/-0.3369 +/-0.4409 +/-0.8532 

Class1 number of network 83 109 239 

Class2 cluster centroids 53.7231 56.0101 59.3984 

Class2 standard deviation +/-0.1519 +/-1.6734 +/-3.1468 

Class2 number of network 26 266 216 

Class3 cluster centroids 56.2506 62.9044 - 

Class3 standard deviation +/-1.9189 +/-2.0703 - 

Class3 number of network 281 80 - 

Class4 cluster centroids 63.4558 - - 

Class4 standard deviation +/-1.9058 - - 

Class4 number of network 65 - - 

Random Forest accuracy  94.7253% 90.7692% 94.0659% 

 

Table4: Clustering data by using K-means method and the Random Forest accuracy result 

 

 

 



 

  26 
  

4.4 Classification Method 

The random forest algorithm was used to classify the robustness of wireless sensor 

networks. The five features used to characterize the wireless sensor network are: degree index, 

network density, motif index, sink coverage and hub node density. The percentage of data received 

was  

1. divided into 4 classes using the following rules:  

 Class 1 - between 52.33629 and 53.49696% of data received.  

 Class 2 - between 53.52004 and 53.99475%of data received.  

 Class 3 - between 54.00187 and 60.96491% of data received.  

 Class 4 - between 61.00629 and 67.2956% of data received.  

2. divided into 3 classes using the following rules:  

 Class 1 - between 52.33628922 and 53.99474869% of data received.  

 Class 2 - between 54.00187441and 54.74349965%of data received.  

 Class 3 - between 54.77375566and 67.20257235% of data received.  

3. divided into 2 classes using the following rules:  

 Class 1 - between 52.33628922 and 55.49102429% of data received.  

 Class 2 - between 55.52884615and 67.29559748%of data received.  
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      Figure 7: Number of instances for each class of the different classification system 
 

4.5 Prediction Method  

A weighted linear regression algorithm was used to predict the percentage of data received 

using MATLAB code. The first method used the five features described in section 2.2 as input to 

the weighted linear regression algorithm and produced an output (predicted) value for the 

percentage of packets received. The second method utilized a cascade architecture where first the 

data was subdivided into two classes and then the output from the classification algorithm was 

then sent to the weighted linear regression algorithm. Third the data was subdivided into three 

classes and then the output from the classification algorithm was then sent to the weighted linear 

regression algorithm. Finally the data was subdivided into four classes and then the output from 

the classification algorithm was then sent to the weighted linear regression algorithm.  
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        Figure: 8 System used to predict the percentage of data received without prior classification 

 

Figure: 9 System used to predict the percentage of data received with the data presorted into two 

classes 
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Figure: 10 System used to predict the percentage of data received with the data presorted into three 

classes 
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Chapter 5 Classification and Prediction result 

5.1 Count Outlier 

 

 R software was used to determine the upper and the lower quartile value. The interquartile 

range (IQR) was found by subtracting the lower quartile value from the upper value.  Points that 

were less than the lower cutoff point (QL-1.5*IQR) and greater than the upper cutoff point 

(QU+1.5*IQR) were eliminated. The results are shown in the table below. 

 

QUF1 QLF1 QUF2 QLF2 QUF3

Wclass 0.064399 0.016638 0.032355 0.005329 0.9841

Class1 0.01676 0.01375 0.005116 0.003521 0.9845

Class2 0.068472 0.017937 0.025687 0.005889 0.9861

Class3 0.066563 0.035705 0.0359 0.01547 0.9807

Class4 0.061765 0.030638 0.047755 0.025263 0.9731

QLF3 QUF4 QLF4 QUF5 QLF5

Wclass 0.9051 0.65 0.2966 0.4494 0.2532

Class1 0.9826 0.2966 0.24 0.3602 0.2357

Class2 0.9123 0.4257 0.2975 0.422 0.24212

Class3 0.9196 0.636 0.4313 0.42699 0.29491

Class4 0.891 0.8718 0.68 0.5047 0.2842  
 

    Table 5: R software result to count the upper and the lower quartile value 

Q=quartile value, U=upper, L=Lower, F1=The Degree Index, F2= The Network Density 

F3= the Motif Index, F4= the Sink Coverage, F5= the Hub Nodes Density 

, Wclass=without classification 

 

5.2Random Forest Result 

WEKA software is used to calculate the classification algorithm. The classification 

algorithm that worked best was with 83 instances in class 1, 26 in class 2, 281 in class 3, and 64 
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in class 4. The random forest classification was utilized on the five features. The random forest 

classification was applied on the 5 features for the training data the results are shown in Table 5 

            

                     

Correctly Classified Instance           431 94.73%

Incorrectly Classified Instances       24 5.2747

Kappa statistic                                      0.9042

Mean absolute error                           0.051

Root mean squared error                  0.1575

Relative absolute error                      18.0971 %

Root relative aquared error             42.0153 %

Total number of instance               455

Detailed Accuarcy By Class

ROC Area Class

0.988 1

0.731 2

0.979 3

0.846 4

Weight AV 0.947

                        Confusion Matrix

a b c d Classified as

82 0 1 0 |a=1

3 19 4 0 |b=2

2 0 275 4 |c=3

0 0 10 55 |d=4  

                 Table: 6 Shows the random forest algorithm result 

The confusion matrix reveals a few distinct ideas about the classes: 275 instances or Class 

3 were correctly classified; two instances were misclassified in class 1 and four instances were 

misclassified into class 4. Class 1 follows and holds 82 instances were classified correctly while only 

one instance was misclassified into class 3. Finally class 4 and class 2 have 10 and seven 

misclassification respectively. The conclusions that can be drawn from the figures laid out by the 
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confusion matrix, specifically table 5, include the indication that the accuracy of the model cannot 

be used for “assessing the usefulness of classification models built using unbalanced datasets.” 

The predictive performance of the model is shown in the right hand classifier output frame. Within 

that output frame, the confusion model is presented at the bottom of the classifier output window. 

The ten-fold cross validation method is also stipulated as a default. The accuracy of the model is 

thus very high at 94.7253%. From this, one can conclude that the “Kappa statistic” is the better 

choice for a good result. In cases of now relation, it is valued at zero, while it gets closer to one as 

the relationship between the class label and attributes of instances gets stronger. Additionally, 

“ROC area” is a useful determinant of statistical characteristics; the value greater than 0.9 gestures 

at the strength of “statistical dependence.” 

Classification method CCI ROC KS 

trees.J48 Ross Quinlan (1993).  
 

94.7253 0.945 0.9049 

trees.J48graft Geoff .W(1999) 

 94.7352 0.944 0.9047 

Random Forest 

 94.7253 0.984 0.9048 

Meta Decorate Melville, et al.(2003) 

 94.2857 0.972 0.8962 

meta.OCC  Eibe et, al.(2001) 

 94.2857 0.947 0.897 

meta.RF Juan, et, al.(2006) 94.0659 0.989 0.8928 

meta.NDDNBND Lin(2005) 93.6264 0.948 0.8844 

meta.END Eibe(2004) 

 
 

93.4066 0.957 0.8811 

meta.LB J.Friedman, et  al.(1998) 93.4066 0.932 0.98 

 

Table 7: The best ten results of different classifiers by using WEKA software 
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5.3Data Prediction Result 

A Locally weighted liner regression algorithm was used for predicting percentage of data received. 

MATLAB code was used to run this theory. The result showed that the total percentage of the data 

received error without classification was 2.137457, for two classes was 1.269, for three classes 

was 1.025, for four classes was 1.121. The result is shown in the table below:  

 

 

class31 class32 class33 no class class41 class42 class43 class44 class21 class22

% Error 0.196665 0.414582 2.465024 2.13946 0.2022 0.107472 2.09651 2.07745 2.22E-10 2.53834

 

Table 8: Error percentage by using locally weighted linear regression methods with and without 

classification.  Column headings are as followsClass31=Three classes - class1, Class32=Three 

classes - class2, Class33=Three classes - class3, no class= predict the data without subdivided 

classes, Class41=four classes - class1, Class42=four classes - class2, Class43=four classes - 

class3, Class21=Two classes - class1, Class22=Two classes - class2  
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CHAPTER 6 CONCLUSION AND RECOMONDATIONS 

 

 6.1 Conclusion 

 

In this thesis, a random forest algorithm was presented as the best classification method in 

order to classify the robustness of wireless sensor networks that were derived using gene regulatory 

network topologies. The five features used to characterize the wireless sensor network are: degree 

index, network density, motif index, sink coverage and hub node density. A random forest 

algorithm accurately classified the data into four classes.  A locally weighted linear regression 

algorithm was proposed to predict the average percentage of data received from the five 

topological features of such bio inspired wireless sensor networks. 

 By comparing this work with the previous work, it was found that locally weighted linear 

regression algorithms work better than neural networks for predicting data in all cases except for 

GRNN neural networks. The second observation is that the best predictions for both neural 

networks and weighted linear regression algorithms with classifications occurred by using locally 

weighted linear regression with three classes.  

This work is important in its contribution to the estimation of packet transmission 

efficiency in any WSN application. Furthermore this work may be relevant to other studies of data 

transmission networks. Finally, the research provides a theoretical model that predicts network 

robustness based on the five identified topological features. 

6. Recommendations and future study 

Recommendation and future study considerations based on information gathered during 

the study are as follows: 
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1. A lot of data is eliminated by using statistical software; therefore the use of classification 

and prediction data was not too aggressive. The changes in the value of upper and lower 

quartile makes the system resist outside concerns. 

2. Different results for the same network occur when the weighted linear regression 

algorithm, the value of the bandwidth parameter (τ) is initialized at random. Before 

performing a deep dive analysis, it is recommended that a network be run multiple times 

with various values of bandwidth parameters to observe performance. 

3. Despite the random forest providing an accurate classification method for WSN’s data, 

the classification results are not computationally as efficient as other methods. 

4. Simulations performed are directly connected to the data in this research. Simulations 

must be applied in real time to determine the performance of networks in considering the 

percentage of data received. 

5. Four classes were chosen in this work; a change in the number of classes lead to different 

results. Trying different numbers of classes in future work will be useful in creating more 

accurate classifiers and predictors for this problem domain. 
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 APPENDIX A: Calculate interquartile range (IQR), upper cutoff and lower cutoff point 

 

Without classification interquartile range (IQR) Upper cutoff point Lower cutoff point 

Feature1 0.047761 0.11216 -0.031123 

Feature2 0.027026 0.059381 -0.021697 

Feature3 0.079 1.0631 0.8261 

Feature4 0.3534 1.0034 -0.0568 

Feature5 0.1962 0.6456 0.057 

 

Four classes: class1 interquartile range (IQR) Upper cutoff point Lower cutoff point 

Feature1 0.00301 0.021275 0.009235 

Feature2 0.001595 0.0075085 0.0011285 

Feature3 0.0019 0.98735 0.97975 

Feature4 0.0566 0.3815 0.1551 

Feature5 0.1245 0.54695 0.04895 

 

Four classes: class2 interquartile range (IQR) Upper cutoff point Lower cutoff point 

Feature1 0.050535 0.1442795 -0.0578685 

Feature2 0.019798 0.055384 -0.023808 

Feature3 0.0738 1.0968 0.8016 

Feature4 0.1282 0.618 0.1052 

Feature5 0.17988 0.69182 -0.0277 

 

Four classes: class3 interquartile range (IQR) Upper cutoff point Lower cutoff point 

Feature1 0.030858 0.11285 -0.010587 

Feature2 0.02043 0.066545 -0.015175 

Feature3 0.0611 1.07235 0.82795 

Feature4 0.1282 0.8407 0.2266 

Feature5 0.13208 0.62511 0.09679 

 

Four classes: class4 interquartile range (IQR) Upper cutoff point Lower cutoff point 

Feature1 0.031127 0.1084555 -0.016 

Feature2 0.022492 0.081493 -0.008475 

Feature3 0.0821 1.09625 0.76785 

Feature4 0.1918 1.1595 0.3923 

Feature5 0.2205 0.83545 -0.04 
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APPENDIX B: Result of different classifier methods by using WEKA software 

classsification method CCI ROC KS

BFTree.              Hijian Shi (2007) 90.5495 0.986 0.8288

trees.FT Joao Gama (2004). 92.7473 0.987 0.871

trees.J48 Ross Quinlan (1993). 94.7253 0.945 0.9049

trees.J48graft Geoff .W(1999)                94.7253 0.944 0.9047

trees.LADTree Geoffrey, et al.(2001) 90.955 0.964 0.8318

trees.LMT  Niels et, al.(2005) 92.3077 0.966 0.8624

treesNBTree Ron Kohavi (1996) 92.967 0.958 0.875

Random Forest 94.7253 0.984 0.9048

Random Tree 93.1868 0.932 0.8773

SimpleCart Leo Breiman (1984) 91.8681 0.936 0.8521

ComplementNaiveBayes Jason D (2003) 51.681 0.712 0.356

DMNBtext Jiang Su,Harry et, al.(2008) 61.7582 0.501 0

NaiveBayes George et, al.(1995) 87.4725 0.969 0.7875

NaiveBayesMultinomial Andrew, et al. (1998) 61.7582 0.739 0

NaïveBMUpdateable Andrew, et al.(1998) 87.4725 0.969 0.7875

NaiveBMBSimple Richard, et  al.(1973) 87.9121 0.97 0.7949

NaiveBUpdateableGorge, et  al.(1995) 87.4725 0.969 0.7875

SMO J.Platt, et al.(1998) 86.3736 0.921 0.7583

IB1 D.Aha,et al.(1991) 91.4286 0.923 0.8469

IBK D.Aha,et al.(1991) 91.4286 0.923 0.8469

Kstar John, et  al.(1995) 92.0879 0.983 0.8587

LWL Eibe, et  al.(2003) 74.9451 0.903 0.558

meta.AdaBoost  Yoav, et  al.(1996) 70.989 0.827 0.4463
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meta.CVR  E et  al. (1998) 92.7473 0.984 0.8672

meta.CVPS R, et  al.(1995) 61.7582 0.486 0.2818

meta.D  Ting, et  al.(1997) 63.7363 0.856 0.0745

metaDecorate P, et al.(2003) 94.2857 0.972 0.8962

meta.END Eibe(2004) 93.4066 0.957 0.8811

meta.Filteredclassifier 88.1319 0.941 0.7809

meta.Grad A.K, et  al.(2001) 61.7582 0.5 0

meta.LB J.F et  al.(1998) 93.4066 0.932 0.98

meta.MBAB Geoffrey(2000) 72.5257 0.647 0.815

meta.NDDNBND Lin(2005) 93.6264 0.948 0.8844

meta.OCC Eibe et, al.(2001) 94.2857 0.947 0.897

metaRILB Eibe, et, al.(2002) 61.7582 0.486 0

meta.RSS Tin, et, al.(1998) 91.6484 0.975 0.8462

meta.RF Juan, et, al.(2006) 94.0659 0.989 0.8928

meta.Stacking David, et al.(92) 61.7582 0.486 0

meta.StackingC A.K(2002) 61.7582 0.486 0

meta.Vote Ludila(2004) 61.7582 0.486 0

miscVFI G.D et, al.(1997) 71.4286 0.901 0.5851

rule.DecisionTable Ron(1995) 86.3736 0.927 0.7513

rulesJRip William(1995) 91.2088 0.921 0.8397

rulesNNge Brent(1995) 92.0879 0.923 0.8578

rules.OneR R.C(1993) 75.6044 0.767 0.5599

rules.PART Eibe et, al.(1998) 91.4286 0.959 0.8451

 

    ROC= Receiver Operating Characteristic, CCI=Correctly Classified Instance KS= Kappa 

statistic 
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