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Throughout the last several decades, many efforts have been put into elucidating
the genetic or epigenetic defects that result in various diseases. Gene regulation,
i.e., the process of how genes are turned on and off in the right place and at the
right time, is a paramount and prevailing question for researchers. Thanks to the
discoveries made by researchers in this field, our understanding of interactions be-
tween proteins and DNA or proteins with themselves, as well as the dynamics of
chromatin structure under different conditions, have substantially advanced. Even
though there has been a lot achieved through these discoveries, there are still many
unknown aspects about gene regulation. For instance, proteins called transcription
factors (TFs) recognize and bind to specific regions of DNA and recruit the transcrip-
tional machinery, which is essential for gene regulation. As there have been more
than 2000 TFs identified in the human genome, it is important to study where they
bind to or which genes they target. Computational approaches are important, in par-
ticular, as the biological experiments are often very expensive and cannot be done
for all TFs. In 2016, a competition named DREAM Challenge was held encouraging
researchers to develop novel computational tools for predicting the binding sites of
several TFs. The first chapter of this thesis describes our machine learning approach
to address this challenge within the scope of the competition. Using ensembles of
random forest classifiers, we formulated our framework such that it is able to benefit
from the tissue specificity inherent in the data leading to better generalization. Also,
our models were tailored for spotting cofactors involved in the binding of TFs of in-
terest. Comparing the important TFs that our computational models suggested with
protein-protein association networks revealed that the models preferentially select
motifs of TFs that are potential interaction partners in those networks.

Another important aspect beyond predicting TF binding is to link epigeneomics,
such as histone modification (HM) data, with gene expression. We, particularly,
concentrated on predicting expression in a subset of genes called bidirectional. Bidi-
rectional genes are referred to as pairs of genes that are located on opposite strands
of DNA close to each other. As the sequencing technologies advance, more such
bidirectional configurations are being detected. This indicates that in order to un-
derstand the gene regulatory mechanisms, it would be beneficial to account for such
promoter architectures. In the second and third chapters, we focused on genes hav-
ing bidirectional promoter architectures utilizing high resolution epigenomic signa-
tures and single cell RNA-seq data to dissect the complex epigenetic architecture at
these promoters. Using single-cell RNA-seq data as the estimate of gene expression,
we were able to generate a hypothetical model for gene regulation in bidirectional
promoters. We showed that bidirectional promoters can be categorized into three
architecture types with distinct characteristics. Each of these categories corresponds
to a unique gene expression profile at single cell level.
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The single cell RNA-seq data proved to be a powerful means for studying gene
regulation. Therefore, in the last chapter, we proposed a novel approach for pre-
dicting gene expression at the single cell level using cis-regulatory motifs as well as
epigenetic features. To achieve this, we designed a tree-guided multi-task learning
framework that considers each cell as a task. Through this framework we were able
to explain the single cell gene expression values using either TF binding affinities or
TF ChIP-seq data measured at specific genomic regions. This allowed us to identify
distinct TFs that show cell-type specific regulation in induced pluripotent stem cells.
Our approach does not only limit to TFs, rather it can take any type of data that can
potentially be used in explaining gene expression at single cell level. We believe that
our findings can be used in drug discovery and development that can regulate the
presence of TFs or other regulatory factors, which lead the cell fate into abnormal
states, to prevent or cure diseases.
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In den letzten Jahrzehnten wurden große Anstrengungen unternommen, um die
genetischen oder epigenetischen Defekte aufzuklären, die zu verschiedenen Krankheiten
führen. Die Genregulation, d.h. der Prozess der Ein- und Abschaltung der Gene am
richtigen Ort und zur richtigen Zeit reguliert, ist für die Forscher eine Frage von
zentraler Bedeutung. Dank der Entdeckungen von Forschern auf diesem Gebiet
ist unser Verständnis der Wechselwirkungen zwischen zwischen den Proteinen und
der DNA oder der Proteine untereinander sowie der Dynamik der Chromatinstruk-
tur unter verschiedenen Bedingungen wesentlich fortgeschritten. Obwohl durch
diese Entdeckungen viel erreicht wurde, gibt es noch viele unbekannte Aspekte
der Genregulation. Beispielsweise erkennen Proteine, sogenannte Transkriptions-
faktoren (Transcription Factors, TFs), bestimmte Bereiche der DNA und binden an
diese und rekrutieren die Transkriptionsmaschinerie, die für die Genregulation er-
forderlich ist. Da mehr als 2000 TFs im menschlichen Genom identifiziert wurden,
ist es wichtig zu untersuchen, wo sie binden oder auf welche Gene sie abzielen.
Rechnerische Ansätze sind insbesondere wichtig, da die biologischen Experimente
oft sehr teuer sind und nicht für alle TFs durchgeführt werden können. Im Jahr
2016 fand ein Wettbewerb namens DREAM Challenge statt, bei dem Forscher aufge-
fordert wurden, neuartige Rechenwerkzeuge zur Vorhersage der Bindungsstellen
mehrerer TFs zu entwickeln. Das erste Kapitel dieser Arbeit beschreibt unseren
Ansatz des maschinellen Lernens, um diese Herausforderung im Rahmen des Wet-
tbewerbs anzugehen. Unter Verwendung von Ensembles von Random Forest Klas-
sifikatoren haben wir unser Framework so formuliert, dass es von der Gewebespez-
ifität der Daten profitiert und damit zu einer besseren Generalisierung führt. Außer-
dem wurden unsere Modelle auf das Erkennen von Kofaktoren angepasst, die an
der Bindung von TFs beteiligt sind, die für uns von Interesse sind. Der Vergleich der
wichtigen TFs, die unsere Computermodelle mit Protein-Protein-Assoziationsnetzwerken
vorschlugen, ergab, dass die Modelle bevorzugt Motive von TFs auswählen, die
potenzielle Interaktionspartner in diesen Netzwerken sind.

Ein weiterer wichtiger Aspekt, der über die Vorhersage der TF-Bindung hinaus-
geht, besteht darin, epigeneomische Faktoren wie Histonmodifikationsdaten (HM-
Daten) mit der Genexpression zu verknüpfen. Wir konzentrierten uns insbesondere
auf die Vorhersage der Expression in einer Untergruppe von Genen, die als bidirek-
tional bezeichnet werden. Bidirektionale Gene werden als Paare von Genen bezeich-
net, die sich auf gegenüberliegenden DNA-Strängen befinden und nahe beieinan-
der liegen. Mit dem Fortschritt der Sequenzierungstechnologien werden immer
mehr solche bidirektionalen Konfigurationen erkannt. Dies weist darauf hin, dass
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es zum Verständnis der Genregulationsmechanismen vorteilhaft wäre, solche Pro-
motorarchitekturen zu berücksichtigen. Im zweiten und dritten Kapitel konzentri-
erten wir uns auf Gene mit bidirektionalen Promotorarchitekturen, um mit Hilfe von
epigenomischen Signaturen und Einzelzell-RNA-Sequenzdaten die komplexe epi-
genetische Architektur an diesen Promotoren zu analysieren. Unter Verwendung
von Einzelzell-RNA-Sequenzdaten als Schätzung der Genexpression konnten wir
ein hypothetisches Modell für die Genregulation in bidirektionalen Promotoren auf-
stellen. Wir haben gezeigt, dass bidirektionale Promotoren in drei Architekturtypen
mit unterschiedlichen Merkmalen eingeteilt werden können. Jede dieser Kategorien
entspricht einem eindeutigen Genexpressionsprofil auf Einzelzellebene.

Die Einzelzell-RNA-Sequenzdaten erwiesen sich als leistungsstarkes Mittel zur
Untersuchung der Genregulation. Daher haben wir im letzten Kapitel einen neuen
Ansatz zur Vorhersage der Genexpression auf Einzelzellebene unter Verwendung
von cis-regulatorischen Motiven sowie epigenetischen Merkmalen vorgeschlagen.
Um dies zu erreichen, haben wir ein baumgesteuertes Multitasking-Lernsystem en-
twickelt, das jede Zelle als eine Aufgabe betrachtet. Durch dieses Gerüst konnten
wir die Einzelzellgenexpressionswerte entweder mit TF-Bindungsaffinitäten oder
mit TF-ChIP-Sequenzdaten erklären, die in bestimmten Genomregionen gemessen
wurden. Dies ermöglichte es uns, verschiedene TFs zu identifizieren, die eine zell-
typspezifische Regulation in induzierten pluripotenten Stammzellen zeigen. Unser
Ansatz beschränkt sich nicht nur auf TFs, sondern kann jede Art von Daten verwen-
den, die potentiell zur Erklärung der Genexpression auf Einzelzellebene verwendet
werden können. Wir glauben, dass unsere Erkenntnisse für die Entdeckung und
Entwicklung von Arzneimitteln verwendet werden können, die das Vorhandensein
von TFs oder anderen regulatorischen Faktoren regulieren können, die die Zellen
abnormal werden lassen, um Krankheiten zu verhindern oder zu heilen.
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Chapter 1

Introduction

For centuries naturalists, geologists, and biologists have been inquisitive to fathom
out the function behind mechanisms pertaining to vitality. Their efforts to unravel
the basis of these mechanisms led to ample discoveries as well as innovative ideas
for building suitable apparatus that can measure these mechanisms. For instance, in
the case of gene expression, numerous sequencing protocols have been developed
throughout the course of time to facilitate the task of measuring gene activity by
estimating the abundance of mRNA molecules produced from a particular gene.

The mechanisms that are involved in gene expression are regarded to be so com-
plex and intricate that there are still ongoing research focusing on this area. Until
today, there have been ground breaking discoveries in decomposing the transcrip-
tion machinery of a gene into its building blocks. Transcription factors (TFs), DNA
methylation, histone modifications (HMs), small nuclear RNAs, etc., are examples
of the components that are involved in transcriptional or post-transcriptional regu-
lation.

TFs are essential components of the transcription machinery. They are proteins
that bind to the DNA sequence either directly or indirectly, via forming complexes
bound to the DNA, in order to recruit other elements to facilitate the transcriptional
regulation. For the past decades, the problem of TF binding site detection has be-
come popular and has attracted many researchers’ attention. As a matter of fact,
in 2016, a competition was held by the DREAM challenge (ENCODE-DREAM, 2017)
organizers who provided the data for a competition seeking for an accurate compu-
tational model that is capable of predicting the binding sites of TFs. My colleague,
Florian Schmidt, together with my supervisor, Marcel Schulz, and I formed a team
to participate in this competition. We established a machine learning framework
using random forest (RF) classifiers, extending the work of Liu, 2017. Since, Liu,
2017 and Waardenberg, 2016 have shown that tissue-specific cofactor interactions
are appropriate for modeling TF binding, we designed our framework such that it
was able to benefit from the tissue specificity inherent in the data to achieve a better
generalization power. Using numerous Position Weight Matrices (PWMs) together
with the DNase-hypersensitive sites (DHSs), which helped us locating the acces-
sible regions of DNA, we were able to compute the TF binding affinity scores. It
has been shown that even low binding affinities can deliver biologically relevant in-
sights (Tanay, 2006; Crocker, 2015). Using this data together with the true binding
classes provided by the competition, we were able to train the random forest clas-
sifiers predicting the binding status of a given TF. We published the results of this
work in the F1000Research journal in 2019 (Behjati Ardakani, Schmidt, and Schulz,
2019).

The task described above was essential concerning the binding status of the TFs,
however it did not explicitly involve gene expression. As a result, no clear associ-
ation between TF binding and gene regulation was provided by the computational
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models. In order to investigate the gene regulation mechanism, we embarked on
a new task aiming to predict gene expression using the histone modification (HM)
data. The reason why we chose histone modifications over the TFs was the study
conducted by Budden et al., 2014, which revealed that the TFs and HMs are statis-
tically redundant for predicting gene expression. Given that we had a variety of
novel HM data produced and made accessible by the German Epigenome Program
consortium (DEEP), we decided to leverage such HM data for predicting gene ex-
pression. Karlić et al., 2010 developed a computational method for predicting gene
expression from several histone modification data contrasting two distinct groups of
promoters, low CpG content and high CpG content. They discovered that specific
HMs are highlighted by their predictive models distinguishing the two promoter
groups.

Inspired by Karlić et al., 2010, we were intrigued to establish an accurate and
interpretable learning setup to predict gene expression for a different group of pro-
moters from the HM data. In this work, we focused on pairs of promoters located on
opposite strands of DNA that their transcription start sites are in proximity to each
other. This particular set of promoters, which we refer to as bidirectional promot-
ers, became the center of attention in several studies due to their peculiarity in their
promoter architecture (Core, Waterfall, and Lis, 2008; Preker et al., 2008; Seila et al.,
2008; Core et al., 2014b; Duttke et al., 2015a; Scruggs et al., 2015), raising the follow-
ing question: Are the regulations of the genes at bidirectional promoters coupled?

To seek an answer for this question, we used the HM read abundance from ChIP-
seq data measured across the promoter area of the bidirectional genes, while pre-
serving their spatial distribution in this region. As we were interested in deciphering
the spatial HM associations with expression of either of the genes at a bidirectional
promoter, we exploited the fused LASSO optimization approach (Tibshirani et al.,
2005) that provides interpretable models when features, the genomic locations in
this problem, are correlated. The fused LASSO models we built, accompanied by
the partial correlation analysis, pointed to a prominent trend of unidirectional asso-
ciation between HM localization at the promoter and gene expression.

Since we used the conventional bulk sequencing data for studying the gene regu-
lation in bidirectional promoters, we could not rule out the possibility of our findings
being restricted by the average signal obtained over a population of cells. This lack
of satisfaction nudged us towards investigating the bidirectional gene regulation at
the single cell resolution. We exploited two of the available single cell RNA-seq data,
one produced by DEEP and the other obtained from Pollen et al., 2014, for measur-
ing gene expression at bidirectional promoters. Using single cell RNA-seq data, we
were able to derive novel transcriptional states specific to bidirectional promoters.
This allowed us to further investigate other characteristics attributed to the identi-
fied states, such as DNA methylation and DNase-seq signatures as well as several
genomic-related features. We published our findings in the journal of Epigenetics &
Chromatin in 2018 (Behjati Ardakani et al., 2018).

Given that the single cell gene expression data helped us to delineate distinct pro-
moter architectures in bidirectional promoters, we considered furthering our studies
in a slightly different direction by asking a different question. We wondered if we
could develop a statistical model that is able to inform us about the regulatory ele-
ments that are essential in deriving gene expression levels in a cell specific manner.
In other terms, a cell-specific association between gene expression and a certain reg-
ulatory feature. There has been already similar work that aimed at inferring such
associations for identified cell types (Mohammadi et al., 2018; Aibar et al., 2017; Suo
et al., 2018). Even though interesting discoveries have been made, no integrative
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model was used to incorporate the gene expression data from single cells simultane-
ously. To reach this goal, we designed a multi-task learning (Caruana, 1997; Kim and
Xing, 2010) framework, where each cell corresponds to an individual task, as defined
in the optimization formula, and used various feature types to establish the desired
associations. Our results led to identifying distinct regulatory elements, from each
feature type, that were specific to individual cells. We were able to show that multi-
tasking was indeed advantageous over using many single-task models. This indi-
cates that the information sharing attained through multi-tasking could most likely
handle the issue of missing values, so called dropouts, which is a common error of
the current single cell sequencing protocols.

The outline of this dissertation is as follows. Chapter 2 embraces the definition
and description of basic biological and statistical concepts that are helpful in grasp-
ing the approaches explained in the subsequent chapters. Chapter 3 provides de-
tails related to the DREAM challenge competition. Chapters 4 and 5 are devoted to
unraveling the dilemma of bidirectional gene regulation. Chapter 6 describes our
multi-task learning approach used in discovering cell-specific associations based on
multiple regulatory elements. Finally, Chapter 7, concludes the projects presented
and described in this dissertation.





5

Chapter 2

Background

2.1 Biological Basics

2.1.1 DNA structure

DNA (deoxyribonucleic acid) is a double-helical molecule consisting of four nu-
cleotides, adenine (A), cytosine (C), guanine (G), and thymine (T) (Dahm, 2008;
Watson and Crick, 1953). The DNA helix is also referred to as DNA strand, to
which various names are assigned in order to distinguish them from each other.
For instance, some may refer to them as Watson and Crick strands in the honor of
DNA pioneers. Researchers also use forward and reverse, as well as plus and minus
strands. The length of DNA strand, which is a sequence of nucleotides, can go up
to several billion base pairs. For instance, the human DNA contains approximately
3 billion base pairs that stretches to roughly 2 meters long. Therefore, an efficient
packing mechanism is essential to arrange the DNA molecule inside the nucleus of
the cell. These 3 billion base pairs form 23 pairs of chromosomes that are embed-
ded inside the nucleus of the cell. Each chromosome itself consists of DNA tightly
wrapped around proteins called histones that maintain its structure. Complexes of
histone proteins around which the DNA is wrapped are called nucleosomes. The
nucleosome is often considered as the basic packaging unit in DNA (Figure 2.1). To
be precise, there are four types of core histone proteins, H2A, H2B, H3, and H4,
with two copies each in a nucleosome. Approximately 147 base pairs of DNA wind
around a nucleosome (Zhou, Goren, and Bernstein, 2010). These histone proteins
have an N-terminal tail that can be chemically modified via processes such as acety-
lation, methylation, phosphorylation, etc. Through these modifications the contact
between the DNA molecule and the histone cores alters, which facilitates changes in
DNA conformation.

2.1.2 Definition of a gene

In 1909, the term gene was, initially, coined by Wilhelm Johannsen, a Danish botanist,
referring to the essential units of heredity. At the time, gene had no physical specifi-
cations and was mainly considered in an abstract form to determine heredity. Later,
the geneticists were able to identify the location of several genes on the DNA and at-
tribute certain traits to them. Currently, there have been over 65,000 genes identified
and annotated in the human genome, of which more than 20,000 are protein-coding.
There has been a number of databases that provide the genome annotation, such
as Ensembl (Kersey et al., 2018), GENCODE (Harrow et al., 2012), RefSeq (Pruitt,
Tatusova, and Maglott, 2005), Gene Ontology (GO) (Ashburner et al., 2000; Consor-
tium, 2018), etc.
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FIGURE 2.1: Schematic illustration of DNA packing achieved through
repeating units called nucleosome. Each nucleosome refers to ap-
proximately 147 base pairs of DNA that are wrapped around his-
tone proteins shown by yellow cylinders. Courtesy: National Human

Genome Research Institute
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To access the information embedded in a gene, the double helix structure of the
DNA needs to be unwinded, such that the gene regulatory elements that are required
to read the information off the gene be able to bind to that specific location on the
DNA and transcribe the gene. The next section briefly describes the basic steps of
transcription and gene regulation.

2.1.3 Gene expression and its regulation

Studying genes is usually coupled with evaluating their activity. But, what does
a gene activity mean or how a gene can become active? This is achieved through
a mechanism called gene regulation. The first step in gene regulation is transcrip-
tion. There are three main stages of transcription: initiation, elongation, and ter-
mination. During initiation, transcriptional activators, which are gene regulatory
proteins, bind to specific sequences in DNA (called enhancers) to facilitate attracting
an essential enzyme called RNA polymerase. RNA polymerase binds to the pro-
moter of a gene, which is a sequence of DNA near the gene’s start site. Then, RNA
polymerase unwinds the double strands of DNA, through which the single-stranded
DNA becomes accessible to the transcription complexes to bind. Through the elon-
gation stage, one of the DNA strands acts as a template for RNA polymerase. This
strand is, conventionally, referred to as the "template strand". As the RNA poly-
merase "reads" the bases off this template one at a time, a single stranded molecule,
called Ribonucleic acid (RNA), is created from the DNA. The RNA molecule is also
composed of four nucleotides, adenine (A), cytosine (C), guanine (G), and uracil (U).
There exist sequences on DNA that are called terminators and their role is to signal
that the RNA transcript is complete. Once these sequences are transcribed, they re-
sult in releasing the RNA molecule from the RNA polymerase. This RNA molecule is
considered as pre-mRNA and needs to be processed into a messenger RNA (mRNA).
Several mechanisms need to take place to determine the stability and distribution of
the generated transcript. One of these mechanisms is capping. Through capping the
5′ end of the messenger RNA (mRNA) changes to a 3′ end via a 5′ − 5′ linkage. This
protects the RNA molecule from degradation. In addition, a 3’ poly-A tail is added
to the end of the RNA molecule. This tail makes the RNA molecule more stable and
prevents its degradation. Eventually, through the translation process, the protein
molecule is synthesized from mRNA. Figure 2.2 illustrates a schematic view of the
transcription and translation steps pertaining to gene regulation.
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FIGURE 2.2: From DNA to protein. Gene regulation involves tran-
scription and translation as the first two steps. During the tran-
scription, the DNA molecule unwinds and through the transcription
mechanism, an RNA molecule is generated. This RNA molecule is
essential to proceed with the translation step, which results in pro-

duction of polypeptide (protein) molecules.

The gene activity is often determined from the mRNA level that is produced
through the transcription process. Whether or not it is the right time for a gene to
become active, and if so, how much mRNA is needed to be produced from it, is
regarded as one of the biggest conundrums in the fields of genetics and molecular
biology.

To a great extent, understanding the origin of diseases, in particular cancer that
is mostly recognized as aberrant expression of certain genes, is the reason why re-
searchers in the field are curious to solve the mystery of gene regulation. The expres-
sion of a gene is a function of several genetic and epigenetic factors. In a very high
level epigenetic point of view, nutrients, physical exercises, fraternizing, stress, and
plenty other examples, act as external stimuli that can affect the signaling pathways
and, as a result, a change in the gene expression pattern. However, in a more low
level view, the factors that are involved and conduct the gene regulation are several
types of proteins, referred to as transcription factors, that come together and form
transcription complexes. More precisely, RNA polymerase II (pol II) is initially re-
quired to encode the mRNA through the transcription process starting from a gene’s
promoter. Before transcription starts, pol II together with several transcription fac-
tors such as TFIIB, TFIID, TFIIE, TFIIF, and TFIIH must be assembled on the core
promoter (Zawel and Reinberg, 1995; Patikoglou and Burley, 1997). Among which,
the only transcription factor that is able to form a direct contact to the DNA sequence
(sequence-specific DNA binding) is TFIID (Burley and Roeder, 1996; Patikoglou and
Burley, 1997). TFIID identifies and binds to an element called TATA box at the core
promoter. The TFIID-TATA complex recruits the rest of the general TFs together with
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pol II to form a pre-initiation complex (PIC), a large multi-protein assembly that fa-
cilitates precise initiation of transcription at the TSSs (Patikoglou and Burley, 1997).
The formation of PICs as well as the histone modifications facilitate the chromatin
accessibility and pave the way for the transcription mechanism.

There are many other proteins and RNAs that are involved in regulation of
mRNA processing. For instance, newly discovered regulators such as miRNAs (Bar-
tel, 2004), generally bind to their target mRNA and, by destabilizing it, repress pro-
tein production (Cannell, Kong, and Bushell, 2008). In addition, the DNA methy-
lation can be involved in gene regulation by repressing the transcription, typically,
when methyl groups are added to the gene’s promoter.

In order to understand the gene expression, it is important to be aware of all these
influential factors, not only as individuals, but also the elaborate interplay between
them. There are studies that aim to achieve a comprehensive view of gene expression
by integrating the aforementioned factors, but the end has not reached yet, as there
are still plenty to be investigated and addressed.

2.1.4 Bidirectional genes

Returning back to the topic of genes and their definition, it is worth adding that there
are, in fact, various subsets or classes of genes that come to researchers’ interest. One
of these classes, which is relevant to this dissertation, is bidirectional genes. If the
transcription start site of two distinct genes, located on opposite strands of DNA
(plus and minus strands), happen to be in a close proximity of each other, then these
genes are called bidirectional genes. The promoter area shared by these genes is re-
ferred to as bidirectional promoter. How close the TSSs of the genes should be to each
other can be a matter of debate, but this distance normally does not go beyond 1000
base-pair (bp) according to the literature (Adachi and Lieber, 2002; Trinklein et al.,
2004). Microarray experiments revealed that more than 10% of human the genome
consists of bidirectional promoters. As the sequencing technologies advanced and
became more sensitive in detecting nascent transcribed RNA molecules, this num-
ber has risen up to∼ 80%. Therefore, exact classification of bidirectional or unidirec-
tional promoters is not straightforward, as the sensitivity of the sequencing assay to
recognize unstable, nascent RNAs plays a critical role (Andersson et al., 2015; Duttke
et al., 2015b).

2.1.5 Histone modifications

As described in 2.1.1 the nucleosome, which is the basic unit of chromosome pack-
ing, is made of eight core histone proteins whose N-terminal amino acids can be
modified to enable access to DNA as and when needed. If through these modifica-
tions the DNA molecule loses its contact to the nucleosome and becomes more ac-
cessible to regulatory elements, the foundation is laid for the gene to be transcribed.
There are over 200 different histone modifications identified and the list continues
to grow as the number of discovering antibodies used for the chromatin immuno-
precipitation experiments (Collas, 2010) keeps on increasing. Zhao and Garcia, 2015
provide a comprehensive list of cataloged histone modifications (also referred to as
histone marks, or marks alone) accompanied by their associated function. Not all hi-
stone modifications are associated with the gene expression the same way, as there
are certain modifications that are associated with other cellular processes such as
DNA replication. Histone marks, such as H3K4me3, are associated with initiation
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of transcription, whereas some others are associated with gene repression by tight-
ening the contact of the DNA’s backbone to the nucleosome, e.g. H3K27me3. As I
focused working on six different histone marks throughout the course of this disser-
tation, I am going to briefly refer to the known functions associated to them in the
following section.

H3K4me1

Heintzman et al., 2007 showed that the presence of modification caused by addition
of one methylation group to the lysine at position four of the amino acid chain of
histone H3 is linked to enhancers, the distal regulatory elements that affect gene
expression. Moreover, it has been hypothesized that the H3K4me1 modification is
in fact involved in a poised enhancer state, where it shares significant similarities
with active enhancers. However, it is incapable of driving gene expression in cells
that are in the differentiation state (Calo and Wysocka, 2013).

H3K4me3

In contrast to H3K4me1, this mark has three methylation groups bound to the lysine
at position four of H3. H3K4me3 is generally associated to transcription activation
at the gene’s promoter (Lee and Skalnik, 2005; Lee et al., 2007; Xiao et al., 2011) as
the ChIP-seq experiments strongly indicate presence of this mark around the tran-
scription start site of the genes (Zhao and Garcia, 2015).

H3K36me3

Methylation of the lysine at position 36 of histone H3 is also associated with tran-
scriptional activity as well as the two aforementioned marks. However, the main
difference that sets H3K36me3 apart from the other two marks is that it spreads
along the transcribed regions of the genes and often peaks toward the transcription
termination site (3’ end of the gene) (Bannister et al., 2005).

H3K27me3

Genome-wide ChIP-seq experiments performed in human and mouse suggest that
the modification induced by binding of three methylation groups to the lysine at
position 27 of histone H3 is often associated with gene inactivation (Kim and Kim,
2012). In contrast to the H3K4me3, this specific mark shows, generally, a broad
accumulation of ChIP-seq tags across genic and nongenic regions.

H3K9me3

Similar to H3K27me3, the three methylation groups added to the lysine at position
nine of histone H3 is mainly associated to gene repression (Kim and Kim, 2012). The
average signal obtained from the ChIP-seq experiments often shows a depletion at
the transcription start site (Pjanic et al., 2011).

H3K27ac

When the acelytated lysine at position 27 of histone H3 is accompanied by the H3K4me1
histone mark, there is an indication that the corresponding genomic region is an ac-
tive enhancer (Pradeepa, 2017). According to the study done by Creyghton et al.,
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2010 the regions that have only H3K27ac without any significant enrichment of the
H3K4me1 modification should still be regarded as potential enhancer elements.

A comprehensive summary of the colocalization of the histone marks at the
genome is depicted in Figure 2.3.

Promoter5’ 3’

H3K9me2/3 
H3K27me2/3 

H4K20me3 acetylation
H3K4
me1

H3K4
me2

RNAPII
H3K4me3 
H3K9ac

H3K79me1/2/3
H2BK5me1 
H3K9me1 
H3K27me1 
H4K20me1

H3K36me3
H3K9me2/3 
H3K27me2/3 
H4K20me3

Promoter5’ 3’

a) Active gene

b) Inactive gene

H3K9me2/3 
H4K20me3 H3K4me3

H3K27
me3

FIGURE 2.3: Distribution of histone modification signals on active (a)
and inactive (b) genes. Image remade from Barth and Imhof, 2010.

2.1.6 Sequencing technologies

As described in 2.1.3 the gene activity is often interpreted as mRNA expression level.
For quantifying the levels of produced mRNA molecules, several techniques have
been developed, which the three most relevant ones are briefly described as follow-
ing.

RNA-seq

In order to read the content of a mature RNA molecule, i.e., the sequence of A,
C, G, and U, which contains the poly(A) tail, it needs to be shredded into smaller
fragments such that the sequencing machines are able to process them. This pop-
ulation of RNA fragments, where some contain the poly(A) tail, is converted to a
library of cDNA (complementary DNA synthesized from a single stranded RNA)
fragments. Next, short, chemically synthesized, single-stranded or double-stranded
oligonucleotide that can be ligated to the ends of DNA or RNA molecules, referred
to as adaptors, are attached to either one or both ends of each fragment (depending
on whether paired- or single-sequencing was performed). Eventually, sequencing
reads are obtained from amplifying these fragments that are sequenced in a high-
throughput manner (Bainbridge et al., 2006; Mortazavi et al., 2008; Weber, 2015).
The length of these reads are typically ranging from 30 bp up to 400 bp, depending
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on the sequencing technology used (Mortazavi et al., 2008). Figure 2.4 schematically
depicts the RNA-seq protocol.

AAAAAAAA mRNA

AAAAAAAA

TTTTTTTT

cDNA

or

RNA fragments

EST library 
with adapters

ATCACAGTGGGACTCCATAAATT T T TC T
CGAAGGACCAGCAGAAACGAGAGAAAAA
GGACAGAGTCCCCAGCGGGCTGAAGGGG
ATGAAACATTAAAGTCAAACAATATGAA

short sequence 
reads

FIGURE 2.4: RNA-seq workflow. RNA molecule is first converted
into a library of cDNA fragments through either RNA fragmentation
or or DNA fragmentation. Sequencing adaptors (blue) are thereafter
added to each cDNA fragment and a short sequence is derived from
each cDNA using high-throughput sequencing technology. Figure

remade from Wang, Gerstein, and Snyder, 2009 and modified.

CAGE

The Cap Analysis of Gene Expression (CAGE) is another sequencing method devel-
oped by Shiraki et al., 2003a. Similar to RNA-seq, the cDNA is first synthesized, but
then the full-length cDNAs are captured using the biotinylated cap-trapper. Next, a
primeable sequence is added at the 5’ ends of the cDNAs. After performing a series
of steps involving linker addition, cleavage, and PCR, the CAGE tags that represent
the initial 20 nucleotides from the 5’ end of mRNAs are used to generate the CAGE
libraries meant to be sequenced (Figure 2.5). What makes CAGE distinct from other
sequencing protocols is that it is based on profiling the 5’ end of RNAs with a cap
structure, which includes mRNAs and a large fraction of non-coding RNAs (Shi-
raki et al., 2003a). In addition, CAGE provides accurate estimates of the original
mRNA concentration, since it is based on sequencing of concatamers (long contin-
uous molecule containing multiple copies of the same sequence linked in series) of
DNA reads deriving from the initial 20 nucleotides from 5′ end mRNAs. This means
that not only the overall RNA expression level, but also the expression of each alter-
native promoter within a gene can be estimated.
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AAAAAAAAAAAAAmRNACap

Cap

TTTTTTTTTTT
AAAAAAAAAAAAA

cDNA

Cap-trapped and addition of a linker

Linker
Cleavage with MmeI

+

Linker 3’ side

PCR

Cleavage and purification

Linker A
Linker B Concentration+

FIGURE 2.5: CAGE workflow. Image remade from the FANTOM
website (http://fantom.gsc.riken.jp/protocols/basic.html).

GRO-cap

Global Run On (Gro)-cap protocol is mainly known for its ability to detect nascent
molecules of RNA that are being generated by the RNA polymerase. In contrast to
poly(A)-enriched mRNA-sequencing methods, GRO-cap also captures incomplete
transcripts, which lack the poly(A) tail (unstable transcripts that are susceptible for
degradation). The ability to detect transcripts from intronic regions makes GRO-cap
an attractive sequencing candidate for detecting enhancer-related transcripts (Core
et al., 2014a).

ATAC-seq

Assay for Transposase-Accessible Chromatin (ATAC)-seq is another sequencing pro-
tocol that is dedicated to assess and map the chromatin accessibility throughout the
genome (Buenrostro et al., 2013). The key step is the in vitro insertion of Tn5 (Reznikoff,
1993) to a mixture consisting of DNA molecules and adapters. This enzyme can frag-
ment the genome and, simultaneously, attach the adapters to these fragments. When
the chromatin is accessible the chances that this transposition takes place is higher
compared to when the chromatin is less accessible. This means that the amplified
fragments obtained after the PCR step would more likely be enriched in the regions
where the chromatin was accessible (Figure 2.6). This sequencing protocol together
with other chromatin accessibility assays (Song and Crawford, 2010; Simon et al.,
2012) allow a genome-wide profiling of the epigenetic landscape.

http://fantom.gsc.riken.jp/protocols/basic.html


14 Chapter 2. Background

Closed 
chromatin

Tn5 
transposome

Open 
chromatin

Amplify & 
sequence

FIGURE 2.6: ATAC-seq workflow. The transposon Tn5 (green) loaded
with sequencing adapters (blue and red) transposes into the open (ac-
cessible) chromatin regions. Image remade from Buenrostro et al.,

2013

ChIP-seq

The Chromatin immunoprecipitation (ChIP)-seq protocol was developed by Barski
et al., 2007 to determine the genome-wide binding sites of proteins of interest. This
involves using antibodies to fish out DNA fragments that are bound by the protein
that the antibody targets were used. Figure 2.7 illustrates the workflow for the ChIP-
seq experiment.
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End repair

Adaptor ligation

Amplification (17x)

Cluster generation

Analysis on Solexa 1G Genome Analyzer

Image processing and base calling

Map to genome

FIGURE 2.7: ChIP-seq workflow. The sequencing procedure requires
an adaptor ligation and together with 17 cycles of PCR amplification
of ChIP DNA molecules. Next, the ligated and amplified molecules
are used to determine clusters to be given to the Solexa Genome An-
alyzer. Finally, after the image processing and base calling step, the
reads are mapped to the genome. Image remade from Barski et al.,

2007.

2.1.7 Bulk and single-cell sequencing

In all the sequencing protocols described in 2.1.6, a bulk of DNA or RNA materials
were used to perform the experiment. This is due to providing sufficient DNA or
RNA molecules for the sample to be sequenced such that the technical noise and
artifacts would be averaged out, and therefore more accurate and reliable results be
obtained as output. Although there is a good intention behind performing bulk se-
quencing, this results in a loss of details about different cell populations, which may
be of interest in the study. And, sometimes, the original cell population is rare com-
pared to other cell types in the mixture, for instance, the embryonic cells obtained
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from the very early hours after fertilization. In such scenarios, the sequencing pro-
tocols need to be adapted to address the small number of available cell.

Tang et al., 2009 performed a whole-transcriptome analysis of RNA-seq in a sin-
gle mouse blastomere. Their procedure starts off by lysing the cell, where in a mix-
ture containing primer sequences, the cDNA can be synthesized from the released
mRNA molecules. Next is performing a reverse transcription step to obtain full-
length cDNAs of the first strand tagged with the primers. After adding poly(A) tails
to the tagged cDNAs, the cDNA from the second strand is synthesized are ampli-
fied through a PCR amplification step. Finally, the cDNA libraries are generated
after cDNA shearing and adapter ligation steps (Figure 2.8).

Cell lysis

AAAAA
TTTTT

UP1

Free primers
cDNA 

synthesis

AAAAA
TTTTT

Primer 
removal

TTTTT
Poly(A) 
tailing AAAAA

TTTTT

Second-strand 
cDNA 

synthesis AAAAA
AAAAATTTTTUP2

UP1
PCR 

amplification

cDNA 
shearing

Adaptor 
ligation

SOLiD P1 and P2 
adaptors

Library 
amplification P1

P2

FIGURE 2.8: scRNA-seq workflow. Image remade from Tang et al.,
2009.

Ever since Tang et al., 2009 was published, numerous studies have been car-
ried out using single-cell sequencing technologies, in particular single-cell RNA-seq
(scRNA-seq), investigating diverse aspects of gene regulation at the single cell res-
olution. Ramsköld et al., 2012 proposed an RNA-seq protocol called Smart-seq that
can be applied at the single cell level. Using their method they could identify dis-
tinct gene expression patterns in tumor cells, which could then lead to discovering
novel biomarkers for those tumor cells. Another sequencing method was designed
by Hashimshony et al., 2012 to sequence a large number of cells in parallel. They
applied their method of sequencing, CEL-seq, on mammalian cells and nematode
embryonic blastomeres. This allowed them to analyze transcriptomics at single cell
resolution and train a classifier to predict the identities of blastomeres sister pairs.
The challenges faced in single-cell sequencing do not limit only to designing new
protocols or machines, but also the computational methods that can handle the noisy
data as a result of the low-coverage reads. The problem arises from having insuf-
ficient materials as the first step. This, then, leads to getting low-coverage of the
sequenced reads. In other words, when the estimated expression of a gene based
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on the mapped reads to the corresponding genomic location is equal to zero, it can
either mean that the gene was truly silent, or due to the technical noise the mRNA
molecules could not be detected. The latter scenario is referred to as dropouts prob-
lem, a very common and intrinsic difficulty faced in single-cell sequencing. There
have been various studies that focused on addressing the effects of dropouts on the
gene expression profile. This has been most commonly achieved by modeling the
dropout distribution into the density function reflecting the gene expression. So,
these methods usually tackle a dual challenge, one is detecting the dropouts, and
the other is imputing their values (Mongia, Sengupta, and Majumdar, 2019; Li and
Li, 2018a; Gong et al., 2018; Tracy, Yuan, and Dries, 2019).

2.2 Statistical Background

This section primarily focuses on various basic and advanced statistical learning
methods that come of relevance to this dissertation. There are two major types of
algorithms in the field of machine learning, 1) unsupervised, and 2) supervised. The
following will address these two types in more detail and extent.

2.2.1 Unsupervised learning

Imagine we have collected N observations describing weight (kilograms) and height
(centimeters) measurements from a mixed population of wrestlers and basketball
players. However, there is no data available for the type of sport they are engaged
in. Figure 2.9 shows a distribution of these points in the space defined on the weight
and height variables. By inspecting the distribution of the points in this plot, one can
see that there are two clusters of points, one reflecting shorter and heavier subjects,
and another representing taller and slightly lighter subjects, compared to each other.
Since, the observations at hand are only describing the features (weight and height)
and no data is available about the category the subjects are from, the algorithms that
try to fit a model to cluster the data are considered as unsupervised learning algo-
rithms. In more mathematical terms, let X ∈ RN×p represent a data matrix of N
samples with p features, where xi ∈ Rp for i = {1, · · · , N} denotes an individual
observation corresponding to ith row of X. Then the aim of any unsupervised learn-
ing algorithm is to divide these N observations into k clusters such that similar data
points are assigned to the same cluster. The choice of k and definition of similarity
metric are two interesting and yet challenging aspects of a clustering method. In the
following section two of the most common and well-established clustering methods
are described.

k-means clustering

For a given k and observation matrix X, k-means clustering tries to partition the data
points into k distinct sets, using the Euclidean distance as the measure of similarity
in an iterative manner. The algorithm starts by randomly selecting k data points as
the cluster centers, or cluster representatives. Then it computes the distance of each
point to these k centers. The assignment of each data point to a cluster is then based
on finding the cluster in where it had the smallest distance to. For each cluster a
new center is defined by taking the mean of the data points in that cluster. Through
this iterative process, the cluster centers gradually move towards a point where they
can best partition the points in the space, i.e., the assignments do not get changed
anymore.
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FIGURE 2.9: Example of unsupervised learning. Each point repre-
sents the weight and height of an individual sampled from wrestlers
and basketball players. The distribution of the points in the space

suggests two clusters of populations.

Algorithm 1 provides the pseudo-code for k-means clustering algorithm, where
the Euclidean distance between two vectors of size p can be defined as ‖x − y‖2 =√

∑
p
i=1(xi − yi)2. The objective function can be written as follows:

min
C

k

∑
j=1

Nj ∑
C(i)=j

‖xi − x̄j‖2, (2.1)

where Nj denotes the number of data points assigned to cluster j, and C(i) = j
returns the data points, i, that are assigned to cluster j.

One of the drawbacks of k-means algorithm is its dependence on the selection of
initial centers, which in turn may lead to different partitions. To tackle this problem,
several starting points are chosen to run the algorithm with. The clustering that
minimizes the value of the objective function shown in formula 2.1 is eventually
used as the final clustering result.

Hierarchical clustering

In contrast to k-means clustering that required a predefined k to initiate the cluster-
ing procedure, hierarchical clustering methods are not restricted to such specifica-
tions. There are two strategies to conduct a hierarchical clustering, 1) bottom-up, or
agglomerative, 2) top-down, or divisive. In the bottom-up approach, each data point
is, first, considered as a singleton cluster. Pairs of clusters are then merged together
to form larger clusters, according to the provided distance metric between disjoint
groups of observations. The selected pair for merging would be the two clusters
with the highest inter-group similarity. This procedure is continued until all data
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Input:X ∈ RN×p denoting N observations with p features, and k < N, the
desired number of clusters

Output: Assignment of observations into k clusters
Procedure:
Initialization: Randomly choose k observations from X representing cluster
centers;

while New assignment is possible do
1. Assign each data point, xi ∈ Rp, to a cluster, C(i), such that

C(i) = arg min1≤j≤k ‖xi − x̄j‖2, where x̄j ∈ Rp denotes the mean of the jth

cluster;
2. Recompute and update the cluster means according to the new
assignment of points to each cluster;

end
Algorithm 1: k-means clustering pseudocode.

points are clustered into one. The top-down strategies, on the contrary, regard the
entire observations as one whole cluster and recursively break it into smaller clusters
down to singletons. One of the main reasons for the reputation of hierarchical clus-
tering methods is its ability to provide a highly interpretable complete description
of the hierarchical clustering in a graphical format. This graphical format is depicted
as dendrogram, which is a tree structure describing the clustering steps, in either ag-
glomorative or divisive way, with preserving the dissimilarity distance between the
clusters reflected in the length of the edges of this tree. In order to obtain a certain
number of clusters, the dendrogram must be cut at that certain level. For instance,
if the clustering results of the k-means method are to be compared with a hierarchi-
cal clustering approach, the dendrogram obtained from the hierarchical clustering
should be cut at level k. The partitioning of the leaf nodes derived from this cut,
forms the desired clustering that will be compared with the k-means clustering.

2.2.2 Supervised learning

Unlike unsupervised learning, the observations are coupled with response values,
in the supervised learning scenario. This response variable can either be continu-
ous real valued measurements (regression task) or categorical values (classification
task), such as the wrestlers or basketball players in the example above. In mathe-
matical terms, the observations are tuples of the form (xi, yi), where xi ∈ Rp and
yi ∈ {1, · · · , k} in a classification task with k classes, or yi ∈ R in a regression task.

The classification algorithms take both feature and response values as their input
in order to train a model that given the features can predict (explain) the response.
The training procedure involves minimizing an appropriate loss function, which
is tailored to either the classification or the regression task, through which certain
parameters defining the model will be adjusted. The following sections describe
some of the regression and classification methods in more depth.

Regression models

As mentioned above, a regression task in the supervised learning is referred to pre-
dicting the response variable that consists of continuous real values. One of the most
elementary regression models is called Ordinary Least Squares (OLS) that seeks a
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linear association between the feature and response variables. This linear associa-
tion is described by a hyperplane fitted to the data, such that the least squared errors
between the fitted values and actual measurements of response are achieved. This
hyperplane is defined by a slope vector, β ∈ Rp, and an intercept, β0 ∈ R. The fitted
(predicted) values of the response variable can then be obtained via the following:

ŷi = β0+ < β, xi >, (2.2)

where < ., . > denotes the inner product between two vectors. The OLS describes
the association between xi and yi using the following equation:

y = ŷi + εi, (2.3)

where εi defines the prediction error corresponding to observation i, also known as
residuals. Figure 2.10 shows the result of an OLS model applied on univariate ob-
servations of number of hours of study per week, as feature, and the grade obtained,
as response. The deviation of the data point i from its projection on the fitted line is
equal to εi in equation 2.3.
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FIGURE 2.10: OLS applied on an example data.

To estimate the optimal values for the unknown parameters β0 and β the follow-
ing objective function needs to be optimized:

L(β0, β) =
N

∑
i=1

ε2
i + β0, (2.4)

where the term ε2
i denotes the squared errors, (yi − ŷi)

2. The formula 2.4 aims to
minimize the sum of squared errors, a common and basic penalty term in regression
loss functions. The optimal values of the regression coefficients, β∗0 and β∗, can be
computed analytically by setting the first order derivatives of the objective function
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with respect to β0 and β to zero. In other words:

∂L(β0, β)

∂β0
= 0, (2.5)

and
∂L(β0, β)

∂β
= 0. (2.6)

This is a linear system of p + 1 equations with p + 1 unknown variables and can be
solved easily for β0:

∂L(β0, β)

∂β0
= 0⇒

N

∑
i=1

(yi − β0 − β× xi) = 0⇒ β∗0 =
N

∑
i=1

(yi − β× xi) (2.7)

and for β:

∂L(β0, β)

∂β
= 0⇒

N

∑
i=1

(yi − β0 − β× xi)xi = 0⇒

β∗ =
∑N

i=1(xi − x̄)(yi − ȳ)

∑N
i=1(xi − x̄)2

=
Cov(x, y)

Var(x)
= XTX−1XTy,

(2.8)

where X is the matrix containing xi’s (X ∈ RN×p). One of the major problems with
OLS models is the lack of regularization in its objective function. Regularization
helps building a statistical model with better generalizability power.

Next, another linear regression model called Least Absolute Shrinkage and Se-
lection Operator (LASSO) will be described. This method is built upon the OLS with
an additional penalty term, L1 norm of the coefficients, that induces sparsity in the
β coefficients of the model. The objective function for LASSO is as follows:

L(β0, β) =
N

∑
i=1

ε2
i + λ

N

∑
i=1
|βi|+ β0. (2.9)

Penalizing the sum of absolute values of the coefficients encourages the model to
set the coefficients corresponding to irrelevant features to zero, thus sparser models.
This phenomenon is of course a function of the regularizer’s parameter, λ as well.
The larger the λ, the sparser the models. Setting the right value for λ can be achieved
via a technique called cross validation, a, concept that will be discussed later in this
chapter. Unlike OLS, LASSO doesn’t have an explicit closed form for estimating
the optimal coefficients for a given λ, even though the objective function is convex.
But, fortunately, the gradient descent algorithms come to rescue, and can be used to
approximate the optimal β coefficients.

LASSO can be considered as a feature selector, due to the fact that the L1 norm
penalty in its objective function sets the coefficients of irrelevant features to zero.
This L1 norm regularization becomes effective in cases where correlated features ex-
ist in the data. For instance, a data consisting of feature variables such as the number
of hours of study, h, and the grade a student obtained in the exam, g. Assume that in
the data collected from several students the h and g variables are correlated. There-
fore, in order to predict whether the student failed or passed in the exam, one of the
variables, either g or h, would be enough to get the job done. LASSO seems to be the



22 Chapter 2. Background

right tool to achieve this, but the question is which variable it will choose? The an-
swer is that it heavily depends on the data. Imagine, in our data set explained above,
g slightly better associates with the response which is pass or fail. But, if we perturb
the data, for instance collect the data from another school, then h might be better
explaining the response. These perturbations in the data hurt the interpretability
one expects from LASSO. Meaning that the features it selects aren’t consistent across
perturbed data sets with correlated features. Therefore, another variation of LASSO
approach, called group LASSO, was proposed by Yuan and Lin, 2006 that takes pre-
defined groups of variables, most likely to be correlated with each other, and assigns
the coefficients such that the members of each group are either all included or all ex-
cluded. Assuming that there are G predefined groups, and Xi ∈ RN×|Gi | denotes the
subset of X ∈ RN×p corresponding to the ith group, the objective function for group
LASSO is as follows:

L(B) =
N

∑
i=1

ε2
i + λ

G

∑
i=1
‖Bi‖, (2.10)

where B ∈ Rp is the coefficient vector and Bi ∈ R|G| denotes the vector of coefficients
corresponding to the features of ith group. The ‖.‖ denotes the L2 norm of a vector
that is equal to the square root of sum of squared elements of the vector.

Although group LASSO is able to incorporate the information about the groups
of variables that are related to each other into its optimization criteria, it does not
capture the existing structure in the data. In other words, if the data at hand consists
of temporal or spatial features, such that the order of variables in the feature space
matters, group LASSO will not be able to reflect those properties onto its model
coefficient assignments. However, there is another extension to standard LASSO,
called fused LASSO that addresses this issue. The fused LASSO’s objective function
is as follows:

L(β0, β) =
N

∑
i=1

ε2
i + λ ∑

(i,j)∈E
|βi − β j|+ γλ̇

p

∑
i=1
|βi|+ β0, (2.11)

where E denotes the edges of a given graph G = (V, E) defined over the feature
variables as its node set (V). The features connected via an edge between them
are subject to the fusion penalty (λ ∑(i,j)∈E |βi − β j|). The regularizer for fusion is
denoted by λ, whereas γ controls the amount of sparsity and fusion and sparsity in
the solution space. In other words, γλ̇ dictates the amount of sparsity induced in the
model. Pure fusion (no sparsity) can be achieved by setting γ to zero, while γ = 1
results an equal level of sparsity and fusion.

Elastic net (Zou and Hastie, 2005) is another extension to the OLS models that im-
poses both L1 and L2 norm regularizations on the coefficients. Its objective function
is as follows:

L(β0, β) =
N

∑
i=1

ε2
i + λ1‖β‖2 + λ1|β|, (2.12)

where λ1 and λ2 are the regularization parameters for the L1 and L2 norms, respec-
tively.

So far, the assumption was that the response variable is a vector comprising of
the target values for each sample in the data. However, this does not always have to
hold. There can be cases where multiple measurements of the response are available
for a data point. For instance, in the wrestler/basketball player scenario, imagine
that we are also interested in predicting the gender (female or male) of each indi-
vidual as well as their level (under-19 or professional). In other words, the response
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variable corresponding to each data point holds three values, e.g., basketball player,
female, and professional.

The statistical models that are learnt based on multivariate response variables are
called multi-task learning (MTL) models. The obvious difference of MTL objective
function compared to the single-task (univariate response) models is the nature of
the β coefficients, which is going to be a matrix of dimensions p× k, where p and k
are the number of features and number of tasks, respectively. An interesting case of
MTL was proposed by Kim and Xing, 2010 with the assumption that the response
variables could be grouped hierarchically defined by a tree structure. They showed
that this method is capable of finding a sparse estimate of β coefficients while main-
taining the relation between the response variables according to the tree structure.

All the models explained above are unanimous on one assumption, which is the
association between the feature and the response variables are linear (y = βTX + ε).
But, this linearity might not always hold. To address this, there has been several
other methods that do not require such assumption (non-linear models). Artificial
neural networks (ANNs) are an example of such non-linear models. The idea was
initially inspired from the neural network of a brain and how the neurons commu-
nicated with each other via synapses. Within each ANN, each neuron is considered
as a computational unit, where it receives an input and after applying an activation
function it produces the output. The architecture of ANNs consists of three types of
layers: input layer, hidden layer, and output layer. The input layer forms the first
layer of a feed forward network and it has as many neurons (nodes) as the num-
ber of features. The output layer comes as the last layer in network’s architecture
and contains only one node for the single-task regression scenario or k nodes for a
multi-task learning setup with k tasks. The hidden layers are those appear between
the input and output layer and can vary in terms of the number of layers and the
number of node in each layer. The more the number of hidden layers, the deeper the
network gets (not to be confused with deep neural networks that often have convo-
lutional, pooling, etc. layers), which leads to more complex (non-linear) models. The
activation function used in each layer (except the input layer) mimics the biological
firing that takes place in biological neurons. When the chemical level that a neuron
receives reaches a certain threshold, it causes the neuron to fire and transmit a signal
to the neighboring neurons. This phenomenon motivated the mathematicians to de-
fine a non-linear function, which resembles the neuron’s firing event, called sigmoid
function as following:

f (x) =
1

1 + ex . (2.13)

The non-linearity that was promised for ANNs is delivered through this non-linear
activation function. Each layer is connected to the next layer through a weight ma-
trix that defines the parameters of the model. These weights are typically assigned
randomly and through an iterative algorithm, called back propagation, get updated
until they converge to a local optimal. The loss function that is being optimized is
the squared error similar to the aforementioned models.

Classification models

Up until now, the models described above were trying to solve an optimization prob-
lem where the response were continuous real values. But, as already mentioned,
there is another type of supervised learning, called classification, where the response
is in fact (finite) discrete values referred to as class labels. Here, an interpretable and
promising classification method, called random forests, will be described. But before
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that, it is worth briefly mentioning about the decision trees that the random forests
are built up on.

Decision trees are amongst the most favorable classifiers, mainly due to their
appealing visualization and interpretation power. They try to solve the problem by
building a tree over the feature variables until it reaches the leaf node where the class
label is assigned. For instance, in the wrestler and basketball player classification
problem, where the height and weight are the features and wrestler and basketball
player the labels, a decision tree would pose the questions on the variables as shown
in 2.11.

height > 200

Yes No

weight < 100

Yes No

basketball 
player

basketball 
player wrestler

FIGURE 2.11: Example of a decision tree performed on the basketball
player and wrestler classification problem.

Obviously, in more complex problems where the classes are not perfectly sep-
arable, the decision made at the leaf nodes would not be pure depending on how
heterogeneous the samples satisfying the implied rule are (in a certain path from
root to leaf). In order to construct a tree the entropy and information gain measure-
ment are used to find the best variables for splitting. The entropy is used to measure
the homogeneity of a sample. If a sample is entirely homogeneous, then the entropy
is 0, otherwise it takes a value larger yet bounded by 1. The information gain is used
to determine what variable to choose for splitting such that the highest information
is gained eventually.

Ensemble learning

In 1875, Marquis de Condorcet, a French mathematician and philosopher, proposed
a theorem called Condorcet’s jury theorem. The theorem refers to a group of inde-
pendent voters who need to reach a decision by majority voting, for instance a jury
deciding whether a defendant should be found guilty or not. Assuming that p is the
probability of each voter being correct and L is the probability of the majority vote
obtained from the voters being correct, the theorem states the following:

• having each voter deciding better than random (p > 0.5) implies that the final
vote would be better than each individual vote (L > p), and

• L approaches 1, for all p > 0.5 as the number of voters increases (i.e., this
number approaches infinity).

Even though the Condorcet’s jury theorem was conceived, originally, to provide
a theoretical basis for democracy, supervised learning methods adopted the same
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classifier class1 class2 class3

classi f ier1 0 0 1
classi f ier2 0.2 0.2 0.6
classi f ier3 0.3 0.4 0.3
classi f ier4 0.4 0.3 0.3
classi f ier5 0.5 0.1 0.4

TABLE 2.1: Decision profile of five classifiers deciding on a 3-class
problem for a given sample x.

Operator class1 class2 class3

Min 0 0 0.3
Max 0.5 0.4 1
Average 0.28 0.2 0.52

TABLE 2.2: Final votes obtained from applying the Min, Max, and
Average operators on the decision profile shown in Table 2.1.

principle to improve their prediction power and robustness (Rokach, 2010). The
methods that employ and combine multiple learners in order to derive more accu-
rate and robust prediction results are referred to as ensemble learning methods.

There are various operators for combining the decision of classifiers (voters),
such as Min, Max, and Average. As their names suggest, these operators, take the
min, max, and average of the votes across the classifiers for each class label, respec-
tively. For instance, with c = 3 being the number of classes and v = 5 the number
of classifiers, Table 2.1 provides an exemplary profile of the classifiers’ decision for
each of the three classes on a given sample x.

Applying the Min, Max, and Average operators on the decision profile presented
in Table 2.1 yields the final combined results shown in Table 2.2.

Another interesting method of ensemble learning was introduced by Wolpert,
1992, called stacked generalization. In stacked generalization, the output pattern of
an ensemble of trained classifiers serves as an input to the second level classifier.
Having seen the mistakes the individual classifiers in the first level have made, the
ensemble classifier is able to adjust for those mistakes during the training phase.

In general, the more diverse the classifiers are, the more effective ensemble ap-
proaches get. This diversity can be obtained either by choosing distinct classifiers
that are diverse in terms of their classification algorithms or through the training
phase by letting them become expert on subsamples of the data. Random forest
(RF) classifiers (Breiman, 2001) are examples of the latter case. Essentially, RFs are
ensembles of many decision trees that each are trained on subsets of data obtained
from bootstrapping (Efron, 1979). Bootstrapping, generally, is referred to random
sampling of the data with replacement. After the bootstraps of the data are created,
in order to increase diverse (less correlated) trees, a subset of features are then cho-
sen to perform the node splitting upon. Algorithm 2 provides the pseudocode for
constructing an RF.

One of the advantages of using random forests is that it can provide the out-
of-bag (OOB) samples as well as out-of-bag error. An OOB sample is defined as
the following: For each observation zi = (xi, yi), a random forest model is built by
averaging only those trees corresponding to bootstrap samples in which zi did not
appear. Analogously, the OOB error is the average prediction error using only the
trees that did not have zi in their bootstrap sample.
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Input:X ∈ RN×p denoting N observations with p features, B the number of
bootstraps, m < p the number of features used for node splitting, and nmin
the minimum node size

Output: Ensemble of trees {Tb}B
b=1

Procedure:
Initialization: b = 1;
while b ≤ B do

1. Draw a bootstrap sample Z∗ of size N from the training data;
2. Using Z∗ grow a tree Tb, by recursively repeating the following steps for
each terminal node of the tree, until the minimum node size nmin is
reached;

• Select m features at random from the p features.

• Pick the best feature among the m as the split point.

• Split the node into two daughter nodes.

end
To make a prediction for an individual sample x:

• Classification:
ŷ(x) = majority vote{Ĉb(x)}B

b=1, where Ĉb(x) is the class prediction of Tb.

• Regression:
ŷ = 1

B ∑B
b=1 Tb(x).

Algorithm 2: Pseudocode for building a random forest

Feature importance is another advantage that random forests bring. At each
split in each tree, the improvement in the split-criterion is the importance measure
attributed to the splitting variable, and is accumulated over all the trees in the forest
separately for each variable. Using the feature importance, it is possible to interpret
the model by exploring the importance of each feature and assess their contribution
on predicting the response.

2.2.3 Model assessment and selection

One of the most popular methods for estimating prediction error is cross validation.
To execute a cross validation procedure, the data needs to be, initially, partitioned
into training and test sets. The test set must not be used in the model tuning and
selection at all. The purpose of keeping this portion of data aside is to have a fair
comparison between different models that their prediction were being made on this
test set.

The training set, however, as the name suggests, should be used throughout the
training phase. When cross validation is employed, the training set itself will further
be partitioned into subsets called validation. One of the well-known cross validation
methods is called k-fold cross validation. For a given k, the training set is partitioned
into k (almost) equal size subsets referred to as folds. The k− 1 folds are dedicated
to train and fit a model and the kth fold is used to validate the model on. Through an
iterative process, each time a different fold will be picked and set aside and the final
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prediction accuracy is computed by taking the average over the predictions obtained
on the validation fold.

2.3 Related Work

2.3.1 Modeling gene regulation using epigenetic data

Ever since the genes were identified in human DNA or other organisms and the
gene transcription concept was noted, the researchers have been relentlessly focus-
ing on understanding this mechanism. Ample studies investigated the genetic and
epigenetic associations with gene expression and numerous statistical models have
been proposed to describe such associations. Ouyang, Zhou, and Wong, 2009 built a
regression model based on the principal components of the transcription factor (TF)
ChIP-seq signal to predict the gene expression measured as RNA-seq. They used the
mouse embryonic stem cell data to identify two groups of TFs that either act as acti-
vators in general or those with dual (activator or repressor) functionalities. Ferdous
et al., 2018 applied several statistical learning algorithms, naming feed forward neu-
ral networks, decision trees, random forests, on an integrated data set consisting of
ChIP-seq time-series data for six protein markers (including histone modifications).
They used the corresponding gene expression data evaluated under several biolog-
ical conditions as the response for their statistical models. Their results support the
key role that histone modifications play in transcriptional regulation. Also, the better
accuracy that their models obtained on later time point profiles hints at the temporal
aspect of the regulatory mechanism. Using their comprehensive study, they were
also able to pinpoint at several protein profiles, such as CDK9 and Brd4, that were
not strongly involved in transcriptional regulations.

2.3.2 Bidirectional gene regulation

Elison et al., 2018 particularly focus on understanding the bidirectional gene expres-
sion by studying GAL1 and GAL10; two bidirectional genes discovered in yeast
Saccharomyces cerevisiae. Using a two-step CRISPR method (Elison, Song, and Acar,
2017), they experimentally investigated the effects of editing the regulatory sites
within the promoter region shared by GAL1 and GAL10. Several other studies con-
centrated on unraveling the mechanisms of bidirectional gene regulation in different
organisms and different promoter architectures (Wei et al., 2011; Xu et al., 2009; Neil
et al., 2009; Fux and Fussenegger, 2003; Park et al., 2014; Yan et al., 2015; Amendola
et al., 2005). The findings, however, were incomprehensive and inconsistent to some
extent, which motivated us to systematically study this phenomenon as part of this
thesis.

2.3.3 Revolutionizing discoveries using scRNA-seq

Inspecting the gene regulation in bidirectional promoters requires a very fine grained
dissection of transcription mechanism preferably at the single cell resolution. There
have been a myriad of studies that generated the scRNA-seq data as well as tools
and methods aiming to analyze such data. As previously mentioned in 2.1.7, new
sequencing protocols have emerged with the ability to capture a single cell, and
sequence its mRNA, resulting in obtaining scRNA-seq data (Tang et al., 2009; Ram-
sköld et al., 2012; Hashimshony et al., 2012). Liu et al., 2019 produced and analyzed
scRNA-seq data for bone marrow stromal cells that led to identification of three
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subpopulations based on the single cell gene expression profiles of known markers.
Another interesting study concentrates on understanding the cell heterogeneity of
midbrain dopamine neurons that are associated with neurological diseases such as
Parkinson’s disease. They prepared data sets of scRNA-seq for human and mouse
in order to discover new subtypes among midbrain dopamine cells and characterize
them at the genome-wide level (Tiklová et al., 2019). They utilized monocle (Trapnell
et al., 2014) to infer the pseudotime trajectories in order to identify distinct temporal
profiles across cells. Monocle is an all-round tool developed to analyze many differ-
ent aspects related to the single cell data. Analyses such as clustering the cells based
on their gene expression profile, identifying differentially expressed genes across the
discovered cell subpopulations, building branching trajectories across cells reflecting
the cell fate decisions.

As highlighted earlier, dropouts are common errors of single cell sequencing pro-
tocols and there have been differently many approaches to detect and impute the
missing value of gene expression in a cell. Mongia, Sengupta, and Majumdar, 2019
impute dropouts in scRNA-seq data through a low-rank matrix completion based
technique. They test their approach, mcImpute, on a number of real data sets and
showed that mcImpute is capable of discerning true zeros from dropouts as well
as imputing their missing values. Another study addressing the dropout issue in
single cell sequencing is called scImpute (Li and Li, 2018a). The authors proposed a
statistical method that automatically detects potential dropouts without introducing
new biases to the rest of the data. scImpute also identifies outlier cells and discards
them ensuring that the imputation would not be applied on them. Gong et al., 2018
proposed a different approach to attenuate the effect of dropouts on the scRNA-
seq data. They considered different clustering configurations obtained from com-
binations of similarity metrics (Pearson and Spearman correlation) together with a
varying range of number of clusters to perform cell-wise clustering on the data. For
each combination, they estimated the zero values in the input matrix. The resulting
clusters were all averaged to obtain the final imputation for the putative dropout
events. Later Tracy, Yuan, and Dries, 2019 proposed another imputation method
called RESCUE. In their workflow, they first, through a greedy approach, find the
most variable genes across cells and subsample these genes using a bootrstapping
procedure. The samples are then clustered in order to generate the imputed gene
expression by averaging the within-cluster expression values. Finally. through an
ensemble approach, all these imputed samples are averaged in order to obtain the
final imputed data. The authors show that RESCUE outperforms the two aforemen-
tioned imputation methods, scImpute and DrImpute, owing to retaining the nature
of the single cell data without imposing any strict model assumptions.

The potential of single cell data does not limit only to identifying new subtypes
or cell subpopulations, even though it is a very interesting and worthwhile area
to explore, rather it can be further exploited to better understand the underlying
gene regulatory mechanism for a single cell. One of the studies that concentrated on
delivering a tool that can provide biological insights into the mechanisms driving
cellular heterogeneity is called SCENIC (Aibar et al., 2017). SCENIC was developed
to map gene regulatory networks using scRNA-seq and discover stable cell states
through evaluating the activity of those networks in single cells. They first identify
subsets of genes, which are co-expressed with transcription factors. Then, in order to
remove false positives due to indirect binding events, they retain the putative direct
binding targets by contrasting the subsets with cis-regulatory motifs and identifying
the significant cases. These subsets are then given a score based on their proposed
scoring algorithm, which results in a binary activity matrix of genes versus TFs.
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Chapter 3

Transcription factor binding -
DREAM CHALLENGE

The work that is presented in this chapter has been published in F1000Research in 2019 (Be-
hjati Ardakani, Schmidt, and Schulz, 2019).

3.1 Introduction

Transcription factors (TFs) are essential elements of transcriptional regulation. They
play crucial roles in establishing and maintaining cellular identity and the aberrant
changes in their activity can result in several diseases (Vaquerizas, 2009). Some
TFs form a direct bind to the DNA molecule at distinct positions, mostly in open
chromatin regions, where the chromatin is accessible (Natarajan, 2012), and regulate
transcription by recruiting additional proteins. General TFs are involved in altering
chromatin organization as well as recruiting RNA polymerase to initiate transcrip-
tion (Vaquerizas, 2009). Therefore, to understand the function of TFs, it is necessary
to identify the TF binding sites (TFBS) on the genome. Depending on the tissue, TFs
bind and regulate distinct genes, i.e., these binding sites are tissue-specific (Natara-
jan, 2012).

Nowadays, ChIP-seq experiments are widely used to experimentally (in vivo)
determine tissue-specific TFBS genome-wide. But the downside is that the ChIP-seq
experiments can become very challenging as performing the experiments are expen-
sive and require an antibody for the target TF. To tackle these limitations, several
computational methods have been proposed to identify TFBS. The majority of these
methods are established based on Position Weight Matrices (PWMs) describing the
sequence preference of TFs (Mathelier, 2016). PWMs specify the occurrence of each
nucleotide at each position of a TF binding motif. Unfortunately, screening the entire
genome using PWMs, in order to identify the TFBS, introduces too many false pos-
itive predictions. Therefore, several methods have been developed to mitigate the
prediction error by combining PWMs with epigenetics data, such as DNase1-seq,
ATAC-seq, or Histone Modifications, representing chromatin accessibility. It has
been shown that including additional features, such as nucleotide composition, se-
quence conservation, and DNA shape, can remarkably enhance the task of TFBS pre-
diction (Pique-Regi, 2011; Luo, 2013; Gusmao, 2014; Kahara, 2015; Yardımcı, 2014;
Cuellar-Partida, 2012; O’Connor and Bailey, 2014; Liu, 2017). Jayaram, 2016, indeed,
provides a non-exhaustive overview of this topic.

Even though PWM based models are amongst the most common tools to evalu-
ate the likelihood of a TF binding to genomic sequences, more involved approaches
such as Slim models, which capture nucleotide dependencies, have been success-
fully used as well (Keilwagen and Grau, 2015). Alipanahi, 2015 proposed a de novo
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approach to learn TF binding specificities from large scale datasets using deep learn-
ing.

Given the importance of identifying TFBS, there has been a challenge held by
the DREAM challenge organizers to encourage researchers focusing on tackling this
issue. The challenge’s title was ENCODE-DREAM in vivo Transcription Factor binding
site prediction challenge (ENCODE-DREAM, 2017) through which participants had
the opportunity to develop and evaluate their method on the provided data, which
consisted of TF-ChIP seq data for 31 TFs, accompanied with RNA-seq and DNase1-
seq data in 12 different tissues. The class labels were deduced from the TF ChIP-seq
data. The challenge organizers had a systematic comparison between the different
approaches on TFBS prediction through evaluating the prediction power of the pro-
posed models on completely different tissue/cell types that were not used for train-
ing.

My colleague, Florian Schmidt, and I with the supervision of Prof. Dr. Marcel
Schulz formed a team to participate in this challenge. The methodology we used
and experiments we designed to address the TFBS prediction as well as the results
are described in this chapter. Briefly, we proposed an ensemble learning approach
using random forest (RF) classifiers, extending the work of Liu, 2017. Since, Liu,
2017 and Waardenberg, 2016 have shown that tissue-specific cofactor interactions
are appropriate for modeling TF binding, we designed our ensemble model such
that it was able to exploit the tissue specificity inherent in the data and gain a better
generalizability power.

The summary of the procedure is as follows. First TF affinities are computed us-
ing TRAP (Roider, 2007) for 557 PWMs in DNase-hypersensitive sites (DHSs) iden-
tified with JAMM (Ibrahim, 2015). The computed TF affinity scores can capture low
affinity binding sites, which were shown to be biologically relevant (Tanay, 2006;
Crocker, 2015). This data, which was generated by Florian Schmidt, forms our fea-
ture space to be used in training random forest classifiers in order to predict the
binding site of the TF of interest. Generating the models and their evaluation was
performed by me.

3.2 Methods

3.2.1 Data

For 31 TFs, the ChIP-seq data was provided, as well as DNase1-seq and RNA-seq
data for 13 different tissues. The TFs used for training the classifiers are listed in
Table 3.1. It provides the number of bins labeled as bound for each tissue or cell
line for which the TF ChIP-seq was available to infer the class labels. Except for the
held-out chromosomes 1, 8, and 21, all chromosomes are used for the training phase.

The evaluation on the unseen test data was performed on eight TFs listed in
Table 3.2. The predictions were made in bins of size 200 bp, each shifted by 50 bp,
spanning the entire genome, as specified by the competition. In addition to bound
and unbound labels, the bins were annotated with another class called ambiguous,
which we excluded them from our study. Further details on the data can be accessed
from the challenge website ENCODE-DREAM, 2017.

3.2.2 Data preprocessing and feature generation

Due to the memory limitation as well as drastic imbalance in the class distribution,
we shrank the data into a balanced and reasonably smaller subset. For each TF, we
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TF Number of bins labelled as bound per tissue
ATF7 272,2234 (GM12878), 218,239 (HepG2), 345,775 (K562)
CREB1 164,968 (GM12878), 103,752 (H1-hESC), 178,080 (HepG2), 98,554 (K562)
CTCF 179,672 (A549), 271,097 (H1-hESC), 206,336 (HeLa-S3),

208,868 (HepG2), 215,238 (K562), 305,547 (MCF-7)
E2F1 93,117 (GM12878), 55,391 (HeLa-S3)
EGR1 72,595 (GM12878), 52,733 (H1-hESC), 175,994 (HCT116), 58,793 (MCF-7)
EP300 126,409 (GM12878), 69,247 (H1-hESC), 157,629 (HeLa-S3),

168,173 (HepG2), 137,369 (K562)
GABPA 26,467 (GM12878), 51,666(H1-hESC), 31,202 (HeLa-S3),

60,552 (HepG2), 109,423 (MCF-7), 78,403 (SK-N-SH)
JUND 203,665 (HCT116), 179,999 (HeLa-S3), 183,558 (HepG2),

193,814 (K562), 92,905 (MCF-7), 222,013 (SK-N-SH)
MAFK 34,054 (GM12878), 97,659 (H1-hESC), 62,124 (HeLA-S3),

291,337 (HepG2), 201,157 (IMR90)
MAX 301,615 (A549), 98,327 (GM12878), 224,379 (H1-hESC), 321,501 (HCT116),

211,590 (HeLa-S3), 317,579 (HepG2), 318,318 (K562), 250,775 (SK-N-SH)
MYC 57,512 (A549), 91,325 (HeLa-S3), 183,627 (K562), 151,748 (MCF-7)
REST 71,251 (H1-hESC), 47,654 (HeLa-S3), 67,453 (HepG2),

59,640 (MCF-7), 48,946 (Panc1), 94,082 (SK-N-SH)
RFX5 161,689 (GM12878), 22,948 (HeLa-S3), 54,961 (MCF-7)
SRF 21,495 (GM12878), 40,201 (H1-hESC), 176,158 (HCT116),

22,593 (HepG2), 18,895 (K562)
TAF1 87,109 (GM12878), 185,027 (H1-hESC), 93,824 (HeLa-S3),

110,385 (K562), 83,276 (SK-N-SH)
TCF12 51,798 (GM12878), 104,834 (H1-hESC), 82,102 (MCF-7)
TCF7L2 100,926 (HCT116), 165,264 (HeLa-S3), 143,025 (Panc1)
TEAD4 66,198 (A549), 103,483 (H1-hESC), 174,716 (HCT116),

125,917 (HepG2), 186,759 (K562)
YY1 136,621(GM12878), 195,489 (H1-hESC), 63,293 (HCT116), 133,943 (HepG2)
ZNF143 197,385 (GM12878), 178,088 (H1-hESC), 48,154 (HeLA-S3), 103,755 (HepG2)

TABLE 3.1: Number of bins labeled as bound per transcription factor
(TF) and tissue.

TF Tissue(s)

CTCF PC-3,
Induced pluripotent stem cell

E2F1 K562
EGR1 liver
GABPA liver
JUND liver
MAX liver
REST liver
TAF1 liver

TABLE 3.2: Test data shown per transcription factor (TF) and tissue.
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randomly sampled as many negative sites as there were positive binding sites for
training the classifiers.

We explored two different approaches for designing the feature data: (1) with
and (2) without considering DNase-hypersensitive sites. In none of the approaches,
we have used the provided RNA-seq data nor did we compute DNA shape features.
The TF binding affinities are computed using TRAP (Roider, 2007) for 557 distinct
TFs executed with the default parameter settings. The position specific energy ma-
trices (PSEMs) used in our computation are converted from position weight matrices
(PWMs) obtained from JASPAR (Mathelier, 2016), UniPROBE (Hume, 2015), and Ho-
comoco (Kulakovskiy, 2016). The code to perform the conversion and running TRAP
was included by Florian Schmidt in our github repository 1. Figure 3.1a shows the
workflow for the first feature setup, where tissue-specific DHSs using the peak caller
JAMM (Ibrahim, 2015) (version 1.0.7.2) are computed and then the called peaks are
merged using the bedtools merge (Quinlan and Hall, 2010) command (bedtools ver-
sion 2.25.0). Next, TF affinities are calculated in the specified DNase-hypersensitive
sites using TRAP and then the median DNase1-seq signal per peak is computed from
the bigwig files provided by the competition. Using a left outer join command from
bedtools, the resulting data is intersected with the binned genome structure required
for training and testing provided by the competition.

The second setup, as shown in Figure 3.1b, does not rely on DHSs, instead TF
binding affinities and the DNase1-seq signal are computed in the given bins de-
scribed in Data. To address the variability between biological and technical repli-
cates, the median coverage of the DNase1-seq signal across replicates is computed
using the bedtools coverage command. To sum up, in setup 2, the features computed
for each bin are TF affinities attributed to that bin and the DNase1-seq signal that is
measured in that bin as well as the bins located to the left and right (DNase1L and
DNase1R).

3.2.3 Ensemble Random Forest classifier

The Random Forest models, implemented using the randomForest R-package (Liaw
and Wiener, 2002) (version 4.6-12), are trained on either of the feature setups ex-
plained in the previous section. Training the RF models consists of two main steps,
irrespective of feature setup. In order to prevent the classifiers inclining to the major
class, i.e., over-fitting to the class with larger size, we first balanced the two bound
and unbound classes. To fit the RF classifiers, we used 4, 500 trees, and at most 30, 000
positive (bound) and negative (unbound) samples. This restriction was imposed
due to the limitations of the randomForest R-package. As illustrated in Figure 3.2a,
for a given target TF, we first learn the tissue-specific RF classifiers using all avail-
able features, Ti ∈ Rn×557 ; i ∈ {1, · · · , m}, where n is the number of bins forming
the training set, and m denotes the number of training tissues for the target TF:

RFi = RandomForest(Ti, Binding(Ti)),

where Binding(Ti) is a vector of length n, holding the binding labels for the target
TF in tissue i, and RandomForest(., .) generates the RF model trained on the features
and labels provided by the first and second argument, respectively. An example of
the input matrix Ti, for three tissues, i.e., m = 3, and the response vector Binding(Ti)
is shown in Figure 3.2b. The resulting models are then used to perform an inter-
mediate feature selection step. In the second step, by shrinking the feature space to

1https://github.com/SchulzLab/TFAnalysis

https://github.com/SchulzLab/TFAnalysis
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FIGURE 3.1: Two data preprocessing workflows (a) Using the JAMM
peak caller, DHSs are called for all replicates of a distinct tissue. TF
affinities in the identified DHSs are computed using TRAP for m =
557 TFs, the median signal of DHSs is computed using bedtools. The
concatenation of both TF affinities and median DHS signal forms the
input feature. (b) Similar to (a) but instead of DHSs, TF affinities and

median DNase1-seq signal are computed per bin.

the union of top 20 regulators (c.f. Figure 3.3a) among T′i classifiers, we put focus
on the essential regulators to be further used in our subsequent models. The top 20
regulators are obtained through ranking the feature variables according to their Gini
index (Figure 3.2c):

T′i = Subset(Ti,
m⋃

j=1

TopFeatures(RFj)),

where TopFeatures(RFj) denotes the top 20 features of RFj and Subset(., .) generates
the reduced feature matrix based on the union of the top TFs. In the following, we
refer to training datasets consisting of only one tissue and training datasets consist-
ing of multiple tissues as single tissue and multi tissue, respectively. Considering the
single tissue case, we train an RF model, RF′i , on the reduced feature space and use
this as the final model for the respective target TF (no ensembling step):

RF′i = RandomForest(T′i , Binding(Ti)).

In the multi-tissue scenario, we retrain tissue-specific RF models on the reduced
feature space and apply them across all available training tissues:

T′E = {Prediction(RF′i , T′i ); i = {1, · · · , m} ∈ [0, 1]n×m},

where Prediction(RF′i , T′i ) returns the predictions made by RF′i when applied on the
T′i . Their predictions are combined in a new feature matrix that is used as input to
train an ensemble RF, RFE. Note that the input matrix contains predictions of all
tissue-specific RF models on all training tissues (Figure 3.2d):

RFE = RandomForest(T′E, Binding(T′E)).
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By design, the ensemble model combines the tissue-specific RF classifiers in a non-
linear fashion for a better generalizability across all training tissues.
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FIGURE 3.2: a) An overview of model training for a given target
TF with multiple training tissues. b) Full feature matrices, T1, T2, T3
from (a), are used to train tissue-specific Random Forest (RF) clas-
sifiers. From those RF classifiers (RF1, RF2, RF3 from a), the union
of the top 20 features is determined from each RF. c) Based on the
union (m′ ≤ m), reduced tissue-specific feature matrices, T′1, T′2, T′3
as ina(a), are produced. Subsequently, tissue-specific RF classifiers
(RF′1, RF′2, RF′3 from a) are trained on these reduced feature sets. d)
The predictions of tissue-specific RF classifiers applied on all training
tissues are aggregated to form the feature matrix T′E, which is then
used to train the ensemble model (RFE from a). Note that the feature
matrices represent feature setup (1), where the DHS sites were used.

3.2.4 Performance assessment

The model performances are assessed in two different scenarios. The first scenario
addresses the evaluation on the out-of-bag (OOB) data. The OOB error is defined as
the mean prediction error for each training sample using trees that were not trained
on that sample. Using the PRROC (Grau, Grosse, and Keilwagen, 2015) package,
the performance on OOB data is computed in terms of the area under the precision
recall curve (PR-AUC) and the area under the receiver operator characteristic curve
(ROC-AUC). The former measures the accuracy by contrasting precision against re-
call, whereas the latter contrasts false positive rate against true positive rate. A ROC-
AUC value around 0.5 suggests a random classifier, however there is no such base-
line defined for PR-AUC. The higher values of PR-AUC suggest better classification
power and the lower values indicate weaker prediction power. In addition to the
curve based measurements, we evaluate the models based on the misclassification
rate for the Bound and Unbound classes, corresponding to the false negative and
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false positive rate, respectively:

Bound = (
FN

TP + FN
), Unbound = (

FP
TN + FP

), (3.1)

where TP is the number of bins correctly predicted as bound, TN is the number of
bins correctly predicted as unbound, FP and FN denote the number of bins incor-
rectly predicted as bound and unbound, respectively.

Secondly, we compute the aforementioned performance measurements for the
test data shown in Table 3.2. As previously mentioned, the test data consists of three
held-out chromosomes, 1, 8, and 21, which have not been used for training. Beside
the distinct chromosomes allocated for the testing round, the TF binding prediction
is performed on unseen tissues, i.e. tissues that were not used for training. Unlike
the training data, test data is not balanced, i.e. the unbound class is larger than
the bound class. Given this class imbalance, the PR-AUC is considered as a more
appropriate metric for measuring performance compared to other metrics, such as
ROC-AUC, false positive and false negative rates. Due to memory limitation of the
PRROC package the test data had to be downsampled to 100,000 samples, while
preserving the original Bound to Unbound ratio.

The two feature setups illustrated in Figure 3.1 are evaluated on the same gold
standard (the same test data sets), therefore a fair comparison can be made to con-
trast their performance against each other.

3.2.5 Protein-protein-interaction score

The purpose of the feature reduction step was to select TFs that are likely to interact
with the target TF. To systematically test whether this goal has been achieved, we
utilized a protein-protein-interaction score.

A customized protein-protein-interaction (PPI) probability matrix R was intro-
duced by Köhler, 2008, where a random walk analysis was conducted on the protein-
protein-association network obtained from STRING (Szklarczyk, 2017) (database
version 9.05). An entry Ri,j in this matrix represents the probability for which protein
i interacts with protein j. This probability is not symmetric, meaning Ri,j 6= Rj,i. To
generate a score describing how likely it is that a subset of proteins P contained in R
interact with a distinct TF t, guided by the feature importance scores the RF models
provide, we define the PPI score St,P as follows

St,P = −log(
∑p∈P((Rp,t + Rt,p)× GI(p))

2|P| ), (3.2)

where GI(p) represents the Gini index values of p obtained from the RF model cor-
responding to t. This means that for smaller values of St,P the chance that the regu-
lators in P interact with TF t is higher.

3.3 Results

In this section, we first show that narrowing the feature space down to those TFs
essential for training does not significantly hurt model accuracy. Then, we exhibit
the benefits of the ensemble learning to tackle the TFBS prediction problem and how
its accuracy varies as a function of number of training tissues. We further examine
the top selected TFs by the RF classifiers and discover known interaction partners
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based on their high PPI scores. Finally, we compare the two feature setups, described
in the Methods section, and investigate their influences on model performance. If not
stated otherwise, all figures presented in the following are based on annotation setup
(1), obtained in DHSs.

3.3.1 Reducing the feature space to a small subset does not affect classifi-
cation performance

Since having a sparse feature space eases model interpretation, we reduce the fea-
ture space to a hand full of important ones. As mentioned previously, we deter-
mined top features based on the Gini index obtained from the RF models, resulting
in TF and tissue-specific sets containing either the top 10 or top 20 features. As de-
picted in Figure 3.3a (also Appendix A.3a) the difference in OOB error between the
feature set with top 10, top 20, and all features is negligible. Intriguingly, on test
data a slight increase in model performance can be observed for the reduced fea-
ture space models in comparison with the model where all features were used. This
observation hints to gaining generalizability power through the feature extraction
procedure (Appendix Figure A.1). Because of this performance gain on test data, as
well as a substantial assistance to the interpretability of the models and runtime, we
decided to choose the case where the union of top 20 TFs is taken across models to
proceed with the learning procedure. Our results reveal that, for feature setup (1),
the DNase1-seq signal within the DHSs is the most important feature across all TFs.
Similarly, for setup (2), the features corresponding to DNase1-seq signals measured
in left, center, and right bins are amongst the most important ones.

3.3.2 Ensemble learning improves model accuracy

As shown in Figure 3.3b (Appendix Figure A.3b), the RF ensemble classifiers outper-
form the tissue-specific ones, which suggests that the ensemble models are capable
of generalizing across tissues. Figure 3.3c provides the performance of the models on
the test tissues that were linked to multiple training tissues. These results show that
ensemble models have higher PR-AUC compared to tissue-specific classifiers. Since
the test data was imbalanced, the ROC-AUC measurements tend to be in favor of the
tissue-specific classifiers. However, this is an example of a case where ROC-AUC is
not a suitable performance metric, since it is biased due to the high number of neg-
ative (i.e. unbound) cases in the test data. The superiority of the ensemble models
are also reflected by false positive and negative rates (Appendix A.3c). Taking these
results into account, it can be concluded that ensemble learning is a promising ap-
proach to address the tissue specificity of TF binding.

3.3.3 Prediction accuracy and its relation to the number of training tissues

Although the results in Figure 3.3b and 3.3c suggest that the ensemble methods
perform well, it would be interesting to understand how the number of training
tissues influence the performance. To address this, permutation experiments were
performed to train classifiers with all possible combinations of training tissues. As
this is a computationally expensive task, we executed the procedure on only three,
arbitrarily selected, TFs: MAX, TEAD4, and E2F6. The results in figure 3.4a (Ap-
pendix A.4a) show that the OOB AUC value increases as the number of training
tissues increases. This observation suggests that the ability of an ensemble RF to
generalize across tissues improves with more training tissues.
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FIGURE 3.3: a) PR-AUC and ROC-AUC for different sets of features
(all features, top 10, and top 20). Differences in performance between
the top 20 and all features models are minor. b) Comparison of the
out of bag (OOB) error between ensemble models and tissue-specific
random forest (RF) classifiers. Ensemble models outperform tissue-
specific RF classifiers. c) PR-AUC and ROC-AUC computed on un-
seen test data for ensemble and tissue-specific RF classifiers. Note

that the scale of the y-axes is different for the subplots.

In order to test whether the improved accuracy obtained from the ensemble RF
classifiers was in fact because of the ensemble learning two additional learning se-
tups were designed. Firstly, we aggregated all tissue-specific data sets into one. In
other words, we pooled the training data for one TF across all available tissues into
one data set. Then, we used this pooled data set to train a new RF model. Secondly,
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FIGURE 3.4: Comparison of number of tissues and classifier setups
for the three TFs E2F6, MAX, and TEAD4. a) Model performance as
a function of number of tissues used for training. The OOB AUC val-
ues increase when more tissues are included in the ensemble learn-
ing. Red dots represent the mean classification error across all tissue-
specific classifiers. The black points represent individual models. b)
Comparison between two ensemble models: averaging (takes the av-
erage of all individual RF predictions) and the RF ensemble model. In
addition, one RF classifier was trained on pooled data sets comprised
of training data for all available tissues for one target TF. The ensem-
ble models perform better than the models based on aggregated data.

we examined another ensemble approach, which we consider to be a baseline for
our proposed ensemble model. In detail, we computed the average of predictions
over tissue-specific models in order to obtain the final prediction. As depicted in Fig-
ure 3.4b the proposed ensemble models perform better than both tested alternatives.
This shows that the RF ensemble technique is better suited to capture tissue-specific
information than any other tested methods.

3.3.4 Predictors selected by the RF classifiers are associated to the target
TF

As previously stated, we speculated that the top predictors selected by the RF clas-
sifiers should represent regulators that exist either in protein complexes with the
target TF through direct or indirect binding, or bind directly to DNA in close prox-
imity to the target TF. To address this speculation, we computed a PPI score St,P
(see 3.2.5) for the selected predictors P of target TF t and compared it against PPI
scores obtained for randomly sampled sets of TFs (based on 100 TF subsets drawn
randomly). The PPI score St,P for target TF t is small, if t is likely to interact with fac-
tors in P. Conversely, the score is high if t is less likely to interact with factors in P.
As shown in Figure 3.5a, except for three TFs (MAX, TAF1, ZNF143), the PPI scores
of the TFs suggested by our RF classifiers are better (i.e., smaller) than the scores for
the randomly selected set. This supports that the features selected by RF classifiers
represent regulators that are likely to interact with the target TF, either directly or
with indirect contacts.

Figure 3.5b shows an example of a PPI network focused on the TF MAFK. The
network was obtained from the STRING database (Szklarczyk, 2017), with the set-
tings highest confidence and no more than 10 interactors. The top features selected by
the RF classifiers contain all known regulatory proteins in this network, except for
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Figure 5. a) Log transformed PPI scores computed for a set of TFs. In the Random case, we show the mean PPI score across 100 random 
draws and its standard deviation. The smaller the PPI score the better. Only for three TFs (MAX, TAF1, ZNF143), the randomly sampled PPI 
score is better than or equal to the score derived for the TFs selected by the RF classifiers. b) PPI network obtained from STRING centered 
around the TF MAFK, highlighting proteins that interact with MAFK with high confidence. Proteins colored in green where identified as 
important features in the RF classifiers, proteins shown in gray could not be retrieved by our model, because they are DNA-binding proteins, 
or we do not have a PWM for them in our set. Regulators shown in red could have been detected by the RF, but were not included in the top 
set of regulators.

Figure 6.  Comparison of misclassification rate depending on the feature design computed on test data. The bin based model 
outperforms the peak based model in predicting bound labels, while in the unbound case the model based on DHSs is better than the bin 
based model.
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FIGURE 3.5: a) PPI scores calculated for a set of TFs. In the Random
case, mean and standard deviation of PPI scores are shown across 100
random draws. Except for three TFs (MAX, TAF1, ZNF143), the PPI
scores obtained from the TFs suggested by the RF classifiers are better
than Random. b) protein-protein-association network obtained from
STRING database centered around the TF MAFK, highlighting pro-
teins that interact with MAFK with high confidence. Proteins colored
in green were reported as important features by the RF classifiers,
proteins shown in gray could not be retrieved by our model, either
due to the fact that they are not DNA-binding proteins, or we do not
have their PWM in our set. Regulators shown in red could have been

detected by the RF, but did not appear in the top set of regulators.

NFE2L2, shown in red. Among these TFs are MAFK itself, MAFF, MAFG and NFE2
(highlighted in green). The strong interactions among the small MAF proteins (Kan-
nan, 2012) as well as the dimerization of those with NFE2 (Igarashi, 1994) have been
previously reported in the literature.

Interaction partners marked in gray can not be detected by our approach as ei-
ther these are proteins without known regulatory functions or we do not have their
PWMs to include in our features.

3.3.5 Feature setups influence the FP and FN

Figure 3.6, delivers the PR-AUC and ROC-AUC values computed for the bin based
and peak based feature setups evaluated on the test data. Since the test data was
largely unbalanced, the ROC-AUC assessments appear to be rather inconclusive.
According to the PR-AUC values shown in this figure, the bin based models out-
perform the peak based models in the Bound case, whereas the peak based mod-
els exhibit superiority in the Unbound case. In contrast, bin based models perform
poorly in the Unbound case, which is most likely due to the strong dependence of the
RF classifiers on the DNase1-seq signal. On the other hand, the peak based models
perform well in the Unbound case, as the search space for TFBSs is restricted only
to DHSs. This elevates the precision of the predictions, but simultaneously lowers
the recall, which is reflected by the large misclassification rate in the Bound samples
(Appendix Figure A.5).

The bin based models (setup 2) outperform the peak based models when predict-
ing the Bound class, whereas the peak based models show superior performance for
predicting the Unbound labels. Correspondingly, bin based models perform poorly
in the Unbound case, which is probably driven by the strong dependence of the RF
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FIGURE 3.6: Comparison of PR-AUC and ROC-AUC values for the
feature setups, Bin and Peak, measured on test data. Peak based mod-
els clearly outperform the bin based models when PR-AUC measure-
ments are considered. This trend becomes somewhat vague when
ROC-AUC values are examined. However, in this case, the ROC-
AUC assessment is less reliable than PR-AUC due to the largely un-

balanced test data.

classifiers on the DNase1-seq signal. On the other hand, models based on DHSs per-
form well in the Unbound case, because the search space for TFBSs is limited to only
DHSs. This increases the precision of the predictions, but simultaneously lowers the
recall, reflected by the high misclassification rate in the Bound case.

Conclusion and discussion

Here, we proposed an RF based ensemble learning approach to predict transcription
factor binding sites. Our proposed approach pinpoints the advantages of ensemble
learning in a multi tissue setting, which is able to pick up the associated cofactors to
the target TF.

Evaluated on the OOB and test data, our proposed ensemble approach is able
to better generalize across tissues, in contrast to classifiers trained only on a single
tissue (Figure 3.3). Moreover, the accuracy of the ensemble classifiers elevates as
the number of training tissues increases (Figure 3.4a). We further show that merely
pooling all training data to learn one RF does not provide as accurate results as our
ensemble model (Figure 3.4b). In this study, we chose random forests, as they are
considered powerful and accurate classifiers that generate non-linear predictions in
a reasonable time.

RF classifiers have also been proposed recently (Liu, 2017) as a suitable method
to predict TF binding. Similar to our work, the authors of Liu, 2017 perform cross
cell-type predictions, but not in an ensemble fashion.
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As shown in Figure 3.3a, reducing the feature space to the most relevant ones
provides similar classification performance as the full feature space. In Figure 3.5,
we showed that most of these selected TFs are known interaction partners for the
target TF. This is further supported by a recent study showing that most TFs bind in
dense clusters around genes, indicating an extensive interaction among them (Yan,
2013).

We further examined the interactions between target TF and feature TFs by com-
paring their corresponding PPI scores. For most TFs, the results show a better PPI
score for the predicted TFs than random. However, the PPI score for TAF1 and MAX,
for which the ensemble classifier could improve only marginally over the tissue-
specific classifiers, was worse than random. This implies that the models trained
for TAF1 and MAX cannot account for their true interaction partners. As a matter
of fact, an inspection of the STRING database revealed that only TAF1 and TBP are
among the top 20 regulators for TAF1 that are included in our PWM collection. For
the remaining interaction partners, which are mostly from the TAF family, no bind-
ing motif exists in the public repositories. As a result, these TFs are absent in our
PWM collection that were used to generate the features for our RF classifiers. Sim-
ilarly, for MAX, only 5 out of 20 high confidence interaction partners are included
in our PWM collection. Specifically, no PWM is available for 6 TFs interacting with
MAX, while the remaining interacting proteins are not categorized as TFs.

Replacing the feature setup for the RF classifiers from (1) DHS-based to (2) bin-
based showed that DHSs are necessary to reduce the false positive rate (Figure 3.6)
for TFBS predictions. Using only bins, without DHS information, recall could be
improved, but only at the cost of poor precision. One obvious explanation for this is
the difference in size of the genomic search space between the two setups. The bin
based models have a low misclassification rate in the Bound case, because they do
consider the whole genome without neglecting any sites beforehand, thus improv-
ing recall. However, our observations suggest that considering only the raw signal
does not adequately correct for false positive sites, as opposed to using DHSs, which
yields an improved misclassifcation rate in the Unbound case compared to the raw
signal. To potentially overcome the strong biases introduced by DHS- and bin-based
models, we could train yet another ensemble classifier using the predictions of the
DHS- and the bin-based models as input. Depending on the application, the model
could be optimized based on different accuracy metrics, such as precision, recall, or
a joint metric like PR-AUC.

In general, training and evaluating methods for predicting TFBS is challenging
mostly because of the imbalanced nature of the problem. In other words, there are
many more Unbound (negative) than Bound(positive) binding sites in the genome.
This requires both (a) proposing approaches that avoid over-fitting by learning only
the major class and (b) developing evaluation strategies that can account for this
issue.

Aside from the aforementioned technical difficulties, we show that modeling co-
factors is beneficial to predict TFBS and that ensemble learning is a promising ap-
proach to gain generalizability across tissues.
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Chapter 4

Bidirectional genes and their
histone map

4.1 Introduction

Promoters are key structures for a coordinated regulation of gene expression. The
increasing number of large-scale high resolution epigenomic and RNA-sequencing
technologies led to a deeper understanding of genome-wide promoter configura-
tions. Recent studies have shown that the number of bidirectional promoters (BPs)
in the human genome is much larger than previously anticipated (Core, Waterfall,
and Lis, 2008; Preker et al., 2008; Seila et al., 2008). Sensitive assays, such as se-
quencing of 5’-ends of capped nascent RNAs (GRO-cap and Start-seq), allow the de-
tection of unstable nascent RNAs produced at promoters, and have revealed more
widespread bidirectional transcriptional initiation than previously recognized (Core
et al., 2014b; Duttke et al., 2015a; Scruggs et al., 2015). However, exact classification
of bidirectional or unidirectional promoters in a sample of interest is challenging, as
it depends heavily on the sensitivity of the sequencing assay to recognize unstable,
nascent RNAs (Andersson et al., 2015; Duttke et al., 2015b).

Recent studies discuss two types of bidirectional promoters. The first type con-
cerns transcription of two RNAs in opposite direction from one core promoter, i.e.,
one promoter leads to bidirectional transcription (Bagchi and Iyer, 2016; Duttke et
al., 2015a; Lacadie et al., 2016). In the second type, transcriptional initiation of both
RNAs occurs at two distinct core promoters that are close to each other, but are ori-
ented in reverse direction, thus sometimes termed divergent bidirectional promot-
ers.

In this work we focus on bidirectional promoters that have two distinct core pro-
moter elements that drive divergent transcription of two nearby genes. We are in-
terested in the question if the regulation of one of these core promoters depends
on the regulation of the other by studying the histone modifications (HMs) that are
associated with transcription of the two genes at a BP.

In contrast to previous studies that have relied on the comparison of unidi-
rectional against bidirectional promoters, we use a different approach by focusing
solely on the bidirectional genes and aiming to associate spatial genomic features to
the direction of transcription.

We analyze multiple histone modification data together with their correspond-
ing gene expression measured in bulk RNA-seq to form an interpretable statistical
model that is able to delineate how histone modifications might direct the transcrip-
tion in bidirectional genes.
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FIGURE 4.1: Bimodal distribution of H3K4me3 mark at bidirectional
promoters. a) Heat map showing H3K4me3 signal in a 4kb window
anchored on the TSS of the plus gene. The rows represent genes clus-
tered by kmeans. b) H3K4me3 average signals in three clusters. c)
The boxplots show the logarithm of plus to minus gene expression

ratio for the three clusters.
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For the sake of clarity, we refer to the two strands of the DNA as plus (also known
as forward or Watson) and minus (also known as reverse or Crick) strands. The plus
strand refers to the nucleotide sequence that is stretched from the 5′ end to the 3′

end. Conversely, the minus strand is the complementary DNA of the plus strand
that stretches from the 3′ end to the 5′ end. Figure 4.1a shows the distribution of the
H3K4me3 histone modification ChIP-seq signal measured in bins of 100 bp spanning
a 4 kb window anchored at the TSS of the plus gene of 1242 BPs. As not all genes
are regulated the same, even though they come from a particular subset of genes
sharing a common property of being bidirectional, we were keen to find further
subsets with the help of clustering. We performed k-means clustering on the matrix
shown in the heat map of Figure 4.1a and inspected the cluster representatives (aver-
age signal in each cluster) as illustrated in Figure 4.1b. The signal corresponding to
the cluster colored in blue has the smallest magnitude with two equal elevations at
∼300 bp up and downstream of the TSS. The other two clusters, on the other hand,
exhibit uneven peaks with one being remarkably more pronounced than the other
at ∼400 bp away from the TSS. This observation inspired us to inspect the bidirec-
tional gene expression at these clusters. Figure 4.1c demonstrates the distribution
of the log-transformed ratio between the expression values of genes located on plus
and minus strands for the clustered BPs. Not surprisingly, the green cluster that
showed a pronounced peak of H3K4me3 mark at the downstream of the TSS in Fig-
ure 4.1b, has higher expression values of the plus gene compared to minus. Similarly
the red cluster, where the HM signal peaks upstream of the TSS (where the minus
gene is located), has higher minus gene expressions. The blue cluster, as expected, is
associated to bidirectional genes with relatively equal expression of plus and minus
genes. These observations raised an interesting question: Are histone modifications
directional? In other words, is there an association between the abundance of his-
tone modifications and the direction where the gene is transcribed. This chapter is
devoted to address this question, using diverse genetic and epigenetic data, from
RNA-seq to ChIP-seq.

4.2 Methods

4.2.1 Primary cell types and cell lines

Epigenomic data for the following primary cell types and cell lines have been pro-
duced by the DEEP consortium and are available on the DEEP data portal1 as well as
the IHEC data grid2, including metadata information with further details on sample
sorting and preprocessing: hepatocytes (41_Hf03_LiHe_Ct), monocytes (43_Hm03_BlMo_Ct),
macrophages (43_Hm05_BlMa_Ct), central memory T-cells (51_Hf01_BlCM_Ct), HepG2
cell line (01_HepG2_LiHG_Ct1).

The rest of the data, K562 (histone modification, transcription factor, CAGE ex-
pression), GM12878 (histone modification, CAGE expression), and HepG2 (tran-
scription factor, CAGE expression) were obtained from the ENCODE portal.

1http://deep.dkfz.de/#/home
2http://epigenomesportal.ca/ihec/grid.html

http://deep.dkfz.de/#/home
http://epigenomesportal.ca/ihec/grid.html
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4.2.2 Mapping of ChIP-seq data

Reads were mapped to the 1000 genomes phase 2 assembly of the human refer-
ence genome (NCBI build 37.1,3) with a hardware-accelerated implementation of
Burrows-Wheeler Aligner BWA aln version 0.6.2 (Liu et al., 2012) with -q 20, and
BWA 0.6.2 sampe with -a 1000. Merging and duplicate marking was performed with
Picard version 1.125 (4). Laura Arrigoni and sarah Kinkley generated the ChIP-seq
data. Bäarbel Felder, Gideon Giacomelli, Karl Nordström, Peter Ebert, Andreas S.
Richter, Barbara Hutter, Benedikt Brors, Jürgen Eils performed mapping and man-
agement of sequencing data.

4.2.3 Mapping of RNA data

BAM files of RNA-seq reads were produced with TopHat 2.0.11 (Kim et al., 2013),
with Bowtie 2.2.1 (Langmead and Salzberg, 2012) and NCBI build 37.1 in –library-
type fr-firststrand and –b2-very-sensitive setting. Cufflinks was used for gene ex-
pression computation (Trapnell et al., 2012) using GENCODE release 19 (GRCh37.p13).

4.2.4 GRO-cap and CAGE expression estimation

We downloaded GRO-cap data for K562 and GM12878 cell lines from the GEO under
accession GSE60456 provided by Core et al., 2014b. The count of the reads overlap-
ping with a window in the region [0,+100] base pairs downstream of a gene TSS is
used to define GRO-cap or CAGE derived expression.

4.2.5 Unsupervised clustering of histone data

To group the HM signals heuristically, we incorporated the kmeans clustering im-
plemented in R. The best number of clusters was chosen based on the best average
silhouette value for different number of clusters ranging from 2 to 10.

4.2.6 Construction of histone features

For each BP, we remove the region between the TSSs of BP gene pairs, from the esti-
mation of the HM signals. This allows us to place the anchor for our binning method
on a single site while capturing the spatial information stored on both sides of the
bidirectional TSSs. To perform the binning, we define a window of size 4000 bp cen-
tered at the aforementioned locus. This window is partitioned into 40 bins each of
size 100 bp. In the end, all the binned regions corresponding to six HMs are joined
together forming a long vector of size 240 (6× 40) elements.

4.2.7 Regression model learning

We incorporated the fusedlasso function from the genlasso R package (Arnold and
Tibshirani, 2014) and added an intercept to the model to account for non-standardized
data. We use fused Lasso to model dependencies between adjacent genomic bins in
our regression. Analysis with the normal Lasso are done with the glmnet R package.

3ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/phase2_reference_
assembly_sequence/

4http://broadinstitute.github.io/picard

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/phase2_reference_assembly_sequence/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/phase2_reference_assembly_sequence/
http://broadinstitute.github.io/picard
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As described in 2.2, the objective function for fused LASSO is as follows:

L(β0, β) = min
β

N

∑
i=1

ε2
i + λ ∑

(i,j)∈E
|βi − β j|+ γλ̇

p

∑
i=1
|βi|+ β0, (4.1)

where E denotes the edges of a given graph G = (V, E) defined over the feature
variables as its node set (V). Precisely, V describes the genomic bins,

V = {Bj
i} i ∈ {1, 2, · · · , 40}; j ∈ {1, 2, · · · , 6}. (4.2)

On the other hand, E defines the connection between the bins.

E = {ej} j ∈ {1, 2, · · · , 6}, (4.3)

where
{ej} = {Bj

i , Bj
i+1} i ∈ {1, 2, · · · , 19, 21, · · · , 39}. (4.4)

In other words, E represents the edges that connect the adjacent bins except for the
border where there is the gap between the TSS (no edge between Bj

20 and Bj
21). In

addition, the histone modifications should not be connected together, meaning, the
last bin of HM1 should be disjoint from the first bin of HM2 and so on. Therefore
the transition between the concatenated HMs must be interrupted as well.

Next, we partitioned the data (1242 genes and 240 bins in total) into training
(80%) and test (20%) sets and trained the fused LASSO models using 5-fold cross
validation on the log2-transformed training data with a multi-layer search grid ini-
tially defined between 0 and 105 with exponential step size to seek an optimal trade
off between sparsity and fusion. We performed our method on the biological sam-
ples processed through the same data preparation pipeline and investigated the fi-
nal model. The R scripts for implementing the learning setup are accessible via the
github link http://github.com/fba67/fusedlasso.

4.2.8 Generating model coefficient heatmap

We performed F-test statistics to assess the significance of the upstream or down-
stream coefficients obtained from the fused LASSO models. For this purpose, for
each data set, we removed the up/down-stream coefficients of each HM and mea-
sured the changes in average RSS compared with respect to the full model (keeping
all the coefficients in). If removing the up/down-stream coefficients was not signif-
icant with a significance cutoff of 0.05 we discarded those coefficients (setting their
values to zero). The compilation of all the significant coefficients for each HM and
each data set yields the heat map illustrated in Figure 4.8.

4.3 Results

The aim of this study is to integrate histone modification signals and the genomic
structural properties of BPs. For this purpose we collected a data set of 1,242 BPs,
which are divergent promoters with two core promoter elements, obtained from
annotated ENSEMBL genes (GRCh37.75), such that the distance between TSSs of
each BP does not exceed 500 bp. We removed cases where their TSS had an overlap
with any other annotated gene region (±2kb from TSS). Figure 4.2 schematically

http://github.com/fba67/fusedlasso


48 Chapter 4. Bidirectional genes and their histone map

illustrates two distinct genomic regions in where they both satisfy the TSS distance
but one violates the overlapping constraint.

�  500 bp≤

5’
3’

2 kb

2 kb

�  500 bp≤

5’
3’

2 kb

2 kb

FIGURE 4.2: Constraints necessary to be satisfied for definition of
bidirectional genes in this study. The distance between the two TSSs
located on opposing DNA strands should not exceed 500 base pairs.
In addition, there should not be any other annotated gene in a 2 kb
window starting from each TSS of a potential BP (pair of genes that

have met the first requirement).

The histone modification reads are measured in bins of 100 bp spanning a 4 kb
window anchored on the TSS of bidirectional genes. Figure 4.3a depicts this binning
approach applied on N different HMs for a particular TSS. The resulting vectors
representing the abundance of HM reads in bins are concatenated to form a larger
vector of size N ×M. This vector holds the histone modification profile of a single
gene. When the histone profiles for all genes, G, are stacked on top of each other, a
matrix, H ∈ RG×(N×M) is constructed, which is used as the feature matrix for our
statistical analysis (Figure 4.3b).
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FIGURE 4.3: Statistical learning frame work. a) N distinct histone
modifications signals measured around the TSS of a gene. The ge-
nomic region where the HM reads are estimated is partitioned into
M bins. b) Feature matrix consisting of measurements of the N hi-
stones in M bins from (a) at the columns for G genes placed at the
rows. This matrix can be used to setup a linear regression framework
designed to regress the gene expression on histone modification data
through estimating the model coefficients. c) Estimated coefficients
can be used for interpreting how the features contribute to explain-

ing the response.

4.3.1 Preliminary correlation analysis suggests a spatial association be-
tween HMs and gene expression in BPs

To investigate whether the positioning of histone modifications is associated to di-
rection of gene expression, we first tested if the genomic bins holding HM abun-
dance are correlated with the expression of either plus or minus genes. Figure 4.4
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shows the Pearson correlation coefficient values computed between the bins of six
histone modifications introduced in 4.2.1 and RNA-seq data for the HepG2 cell line.
Each entry, Cori,j, in this heat map, Cor, represents the correlation coefficient be-
tween the expression of the plus gene and jth bin of ith histone modification. The
results already hint on a directional association between the abundance of histone
modifications and direction of transcription. In other words, since the correlation
was measured for the plus gene, which is transcribed from 5′ to 3′ (i.e., left to right of
the Cor matrix), the fact that the higher correlation values appear at the downstream
of the TSS (location Cor.,0) indicates such directional association. In mathematical
terms, given the matrix H described above and gene expression vector, Y ∈ RG, the
Pearson correlation matrix is derived as follows:

Cori,j = cor(H[, (i− 1) ∗ N + j], Y); i ∈ {1, · · · , N} and j ∈ {1, · · · , M}, (4.5)

where H[, i] ∈ RG is a columns vector denoting the ith column of H.
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FIGURE 4.4: Heat map showing the Pearson correlation coefficients
between bins of six histone modification data and bulk RNA-seq for
cell line HepG2. Both HM and RNA-seq data are log-transformed.

Each cell of the heat map corresponds to the bins described in 4.3.

Observing the non-zero correlation values upstream of the plus TSS, motivated
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us to extend correlation coefficients to partial correlation, where the relationship be-
tween two variables is conditioned on the third one. Let PCor(X, Y, Z) be the partial
correlation between variables X and Y, given Z. Here, we consider X being the
logarithm of sum of downstream HM bins (including TSS), Y the vector of loga-
rithm of gene expression measurements, and Z the logarithm of sum of upstream
bins (excluding TSS). Thus, PCor(X, Y, Z) reflects the correlation between the sum
of downstream HM bins and gene expression, while factoring out the influence of
upstream HMs.

We calculated the partial correlation in such described way on the HepG2 cell
line, separately for each histone modification. We also were interested to see how
the values compare when PCor(Z, Y, X) is computed. The partial correlation values
for the six histone modifications are provided in Table 4.1. First of all, it can be
seen that the partial correlation values for the direction of interest, PCor(X, Y, Z), is
higher than PCor(Z, Y, X). This further supports the fact that downstream bins are
predictive of expression for the plus gene.

Second, it can be noted that for the two promoter initiation associated marks,
H3K4me3 and H3K27ac, the partial correlation results in a higher value than the cor-
relation coefficient obtained from aggregating the entire considered genomic region,
by summing the upstream and downstream HM bins, shown in the third column of
Table 4.1. This means that removing the upstream HM data can, as a matter of fact,
improve the relation between HMs and gene expression. The repression associated
marks, on the other hand, seem to benefit from having the upstream HM bins in
the calculations, as the correlation coefficient for the H3K27me3 and H3K9me3 are
higher than their partial correlation coefficients conditioned on the upstream HMs.
In other words, the abundance of these histone marks upstream of the TSS is posi-
tively associated to gene expression. In addition to the repressive marks, the elon-
gation mark, H3K36me3, also has a higher correlation coefficient, but the difference
is much slighter than the two aforementioned repressive marks.

As shown in Figure 4.4, the H3K4me1 mark exhibits a peculiar behavior. The
first ∼10 bins downstream of the TSS show a negative correlation coefficient with
gene expression, while most of the upstream bins are positively correlated. This
observation is, to some extent, reflected in our partial correlation analysis as well. It
can be seen that the partial correlation conditioned on the upstream HM bins holds a
very small negative value, whereas when conditioned on the downstream HM bins
the value rises up to ∼ 0.3.

HM PCor(X, Y, Z) PCor(Z, Y, X) Cor(X + Z, Y)
H3K4me1 -0.058 0.289 0.240
H3K4me3 0.565 -0.167 0.544
H3K27me3 -0.330 -0.014 -0.519
H3K36me3 0.450 0.059 0.481
H3K9me3 -0.380 0.028 -0.504
H3K27ac 0.594 -0.187 0.561

TABLE 4.1: Partial correlation coefficients obtained for the HepG2 cell
line, individually for the six histone modifications, conditioned on the
upstream HM. X and Z denote the logarithm of sum of downstream
and upstream HM bins, respectively. expr. denotes gene expression
data for the HepG2 cell line. Cor(X + Z, Y) denotes the unconditional
correlation coefficient between the sum of upstream and downstream

HM bins (X + Z) and gene expression.
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4.3.2 Fused LASSO: a promising tool to investigate spatial dependencies
in BPs

The correlation analysis conducted in section 4.3.1 was suggestive of spatial asso-
ciations between the gene expression and positioning of the histone modifications
around the TSS in bidirectional promoters. However, this is not sufficient for build-
ing an integrative framework that incorporates the combinatorial role of HMs in
driving expression, as the analyses were conducted on each HM separately. In order
to cope with such limitation, as well as, having a method that is able to predict the
gene expression from histone modification data, we designed a predictive statisti-
cal framework. As described in 4.2.7, fused LASSO is a linear regression model that
aims to explore the feature space while preserving the spatial dependencies between
the adjacent features as given in the underlying graph.

To better understand how the feature selection in fused LASSO works, we de-
signed several simulation studies that can bring a deeper insight into its optimiza-
tion procedure.

Simulation #1

The first experiment is as follows. We simulated data for two imaginary histone
modifications, called A and B, each having 20 bins for 600 genes. This forms the
feature data, which is a matrix of 600 rows and 40 columns, X ∈ R600×40. Similarly,
the response vector for this study has 600 elements. These data are illustrated in
figures 4.5a and 4.5b. The underlying graph required for fused LASSO optimization
is depicted in Figure 4.5c, where the edges are connecting adjacent bins of A or B.
We then computed the optimal coefficients, using 80% of the data for training, with
optimal γ = 0.08 as provided in Figure 4.5d. Note that the coefficient vector is split
into two rows, each corresponding to the features for A and B. The results on the
test data (remaining 20%) achieves RMSE of zero and consequently, correlation of 1
between the measured and predicted measurements.

To understand the coefficient selection for this particular given data, one needs
to examine the patterns in X and Y simultaneously. For instance, it can be seen that
in the coefficient heat map illustrated in Figure 4.5d, the first 20 features are all set
zero. When comparing this with the data shown in figures 4.5a,b, it becomes clear
that those features are not informative in predicting the response, i.e., histone modi-
fication A is not relevant in predicting expression when B is given. Therefore, setting
values other than zero would only increase the model complexity with no improve-
ment in the performance. However the remaining 20 features (corresponding to B)
are the most interesting ones. In the first 300 samples (Figure 4.5a,b), the features 21
to 30, hold small values and their response value is very high, in the last 300 samples,
on the other hand, an opposite trend is apparent, the same features hold very high
values where their response is extremely low. Moving on to the features 31 to 40, it
can be noted that the model assigned positive values to those coefficients in order to
contribute to predicting the high values of expression when data from the first 300
rows are given, and assigned negative values to the features 21 to 30 to account for
the small response values for the data obtained from the second 300 genes.

Taken all together, this experiment suggests that using fused LASSO can be ad-
vantageous for obtaining interpretable results for associating spatial information
embedded in the features to the response values.
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FIGURE 4.5: Simulation study #1. a) Heat map illustrating the sim-
ulated features of 600 rows and 40 columns. The heat map shows
two equally sized subpopulations, with mutual exclusive patterns. b)
Response variable for the simulated data given in (a). c) Underlying
graph required for fused LASSO’s optimization function, connecting
the adjacent bins of each HM. Note that there is no edge between A
and B. d) Heat map separating the coefficient of each HM into two
rows, thus a 2× 20 matrix. Blue and red colors correspond to negative

and positive values, respectively.

Simulation #2

In our second simulation study, we generated data slightly different than in the first
simulation. Figure 4.6 provides heat maps of the new X and Y variables, as well as
the coefficient heat map obtained from a fused LASSO model trained with γ = 0.
In order to understand the model, we need to precisely know how the response
variable is generated. Let q1, · · · , q4 represent the four consecutive blocks of ten
features. In other words, q1 = {1, · · · , 10}, q2 = {11, · · · , 20}, q3 = {21, · · · , 30},
and q4 = {31, · · · , 40}. We define Y as the following:

Yi = 3 ∑
j∈q1

⋃
q4

X[i, j] + 4 for i ∈ {1, · · · , 300},

Yi = −3 ∑
j∈q2

⋃
q3

X[i, j] + 4 for i ∈ {301, · · · , 600}.

So, the first 300 response values are a linear function of the first and fourth feature
blocks in X and the last 300 values are negatively associated to the second and third
feature blocks with the similar intensity as the first half (according to the multiplica-
tive term ×3 + 4). This already elucidates why the model picked the coefficients as
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shown in Figure 4.6c. All features seem to be relevant in explaining the response;
the first and last blocks (first 20 features of A and last 20 features of B) are positively
associated and the remaining features are negatively associated.
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FIGURE 4.6: Simulation studies #2 and #3. a, d) Heat maps illustrat-
ing the simulated features of 600 rows and 40 columns for simulations
#2 and #3, respectively. b, e) Response variables for the data given in
(a) and (d) for simulations #2 and #3, respectively. c, f) The heat maps
of fused LASSO coefficients reflecting the informative regions by fus-

ing the features together for simulations #2 and #3, respectively.

Simulation #3

We further investigated the fused LASSO optimization through designing the third
experiment by keeping the distribution of data points more homogeneous. As shown
in Figure 4.6d, the features consist of three distinct patterns that are consistent across
the 600 samples. The corresponding response variable Y (Figure 4.6e) is generated
based on the features X via the following equation:

Yi = 2
5

∑
j=1

X[i, j] + 3 ∑
j∈q4

X[i, j] + 4 + ε,

where ε follows a Gaussian distribution with 0 mean and 0.01 standard deviation
denoting the additive noise. The variations in the colors are due to the slight vari-
ation of the response values that range only from 353.6 to 354.3. Because the re-
sponse holds positive large values, the model decides to discard the middle block
(11, · · · , 30) in the feature space as they possess smallest values. In addition, accord-
ing to the formula above, these features do not contribute in generating the response
variable Y, while the remaining features are included, with different magnitudes.
Again, referring to the formula used to generate Y, the first 5 features are less im-
pactful compared to the last 10 features (q4), since their sum is multiplied by 2 and
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3, respectively. This characteristic is remarkably reflected in the fused LASSO coeffi-
cient as well.

With the deeper insight gained from the above mentioned simulation experi-
ments, we were convinced to carry out the task of predicting gene expression from
histone modification in bidirectional genes using the fused LASSO models.

4.3.3 Fused LASSO suggests a unidirectional histone code in BPs

We trained individual fused LASSO models for each data set described in 4.2.1. For
the response variable, in addition to RNA-seq measurement that we had for all data
sets, we used CAGE for HepG2 and K562 and GRO-cap for K562 only. The perfor-
mance of each model tested on their own allocated test data as well as other mod-
els (cross-comparison) is shown in Figure 4.7. It can be seen that, in general, the
GRO-cap models do not generalize well on other data sets. This can be due to the
difference in sensitivity of the sequencing assays.
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FIGURE 4.7: Model performance assessed in terms of Spearman cor-
relation between predicted and measured response on test data. The
rows of the heat map indicate the data the model was trained on and
the columns reflect the test data the model was applied on. In other
words, each entry in the heat map shows the Spearman correlation for
the model trained on the data shown on the row when applied the test
data shown on the column. For instance, the correlation between the
predicted and measured mRNA expression of K562 cell line when the
model was trained on the GRO-cap data is 0.64 (right top most corner

of the heat map).

The feature heat maps of each model are compiled into one, embracing the coef-
ficients for all models, as shown in Figure 4.8. What is striking in this heat map is the
apparent preference of the model to select and assign higher values to coefficients
downstream of the plus TSS; the region where the gene is transcribed. By inspecting
the localization of each histone modification, one can see that, in general, the marks
associated with gene activation hold positive values and marks associated with gene
repression have negative values, except for H3K4me1. The results suggest a mutual
exclusive relationship between the H3K4me1 and H3K4me3 marks. This can be jus-
tified by the fact that having three methyl groups on H3K4, masks the existence of
one methyl group on the same amino acid. Given that all histone modifications are
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fed to the model as one feature vector, the model has been able to infer such mutual
exclusivity.

Comparing the coefficients of H3K4me3 mark with respect to the sequencing
protocol used, it becomes apparent that the model restricted the selection of coeffi-
cients to only a few 100 bp downstream of TSS, whereas for CAGE and RNA-seq
this was stretched further to regions more distant from TSS.

Another interesting observation is the selection of coefficients for the H3K36me3
mark. As previously mentioned, this mark is associated with gene elongation and
it often peaks more towards the gene termination site. This behavior is remarkably
reflected in the histone map shown in Figure 4.8 for the RNA-seq models. The GRO-
cap model, as expected, did not focus on this mark, as the corresponding response,
which is the estimated nascent transcription, is independent of this mark. In other
words, the nascent transcripts are mainly prevalent at the vicinity of the transcrip-
tion start site rather than being distributed across the entire region downstream of
the TSS. The CAGE model, however, spans the entire region, starting from TSS to all
the way down to the last bin downstream. This can be due to the fact that the CAGE
data represents the stable transcripts and therefore, both beginning and end of the
transcribed region are included in the model.
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FIGURE 4.8: The histone map. Fused LASSO coefficients obtained
from individual models learnt on the cell types described in 4.2.1
for the plus gene. The values are scaled between −1 (blue) and 1
(red) to ease the comparison across samples. The expression assays,
RNA-seq, CAGE, and GRO-cap, are color coded by black, purple, and
green, respectively. The heat map suggests a unidirectional localiza-

tion of histone marks coinciding the direction of transcription.

Furthermore, we carried out the same prediction task using standard LASSO
(only |L1| regularization). The heat map, illustrated in Figure 4.9, still suggests a
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unidirectional localization of histone marks coinciding the direction of transcription,
but the sole sparsity regularization results in a scatter and thus unintuitive interpre-
tation.
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FIGURE 4.9: Standard LASSO coefficients obtained in the similar
fashion as fused LASSO. The values are scaled between−1 (blue) and
1 (red) to ease the comparison across samples. The expression assays,
RNA-seq, CAGE, and GRO-cap, are color coded by black, purple, and

green, respectively.

We also were able to observe similar results for the expression of the minus gene
as illustrated in Appendix Figure B.2.

4.3.4 Using a non-linear model results in similar performance as the lin-
ear fused LASSO

To assess how much of accuracy was sacrificed in favor of interpretability by using
a linear model, we performed the same prediction task using support vector regres-
sion (SVR) with radial basis kernel. Figure 4.10 contrasts the performance of fused
LASSO against SVR models. It can be observed that only for 7 out of 17 samples,
SVR models outperforms the fused LASSO and except for the K562_CAGE sample,
the differences are very marginal.
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FIGURE 4.10: Comparison of performance, reported in terms of
Spearman correlation, for linear (fused LASSO) and non-linear (SVR)
models. Only in 7 samples out of 17, SVR outperforms the fused

LASSO.

The peculiar difference in the performance of K562_GRO between the two types
of models, fused LASSO and SVR, in Figure 4.10 inspired us to inspect the data
points (genes) for which the prediction error is high. For this purpose, we computed
the difference between predicted and measured GRO-cap values for the K562 cell
line. We refer to cases where this difference is higher than 2 as outliers. By compar-
ing the distribution of histone modification values between outlier and non-outlier
samples, as illustrated in Figure 4.11, it can be noted that the outlier ones have higher
values with smaller variance. Given that the SVR models were trained using the ra-
dial basis kernel function might have led to over-training caused by this additional
layer of complexity (non-linear kernel).
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FIGURE 4.11: Comparison of histone modification signals among de-
tected outlier and non-outlier genes.

4.4 Conclusion and discussion

We observed that the average ChIP-seq signal for the H3K4me3 histone modifica-
tions shows a bimodal distribution along the bidirectional promoters (Figure 4.1).
This observation poses the question whether the expression regulation of one gene
depends on the regulation of the other gene at a BP, therefore the bimodal pattern?

To address this question, we first inspected the correlations between the gene ex-
pression and genomic bins spread around the transcription start site of bidirectional
genes, where we counted the HM ChIP-seq reads overlapping with those bins. As
depicted in figures 4.4 and B.1 these correlation coefficients suggest that there exist
strong associations between the abundance of HMs and direction of transcription.

The weaker correlations observed mostly at the upstream bins relative to TSS,
inspired us to compute the partial correlation between gene expression and sum of
HM abundance in upstream bins, when conditioned on sum of downstream bins, or
vice versa. As presented in Table 4.1, the abundance of HMs at the upstream region
plays an insignificant role in deriving the gene expression.

The correlation studies certainly are helpful in bringing insights into the data
and the associations between variables. However, not only they are incapable of de-
riving such associations in an integrated manner, but also they have limited abilities
in predicting the response variable for a given set of features. To overcome these
limitations, we additionally, implemented a framework for associating HM ChIP-
seq reads along a BP with gene expression. The purpose of this framework was to
evaluate the performance of gene expression prediction and to understand at what
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location, relative to both TSSs, a histone modification is associated with gene expres-
sion. This allows us to estimate if HM abundance at the minus gene (upstream of
the plus gene) depends on the expression of the plus gene. As opposed to previous
studies, we included both TSSs in the model by partitioning the region +/- 2 kb for
both TSSs in non-overlapping bins of size 100 bp.

We further investigated the transcriptional dependence of both TSSs by devel-
oping a general histone association map at BPs from learning associations of HMs,
in various cell types, with gene expression measured by different assays (RNA-seq,
CAGE, and GRO-cap), as shown in Figure 4.8. The GRO-cap models were trained on
a data that was very narrow and sensitive around the TSS, where nascent transcripts
were originated from, however the RNA-seq and CAGE models were more tailored
to data with more stable transcripts. The heat map in Figure 4.8 demonstrates associ-
ations in direction of transcription in BPs, even though the overall average ChIP-seq
signal of HMs shows a bimodal distribution as previously observed (Bornelöv, Ko-
morowski, and Wadelius, 2015). Therefore, supporting the view that the chromatin
modifying machinery is recruited to both sites at the BP in an independent manner.

Next, we found that the GRO-cap models differed in their selection of positive
coefficients, neglecting the late-elongation mark H3K36me3, which was one of the
strongest contributors in the RNA-seq and CAGE models. Although GRO-cap mea-
sures 5′-capped nascent RNAs at the TSS, possibly including RNAs that are elon-
gated over hundreds of bps, our results suggest that there is a strong enrichment for
short, nascent TSS RNAs that are likely regulated at the pausing step of Pol2 (Hen-
riques et al., 2013). Moreover, H3K27ac showed more importance in the GRO-cap
models and thus probably involved in regulation of promoter-proximal pausing.
This is in agreement with a previous observation of Chen et al., 2011 that showed
strong positive association of H3K27ac enrichment downstream of the TSS for pre-
dicting stalled compared to elongating Pol2 signals.

In order to assess how much of performance was sacrificed in favor of inter-
pretability, we trained non-linear regression models using the support vector re-
gression method with radial basis kernel functions. By comparing the model per-
formances in terms of the Spearman correlation between predicted and measured
gene expression values, as illustrated in Figure 4.10, it can be concluded that the
linear fused LASSO models were truly competing with the non-linear SVR models.
Except seven out of 17 biological samples, the fused LASSO models were able to
outperform the SVR models.

Taken together, we suggest that the histone modifications are, to the most part,
assembled at the genomic region corresponding to the direction of transcription,
even though the average HM ChIP-seq data exhibits bimodal patterns at the vicinity
of BPs.
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Chapter 5

Integrative analysis of single-cell
expression data in bidirectional
promoters

The work that is presented in this chapter has been published in the journal of Epigenetics &
Chromatin in 2018 (Behjati Ardakani et al., 2018). This paper was selected as one of the top
10 "Reading Papers" in 2018 by the RECOMB/ISCB Regulatory systems Genomics group1.

5.1 Introduction

As previously mentioned in Chapter 4, the regulation of bidirectional genes has not
yet fully understood and several studies have attempted to address the question of
how this regulation is carried out (Core, Waterfall, and Lis, 2008; Preker et al., 2008;
Seila et al., 2008; Core et al., 2014b; Duttke et al., 2015a; Scruggs et al., 2015; Bagchi
and Iyer, 2016; Duttke et al., 2015a; Lacadie et al., 2016).

BPs have been shown to harbor overrepresented TF binding sites such as GABPA,
MYC, YY1, NRF-1, E2F1 and E2F4 (Lin et al., 2007). For instance, the introduction
of GABPA binding sites into unidirectional promoters leads to bidirectional expres-
sion in 67% of the cases (Collins et al., 2007). Furthermore, the sequence elements
at some BPs operate as indivisible units (Trinklein et al., 2004). Other TFs, however,
avert bidirectional expression, for example, promoters that show elongation in only
one direction often exhibit enrichment of CTCF binding sites (Core et al., 2014b; Bor-
nelöv, Komorowski, and Wadelius, 2015). Nonetheless, more research is essential to
investigate how TF binding determines directionality of initiation and elongation at
BPs (Bagchi and Iyer, 2016).

It was recently shown that bidirectional promoters define a Nucleosome Free
Region (NFR) between the two Transcription Start Sites (TSSs). The length of this
region (NFR) might be an important structural element in the regulation of BPs, de-
termining the accessibility of binding sites for various TFs at the promoter. This
can, in turn, influence the intensity of gene expression as well as responsiveness
to external stimuli (Duttke et al., 2015a; Scruggs et al., 2015). Recent studies (Core
et al., 2014b; Duttke et al., 2015a; Scruggs et al., 2015) have pointed to a model,
where an independent Pol2 complex assembles at each TSS and initiates transcrip-
tion, such that accurate phasing of the +1 and -1 nucleosomes at these BPs allows
epigenetic regulation through HMs. Comparisons between unidirectional and bidi-
rectional promoters indicate that HMs associated with active gene expression exhibit

1https://www.iscb.org/recomb-regsysgen2019-submissions/recomb-regsysgen2019-reading
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a bimodal distribution at BPs, and that upstream proximal enhancer marks may reg-
ulate downstream gene transcription (Bornelöv, Komorowski, and Wadelius, 2015;
Scruggs et al., 2015).

In summary, previous studies rely on the comparison of unidirectional against
bidirectional promoters to comprehend BP regulation. In this study, we take a dif-
ferent approach, by utilizing recent advances in single cell sequencing and inves-
tigating expression of genes at BPs in individual cells, to better understand their
regulation. Recent developments in single cell genomics allow the measurement of
RNA expression in individual cells with a similar accuracy as compared to bulk-
sequencing of RNAs (Marinov et al., 2013; Wu et al., 2014). This advance has been
used to identify previously unnoticed cell types and heterogeneous expression pat-
terns, e.g., (Pollen et al., 2014).

To investigate the expression behavior of bidirectional genes, we take advantage
of novel and previously produced single cell RNA-seq (scRNA-seq) data for HepG2
and K562 cells. We discover four reproducible expression classes in BPs. These re-
sults also show that in a majority of cases, one gene at a BP shows considerably
higher expression than the other. We also find novel associations of distinct struc-
tural and epigenetic features in these classes, using high resolution histone modifi-
cation data sets produced at IHEC standards (Stunnenberg, Hirst, and Consortium,
2016) by the DEEP consortium or made available by ENCODE (ENCODEConsor-
tium, 2012).

5.2 Methods

5.2.1 Single cell transcript expression

The TPM values for transcript isoforms of each Ensembl gene (GRCh37) were cal-
culated using RSEM (Li and Dewey, 2011). Since we wanted to attribute the tran-
scription expression, as opposed to gene expression, to each bidirectional gene, we
summed the isoform TPM values of transcripts that had their annotated TSS over-
lapping within a 2 kb window downstream of the most 5′ TSS of that gene.

5.2.2 Bidirectional promoter (BP) gene set

The BP data set contained 1,242 divergent promoters with two core promoter ele-
ments, obtained from annotated ENSEMBL genes (GRCh37.75), such that the dis-
tance between TSSs of each BP does not exceed 500 bp. This set excludes loci over-
lapped by any other annotated gene region (±2 kb from the TSS).

5.2.3 Clustering BPs into four states

Hierarchical clustering using complete linkage method with Euclidean distance as
distance metric was applied on the swapped BP matrix using R.

5.2.4 Constructing the single cell TPM matrix for BPs

For a particular BP, BPi = (gcrick,i, gwatson,i), we evaluate the sum of TPM values
across single cells as following:

Sum(gj,i) = ΣN
c=1TPM(gc

j,i), (5.1)
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where N denotes the number of single cells, and TPM(gc
j,i) returns the TPM value

for gene j ∈ {crick, watson} of BPi in cell c.
The orientation of genes at a BP is not specific to the DNA strand, but the lower

expressed gene of a BP is always swapped to the left and higher expressed gene
to the right. In this way, without loss of generality, all analyses correctly adjust for
differences of expression. In detail, we define gH,i denoting the gene of BPi holding
higher expression as follows:

gH,i =

{
gwatson,i, if Sum(gwatson,i) ≥ Sum(gcrick,i)

gcrick,i, else .
(5.2)

Similarly, we define gL,i denoting the gene of BPi having lower expression:

gL,i =

{
gwatson,i, if Sum(gwatson,i) < Sum(gcrick,i)

gcrick,i, else .
(5.3)

After defining gH,. and gL,. for each BP, we form the single cell matrix for BPs,
scBP, as follows:

scBP =


g1

L,1 g2
L,1 gN

L,1 g1
H,1 g2

H,1 . . . gN
H,1

g1
L,2 g2

L,2 gN
L,2 g1

H,2 g2
H,2 . . . gN

H,2
...

...
...

. . .
...

. . .
...

g1
L,M g2

L,M gN
L,M g1

H,M g2
H,M . . . gN

h,M


5.2.5 Imputation of dropouts

To address the bias induced by dropouts, we performed the most, at the time of this
study, recent and accurate dropout imputation method called scImpute (Li and Li,
2018b), which works toward improving the quality of single-cell data by eliminating
the effects of dropouts without introducing new biases to the data. This tool takes
two user-defined parameters, K and t. K denotes the number of existing cell types
in the data, which we set to 1, as we work on cell lines. The second parameter, t,
controls the dropout probabilities. The authors show that their results are robust to
different values of t, therefore, we set the default value of 0.5 for this parameter. The
comparison between raw and imputed read counts performed on the bidirectional
genes is shown in Appendix Figure C.1 for both HepG2 and K562 samples. The
Pearson correlation between the two quantities in both cell lines is ∼1.

5.2.6 Quality of scRNA-seq

Imputed expression of bidirectional genes averaged over single cells was compared
with their corresponding bulk RNA-seq expression. For both, HepG2 and K562, the
single cell expression agrees well with bulk measurements (Spearman correlation co-
efficient of∼0.8, Appendix Figure C.2). Additionally, the imputed TPM values were
divided into three intervals, 1 < TPM < 10, 10 ≤ TPM ≤ 100, TPM > 100 to account
for the number of genes falling in those intervals per cell (Appendix Figure C.3a,
and similarly for the imputed read counts in C.3b).
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5.2.7 Prediction of RNA stability from histone data

To examine the possible effects of post-transcriptional regulation on our transcrip-
tion states, we adopted the approach proposed by (Wang et al., 2012), where, using
different histone modification ChIP-seq data sets, they predict the expression level of
RNA. Similar to their approach, we trained an ordinary least squares (OLS) model
on our bidirectional genes to predict the average single cell RNA expression val-
ues from six histone modifications, H3K4me1, H3K4me3, H3K27me3, H3K36me3,
H3K9me3, and H3K27ac. We created input features for the regression task as fol-
lows. The data for each histone modification is represented by two bins, one holds
the sum of read counts at 2 kb upstream of the TSS and the other holds the same
for the region 2 kb downstream (12 features in total). Next, we fit a linear regres-
sion model to our data set with feature matrix of size 2,484×12 and response vector
of size 2,484 using the lm function in R, where 2,484 is the number of bidirectional
genes considered in this study. The studentized residuals were calculated between
the measured average transcript expression values and the predicted values. As
hinted by (Wang et al., 2012), a gene is marked as stable if the corresponding studen-
tized residual for that gene is above 1, conversely a gene is unstable if the studen-
tized residual is below -1 If none of the above is the case, the gene is annotated as
neutral (Appendix Figure C.4a). For each state, we assessed the percentage of genes
being classified into stable, unstable, or neutral. To compute the enrichment of the
stable and unstable mRNAs in each state, we performed the hypergeometric test on
these three categories, separately for each state, and used the p≤0.05 as significance
cutoff.

5.2.8 Bidirectional gene signature: concordant or discordant

We highlight two signatures describing the changes in bidirectional gene expression.
The first signature pertains to consistent changes of expression of the two genes
across single cells in a consistent manner. For instance, when the expression of one
gene of a BP is always higher than the other across the cells. Patterns as such create
a signature that we call concordant signature. On the other hand, there exist cases
where the expression of these two genes flips across cells, i.e., the expression of one
gene is higher in one cell and in another cell the expression of the counterpart gene
is higher. Since the signature these BPs can be attributed to reflects a discordant
behavior we call this signature as discordant. To analytically distinguish these two
signatures for the gene pairs in a BP, we computed the Wilcoxon signed rank test on
their imputed single cell expression values (BPs whose both genes had zero expres-
sion in all cells were discarded for the test). We consider a gene pair being concordant
if the p-value after using Benjamini-Hochberg multiple testing correction is smaller
than or equal to 0.05. We, additionally, define concordant ratio as the number of
concordant BPs normalized by the total number of BPs in a given cluster.

5.2.9 Data for HepG2 and K562 cell lines

Epigenomic data for the HepG2 cell lines were produced by the DEEP consortium
and are publicly available on the DEEP data portal2 as well as the IHEC data grid3,
including metadata information providing further details on sample sorting and
preprocessing.

2http://deep.dkfz.de/#/home
3http://epigenomesportal.ca/ihec/grid.html

http://deep.dkfz.de/#/home
http://epigenomesportal.ca/ihec/grid.html
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The rest of the data, K562 (HM ChIP-Seq, TF ChIP-seq, CAGE), and HepG2 (TF
ChIP-seq, CAGE) were obtained from ENCODE.

5.2.10 GRO-cap and CAGE expression estimation

GRO-cap data for K562 was downloaded from GEO via the accession code GSE60456
provided by Core et al., 2014b and CAGE data for both K562 and HepG2 samples
from ENCODEConsortium, 2012. The count of the reads overlapping with a win-
dow in the region [0,+100] bp downstream of a gene’s TSS is used to define the
expression derived from the GRO-cap or CAGE assays.

5.2.11 Measuring average methylation in BPs

WGBS-seq data for HepG2 was produced by DEEP and for K562 was obtained from
ENCODEConsortium, 2012. Both files were processed using the RnBeads package in
R (Assenov et al., 2014) to compute the average methylation levels around the TSSs.
In other words, for each TSS, the methylation level was computed in a 2 kb window
(partitioned into bins of 100 bp) downstream of the L and the H gene, respectively
(40 bins in total). Additionally, the methylation level was measured within the re-
gion between the TSSs of L and H genes. Finally, the computed methylation levels
were concatenated in genomic order, resulting a vector of 41 elements in total.

5.2.12 Measuring G-C content in BPs

GC-content profiles were determined based on the human GRCh37 reference genome.
For each TSS, the GC-content was measured in a 2 kb window (partitioned into bins
of 100 bp) downstream of each of the L and the H genes, separately (40 bins in total).
Additionally, the GC-content was computed within the region between the TSSs of
L and H genes. For visualization, the results were concatenated in genomic order
forming a vector of size 41 per BP.

5.2.13 Measuring small RNA abundance in BPs

The BAM alignment files for small RNA data measured at the nuclear fraction of the
HepG2 and K562 cell lines were obtained from ENCODEConsortium, 2012. Next,
bamCoverage from bedtools was used to produce the bedgraph files, to which the
binning approach explained in 5.2.12 was applied, in order to derive the small RNA
profiles around the BPs. For clearer illustration, values larger than 200 were capped
to 200.

5.2.14 Enrichment of gene products partitioned according to transcription
states

We partitioned the gene product annotations into two general groups, protein-coding
(PC) and the rest as non-coding (NC). In the scope of BPs, we established a new no-
tation, gp ∈ {NC → NC, NC → PC, PC → NC, PC → PC}, denoting the gene
products for a pair of genes. We counted the occurrences of each of these four gene
product categories for the gene pairs of our transcription states, as shown in ta-
bles 5.2 and C.1. To assess the enrichment of such occurrences, we performed a
hypergeometirc test to their contingency table, C ∈ Z4×4, where Ci,j represents the
frequency of the jth gene product category in the ith state. In detail, let h(x; N, n, k) be
the hypergeometirc distribution, where N and n are the population and sample size,
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respectively. k is the frequency of successes in the population, and x denotes the fre-
quency of successes in the sample. We used the following assignment of parameters
of this distribution for each entry Ci,j of the contingency matrix C:

h(Ci,j; Σ4
r=1Σ4

s=1Cr,s, Σ4
r=1Cr,j, Σ4

r=1Ci,r) . (5.4)

The p-value obtained from this test is used to assess the significance of enrichment
of a gene product category in a particular state.

5.2.15 Enrichment of TF ChIP-seq data

To capture and preserve the spatial distribution of the TF ChIP-seq signal around
the promoter, the ChIP-seq reads are counted in bins of size 100 bp spanning a win-
dow beginning from the TSS of each bidirectional gene and extending up to 2000 bp
downstream of the TSS. An additional bin with variable length is dedicated to count
for the reads falling within the region defining the distance between the two TSSs
of a BP. The 20 bins from the L gene, the bin for region between both TSSs, together
with the 20 bins from the H gene are all combined into a vector of size 41, which
represents the binned ChIP-seq signal per BP for a particular TF. To evaluate the
enrichment score of the ith TF at a particular BP, we define:

Enrich(TFi) = Σ41
j=1log2(

TFi
j + 1

BGi
j + 1

), (5.5)

where TFi is the signal measured for ith TF (for HepG2, i ∈ {1, . . . , 44} and for K562,
i ∈ {1, . . . , 50}) at the given BP, TFi

j holds the read counts computed at the jth bin of
TFi signal and BGi

j holds the median of TFi signal computed at the jth bin across all
BPs.

5.2.16 Definition of transcript length

For each gene, we consider all the annotated transcripts that start within 2 kb down-
stream of the most 5′ TSS of the gene. Then we measured the length of the exonic
region encompassed by these transcripts, which we refer to as transcript length. Note
that this is not the whole gene’s transcript length as other transcripts of the gene that
would start outside of the 2 kb region are not included.

5.2.17 Definition of transcripts span

For each gene, we consider all the annotated transcripts that start within 2 kb down-
stream of the most 5′ TSS of the gene. The region spanned by those transcripts is
referred to as transcripts span. For instance, if the following transcripts start down-
stream within 2 kb of the most 5′ TSS, T1 = (start : 0, end : 1000), T2 = (start :
200, end : 3000), T3 = (start : 200, end : 2000), then the transcripts span would be
equal to (start : 0, end : 3000), where start and end are relative coordinates to the most
5′ TSS. Note that all regions in this interval are considered, regardless of their exonic
or intronic annotations. Also note that other transcripts of the gene that would start
outside of the 2 kb region are not considered for the definition of transcripts span.
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5.2.18 Chromatin state segmentation score

We obtained the 18-states ChromHMM (Ernst and Kellis, 2012) annotation for both
cell lines, HepG2 was generated by DEEP, and K562 was downloaded from Roadmap (Con-
sortium et al., 2015). For the sake of simplicity, we collapsed all states related to TSS
to one state called, TSS. Similarly, we defined Enhancer and Repressed states and
assigned all the remaining states to Others, resulting in four summarized states in
general. Later, for each gene g we defined a window, Wg, starting at the TSS of the
gene and extending up to the size of the transcripts span (see 5.2.17 for definition of
transcript span). We then computed the average number of bases having a particular
chromatin state, s, overlapping in that window. ChromScores

g holds this value and is
described in the following:

ChromScores
g =

Σ{|R| : R ⊆Wg and state(R) = s}
Wg

, (5.6)

where R represents a region in the genome, |R| denotes the size of this region, and
state(R) holds the chromatin state assigned by ChromHMM to region R. It is worth
mentioning that since the ChromHMM state annotation is continuous across the
genome, the following equation holds:

Σs∈{TSS,Enhancer,Repressed,Others}ChromScores
g = 1 , (5.7)

and thus ChromScore is appropriately normalized to account for variable lengths of
transcripts span per gene. ChromScore can also be attributed to a cluster of genes, C,
via the following:

ChromScores
C = Σg∈CChromScores

g , (5.8)

As the last step, we convert the ChromScores
C into percentages to make the score

comparable across different clusters of genes with different gene sizes:

percent(ChromScores
C) =

ChromScores
C

Σs∈{TSS,Enhancer,Repressed,Others}ChromScores
C

. (5.9)

Figure 5.1 illustrates the desired segmented regions for the computation of ChromScore
given the explanation above.

5.3 Results

5.3.1 Four states of transcription with distinct bidirectional characteris-
tics

We propose a novel approach to study the relationship between the regulation of
the two genes at a bidirectional promoter by exploiting RNA-seq data at the single
cell level. Our approach is in contrary to the existing studies that rely on bulk RNA-
seq data. Bulk RNA-seq averages gene expression across individual cells, and thus
obscures interesting patterns of bidirectional gene expression (Figure 5.2a).

As previously described in 5.2.2, our BP data set contains 1,242 divergent pro-
moters with two core promoter elements, obtained from annotated ENSEMBL genes
(GRCh37.75). This BP set meets the criteria of having the distance between TSSs of
each BP not exceeding 500 bp. Loci overlapped by any other annotated gene re-
gion (±2 kb from the TSS) are excluded from our BP set. From two scRNA-seq data
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sets, 65 cells from HepG2 (see C.1) and 42 K562 cells (Pollen et al., 2014), we de-
termined the single cell expression of genes associated to these BPs. To perform a
sanity check on the single cell data, we contrasted the expression of bidirectional
genes averaged over single cells with their corresponding bulk expression. As illus-
trated in Appendix Figure C.2, the average single cell expression concurs with bulk
measurements with Spearman correlation coefficient of ∼0.8, for both HepG2 and
K562 samples.

Figure 5.2b provides examples of single cell expression patterns in HepG2 cells
for a few chosen BPs. All these four BPs exhibit distinct patterns. For instance, con-
sidering the ALG2/ECE2 gene pair, the magnitude of expression alternates across
the cells, i.e., in some cells ALG2 is higher expressed than ECE2 and vice versa.
The AAMP and PNKD genes also demonstrate this alternation, but in a more fre-
quent manner. These observations triggered us to systematically investigate these
diversities through building a matrix holding expression values specific to BPs for
clustering analysis (see 5.2.4).

As displayed in Figure 5.3, we first construct two matrices representing the single
cell expression in BPs, one for the gene located on the Watson strand (Watson matrix)
and the other for the gene located on the Crick strand (Crick matrix). Next, we
swap a row of the Watson matrix with the corresponding row of Crick matrix, if
the average single cell expression of the former is lower than the latter. In this way,
for a given BP, we always keep the higher expressed gene (H) on the right side and
the lower expressed one (L) on the left. It is worth mentioning that this step merely
facilitates the follow-up analyses and does not destroy any desirable information in
the data. The final BP matrix is the result of concatenating the swapped Watson and
Crick matrices. Each row of this matrix represents a BP and each column represents
a cells holding the expression of genes. This means that there are as many rows as
the number of BPs (N=1,242) and as many columns as twice the number of single
cells; the first half of the columns represent single cell expression of L genes and
the second half represent the same for H genes. Given that the combined matrix
contains the joint expression information for both genes of a BP in each row, we
used hierarchical clustering to identify groups of BPs based on the similarity in their
single cell expression patterns.

The result of this clustering led to discovering four distinct transcription states
in both cell lines (Figure 5.4 HepG2, and Figure C.5a K562) with the following char-
acteristics: 1) Bidirectional Lowly Expressed (BLE), where both genes of a BP are lowly
expressed, 2) Bidirectional Weak Difference (BWD), where the H gene is higher ex-
pressed than the L gene with a weak difference between the two, 3) Bidirectional
Strong Difference (BSD), where the H gene is much higher expressed than the L gene
and higher than in BWD, 4) Bidirectional No Difference (BND), where both genes of a
BP are expressed relatively at the same rate.

Table 5.1 compares the number of BPs in each transcription states for both HepG2
and K562 cell lines and reveals that most the BPs are common between the two
samples (1090 out of 1242 in total). Next, we investigated the association between
the transcription state and the type of gene products encoded in a BP (see 5.2.14).
We discovered that for both cell lines the BWD and BND states are enriched with
BPs (hyper-geometric test, p ≤ 0.05) where both bidirectional genes are protein-
coding (PC→PC, tables 5.2 andC.1). On the other hand, the BPs in BLE state are
enriched either with two non-coding genes (NC → NC) or with the L gene being
protein-coding and the H gene being non-coding (PC → NC).

Using the single cell data, we identified and counted the concordant and discordant
BPs in all states for both cell lines (see 5.2.8 and Figure 5.5 and Table 5.3). The BLE



72
Chapter 5. Integrative analysis of single-cell expression data in bidirectional

promoters

  

1

…

…

…

…

2

1242

g
e
n

e
s

…1 2 65
cells

1 2 65 1 2 65… …
1
2

1242

…

…

…

…

…

1

2

1242

1 2 65
cells

e
x
p
re

ss
io

n

low

high

swap higher 

expressed 

gene to 

right

lower 

expressed

gene

(L)

higher

expressed

gene

(H)

b
u
lk

 g
e

n
e
 e

x
p
r.

Watson Crick

Single cell

si
n
g
le

-c
e
ll
 g

e
n
e
 e

x
p
r.

C
e
ll

1

C
e
ll

2

C
e
ll

6

… C
e
ll

1

C
e
ll

2

C
e
ll

6

si
n
g
le

-c
e
ll
 g

e
n
e
 e

x
p
r.

C
e
ll

1

C
e
ll

2

C
e
ll

6

… C
e
ll

1

C
e
ll

2

C
e
ll

6

Cell1

Cell6
Cell6

Cell1 Cell2
Cell2

…

…
Watson Crick Watson Crick

cell

1

2

65

.

.

.

a
ll 

g
e

n
e
s

scRNA-seq

a
ll 

g
e
n
e
s

a
ll 

g
e
n

e
s

expr.

extract BPs

C

B

cells
1 6565

UBAC2-AS1

UBAC2

RPL35

ARPC5L

ALG2

ECE2

AAMP

PNKD

Watson

Crick

TSS

TSS

A

low high

Figure 1

FIGURE 5.3: After single cell sequencing and estimating the gene ex-
pression of all genes in a cell, a set of 1,242 BPs was extracted. Single
cell expression of either genes of a BP was arranged in two separate
matrices for which the rows represent the BPs and columns the cells.
Next, we swap the higher expressed gene to the matrix on the right
and lower expressed one to the left. The resulting matrices are com-

bined into one joint BP single cell expression matrix.



5.3. Results 73

cluster BLE BSD BWD BND total
HepG2 900 94 208 40 1242
K562 870 65 272 35 1242
overlap 804 50 128 18 1090

TABLE 5.1: Number of BPs falling into each transcription state in
HepG2 and K562 cells and their overlap.

BLE BSD BWD BND
NC→NC 78∗ 2 12 2
NC→PC 273 32 55 2
PC→NC 142∗ 7 26 3
PC→PC 407 53 115∗ 33∗

TABLE 5.2: Number of BPs falling into the gene product cate-
gories (NC→NC, NC→PC, etc.) in HepG2. Statistically enriched val-

ues are marked with ∗ (Hypergeometric test p<0.05).

state is, in general, lowly expressed and the stochasticity in the expression makes it
difficult to observe a consistent pattern. On the other hand, the BSD state includes
BPs where one gene’s expression is always higher than the other, resulting in a con-
cordant ratio of 1. As expected, the BND state shows the smallest concordant ratios,
i.e, highest discordance, which is due to the frequent alternations taking place in the
expression profile of the genes in this state.

The CAGE expressions in the transcription states are displayed in Figure 5.6. It
can be observed that the distributions shown in Figure 5.6 agree with the expression
characteristics of each state (similarly for the bulk RNA-seq and CAGE in K562 cell
line, Appendix Figure C.5b and C.6a).

Even though the representation used in Figure 5.4 is concise, it does not de-
liver a suitable visualization for exploring the changes in the expression of L and
H genes within the same cell. Therefore, it is reasonable to compute the correla-
tion between the expression of L and H genes of a BP across the single cells. This
allows us to quantitatively assess the relation between single cell expression of bidi-
rectional genes in these states, as depicted in Figure 5.7a for both K562 and HepG2
cell lines. This analysis revealed that the state with the highest correlation is BND.
On the contrary, the BSD state showed smaller correlation values, indicating a more
independent regulation of its bidirectional genes.

To address which mechanism(s) are involved in driving such differences in regu-
lation of BPs, we explored the following aspects: 1) structural features, 2) epigenetic
signals, and 3) transcriptional regulatory elements.

concordant (%) BLE BSD BWD BND
HepG2 0.80 1.00 0.95 0.72
K562 0.58 1.00 0.88 0.88
overlap 0.59 1.00 0.81 0.72

TABLE 5.3: Ratio of concordant BPs shown separately in each tran-
scription state for both cell lines as well as their overlap.



74
Chapter 5. Integrative analysis of single-cell expression data in bidirectional

promoters

sw
ap

pe
d 

B
P 

ge
ne

s
cells

L H

1 65 1 65

B
N

D
B

S
D

B
W

D
B

LE

single cell RNA-seq expression (log2 TPM)

  

cluster BLE BSD BWD BND total

HepG2 900 94 208 40 1242

K562 870 65 272 35 1242

overlap 804 50 128 18 1090

L H

s
w

a
p
p

e
d
 B

P
 g

e
n
e
s

single cell RNA-seq expression (log2 TPM)

BLE BSD BWD BND

NC--> NC 78* 2 12 2

NC--> PC 273 32 55 2

PC--> NC 142* 7 26 3

PC--> PC 407 53 115* 33*

A

B

C

1 65 1 65

F

L H L H L H L H

C
A

G
E

 r
e
a

d
 c

o
u

n
ts

 (
lo

g
2
)

* * *

B
L
E

B
S

D
B

W
D

B
N

D

120cells

Concordant 
%

BLE BSD BWD BND

HepG2 0.80 1.00 0.95 0.72

K562 0.58 1.00 0.88 0.88

overlap 0.59 1.00 0.81 0.72

D

PRKDC

MCM4

Discordant Concordant

COA5

UNC50

E

Figure 2

0 12
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clusters (BLE, BSD, BWD, BND) are referred to as transcription state in

this manuscript.
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FIGURE 5.6: CAGE read counts, measured for each bidirectional gene
(L and H), shown for each transcription state. Color code as in A. Sig-
nificant differences are marked with ∗ (paired and two-sided Mann-

Whitney test, p <0.05).

5.3.2 Structural features associated with transcription states

We first tested whether the distance between TSSs of bidirectional genes was asso-
ciated with the transcription states. Figure 5.7b provides the distributions of TSS
distances in each state for both cell lines. We observed that the BLE state shows sig-
nificantly larger TSS distances compared to the other states (t-test, p ≤ 0.001). On
the contrary, BND had the smallest median distance (significant for HepG2, t-test p
≤ 0.05). This observation together with the correlation analysis in Figure 5.7a sug-
gests that the smaller distance may influence recruitment of a common regulatory
complex that facilitates the simultaneous regulation of both genes.

Given that the scRNA-seq protocol measures steady-state fully elongated mR-
NAs, we wondered whether the length of the transcribed region differs in the genes
associated to the BPs. For this, we inspected the region spanned by all transcripts
originating from transcription start sites within 2 kb from the most 5′ TSS of a BP
gene, a region we refer to as transcripts span (see 5.2.17). Surprisingly, this length
was significantly smaller (Mann-Whitney test, p ≤ 3.6e-05) for the H genes of states
BSD and BWD compared to their counterpart L genes. Linking this observation to
the actual transcription expression depicted in Figure 5.7c for these two states sug-
gests that the expressions of L and H genes are inversely related to their transcripts
spans in BPs. To elucidate whether this association holds for all genes or only BPs, we
measured the transcripts span for all 63,678 annotated genes in the human genome.
We found no association of transcripts span with gene expression for all genes (Figure
S5B), indicating that such structural configuration might be specific to BPs. Since the
estimated TPM values are derived from the exonic regions only, we further exam-
ined the transcript length by measuring the exonic region of all transcripts initiating
within the 2 kb from the most 5′ TSS of a BP gene (Figure C.9, also see 5.2.17 and
5.2.16). Despite the evident differences observed in the single cell expression pro-
files of the BSD and BWD states, their transcript length dose not show a relevance in
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deriving those differences.
We further investigated whether the difference in GC-content was involved in

yielding the variations observed on the expression patterns, but we found no appar-
ent differences (Appendix Figure C.8 and 5.2.12).

5.3.3 Histone modification and DNaseI patterns reflect the characteristics
observed in transcription states

To explore the role of epigenetics in transcription states observed in Figure 5.2D, we
produced seven histone modifications (H3K4me1, H3K4me3, H3K36me3, H3K27me3,
H3K9me3, H3K27ac, and H3K122ac) and DNaseI-seq data for HepG2 cells within
the DEEP consortium. Further we obtained data for DNaseI-seq and all modifica-
tions, except H3K122ac, for K562 cells from ENCODEConsortium, 2012. Figure 5.8
depicts the normalized read counts measured around the TSSs of bidirectional genes
stratified according to the transcription states for all HepG2 data sets (similarly,
for K562 in Appendix Figure C.10a). Generally, we observed that the epigenetics
data show specific patterns related to these states. For instance, it is notable that
the BLE state had the lowest abundance for HMs associated with active promot-
ers (H3K4me1, H3K4me3, H3K36me3, H3K27ac, and H3K122ac) and highest for
H3K27me3 and H3K9me3 that are mostly associated with repressed promoters (Ban-
nister and Kouzarides, 2011). On the other hand, the BND state exhibited the very
opposite behavior compared to BLE, reflecting their expression characteristics ob-
served in Figure 5.4.

Another interesting observation is the agreement of the elongation mark profiles,
H3K36me3, with the transcripts span distribution shown in Figure 5.7c. In general,
the larger the increase of the H3K36me3 mark the shorter the transcripts span for the
gene. For instance, the BSD state that has the shortest transcripts span exhibits the
sharpest increase in its H3K36me3 profile only downstream of the TSS. This is com-
patible to the previous observation that the H3k36me3 mark increases gradually and
peaks at the end of genes (Sein, Värv, and Kristjuhan, 2015) and we can observe that
general trend for the transcripts span on our data as well (Appendix Figure C.10b).

In a recent study by Wang et al., 2012, it has been shown that mRNA stability
can be estimated using HM data at promoters. Previous research on genome-wide
measurements of RNA half-lives suggested that lncRNAs exhibit a wide range of
stabilities similar to that of protein-coding transcripts (Clark et al., 2012). Therefore,
we used the approach by Wang et al., 2012 to estimate which genes appear to be
stable and unstable, with the idea that this could also explain differences in the gene
expression behavior we observe in the different states. Briefly, this method uses HM
signals at promoters, as features, and gene expression measurements, as response,
to learn a linear model that predicts gene expression. Using outlier analysis, genes
that show lower (higher) expression as predicted are marked as unstable (stable)
(see 5.2.7 and Appendix Figure C.4a). The results reveal that the putative stable
genes are significantly (hyper-geometric test, p ≤ 0.05) enriched in all the states ex-
cept BLE (consistent across both HepG2 and K562 samples). On the other hand, the
BSD state was significantly enriched in the putative unstable category, with ∼21%
and 30% of its genes being inferred as unstable in HepG2 and K562 samples, respec-
tively (Appendix Figure C.4b).

The DNaseI-seq profile of the BND state revealed not only the highest signal,
but also the widest spread around the TSS compared to the other states. This fits
to the observation that there is similar amount of single cell transcription for both
genes. Due to recent reports about small promoter-associated RNAs (Zamudio,
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Kelly, and Sharp, 2014; Wang et al., 2016), we obtained small RNA data (ENCODE-
Consortium, 2012) for HepG2 and K562 samples (see Experimental Procedures) and
grouped them according to the defined transcription states. Although we observed
residual small RNA expression in the vicinity of the bidirectional TSSs, we found no
consistent patterns associated with the transcription states (Appendix Figure C.10c).

We also examined the average methylation profiles obtained in the four tran-
scription states (see 5.2.11) due to the previously reported associations with gene
expression (Siegfried and Simon, 2010; Schübeler, 2015). The results were consistent
with other studies where higher level of DNA methylation coincided mostly with
silent genes (BLE). Consistent with the enrichment of HMs, genes in the BND state
showed the least amount of DNA methylation (Appendix Figure C.10d).

5.3.4 The BND state coincides with strongest regulatory activity

It was shown that specific TFs preferentially bind to bidirectional promoters (Trin-
klein et al., 2004; Bornelöv, Komorowski, and Wadelius, 2015). As we observed that
the DNA accessibility profiles differed among the transcription states (Figure 5.8h),
we were inspired to investigate binding of transcription factors. We obtained ChIP-
seq data for several transcription factors (ENCODEConsortium, 2012) (44 for HepG2
and 50 for K562). One hypothesis was that there may exist TFs that bind in the prox-
imal region of a BP and influence gene expression as was observed in our transcrip-
tion states.

To test this, we established a novel enrichment score tailored to BPs (Appendix
Figure C.11 and 5.2.15), which preserves the spatial distribution of the ChIP-seq sig-
nal along a BP. We applied the enrichment analysis for both cell lines (HepG2 in
Figure 5.9a and K562 in Appendix Figure C.11b). As expected, states with higher
expression showed more TF binding in general. However, we were not able to sin-
gle out distinct TF subsets that could be associated with a particular state. In fact,
the states BSD, BWD and BND showed enrichment for many of the TFs that we ana-
lyzed. This triggered us to investigate whether the number of TFs that are regulating
a BP differed in those states. Figures 5.9b,c provide violin plots demonstrating the
number of positively enriched TFs per BP for each state in HepG2 and K562 cell
lines, respectively. The BND state showed the highest percentage of positively en-
riched TFs (t-test, p ≤ 0.05) suggesting that more TFs are required to regulate gene
expression in this state.

Next, we tested whether specific genomic regions, such as enhancers, are asso-
ciated with these four transcription states. For this, we inspected the genome-wide
segmentation of HepG2 and K562 cells using an 18-state ChromHMM model (Ernst
and Kellis, 2012) (see 5.2.18). For simplification we collapsed all TSS-related, enhancer-
related, and repression-related ChromHMM states into TSS, Enhancer, and Repressed,
respectively. We assigned all the remaining chromatin states to Others (data not
shown). The results provided in Figures 5.9d, e suggest that the enhancer-related
regions are the most frequent amongst the BSD and BND states, reflecting their
stronger expression profiles. In the case of HepG2 (Figure 5.9d), this quantity is
even higher than the number of TSS regions. Concurrent with (Figure 5.8) most of
the repressed regions belong to the BLE state, where genes were lowly expressed.
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FIGURE 5.9: Heat map of TF (columns) enrichment scores (log ratio
against background) for each BP (rows) in HepG2 cells. BPs are sorted
as in Figure 5.4. b, c) Distribution of percentages of TFs per BP (en-
richment score in (a) > 0) in each state for HepG2 (top panel) and K562
(bottom panel). d, e) ChromHMM annotation, summarized into the
categories: TSS, Enhancer, and Repressed, are shown as percentages in

a bar plot per state (see 5.2.15)
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Conclusion and discussion

In this work we compared single cell expression of genes at BPs. Currently, we only
have access to single cell protocols for RNA-seq, and other techniques for quantifica-
tion of transcription start sites cannot be used (Scruggs et al., 2015; Core et al., 2014b;
Shiraki et al., 2003b). Thus, other effects on the mRNA steady state level, e.g. post-
transcriptional regulation, may influence the gene clustering produced. Here, we
have used two high quality single cell data sets for ENCODE cell lines allowing us
to benefit from a plethora of epigenomic data sets, which are available or have been
produced in this work. We found that 88% of the BPs have the same transcription
state in scRNA-seq data despite the difference in origin of HepG2 and K562 cells,
which suggests that the majority of these configurations may be stable for many cell
types.

In previous work that has analyzed BP regulation, analyses were often limited to
a certain configuration at the BP, e.g. a non-coding gene upstream of a coding gene,
therefore care has to be taken when comparing to previous studies. Here, we have
limited our results to annotated protein- or non-coding genes that originate from a
bidirectional promoter. We found that the BPs that show similar expression for both
genes are mostly restricted to a configuration with two protein-coding genes. It was
shown previously that core promoter strength differs for genes with bidirectional
expression and unidirectional promoters (Duttke et al., 2015a). Here, we show that,
beyond differences in the strength of the core promoter, the number of TF regula-
tors that bind to BPs with high bidirectional expression is largest compared to all
other expression configurations we observed. In this analysis we used several ChIP-
seq data sets for TFs and developed a BP-specific enrichment analysis approach that
measures spatial differences in read coverage along the BP regions compared to the
median background, unified in a single quantity for each BP and TF. This is dif-
ferent to other studies that have compared TF ChIP-seq data at BPs, e.g. (Bornelöv,
Komorowski, and Wadelius, 2015), where the background often was defined as a
set of unidirectional promoters rather than all BPs. Thus, to find enrichment in the
observed states we properly adjust for the fact that there are two genes, which are
regulated by TF binding.

We observed that the BND state shows the largest (although not strong) single
cell correlation values and that there is a trend with correlation at BP genes being
inversely proportional to TSS distance (Figures 5.7a,b). A similar observation was
recently made for BPs in the rice genome with correlation measured over several
bulk RNA-seq data sets (Fang et al., 2016). Small distance between the two TSSs
may ease the coupled regulation of transcription from both, for example through a
shared or co-regulated mediator complex (Allen and Taatjes, 2015).

We also found that the transcripts span, the genomic region covered by all tran-
scripts that start in the vicinity of the TSS, was imbalanced for the BSD and BWD
states, with the shorter span linked to the highly expressed gene at the BPs. One pos-
sibility is that shorter regions of elongation lead to faster transition cycles for Pol2,
assuming similar elongation rate of both genes at a BP. This could be a mechanism
by the cell to create imbalanced expression output from a shared regulatory region
of two BP genes. We also showed that these two states have the highest percentage
of stable and unstable genes inferred by our outlier detection approach. We found
out that in these two states only the lowly expressed genes were inferred as unstable.
As 3′UTR length is found to be associated with regulation of mRNA stability (Mayr,
2017), we investigated the 3′UTR length between the lowly and highly expressed
genes in the stable and unstable categories (Appendix Figure C.4c). However, the
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results showed no apparent significant trend. This probably means that different
sets of post-transcriptional regulators are involved in individual bidirectional gene
regulation.

Anecdotally, we investigated bulk GRO-cap data for K562 cells (Core et al., 2014b),
and found that the amount of capped nascent transcripts is more similar for both
genes at a BP in our states (Appendix Figure C.6b), compared to the amount of stable
RNAs expressed (CAGE and RNA-seq). Even though the nascent RNA amount is
similar we get significantly different steady-state transcript expression, which could
be explained by the difference in length of the genomic region to be elongated, here
referred to as transcripts span. Once single cell measurements of nascent transcription
are available, one could investigate the difference in elongation and transcriptional
initiation in these BPs.

Taken together, we observed three different genomic and epigenomic architec-
tures underlying single cell transcription states in BPs. We propose a model depicted
in Figure 5.10 to describe these architectures. This model supports distinct charac-
teristics of the BLE state, where the bidirectional genes were lowly expressed. They
mostly exhibited large TSS distance and more prevalence of repression associated
HMs, fewer regions of accessible DNA, and less TF binding. The BSD and BWD
states, on the other hand, had reduced TSS distance in comparison with BLE and
more abundance of activation associated HMs as well as higher rate of TF binding.
Interestingly, the transcripts span associated to the H gene of BPs in these states was
observed to be shorter than the L one. Lastly, BND showed strongest single cell co-
expression and smallest TSS distance among the states. Furthermore, we observed
the widest accessible regions of DNA, the largest number of binding TFs, and high-
est amount of activation related HMs.

Although the transcription state definition was based on the single cell data, sev-
eral bulk data sets showed consistent and matching patterns for those states. Our re-
sults suggest that novel statistical methods can be developed to deconvolute masked
subpopulations of cells measured with different bulk epigenomic assays with the
help of single cell RNA-seq data. Further advances in single cell sequencing tech-
nologies (Schwartzman and Tanay, 2015) are necessary such that we can measure
not only RNA expression, but also TF binding and histone modifications in single
cells to understand the hidden complexity, in particular, in BP regulation.
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FIGURE 5.10: Hypothetical model for three different genomic archi-
tectures underlying epigenetic regulations of BPs. BPs that drive
single cell expression patterns observed in the BLE state show large
TSS distance and higher abundance of repression associated histone
marks and depletion of most TFs. BSD and BWD, on the other hand,
exhibit smaller TSS distance and more TF binding compared to BLE.
In addition, the transcript span of the H gene is observed to be sig-
nificantly smaller compared to the L gene. BPs categorized in BND
show the smallest TSS distance with the most TF binding events that

require more accessible DNA to regulate both the L and H genes.
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Chapter 6

Tree-based multi-tasking to predict
gene regulation in single cells

6.1 Introduction

In the previous chapter 5, we emphasized on the advantage of using single cell se-
quencing to unravel interesting expression patterns among the bidirectional genes.
The promising results we obtained from that project, motivated us to explore a more
global picture of transcriptional regulation by considering all genes. However, the
main objective here is to understand whether the single cell data can be used to infer
cell-specific transcriptional regulatory components. There have been several related
studies exploring the answer to this question.

ACTION (Mohammadi et al., 2018) is one of the several existing methods that
was developed to discover new cell types using single cell data (Kotliar et al., 2019;
Kanter et al., 2019; Baron et al., 2016). It not only reveals novel cell types, but also
seeks to identify underlying regulatory factors from single cell expression data sets.
Mohammadi et al., 2018 devised a cell similarity metric that intensifies the effects of
preferentially expressed markers. They further used a geometry-based approach to
identify the primary functions of cells.

Another tool for inferring regulatory networks, called SCENIC, was proposed by
Aibar et al., 2017. SCENIC is a computational approach to infer gene regulatory net-
works specific to identified states obtained from single cell data. The result of their
computations creates a binary matrix, called activity matrix, through which identi-
fying single cells that have significantly higher subnetwork activity is feasible. In
the first step of their approach, they train random forest regression models to learn
non-linear associations between the expression of TFs, as features, and the expres-
sion of target genes, as response. The output of this step yields potential regulators
as well as their importance measure, which is used to interpret the influence of a
TF on predicting its target gene. In addition, they perform enrichment analysis on
the motifs of TFs of interest. These motifs are significantly over-represented in the
surroundings of the TSS (10 kb around the TSS or 500 bp upstream the TSS) of the
target genes. The TFs with strong motif enrichment are then selected for building
the regulons. However, their framework cannot find negative associations between
a TF and its target gene, due to low motif enrichment they observed for these cases
in the data sets they studied. The positively associated regulons are then used to
be incorporated with the single cell data. Through this step, the activity of each
regulon in each cell is evaluated by calculating the AUC scores, integrating the ex-
pression ranks across all genes in a regulon. Finally, these scores are used to create
the desired activity matrix as the output of their workflow.
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Later, Suo et al., 2018 exploited SCENIC and modified it by defining a Jensen-
Shannon divergence based score to assess the specificity of the regulons with re-
spect to the cell types. By considering the regulons having high values of such cus-
tomized score, they were able to infer both known and novel regulatory elements in
the mapped mouse cell atlas derived from comprehensive single cell transcriptomic
analysis.

Despite the interesting studies conducted regarding cell type identification and/or
regulatory network inference, the single cell data suffers from the inherent technical
noise of so called, dropouts. Dropouts are referred to genes that are falsely identi-
fied as zero-expressed. In simpler words, any zero that is observed in the expression
count matrix of single cell data, can be viewed as either a correctly identified silent
gene or incorrectly identified silent gene due to the dropout effect. There have been
several methods (Gong et al., 2018; Li and Li, 2018a; Tracy, Yuan, and Dries, 2019)
that attempted to address and solve this problem by imputing the missing expres-
sion values, but there is no clear way to achieve this nor be certain that the imputed
values are correctly inferred.

The work we present here is conceptually similar to SCENIC (Aibar et al., 2017),
but it is methodologically different. Similar to SCENIC, we study the associations
between the single cell gene expression and transcription factors. However, in con-
trast to SCENIC, we compute the binding affinities of many TFs instead of relying
on their gene expression. This allows us to study the cis-regulatory associations with
gene expression independent of cell types or the corresponding expression data. In
other words, it provides a generic profile for cell-specific cis-regulatory activities.
In addition, we include other types of features obtained from epigenetic data or TF
ChIP-seq to infer more cell type dependent associations. We train statistical mod-
els, where the expression measurements of genes across single cells are considered
as the tasks in a multi-task-learning (MTL) setup. This intuitive analogy motivated
us to build MTL regression models with group LASSO regularization predicting the
single cell RNA-seq data from the aforementioned features.

We trained our models on two single cell gene expression data sets, induced
pluripotent stem cells (iPCs) and human skeletal muscle myoblasts (HSMM), and
inspected the coefficients of these models to identify interesting set of features that
best explain the gene expression in single cells. In addition, we compared the MTL
results with standard univariate response regression models. These results indicate
that the MTL models that integrate the information among all single cell gene ex-
pressions not only produce more interpretable models but also often lead to higher
accuracy.

6.2 Methods

6.2.1 Data preparation

In this section, we explain how the feature and response matrices were generated
for our statistical models. It should be noted that Florian Schmidt generated the
following feature data (static, epigenetic, and dynamic) using his pipelines. I exploited
these data for the remaining of the work.

Static features

We ran TRAP (Roider, 2007) to quantify the binding affinities of 726 TFs at the pro-
moter area defined by a window of size 2 kb centered at the transcription start site
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(TSS). These affinity values were later log-transformed to be fed to the statistical
models. More precisely, we define FS ∈ Rn×p be the feature matrix representing the
affinity values measured for n genes, arranged at the rows, and p TFs, arranged at
the columns. This matrix contains the data for what we call static features.

Epigenetic features

Using TEPIC (Schmidt et al., 2017), the binding affinities of 726 TFs were measured
in peaks defined based on the DNase-seq data within the 50 kb window around the
TSSs of HepG2 cells produced by DEEP and mapped against human genome hg19.
Similar to static features described above, we define the feature matrix FE ∈ Rn×p,
where n is the number of genes and the p number of TFs for which the binding affini-
ties were computed. In this setup, we also include three extra features representing
the number of peaks (Peak_Counts), the length of the open region (Peak_Length), and
the aggregated signal (Peak_Signal) computed withing the 50 kb window around the
TSS. Because this particular type of feature is derived from the peaks in the DNase-
seq data, we refer to this feature setup as epigenetic features.

Dynamic features

ChIP-seq data for 123 TFs of the HepG2 cell line were downloaded from ENCODE
and the read counts were measured in a 3 kb window defined around the gene’s TSS
(mapped against genome hg38) to be combined with the iPSCs single cell data for
the model training. Precisely, for n genes and p TFs, the feature matrix, FD ∈ Rn×p

contains the ChIP-seq read counts measured at the TSSs of the genes. We refer to
these features as dynamic features.

Responses (tasks)

The expression values of all genes (TPM normalization) measured for a single cell,
are considered as a task for the multi-task learning framework. We acquired in-
duced Pluripotent Stem Cells (iPSCs) data generated and provided by Kathrin Kat-
tler from the lab of Prof. Dr. Jörn Walter (Saarland University) in cooperation with
Prof. Dr. Jan Hengstler’s group (IfADo Dortmund) within the BMBF funded project
StemNet. These cells contain two annotated cell types, Primary Human Hepatocyte
(PHH) and Hepatocyte Like Cells (HLC). After discarding the low quality values
from the iPSCs data with 238 cells, there were 14142, 4827, and 14188 genes for static,
epigenetic, and dynamic features, respectively.

We obtained the Human Skeletal Muscle Myoblasts (HSMM) data from Trap-
nell et al., 2014 and applied the filtering approach suggested by the monocle’s tuto-
rial (Trapnell and Cacchiarelli, 2014). At first, the detected genes were defined using
the detectGenes function by setting the min_expr argument to 0.1. A gene is kept if
there are at least 10 cells in where the gene was detected (based on the aforemen-
tioned definition of detected genes), otherwise discarded. The filtered data (kept
genes), contained 19,566 genes and 306 cells for the static features. It is worth men-
tioning that we only generated the static features for this data, as there was no valid
annotation of the cells that we could rely on for the downstream analysis in our
study. Therefore, this data set was only used to demonstrate the results based on the
different choices of tree structures required for the tree-guided MTL models.
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Filtering

We further reduced the gene set, by completely removing all the affinities computed
for the genes that the variance in their feature space (TF affinities) was less than the
third quartile of the variances measured for each gene. More precisely, given the FS
matrix, we compute the variance over the TF affinities across all genes, as follows:

vari = variance(FS[i, ]), i ∈ {1, · · · , n} (6.1)

where FS[i, ] is a vector of size p, holding the affinity values in the ith row. Next, we
define a threshold t based on the third quartile computed over vari’s ∀i ∈ {1, · · · , n},
as a cutoff to decide whether the genei should be kept or not:

genei :

{
kept if vari ≥ t
discarded else .

∀i ∈ {1, · · · , n} (6.2)

Similarly, we applied this filtering procedure on the other two feature setups,
epigenetic and dynamic.

6.2.2 Single-task learning method

We trained individual models with elastic net regularization with 5-fold cross-validation
model selection exploring the α parameter within the range of 0 and 1 with step size
of 0.1 from the glmnet package in R.

6.2.3 Multi-task learning methods

In the multi-task learning regression setup, where the response variable is a mul-
tivariate vector (matrix) a slightly different objective function is considered. Let
X ∈ Rn×p denote the input matrix for n observations (samples) and p features. Let
Y ∈ Rn×k denote the response matrix, whose columns are vectors of observations
for those k tasks. We look for an appropriate coefficient matrix, B ∈ Rp×k that estab-
lishes the linear relation between X and Y with the error term ε as described in the
following formula:

Y = XB + ε . (6.3)

There are various ways to obtain the optimal values for the B coefficient matrix.
In this section, we describe several multi-task learning setups used in this study to
understand the performance of different formulations and also downstream inter-
pretation of the obtained results.

Ordinary MTL

To optimize a multi-task regression model with elastic-net regularization, the fol-
lowing objective function is used:

B∗ = arg min
B

(Σk
i=1(yi − Xβi)

T.(yi − Xβi) + αΣp
j=1‖β

j‖2), (6.4)

where B∗ denotes the optimal coefficient matrix, α is a tuning parameter that controls
the magnitude of the coefficients through the L2 norm regularization, and yi is a
vector of size n holding the response values of the ith task. Similarly, βj is a vector
of size p denoting the coefficients corresponding to the ith task. The (., .) operator
denotes the inner product between two vectors.



6.2. Methods 89

Given this optimization formula, we trained an MTL model with elastic net reg-
ularization using the glmnet package in R, where the family argument was set to
mgaussian to account for the multi-tasking nature of the setup. We used 5-fold cross
validation to optimize over the α search grid defined within the range of 0 and 1 with
the resolution of 0.05. The models generated using the aforementioned formulation
are referred to as ordinary MTL (OMTL) throughout the remaining of the text.

6.2.4 Tree-guided group-lasso MTL model fitting

In the ordinary MTL scenario all tasks share the same relevant features. However,
it is possible that a subset of highly related tasks may share a common set of rel-
evant features, whereas weakly related tasks are less likely to be affected by the
same features (Kim and Xing, 2010). An improvement was proposed by Kim and
Xing, 2010 to address this shortcoming of OMTL models. Through their proposed
method, which they refer to as tree-guided MTL, the relationship among the tasks
is represented as a tree T with V vertices. Each leaf node of T is associated with a
task and the internal nodes reflect the groupings of the tasks. This tree structure can
be inferred directly from the data or even may be available as prior knowledge be-
forehand. Within this tree, each node v ∈ V is associated with a weight wv, typically
representing the depth of the subtree rooted at node v.

B∗ = arg min
B

(Σk
i=1(yi − Xβi)

T.(yi − Xβi) + λΣp
j=1Σv∈V‖wvβ

j
Gv
‖2), (6.5)

where λ is the regularization parameter and β
j
Gv

is a group of regression coefficients

{βj
i : i ∈ Gv}. We used the LinearMTL package in R, implemented by Tobias Heinen,

to train the tree-guided MTL models. We first partitioned 60% of the data for train-
ing and 40% for test. Then, we normalized the data to have zero mean and unit
variance. For the sake of model selection, we performed a 5-fold cross validation,
through which 21 distinct values of λ, defined within the range of 0 and 1 with the
resolution of 0.05, were explored. Finally, we trained the models by setting the max-
imum number of iterations to 200.
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FIGURE 6.1: Schematic illustration of the tree-guided multi-task
learning in the context of single cells. The rows of the feature ma-
trix, X, are the genes for which one of the feature setups described
previously would be used. The response matrix, Y, consists of the
gene expression values measured in single cells. And finally, the co-
efficients matrix, B, establishes a linear association between the X and

Y, where the rows indicate the features and columns the cells.

6.2.5 Construction of the trees used for the tree-guided MTL models

Pseudo-time ordering tree

We ran the monocle package implemented by Trapnell et al., 2014, in order to obtain
the pseudo-time ordering of the iPS cells. We retrieved the minimum spanning tree
output by the tool to construct the required tree structure for the tree-guided MTL
models.

Real data trees

We generated several trees on the true gene expression data that are listed below:

• HC: Hierarchical clustering was applied on the real single cell expression data.
The clustering tree is then used to guide the tree-guided MTL models.

• twoDmonocleHC: Coordinates of the single cells in the reduced dimension
space (a matrix of size 2× #cells) derived from the monocle model trained on
the real data were fed to the BuildTreeHC function of the LinearMTL package.
This function, as the name suggests, builds the hierarchical tree based on those
coordinates in the reduced dimension space.

• monocle: In order to generate the groups suggested by the monocle pseudo-
time ordering tree, T = (V, E), we defined clusters of cells based on the con-
nected components remained after removing the edges attributed to the nodes
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with the highest degree. More precisely, let m be the set of nodes with the
maximum degree in T, we define a new tree, T′ as follows:

T′ = (V, E′)E′ = E\{e : (v, v′)|v 6= v′and ∀v ∈ V, and ∀v′ ∈ m} . (6.6)

This procedure converts the MST generated by monocle to a tree required by
the tree-guided MTL models.

Baseline tree

We constructed another tree that serves as a baseline for our tree-guided MTL mod-
els. The tree structure forms a star shape, with a root and #cells children. More
precisely, let k be the number of cells. Then, the baseline tree has k + 1 nodes, la-
beled by 0, 1, · · · , k, where 0 represents the root and the remaining nodes represent
the k cells. Every non-root node has one and only one edge connecting it to the root.
Clearly, the root has immediate links to other nodes, i.e., degree of k. This tree struc-
ture is considered baseline, because it does not suggest any particular grouping of
the cells, as they all are uniformly connected to the root.

Random data tree

In order to generate appropriate random data, we shuffled the expression values for
a given gene across the cells and then regenerated the monocle tree for this random-
ized shuffled data. Given that the genes are arranged in rows and cell in columns,
for each row, we shuffled the gene expression values across the cells and then gave
it to the monocle tool. Finally, we trained the tree-guided MTL model using the
twoDmonocleHC tree structure described above.

6.2.6 Selection of top features

Since for the static and epigenetic features, several hundreds of TFs were included in
the set and visualizing this many TFs makes the interpretation infeasible, we decided
to shrink this set by selecting those that pass a certain criteria. Essentially, for a given
TF arranged in the rows of the coefficient matrix, we compute the sum of absolute
values for that TF across all cells. If this value is higher than our predefined threshold
of 0.5, we keep that TF, or discard it otherwise.

6.3 Results

6.3.1 Hierarchical clustering based trees result in better performing mod-
els

The tree-guided MTL models expect a tree structure to guide the model on how
the tasks should be grouped when optimizing the objective function. However, the
choice of the tree for the tree-guided MTL is on user’s shoulder. Therefore, we ex-
plored several cases for which we thought they can convey the structure existing in
the single cell gene expression data.

An intuitive choice was to derive the structure from a pseudo-time ordering ap-
plied on the single cells. Through traversing the trajectory obtained from monocle,
we built a tree representing the pseudo-time ordering of the cells (see 6.2.5). Since the
transformation from the pseudo-time ordering to a tree can be arbitrary, we applied
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hierarchical clustering on the matrix holding the data for pseudo-time ordering and
used the resulting tree for our tree-guided MTL models (see 6.2.5).

In addition, we applied hierarchical clustering on the gene expression data di-
rectly, to compare the results when other trees have been used (6.2a-c). The scatter
plots in Figure 6.2 show the Pearson correlation coefficients computed between the
predicted and measured values of gene expression in each individual cell. Inter-
estingly, we see that applying the hierarchical clustering either on the gene expres-
sion values (HC) or on the reduced dimension data obtained from monocle soft-
ware (twoDmonocleHC) leads to better results than the tree structure inferred from
the pseudo-time ordering (monocle).

We further examined the performance of the tree-guided models with two other
types of tree structures, random and baseline (see 6.2.5). Figures 6.2d-f compare the
performance of random and baseline with the HC and twoDmonocleHC models. These
results suggest that the choice of hierarchical tree, performed on either the full gene
expression data or the reduced space, are valid and reliable as they outperformed
the models with random and baseline trees.

Apart from the tree-guided models, we also generated the ordinary multi-task
learning (OMTL) models to examine the efficiency of the tree-guided over OMTL
models. Scatter plots provided in figures 6.2g-i allow us to compare the performance
of OMTL models with the tree-guided MTL models, where different trees are used.
In general, it can be seen that the tree-guided models are superior to the OMTL ones,
especially when the hierarchical tree is used.
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FIGURE 6.2: Comparison of MTL models on HSMM data. Each point
in the scatter plot represents the Pearson correlation coefficient com-
puted between the predicted and measured values of gene expression
per cell. The diagonal line indicates the identity line to ease the com-

parison between the models placed on x and y axes.

In addition to the OMTL models, we also trained individual single-task models,
by providing the gene expression profile per cell as the response variable of each
model. Figure 6.3 illustrates the single-task learning (STL) framework. The predic-
tions obtained from each individual model were later used to compute the correla-
tion values between the prediction and actual measurements of gene expression.
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FIGURE 6.3: Schematic illustration of the single-task learning in the
context of single cells. The vector of gene expression values measured
in each single cell plays the role of the response variable in a distinct
learning task. Ultimately, there are as many models as the number of

single cells.

Finally, we designed another experiment that contrasts the performance of var-
ious tree-guided MTL models with single-task models obtained from individual
builds of elastic net regularized univariate response models generated for each cell.
Figure 6.4 illustrates the distribution of Pearson correlation coefficients obtained be-
tween the predicted and measured values of gene expression for each of the single-
task and tree-guided multi-task learning with HC, baseline, and monocle provided as
the guiding trees. These results further support the advantage of tree-guided MTL,
in particular the HC setup, over the single-task models, where no information is
shared among the tasks.
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FIGURE 6.4: Comparison of single-task and tree-guided MTL models
on HSMM data. The x-axis refers to three tree-guided MTL models
(hierarchical (HC), monocle, baseline), as well as a single-task learning
model. The y-axis shows the Pearson correlation coefficients between
predicted and measured values of single cell gene expression on test

data.

In conclusion, the tree-guided MTL indeed provides advantages compared to
OMTL and the best choice for the tree is through conducting hierarchical clustering
on the entire gene expression data (HC). Thus, we decided to generate the down-
stream tree-guided MTL models using HC as the guiding tree.

6.3.2 The impact of feature types on the prediction results

We wanted to explore the associations of gene expression in single cell to features
that are independent of the cell content or configuration. Therefore, we designed a
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feature setup, which we named static, to link the cis-regulatory characteristics of ∼
700 transcription factors with the gene expressions measured in single cell (see 6.2.1).

Figure 6.5 schematically illustrates the genomic area, where the static, epigenetic,
and dynamic features are generated from. In static features, for each transcription
start site of a gene, the TF binding affinities are measured within the 2 kb window
around the TSS. These affinity scores are used to form the feature matrix for the static
setup (Figure 6.5a). Figure 6.5b, illustrates the peaks obtained from the DNase-seq
data used to identify the open chromatin regions in a 50 kb window around the TSS.
The TF binding affinities are computed in the segments of this 50 kb window that
correspond to the peaks. Finally, Figure 6.5c, shows the region in where the reads of
ChIP-seq data of 123 TFs are counted. The resulting measurements form the third
feature setup, dynamic features.

2kb

50kb

3kb

static

epigenetic

dynamic

a)

b)

c)

FIGURE 6.5: Genomic regions where the a) static, b) epigenetic, and c)
dynamic features are generated from.

Figure 6.6 shows the Pearson correlation coefficients between predicted and mea-
sured values of gene expression obtained from the tree-guided MTL model trained
on this setup. The results indicate that predicting the expression of Primary Human
Hepatocyte (PHH) cells using the static features is more difficult than the expression
of Hepatocyte Like Cells (HLC).
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FIGURE 6.6: a) Scatter and b) violin plots illustrating the Pearson cor-
relation coefficients obtained on the test partition of the iPSCs gene
expression regarded as response and static features. The two sub-
populations, HLC and PHH, are colored with blue and red, respec-

tively.

Next, we deployed the epigenetic features (see 6.2.1) to see how the models per-
form when this type of feature is used. The epigenetic features represent the affinity
binding of hundreds of TFs measured in specific genomic segments. These genomic
segments are defined through the epigenetic signal of DNase-seq peaks. Therefore,
they potentially should capture more specific associations between the TF binding
affinity and chromatin openness. We built the tree-guided MTL models to predict
the gene expression values in single cells using the epigenetic features. Similar to the
static setup, we generated the correlation values to evaluate the model performance
as shown in Appendix Figure D.1. It can be seen that, overall, the epigenetic setup
improves over the static setup, especially for the PHH cells. In other words, there is
a notable rise in the correlation values of both cell types, in particular the PHH cells.

We stretched our analysis by building another tree-guided MTL model that takes
the dynamic features (see 6.2.1) to predict the single cell gene expression. The dy-
namic features hold the data for over 100 TF ChIP-seq reads that their corresponding
genomic location overlapped with the 3 kb window centered at the TSS of the genes.
This setup, interestingly, resulted in the best performance accuracy in comparison to
the formerly mentioned setups (Appendix Figure D.2).
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Even though the top performing model was obtained from the dynamic features,
we favored to present the results for the static features in the main text of this thesis.
Because, the static features are independent of any cell type or tissue and can be
coupled with any available single cell expression data. However, on the contrary,
the other two feature types (epigenemic and dynamic) are specific to a given cell type,
preferably the one that matches best the gene expression data.

6.3.3 Imputation generally improves the accuracy

The results shown in the previous section, 6.3.2, are performed on the original un-
altered expression data. However, we were curious to find out how the results will
change when we impute the missing values, which were introduced by the dropout
effect. Therefore, we imputed the data using the scImpute tool (Li and Li, 2018a) and
repeated the experiments described in 6.3.2 with the difference of using the imputed
expression values as the response matrix. Appendix figures D.3, D.4, and D.5 ex-
hibit the prediction accuracy, measured in terms of Pearson correlation coefficients
between the imputed gene expression and the predicted values for the static, epige-
netic, and dynamic feature setups, respectively. Figure 6.7 provides an overview of
the performance of the tree-guided MTL models on the three feature setups as well
as the imputation status of the expression data, imputed or not imputed. These re-
sults reveal that, not surprisingly, the imputation enhances the prediction accuracy,
regardless of the feature setup. It is interesting to observe that for the epigenetic setup,
not only the correlation values are increased, but also the distribution of these val-
ues is changed in favor of having a smaller variance across the cells. The change of
distribution is notable for the other two setups as well, but that does not necessarily
lead to a smaller variance.
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FIGURE 6.7: Comparison of all tree-guided MTL models on the test
partition of the iPSCs data. Dynamic, epigenetic, and static setups are
colored with red, green, and blue, respectively. The imputation status
is indicated by different border colors, black for imputed and gray for

not imputed.

6.3.4 Distinct regulatory elements are attributed to the HLC and PHH cell
types

Observing such difference in the prediction accuracy, triggered our curiosity in in-
specting the model coefficients that correspond to the TFs in cells. The heat map
in Figure 6.8 depicts the coefficients of the top features (see 6.2.6) derived from the
tree-guided MTL model trained on the static features to predict the gene expression
in iPS cells.

In this heat map, it can be noted that, firstly, the cells are very well clustered
according to the model coefficients, as the built-in hierarchical clustering in the heat
map function nicely arranged the HLC and PHH cell types separately from each
other. Secondly, these results show certain blocks of TFs playing distinct roles in
regulating the gene expression in single cell. For instance, the transcription factor
YY2 holds positive coefficient values for the HLC cells, whereas its coefficient values
for the PHH cells are negative. This is interesting, since YY2 has a dual affect on gene
expression, i.e., it can both repress and activate transcription (Nguyen et al., 2004).

On the other hand, HNF1A, which is essential for the expression of various liver-
specific genes, was considered irrelevant for the HLC cells by the model, as it has
assigned zero to coefficients corresponded to this particular TF on these cells. How-
ever, HNF1A holds positive coefficient values for the PHH cells.
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FIGURE 6.8: Heat map illustrating the top features (see 6.2.6) derived
from the tree-guided MTL trained on the static features to predict the

unimputed gene expression in iPS cells.

Similar trends, in terms of spotting distinct cell type specific TFs among the
model coefficients, was also observed in other feature setups, as well as models
trained on the imputed gene expression data. The heat maps representing the co-
efficients of top features for the epigenetic and dynamic features linking the unim-
puted data are provided in Appendix figures D.6 and D.7, respectively. The results
obtained on the imputed data are shown in Appendix figures D.8, D.9, and D.10.

6.3.5 Tree-guided MTL outperforms single-task learning models

Our last experiment is devoted to investigate the two distinguishable learning ap-
proaches, multi-tasking versus single-tasking, trained based on the three feature
types. Similar to before, the tree-guided MTL models guided by the HC tree struc-
ture are trained on the static, epigenetic, and dynamic features, separately, to predict
the imputed and unimputed gene expression measurement in single cell. Simultane-
ously, the single-task models are trained using the elastic net regularization, where
gene expression measurements per cell form a univariate response vector, resulting
in as many regression models as the number of cells. Figure 6.9 provides the scat-
ter plots representing the Pearson correlation coefficients between the measured and
predicted gene expressions in single cells.

We can analyze the results shown in these plots in two different ways. Firstly, it
is apparent that the tree-guided MTL models most often outperform the single-task
learning elastic net models for all features setups of the unimputed (notImputed)
scenarios. We additionally calculated the ratio of cells, where the tree-guided MTL
models outperformed single-task models for each feature setup on the unimputed
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Feature Ratio
static 0.87
epigenetic 0.70
dynamic 0.56

TABLE 6.1: Ratio of cells for which the corresponding tree-guided
MTL outperformed the competing single-task models on the unim-

puted data.

data, as displayed in Table 6.1. This further supports the advantage of using a learner
that is able to share the information across different tasks (single cells in this partic-
ular problem).

Secondly, when the imputed data is considered, this advantage becomes strik-
ingly prominent as, except for very few cells, the MTL models undoubtedly outper-
form the STL ones for all feature setups. This observation hints at the better gen-
eralizablity of the models when less noisy data is supplied. The imputation indeed
improved the performance of the STL models compared to the unimputed scenario,
by having higher correlation values and less variance across the cells, but the MTL
models could better exploit this improvement in the data quality, and enhance their
prediction accuracy.

These results conclude that irrespective of the feature type and imputation status
of the gene expression data as the response, the MTL models are superior to the STL
models.
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FIGURE 6.9: Comparison between single- and multi-task learning
models trained on either of static, epigenetic, or dynamic feature setups.
The response variables are the single cell gene expressions with or
without imputation procedure indicated by imputed and notImputed,

respectively.

Conclusion and discussion

In this work, we utilized the single cell RNA-seq data partly from the HSMM cells
obtained from Trapnell et al., 2014, and mainly from the induced pluripotent stem
cells data set provided by Kathrin Kattler from the lab of Prof. Dr. Jörn Walter
(Saarland University) in cooperation with Prof. Dr. Jan Hengstler’s group (IfADo
Dortmund). We built several statistical models that intrinsically address the dropout
issue and simultaneously find associations between the single cell RNA-seq expres-
sion measurements and various transcriptional characteristics, such as transcription
factor binding affinities and ChIP-seq signals.

The discrepancies observed among the gene expression profiles in single cells,
trivially, hints at the existence of specific differences in the transcriptional regulatory
mechanism. This mechanism can involve the static cis-regulatory characteristics all
the way up to the more elaborated features such as the chromatin accessibility and
transcription factor binding. Devising computational methods that are able to infer
associations between gene expression in single cells and cis-regulatory motifs as well
as epigenetic characteristics has attracted the attention of researchers in the field.
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There have been studies focusing on linking the transcriptional regulatory elements
in single cells (Mohammadi et al., 2018; Aibar et al., 2017; Suo et al., 2018).

Aibar et al., 2017 relies on the gene expression of several transcription factors to
infer cell-specific associations between the expression of other genes and those TFs.
In contrast to their approach, we computed the binding affinities of hundreds of TFs,
in addition to exploiting TF ChIP-seq data to infer such associations. We found the
multi-task learning approach a suitable machine learning candidate to conduct our
computational experiments. We employed the tree-guided MTL method to benefit
both from the information sharing delivered by multi-tasking and also grouping the
cells according to the tree structure provided as an additional input.

We designed three different feature setups, static, epigenetic, and dynamic to in-
spect the association of cis-regulatory and epigenetic features with cell-specific tran-
scription. The connection was established between these feature setups and either
the imputed or unimputed gene expression values in single cells through various
statistical learning models. Even though the main focus was on the tree-guided
MTL framework, we explored the prediction accuracy on ordinary MTL (without a
tree structure) and single-task learning using the elastic net regularization.

In order to decide what tree structure to choose for training the tree-guided MTL
models, we tested various relevant choices of which we settled on the HC case. The
results were compared with the models trained on the same data using baseline and
random trees for further validation of the goodness of our choice.

The tree-guided MTL models using the HC tree structure trained on each of the
static, epigenetic, and dynamic feature setups predicting the iPS single cell expression
led to multifaceted results. Firstly, we noticed that the prediction accuracy was in
general higher for the HLC cells compared to PHH cells. To further investigate this
peculiar finding, we computed the Pearson correlation between the individual fea-
tures of each feature setup and the gene expression separated by the cell type (PHH
or HLC) as shown in the Appendix figures D.12, D.13, and, D.11. These correlation
values appear to be in favor of the HLC cells, as regardless of which feature setup
considered, the distributions tend to exhibit larger values for the HLC cells.

Not only we strove for obtaining improvements in model accuracy by using the
tree-guided MTL approach, but also were interested in acquiring more interpretable
results. By inspecting the coefficients of our models, we were able to pinpoint dis-
tinct transcription factors that show cell-type specific regulation in iPS cells.

In view of the fact that the MTL shares the information among the tasks to facil-
itate the learning procedure, we speculated that the concern regarding the dropout
issue in single cell data would be intrinsically addressed. To evaluate whether this
speculation was justified, we compared the prediction accuracy with the counterpart
learning approach of MTL, which is the single-task learning approach. The results,
in fact, support our speculation by revealing the superiority of MTL models over
the STL ones. Therefore, even though our approach is different to imputation meth-
ods, but because it leverages the idea of sharing the cell similarity, it can actually
improve the prediction of gene expression. However, the run-time complexity de-
pends heavily on the number of cells and as this number grows (> 2000), the current
implementation becomes prohibitively slow.

As a future work we think that we can extend the model to include single ATAC-
seq data, upon availability, to attain epigenetic features that are estimated in accessi-
ble chromatin regions defined through higher resolution assessments. In addition,
the feature setup can be further extended to embrace more diverse transcriptional
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regulatory characteristics, such as annotated enhancers as opposed to promoter re-
gions. Likely, our proposed approach could be even more powerful if we had mod-
eled the noise in the single cell data into our objective function. In the end, we
believe that the single cell sequencing technology has paved the way for excelling
our understanding of gene regulation at more fine grained levels.



105

Chapter 7

Summary and conclusion

Many phenotypic and genotypic disorders can be traced back to aberrant expression
of certain genes. What goes wrong in the cell that results in such abnormalities has
always concerned the biologists and physicians. Through generating novel hypothe-
ses for gene regulation, the path will be paved to develop appropriate strategies for
prevention or treatment of diseases. Vast amount of research has been gone into un-
raveling the mystery of gene regulation (Cramer, 2019; Smith and Flodman, 2018).
However, each study can only address a few pieces of this expansive puzzle of gene
regulation. Throughout this dissertation, we presented our contribution by tackling
interesting problems related to understanding the gene regulation mechanism.

In Chapter 3, we explained the problem of TF binding site (TFBS) prediction,
which was pursued in the context of the DREAM challenge competition (ENCODE-
DREAM, 2017). We described a random forest (RF) based ensemble learning frame-
work that allowed us to predict the TFBS in predefined genomic bins of several hu-
man cell types. Our approach demonstrated its strength, in particular, in the multi
tissue settings, by determining the cofactors associated to the TF of interest (TF for
which its binding sites were to be predicted). In addition, our proposed method was
capable of better generalizing across samples, in comparison to models that were
trained only on a single sample. We further explored the relation between the per-
formance of our RF classifiers and the number of tissues used for training. The main
obstacle on the way of building our computational models for this specific task was
the imbalanced nature of the classes, Bound and Unbound. Therefore, precautions
were required to be taken into consideration to prevent the models being biased
towards the major class. In summary, we showed that modeling cofactors can be in-
strumental in predicting TFBS and that ensemble learning is a promising approach
to gain generalizability across tissues.

In the subsequent two chapters, 4 and 5, we targeted gene regulation in bidirec-
tional promoters. These are a class of gene pairs that are located in proximity to each
other but on the opposite strands of DNA (plus and minus strands). These genes are,
in particular, interesting because the promoter architecture embracing these genes
allows miscellaneous patterns of gene expression resulting from a disjoint or cou-
pled regulation. As it was previously shown that the histone modification data can
be used to build accurate models for predicting gene expression (Karlić et al., 2010),
we decided to leverage such data for studying the gene regulation in bidirectional
promoters.

In Chapter 4, we discussed our feature design strategy tailored for addressing
this particular problem. Unlike Karlić et al., 2010, we measured the histone modifi-
cation read counts in bins of 100 bp spanning the promoter region in order to capture
the spatial distribution of the signal to be later used in our machine learning frame-
work. We exploited the fused LASSO algorithm that is able to provide interpretable
models when correlated features exists in the data. Through a series of simulation
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case studies, we investigated the behavior of the models by varying the associations
between the feature and response variables fed to the models for training. As the
results of simulation analyses were convincing and promising, we applied our ap-
proach on the real histone modification and RNA-seq data provided by the DEEP
consortium. Through generating multiple fused LASSO models, each trained on a
different cell types, we were able to build a histone map extracted from the model
coefficients, for all these cell types. The prominent trend observed in this map sug-
gested a unidirectional association of histone marks to the expression measured at
the bidirectional promoters.

We continued studying this peculiar gene regulation mechanism at bidirectional
promoters in Chapter 5 by utilizing the single cell RNA-seq data. Using the single
cell gene expression profiles in bidirectional promoters, we derived three different
genomic and epigenomic architectures that were specific to these promoters. We
concluded our findings by proposing a hypothetical model that describes these ar-
chitectures. This model supports distinct characteristics of HM abundance, DNA
accessibility, TF abundance, TSS distance between gene pairs, as well as the tran-
scripts span of these genes pairs (Behjati Ardakani et al., 2018).

Thrilled by the potentials single cell sequencing has, we stretched our interest
in understanding the gene regulation mechanism by developing a novel statistical
framework tailored for single cell data. As provided in Chapter 6, we described
our work, which is a general framework for establishing cell specific associations
through employing a tree-guided multi-task learning (MTL) algorithm (Kim and
Xing, 2010). Despite other related approaches (Mohammadi et al., 2018; Aibar et al.,
2017; Suo et al., 2018), we incorporated the information shared among the single cell
gene profiles using our multi-tasking approach. We examined the results obtained
from different tree structures used for grouping the cells. The tree structure that pro-
vided the most promising results was selected to be used for the rest of the analysis.
We designed three different feature setups, static, epigenetic, and dynamic reflecting
genetic and epigenetic characteristics. We then established the connection between
these feature types and either the imputed or unimputed gene expressions in single
cell. In order to showcase the power of our tree-guided MTL design, we addition-
ally compared the prediction accuracy on ordinary MTL (without a tree structure)
and single-task learning using the elastic net regularization. By inspecting the coef-
ficients of our models trained on induced pluripotent stem cells with two annotated
cell types, HLC and PHH, we were able to identify distinct transcription factors that
appear to be cell type specific in these cells.

The approaches presented herein provide new integrative means for studying
the gene regulation mechanism. Through exploiting or tailoring already existing
computational methods, we were able to achieve new insights into the genetic and
epigenetic characteristics involving gene expression. In order to grasp a compre-
hensive overview of this complex mechanism of gene expression, it is essential to
combine various sources of data reflecting the genetic and epigenetic markup of a
cell. In particular, with the advances in single cell sequencing, we believe that in-
tegrating different single cell sequencing assays can result in revolutionary leaps in
understanding the gene regulation at the single cell resolution.
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FIGURE A.1: PR-AUC and ROC-AUC for different sets of features:
considering all features, the top 10, and the top 20 features on several
test tissues. One can see that the there is a slight advantage for the
top20 and top10 model over the full model in these scenarios. The
performance is shown for individual tissues in (a) and separately for

the size of the feature matrices in (b).
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FIGURE A.3: a) Classification error for the Bound and Unbound classes
for different sets of features: considering all features, the top 10, and
the top 20 features. One can see that the difference in model perfor-
mance between the top 20 and all feature cases is only marginal. b)
Comparison of the out of bag (OOB) error between ensemble mod-
els and tissue-specific random forest (RF) classifiers. Especially in
the Unbound case, the ensemble models show superior performance
compared to the tissue-specific RF classifiers. c) Misclassification rate
computed on unseen test data for ensemble and tissue-specific RF
classifiers. As in b) we see that the ensemble models generally out-
perform the tissue-specific ones. Note that the scale of the y-axis is

different for the Bound and Unbound classes in (a) and (b).
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FIGURE A.4: a) Relation of the OOB error for three TFs (E2F6, MAX,
and TEAD4) to the number of tissues used for training. The OOB
reduces if more tissues are included in the ensemble learning. Red
dots represent the mean classification error across all tissue-specific
classifiers. Individual models are represented by the black points.
b) Comparison between true ensemble models for E2F6, MAX, and
TEAD4 and RF classifiers trained on pooled data sets comprised of
training data for all available tissues. The ensemble models perform

better than the models based on aggregated data.
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transformed. Each cell of the heat map correspond to the bins de-
scribed in 4.3. 0 indicates the TSS of the minus gene, where the win-

dow of size 4 kb is anchored on it.
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FIGURE B.2: The histone map. Fused LASSO coefficients obtained
from individual models learnt on the cell types described in 4.2.1
for the minus gene. The values are scaled between −1 (blue) and 1
(red) to ease the comparison across samples. The expression assays,
RNA-seq, CAGE, and GRO-cap, are color coded by black, purple, and
green, respectively. The heat map suggests a unidirectional localiza-

tion of histone marks coinciding the direction of transcription.
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C.1 Methods

Single cell RNA-seq

Single HepG2 cells were manually picked to prepare poly-A enriched cDNA li-
braries using Smart-seq2 as described by Picelli et al., 2014 with modifications. Briefly,
65 single cell samples were supplemented with 0.5 µl of a 1:40,000 dilution of the
Ambion ERCC RNA Spike-In Mix 1 (Thermo Sientific, #4456740). After cell lysis
polyadenylated mRNA was reverse transcribed using a biotinylated template switch
oligo (5′-Biotin-
AAGCAGTGGTATCAACGCAGAGTACATrGrG+G-3′) with two riboguanosines (rG)
and one LNA-modified guanosine (+G) at the 3′ end. Preamplified cDNA (18 PCR
cycles) was purified with Agencourt Ampure XP Beads (Beckman Coulter, #A 63881)
in a 1:1 ratio. cDNA quality of 8 random samples was assessed on the Agilent
2100 Bioanalyzer (Agilent Technologies, #G2938C) using the Agilent high-sensitivity
DNA kit (Agilent Technologies, # 5067- 4626). Sequencing libraries were prepared
using the Nextera XT DNA Sample Preparation Kit (Illumina, #FC-131- 1024) with
approximately 480 pg of cDNA in a 4 µl tagmentation reaction followed by a dual
indexing PCR with 9 cycles. Individual single cell libraries were pooled and puri-
fied with 0.8 X Agencourt Ampure XP Beads. The library pool was sequenced on a
HiSeq 2500 (Illumina) using the TruSeq SBS Kit v3-HS (Illumina, #FC-401- 3001) in a
single read run with 90 bp read length.

Bulk RNA expression quantification

BAM files of RNA-seq reads for HepG2 were produced using TopHat 2.0.11 (Kim
et al., 2013), with Bowtie 2.2.1 (Langmead and Salzberg, 2012) and NCBI build 37.1
with parameters: –library-type fr-firststrand and –b2-very-sensitive. Cufflinks was used
for gene expression computation (Trapnell et al., 2012) using GENCODE release 19
(GRCh37.p13).

Mapping of ChIP-seq data

Reads were mapped to the 1000 genomes phase 2 assembly of the human reference
genome (NCBI build 37.1, downloaded from ftp://ftp.1000genomes.ebi.ac.uk/
vol1/ftp/technical/reference/phase2_reference_assembly_sequence/) with a hardware-
accelerated implementation of Burrows-Wheeler Aligner BWA aln version 0.6.2 (Liu

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/phase2_reference_assembly_sequence/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/phase2_reference_assembly_sequence/
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et al., 2012) with -q 20, and BWA 0.6.2 sampe with -a 1000. Merging and duplicate
marking was performed with Picard version 1.1251.

Imputation of dropouts

The scRNA-seq expression data were imputed using the scImpute tool. To observe
how the values before and after imputation changed, we plotted the expression of
genes in each cell for raw read counts (y-axis) and imputed ones (x-axis), as illus-
trated in Figure C.1
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FIGURE C.1: Comparison between raw and imputed read counts for
both cell lines, a) HepG2 and b) K562.

Quality of scRNA-seq

As part of our quality control procedure, we measured the correlation between the
average imputed single cell expression and bulk measurements for both HepG2 and
K562, (Spearman correlation coefficient of ∼0.8, Appendix Figure C.2)

In order to account for the number of genes falling into three intervals, 1 < TPM
< 10, 10 ≤ TPM ≤ 100, TPM > 100, the imputed TPM values were divided into those
intervals per cell, as shown in Figure C.3a. We also performed this partitioning based
on the imputed read counts and provided the results in Figure C.3b.

Measuring 3′UTR length in BPs

3′UTR coordinates for our BPs were retrieved from annotated ENSEMBL genes (GRCh37.75)
to show the 3′UTR length of the highly and lowly expressed genes, particularly, in
the stable and unstable categories (see 5.2.7) as illustrated in Appendix Figure C.4c.
The Mann-Whitney test was used between the highly and lowly expressed genes
within each category to compute the p-values with the 0.05 for significance calling.

1http://broadinstitute.github.io/picard

http://broadinstitute.github.io/picard
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FIGURE C.2: Contrasting average imputed scRNA-seq with the cor-
responding bulk expression for both cell lines, a) HepG2 and b) K562.
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Measuring H3K36me3 in transcript span of BPs

The H3K36me3 ChIP-seq reads are counted in the region starting from the TSS of a
bidirectional gene extending down to the transcript span partitioned into 10 bins. It
is worth noting that the bin sizes might vary between genes as they have variable
transcript span lengths. Therefore, read counts are normalized according to the bin
size.

C.2 Supplementary Tables

BLE BSD BWD BND
NC→NC 79∗ 3 9 3
NC→PC 255 21 75 5
PC→NC 141∗ 6 35 2
PC→PC 395 35 153∗ 25∗

TABLE C.1: Number of BPs falling into the gene product cate-
gories (NC→NC, NC→PC, etc.) in K562. Statistically enriched values

are marked with ∗ (Hypergeometric test p<0.05).
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FIGURE C.4: Prediction of RNA stability. a) Scatter plot showing the
studentized residulas versus the measured mRNA as average single
cell transcript expression for both K562 (top panel) and HepG2 (bot-
tom panel) samples. b) Percentage of L and H genes inferred as stable
or unstable per state. c) The 3′ UTR length distribution shown for L

and H genes per each stability category.
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FIGURE C.5: a) Hierarchical clustering of the K562 single cell tran-
script expression matrix visualized as heat map (log2, TPM) and
grouped into four distinct clusters (BLE, BSD,BWD,BND). b) Heat
map of bulk RNA-seq expression in K562 cells (log2, TPM), arranged

according to (a).



C.3. Supplementary Figures 119

a)

L H L H L H L H

0
2

4
6

8
10

12

K562 GRO (minus_plus)

●

●

●

●

●
● ●

●

minus_1 minus_2 minus_3 minus_4

G
R

O
-c

ap
 re

ad
 c

ou
nt

s 
(lo

g2
)

* *

0
2

4
6

8
10

12

K562 CAGE (minus_plus)

●

● ●

●

●

●

●

●

minus_1 minus_2 minus_3 minus_4

C
A

G
E

 re
ad

 c
ou

nt
s 

(lo
g2

)
* * *

L H L H L H L H

b)

FIGURE C.6: a) CAGE read counts measured for each bidirectional
gene (L and H), shown for each transcript state. Color code similar
to Appendix Figure C.5a. Significant differences are marked with ∗
(paired and two-sided Mann-Whitney test, p ≤ 0.05). b) Similar to (a)

except that the results are shown for GRO-cap read counts.
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binned region size
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FIGURE C.7: Effects of transcript length (a) and transcript span (b) on
average single cell TPM expression in all genes.
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FIGURE C.10: Epigenetic characteristics in transcription states. a) Hi-
stone modification (ChIP/Input) and DNA-seq1 (raw read counts)
shown as median profiles (top panel) and log-transformed values as
heat map (bottom panel). Arrangement of genes as in Figure C.5.
The reads are measured in 40 bins of size 100 bp spanning a window
of size 4000 bp centered around the TSSs, with an additional vari-
able bin accounting for the region between the TSSs. b) Measured
H3K36me3 ChIP-seq counts in bins of variable size covering the re-
gion starting from the TSS of L and H genes extending down to the
transcript span. c) Small RNA abundance heat maps measured sim-
ilar to (a) for HepG2 (left panel) and K562 (right panel). For better
visibility, bins holding values more than 200 were set to 200. d) Aver-
age methylation profiles measured by WGBS-seq read counts in bins
of 100 bp following the approach explained in (a), shown for both

HepG2 (left panel) and K562 (right panel).
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FIGURE C.11: Transcription factor enrichment. a) Enrichment score,
Enrich(TFi), formula to compute the enrichment of TFs tailored for
BPs. At the bottom, the binding profile of TFi for a BP is shown. The
curve shown in black represents the background defined based on the
bin-wise median of TFi binding across all BPs. The example demon-
strates the effectiveness of the Enrich(TFi) score in capturing the spa-
tial differences between true TF signal and background. b) Heat map
of 50 TF (columns) enrichment scores (log ratio against background)
for each BP (row) in K562 cells. Row color annotations are consistent

with the clustering shown in Appendix Figure C.5.
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FIGURE D.1: a) Scatter and b) violin plots illustrating the Pearson cor-
relation coefficients obtained on the test partition of the unimputed
iPSCs gene expression data regarded as response and epigenetic fea-
tures. The two sub-populations, HLC and PHH, are colored with blue

and red, respectively.
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FIGURE D.2: a) Scatter and b) violin plots illustrating the Pearson cor-
relation coefficients obtained on the test partition of the unimputed
iPSCs gene expression data regarded as response and dynamic fea-
tures. The two sub-populations, HLC and PHH, are colored with blue

and red, respectively.
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FIGURE D.3: a) Scatter and b) violin plots illustrating the Pearson
correlation coefficients obtained on the test partition of the imputed
iPSCs gene expression data regarded as response and static features.
The two sub-populations, HLC and PHH, are colored with blue and

red, respectively.
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FIGURE D.4: a) Scatter and b) violin plots illustrating the Pearson
correlation coefficients obtained on the test partition of the imputed
iPSCs gene expression data regarded as response and epigenetic fea-
tures. The two sub-populations, HLC and PHH, are colored with blue

and red, respectively.
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FIGURE D.5: a) Scatter and b) violin plots illustrating the Pearson cor-
relation coefficients obtained on the test partition of the imputed iP-
SCs gene expression data regarded as response and dynamic features.
The two sub-populations, HLC and PHH, are colored with blue and

red, respectively.
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FIGURE D.6: Heat map illustrating the top features (see 6.2.6) derived
from the tree-guided MTL trained on the epigenetic features to predict

the unimputed gene expression in iPSCs cells.



132 Appendix D. Supplementary materials for Chapter 6

FIGURE D.7: Heat map illustrating the top features (see 6.2.6) derived
from the tree-guided MTL trained on the dynamic features to predict

the unimputed gene expression in iPSCs cells.
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FIGURE D.8: Heat map illustrating the top features (see 6.2.6) derived
from the tree-guided MTL trained on the static features to predict the

imputed gene expression in iPSCs cells.
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FIGURE D.9: Heat map illustrating the top features (see 6.2.6) derived
from the tree-guided MTL trained on the epigenetic features to predict

the imputed gene expression in iPCs cells.
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FIGURE D.10: Heat map illustrating the top features (see 6.2.6) de-
rived from the tree-guided MTL trained on the dynamic features to

predict the imputed gene expression in iPSCs cells.
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FIGURE D.11: Histograms depicting the Pearson correlation between
the dynamic features and gene expression in PHH and HLC cells (data

not imputed).
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FIGURE D.12: Histograms depicting the Pearson correlation between
the static features and gene expression in PHH and HLC cells (data

not imputed).
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