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Data-driven machine learning is the method of choice for predicting molecular phenotypes
from nucleotide sequence, modeling gene expression events including protein-DNA
binding, chromatin states as well as mRNA and protein levels. Deep neural networks
automatically learn informative sequence representations and interpreting them enables us
to improve our understanding of the regulatory code governing gene expression. Here, we
review the latest developments that apply shallow or deep learning to quantify molecular
phenotypes and decode the cis-regulatory grammar from prokaryotic and eukaryotic
sequencing data. Our approach is to build from the ground up, first focusing on the
initiating protein-DNA interactions, then specific coding and non-coding regions, and finally
on advances that combine multiple parts of the gene and mRNA regulatory structures,
achieving unprecedented performance. We thus provide a quantitative view of gene
expression regulation from nucleotide sequence, concluding with an information-centric
overview of the central dogma of molecular biology.

Keywords: gene expression prediction, cis-regulatory grammar, gene regulatory structure, mRNA & protein
abundance, chromatin accessibility, regulatory genomics, machine learning, deep neural networks

INTRODUCTION

Genetic information is stored and encoded in genes that produce an organism’s phenotype by being
expressed through multiple biochemical processes into a variety of functional molecules. The central
dogma of molecular biology states that genetic information flows from DNA to the phenotypically
relevant proteins of an organism in a unidirectional, two-step process: the transcription of DNA into
messenger RNA (mRNA) is followed by translation of mRNA into protein (Watson et al., 2008).
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From these molecular phenotypes, further post-translational
processing and cellular metabolism shape and define the
observable phenotype of the organism (Nielsen, 2017). Some
of the most important processes involved in gene expression are
regulated at the nucleotide sequence level, spanning the coding
and non-coding regulatory regions adjacent to the gene (Watson
et al., 2008; Zrimec et al., 2020). For over a decade, a key trend in
the field has thus been to develop computational methods that
can process nucleotide sequences and interpret the regulatory
code within them, to better understand gene expression and
improve quantitative predictions (Segal and Widom, 2009;
Levo and Segal, 2014; Li et al., 2019a). These developments are
not only important for advancing molecular biology, but have
practical implications as well: they are crucial for solving
problems related to human disease (Lee and Young, 2013;
Zhou et al., 2018a) as well as biotechnology applications (de
Jongh et al., 2020).

The key interactions that govern gene expression occur among
proteins and nucleic acids. Proteins search for their active binding
sites by sliding and diffusion, recognizing a particular DNA site
via physicochemical interactions with the molecule (Tafvizi et al.,
2011; Hammar et al., 2012). Typical binding domains of DNA-
binding proteins (DBPs), such as transcription factors (TFs) and
polymerases, include helix-turn-helix and zinc finger domains
(Watson et al., 2008). However, besides direct protein-DNA
readout with the major groove of the DNA helix, which offers
base-specific hydrogen bond donors, acceptors, and nonpolar
groups that can be recognized by complementary groups on the
amino acid side chain, the specificities of protein-DNA
interactions are defined also by indirect readout (Rohs et al.,
2010; Marcovitz and Levy, 2013; Inukai et al., 2017). This
comprises “weak” protein-DNA interactions that depend on
base pairs that are not directly contacted by the protein and
are defined by conformational and physicochemical DNA
properties at the specific binding sites or in their vicinity
(Rohs et al., 2009; Yang et al., 2017; Zrimec and Lapanje,
2018). On the other hand, RNA is a single stranded molecule
with a softer backbone than DNA and thus has more extensive
secondary and tertiary structure. RNA-binding proteins (RBPs)
recognize single or double stranded RNA, three-dimensional
structural features of folded RNAs, or even bind RNA non-
specifically (Re et al., 2014). In regulating translation, however,
multiple conserved RNA sequence motifs have been uncovered
that play a key role typically via single strand or secondary
structure-recognition mechanisms (Watson et al., 2008;
Leppek et al., 2018). Therefore, despite the apparent
monomeric simplicity of nucleic acid sequences, the problem
of extracting information from them is quite complex, as they
encode a rich grammar of motif occurrences, combinations and
sequential properties that needs to be correctly interpreted
(Siggers and Gordân, 2014; Slattery et al., 2014; Li et al.,
2019a; Nagy and Nagy, 2020).

In this regard, machine learning (ML) comprises a set of
algorithms that are capable of mapping complex relationships
between input and target variables in a supervised fashion. The
resulting predictive/descriptive models can perform classification
of discrete target variables or regression of continuous ones.

Classical algorithms, which include (multiple) linear regression
(LR), support vector machines (SVMs), tree-based methods such
as random forests (RFs), and feedforward neural networks (NNs)
(Hastie et al., 2013; Géron, 2019), commonly referred to as
“shallow” methods, have in recent years been superseded by
deep neural networks (DNNs) (LeCun et al., 2015). DNNs
resolve many problems inherent to the shallow methods, such
as the reliance on feature engineering and selection, but come at
the cost of requiring orders of magnitude more training data and
computational resources (Angermueller et al., 2016; Eraslan et al.,
2019a). In the current big data era, however, this is a diminishing
problem. The result is that the information in nucleotide
sequences can now be deciphered at unprecedented scale and
quality, elucidating the regulatory grammar and greatly
expanding our understanding of the underlying processes and
capacity to accurately predict the outcomes of gene expression
(Zhou et al., 2018a; Eraslan et al., 2019a; Zrimec et al., 2020).

In the present review, we provide an overview of the latest
published developments that applyML to nucleotide sequence data
in order to understand gene expression in the most well studied
model organisms, including bacteria (Escherichia coli), unicellular
eukaryotes (yeast, Saccharomyces cerevisiae) and multicellular
eukaryotes (human, Homo sapiens). Since these organisms
represent the whole spectrum of genetic regulatory complexity,
with gene densities ranging from 892 (bacteria) to six (human)
genes per Mbp (Zrimec et al., 2020), the knowledge and principles
presented here are generally applicable to all other organisms
including insects and plants (Haberle and Stark, 2018; Wang H.
et al., 2020). We specifically focus on the latest developments with
deep learning and compare them to the state of the art solutions
with shallow methods. By reasoning from first principles, the
problem of predicting gene expression levels from nucleotide
sequence data is explained from the ground up by
deconstructing it into the basic regulatory processes and
grammatical elements. We first focus on modeling the protein-
DNA interactions important for initiating transcription, which
include TF binding and nucleosome positioning. We then detail
the current understanding of the regulatory grammar carried
within the specific coding and non-coding regulatory regions,
and its involvement in defining transcript and protein
abundance. Based on these principles, we review advanced
modeling approaches that use multiple different parts of the
gene regulatory structure or whole nucleotide sequences,
demonstrating how this increases their predictive power. Finally,
by considering all the results, we provide an information-centric
overview of the field, and discuss the applicative potential and
future outlook of the presented modeling approaches.

LEARNING THE PROTEIN-DNA
INTERACTIONS INITIATING GENE
EXPRESSION
One of the key regulation strategies of gene expression is at the level
of transcription initiation (Watson et al., 2008), which is also the
most studied and modeled regulatory mechanism (Segal and
Widom, 2009; Levo and Segal, 2014). Transcription initiation is

Frontiers in Molecular Biosciences | www.frontiersin.org June 2021 | Volume 8 | Article 6733632

Zrimec et al. Learning Gene Expression Regulation

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


a complex process involving many different interacting DNA and
protein components, including: 1) activating or repressing TFs that
bind 6–12 bp long TF binding sites (TFBS) in enhancer and
promoter regions (Watson et al., 2008) with different binding
affinities and specificities (Levo and Segal, 2014), 2) nucleosomes
that form around 147 bp long DNA stretches and define chromatin
accessibility, acting as general transcriptional repressors by
competing with TFs for DNA binding (Segal and Widom, 2009;
Struhl and Segal, 2013), 3) other components of the transcription
initiation enzymatic machinery including sigma factors (σ) in
prokaryotes and components (TFIID/SAGA, mediator) of the
preinitiation complex (PIC) in eukaryotes (Feklístov et al., 2014;
Haberle and Stark, 2018), and 4) physicochemical and

thermodynamic properties related to protein binding (Rohs
et al., 2010; Inukai et al., 2017) and transcription initiation
(Chen et al., 2010; Zrimec and Lapanje, 2015), such as strand
dissociation around the transcription start site (TSS), giving
enzymatic access to the DNA (Figure 1A). The DNA sequence
preferences of nucleosomes define nucleosome organization in vivo
and have been shown to account for the general depletion of
nucleosomes around the starts and ends of genes as well as
around TFBS, which might assist in directing TFs to their
appropriate genomic sites (Segal and Widom, 2009). Apart from
the DNA-guided nucleosome positioning, other epigenetic
mechanisms (where functionally relevant changes to the genome
do not involve a change in the nucleotide sequence), such as histone

FIGURE 1 | Principles of gene expression. (A) Protein-DNA interactions in prokaryotic nucleoid and eukaryotic chromosome structure, epigenetics and
transcription initiation. The basic repeating structural unit of chromatin is the nucleosome, which contains eight histone proteins. Bacterial nucleoid-associated proteins
are the main regulators of nucleoid structure, where the circular genome is supercoiled and uncoiled by these proteins. In cells, genes are switched on and off based on
the need for product in response to cellular and environmental signals. This is regulated predominantly at the level of transcription initiation, where chromatin and
nucleoid structure open and close, controlling the accessibility of DNA and defining areas with high amounts of transcription (factories) upon demand. (B) Depiction of
eukaryotic transcription across the gene regulatory structure that includes coding and non-coding regulatory regions. The open reading frame (ORF) carries the coding
sequence, constructed in the process of splicing by joining introns and removing exons. Each region carries specific regulatory signals, including transcription factor
binding sites (TFBS) in enhancers, core promoter elements in promoters, Kozak sequence in 5′ untranslated regions (UTRs), codon usage bias of coding regions and
multiple termination signals in 3′ UTRs and terminators, which are common predictive features in ML (highlighted bold). RNAP denotes RNA polymerase, mRNA
messenger RNA. (C) Depiction of eukaryotic translation across the mRNA regulatory structure, where initiation involves the 5′ cap, Kozak sequence and secondary
structures in the 5′ UTR. Codon usage bias affects elongation, whereas RNA-binding protein (RBP) sites, microRNA (miRNA) response elements and alternative
polyadenylation in the 3′ UTR affect post-translational processing and final expression levels. These regulatory elements are common predictive features in ML
(highlighted bold).
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modification and DNA methylation, also play a vital part in
transcriptional regulation (Gibney and Nolan, 2010; Miller and
Grant, 2013). Together, they control the accessibility of DNA for
protein binding and enzymatic processing (Watson et al., 2008)
(Figure 1A). The epigenome is established and maintained by the
site-specific recruitment of chromatin-modifying enzymes and their
cofactors. Identifying the cis elements that regulate transcription
initiation and epigenomic modification is critical for understanding
the regulatory mechanisms that control gene expression patterns.

Machine learning is used to predict the locations of TFBS and
their TF binding specificities, other cis-regulatory elements and
binding sites, larger DNA non-coding regions such as enhancers
and promoters, as well as nucleosome binding landscapes and
epigenetic states. The computational tasks for inferring TFBS from
DNA sequence or modeling TFBS specificity based on TF activity
measurements can be framed as binary/multiclass classification
and regression problems, respectively. TFBS can be predicted from
the genome de novo (Jayaram et al., 2016), or analyzed based on
separate measurements (Kim et al., 2007; Visel et al., 2009; Ghandi
et al., 2014) or massively parallel reporter assays using high-
throughput quantitative sequencing technologies (HTS), giving
peak calls for various regulatory (epigenetic and transcriptional)
activities across tissues and isolated cell types (Project Consortium,
2012; Roadmap Epigenomics Consortium et al., 2015). These
include: 1) ChIP-seq (Chromatin immunoprecipitation
sequencing) (Johnson et al., 2007) and ChIP-nexus (addition of
exonuclease digestion step) (He et al., 2015) to map TF binding
sites and histone modification presence, 2) DNase-seq (DNase I
hypersensitive sites sequencing) (Song and Crawford, 2010) and
ATAC-seq (Assay for Transposase Accessible Chromatin with
high-throughput sequencing) (Buenrostro et al., 2013) to
measure DNA chromatin accessibility, which typically mark
nucleosomes and TF-bound sites, and 3) other methods, such
as PBMs (protein bindingmicroarrays) (Berger et al., 2006), SELEX
(Systematic evolution of ligands by exponential enrichment)
(Blackwell and Weintraub, 1990) and BunDLE-seq [Binding to
Designed Library, Extracting, and sequencing) (Levo et al., 2015)
that can provide quantitative measurements of TF binding to
thousands sequences within a single experiment (further details
can be found in the following publication (Barshai et al., 2020)].

Common measures for evaluating the performance of ML
classifiers, typically on unseen data, include: 1) precision and
recall, 2) the area under the receiver operating characteristic curve
(AUC) that measures the tradeoff between the true positive rate
(recall) and false positive rate for different thresholds, as well as 3)
the area under the precision recall curve (AUPRC) that measures
the tradeoff between precision and recall for different thresholds
[for technical details we refer the reader to a recent review (Jiao
and Du, 2016)]. Regression models are frequently evaluated using
a correlation coefficient or the coefficient of variation (R2) (de
Boer et al., 2020; Zrimec et al., 2020).

Classical Machine Learning Relies on
Engineered Features
The goal of supervisedML is to learn a response function y (target
variable) from the set of features x (explanatory variables) present

in the training dataset, where y describes some property related to
gene expression, such as TF binding, ChIP-seq signal or mRNA
abundance. With shallow learning, the DNA sequence that
generally serves as the explanatory variable must be described
with numerical features, such as position weight matrices
(PWMs) (Stormo, 2000; Jayaram et al., 2016; Lu and Rogan,
2018), ungapped or gapped k-mer frequencies (Fletez-Brant et al.,
2013; Ghandi et al., 2014; Zrimec et al., 2020), pseudo k-tuple
nucleotide composition (Lin et al., 2014; Chen et al., 2015) or
physicochemical and conformational (structural) properties
(Rohs et al., 2009; Meysman et al., 2012; Zrimec, 2020a).
Shallow methods thus require some features and methods that
can describe or interpret the DNA regulatory motifs, and then use
these features or motifs to build predictors. Due to their
dependence on feature engineering, the shallow model training
and evaluation methodology also commonly includes feature
selection on all variables, retaining only the feature sets most
informative for predicting the target variable. Afterward, ML
models are trained on the engineered and selected feature subsets
and finally, validation is performed on a held out portion of the
data to assess the model performance (Ghandi et al., 2014;
Zelezniak et al., 2018; Zrimec and Lapanje, 2018) (Figure 2A).

Comparison of 26 different approaches to model and learn a
protein’s DNA-binding specificity based on PBMs for various
mouse TFs (Weirauch et al., 2013) showed that, for most TFs
examined, simple models based on mononucleotide PWMs can
perform similarly to more complex models, falling short only in
specific cases that represented less than 10% of the examined TFs.
The best-performing motifs typically have relatively low
information content, consistent with widespread degeneracy in
eukaryotic TF sequence preferences. Out of multiple de novo
motif discovery tools that can be used locally for creating PWMs
from HTS data and for scanning them against DNA, FIMO (Grant
et al., 2011) and MCast (Grant et al., 2016) were found to have the
best performance in their respective classes of methods that predict
individual TFBSs or identify clusters, respectively (Table 1)
(Jayaram et al., 2016). In an approach termed “Catchitt” for
predicting cell type-specific TFBS using ensemble classifiers
(Keilwagen et al., 2019), standard PWM motifs from databases
were expanded withmotifs learned by de novomotif discovery from
ChIP-seq and DNase-seq data using sparse local inhomogeneous
mixture (Slim) models (Keilwagen and Grau, 2015), which capture
short to mid-range intra-motif dependencies. Catchitt earned a
shared first rank in the 2017 ENCODE-DREAM in vivo TFBS
prediction challenge, achieving a median AUPRC of 0.41 on test
data. Despite the success of PWM-based methods, ML approaches
have been shown to achieve similar or even better results. For
instance, the method “QBiC-Pred” was developed to quantitatively
predict TF binding changes due to sequence variants (Martin et al.,
2019), using ordinary least squares (OLS) regression and HTS data
containing single nucleotide variants (SNVs). The OLS models of
TF binding specificity were accurate in predicting mutational effects
on TF binding in vitro and in vivo (R2 up to 0.95), outperforming
widely used PWM models as well as recently developed DNNs
(Alipanahi et al., 2015) on the tested data. The problem with any
ML approach using k-mers as features is that it becomes susceptible
to noisy training k-mer frequencies once k becomes large. This was
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solved with methods for robust estimation of k-mer frequencies
based on alternative feature sets, where gapped k-mers were
introduced as a followup to the initial k-mer method “kmer-
SVM” (Lee et al., 2011). The new classifier termed “gkm-SVM”
predicted functional genomic regulatory elements with significantly
improved accuracy compared to the original kmer-SVM, increasing
the precision by up to 2-fold and achieving anAUCof 0.97 for TFBS
prediction, compared to 0.91 with kmer-SVM (Ghandi et al.,
2014). In this case however, the PWM-based classifier still
outperformed both methods (AUC � 0.98).

In the case of epigenetic states that underlie DNA accessibility,
it was shown that histone modifications can be predicted with
remarkable accuracy from TF-binding profiles using LR
classifiers (avg. AUC ∼0.86 to 0.95 on different DNA regions
in H1 cells), recapitulating known interactions between TFs and
chromatin-modifying enzymes (Benveniste et al., 2014). This
demonstrated that associations between gene expression and
histone modifications do not necessarily imply a direct
regulatory role for these modifications, but can be explained
equally well as an indirect effect of interactions between TFs and
chromatin-modifying enzymes. Similarly, a pipeline termed
“Epigram” (Whitaker et al., 2015) was developed to predict
histone modification and DNA methylation patterns from

DNA motifs. The authors also cataloged novel cis elements by
de novo motif finding, showing that numerous motifs that have
location preference and represented interactions with the site-
specific DNA-binding factors that establish and maintain
epigenomic modifications. Using their method gkm-SVM
(Ghandi et al., 2014) to encode cell type–specific regulatory
sequence vocabularies, Lee and colleagues (Lee et al., 2015)
devised a sequence-based computational method to predict the
effect of regulatory variation. The effect of sequence variants was
quantified by the induced change in the gkm-SVM score,
“deltaSVM,” which accurately predicted the impact of SNVs
on DNase I hypersensitivity in their native genomes and could
identify risk-conferring functional variants in validated data
including autoimmune diseases, demonstrating the usefulness
of this approach.

Apart from the base DNA sequence properties, structural
properties have been found to improve model performance in
certain cases, such as when predicting: 1) TFBS and their
specificities (Abe et al., 2015; Tsai et al., 2015; Mathelier et al.,
2016; Yang et al., 2017), 2) promoters and TSS sites (Meysman
et al., 2012; Bansal et al., 2014; Kumar and Bansal, 2017), and 3) σ
factor binding sites (Zrimec, 2020a). These properties are directly
related to protein-DNA recognition and binding (Rohs et al.,

FIGURE 2 | Principles of machine learning from nucleotide sequence. (A) Flowcharts of a typical supervised shallow modeling approach (top) and a typical
supervised deep modeling approach (bottom), depicting a one-hot encoding that equals k-mer embedding with k � 1. (B) Overview of convolutional (CNN) and
recurrent neural networks (RNN) in interpreting DNA regulatory grammar. A CNN scans a set of motif detectors (kernels) of a specified size across an encoded input
sequence, learning motif properties such as specificity, orientation and co-association. An RNN scans the encoded sequence one nucleotide at a time, learning
sequential motif properties such as multiplicity, distance from e.g. transcription start site and the relative order of motifs. (C) Interpreting shallow models (top) by
evaluating their performance when trained on different feature sets can yield feature importance scores, motifs and motif interactions, as well as compositional and
structural properties. Similarly, interpreting the regulatory grammar learned by deep models (bottom), by e.g. perturbing the input, visualizing kernels or using gradient-
based methods, can yield feature importance scores spanning nucleotides up to whole regions, as well as motifs and motif interactions. (D) Example of a typical deep neural
network (DNN) comprising three separate convolutional layers (Conv) connected via pooling layers (Pool) and a final fully connected network (FC) producing the output gene
expression levels. Pool stages compute the maximum or average of each motif detector’s rectified response across the sequence, where maximizing helps to identify the
presence of longermotifs and averaging helps to identify cumulative effects of short motifs. The DNN learns distributedmotif representations in the initial Conv layers andmotif
associations that have a joint effect on predicting the target in the final Conv layer, representing DNA regulatory grammar that is mapped to gene expression levels.
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2009; Bishop et al., 2011; Zrimec, 2020b) and include DNA shape
(Mathelier et al., 2016), thermodynamic stability (SantaLucia,
1998) and propensity for duplex destabilization (Zrimec and
Lapanje, 2015), as well as flexibility and curvature related
properties (Brukner et al., 1995; Geggier and Vologodskii,
2010). For instance, the dependence of TF binding specificity
on the TFBS core and flanking sequence was studied using LR and
BunDLE-seq data on thousands of designed sequences with single
or multiple Gcn4 or Gal4 binding sites (Levo et al., 2015). By
supplanting k-mer frequencies at each position with DNA
structural properties, 15 bp flanking sequences (15 bp) of core
binding sites were shown to affect the binding of TFs, as models
based on combined core and flanking regions explained the

highest amount of variance in the measurements (R2 up to 0.9
for Gal4). The contribution of DNA shape readout and its
importance in core motif-flanking regions was further
demonstrated using LR and HT-SELEX data across a diverse
set of 215 mammalian TFs from 27 families (Yang et al., 2017), as
regression models that used k-mer and shape features generally
outperformed k-mer models by ∼10% (R2 up to 0.90). Using
feature selection techniques, positions in the TFBSs could be
pinpointed where DNA shape readout is most likely to occur, and
accordingly, novel DNA shape logos were proposed to visualize
the DNA shape preferences of TFs. Similarly, SVM regression
models of TF binding specificity based on PBM data for 68
mammalian TFs showed that shape-augmented models

TABLE 1 | Overview of studies modeling protein-DNA interactions that govern the initiation of gene expression from nucleotide sequence properties. Highest achieved or
average scores are reported, on test sets where applicable, and include precision (prec) and recall (rec), area under the receiver operating characteristic curve (AUC), area
under the precision recall curve (AUPRC), the coefficient of variation (R2), Pearson’s correlation coefficient (r), Spearman’s correlation coefficient (ρ) and Matthews correlation
coefficient (MCC).

Ref. Strategy Target var. Explan. vars. Method Score Organism

(Jayaram et al., 2016) Shallow TFBS prediction PWMs PWM alignment algorithms prec � 0.73, rec.
� 0.82

Human

(Keilwagen et al., 2019) Shallow TFBS prediction DNA motif and chromatin-
based features

Classifier ensembles AUPRC � 0.81 Human

(Ghandi et al., 2014) Shallow TFBS prediction PWMs, gapped k-mers SVM classification AUC � 0.98 Human
(Levo et al., 2015) Shallow TF binding specificity k-mers, DNA structural

variables
L1-regularized LR R2 � 0.90 Yeast

(Yang et al., 2017) Shallow TF binding specificity k-mers, DNA structural
variables

L2-regularized multiple LR R2 � 0.90 Human

(Martin et al., 2019) Shallow TF binding specificity k-mers OLS regression R2 � 0.95 Human
(Lin et al., 2014) Shallow σ54 promoter prediction Pseudo k-tuple nucleotide

composition
SVM classification MCC � 0.88 E. coli

(He et al., 2018) Shallow σ70 promoter prediction Trinucleotide-based features SVM classification MCC � 0.92 E. coli
(Benveniste et al., 2014) Shallow Histone modifications k-mers, TF CHIP-seq data LR classification AUC � 0.95 Human
(Whitaker et al., 2015) Shallow Histone modifications, DNA

methylation
DNA motifs RF classification AUC � 0.96 Human

(Lee et al., 2015) Shallow DNA chromatin accessibility PWMs, gapped k-mers SVM classification AUC � 0.75 Human
(Trabelsi et al., 2019) Deep TFBS prediction k-mers CNN + biLSTM classification AUC � 0.93 Human
(Zeng et al., 2016) Deep TFBS prediction DNA sequence CNN classification AUC � 0.88 Human
(Kelley, 2020) Deep TFBS prediction DNA sequence CNN classification AUC � 0.82 Human,

mouse
(Chen et al., 2021) Deep TFBS prediction DNA sequence CNN + biLSTM + attention

classification
AUC � 0.99 Human

(Alipanahi et al., 2015) Deep TF binding specificity DNA sequence CNN classification AUC � 0.90 Human
(Wang et al., 2018) Deep TF binding specificity DNA sequence CNN regression ρ � 0.81 Human
(Avsec et al., 2021) Deep TF binding specificity DNA sequence CNN regression ρ � 0.62 Human
(Van Brempt et al.,
2020)

Deep Transcription initiation
frequency

DNA sequence CNN ordinal regression R2 � 0.88 E. coli

(Zhou and Troyanskaya,
2015)

Deep Multitask chromatin profiling
data

DNA sequence CNN classification AUC � 0.96 Human

(Quang and Xie, 2016) Deep Multitask chromatin profiling
data

DNA sequence CNN + biLSTM classification AUC � 0.97 Human

(Park et al., 2020) Deep Multitask chromatin profiling
data

DNA sequence CNN + biLSTM + attention
classification

AUC � 0.95 Human

(Singh et al., 2016) Deep Histone modifications DNA sequence CNN classification AUC � 0.80 Human
(Singh et al., 2017) Deep Histone modifications DNA sequence LSTM + attention

classification
AUC � 0.81 Human

(Kelley et al., 2016) Deep DNA chromatin accessibility DNA sequence CNN classification AUC � 0.90 Human
(Kelley et al., 2018) Deep DNA chromatin accessibility DNA sequence CNN regression r � 0.86 Human
(Angus and Eyuboglu,
2018)

Deep DNA chromatin accessibility DNA sequence CNN + attention regression ρ � 0.59 Human

(Angermueller et al.,
2017)

Deep DNA methylation DNA sequence and features CNN classification AUC � 0.83 Human

(Tian et al., 2019) Deep DNA methylation DNA sequence CNN regression AUC � 0.97 Human
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compared favorably to sequence-based models (Zhou et al.,
2015), as DNA shape features reduced the dimensionality of
the feature space. The authors from Rohs lab also provide an
updated database of TFBS shape logos in 2020 (Chiu et al., 2020).
Moreover, derivatives of DNA structural properties, such as
pseudo k-tuple nucleotide compositions (Lin et al., 2014) and
trinucleotide features including position-specific propensity and
electron-ion potential (He et al., 2018), were applied to the
problem of predicting bacterial σ54 and σ70 promoters in
E. coli, which transcribe carbon and nitrogen-related genes or
regulate the transcription of most genes, respectively. The
respective ML classifiers termed “iPro54-PseKNC” (Lin et al.,
2014) and “70ProPred” (He et al., 2018) could accurately
distinguish the specific promoters from negative examples
(AUC � 0.98 and 0.99, respectively).

Deep Neural Networks can Learn
Regulatory Grammar Automatically
In contrast to shallow architectures that are limited in their
applications even when large datasets are available, deep
architectures are abstracted by multiple hidden layers between
x and y. Each layer learns a new representation of the data before
passing it on to the successive layers, finding hidden data
structures to make accurate predictions (Mhaskar et al., 2017).
The most common DNN architectures in genomics include
convolutional neural networks (CNNs) and recurrent neural
networks (RNNs), such as bidirectional long short-term
memory (biLSTM) networks. CNNs are regularized fully
connected networks that progressively scan a DNA molecule
within a receptive field, where they learn to recognize the
occurrence of DNA motifs (e.g. specificity, orientation and co-
association) (Eraslan et al., 2019a) (Figure 2B). Despite the
capability of RNNs to learn sequential information (e.g.
multiplicity, relative order), they are computationally
expensive to train and certain improvements to CNNs, such as
dilation (Yu and Koltun, 2015) and self-attention (Wang et al.,
2017; Bello et al., 2019; Repecka et al., 2021), enable them to
outperform RNNs (Gupta and Rush, 2017; Strubell et al., 2017;
Trabelsi et al., 2019). Dilated convolution uses kernels with gaps
to allow each kernel to capture information across a larger stretch
of the input sequence, without incurring the increased cost of
using RNNs (Gupta and Rush, 2017; Strubell et al., 2017).
Similarly, self-attention is a special case of attention
mechanism that allows kernels to focus on specific parts of the
input when producing the output, allowing positions across the
entire input sequence to interact and contribute to the result with
different attention weights (Vaswani et al., 2017).

Deep learning does not require feature engineering or selection,
since this is an inherent feature of the DNN learning process
(Webb, 2018). However, it does require representing the
categorical nucleotide sequence data numerically using an
encoding scheme, such as one-hot, which transforms the
sequence into a binary matrix with columns corresponding to
each category. DNNs have thus been applied mostly on one-hot
encoded nucleotide sequences as input (Eraslan et al., 2019a;
Alipanahi et al., 2015), with recent reports showing that the use

of k-mer embedding to represent the input sequences can improve
model performance compared to one-hot encoding (itself a special
case of k-mer embedding where k � 1) (Trabelsi et al., 2019). These
inputs are well suited for comprehending the base DNA motif
information as well as higher order interactions that describe the
DNA regulatory grammar of gene expression (Eraslan et al., 2019a;
Zrimec et al., 2020). Thus, DNNs achieve high predictive accuracies
often surpassing those of models based on engineered features and,
in our experience, using structural DNA properties does not lead to
improved predictive performance with DNNs (Zrimec et al., 2020).
Due to the large amount of model hyperparameters, such as
network structure (e.g. number and size of kernels, Figure 2B)
and training algorithm (e.g. learning rate), a special step termed
hyperparameter optimization (Bergstra et al., 2015) is required for
finding the best combinations of these hyperparameters and is an
integral part of DNN training. To train DNNs, the data is typically
split into training, validation, and testing datasets, where: 1) the
model is trained on the training set by minimizing a loss function
commonly MSE for regression and cross entropy for classification
(Géron, 2019), 2) hyperparameter tuning is performed on the
validation set and the best performing model on the validation set
is chosen, and 3) the performance of the final model is evaluated on
the testing set, also verifying if it overfits the data (Eraslan et al.,
2019a; Zrimec et al., 2020) (Figure 2A). With DNN testing, cross-
validation is rarely performed due to the large dataset sizes and
issues with algorithmic efficiency. Commonly, 10% test splits are
used for testing the models trained on 80% of the data, whereas
another 10% of the training data is used for the internal validation
of hyperparameter selection (Géron, 2019). For further technical
details we refer the reader to excellent recent reviews (Eraslan et al.,
2019a; Barshai et al., 2020).

Deep methods are frequently trained on HTS peak profiles,
either converted to binary scores or left continuous as a regression
problem, and the underlying TFBS and specificities are
interpreted by the network itself. The first such method to
showcase the efficiency of DNNs for analysis of TF binding
specificities was DeepBind (Alipanahi et al., 2015), where a
single CNN layer was trained on sequence specificities of
DNA and RNA-binding proteins as measured by several types
of HTS assays (including PBM, HT-SELEX, and ChIP-seq), in a
combined 12 terabases of mouse and human data. DeepBind
captured binding specificities from raw sequence data by jointly
discovering new motifs of hundreds of TFs along with the rules
for combining them into a predictive binding score. The resulting
DeepBind models could then be used to identify binding sites in
test sequences and to score the effects of novel mutations,
uncovering the regulatory role of disease-associated genetic
variants that can affect TF binding and gene expression.
Importantly, the method outperformed 14 other methods
(Weirauch et al., 2013) and achieved the highest score when
applied to the in vivo ChIP-seq data (avg. AUC � 0.90),
suggesting that it can generalize from HT-SELEX (Jolma et al.,
2013) to other data acquisition technologies despite being based
on a general-purpose ML framework.

The basic approach of DeepBind was further explored and
expanded upon in subsequent studies with different network
layers. For instance, Zeng and co. (Zeng et al., 2016). performed
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a systematic exploration of CNN architectures for predicting
DNA sequence binding using a similarly large set of TF data. To
control potentially confounding effects, like positional or motif
strength bias, they chose to explore two specific classification
tasks of motif discovery (bound vs. dinucleotide shuffles per TF
and cell type) and motif occupancy (bound vs. non-bound). In
both tasks, classification performance increased with the
number of convolution kernels (AUC up to 0.88), and the
use of local pooling or additional layers had little effect on
the performance. CNN architectures that took advantage of
these insights exceeded the classification performance of
DeepBind, emphasizing the need to use sufficient kernels to
capture motif variants. With deepRAM, a tool providing an
implementation of a wide selection of architectures (Trabelsi
et al., 2019), it was shown that deeper, more complex
architectures provide a clear advantage with sufficient
training data, with hybrid CNN + RNN architectures
outperforming other methods in terms of accuracy (AUC �
0.93 with 1xCNN + biLSTM). However, although RNNs
improve model accuracy, this comes at the expense of a loss
in the interpretability of the features learned by the model.
Kelley (Kelley, 2020) developed a strategy to train deep CNNs
simultaneously on human and mouse genomes, which
improved gene expression prediction accuracy on held out
and variant sequences. Applying mouse regulatory models to
analyze human genetic variants associated with molecular
phenotypes and disease improved model performance
(AUROC increased from 0.80 to 0.82), showing that the
thousands of available non-human transcriptional and
epigenetic profiles can be leveraged for more effective
investigation of how gene regulation affects human disease.
Moreover, the performance of assessing the functional impact of
non-coding variants (e.g. SNVs) was further improved with
DeFine (Wang et al., 2018), a regression model based on large-
scale TF ChIP-seq data and capable of accurately predicting
real-valued TF binding intensities (Spearman’s ρ up to 0.81).
Here, the predicted changes in the TF binding intensities
between the altered sequence and the reference sequence
reflected the degree of functional impact for the variant, and
could accurately identify the causal functional variants from
measured disease-associated variants. Similar networks have
also been used in bacteria, where the online promoter design
tool (ProD) (Van Brempt et al., 2020) is based on forward
engineering of promoter transcription initiation frequency
(TIF). By training a CNN with high-throughput DNA
sequencing data from fluorescence-activated cell sorted
promoter libraries of E. coli σ70 and Bacillus subtilis σB-,
σF- and σW-dependent promoters, prediction models were
capable of predicting both TIF and orthogonality of the
σ-specific promoters, which facilitated development of
tailored promoters, where predictions explained ∼88% of
the variance of experimental observations.

With prediction of epigenetic states, the “DeepSEA” method
(Zhou and Troyanskaya, 2015) was the first to utilize three CNN
layers trained for multi-task predictions of large-scale chromatin-
profiling data, including transcription factor (TF) binding, DNase I
hypersensitivity sites (DHSs) and histone-mark profiles across

multiple cell types. The method significantly outperformed
gkm-SVM (avg. AUC of 0.96 vs. 0.90) and enabled high-
performance sequence-based prediction of both DHSs (avg.
AUC � 0.92) and histone modifications (avg. AUC � 0.86). In
the “DanQ” model (Quang and Xie, 2016) trained on similar data
as DeepSEA, a hybrid CNN + RNN architecture was used in order
to enhance its perception of regulatory grammar, where the CNN
captured regulatory motifs and the RNN captured long-term
dependencies between the motifs. The model achieved
improved performance compared to DeepSEA (avg. AUC �
0.97) as well as compared to a LR baseline model, which
despite its simplicity was an effective predictor (AUROC >0.70).
Similarly, with histone modifications, the CNN “DeepChrome”
(Singh et al., 2016) was shown to consistently outperform both
SVM and RF classifiers (avg. AUC of 0.80 vs. 0.66 and 0.59,
respectively). Kelley and co. (Kelley et al., 2016) introduced the
open source package “Basset” that trains CNNs on a set of
accessible genomic sites mapped in 164 cell types by DNase-
seq, achieving improved predictive accuracy compared to
previous methods, such as gkm-SVM (avg. AUC � 0.90 vs.
0.78), and good overlap of SNV predictions with previous
observations. Furthermore, Kelley and co. (Kelley et al., 2018)
developed another CNN, “Basenji,” to predict mammalian cell-
type specific epigenetic and transcriptional profiles, where an
unprecedented input sequence size of 131 kbp around TSS was
used, spanning distal as well as proximal regulatory elements.
Indeed, model predictions regarding the influence of SNVs on gene
expression were shown to align well to known variants in human
populations related to disease loci (avg. Pearson’s r � 0.86).

To map associations between DNA sequence patterns and
methylation levels at CpG-site resolution, Angermuller and co.
developed “DeepCpG” (Angermueller et al., 2017). The method
was evaluated on single-cell methylation data across different cell
types and HTS protocols, and yielded more accurate predictions
than shallowmethods, such as RF (avg. AUC � 0.83 vs. 0.80). The
authors also showed that interpretation of the model parameters
could provide insights into how sequence composition affects
methylation variability. A more recent alternative approach
termed “MRCNN” (Tian et al., 2019) outperformed DeepCpG
(AUC up to 0.97), and de novo discovered motifs from the trained
CNN kernels were shown to match known motifs.

Finally, by expanding DNN architectures with attention
mechanisms to model complex dependencies among input
signals, favourable results can be achieved compared to the
non-attentive DNN counterparts. This was shown with multiple
prediction tasks, including: 1) TFBS prediction, where “DeepGRN”
(Chen et al., 2021) achieved higher unified scores in 6 of 13 targets
than any of the top four methods in the 2016 ENCODE-DREAM
challenge including Catchitt (Keilwagen et al., 2019), 2) histone
modification, where “AttentiveChrome” (Singh et al., 2017)
outperformed DeepChrome (Singh et al., 2016) in 50 out of 56
human cell types (avg. AUC of 0.81 vs. 0.80), 3) DNA chromatin
accessibility, where the attention-based model (Angus and
Eyuboglu, 2018) outperformed standard CNNs (ρ � 0.59 vs.
0.54) as well as dilated convolutions on specific experiments,
and 4) multitask chromatin profiling data, where “TBiNet”
(Park et al., 2020) outperformed DeepSea (Zhou and
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Troyanskaya, 2015) and DanQ (Quang and Xie, 2016) in the TF-
DNA binding prediction task (avg. AUC of 0.95 vs. 0.90 and 0.93,
respectively). This suggests that attention is an effective strategy to
incorporate long-range sequence context into local predictions and
particularly effective for gene-expression prediction.

Interpreting Models to Retrieve the Learned
Regulatory Grammar
With shallow models, the most informative feature sets are
interpreted by evaluating the performance of models trained on
different feature sets (Ghandi et al., 2014; Zrimec and Lapanje,
2018; de Boer et al., 2020) (Figure 2C). This can yield feature
importance scores, motifs (k-mers or PWMs, depending on the
provided input features, Figure 2A) and motif interactions
(Ghandi et al., 2014; Keilwagen and Grau, 2015), as well as
compositional and structural properties (Lin et al., 2014; Yang
et al., 2017), all of which comprise a compendium of regulatory
grammar, informative for understanding the regulation of gene
expression. Due to the inherent capability of DNNs to learn
predictive motif representations, rules for cooperative TF
binding interactions (Avsec et al., 2021) and higher-order
sequence features, such as secondary motifs and local sequence
context (Zeng et al., 2016), as well as genotypic variation effects
(Zhou and Troyanskaya, 2015), they represent a powerful
approach to uncover the detailed cis-regulatory grammar of
genomic sequences (Figure 2C) (Koo and Ploenzke, 2020a; He
et al., 2020). This is achieved by interpreting the models using
approaches that include: 1) CNN kernel visualization, where
typically motifs in the initial layers are visualized, 2) input
perturbation-based (sensitivity) analysis, which highlights the
parts of a given input sequence that are most influential for the
model prediction by occluding or mutating them (Alipanahi et al.,
2015; Ancona et al., 2017), 3) gradient-basedmethods that estimate
feature importance with iterative backward and forward
propagations through the network (Shrikumar et al., 2017;
Montavon et al., 2018; Shrikumar et al., 2018), yielding e.g.
saliency maps (Simonyan et al., 2013) and 4) higher-order
interactions among sequence elements, which can be assessed
e.g. by using association rule analysis (Naulaerts et al., 2015;
Zrimec et al., 2020), second-order perturbations (Koo et al.,
2018), self-attention networks (Ullah and Ben-Hur, 2020) or by
visualizing kernels in deeper layers (Maslova et al., 2020) [interested
readers are referred to (Eraslan et al., 2019a; Koo and Ploenzke,
2020a)]. Moreover, attentionmechanisms were recently shown to be
more effective in discovering knownTF-bindingmotifs compared to
non-attentive DNNs (Park et al., 2020), as the learned attention
weights correlate with informative inputs, such as DNase-Seq
coverage and DNA motifs (Chen et al., 2021), and they can
provide better interpretation than other established feature
visualization methods, such as saliency maps (Lanchantin et al.,
2016; Singh et al., 2017).

Since these are computational approaches, they extract
statistical patterns that may not immediately reflect physical
properties of the variables and should be treated as hypotheses
that need to be further examined (Koo and Eddy, 2019). For
instance, a method can point out certain motifs or associations

that are important for the model in predicting the target, but how
this reflects actual physicochemical interactions can be rather
hard to interpret from the model alone. Nevertheless, this is an
active area of research and new solutions are frequently developed
(Lundberg and Lee, 2017; Chen and Capra, 2020; Koo and
Ploenzke, 2020b), where rigorous testing as well as
experimentally verifying predictions will highlight the most
promising approaches (Ancona et al., 2017). On the other
hand, an alternative trend that is arguably more appropriate
than interpreting black box models is the development of
inherently interpretable models (Rudin, 2019), where prior
knowledge of gene expression can be built into the deep
network structure itself (Ma et al., 2018; Tareen and Kinney,
2019; Liu et al., 2020). We refer interested readers to the excellent
recent review by Azodi and co. (Azodi et al., 2020).

REGULATORY MECHANISMS IN SPECIFIC
CODING AND NON-CODING REGIONS

Both transcription and translation comprise multiple steps that
include initiation, elongation and termination (Watson et al.,
2008). Transcription of protein coding genes is controlled via the
gene regulatory structure, comprised of coding and cis-regulatory
regions that include promoters, untranslated regions (UTRs) and
terminators, and generally proceeds in the direction from the
upstream 5′ to downstream 3′ end (Figure 1B). Initiation is
regulated by enhancers, promoters and 5′ UTRs, where the
transcriptional machinery including RNA polymerase (RNAP)
is guided to the correct sites on the DNA. In the elongation phase,
mRNA is synthesized (transcribed) from the coding sequence,
and this process terminates toward the 3′ UTR and terminator
regions carrying termination signals. Afterward, the process of
mRNA decay is triggered, which occurs in eukaryotes after the
mRNA strand is matured by 5′ capping and 3′ poly(A) tail
extension, and precursor mRNA (pre-mRNA) transcripts are
processed by the spliceosome, removing introns (non-coding
regions) and joining exons (coding regions) together (Watson
et al., 2008; Wilkinson et al., 2020). The rates of mRNA synthesis
and decay define the actual mRNA levels in the cell that are
commonly measured with RNA-Seq (Wang et al., 2009). The
DNA regions involved in mRNA synthesis carry multiple
regulatory motifs, with codon usage in coding regions
detailing which nucleotide triplets encoding an amino acid
(AA) are used at each position, contributing to the base
regulatory grammar of transcription (Plotkin and Kudla, 2011;
Cheng et al., 2017). As described above, the general genomic
architecture, defined by binding of histones in eukaryotes (Struhl
and Segal, 2013) and nucleoid-associated proteins (NAPs) in
prokaryotes (Dillon and Dorman, 2010), acts as a master
regulator of transcription by controlling the accessibility of
DNA to proteins (Curran et al., 2014; Morse et al., 2017).

Translation also proceeds in the direction from the 5′ to the 3′
end of an mRNA (Figure 1C) and, in bacteria, occurs
simultaneously with transcription in the cytoplasm of the cell,
whereas in eukaryotes transcription occurs in the nucleus and
translation occurs in the cytoplasm (Watson et al., 2008).
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TABLE 2 | Overview of studies modeling gene expression-related properties from separate regulatory or coding regions. Highest achieved or average scores are reported,
on test sets where applicable, and include accuracy (acc), area under the receiver operating characteristic curve (AUC), area under the precision recall curve (AUPRC),
the coefficient of variation (R2) and Pearson’s correlation coefficient (r).

Ref. Strategy Region Target var. Explan. vars. Method Score Organism

(Leman et al.,
2018)

Shallow Coding Splice site prediction Sequence and
PWM features

Logistic regression acc � 0.96% Human

(Signal et al.,
2018)

Shallow Coding Branch point prediction Sequence features Gradient boosting
classification

AUC � 0.94 Human

(Zhang et al.,
2017a)

Shallow Coding Branch point prediction Sequence features Mixture models
classification

AUC � 0.82 Human

(Trösemeier et al.,
2019)

Shallow Coding Protein abundance Codon usage
features

COSEM mathematical
model

R2 � 0.45, 0.51,
0.37, respectively

E. coli, yeast, human

(Ferreira et al.,
2020)

Shallow Coding Protein abundance Codon usage AdaBoost regression R2 � 0.95 Yeast

(Tunney et al.,
2018)

Shallow Coding Ribosome density at
each codon

Codon usage NN regression r � 0.57 Yeast

(Zuallaert et al.,
2018)

Deep Coding Splice site prediction DNA sequence CNN classification AUPRC � 0.61 Human, A. thaliana

(Wang et al.,
2019)

Deep Coding Splice site prediction DNA sequence CNN classification AUC � 0.98 Human

(Jaganathan et al.,
2019)

Deep Coding Splice site prediction DNA sequence CNN classification AUPRC � 0.98 Human

(Paggi and
Bejerano, 2018)

Deep Coding Branch point prediction DNA sequence biLSTM classification AUC � 0.71 Human

(Nazari et al.,
2019)

Deep Coding Branch point prediction DNA sequence biLSTM + CNN
classification

AUC � 0.81 Human

(Xu et al., 2017) Deep Coding Alternative splicing
prediction

Sequence and
epigenetic features

Dense DNN
classification

AUPRC � 0.89 Human

(Lee et al., 2020) Deep Coding Alternative splicing
prediction

Sequence and
epigenetic features

RNN classification AUPRC � 0.8 Human

(Zhang et al.,
2019)

Deep Coding Alternative splicing
prediction

RNA-seq data Dense DNN + bayesian
hypothesis testing

AUC � 0.87 Human

(Fu et al., 2020) Deep Coding Protein abundance DNA sequence Multilayer biLSTM
regression

R2 � 0.52 E. coli

(Fujimoto et al.,
2017)

Deep Coding Optimal codon usage DNA sequence biLSTM encoder-
decoder

acc � 0.97 E. coli

(Yang et al., 2019) Deep Coding Transcript abundance DNA sequence biLSTM transducer acc � 0.67 E. coli, human
(Grossman et al.,
2017)

Shallow Enhancer Transcript abundance Motifs and pairwise
motif interactions

L1-regularized LR R2 � 0.38 (natural),
0.52 (synthetic)

Human

(Lee et al., 2011) Shallow Enhancer Enhancer prediction k-mers SVM classification AUC � 0.93 Human
(Min et al., 2017) Deep Enhancer Enhancer prediction DNA sequence CNN classification AUPRC � 0.92 Human
(Cohn et al., 2018) Deep Enhancer Enhancer prediction DNA sequence CNN classification AUC � 0.92 17 mammalian

species including
human

(Niu et al., 2019) Deep Enhancer Transcript abundance DNA sequence CNN regression AUC � 0.92 Human
(Chen and Capra,
2020)

Deep Enhancer Multitask regulatory
properties

DNA sequence Deep residual NN
classification

AUPRC � 0.98 Human

(Lubliner et al.,
2015)

Shallow Promoter Core promoter activity via
reporter fluorescence

k-mers LR R2 � 0.72 Yeast

(Urtecho et al.,
2019)

Shallow Promoter mRNA abundance σ factor binding sites NN regression R2 � 0.96 E. coli

(Einav and Phillips,
2019)

Shallow Promoter mRNA abundance σ factor binding sites Biophysical model R2 � 0.91 E. coli

(de Boer et al.,
2020)

Shallow Promoter Protein abundance TF binding and
sequence features

L2-regularized
multiple LR

R2 � 89 (natural),
94 (synthetic)

Yeast

(Hossain et al.,
2020)

Shallow Promoter mRNA abundance TF binding and
sequence features

L1-regularized
multiple LR

R2 � 0.49 E. coli, yeast

(Leiby et al., 2020) Deep Promoter Transcription initiation
rate

DNA sequence CNN regression R2 � 0.90 E. coli

(Kotopka and
Smolke, 2020)

Deep Promoter Protein abundance DNA sequence CNN regression R2 � 0.79 Yeast

(Dvir et al., 2013) Shallow 5′ UTR Protein levels DNA sequence
features + k-mers

LR R2 � 0.52 Yeast

(Bonde et al.,
2016)

Shallow 5′ UTR Protein abundance RBS features RF regression R2 � 0.89 E. coli

(Continued on following page)
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Prokaryotic mRNAs have a ribosome binding site (RBS) located in
the 5′ UTR that aids recruitment of the translation machinery
(Omotajo et al., 2015). In eukaryotes, mRNAs are modified at their
5′ and 3′ ends to facilitate translation by 5′ capping, which recruits
the ribosome to the mRNA, and addition of a 3′ poly(A) tail,
promoting higher translation by efficient recycling of ribosomes
(Mayr, 2017). The key factors for initiation are ribosome
recruitment to the mRNA and correct positioning over the start
codon, where the presence of a Kozak sequence in the 5′ UTR also
increases the efficiency of translation (Nakagawa et al., 2008;
Hinnebusch et al., 2016). Elongation is mostly driven by codon
usage, where ribosomes synthesize proteins by concatenating one
AA per codon according to the genetic code (Saier, 2019). In the
termination phase, release factors terminate translation in response
to stop codons and the ribosomes are recycled.

Open Reading Frame and Coding Region
Alternative splicing plays a crucial role for protein diversity in
eukaryotic cells and produces several mRNA molecules from a
single pre-mRNAmolecule with ∼95% of human genes (Wilkinson
et al., 2020). Conversely, in yeast, ∼6% of genes carry introns and
very few alternative splice forms exist. RNA splicing requires a
mandatory set of splicing signals including: 1) the splice donor site
(5’ss) and splice acceptor site (3’ss) that define the exon/intron
junction of each intron at the 5′ and 3′ ends, respectively, and are
characterized by highly conserved dinucleotides (mainly GT and
AG, respectively), and 2) the branch point site, a short and
degenerate motif usually located between 18 and 44 bp
upstream of 3’ss and as far as 400 bp upstream (Mercer et al.,
2015). Alterations of these signals were found to be the most
frequent cause of hereditary disease (Anna and Monika, 2018).
Since 5’ss and 3’ss sequences are well characterized, reliable tools
dedicated to splice site predictions have emerged, such as the logistic
regression-based “SPiCE” (Leman et al., 2018), trained on

395 splice-site variants of 11 human genes, which achieved an
accuracy of 95.6% and correctly predicted the impact on splicing for
98.8% of variants (Table 2). To predict the position of splice sites on
long genomic sequences, “SpliceRover” (Zuallaert et al., 2018) and
“SpliceFinder” (Wang et al., 2019) were developed using CNNs,
both outperforming existing splice site prediction tools. SpliceRover
achieved ∼10% improvement over an existing SVM-based model
(Sonnenburg et al., 2007) (AUPRC � 0.61 vs. 0.54) and SpliceFinder
compared favourably to both LSTM and SVM-based approaches
(AUC of 0.98 vs. 0.95 and 0.93, respectively). A deeper, 32-layer
CNN termed “SpliceAI” that accurately predicts splice junctions in
pre-mRNAs was developed by Jaganathan and co. (Jaganathan
et al., 2019), enabling precise prediction of noncoding genetic
variants that cause cryptic splicing and outperforming shallow
methods (AUPRC � 0.98 vs. 0.95). The study also found that
splice-altering mutations are significantly enriched in patients with
rare genetic disorders, causing an estimated 9–11% of pathogenic
mutations. For identification of relevant branch points, the method
“Branchpointer” (Signal et al., 2018) based on gradient boosting
machines showed the best performance to detect the branch points
upstream of constitutive and alternative 3’ss (accuracy of 99.48 and
65.84%, respectively). Alternatively, for variants occurring in a
branch point area, the mixture-model based “BPP” (Zhang et al.,
2017a) emerged as having the best performance to predict effects on
mRNA splicing, with an accuracy of 89.17%. Interestingly, two deep
learning methods based on bidirectional LSTMs, “LaBranchoR”
(Paggi and Bejerano, 2018) and “RNABPS” (Nazari et al., 2019),
both performed worse than the above shallow methods when
assessed on large scale datasets (AUC of 0.71 and 0.81,
respectively, vs. 0.82 with BPP using constitutive 3’ss) (Leman
et al., 2020).

Further deep learning studies on alternative splicing
prediction have shown that a comprehensive splicing code
should include not only genomic sequence features but also

TABLE 2 | (Continued) Overview of studies modeling gene expression-related properties from separate regulatory or coding regions. Highest achieved or average
scores are reported, on test sets where applicable, and include accuracy (acc), area under the receiver operating characteristic curve (AUC), area under the precision
recall curve (AUPRC), the coefficient of variation (R2) and Pearson’s correlation coefficient (r).

Ref. Strategy Region Target var. Explan. vars. Method Score Organism

(Salis et al., 2009;
Salis, 2011)

Shallow 5′ UTR Protein abundance RBS features Thermodynamic
model, LR

R2 � 0.54 (natural),
0.84 (synthetic)

E. coli

(Espah Borujeni
et al., 2017)

Shallow 5′ UTR Translation initiation rate N-terminal mRNA
structures

Biophysical model, LR R2 � 0.78 E. coli

(Ding et al., 2018) Shallow 5′ UTR Protein abundance DNA sequence
activity relationships

Partial least-squares
(PLS) regression

R2 � 0.60 (natural),
0.71 (synthetic)

Yeast

(Decoene et al.,
2018)

Shallow 5′ UTR Translation initiation rate DNA sequence
features

PLS regression R2 � 0.73 Yeast

(Cuperus et al.,
2017)

Deep 5′ UTR Protein abundance DNA sequence CNN regression R2 � 0.62 Yeast

(Sample et al.,
2019)

Deep 5′ UTR Mean ribosome load DNA sequence CNN regression R2 � 0.82 Human

(Morse et al.,
2017)

Shallow 3′ UTR,
terminator

Protein abundance Nucleosome
occupancy score

Weighted LR R2 � 0.84 Yeast

(Cambray et al.,
2013)

Shallow Terminator Termination efficiency DNA sequence
features (12)

Multiple LR r � 0.9 E. coli

(Vogel et al., 2010) Shallow 3′ UTR,
terminator

mRNA abundance k-mers L1-regularized logistic
regression

r � 0.41 Yeast

(Bogard et al.,
2019)

Deep 3′ UTR Alternative
polyadenylation signals

DNA sequence CNN regression R2 � 0.88 Human
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epigenetic properties. For instance, 16 histone modifications were
used with a multi-label DNN for human embryonic stem cell
differentiation in an approach termed “DeepCode” (Xu et al.,
2017), achieving an AUPRC up to 0.89. Lee and co. (Lee et al.,
2020) built an interpretable RNN that mimics the physical layout
of splicing regulation, where the chromatin context progressively
changes as the RNAP moves along the guide DNA, achieving an
AUPRC of over 0.8 and showing that adjacent epigenetic signals
carry useful information in addition to the actual nucleotide
sequence of the guide DNA strand. Finally, to enable the
characterization of differential alternative splicing between
biological samples based on RNA-seq datasets even with
modest coverage, the approach DARTS (Zhang et al., 2019)
was developed based on a DNN and a Bayesian statistical
framework used to determine the statistical significance of
differential splicing events in RNA-seq data across biological
conditions.

The genetic code is degenerate as most AAs are coded by
multiple codons, and these codons would appear in equal
frequencies if use of specific codons would not amount to any
change in cellular fitness. However, the unequal use of codons
that decode the same AA, termed codon usage bias (CUB), cannot
be explained by mutation bias alone and is generally believed to
arise from selection for improved translational efficiency (Plotkin
and Kudla, 2011). Due to variations in transfer RNA (tRNA)
abundances, favoring the usage of codons that correspond to
more abundant tRNA can lead to faster translation. Such codons
are preferred or “optimal” for translation speed up (termed codon
optimality) (Hershberg and Petrov, 2008). This is supported by
multiple findings in both prokaryotes and eukaryotes, showing
that CUB correlates with translation efficiency (protein numbers
per mRNA) (Tuller et al., 2010), certain protein structural motifs
and tRNA levels (Hanson and Coller, 2018), and affects mRNA
translation initiation rates and elongation rates. Furthermore,
CUB indices of genes, such as the codon adaptation index (CAI)
(Sharp and Li, 1987; Carbone et al., 2003), tend to correlate with
the genes’ expression (Ghaemmaghami et al., 2003). The role of
the coding region extends beyond codon usage, however. mRNA
structure was found to regulate translation (Yu et al., 2019) and
mRNA hairpins can obstruct translation and override the effect of
codon usage bias on translation (Cambray et al., 2018).

The strong association of mRNA levels with protein
expression in a variety of organisms (Schwanhäusser et al.,
2011; Csárdi et al., 2015; Liu et al., 2016) indicates a more
complex background process. The selection pressure for
increased protein expression can manifest in changes of DNA
that optimize both translation and transcription, improving
protein expression and mRNA levels, respectively. Multiple
lines of recent evidence corroborate this dual role of
synonymous codon changes in transcription and translation,
suggesting that selection is shaping codon usage not only to
optimize translational efficiency, but in response to conditions
imposed by the transcription machinery as well as the physical
properties of mRNA (Zhou et al., 2016; Zhou et al., 2018b). For
instance, in fungi, codon optimization was found to increase
mRNA and protein levels in a promoter-independent manner
(Zhou et al., 2016), with CUB shown to be predictive of mRNA

and protein levels, affect mRNA stability (Presnyak et al., 2015)
and toxicity (Mittal et al., 2018), coevolve with transcription
termination (Zhou et al., 2018b) as well as be influenced by
mRNA local secondary structure (Trotta, 2013). Similarly, in
E. coli, CUB was found to affect mRNA stability by defining
mRNA folding at the ribosomal site (Kudla et al., 2009).

Multiple modeling studies have been performed to analyze the
causes and effects of CUB as well as to find ways to optimize
codon usage in order to boost gene expression levels. Codon
optimization is a mature field with tools readily available on most
biotechnology and DNA synthesis companies’ websites (e.g.
www.thermofisher.com, www.genewiz.com, www.
twistbioscience.com) as well as in standalone solutions (Puigbò
et al., 2007; Gould et al., 2014; Rehbein et al., 2019). Most existing
optimization strategies are based on biological indices, such as
CAI (Sharp and Li, 1987; Puigbò et al., 2007), and use the host’s
preferred codons to replace less frequently occurring ones, while
also adjusting the new sequences to match the natural codon
distribution in order to preserve the slow translation regions that
are important for protein folding (Richardson et al., 2006; Angov
et al., 2008; Hershberg and Petrov, 2009; Gaspar et al., 2012).
Standard codon usage metrics were shown to be highly predictive
of protein abundance. For instance, an AdaBoost model trained
on a number of codon usage metrics in S. cerevisiae genes coding
for high-abundance proteins (top 10%) and low-abundance
proteins (lowest 10%) was highly predictive of these extremes
of protein abundance (R2 � 0.95) (Ferreira et al., 2020).

However, while explicitly modeling existing frequency-based
indices has helped to engineer high-yield proteins, it is unclear
what other biological features (e.g. RNA secondary structure)
should be considered during codon selection for protein synthesis
maximization. To address this issue, inspired by natural language
processing, deep learning was recently also applied to model
CUB. Fujimoto and co. (Fujimoto et al., 2017) showed that their
biLSTM-based deep language model that “translates” from DNA
to optimal codon sequences, is more robust than existing
frequency-based methods due to its reliance on contextual
information and long-range dependencies. Similarly, a
biLSTM-Transducer model of codon distribution in highly
expressed bacterial and human transcripts was able to predict
the next codon in a genetic sequence with improved accuracy and
lower perplexity on a held out set of transcripts, outperforming
previous state-of-the-art frequency-based approaches (accuracy
of 0.67 vs. 0.64) (Yang et al., 2019). Another deep learning-based
codon optimization approach introduced the concept of codon
boxes, enabling DNA sequences to be transformed into codon box
sequences, while ignoring the order of bases, and thus converting
the problem of codon optimization to sequence annotation of
corresponding AAs with codon boxes (Fu et al., 2020). Sequences
optimized by these biLSTM codon optimization models with
ones optimized by Genewiz and ThermoFisher were compared
using protein expression experiments in E. coli, demonstrating
that the method is efficient and competitive.

Alternatively, an algorithmic approach to replacing codons by
the target organism’s preferred codons was developed by
Trösemeier and co. (Trösemeier et al., 2019), termed
“COSEM,” which simulates ribosome dynamics during mRNA
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translation and informs about protein synthesis rates per mRNA
in an organism and context-dependent way. Protein synthesis
rates from COSEM were integrated with further relevant
covariates such as translation accuracy into a protein
expression score that was used for codon optimization, with
further algorithmic fine-tuning implemented in their software
“OCTOPOS.” The protein expression score produced
competitive predictions on proteomic data from prokaryotic
and eukaryotic expression systems and was shown to be
superior to standard methods, achieving 3-fold increases in
protein yield compared to wildtype and commercially
optimized sequences (Trösemeier et al., 2019). Moreover, since
ribosomes do not move uniformly along mRNAs, Tunney and co.
(Tunney et al., 2018) modeled the variation in translation
elongation by using a shallow NN to predict the ribosome
density at each codon as a function of its sequence
neighborhood. This enabled them to study sequence features
affecting translation elongation and to design synonymous
variants of a protein coding sequence in budding yeast that
closely tracked the predicted translation speeds across their
full range in vivo, demonstrating that control of translation
elongation alone is sufficient to produce large quantitative
differences in protein output.

Enhancer and Promoter
Transcriptional enhancers are located upstream of the
transcription start site (TSS) and regulate spatiotemporal
tissue-specific gene expression patterns over long genomic
distances, which is achieved through the binding of TFs to
cognate motifs (Shlyueva et al., 2014). They can typically be
found farther away from the TSS with increasing genomic
complexity of the organism (Mora et al., 2016; Clément et al.,
2018; Zicola et al., 2019), as far as a million bps in mammals
(Pennacchio et al., 2013). Enhancer function and TF binding are
influenced by various features, such as the chromatin state of the
genomic locus, binding site affinities, activity of bound TFs as well
as interactions among TFs (Shlyueva et al., 2014; Chen and Capra,
2020). The nature of how TF interactions influence enhancer
function was explored in a recent systematic analysis using in vivo
binding assays with 32,115 natural and synthetic enhancers
(Grossman et al., 2017). The activity of enhancers that contain
motifs for PPARγ, a TF that serves as a key regulator of
adipogenesis, were shown to depend on varying contributions
from dozens of TFs in their immediate vicinity. Importantly,
different pairs of motifs followed different interaction rules,
including subadditive, additive, and superadditive interactions
among specific classes of TFs, with both spatially constrained and
flexible grammars.

One of the key ML tasks shedding new light on DNA features
affecting enhancer function is identification of enhancer regions
in genomic sequences. For instance, a k-mer based SVM
framework was able to accurately identify specific types of
enhancers (EP300-bound) using only genomic sequence
features (Lee et al., 2011), outperforming PWM-based
classifiers (AUC � 0.93 vs. 0.87). The predictive sequence
features identified by the SVM classifier revealed both
enriched and depleted DNA sequence elements in the

enhancers, many of which were found to play a role in
specifying tissue-specific or developmental-stage-specific
enhancer activity, and others that operate in a general or
tissue-independent manner. The first deep learning approach
to facilitate the identification of enhancers, termed
“DeepEnhancer” (Min et al., 2017), relied purely on DNA
sequences to predict enhancers using CNNs and transfer
learning to fine-tune the model on cell line-specific enhancers.
The method was superior to gkm-SVM by ∼7% in both AUC and
AUPRC scores, and visualizing CNN kernels as sequence logos
identified motifs similar to those in the JASPAR database (Khan
et al., 2018). Similarly, Cohn and co. (Cohn et al., 2018). trained
deep CNNs to identify enhancer sequences in 17 mammalian
species using simulated sequences, in vivo binding data of single
TFs and genome-wide chromatin maps of active enhancers. High
classification accuracy was obtained by combining two training
strategies that identified both short (1–4 bp) low-complexity
motifs and TFBS motifs unique to enhancers. The
performance improved when combining positive data from all
species together, demonstrating how transfer of learned
parameters between networks trained on different species can
improve the overall performance and supporting the existence of
a shared mammalian regulatory architecture. Although
identification of enhancer locations across the whole genome
is necessary, it can be more important to predict in which specific
tissue types they will be activated and functional. The existing
DNNs, though achieving great successes in the former, cannot be
directly employed in tissue-specific enhancer predictions because
a specific cell or tissue type only has a limited number of available
enhancer samples for training. To solve this problem, Niu and co.
(Niu et al., 2019) employed a transfer learning strategy, where
models trained for general enhancer predictions were retrained
on tissue-specific enhancer data and achieved a significantly
higher performance (geometric mean of precision and recall,
GM � 0.81 vs. 0.70), also surpassing gkm-SVM (GM � 0.53).
Interestingly, a very small amount of retraining epochs (∼20)
were required to complete the retraining process, giving insight
into the tissue-specific regulatory rewiring and suggesting that
tissue specific responses are mediated by precise changes on a
small subset of binding features.

Promoters are adjacent regions directly upstream, as well as a
short distance downstream, of the TSS typically spanning from 50
to a couple of 100 bp (Sharon et al., 2012; Redden and Alper,
2015). Besides TFBS and enhancers, they contain core promoters
(Lubliner et al., 2015; Haberle and Stark, 2018) in eukaryotes and
σ factor binding sites (Feklístov et al., 2014) in prokaryotes, to
which the RNAP is recruited and where it acts to initiate
transcription. The core promoter contains several motifs with
fixed positioning relative to the TSS (Haberle and Stark, 2018),
including: 1) the TATA-box motif (consensus 5′-TATAWAW-
3′), located ∼30 bp upstream of TSS and conserved from yeast to
humans but found only in a minority of core promoters, 2) the
initiator (Inr) motif, which directly overlaps the TSS and is more
abundant than the TATA-box but not universal, with differing
consensus sequence among organisms, 3) the downstream
promoter element (DPE) that can accompany Inr in
promoters that lack a TATA-box and is positioned
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downstream of the TSS, and 4) other motifs with defined
positions relative to the TSS, including TFIIB recognition
elements (BREs) and downstream core elements (DCEs) in
humans (Watson et al., 2008; Haberle and Stark, 2018). A
comprehensive study of yeast core promoter activity and TSS
locations in thousands of native and designed sequences
(Lubliner et al., 2015) showed that core promoter activity is
highly correlated to that of the entire promoter and is in fact
predictable from the sequence variation in core promoters (R2 up
to 0.72). Interestingly, orthologous core promoters across yeast
species have conserved activities, with transcription initiation in
highly active core promoters focused within a narrow region and
location, orientation, and flanking bases critically affecting motif
function. De Boer and co. (de Boer et al., 2020) recently
transcended the limitations of using native and engineered
sequences with insufficient scale, instead measuring the
expression output of >100 million fully random synthetic
promoter sequences in yeast. Using shallow ML they built
interpretable models of transcriptional regulation that
predicted 94 and 89% of the expression driven from
independent test promoters and native yeast promoter
fragments, respectively, with a deep model mentioned to have
achieved 96%. These models allowed them to characterize each
TF’s specificity, activity and interactions with chromatin, showing
that expression level is influenced by weak regulatory
interactions, which confound designed-sequence studies,
further supporting that interactions between elements in
regulatory regions play an important role in orchestrating gene
expression. Moreover, based on promoter libraries comprising
>1,000,000 constitutive and inducible promoters and using deep
learning, Kotopka and Smolke (Kotopka and Smolke, 2020)
developed accurate predictors of promoter activity (R2 � 0.79)
that were used for model-guided design of large, sequence-diverse
promoter sets, confirmed to be highly active in vivo.

Prokaryotic promoters are marked by σ factor binding sites
with five distinct motifs controlling transcription initiation rates
by mediating RNAP recruitment: the −35, extended −10, −10,
and discriminator motifs recognized by σ; and the UP element
recognized by other RNAP domains (Browning and Busby, 2004;
Feklístov et al., 2014). The −35 (consensus 5′-TTGACA-3′) and
−10 motifs (consensus 5′-TATAAT-3′) are the most abundant,
though the extended −10 motif can supplant −35 for initiation,
both of which are recognized as dsDNA, with the remaining
motifs recognized as ssDNA (Feklístov et al., 2014). By building
and testing a library of 10,898 σ70 promoter variants consisting of
combinations of −35, −10 and UP elements, spacers, and
backgrounds in E. coli (Urtecho et al., 2019), the −35 and −10
sequence elements were shown to explain over 95% of the
variance in promoter strength using a shallow NN. This was
an improvement over using a simple log-linear statistical model,
which explained ∼74% of the variance, likely due to capturing
nonlinear interactions with the spacer, background, and UP
elements. Based on the same data from Urtecho and co.
(Urtecho et al., 2019), the central claim in energy matrix
models of gene expression, stating that each promoter element
contributes independently and additively to gene expression and
contradicting experimental measurements, was tested using

biophysical models (Einav and Phillips, 2019). A “multivalent”
modeling framework incorporated the effect of avidity between
the –35 and –10 RNAP binding sites and could successfully
characterize the full suite of gene expression data (R2 � 0.91),
suggesting that avidity represents a key physical principle
governing RNAP-promoter interaction, with overly tight
binding inhibiting gene expression. Another use of the data by
Urtecho and co. (Urtecho et al., 2019) was with deep learning,
where CNN models were trained to predict a promoter’s
transcription initiation rate directly from its DNA sequence
without requiring expert-labeled sequence elements (Leiby
et al., 2020). The model performed comparably to the above
shallow models (R2 � 0.90) and corroborated the consensus −35,
−10 and discriminator motifs as key contributors to σ70
promoter strength. Similarly, using a “Nonrepetitive Parts
Calculator” to rapidly generate and experimentally characterize
thousands of bacterial promoters with transcription rates that
varied across an almost 1e6-fold range, a ML model was built to
explain how specific interactions controlled the promoters’
transcription rates, supporting that the number of −35 and
−10 motif hexamer mismatches is a potent sequence
determinant (Hossain et al., 2020).

59 Untranslated Region
The key known sequence elements affecting gene expression in 5′
UTRs are the RBS, known as the Shine-Dalgarno sequence, in
prokaryotes (Omotajo et al., 2015) and the Kozak sequence in
eukaryotes (Nakagawa et al., 2008). The Shine-Dalgarno
sequence is a ∼6 bp highly conserved sequence (consensus 5′-
AGGAGG-3′) (Shine and Dalgarno, 1975) located 3–9 bp from
the start codon, which aids recruitment of the ribosome to the
mRNA and has a strong effect on the translation initiation rate,
thus being highly predictive of expression (Bonde et al., 2016). In
order to design synthetic RBS and enable rational control over
protein expression levels, the “RBS calculator” was developed a
decade ago (Salis et al., 2009; Salis, 2011). Experimental
validations in E. coli showed that the method is accurate to
within a factor of 2.3 over a range of 100,000-fold (R2 � 0.54
on natural sequences and 0.84 on synthetic ones), correctly
predicting the large effects of genetic context on identical RBS
sequences that result in different protein levels. The tool was
further expanded in a subsequent study (Espah Borujeni et al.,
2017), where the N-terminal mRNA structures that need to be
unfolded by the ribosome during translation initiation were
precisely determined by designing and measuring expression
levels of 27 mRNAs with N-terminal coding structures with
varying positioning and energetics. The folding energetics of
the N-terminal mRNA structures were determined to control
translation rates only when the N-terminal mRNA structure
overlaps with the ribosomal footprint, which extends 13
nucleotides past the start codon. By utilizing this improved
quantification of the ribosomal footprint length, their
biophysical model could more accurately predict the
translation rates of 495 characterized mRNAs with diverse
sequences and structures (R2 � 0.78). The contribution of the
Shine-Dalgarno sequence to protein expression was further
comprehensively assessed and used to develop the tool
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“EMOPEC,” which can modulate the expression level of any
E. coli gene by changing only a few bases (Bonde et al., 2016).
Measured protein levels for 91% of the designed sequences were
within twofold of the desired target levels, and predictions of
these levels with RF regressors wastly outperformed RBS
calculator with an R2 of 0.89 compared to 0.44.

In eukaryotes, the nucleotide composition of the 5′ UTR
changes across genes and species, with highly expressed genes
in S. cerevisiae preferring A-rich and G-poor 5′UTRs. The Kozak
sequence, which helps to initiate translation in most mRNAs and
occupies the first 6–9 nucleotides upstream of the START codon
AUG, thus has the consensus 5′-WAMAMAA-3′ in yeast (Li
et al., 2017a), whereas in humans this is 5′-GCCGCCRMC-3ʹ
(Nakagawa et al., 2008). Measurement of protein abundance in
2,041 5′-UTR sequence variants, differing only in positions −10
to −1, showed that in yeast, key regulatory elements, including
AUG sequence context, mRNA secondary structure, nucleosome
occupancy and out-of-frame upstream AUGs conjointly
modulate protein levels (Dvir et al., 2013). Based on these
features, a predictive model could be developed that explains
two-thirds of the expression variation. Recently, however, it was
shown that also nucleotides upstream of the Kozak sequence are
highly important (Li et al., 2017a). Ding and co. (Ding et al., 2018)
synthesized libraries of random 5′ UTRs of 24 nucleotides and
used a mathematical model accounting for strong epistatic
interactions among bases to predict protein abundance. Then,
by stepwise engineering the 5′ UTRs according to nucleotide
sequence activity relationships (NuSAR), through repeated cycles
of backbone design, directed screening, and model
reconstruction, the predictive accuracy of the model was
improved (R2 � 0.71 vs. initial 0.60), resulting in strong 5′
UTRs with 5-fold higher protein abundance than the initial
sequences. Similarly, a computational approach for predicting
translation initiation rates, termed “yUTR calculator,” was
developed using partial least-squares (PLS) regression and
multiple predictive features, including presence of upstream
AUGs (Decoene et al., 2018). This enabled the de novo design
of 5′UTRs with a diverse range of desired translation efficiencies,
which were confirmed in vivo. Moreover, the importance of
mRNA secondary structures in 5′ UTRs (Leppek et al., 2018)
was also confirmed by inserting hairpin RNA structures into
mRNA 5′ UTRs, which tuned expression levels by 100-fold by
inhibiting translation (Weenink et al., 2018). This enables
generating libraries with predicted expression outputs.

To facilitate deep learning of 5′ UTR function in yeast, a
library of half a million 50 bp random 5′ UTRs was constructed
and their activity assayed with growth selection experiments
(Cuperus et al., 2017). A CNN model was generated that
could accurately predict protein levels of both random and
native sequences (R2 � 0.62), and was used to evolve highly
active 5′ UTRs that were experimentally confirmed to lead to
higher protein expression rates than the starting sequences.
Similarly, in human cells, polysome profiling of a library of
280,000 randomized 5′ UTRs was used to develop a CNN,
termed “Optimus 5-Prime,” that could quantitatively capture
the relationship between 5′ UTR sequences and their
associated mean ribosome load (R2 � 0.93 vs. 0.66 with k-mer

based LR) (Sample et al., 2019). Combined with a genetic
algorithm, the model was used to engineer new 5′ UTRs that
accurately directed specified levels of ribosome loading, and also
enabled finding disease-associated SNVs that affect ribosome
loading and may represent a molecular basis for disease.

39 Untranslated Region and Terminator
Regulatory motifs within the 3′ UTR and terminator region
influence transcription termination, with 3′ UTR regulating
polyadenylation, localization and stability (decay) of mRNA as
well as translation efficiency (Barrett et al., 2012; Ren et al., 2017).
The 3′ UTR contains both binding sites for regulatory proteins
and microRNAs that can decrease gene expression by either
inhibiting translation or directly causing mRNA degradation.
It carries the A-rich ‘positioning’ element (consensus 5′-
AAWAAA-3′ in yeast and 5′-AATAAA-3′ in humans) that
directs addition of several hundred adenine residues called the
poly(A) tail to the end of the mRNA transcript - the poly(A) site
5′-Y(A)n-3′, the TA-rich ‘efficiency’ element (most frequently 5′-
TATWTA-3′) upstream of the positioning element and multiple
T-rich sites (Guo and Sherman, 1996; Zhao et al., 1999; Curran
et al., 2015). Based on these motifs, Curran and co. (Curran et al.,
2015) developed a panel of short 35–70 bp synthetic terminators
for modulating gene expression in yeast, the best of which
resulted in a 3.7-fold increase in protein expression compared
to that of the common CYC1 terminator. Further investigation of
the effects of 13,000 synthetic 3′ end sequences on constitutive
expression levels in yeast showed that the vast majority (∼90%) of
strongly affecting mutations localized to a single positive TA-rich
element, similar to the efficiency element (Vogel et al., 2010).
Based on the strength of this element, dependent also on the GC
content of the surrounding sequence, their classification model
could explain a significant amount of measured expression
variability in native 3′ end sequences (r � 0.41). Moreover,
similarly as with promoters (Curran et al., 2014), Morse and
co. (Morse et al., 2017) showed that terminator function can be
modulated on the basis of predictions of nucleosome occupancy,
with LR models highly predictive of protein output based on
nucleosome occupancy scores (R2 � 0.84). Designed terminators
depleted of nucleosomes achieved an almost 4-fold higher net
protein output than their original counterparts, with the main
mode of action through increased termination efficiency, rather
than half-life increases, suggesting a role in improved mRNA
maturation.

Most genes express mRNAs with alternative polyadenylation
sites at their 3′ ends (Tian and Manley, 2017), which were found
to be remarkably heterogeneous across different yeast species.
The polyadenylation pattern is determined by a broad degenerate
sequence as well as local sequence reliant on poly(A) residues that
can adopt secondary structures to recruit the polyadenylation
machinery (Moqtaderi et al., 2013). In humans, alternative
polyadenylation leads to multiple RNA isoforms derived from
a single gene, and a CNN termed ’APARENT’ was trained on
isoform expression data from over three million reporters to infer
alternative polyadenylation in synthetic and human 3′UTRs
(Bogard et al., 2019). APARENT was shown to recognize
known sequence motifs for polyadenylation, such as the
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positioning element, and also discover new ones, enabling the
authors to engineer precisely defined polyadenylation signals and
study disease-related genetic variants.

Bacterial transcription termination is known to occur via two
distinct mechanisms: factor-dependent or factor-independent
termination. The former relies on a regulatory protein Rho at
Rho-dependent terminator sequences and is responsible for
∼20% of termination events in E. coli (Peters et al., 2009),
whereas factor-independent termination accounts for the
remaining ∼80% of transcription termination events and
occurs at defined sequence regions known as “intrinsic
terminators” that contain GC-rich regions (Roberts, 2019).
Cambray and co. (Cambray et al., 2013) assembled a
collection of 61 natural and synthetic intrinsic terminators
that encode termination efficiencies across an 800-fold
dynamic range in E. coli and, by simulating RNA folding, they
found that secondary structures extending beyond the core
terminator stem are likely to increase terminator activity. They
developed linear sequence-function models that can accurately
predict termination efficiencies (r � 0.67), further improving their
performance by excluding terminators encoding the context-
confounding structural elements (r � 0.9).

PREDICTING TRANSCRIPT AND PROTEIN
LEVELS FROM MULTIPLE REGULATORY
PARTS
The whole nucleotide sequence is involved in gene expression.
When predicting the outcomes of transcription and translation,
e.g. transcript and protein abundance, it is important to consider
that many of the underlying steps in these processes are
dependent on the outcome of the previous steps and some can
occur in tandem (Watson et al., 2008) (Figures 1B,C). Each
region of the gene and mRNA regulatory structures carries
distinct regulatory signals that control the specific enzymatic
interactions and thus encodes a significant amount of
information related to mRNA (Shalem et al., 2015; Cheng
et al., 2017; Cuperus et al., 2017; Zrimec et al., 2020) and
protein levels (Vogel et al., 2010; Guimaraes et al., 2014;
Lahtvee et al., 2017). Moreover, multiple lines of evidence
support that the gene regulatory structure is a coevolving unit
in both multicellular (Castillo-Davis et al., 2004; Wittkopp et al.,
2004; Hahn, 2007;Wittkopp and Kalay, 2011; Arbiza et al., 2013;
Naidoo et al., 2018; Washburn et al., 2019) and unicellular
eukaryotes (Tirosh et al., 2009; Park et al., 2012; Chen et al.,
2016; Zrimec et al., 2020), as genes display a coupling of coding
and regulatory sequence evolution (Wittkopp et al., 2004;
Tirosh et al., 2009; Zrimec et al., 2020) with approximately
half of all functional variation found in non-coding regions
(Hahn, 2007). However, although data from multiple regions
was already used in prediction of mRNA and protein levels with
shallow models (Vogel et al., 2010; Guimaraes et al., 2014;
Lahtvee et al., 2017), predictions based on whole gene
regulatory structures spanning multiple kilobases have started
to emerge only recently, with the support of deep learning
(Washburn et al., 2019; Zrimec et al., 2020). Accounting for

multiple regions in ML models can lead to important
observations, such as differentiating and quantifying the
effects of separate vs. combined regions, and determining the
DNA variables across the regions as well as their interactions,
which affect predictions (Figure 3A).

DNNs are highly useful in learning the regulatory code of gene
expression across regulatory structures. Despite hybrid CNN +
RNN architectures outperforming them in terms of accuracy,
CNNs work sufficiently well for this task (Yu and Koltun, 2015;
Gupta and Rush, 2017; Strubell et al., 2017) and excel in learning
rich higher-order sequence features that define the cis-regulatory
grammar (Siggers and Gordân, 2014; Zeng et al., 2016).
Systematic analyses of network properties, such as CNN kernel
size, number of kernels and number of layers as well as pooling
designs (pooling layers between connected CNNs), have
exemplified how DNNs decode the regulatory grammar in
sequence-based learning tasks (Trabelsi et al., 2019; Zeng
et al., 2016; Koo and Eddy, 2019) (Figure 2D). In a multilayer
DNN, the initial one to two layers capture information on single
motif occurrence, with the first layer potentially learning partial
motif representations. This can be useful in complicated tasks,
such as learning DNA regulatory grammar, because a wider array
of representations can be combinatorially constructed from
partial representations to capture the rich array of biologically
important sequence patterns in vivo (Siggers and Gordân, 2014;
Zrimec et al., 2020). Successive layers (e.g. Third layer) then learn
to recognize motif interactions (i.e. associations in predicting the
target variable) across the regulatory structure (Zeng et al., 2016;
Zrimec et al., 2020). The extent to which sequence motif
representations are learned by first layer kernels is influenced
by kernel size and pooling, which enforce a spatial information
bottleneck either from the sequence to the CNN or between
successive CNN layers, respectively. For instance, large max-
pooling (≥10) was shown to force kernels to learn whole motifs,
whereas CNNs that employ a low max-pool size (≤4) capture
partial motifs (Koo and Eddy, 2019). Similarly, the size of
successive convolutional kernels can also affect the ability to
assemble whole motifs in deeper layers. Moreover, the number of
kernels in the first layer sets a hard constraint on the number of
different sequence patterns that can be detected (Koo and Eddy,
2019). Since the scope of initial characterized sequence features
limits the range and complexity of grammar representations that
can be built downstream, this parameter was generally found to
have the greatest impact on CNN performance (Zeng et al., 2016).
Therefore, in contrast to learning tasks where the main features
are simple, such as occurrence of a PWM-like motif in TFBS
prediction, using multiple parts of the regulatory structures
requires deeper and more complex architectures that learn
distributed motif representations to address the more complex
sequence patterns (Koo and Eddy, 2019; Trabelsi et al., 2019)
(Figure 2D).

Predicting messenger RNA Levels From
Nucleotide Sequence
Despite the importance of the whole gene regulatory structure in
gene expression, very few combinations of regulatory elements
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have been tested and their functional interactions remain poorly
explored. To estimate the contribution of individual regulatory
parts in gene expression, a combinatorial library of regulatory
elements including different enhancers, core promoters, 5′ UTRs
and transcription terminators was constructed in S. cerevisiae
(Dhillon et al., 2020). A strong interaction was found between
enhancers and promoters, showing that, while enhancers initiate
gene expression, core promoters modulate the levels of enhancer-
mediated expression and can positively or negatively affect
expression from even the strongest enhancers. Interestingly,
principal component analysis indicated that enhancer and
promoter function can be explained by a single principal
component. Espinar and co. (Espinar et al., 2018) tested if
promoters and coding regions can be understood in isolation,
or if they interact, by measuring mRNA levels for 10,000
constructs. The strength of cotranslational regulation on
mRNA levels from either inducible or constitutive promoter
architecture was explored using LR, where a novel mechanism
for co-regulation with inducible promoters was identified (RNA
helicase Dbp2), whereas with constitutive promoters, most of the
information on mRNA levels was found in the coding region and
not in the promoter (Table 3). Neymotin and co. (Neymotin
et al., 2016) analyzed both coding regions and their interactions
with other cis-regulatory variables in mRNA transcripts that

affect mRNA degradations rates (which in turn affect overall
mRNA abundance) using multiple LR. Multiple transcript
properties were significantly associated with variation in
mRNA degradation rates, including transcript length,
ribosome density, CUB and GC content at the third codon
position, and a model incorporating these properties explained
∼50% of the genome-wide variance. A similar quantitative model
based on functional mRNA sequence features explained 59% of
the half-life variation between genes, predicting half-life at a
median relative error of 30% (Cheng et al., 2017). mRNA
sequence features found to most strongly affect mRNA
stability included CUB (R2 � 0.55), destabilizing 3′ UTR
motifs, upstream AUG codons, UTR lengths and GC content.

Recently, deep learning was applied on over 20,000 mRNA
datasets in seven model organisms that included bacteria, yeast
and human, to examine how individual coding and non-coding
regions of the gene regulatory structure interact and contribute to
mRNA abundance (Zrimec et al., 2020). The CNN-based
approach, termed “DeepExpression,” could predict the
variation of transcript levels directly from DNA sequence in
all organisms, with up to 82 and 70% achieved in S. cerevisiae and
E. coli, respectively, outperforming shallowmethods by over 13%.
Apart from the DNA sequence, CUB and features associated with
mRNA stability, including lengths of UTRs and open reading

FIGURE 3 |Quantifying gene expression and interpreting its regulatory grammar with machine learning. (A) Recently identified DNA regulatory elements predictive
of mRNA abundance that expand the base knowledge depicted in Figure 1B. These include motif associations (Zrimec et al., 2020) (red), structural motifs (e.g. DNA
shape, blue) (Zhou et al., 2015; Yang et al., 2017), weak interactions (de Boer et al., 2020) (green), nucleotides upstream of the Kozak sequence (Li et al., 2017a) (yellow),
CpG dinucleotides (Agarwal and Shendure, 2020) (gray) and mRNA stability features (Neymotin et al., 2016; Cheng et al., 2017; Agarwal and Shendure, 2020;
Zrimec et al., 2020) (dashed line, see text for details) identified in specific regions or across the whole gene regulatory structure. The table specifies the variation of mRNA
abundance explained by DNA sequence and features using deep learning (Zrimec et al., 2020). Note that with alternative approaches, higher predictive values were
obtained for certain regions in Table 2. (B)mRNA regulatory elements recently found to be predictive of protein abundance apart from features depicted in Figure 1C.
These include specific motifs found across all regions (Li et al., 2019a; Eraslan et al., 2019b) (red), upstream ORFs (Vogel et al., 2010; Li et al., 2019a) and AUGs
(Neymotin et al., 2016; Li et al., 2019a) (blue), AA composition (Vogel et al., 2010; Guimaraes et al., 2014) and post-translational modifications (PTMs) (Eraslan et al.,
2019b) (gray) as well as lengths and GC content of all regions (Neymotin et al., 2016; Cheng et al., 2017; Li et al., 2019a) (dashed line). The table specifies the variation of
protein abundance explained bymRNA levels and translational elements, using comparable shallow approaches in E. coli (Guimaraes et al., 2014), S. cerevisiae (Lahtvee
et al., 2017) and H. sapiens (Vogel et al., 2010). Note that with alternative approaches, higher values were obtained for certain regions in Table 2. (C) Quantifying the
central dogma of molecular biology with variance explained by mapping DNA to mRNA levels (Agarwal and Shendure, 2020; Zrimec et al., 2020) and mRNA levels to
protein abundance (Vogel et al., 2010; Guimaraes et al., 2014; Lahtvee et al., 2017), using deep and shallow learning, respectively. Note that highly different modeling
approaches were used.
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frames (ORFs), UTR GC content and GC content at each codon
position (Neymotin et al., 2016; Cheng et al., 2017), were found to
increase the predictive power of the models. Compared to single
interpreted DNAmotifs, motif associations could explain a much
larger portion of the dynamic range of mRNA levels (84 vs. 57%),
suggesting that instead of single motifs and regions, the entire
gene regulatory structure with specific combinations of regulatory
elements defines gene expression levels (Figure 3A). This was
also supported by observations of co-evolution among coding
and non-coding regions across 14 related yeast species. With
similar objectives, Agarwal and Schendure (Agarwal and
Shendure, 2020) developed “Xpresso,” which could explain 59
and 71% of variation in steady-state mRNA levels in human and
mouse, respectively, based only on promoter sequences and
explanatory features associated with mRNA stability. They
showed that Xpresso more than doubles the accuracy of
alternative sequence-based models and model interpretation
revealed that promoter-proximal CpG dinucleotides strongly
predict transcriptional activity.

To predict the tissue-specific transcriptional effects of genome
variation, including rare or unseen mutations, Zhou and co.
(Zhou et al., 2018a) developed a DNN–based framework
termed “ExPecto.” Using ExPecto to profile over 140 million

promoter-proximal mutations, the authors characterized the
regulatory mutation space for human RNAP II–transcribed
genes, which enables probing of evolutionary constraints on
gene expression and ab initio prediction of mutation disease
effects. A similar model was constructed using residual networks
(ResNets), which are multilayer CNNs that utilize skip
connections to jump over some layers (He et al., 2016), termed
“ExpResNet” (Zhang et al., 2020). By utilizing almost 100 kb of
sequence around each gene”s TSS, ExpResNet outperformed
existing models, including ExPecto (ρ � 0.80 vs. 0.75), across
four tested tissues. Interestingly, by comparing the performance
achieved with different input sequence sizes, we can observe that
the majority of regulatory information in humans is constrained
to ∼10 kb of regulatory structure around the TSS (ρ � 0.77, 0.79,
0.80 with 10, 40 and 95 kb, respectively), likely since this is
sufficient for the majority of genes, whereas enhancers outside
of this region are gene-specific and positioned highly variably.

Predicting Protein Abundance From mRNA
Sequence
In multiple organisms, protein levels at steady state are primarily
determined bymRNA levels, where up to ∼85% of the variation of

TABLE 3 | Overview of studies modeling transcript and protein-abundance related properties from combined regulatory and coding regions. Highest achieved or average
scores are reported, on test sets where applicable, and include area under the receiver operating characteristic curve (AUC), area under the precision recall curve
(AUPRC), the coefficient of variation (R2) and Spearman’s correlation coefficient (ρ).

Ref. Strategy Region Target var. Explan. vars. Method Score Organism

(Espinar et al., 2018) Shallow Promoter, coding mRNA abundance DNA sequence
features

LR R2 � 0.64 Yeast

(Neymotin et al.,
2016)

Shallow mRNA transcript mRNA stability
(degradation rates)

mRNA features Multiple LR R2 � 0.50 Yeast

(Cheng et al., 2017) Shallow mRNA transcript mRNA stability (half-
life)

mRNA features Multivariate LR R2 � 0.59 Yeast

(Zhou et al., 2018a) Deep Whole gene
regulatory structure

mRNA abundance DNA sequence CNN + L2-
regularized LR

AUC � 0.82 Human

(Zrimec et al., 2020) Deep Whole gene
regulatory structure

mRNA abundance DNA sequence and
features

CNN regression R2 � 0.82, 0.70, 0.42,
respectively

Yeast, E. coli,
human

(Agarwal and
Shendure, 2020)

Deep Promoter, coding mRNA abundance DNA sequence and
features

CNN regression R2 � 0.59 Human

(Zhang et al., 2020) Deep Whole gene
regulatory structure

mRNA abundance DNA sequence ResNet regression ρ � 0.80 Human

(Guimaraes et al.,
2014)

Shallow mRNA transcript Protein abundance mRNA features PLS regression R2 � 0.66 E. coli

(Lahtvee et al.,
2017)

Shallow mRNA transcript Protein abundance mRNA features MARS nonlinear
regression

R2 � 0.81 Yeast

(Vogel et al., 2010) Shallow mRNA transcript Protein abundance mRNA features MARS nonlinear
regression

R2 � 0.67 Human

(Li et al., 2019a) Shallow mRNA transcript Translation rates mRNA features Multivariate LR R2 � 0.81, 0.42,
respectively

Yeast, human

(Terai and Asai,
2020)

Shallow mRNA transcript Protein abundance mRNA features of
translation initiation

RF regression ρ � 0.76 E. coli

(Li et al., 2017b) Shallow mRNA transcript Translation rates mRNA features Bayesian model R2 � 0.20 (TRmD,;
0.80 (TRmIND)

Yeast

(Eraslan et al.,
2019b)

Shallow mRNA transcript Protein-to-RNA ratio mRNA sequence and
features

Multivariate LR R2 � 0.62 Human

(Zhang et al.,
2017b)

Deep mRNA transcript Translation initiation
sites

mRNA sequence CNN + RNN
classification

AUPRC � 0.62 Human

(Zhang et al., 2017c) Deep mRNA transcript Translation elongation
dynamics

mRNA sequence CNN classification AUC � 0.88, 0.83,
respectively

Yeast, human
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protein expression can be attributed to mRNA transcription
rather than protein translation (Schwanhäusser et al., 2011;
Csárdi et al., 2015; Liu et al., 2016). Nevertheless, the spatial
and temporal variations of mRNAs and the local availability of
resources for protein biosynthesis strongly influence the
relationship between protein levels and their transcripts (Liu
et al., 2016). Thus, in many scenarios, transcript levels by
themselves are not sufficient to predict protein levels and
multiple other mRNA-related properties and processes affect
translation and define the final gene expression levels. It was
also shown that, due to translation rates per mRNA molecule
being positively correlated with mRNA abundance, protein levels
do not scale linearly with mRNA levels, but instead scale with the
abundance of mRNA raised to the power of an “amplification
exponent” (Csárdi et al., 2015). Li and co. (Li et al., 2017b)
proposed that, to quantify translational control, the translation
rate must be decomposed mathematically into two components:
one that is dependent on mRNA abundance (TRmD), defining
also the amplification exponent, and one that is not (TRmIND). In
yeast, TRmD represented ∼20% of the variance in translation,
whereas TRmIND constituted the remaining ∼80% of the variance
in translation. The components were also preferentially
determined by different mRNA sequence features: TRmIND by
the length of the ORF and TRmD by a ∼60 nt element spanining
the initiating AUG and by CUB, implying that these components
are under different evolutionary selective pressures.

Quantification of absolute protein and mRNA abundances for
over 1,025 genes from the human Daoy medulloblastoma cell line
showed that the combined contribution of mRNA levels and
sequence features can explain⅔ of protein abundance variation at
steady state (Vogel et al., 2010) (Figure 3B). Using multivariate
adaptive regression splines (MARS), a nonlinear regression
technique, the variation in protein abundance was primarily
explained by translation elongation factors (31%), with an
impact similar to that of mRNA abundance (29%). The
strongest individual correlates of protein levels were
translation and degradation-related features including mRNA
sequence length, AA properties, upstream ORFs and 5′ UTR
secondary structures. Interestingly, characteristics of the 3′ UTR
explained a larger proportion of protein abundance variation
(8%) than characteristics of the 5′ UTR (1%). A similar analysis
performed with 824 genes in E. coli, which used PLS regression
and over 100 mRNA sequence features, also derived a model that
explained ⅔ of the total variation of protein abundance
(Guimaraes et al., 2014). The model suggests that protein
abundance is primarily determined by the transcript level
(53%) and by effectors of translation elongation (12%), which
included both CUB and specific AA composition, whereas only a
small fraction of the variation is explained by translation
initiation (1%). Lahtvee and co. (Lahtvee et al., 2017).
measured absolute abundances of 5,354 mRNAs and 2,198
proteins in yeast under different environmental conditions,
showing that the overall correlation between mRNA and
protein abundances across all conditions is much higher for a
subset of 202 differentially expressed proteins than all of them
(avg. r � 0.88 vs. 046). On a subset of 1,117 proteins, for which
translation efficiencies were calculated, MARS detected that

mRNA abundance and translation elongation were the
dominant factors controlling protein synthesis, explaining 61
and 15% of its variance, with only a small fraction (4%)
explained by translation initiation (Figure 3B).

On the other hand, multiple recent studies show that general
mRNA features control a much larger fraction of the variance in
translation rates or protein abundance than previously realized.
For instance, Li and co. (Li et al., 2019a) quantified the
contributions of mRNA sequence features to predicting
translation rates using LR across multiple organisms, including
yeast and human, where they specified 81 and 42% of the variance
in translation rates, respectively. The identified informative
mRNA features included similar ones as found in previous
studies: 5′ UTR secondary structures, nucleotides flanking
AUG, upstream ORFs, ORF length and CUB (Vogel et al.,
2010; Neymotin et al., 2016; Cheng et al., 2017).

Eraslan and co. (Eraslan et al., 2019b) also showed that a large
fraction of protein abundance variation can be predicted from
mRNA sequence in humans, by analyzing 11,575 proteins across
29 human tissues using matched transcriptomes and proteomes.
Their initial LR model explained on average 22% of the variance
from sequence alone, and by including additional experimentally
characterized interactions and modifications, including mRNA
methylation (Zhao et al., 2017), miRNA and RBP binding sites
(Mayr, 2017) and post-translational modifications (Millar et al.,
2019), the explained variance increased to 62%. Their findings
support much of the previously identified mRNA regulatory
elements and also uncover new sequence motifs across the
whole transcript. Importantly, they also developed a new
metric of codon optimality, termed “Protein-to-mRNA
adaptation index” that captures the effects of codon frequency
on protein synthesis and degradation. Terai and Asai (Terai and
Asai, 2020) evaluated six types of structural features in E. coli,
including mRNA accessibility, which is the probability that a
given region around the start codon has no base-paired
nucleotides. When calculated by a log-linear model,
accessibility showed the highest correlation with protein
abundance. This was significantly higher than the widely used
minimum free energy (ρ � 0.71 vs. 0.55), and combining it with
activity of the Shine-Dalgarno sequence yielded a highly accurate
method for predicting protein abundance (ρ � 0.76). Moreover,
similarly as in eukaryotes, secondary structures in bacterial
mRNAs were shown to be highly important for protein
production and to generally limit translation initiation in a
large-scale assay involving 244,000 designed sequences with
varying features (Cambray et al., 2018).

Deep learning was recently applied to prediction of translation
initiation sites in a method termed “TITER” (Zhang et al., 2017b),
using HTS data quantitatively profiling initiating ribosomes
(QTI-seq) at single-nucleotide resolution (Gao et al., 2015).
Using a hybrid CNN + RNN approach, TITER integrates the
prior preference of TIS codon composition with translation
initiation features extracted from the surrounding sequence to
greatly outperform other state-of-the-art methods in predicting
the initiation sites. The method captures the sequence motifs of
different start codons, including a Kozak sequence-like motif for
AUG, and quantifies mutational effects on translation initiation.
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Another DNN framework, termed “ROSE” was used to analyze
translation elongation dynamics in both human and yeast via
ribosome stalling, which is manifested by the local
accumulation of ribosomes at specific codon positions of
mRNA (Zhang et al., 2017c). ROSE estimates the
probability of a ribosome stalling event occurring at each
genomic location, achieving higher prediction accuracy than
conventional prediction models such as gkm-SVM with AUC
increases by up to 18.4%.

DISCUSSION

As can be surmised from the presented ML results (Table1,
Table 2, and Table 3), deep methods frequently outperform
shallow ones, and we outline the main advantages, disadvantages
and challenges of these approaches in Table 4. The capability of
DNNs to more accurately recapitulate experimental data stems
mainly from their ability to extract information directly from the
raw input nucleotide sequences, automatically learning
regulatory grammar (Figures 2B,D), which boosts predictive
accuracy (Zrimec et al., 2020). However, although multiple
different methods exist for interpreting deep methods, many
are a work in progress and no explicit solutions currently exist

to benchmark these methods or to combine the findings into
more complete and coherent interpretations (Azodi et al., 2020).
Nevertheless, ML in general lowers the entry barrier to
development of new models and saves research time by
abstracting mathematical details (Eraslan et al., 2019a), though
this has also been used to criticize such approaches, as they rely on
data driven instead of hypothesis driven modeling (Barshai et al.,
2020). An important limitation of all ML methods is their
dependence on accurately labeled data, since they cannot
achieve higher accuracy than that allowed by the noise
inherent to the given target labels (Li et al., 2019b; Barshai
et al., 2020). For instance, in vivo measurements, such as those
produced by ChIP-seq, ATAC-seq and DNAse-seq, are prone to
experimental noise and technological artifacts and subject to the
complexity of the cellular environment, affected by chromatin
structure and nucleosome positioning, thus concealing the full
picture of DBP-DNA interactions. Alternatively, in vitro
methods, such as PBMs, HT-SELEX and BunDLE-seq, can
capture purely direct protein-nucleic acid interactions or
cooperative binding of specific factors and allow sampling of
the full spectrum of binding sites (Barshai et al., 2020).
Fortunately, novel computational methods allow researchers to
easily estimate the noise-constrained upper bound of ML
regression model performance (Li et al., 2019b).

TABLE 4 | The current advantages, disadvantages and further challenges of machine learning methods in genetics and genomics.

Deep methods Shallow methods

Advantages Lower entry barrier to develop new models and save research time by abstracting mathematical details (Eraslan et al., 2019a)
Scale effectively with data and support use of latest computational and
technological advances, including large genomic datasets and results of
HTS technologies (Barshai et al., 2020)

Classic statistical models are better characterized mathematically and some
ML algorithms are easier to understand and explain (Hastie et al., 2013)

Ability to automatically learn features from raw input data and unlock an
additional level of information from it (Barshai et al., 2020; Zrimec et al.,
2020)

Less computationally expensive and faster to train leading to more iterations
and testing of different techniques in a shorter period of time

Ability to learn and approximate complex functions without prior
assumptions, frequently achieving improved predictive power (Barshai et al.,
2020)

Possibility to train on much smaller datasets (e.g. hundreds of examples vs.
thousands or more with deep learning) (Playe and Stoven, 2020; Zrimec
et al., 2020)

Capability to integrate multiple pre-processing steps into a single end-to-
end model (Eraslan et al., 2019a)

Can be easier to interpret due to inherently interpretable structure and direct
feature engineering/selection (Figures 2A,C) (Azodi et al., 2020)

Ability to effectively model multimodal data (Eraslan et al., 2019a) Usually a small number of hyperparameters (Hastie et al., 2013)
Highly useful as experiment simulators due to the ability to generalize over an
experimental dataset (Barshai et al., 2020)

Useful for proof-of-principle and initial model or parameter testing using only
numerical variables

Easily adaptable to different domains and applications, with transfer learning
on pre-trained deep networks accelerating training and improving
performance

—

Disadvantages Dependence on accurately labeled data: cannot achieve higher accuracy than that allowed by the noise inherent to the given experimental target labels
(Li et al., 2019b; Barshai et al., 2020)

Data driven instead of hypothesis driven modeling (Barshai et al., 2020)
Dependence on large amounts of data (at least thousands of training
examples) and specialized computational resources (e.g. GPUs)

Dependence on feature engineering

Potential problems with generalizability, as can be overfit to the experiment
rather than biological function (Barshai et al., 2020)

Many different algorithms each with its own advantages and disadvantages
can be daunting and require extensive specialized study (Hastie et al., 2013)

Potential lack of model interpretability (Zou et al., 2019; Barshai et al., 2020) Cannot unlock information directly from nucleotide sequence (Azodi et al.,
2020; Zrimec et al., 2020)

Challenges Methods to interpret heterogeneous multi-omic and highly dimensional data (Azodi et al., 2020)
Methods and high quality datasets to benchmark existing and new interpretation strategies (Azodi et al., 2020)

Methods to join findings from multiple interpretation strategies into more complete and coherent interpretations of both models (Azodi et al., 2020) and the
studied molecular phenomena

Making interpretable ML more accessible to biologists by further lowering the entry barriers and requirements of computational knowledge
(Azodi et al., 2020)
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Despite the knowledge that whole regulatory structures are
involved in gene expression, the majority of approaches still focus
only on single regulatory or coding regions. For instance, with
mRNA abundance prediction, the contribution of the separate
parts of the gene regulatory structure has been quantified only in
yeast (Zrimec et al., 2020) (Figure 3A). The results across the
remaining studies are highly variable, likely due to using very
different methods and protocols (Table 2 and Table 3). The trend
of using whole regulatory structures is however more common
with protein abundance prediction, where, apart from mRNA
abundance, also the parts involved in translational processing
have been quantified across all three major model organisms
(Figure 3B). Nevertheless, both the fact that these studies were
performed using classical shallow models as well as results from
other studies suggest that there is potential for improvement. For
instance, results from multiple studies focusing on individual
regions show that a much higher amount of information can be
extracted from these regions [Table 2: e.g. 62% of protein
abundance variation explained from yeast 5′ UTRs with
DNNs (Decoene et al., 2018)] than was achieved with shallow
learning on whole mRNAs in Figure 3B. Based on other results,
we can also presume that it is possible to not only further boost
predictive performance but also uncover new mRNA regulatory
grammar.

Pooling the highest-scoring results across organisms in an
information-centric view of the central dogma of molecular
biology (Figure 3C) suggests that about ⅔ of the variation of
mRNA and protein levels can be explained from DNA sequence.
Unequal approaches were employed however, with deep learning
used only with mRNA abundance modeling. Here, the lower
results with H. sapiens might be a result of accounting for only
promoter regions and mRNA stability-associated features in the
model (Agarwal and Shendure, 2020), though our own analysis
had shown that these stability features alone can explain 38% of
the mRNA abundance variation in yeast (Zrimec et al., 2020).
Interestingly, by omitting the mRNA abundance component
from protein abundance predictions, we can observe the
possibility of an increasing trend of explained variance with
increasing organism complexity (Figure 3C: 13–40% from
bacteria to human). This would indicate that mRNAs of
multicellular eukaryotes carry more regulatory information
involved in translation than those of unicellular eukaryotes
and prokaryotes. It might also reflect the fact that gene
expression regulation is more intricate in multicellular
organisms due to the multiple additional regulatory processes
that control expression of a much more complex set of
biomolecules and phenotypes than in unicellular organisms
(Benelli et al., 2016).

Regulatory information seems to be localized around the
gene, as multiple studies show that the region spanning <10 kb
around the TSS has the largest measurable effect on gene
expression, likely as the majority of regulatory signals are
clustered in this region in most genes and organisms
(Agarwal and Shendure, 2020; Ansariola et al., 2020; Zrimec
et al., 2020). Enhancers on the other hand are highly variably
spaced and act in a gene-specific manner, which makes them
much harder to recognize, and also requires processing

enormous sizes of input sequences (e.g. >100 kb upstream of
genes in human data) that require more training resources.
Therefore, the true effect of such regions is still hard to decipher.
Procedures handling larger input sequence sizes or whole
genomes will likely lead to improved analysis and
quantification of the contributions of enhancers to gene
expression control, in relation to other parts of the
regulatory structure (Singh et al., 2019; Tang et al., 2020).
Another potential trend is building DNNs using biophysical
(Tareen and Kinney, 2019) or physicochemical properties (Yang
et al., 2017; Liu et al., 2020), as deep models trained on these
features might uncover novel patterns in data and lead to
improved understanding of the physicochemical principles of
protein-nucleic acid regulatory interactions, as well as aid model
interpretability. Other novel approaches include: 1) modifying
DNN properties to improve recovery of biologically meaningful
motif representations (Koo and Ploenzke, 2021), 2) transformer
networks (Devlin et al., 2018) and attention mechanisms
(Vaswani et al., 2017), widely used in protein sequence
modeling (Jurtz et al., 2017; Rao et al., 2019; Vig et al., 2020;
Repecka et al., 2021), 3) graph convolutional neural networks, a
class of DNNs that can work directly on graphs and take
advantage of their structural information, with the potential
to give us great insights if we can reframe genomics problems as
graphs (Cranmer et al., 2020; Strokach et al., 2020), and 4)
generative modeling (Foster, 2019), which may help exploit
current knowledge in designing synthetic sequences with
desired properties (Killoran et al., 2017; Wang Y. et al.,
2020). With the latter, unsupervized training is used with
approaches including: 1) autoencoders, which learn efficient
representations of the training data, typically for dimensionality
reduction (Way and Greene, 2018) or feature selection (Xie
et al., 2017), 2) generative adversarial networks, which learn to
generate new data with the same statistics as the training set
(Wang Y. et al., 2020; Repecka et al., 2021), and 3) deep belief
networks, which learn to probabilistically reconstruct their
inputs, acting as feature detectors, and can be further trained
with supervision to build efficient classifiers (Bu et al., 2017).
Moreover, the advent of single-cell HTS technologies such as
single-cell RNA-seq will offer many novel research
opportunities, including modeling of cell-type or cell-state
specific enhancer or TFBS activations and chromatin changes
(Angermueller et al., 2017; Gustafsson et al., 2020; Kawaguchi
et al., 2021).

To conclude, the application of ML in genomics has
augmented experimental methods and facilitated accumulating
a vast amount of knowledge on gene expression regulation.
DNNs, due to their ability to learn biologically relevant
information directly from sequence, while performing similarly
to or better than classical approaches, are themethod of choice for
quantifying gene expression and interpreting the predictive
features hidden in nucleotide sequence data. DNN-isolated
features can be as predictive as models relying on
experimental ChIP-seq data (Agarwal and Shendure, 2020),
suggesting that current computational approaches are
achieving a level of accuracy that might soon allow
substituting wet-lab HTS experiments with fully
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computational pipelines (Keilwagen et al., 2019). Such
pipelines can also become indispensable for analysis of
human disease-associated regulatory mutations, identifying
clinically relevant noncoding variants and expression
perturbations, grouping patients in drug treatment trials,
disease subtyping as well as personalized treatment (Zhou
et al., 2018a; Dagogo-Jack and Shaw, 2018). Since
controlling the expression of genes is also one of the key
challenges of synthetic biology, the computational models
represent excellent starting points in procedures to
predictably design regulatory sequences, control protein
expression and fine-tune biosynthetic pathways in both
prokaryotic and eukaryotic systems (Nielsen and Keasling,
2016; de Jongh et al., 2020; Wang H. et al., 2020).

For readers willing to learn and apply some of the discussed
ML approaches, many excellent resources exist, including: 1)
specialized packages for model development and interpretation,
such as “DragoNN” (https://kundajelab.github.io/dragonn/)
(Movva et al., 2019) “Janggu” (https://github.com/
BIMSBbioinfo/janggu) (Kopp et al., 2020) and “Pysster”
(https://github.com/budach/pysster) (Budach and Marsico,
2018), 2) repositories of trained models, such as “Kipoi”
(https://kipoi.org/) (Avsec et al., 2019), 3) other genomics
tutorials and code examples (https://github.com/vanessajurtz/
lasagne4bio) (Jurtz et al., 2017), as well as 4) resources with a
much broader scope than mere genomics, including online

courses (https://www.coursera.org/specializations/deep-
learning) and books (https://github.com/ageron/handson-ml2)
(Géron, 2019).
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