2,561 research outputs found

    Test aspects of the JPL Viterbi decoder

    Get PDF
    The generation of test vectors and design-for-test aspects of the Jet Propulsion Laboratory (JPL) Very Large Scale Integration (VLSI) Viterbi decoder chip is discussed. Each processor integrated circuit (IC) contains over 20,000 gates. To achieve a high degree of testability, a scan architecture is employed. The logic has been partitioned so that very few test vectors are required to test the entire chip. In addition, since several blocks of logic are replicated numerous times on this chip, test vectors need only be generated for each block, rather than for the entire circuit. These unique blocks of logic have been identified and test sets generated for them. The approach employed for testing was to use pseudo-exhaustive test vectors whenever feasible. That is, each cone of logid is tested exhaustively. Using this approach, no detailed logic design or fault model is required. All faults which modify the function of a block of combinational logic are detected, such as all irredundant single and multiple stuck-at faults

    Novel ultra-energy-efficient reversible designs of sequential logic quantum-dot cellular automata flip-flop circuits

    Get PDF
    The version of record of this article, first published in [The Journal of Supercomputing], is available online at Publisher’s website: http://dx.doi.org/10.1007/s11227-023-05134-1Quantum-dot cellular automata (QCA) is a technological approach to implement digital circuits with exceptionally high integration density, high switching frequency, and low energy dissipation. QCA circuits are a potential solution to the energy dissipation issues created by shrinking microprocessors with ultra-high integration densities. Current QCA circuit designs are irreversible, yet reversible circuits are known to increase energy efficiency. Thus, the development of reversible QCA circuits will further reduce energy dissipation. This paper presents novel reversible and irreversible sequential QCA set/reset (SR), data (D), Jack Kilby (JK), and toggle (T) flip-flop designs based on the majority gate that utilizes the universal, standard, and efficient (USE) clocking scheme, which allows the implementation of feedback paths and easy routing for sequential QCA-based circuits. The simulation results confirm that the proposed reversible QCA USE sequential flip-flop circuits exhibit energy dissipation less than the Landauer energy limit. Irreversible QCA USE flip-flop designs, although having higher energy dissipation, sometimes have floorplan areas and delay times less than those of reversible designs; therefore, they are also explored. The trade-offs between the energy dissipation versus the area cost and delay time for the reversible and irreversible QCA circuits are examined comprehensively

    Low-Power and Low-Noise Clock Generator for High-Speed ADCs

    Get PDF
    The rapid development of high-performance communication technologies reflects a clear trend in demanding requirements imposed on analog-to-digital converters (ADCs). Thus, it appears that these requirements imply higher frequencies not only for the input signal but also higher sampling frequencies, which translates into a higher sensitivity of the circuit to thermal noise and consequent increase in phase-noise. This arises as to the main purpose of this document, which will seek, as its main objective, the development of an architecture that allows the generation of multiple clock signals at high input frequencies with low jitter and low power dissipation to make ADCs more efficient and faster. This dissertation proposes an architecture implemented by a Clock Buffer that converts a differential input signal into a single-ended output signal, a Digital Buffer that transforms a sine wave into a square wave, and finally a Multi Clock Phase Generator (MPCG), consisting of Shift Registers. Both architectures are implemented in 130 nm CMOS technology. The architecture is powered by a LVDS signal with an amplitude of 200 mV and a frequency of 1 GHz, in order to output 8 square wave clock signals with an amplitude of 1.2 V and with a frequency of 125 MHz. The signals obtained at the output later will feed an architecture of 8 Time-Interleaved ADCs. The total area of the implemented circuit is about 8054.3 μm2, for a dissipated power of 5.3 mW and a jitter value of 1.13 ps. This new architecture will be aimed at all types of entities that work with devices that are made up of high-speed performance ADCs, to improve the operation of these same devices, making the processing from a continuous signal to a discrete signal as efficiently as possible.O rápido desenvolvimento das tecnologias de comunicação de alto desempenho, reflete uma tendência clara na exigência dos requisitos impostos aos conversores analógico-digital (ADCs). Deste modo, verifica-se que estes requisitos implicam elevadas frequências não só sinal de entrada, como também frequências elevadas de amostragem o que se traduz numa maior sensibilidade do circuito ao ruído térmico e consequente aumento ruído de fase. Esta problemática, surge como propósito principal deste documento, no qual se procurará, como objetivo principal, o desenvolvimento de uma arquitetura que permita gerar múltiplos sinais de relógio a altas frequências de entrada e períodos de amostragem, com um baixo jitter e baixa energia consumida de forma a tornar mais eficiente e rápido o funcionamento de ADCs. Ruido térmico. Esta dissertação propõe uma arquitetura composta por um amplificador de sinal de relógio que converte o duplo sinal de entrada num único sinal de saída, um amplificador digital que transforma uma onda sinusoidal numa onda quadrada e por fim um gerador de fase múltipla de sinais de relógio (MPCG), constituído por registos de deslocamento. Ambas as arquiteturas são implementadas em tecnologia CMOS de 130 nm. A arquitetura é alimentada com um sinal LVDS de 200 mV de amplitude e com uma frequência de 1 GHz, de forma a obter à saída 8 sinais de relógio de onda quadrada com uma amplitude de 1,2 V e com 125 MHz de frequência. Os sinais obtidos à saída posteriormente alimentarão uma arquitetura de 8 canais com multiplexagem temporal. A área total do circuito implementado é cerca de 8054,3 μm2, para uma potência dissipada de 5,3 mW e para um valor de jitter de 1,13 ps. Esta nova arquitetura será direcionada para todo o tipo de entidades que trabalham com dispositivos que são constituídos por ADCs de alta velocidade de desempenho, de forma a poder melhorar o funcionamento desses mesmos dispositivos, tornando o processamento de sinal continuo para sinal discreto o mais eficiente possível

    Low Power Design Bi – Directional Shift Register By using GDI Technique

    Get PDF
    The paper presents to design the Bi-directional shift register by taking the advantage of concept called Gate Diffusion Input Technique (G.D.I). To design Bi-Directional shift register D-Flip Flop is required. By using GDI technique the numbers of transistors were reduced so that the area required will be less and low power consumption. The simulation results were taken using the Digital Schematic tool in 120nm technology. The optimized Area and Power is calculated by using Micro Wind tool in 120 nm technology. The simulation results tells that the design is more efficient compared with the other logic techniques with less area and power consumption. DOI: 10.17762/ijritcc2321-8169.160412

    Superradiance-like Electron Transport through a Quantum Dot

    Full text link
    We theoretically show that intriguing features of coherent many-body physics can be observed in electron transport through a quantum dot (QD). We first derive a master equation based framework for electron transport in the Coulomb-blockade regime which includes hyperfine (HF) interaction with the nuclear spin ensemble in the QD. This general tool is then used to study the leakage current through a single QD in a transport setting. We find that, for an initially polarized nuclear system, the proposed setup leads to a strong current peak, in close analogy with superradiant emission of photons from atomic ensembles. This effect could be observed with realistic experimental parameters and would provide clear evidence of coherent HF dynamics of nuclear spin ensembles in QDs.Comment: 21 pages, 10 figure

    Design for testability of a latch-based design

    Get PDF
    Abstract. The purpose of this thesis was to decrease the area of digital logic in a power management integrated circuit (PMIC), by replacing selected flip-flops with latches. The thesis consists of a theory part, that provides background theory for the thesis, and a practical part, that presents a latch register design and design for testability (DFT) method for achieving an acceptable level of manufacturing fault coverage for it. The total area was decreased by replacing flip-flops of read-write and one-time programmable registers with latches. One set of negative level active primary latches were shared with all the positive level active latch registers in the same register bank. Clock gating was used to select which latch register the write data was loaded to from the primary latches. The latches were made transparent during the shift operation of partial scan testing. The observability of the latch register clock gating logic was improved by leaving the first bit of each latch register as a flip-flop. The controllability was improved by inserting control points. The latch register design, developed in this thesis, resulted in a total area decrease of 5% and a register bank area decrease of 15% compared to a flip-flop-based reference design. The latch register design manages to maintain the same stuck-at fault coverage as the reference design.Salpaperäisen piirin testattavuuden suunnittelu. Tiivistelmä. Tämän opinnäytetyön tarkoituksena oli pienentää digitaalisen logiikan pinta-alaa integroidussa tehonhallintapiirissä, korvaamalla valitut kiikut salpapiireillä. Opinnäytetyö koostuu teoriaosasta, joka antaa taustatietoa opinnäytetyölle, ja käytännön osuudesta, jossa esitellään salparekisteripiiri ja testattavuussuunnittelun menetelmä, jolla saavutettiin riittävän hyvä virhekattavuus salparekisteripiirille. Kokonaispinta-alaa pienennettiin korvaamalla luku-kirjoitusrekistereiden ja kerran ohjelmoitavien rekistereiden kiikut salpapiireillä. Yhdet negatiivisella tasolla aktiiviset isäntä-salpapiirit jaettiin kaikkien samassa rekisteripankissa olevien positiivisella tasolla aktiivisten salparekistereiden kanssa. Kellon portittamisella valittiin mihin salparekisteriin kirjoitusdata ladattiin yhteisistä isäntä-salpapireistä. Osittaisessa testipolkuihin perustuvassa testauksessa salpapiirit tehtiin läpinäkyviksi siirtooperaation aikana. Salparekisterin kellon portituslogiikan havaittavuutta parannettiin jättämällä jokaisen salparekisterin ensimmäinen bitti kiikuksi. Ohjattavuutta parannettiin lisäämällä ohjauspisteitä. Salparekisteripiiri, joka suunniteltiin tässä diplomityössä, pienensi kokonaispinta-alaa 5 % ja rekisteripankin pinta-alaa 15 % verrattuna kiikkuperäiseen vertailupiiriin. Salparekisteripiiri onnistuu pitämään saman juuttumisvikamallin virhekattavuuden kuin vertailupiiri

    Mariner Venus 67 guidance and control system

    Get PDF
    Subsystems of Mariner Venus 67 spacecraft guidance and control syste

    A computer aided teleoperator system Final report

    Get PDF
    Computer aided teleoperator system for remote handling task
    corecore