

FACULTY OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING

DEGREE PROGRAMME IN ELECTRONICS AND COMMUNICATIONS ENGINEERING

MASTER’S THESIS

DESIGN FOR TESTABILITY OF A LATCH-BASED
DESIGN

 Author Matti Leinonen

 Supervisor Jukka Lahti

 Second Examiner Tarmo Ruotsalainen

 Technical Advisor Joni Jäntti

JUNE 2022

Leinonen M. (2022) Design for testability of a latch-based design. University of Oulu,

Faculty of Information Technology and Electrical Engineering, Degree Programme in

Electronics and Communications Engineering. Master’s Thesis, 70p.

ABSTRACT

The purpose of this thesis was to decrease the area of digital logic in a power management

integrated circuit (PMIC), by replacing selected flip-flops with latches. The thesis consists

of a theory part, that provides background theory for the thesis, and a practical part, that

presents a latch register design and design for testability (DFT) method for achieving an

acceptable level of manufacturing fault coverage for it.

The total area was decreased by replacing flip-flops of read-write and one-time

programmable registers with latches. One set of negative level active primary latches were

shared with all the positive level active latch registers in the same register bank. Clock

gating was used to select which latch register the write data was loaded to from the

primary latches. The latches were made transparent during the shift operation of partial

scan testing. The observability of the latch register clock gating logic was improved by

leaving the first bit of each latch register as a flip-flop. The controllability was improved

by inserting control points.

The latch register design, developed in this thesis, resulted in a total area decrease of

5% and a register bank area decrease of 15% compared to a flip-flop-based reference

design. The latch register design manages to maintain the same stuck-at fault coverage as

the reference design.

Key words: manufacturing testing, partial scan testing, power management integrated

circuit, area, power consumption and fault coverage.

Leinonen M. (2022) Salpaperäisen piirin testattavuuden suunnittelu. Oulun yliopisto, tieto-

ja sähkötekniikan tiedekunta, elektroniikan ja tietoliikennetekniikan tutkinto-ohjelma.

Diplomityö, 70p.

TIIVISTELMÄ

Tämän opinnäytetyön tarkoituksena oli pienentää digitaalisen logiikan pinta-alaa

integroidussa tehonhallintapiirissä, korvaamalla valitut kiikut salpapiireillä.

Opinnäytetyö koostuu teoriaosasta, joka antaa taustatietoa opinnäytetyölle, ja käytännön

osuudesta, jossa esitellään salparekisteripiiri ja testattavuussuunnittelun menetelmä, jolla

saavutettiin riittävän hyvä virhekattavuus salparekisteripiirille.

Kokonaispinta-alaa pienennettiin korvaamalla luku-kirjoitusrekistereiden ja kerran

ohjelmoitavien rekistereiden kiikut salpapiireillä. Yhdet negatiivisella tasolla aktiiviset

isäntä-salpapiirit jaettiin kaikkien samassa rekisteripankissa olevien positiivisella tasolla

aktiivisten salparekistereiden kanssa. Kellon portittamisella valittiin mihin

salparekisteriin kirjoitusdata ladattiin yhteisistä isäntä-salpapireistä. Osittaisessa

testipolkuihin perustuvassa testauksessa salpapiirit tehtiin läpinäkyviksi siirto-

operaation aikana. Salparekisterin kellon portituslogiikan havaittavuutta parannettiin

jättämällä jokaisen salparekisterin ensimmäinen bitti kiikuksi. Ohjattavuutta

parannettiin lisäämällä ohjauspisteitä.

Salparekisteripiiri, joka suunniteltiin tässä diplomityössä, pienensi kokonaispinta-alaa

5 % ja rekisteripankin pinta-alaa 15 % verrattuna kiikkuperäiseen vertailupiiriin.

Salparekisteripiiri onnistuu pitämään saman juuttumisvikamallin virhekattavuuden kuin

vertailupiiri.

Avainsanat: tuotannon testaus, osittainen testipolkuihin perustuva testaus, integroitu

tehonhallintapiiri, pinta-ala, tehonkulutus ja virhekattavuus.

TABLE OF CONTENTS

ABSTRACT ... 2

TIIVISTELMÄ ... 3

TABLE OF CONTENTS ... 4

FOREWORD ... 6

LIST OF ABBREVIATIONS AND SYMBOLS... 7

1 INTRODUCTION .. 9

2 SEQUENTIAL LOGIC .. 11

2.1 Latches ... 11

2.2 Flip-flops ... 14

2.3 Resettable sequential logic .. 16

2.4 Registers .. 17

2.5 Timing analysis of sequential logic ... 19

2.5.1 Timing of flip-flops ... 19

2.5.2 Timing of latches ... 20

2.5.3 Timing of pulsed latches ... 21

2.5.4 Time borrowing ... 22

2.5.5 Fixing timing violations .. 22

2.6 Power consumption of CMOS logic ... 23

3 DESIGN FOR TESTABILITY .. 24

3.1 Scan design .. 25

3.1.1 Muxed-D scan style ... 26

3.1.2 Clocked-scan style ... 28

3.1.3 LSSD style ... 28

3.1.4 Latches in scan designs.. 30

3.2 Logic built-in self-test ... 31

3.2.1 Test pattern generation .. 32

3.2.2 Output response analysis ... 33

3.2.3 Logic BIST architectures ... 34

3.2.3.1 LSSD on-ship self-test ... 34

3.2.3.2 Self-testing using MISR and parallel SRSG 34

3.2.4 Latches in logic BIST designs ... 34

3.3 Memory built-in self-test ... 35

3.4 Test point insertion .. 36

4 LATCH REPLACEMENT ... 39

4.1 A reference PMIC model .. 39

4.1.1 AMBA APB protocol .. 40

4.1.1.1 APB write transfer ... 41

4.1.1.2 APB read transfer .. 42

4.1.2 Register banks ... 42

4.1.2.1 Read-write register .. 43

4.1.2.2 One-time programmable register ... 44

4.1.2.3 Set-clear register .. 44

4.1.2.4 Task register .. 45

4.1.2.5 Read-only register ... 46

4.2 Latch replacement selection .. 47

4.2.1 Pulsed latch considerations .. 47

4.2.2 Latch considerations .. 48

4.3 Latch register design ... 49

4.4 DFT method selection ... 53

4.4.1 Scan design considerations .. 53

4.4.1.1 Full-scan design consideration .. 53

4.4.1.2 Partial-scan design consideration .. 54

4.4.2 Logic BIST considerations .. 55

4.4.3 Memory BIST considerations .. 55

4.5 Partial scan design ... 56

4.5.1 Making latches transparent .. 56

4.5.2 Improving observability .. 57

4.5.3 Improving controllability ... 59

5 RESULTS ... 61

5.1 Area results .. 61

5.2 Power consumption results .. 62

5.3 ATPG results ... 63

5.3.1 Stuck-at fault results .. 63

5.3.2 IDDQ fault results ... 64

5.3.3 Transition fault results ... 64

6 DISCUSSION ... 66

7 SUMMARY .. 68

8 REFERENCES ... 69

FOREWORD

The objective of this thesis was to reduce the digital area in a power management integrated

circuit by replacing selected flip-flops with latches. The negative effects of the replacement on

power consumption and manufacturing testing were to be minimized. The thesis was carried

out at Nordic Semiconductor Finland from January 2022 to June 2022.

I would like to thank my manager Joni Jäntti for acting as the technical advisor for the thesis,

providing the subject for the thesis and his invaluable comments and guidance during the thesis

work. I would also like to thank University Lecturer Jukka Lahti for supervising the thesis and

for his great work teaching several courses that provided helpful background knowledge for the

thesis. Lastly, I would like to thank D.Sc. Tarmo Ruotsalainen for being the second examiner

for the thesis.

Oulu, June 15, 2022

Matti Leinonen

LIST OF ABBREVIATIONS AND SYMBOLS

AMBA Advanced Microcontroller Bus Architecture

APB Advanced Peripheral Bus

ATE Automatic test equipment

ATPG Automatic test pattern generation

BIST Built-in self-test

CF Coupling fault

CMOS Complementary metal-oxide-semiconductor

CUT Circuit under test

DFT Design for testability

DRAM Dynamic random-access memory

FSM Finite-state machine

I/O Input or output

I2C Inter-integrated circuit

IC Integrated circuit

IDDQ Leakage current

IoT Internet of things

LDO Low-dropout

LFSR Linear feedback shift register

LOCST LSSD on-chip self-test

LSSD Level-sensitive scan design

MISR Multiple-input signature register

MSB Most significant bit

ORA Output response analyser

OTP One-time programmable

PMIC Power management integrated circuit

PRPG Pseudo-random pattern generator

ROM Read-only memory

RTL Register-transfer level

SAF Stuck-at fault

SAIF Switching activity information format

SISR Single-input signature register

SoC System on chip

SRAM Static random-access memory

STUMPS Self-testing using MISR and parallel shift register sequence generator

TF Transition fault

TPG Test pattern generator

𝑎 Switching activity factor

𝐶𝐿 Load capacitance

𝑓 Clock frequency

𝐼𝑙𝑘 Leakage current

𝐼𝑠𝑐 Short-circuit current

𝑃𝑠𝑐 Short-circuit power consumption

𝑃𝑠𝑡 Static power consumption

𝑃𝑠𝑤 Switching power consumption

𝑡𝑏𝑜𝑟𝑟𝑜𝑤 Time borrowed

𝑇𝑐 Clock period

𝑡𝑐𝑑 Contamination delay

𝑡𝑐𝑞𝑐𝑑 Clock-to-Q contamination delay

𝑡𝑐𝑞𝑝𝑑 Clock-to-Q propagation delay

𝑡𝑑𝑞𝑐𝑑 D-to-Q contamination delay

𝑡𝑑𝑞𝑝𝑑 D-to-Q propagation delay

𝑡ℎ𝑜𝑙𝑑 Hold time

𝑡𝑝𝑑 Propagation delay

𝑡𝑝𝑤 Pulse width

𝑡𝑠𝑒𝑡𝑢𝑝 Setup time

𝑡𝑠𝑘𝑒𝑤 Clock skew

𝑉𝑑𝑑 Supply voltage

max(a,b) Maximum of a and b

1 INTRODUCTION

The emergence of the internet of things (IoT) phenomenon has brought an explosion of

lightweight sensors being placed in all kinds of objects and sharing the sensor data wirelessly.

For the analogue, digital, and mixed signal circuits of these IoT devices to work properly, they

should be provided with clean and correct level supply voltages. Such voltages are converted

from raw supplies, like batteries, with power management integrated circuits (PMICs).

A simple PMICs can be just a low-dropout (LDO) regulator, that converts the battery voltage

to a clean and correct level supply voltage. Most PMICs are much more complicated, often

offering safety and control features. These more complex features are often implemented, at

least in part, with digital logic.

The cost, size, and power consumption are important characteristics of PMICs. These

characteristics are however often in conflict with each other. Integrated circuits (ICs) have

traditionally incorporated ever increasing amounts of logic on smaller areas by moving to

smaller and smaller technology nodes. PMICs have not been able to fully harness the area

benefits of these smaller nodes due to their power requirements. PMICs need to be able to

handle all the current going through them that go to the rest of the system. Transistors with

large currents going through them need to be made large, regardless of the technology size.

Making large transistors in small technologies is more expensive than in larger technologies.

The power density also needs to be kept at an acceptable level. If the PMIC is made too small,

too much power can be concentrated on a small area, leading to high temperatures. Another

consideration, especially for battery powered applications, is the quiescent current

consumption. The subthreshold leakage current generally increases when the channel length of

a transistor decreases in the smaller technologies.

Another option to decrease the area is to implement the same functionality with fewer

transistors. Most of the digital logic area consists of D flip-flops. From the area point of view,

large area savings are available if they were replaced with D latches, since D latches are roughly

half the size of D flip-flops. Replacing flip-flops with laches would result in either smaller area,

and reduced chip cost, or more functionality in the same area, and increased chip value. The

area of digital logic directly affects the size and cost of a product. With large volumes, even a

slight cost decrease can produce large profits.

The main objective of the thesis is to decrease the area of digital logic in a PMIC, by

replacing selected flip-flops with latches. The latch replacement should not significantly

increase the power consumption of a PMIC. The latch replacement should also not significantly

affect the quality of manufacturing testing.

The scope of the thesis is as follows:

• Literature review of flip-flop and latch characteristics is carried out to help in selecting

flip-flops that are suited to be replaced with latches or pulsed latches in a PMIC.

• Literature review of design for testability (DFT) methods is carried out to help in

selecting a suitable DFT method for the latch based PMIC design.

• Selecting and implementing a suitable latch based PMIC design, based on findings from

the literature review, and the structure of a reference PMIC.

• Selecting and implementing a suitable DFT method, based on findings from the

literature review and the structure of the latch based PMIC.

The thesis is organized into the following chapters:

10

• Chapter 1 introduces the thesis and describes the motivation and objectives for the

thesis.

• Chapter 2 presents the background theory of sequential logic.

• Chapter 3 presents background theory of design for testability methods.

• Chapter 4 presents a latch register design using partial scan as the DFT method, that

reduces the area of a flip-flop-based reference PMIC design.

• Chapter 5 presents the area, power consumption and automatic pattern generation

results for the latch register design, compared against the flip-flop-based reference

design.

• Chapter 6 provides discussion on the practical work, the results, and possible future

work.

11

2 SEQUENTIAL LOGIC

Digital circuits consist of combinational and sequential logic. Combinational logic consists of

logic gates, such as NAND and NOR gates. The outputs of combinational logic depend only on

the states of its inputs. Unlike combinational logic, the outputs of sequential logic also depend

on the previous state of its inputs through feedback. Sequential logic has memory and is made

of flip-flops and latches. [1, 2]

The distinction between latches and flip-flops is not always completely clear. Edge triggered

circuits are considered flip-flops in [1] and [2], while level triggered circuits are considered

latches. On the other hand, level triggered circuits are considered flip-flops in [3]. This thesis

considers edge triggered circuits to be flip-flops, where the output changes on the positive or

negative edge of the clock signal. Level triggered circuits are considered synchronous latches,

where the output changes when the clock signal is either high or low. Asynchronous latches do

not have a clock input and the output changes when the inputs are changed.

2.1 Latches

Two cross-coupled inverters form a building block of sequential circuits, a bistable element.

The element, in Figure 1, has zero inputs and two complementary outputs, Q and Q̅. The outputs

have two stable states, Q=0 and Q̅=1 or Q=1 and Q̅=0, which makes the element bistable. It can

store one bit of information, but it is not very useful as it has no inputs to control its state. [1,

2]

Q

Figure 1. Cross-coupled inverter pair.

Replacing the two cross-coupled inverters with two NAND gates, like in Figure 2, or two

NOR gates, like in Figure 3, gives us the SR latch. The state of the SR latch can now be

controlled though the S and R inputs. The difference between the NAND and NOR

implementations is the polarity at which the inputs are asserted active. The NOR

implementation has active high inputs, and the NAND implementation has active low inputs.

The S input sets the output Q high, and the R input resets it low. If neither the S nor R input is

asserted, the output keeps its previous state. Having both inputs asserted at the same time, would

lead to both outputs, Q and Q̅, having the same value. It would mean the two outputs are no

longer complementary. If both inputs are then de-asserted at the same time, the next output will

be unpredictable. For these reasons, having both inputs asserted at the same time is an invalid

condition. [1, 2, 3]

12

Q

S

R

NAND

NAND

Figure 2. Asynchronous SR latch with two NAND gates.

Q

NOR

NOR

R

S

Figure 3. Asynchronous SR latch with two NOR gates.

The SR latch presented above is asynchronous by nature, the change in input is seen

immediately in the output. It can be made synchronous by slightly modifying it and adding a

clock input, like in Figure 4. The clock, ck, signal can now be used to control the transparency

of the latch. When ck is low, the outputs of the first two NAND gates will be high, regardless

of the values of S and R and the latch keeps its old output value. When ck is high, the S and R

inputs have immediate effect on the Q and Q̅ outputs. [2, 3]

Q

S

R

NAND

NAND

NAND

NAND

ck

Figure 4. Synchronous SR latch with four NAND gates.

Adding cross coupled feedback to the synchronous SR latch gives use the JK latch of Figure

5. Note that the input signal names have been changed from S to J and R to K. The benefit of

the added feedback is that both inputs can be active at the same time because complementary

outputs, for Q and Q̅, are guaranteed. However, there is still the problem that when both inputs

and the clock are active, the outputs will oscillate back and forth from high to low, until the

clock signal goes inactive. Similarly to the synchronous SR latch, the JK latch is set when the

13

J input and clock are high and reset when the K input and clock are high. The JK latch also

keeps its previous state if the clock is low, regardless of the values of the J and K inputs. [2, 3]

Q

J

K

NAND

NAND

NAND

ck

Q

NAND

Figure 5. JK latch from the synchronous SR latch with feedback.

The clocked SR latch can be turned into a D latch by connecting an inverter from the S input

to the R input. The S input is now renamed the D input and the R input is removed. The result

is the D latch presented in Figure 6. The strange behaviour of setting and resetting the SR latch

at the same time can now be avoided. It also has the advantage of only having one data input

compared to the SR and JK latches. The clock is used to control when the latch is transparent.

When ck is high, the latch is transparent, and the value of the D input is continuously loaded to

the output of the latch. When ck is low, the output is latched to the last input, and the value of

D input does not affect the output. [1, 2]

Q

NAND

NAND

NAND

NAND

ck

Figure 6. D latch with four NAND gates and an inverter.

The transparency of the latches makes them problematic to use in sequential circuits. Latches

cannot be connected in series with the same polarity clock. If all the series connected latches

are transparent when clock is high, a change in the input of the first latch can propagate through

all the latches. Latches are prone to race conditions. If the input of the latch changes due to

feedback paths, while the latch is still transparent, there will be an additional change to the

output. Latches are also prone to glitches. Glitches at the input of the latch can propagate to the

output when the latch is transparent. The solution is to modify the latches to be edge-triggered

instead of level-triggered, giving us flip-flops. [2, 3]

14

2.2 Flip-flops

A simple way of making latches edge triggered is to make the clock pulse very short, giving us

the pulsed latch or the pulsed flip-flop. An edge detector, often also called a pulser, can be used

to detect the rising edge of a normal 50% duty cycle clock signal and convert it to a narrow

output pulse. [3]

A simple edge detector can be made by connecting the clock signal to the input of an AND

gate and connecting an inverted and delayed clock signal to the other input, like in Figure 7.

The clock signal is delayed by the gate delay of the inverters and the number of inverters can

be used to control the width of the output pulse. An odd number of inverters is needed to invert

the clock signal. [3]

ANDck ckPulse

Figure 7. Edge detector using an AND gate and three inverters.

If the edge detector is integrated inside each sequential element, the element is often called

a pulsed flip-flop, shown in Figure 8. Several latches can be made to share a single edge

detector, often called pulsed latches, to save area and power consumption.

Pulsed D flip-fop

D Q

ck

D Q

ck

ckPulse

AND

Figure 8. Pulsed D flip-flop from an edge detector and a D latch.

The problem with using edge detection circuitry is guaranteeing the width of the output

pulse. The gate delays of logic gates vary with different process and environmental corners such

15

as temperature and supply voltage. Using pulsed latches can be impractical for designs with

fast clocks. [2, 3]

A more widely used method of achieving edge triggered operation is to use a primary-

secondary structure, giving us the flip-flop. In it, a primary and a secondary latch are connected

in series and using complementary clocks. The first latch is called the primary and the second

latch the secondary. Since the latches use complementary clocks, both are never transparent at

the same time. The flip-flop will be positive edge triggered if the inverted clock is provided to

the primary latch. For negative edge triggering, the inverted clock is provided to the secondary

latch instead. [1, 2]

A primary-secondary D flip-flop can be constructed from two D latches, like in Figure 9. It

works by loading the value of its data input to its output on the positive edge of the clock signal.

When the clock signal is low, the primary latch is transparent, and the value of the data input

signal is loaded to the output of the primary latch. On the other hand, the secondary latch is

disabled, and it keeps its old state. Changes in the data input can only affect the output of the

primary, but not the secondary. When the clock signal rises, the primary latch closes, and it

retains the state it had just before the clock edge. At the same time, the secondary latch becomes

transparent, and the output of the primary is loaded into the secondary. Since the primary latch

is disabled, a change in the data input will not affect the output of the flip-flop. The output of

the flip-flop can change only at the positive edge of the clock. A waveform to illustrate the

positive edge active operation of the primary-secondary D flip-flop, of Figure 9, is shown in

Figure 10. [1]

D flip-fop

D Q

ck

D Q

ck

tmp

ckInv

D Q

ck

Figure 9. Primary-secondary D flip-flop from two D latches and an inverter.

16

Figure 10. An example waveform of a positive edge active primary-secondary D flip-flop.

The D flip-flop is the most widely used type of sequential element [2]. It has the benefit of
having only one data input compared to the SR and JK flip-flops. It can also be constructed out
of a smaller number of logic gates than the JK flip-flop [4]. It also does not suffer from the
transparency of the latches. However, as the D latch is roughly half the size of the primary
secondary D flip-flop, it is an enticing option even with its timing problems. The pulsed flip-
flop also brings a slight size decrease, being roughly ¾ the size of a primary secondary flip-
flop.

2.3 Resettable sequential logic

A reset is used to force the digital circuit into a known state, especially after the voltage supplies
are provided. When a flip-flop or a latch is reset, it ignores the data input and resets the output
low. If the output of the sequential element is instead reset to high, it is then often called a set.
The reset can be either active high or active low. An active high reset causes a reset when it is
high and an active low when it is low. The reset can be either synchronous or asynchronous.
The reset is asynchronous if it resets the flip-flops and latches immediately after the reset is
asserted, regardless of the clock signal. The reset is synchronous if it resets the flip-flops and
latches only after the clock is active. [1]

A synchronous reset can easily be implemented with combinational logic to the data input
of a latch or a flip-flop. For example, an active low synchronous reset can be implemented by
connecting the data signal and the reset signal through an AND gate to the D input of a D flip-
flop, like in Figure 11. When the reset signal is low, the output of the AND gate is low,
regardless of the data signal. When the reset signal is high, the output of the AND gate is
determined by the data signal. [1]

17

D Q
data

reset

ck

AND

Figure 11. Synchronously resettable D flip-flop.

To implement an asynchronous reset, the internal structure of the of the flip-flop or latch

needs to be modified [1]. For example, an active low asynchronous set can be implemented by

adding a S input to the NAND gate producing the Q output of a D latch. An active low

asynchronous reset can be implemented by adding a R input to the NAND gate producing the

Q̅ output. Figure 12 shows an asynchronously settable and resettable D latch. When the reset

signal is low, it forces the Q̅ output high and Q output low. When the set signal is low, it forces

the Q output high and the Q̅ output low. [3]

Q

NAND

NAND

ck

NAND

NAND

S

R

Figure 12. Asynchronously resettable and settable D latch.

2.4 Registers

Flip-flops, using the same clock, can be grouped together to form registers. A group of n flip-

flops can store n-bits of binary data. In addition to flip-flops, a register can also have

combinational logic to control how data is transferred to the flip-flops. [4]

If all the flip-flops of a register are loaded simultaneously, it is called a parallel loaded

register. This type of register is an important building block in digital circuits. A simple register

with no combinational logic, like in Figure 13, transfers the data from its inputs to the outputs

on each active clock edge. Typically, a control signal and additional logic is needed to control

whether a new value is loaded to the register or whether the old value is kept. [4]

18

D Q

D Q

D Q

D Q

in[0]

in[1]

in[2]

in[3]

out[0]

out[1]

out[2]

out[3]

ck

Figure 13. A four bit register with D flip-flops.

Keeping the old value can be achieved by stopping the clock from running. When the control

signal is inactive, a clock gate is used to disable the clock to the register. The flip-flops inside

the register are prevented from updating their value due to the lack of the clock signal. This

method has the disadvantage of adding logic on the clock path. [4]

Another way to retain the state of the register is to control the data input of the register. The

register output can be fed back to the input for the register to retain its value. Multiplexer

combinational logic and the control signal can be used to select whether the register output or

the regular load signal is fed to the input of the register. [4]

A clock gate is larger than a multiplexer, but as the same clock gate can be used to stop the

clock to all the flip-flops in a single register, whereas every flip-flop in a register needs their

own multiplexer to feed back the old value, from the area point of view, clock gating is

beneficial for multi-bit registers.

A shift register differs from a typical register by the fact that the flip-flops are connected in

series. The input of the first flip-flop is connected to a serial input and the output of the last flip-

flip is connected to serial output. Data is loaded to the shift register by inputting it to the serial

input. On each clock cycle the data is shifted forward from all flip-flops in the shift register to

the next one in the shift register. A simple shift register consists only of flip-flops, but

combinational logic can be inserted to control when the data is shifted forwards, similar to the

case with the parallel loaded register. [4]

Registers are typically made from D flip-flops [1]. The parallel loaded register could be

constructed using D latches to save area. Due to the latch being transparent on the whole active

clock level, clock gating could be used as the loading control to reduce glitches at the same

19

time. The shift register is problematic to construct using D latches. Due to the latch being

transparent on the whole active clock level, data input to the first latch would propagate through

as many latches as the gate delays would permit [2]. A solution would be to have every second

latch be positive level active and every other latch negative level active.

2.5 Timing analysis of sequential logic

The use of sequential logic allows for orderly operation of a circuit. Sequential storage elements

store the state of the circuit. Combinational logic calculates the next state of the circuit from the

current state and the external inputs. The next state of the circuit is loaded to the sequential

elements on the next active clock edge or level. For the operation of the circuit to be clearly

defined, the memory elements cannot mix data from the next or previous cycles with the data

from the current cycle [5]. Minimum and maximum propagation delays can be defined between

sequential elements.

2.5.1 Timing of flip-flops

On the active edge of a clock, the data input of a flip-flop is transferred to the output. The output

starts to change after a clock-to-Q contamination delay, 𝑡𝑐𝑞𝑐𝑑, at the earliest and the change has

finished after a clock-to-Q propagation delay, 𝑡𝑐𝑞𝑝𝑑, at the latest. [1, 5]

The data propagates through the combinational logic to the next flip-flop after a

contamination delay, 𝑡𝑐𝑑, at the earliest and after a propagation delay, 𝑡𝑝𝑑, at the latest. The

flip-flop samples the correct value, if the data inputs settle a setup time, 𝑡𝑠𝑒𝑡𝑢𝑝, before the active

clock edge and stay stable a hold time, 𝑡ℎ𝑜𝑙𝑑, after. Possible skew, 𝑡𝑠𝑘𝑒𝑤, between the clocks to

the launching and receiving flip-flops needs to be also taken to account in the timing analysis.

The time window, that the data inputs need to be stable in, is show in Figure 14. [1, 5]

D

ck

tsk ew tsk ew

tse tup thol d

Data stable

Figure 14. The setup and hold requirements of a D flip-flop.

Since the clock period is often a fixed requirement and the clock-to-Q propagation delay,

setup time and hold times are specified by the technology used, the only variable usually

controllable by the designer is the propagation delay of the combinational logic paths. The

maximum propagation delay allowed between flip-flops for the data to arrive setup time before

the next active clock edge is

 𝑡𝑝𝑑 ≤ 𝑇𝑐 − 𝑡𝑐𝑞𝑝𝑑 − 𝑡𝑠𝑘𝑒𝑤 − 𝑡𝑠𝑒𝑡𝑢𝑝, (1)

20

where 𝑡𝑝𝑑 is the propagation delay between two flip-flops, 𝑇𝑐 is the clock period, 𝑡𝑐𝑞𝑝𝑑 is the

clock-to-Q propagation delay of a flip-flop, 𝑡𝑠𝑘𝑒𝑤 is the clock skew between the flip-flops and

𝑡𝑠𝑒𝑡𝑢𝑝 is the setup time requirement. [1, 5]

The minimum contamination delay allowed between flip-flops for the data to arrive hold

time after the current active clock edge is

 𝑡𝑐𝑑 ≥ 𝑡ℎ𝑜𝑙𝑑 + 𝑡𝑠𝑘𝑒𝑤 − 𝑡𝑐𝑞𝑐𝑑, (2)

where 𝑡𝑐𝑑 is contamination delay between two flip-flops, 𝑡ℎ𝑜𝑙𝑑 is the hold time requirement,

𝑡𝑠𝑘𝑒𝑤 is the clock skew between the flip-flops and 𝑡𝑐𝑞𝑐𝑑 is the clock-to-Q contamination delay

of a flip-flop. [1, 5]

2.5.2 Timing of latches

Analysing the timing of latches is more complicated, as the latch is transparent on the active

clock level and not just the edge. All consecutive latches need to use non-overlapping clocks

so that they are not transparent at the same time. The simplest way is to use complemented

clocks. This means one latch is transparent for the first half clock cycle and the next latch is

transparent for the other half cycle. Another way is to use clocks with less than 50% duty cycle,

with enough phase shift between them to not overlap. [5]

Latches load the new data at any point in the active clock level, depending on when it arrives.

If the data arrives before the active clock edge, the data is loaded from the input to the output

on the active edge of the clock. A change in output is seen after a clock-to-Q contamination

delay, 𝑡𝑐𝑞𝑐𝑑, at the earliest and after a clock-to-Q propagation delay, 𝑡𝑐𝑞𝑝𝑑, at the latest. If the

data arrives when the clock level is already active, the data is loaded from the input to the output

after a D-to-Q contamination delay, 𝑡𝑑𝑞𝑐𝑑, at the earliest and after a D-to-Q propagation

delay, 𝑡𝑑𝑞𝑝𝑑, at the latest. [5]

Similarly, to the flip-flops, the data propagates to the input of the next latch after a

contamination delay, 𝑡𝑐𝑑, at the earliest and after a propagation delay, 𝑡𝑝𝑑, at the latest. The

latch samples the correct value, if the data input has settled setup time, 𝑡𝑠𝑒𝑡𝑢𝑝, before the inactive

clock edge and stays stable a hold time, 𝑡ℎ𝑜𝑙𝑑, after. [5]

Due to the level transparent nature of latches, they can be used in a way that the data arrives

more than the setup time and clock skew before the inactive clock edge. In that case the setup

time and clock skew can be left out of the maximum allowed propagation delay analysis. The

maximum allowed propagation delay between two latches using different clock edges is

 𝑡𝑝𝑑 ≤
𝑇𝑐

2
− 𝑡𝑑𝑞𝑝𝑑, (3)

where 𝑡𝑝𝑑 is the propagation delay between two latches, 𝑇𝑐 is the clock period and 𝑡𝑑𝑞𝑝𝑑 is the

D-to-Q propagation delay of a latch. The clock period is divided by two, as two back-to-back

latches use complemented clocks. [5]

The minimum contamination delay allowed between two latches for the data to arrive hold

time after the inactive clock edge to the first latch is

 𝑡𝑐𝑑 ≥ 𝑡ℎ𝑜𝑙𝑑 + 𝑡𝑠𝑘𝑒𝑤 − 𝑡𝑐𝑞𝑐𝑑, (4)

21

where 𝑡𝑐𝑑 is contamination delay between two latches, 𝑡ℎ𝑜𝑙𝑑 is the hold time requirement, 𝑡𝑠𝑘𝑒𝑤

is the clock skew between the latches and 𝑡𝑐𝑞𝑐𝑑 is the clock-to-Q contamination delay of a latch.

The clock-to-Q contamination delay is used for minimum contamination delay analysis instead

of the D-to-Q contamination delay, as the output of the first latch can change from the active

edge of the clock at the earliest. [5]

2.5.3 Timing of pulsed latches

Pulsed latches behave the same as the normal latch, with the difference being that they use short

pulses as clock instead of the normal 50% duty cycle clock. The pulsed latches can use the same

clock signal if the clock pulse is shorter than the propagation delay between the pulsed latches

and the hold time requirement is not violated. If the pulses are short enough, the timing of

pulsed latch starts to resemble that of the flip-flop. [5]

The data input of the pulsed latch must settle setup time and clock skew before the inactive

edge of the clock pulse. The setup time may be before the active clock edge or after, depending

on the width of the clock pulse and the clock skew. If the clock pulse is wider than the setup

time and clock skew combined, the data needs to only arrive when the latch is already

transparent, and the timing analysis for the propagation delay is the same as for the normal

latch. If the clock pulse is shorter, the data needs to arrive while the latch is not yet transparent.

In that case the setup time and clock skew need to be considered in the maximum allowed

propagation delay, similarly to the flip-flop case. The maximum allowed propagation delay

between two pulsed latches is

 𝑡𝑝𝑑 ≤ 𝑇𝑐 − 𝑡𝑑𝑞𝑝𝑑 − max (0, 𝑡𝑠𝑒𝑡𝑢𝑝 + 𝑡𝑠𝑘𝑒𝑤 − 𝑡𝑝𝑤), (5)

where 𝑡𝑝𝑑 is the propagation delay between two latches, 𝑇𝑐 is the clock period, 𝑡𝑑𝑞𝑝𝑑, is the D-

to-Q propagation delay of a latch, 𝑡𝑠𝑒𝑡𝑢𝑝 is the setup time, 𝑡𝑠𝑘𝑒𝑤 is the clock skew and 𝑡𝑝𝑤 is

the pulse width of the clock. [5]

The data output of the first latch can change at the active clock edge at the earliest. The data

input of the second latch cannot change until a hold time and clock skew after the inactive edge

of the pulse. The minimum contamination delay allowed between two latches for the data to

arrive hold time after the inactive clock edge to the first latch is

 𝑡𝑐𝑑 ≥ 𝑡𝑝𝑤 + 𝑡ℎ𝑜𝑙𝑑 + 𝑡𝑠𝑘𝑒𝑤 − 𝑡𝑐𝑞𝑐𝑑, (6)

where 𝑡𝑐𝑑 is contamination delay between two latches, 𝑡𝑝𝑤 is the width of the clock pulse, 𝑡ℎ𝑜𝑙𝑑

is the hold time requirement, 𝑡𝑠𝑘𝑒𝑤 is the clock skew between the latches and 𝑡𝑐𝑞𝑐𝑑 is the clock-

to-Q contamination delay of a latch. [5]

As can be seen from comparing the contamination delay equations of flip-flops (4) and

pulsed latches (6), the contamination delay of the pulsed latch depends on the pulse width and

needs to be larger. This can result, in pulsed latch designs, to more hold time violations, that

need to be fixed.

22

2.5.4 Time borrowing

Due to the level transparent nature of a latch, data can arrive to the input of the latch at any time

on the active clock level and it will propagate to the output. The propagation delay from one

latch to the input of the next does not need to be exactly half a clock cycle. Some logic blocks

can have larger delays while some have shorter delays. Slow logic using time allocated to faster

logic is called time borrowing. As flip-flops are edge triggered, time borrowing is not possible

with them. [5]

The direction of time borrowing depends on when the latches update on the clock cycle. If

the latches update in the beginning of the active clock level, the next latch can borrow time and

update later in the active clock level. If the latches update at the end of the clock level, the next

latch can update earlier and not have to wait for the end of the active clock level, giving more

time to the next latches. Time borrowing can happen over multiple latches, as long as the data

does not arrive so late as to cause a setup time violation in any of the latches. [5]

As the latches update as soon as the data arrives on the active level, they naturally move to

updating at the active clock edge. In that case, the amount of time allowed for borrowing is at

its highest. If the data departs the first latch on its active clock edge, it normally arrives at the

next latch half a clock cycle later. The circuit will still operate correctly if it arrives setup time

and clock skew before the inactive clock edge of the second latch instead. The maximum time

that can be borrowed therefore is

 𝑡𝑏𝑜𝑟𝑟𝑜𝑤 ≤
𝑇𝑐

2
− 𝑡𝑠𝑒𝑡𝑢𝑝 − 𝑡𝑠𝑘𝑒𝑤, (7)

where 𝑡𝑏𝑜𝑟𝑟𝑜𝑤 is the time borrowed, 𝑇𝑐 is the clock period, 𝑡𝑠𝑒𝑡𝑢𝑝 is the required setup time and

𝑡𝑠𝑘𝑒𝑤 is the clock skew between the latches. [5]

If the latches are transparent shorter amount of time in the cycle, the amount of time that can

be borrowed reduces. The maximum time that can be borrowed with pulsed latches is

 𝑡𝑏𝑜𝑟𝑟𝑜𝑤 ≤ 𝑡𝑝𝑤− 𝑡𝑠𝑒𝑡𝑢𝑝 − 𝑡𝑠𝑘𝑒𝑤, (8)

where 𝑡𝑏𝑜𝑟𝑟𝑜𝑤 is the time borrowed, 𝑡𝑝𝑤 is the width of the clock pulse, 𝑡𝑠𝑒𝑡𝑢𝑝 is the required

setup time and 𝑡𝑠𝑘𝑒𝑤 is the clock skew between the latches. If the pulse width is shorter than

setup time and clock skew, time borrowing is not possible. [5]

2.5.5 Fixing timing violations

Violating either the setup or hold time constraints means that memory element can sample the

input while it is still changing leading to an ambiguous output. [5]

 To fix setup time violations, the designer can redesign the combinational logic paths

between the sequential elements to be shorter or add sequential elements in the middle of the

combinational logic. As we can see from equations (1), (3) and (5), the clock period can also

be made larger to increase the allowed propagation delay.

To fix hold time violations, the designer can add buffers between the sequential elements,

that increase the contamination delay. As we can see from equations (2), (4) and (6), the clock

period does not affect the contamination delay and so it cannot be used to fix hold time

violations. [5]

23

2.6 Power consumption of CMOS logic

The power consumption in digital complementary metal-oxide-semiconductor (CMOS) logic

consists of static and dynamic power consumption. Dynamic power consumption results from

the switching activity of the circuit and consists of switching power consumption and short-

circuit power consumption. When the value of a logic gate changes, its load capacitance needs

to be charged or discharged resulting in the switching power consumption of

 𝑃𝑠𝑤 = 𝐶𝐿 ∗ 𝑉𝑑𝑑
2 ∗ 𝑓 ∗ 𝑎, (9)

where 𝐶𝐿 is the load capacitance, 𝑉𝑑𝑑 is the supply voltage, 𝑓 is the clock frequency and 𝑎 is

the switching activity factor. Short-circuit current results from a momentary short-circuit

through the transistors from the supply voltage to ground when the logic gate is switching its

state. Short-circuit power consumption can be expressed as

 𝑃𝑠𝑐 = 𝐼𝑠𝑐 ∗ 𝑉𝑑𝑑 , (10)

where 𝑉𝑑𝑑 is the supply voltage and 𝐼𝑠𝑐 is the average short-circuit current. [6]

The static power consumption represents the power consumption when the circuit is inactive.

The transistors in the circuit conduct small amounts of leakage current event when in the cut-

off state. The static current consumption can be expressed as

 𝑃𝑠𝑡 = 𝐼𝑙𝑘 ∗ 𝑉𝑑𝑑, (11)

where 𝑉𝑑𝑑 is the supply voltage and 𝐼𝑙𝑘 is the leakage current. [6]

24

3 DESIGN FOR TESTABILITY

Modern integrated circuits (ICs) are made with nanometre-scale lithographic techniques. Some

of these manufactured ICs are faulty due to manufacturing defects. During the manufacturing

process, all the ICs need to be tested to remove the faulty ones. Inadequate testing leads to faulty

ICs being shipped to the customers.

Manufacturing testing of digital logic is typically done with the help of automatic test

equipment (ATE) and automatic test pattern generation (ATPG) tools. ATPG tools use

algorithms to generate test patterns that detect faults in a faulty circuit. ATE is computer-

controlled equipment that applies test patterns to the circuit under test (CUT) and compares the

circuit responses to the stored responses of a fault-free circuit. Fault simulations are used to

estimate the quality of the generated test patterns. [7]

The test patterns are usually generated based on specific fault models, that represent specific

faults resulting from manufacturing defects. The stuck-at fault (SAF) model is a widely used

fault model. It assumes that a faulty signal line is stuck to either a logic 1 or a logic 0. The

stuck-at fault can be detected by driving the specific signal line to the opposite state than the

assumed fault and observing whether the line was stuck or not. Test pattern that detects both

stuck at 1 and stuck at 0 faults on every signal line need to be generated to reach 100% stuck-

at fault coverage. Test patterns generated based on the stuck-at fault model also detect most

faults based on other models. The stuck-at fault model however does not guarantee detecting

all possible defects and a combination of tests, made with different fault models, are typically

used in digital testing. [7]

For the circuit to behave correctly, it should not only perform the correct logical operation,

but also perform it fast enough for the change to propagate to the next flip-flop. At-speed testing

refers to tests that detect delay defects from a circuit running at functional speed. The transition

fault (TF) model assumes a single faulty gate is either slow to rise or slow to fall, so that the

transition does not reach the flip-flop or primary output within the clock period. Transition

faults are detected by first setting the target node to an initial value, then causing a transition to

the target node, and finally observing the fault effect from a scannable flip-flop or a primary

output. [7]

Some defects may not affect the correct operation of the circuit but can result in increased

power consumption. Leakage current (IDDQ) test measures the CUT supply current in steady

state condition to detect defects. The IDDQ test can detect shorts between signal lines or

between signal lines and supply lines, from the increased leakage current of the shorts. IDDQ

testing requires that the internal nodes can be controlled, to toggle the internal nodes to different

states, but does not require observation, since the pass and fail condition is determined only on

the supply current consumption. [7]

Integrated circuits can consist of deep sequential logic. Internal signal lines in this kind of

circuit can be extremely hard to control and observe from the primary inputs and outputs of the

circuit, which can result in very complex test patterns and low fault coverage. [7]

Design for testability (DFT) methods have been developed to improve the testing of digital

integrated circuits. They refer to methods, where the testability of the digital circuit is

considered already in the designing of the circuit. Logic structures, meant to facilitate testing,

are added to the design to reduce the time and therefore the cost of testing, and to improve

testing fault coverage. [7]

25

3.1 Scan design

Scan design is the most widely used DFT approach for improving testability. In it, the

controllability and observability of sequential elements is improved by providing external

access to them. This is done by converting the sequential elements to scannable sequential

elements, called scan cells, and connecting them to form shift registers, called scan chains. [7]

The use of scan chains allows test stimulus to be easily shifted to the storage elements inside

the IC, without having to control the primary inputs of the circuit for several clock cycles in

order to bring the internal storage elements to a desired state. The use of scan chains also allows

the test response to be easily shifted out of the internal storage elements. Since the inputs to

combinational logic blocks can be controlled directly and the outputs of combinational logic

blocks can be observed directly, the test pattern complexity required to test specific faults is

greatly reduced. [7]

The scan cells have two inputs. The data input is connected to the normal combinational

logic path. The scan input is connected to the output of another scan cell. The scan chain is

made accessible by connecting the scan input of the first scan cell, in the chain, to a primary

input of the IC and connecting the output of the last scan cell, in the chain, to a primary output

of the IC. [7]

Shifting the test stimulus in and the test response out of a scan chain made of n storage

elements takes n clock cycles. Having several scan chains reduces the clock cycles needed for

shifting, with the disadvantage of one primary input and output needed for each scan chain. [7]

A scan design has several modes of operation. In normal mode, all the added scan

functionality is disabled, and the design operates like before adding the additional logic. In scan

mode, all scan related fixes, to improve test coverage or to guarantee safe operation during scan

testing, are turned on. In shift mode, all scan and shift related fixes are turned on, and scan

chains are enabled to allow shifting in test patterns or shifting out test results. Table 1 below

shows a set of scan design rules and their suggested fixes. [7]

Table 1. Scan design rules

Rule Recommended fix

Avoid tristate

buses during shift

Two or more bus drivers trying to drive a tristate bus to opposite logic

values causes bus contention. It should be guaranteed that only one

driver controls the bus at a time during shift. This can be done by

forcing one bus driver enable signal high and all others low during

shift.

Avoid

bidirectional input

or output (I/O)

ports during shift

Conflicts can occur at a bidirectional port during shift operation if it is

used as an input port and the output tristate buffer is controlled by

logic connected to a scan cell. The output tristate buffer should be

disabled during shift. This can be done by forcing the enable signal

controlling the output tristate buffer low during shift.

Avoid gated clocks

during shift

Clock gating can prevent shift operation from happening correctly by

blocking the scan clock from reaching the scan cells. Clock gating

should be disabled during shift. This can be done by forcing the

enable signal of all clock gates high during shift.

Avoid derived

clocks during scan

A clock generated internally in the digital logic is a derived clock.

They should be bypassed during the scan test, in order to test the logic

driven by the derived clocks. This can be done by using a multiplexer

to provide a scan clock instead of the derived clock during scan.

26

Avoid

combinational

feedback loops

during scan

The use of combinational feedback loops can lead to loss of fault

coverage, since they cannot be controlled, or their value determined.

Combinational feedback loops should be removed from the design. If

removing is not possible, they should be broken during scan. This can

be done by inserting a scan cell in the loop that is used during scan.

Avoid

asynchronous set

and reset signals

during scan

Internally generated asynchronous set and reset signals to scan cells,

that are not directly controlled from a primary input, can prevent shift

operation from happening correctly. Asynchronous set and reset

signals to scan cells should be forced to inactive state during scan.

Avoid clocks

driving data during

scan

Clock used as a data input can cause race condition when the test

response is captured. Clock path to data input of flip-flop should be

blocked during scan.

Avoid floating

buses during scan

Bus-holders should be added for the tri-state buses to keep their last

value.

Avoid floating

inputs during scan
Floating inputs should be tied to logic 0 or logic 1 during scan.

Avoid non-scan

storage elements in

full-scan designs

Should be made transparent, bypassed, or initialized into a known

state during scan.

The added scan operation of the circuit is controlled with the use of added test signals or test

clocks. A primary input pin is often added to the design for the signal that is used to enter scan

mode. Extra pins for the rest of the test signals, the scan inputs and the scan outputs can be

saved by connecting them to existing primary I/O pins with multiplexers and using the scan

mode signal as the enable for the multiplexers. The different test signals and test clocks used in

different types of scan designs are discussed in the following sub-chapters.

Typically, all the sequential elements in a design are connected to scan chains. The

advantage of full-scan is that all the inputs to combinational logic can be controlled and all the

outputs to combinational logic can be observed. It makes it easier for ATPG programs to create

test patterns to detect faults. A disadvantage of full scan is that the added propagation delays of

scan logic on critical paths might lead to timing violations. Another disadvantage is the

increased area overhead caused by the scan logic. [7]

Partial scan refers to designs where some of the sequential elements are not scannable.

Sequential elements in critical paths can be left as normal sequential elements to meet timing

requirements. Another advantage of partial scan is that it reduces the area overhead of using

scan cells. Since not all sequential elements are controllable and observable in partial scan, the

test generation complexity is increased. This can result in reduced fault coverage and increased

testing time compared to full-scan. [7]

3.1.1 Muxed-D scan style

The most widely used scan style is the muxed-D style. It was developed at Stanford by M. J.

Y. Williams and J. B. Angell in 1973 [8]. In it, the D flip-flops are replaced with edge triggered

muxed-D scan cells, shown in Figure 15. The muxed-D scan cell is made from a D flip-flop

and a multiplexer. The multiplexer is used to select between the data input, DI, and scan input,

SI. [7]

27

D Q

 1

 0

M
UX

ckSE

DI

SI DO/SO

Figure 15. Muxed-D scan cell made from a D flip-flop and a multiplexer.

In normal and scan modes, the value at the data input is selected and loaded to the output of
the flip-flop on the active edge of the clock. In shift mode, a shift enable, SE, signal is used to
select the scan input. The value from the scan input is loaded to the output of the flip-flop on
the active edge of the clock. [7]

The scan testing of a muxed-D scan design consists of the following steps, also shown in
Figure 16 [7].

• All scan related fixes are turned on by setting the scan mode, SM, signal high.
• The scan chain portion of the first test pattern is loaded from the primary scan input,

PSI, to the chain by setting the shift enable, SE, signal high and clocking the circuit n
times, where n is the number of scan cells in the scan chain.

• The test pattern is applied to the primary inputs.
• The test response is observed from the primary outputs.
• Shift enable, SE, signal is set low, and the CUT is clocked once to capture the test

response of the combinational logic to the scan cells.
• The test response from the scan cells is shifted out from the primary scan output, PSO,

and at the same time the next test pattern is shifted in from the primary scan input, PSI,
by setting the scan enable, SE, high and clocking the circuit n times, where n is the
number of scan cells in the scan chain.

• The capture and shift operations are repeated until all test patterns are tested.

Scan related fixes Shift test pattern in Set PIs captureObserve POs
Shift test response out
& new test pattern in

Repeat until all patterns tested

Figure 16. Muxed-D scan testing example waveform.

A disadvantage of using muxed-D scan cells is the added multiplexer delay to the data path
and the area increase. A benefit is the compatibility of muxed-D scan cells with modern designs

28

primarily using edge triggered D flip-flops. Another benefit is that the existing design

automation tools provide good support for muxed-D scan style. [7]

3.1.2 Clocked-scan style

In the clocked-scan style, the D flip-flops are replaced with clocked-scan cells. The clocked

scan cell also has a data input and a scan input. In contrast to the muxed-D scan cell, the input

selection in the clocked scan cell is done using two independent clocks, the data clock, and the

shift clock. [7]

In normal and scan modes, the value from the data input, DI, is loaded to the output on the

active edge of the data clock, CKD. In shift mode, the value from the scan input, SI, is loaded

on the active edge of the shift clock, CKS, instead. [7]

The scan testing of a clocked-scan design is similar to the muxed-D scan design. The main

difference between them is in the shift operation. The clocked-scan design does not have the

shift enable signal. The shifting is done through the primary scan input, PSI, and the primary

scan output, PSO, by clocking the shift clock, CKS, n times, where n is the number of scan cells

in the scan chain. During the shift operation, the data clock, CKD, is held inactive. The shift

clock, CKS, is held inactive during the capture operation. The test response is captured to the

scan cells by clocking the data clock, CKD, once.

A big advantage of the clocked-scan style is that it does not add any logic delays to the data

path. The disadvantage is that it requires routing an extra shift clock to all the clocked-scan

cells. [7]

3.1.3 LSSD style

Level-sensitive scan design (LSSD) was developed at the International Business Machines

Corporation by E.B. Eichelberger and T.W. Williams in 1977 [9]. It is the primary scan style

used for level-sensitive, latch-based designs. In it, the D latches and D flip-flops are replaced

with LSSD scan cells, shown in Figure 17. The scan cell contains two latches, a primary D

latch, L1, and a secondary D latch, L2, and three clocks, the primary clock, CKA, the scan

clock, CKS, and the secondary clock, CKB. The primary latch has a data input, DI, and a scan

input, SI. The selection of which input is loaded to the output of the primary latch is made with

the primary and scan clocks. The secondary clock is used to load the data at the primary latch

output to the secondary latch output. [7]

29

L1

L2

D Q

ck

SO

CKB

DO
NAND

NAND
CKA

DI

NAND

NAND
CKS

SI

NAND

NAND

Figure 17. Single-latch LSSD scan cell from a primary two-input D latch and a secondary D

latch.

In normal and scan modes, the value at data input is loaded to the primary latch output on

the active level of the primary clock. In shift mode, the value at scan input is loaded to the

primary latch output at the active level of scan clock. For flip-flops, the data at the primary latch

output is loaded to the secondary latch output on the positive edge of the secondary clock in all

modes. For latches, the data is loaded with the secondary clock in only shift mode. All the

clocks need to be operated in a non-overlapping manner to avoid race conditions. [7]

When replacing D latches with the LSSD scan cell, the data output, DO, is taken from the

output of the primary latch and the scan output, SO, is taken from the output of the secondary

latch, like in Figure 17. There also needs to be at least two non-overlapping system clocks,

CKA1 and CKA2, supplied to the CKA ports of the LSSD scan cells to prevent back-to-back

latches from being transparent at the same time. When replacing D flip-flops with the LSSD

scan cell, both outputs are taken from the output of the secondary latch. [7]

The scan testing of a LSSD design is similar to the muxed-D scan design. The shifting is

done through the primary scan input, PSI, and the primary scan output, PSO, by clocking the

shift clock, CKS, and the secondary clock, CKB, n times in a non-overlapping manner, where

n is the number of scan cells in the scan chain. During the shift operation, the primary clock,

CKA, is held inactive. The shift clock, CKS, is held inactive during the capture operation. The

test response is captured to the D flip-flop scan cells by clocking the primary clock, CKA, and

secondary clock, CKB, in a non-overlapping manner once. The test response is loaded to the D

latch scan cells by clocking the two system clocks, CKA1 and CKA2, in a non-overlapping

manner once. [7]

The scan enabled LSSD scan cell uses a scan enable, SE, signal to choose between the data

input, DI, and the scan input, SI, of the primary latch instead of a scan clock. The secondary

latch has the same functionality as in the traditional LSSD style. [10]

The advantage of using LSSD is that it allows scan chains to be used in latch-based designs.

A disadvantage is that two additional clocks need to be routed when replacing latches and one

30

additional clock needs to be routed when replacing flip-flops, resulting in increased routing

complexity, and ultimately increased area. [7]

Replacing the D latches in a design with LSSD scan cells results in an additional secondary

D latch being added for every D latch in the design, wasting a lot of area. The L1L2* scan

optimization technique saves this area by removing these dummy latches. In it, latches in the

design, that are independent of each other, are grouped in pairs of L1 and L2* latches. The logic

connected to these latches can be tested independently of each other with two different test

modes, L1test and L2test. In the L1test, the L1 latch is the primary latch and L2* latch is used

as the secondary latch for the L1 latch. In the L2test the L2* latch is the primary latch and the

L1 latch is used as the secondary latch for the L2* latch. A problem with this optimization

technique is choosing which latches can be grouped together. Real designs often cannot

completely group all latches together and some dummy latches need to be used. Another

problem is that the ATPG tool needs a remodelled netlists for both tests, where the parts that

are not tested are removed from the files. [11]

3.1.4 Latches in scan designs

While the LSSD scan style presented in chapter 3.1.3 is usually used in designs containing

latches, there are other ways of dealing with latches in scan designs. The simplest solution that

comes to mind is to not replace the latches with scannable elements. In that case, the latches

need to be initialized into known states, bypassed, or made transparent during the scan test [7].

The disadvantage is that we have now a partial scan or a non-scan design with the decreased

testability that comes with that.

The principle of initializing the latches to known states is used in [12], where the latch

registers are modelled as combinational gates and preloaded with values before each scan test.

This method allows the ability of the latches to hold data to be tested also. Preloading the

background data requires adding multiplexers to the data input of the latches and OR gating a

force write signal to the clock inputs of the latches. A downside of this method is that the

background data needs to be supplied to the scan model by manually modifying the netlist

provided to the ATPG tool. This manually modified model needs to be then also verified against

the functional model with simulations. Having the same background data for all the latch

registers during the test can cause some combinational logic faults to be untestable due to the

reconvergence of the background data. A way around this problem is to use different

background data for different groups of registers. Another way is to replace some key latches

by scannable flip-flops. [12]

A single-latch and single-clock solution is proposed in [13], that uses the pulsed latch

principle covered in section 2.1.5.3. A test signal is used to select between the data and scan

inputs of the latch. The upper width of the test clock pulse is bounded by the shortest

propagation delay of the latch design. [13]

A problem with the single-latch and single-clock solution is that it is not supported by the

existing design automation tools.

An asynchronous scan-latch controller solution is proposed in [14], that uses the

asynchronous symmetric pulse persistent protocol to control the scan chain made from latches.

The asynchronous scan-latch controller is used to control the transparency of the latches in shift

mode. The active edge in the scan clock causes the asynchronous scan-latch controller to pulse

the clock input of each latch in the scan chain in turn. The last latch in the scan chain is updated

first, followed by the rest all the way the first latch in the scan chain. The pulses to the clock

31

inputs of the latches are timed in a manner that no two latches are transparent at the same time.

[14]

A disadvantage with the asynchronous scan latch controller solution is the added design

complexity of the controller and the additional clock tree needed from the controller to the

latches. This solution is also not supported by the existing design automation tools.

3.2 Logic built-in self-test

Logic built-in self-test (BIST) is a DFT method that incorporates testing features on the CUT

itself. Logic structures to generate test patterns and to analyse the output responses are

embedded on the designed circuit. [7]

Logic BIST techniques can be divided into two main categories [7].

• Online BIST techniques, where the test functionalities are performed while circuit

operates in normal mode, with normal functionality.

• Offline BIST techniques, where the test functionalities are performed in a test mode.

In functional offline BIST techniques, the tests are performed based on the functional

specification of the circuitry. In structural offline BIST techniques, the tests are preformed

based on the structure of the circuitry instead. The test pattern generation and the output

response analysis in a structural offline BIST can be done either with the help of the functional

storage elements, an internal BIST, or with separate added logic, an external BIST. [7]

BIST schemes most commonly convert the storage elements of a circuit to scan cells for

combinational circuit testing. Some schemes, involving sequential testing by applying test

patterns to the inputs of the circuit and analysing the responses at the outputs also exist. [7]

A typical logic BIST, using the structural offline BIST scheme, is shown in Figure 18. It

consists of a test pattern generator (TPG) that automatically generates test patterns for the CUT

once it is activated. An output response analyser (ORA) is used to automatically compact the

output response into a signature. A BIST controller activates the test, compares the ORA

signatures against golden signatures and reports a pass or a failure once the BIST operation is

complete. [7]

32

TPG

CUT

Logic BIST
controller

ORA

MUX

Primary
inputs

Primary
outputs

Figure 18. Structure of a typical logic BIST.

The structural offline BIST technique has several advantages compared to the traditional

scan techniques. Test costs are reduced as it requires simpler ATE and ATPG, less test time and

less tester memory. The tests can be run at functional clock speed, allowing the detection of

delay faults. The tests can be run at any time, without the help of an external tester. [7]

There are also several disadvantages compared to traditional scan techniques. There are even

more stringent BIST design rules that need to be followed compared to the scan design rules.

Since any unknown values that propagate to the ORA in a BIST design will corrupt the

signature, following BIST design rules is mandatory for BIST designs. In contrast, breaking

many of the scan design rules in a scan design will only result in the loss of fault coverage.

Another disadvantage is that the BIST fault coverage is less than that of a scan design, and

additional test points might need to be added to increase it to a sufficient level. [7]

3.2.1 Test pattern generation

Several different methods of constructing TPGs exist for generating test patterns for exhaustive,

pseudo-exhaustive and pseudo-random testing. [7]

Exhaustive testing achieves maximum fault coverage by applying all possible 2𝑛 input

patterns to a circuit consisting of n inputs [7]. Exhaustive testing becomes impractical already

for circuits consisting of more than 20 inputs [15].

33

Pseudo-exhaustive testing aims to reduce test length, while keeping the high fault coverage

of exhaustive testing. Pseudo-exhaustive testing aims to exhaustively test a circuit, without

applying all possible input patterns by taking advantage of the fact that all the outputs of a

circuit do not usually depend on all the inputs. [7]

Pseudo-random testing aims to reduce test length even further by sacrificing fault coverage.

In it, a pseudo-random sequence of test patterns is generated with a pseudo-random pattern

generator (PRPG). Fault simulation is used to calculate the fault coverage of the pseudo-random

test patterns. It is the most used technique for BIST test pattern generation. A downside of

pseudo-random testing is that random pattern resistant faults can limit the fault coverage. Test

point insertion, mixed-mode BIST, and hybrid BIST techniques can be used to increase the

fault coverage of random pattern resistant circuits. [7]

Considering how test patterns are generated in scan designs, generating the test patterns with

an ATPG tool comes to mind. Good test patterns can be generated with an ATPG and saved in

read only memory (ROM) on the circuit [15]. This method is impractical due to high area

overhead of the ROM [15].

Binary counters can be used to create exhaustive test patterns. They are simple to design but

require more hardware than the typical linear feedback shift register (LFSR). [15]

Linear feedback shift registers use very little hardware, and they are the preferred TPG

method for logic BISTs. A LFSR is a shift register made from flip-flops and feedback from

outputs of selected flip-flops to the inputs of selected flip-flops through XOR gates. [15]

3.2.2 Output response analysis

For a logic BIST, storing the golden responses on-chip and doing bit by bit comparison of the

output responses is impractical due to the extreme memory area that would be required. Output

response analysis techniques can be employed that compact the output response into a signature.

The signature is compared to a stored golden signature, that is compacted with the same

compression mechanism from a golden output response. Compaction differs from compression

by it being lossy instead of loss-less. It is important for the compaction technique to produce

different signatures for faulty and fault-free circuits, otherwise the errors are masked. [7]

Signature analysis is the most used output response analysis technique. Serial signature

analysis technique is used in circuits having a single output and parallel signature analysis

technique in circuits having multiple outputs. Ones count and transition count methods, for

example presented in [7], are simpler but suffer from more fault masking. [7]

A single-input signature register (SISR) uses an additional XOR gate at the input of an LFSR

for compacting the output response. The LFSR needs to be initialized to a seed value, usually

all zeros, before loading the output sequence. [7]

A problem with the SISR is that one analyser is needed for each output of the CUT. Hardware

can be saved by choosing each output at a time with a multiplexer and using one common

analyser, but the test time is increased by the number of outputs in the CUT. Superposition can

be used to compact several output sequences to the same LFSR. A multiple-input signature

register (MISR) uses n extra XOR gates to connect n L-bit output sequences to the different

stages of a single LFSR. [7][15]

34

3.2.3 Logic BIST architectures

Many architectures exist for incorporating BIST techniques into a design. The simplest

architectures do not use any special structures in the CUT and are used in the board or system

level. Some architectures, test-per-scan BISTs, utilize scan chains in the BIST circuitry and

provide better access to the internal circuitry of the CUT. Other architectures, test-per-clock

BISTs, go even further and use redesigned internal storage elements for test pattern generation

and output response analysis to reduce the testing time. Some architectures have been developed

that remove the need for an ORA by using concurrent checking circuitry. [7]

Architectures utilizing scan chains provide better fault coverage for sequential circuits and

are therefore the focus of this chapter. A curious reader can find many other architectures

proposed in literature, for example in [7], that are not covered here.

3.2.3.1 LSSD on-ship self-test

The LSSD on-chip self-test (LOCST) architecture incorporates an external scan chain,

comprising of all primary inputs and outputs, to the design. The external scan chain is connected

to the internal scan chain, consisting of LSSD scan cells. A PRPG is used to generate test

patterns that are shifted into the combined scan chain. The system is clocked to capture the

output response to the scan cells. The output response is compacted to a signature by shifting it

to a SISR, with the combined scan chain. The signature is compared to a golden signature and

a pass, or a failure signal is generated. [7]

3.2.3.2 Self-testing using MISR and parallel SRSG

The Self-Testing Using MISR and parallel shift register sequence generator (STUMPS)

architecture is widely used in industry, due to it being easy to integrate with traditional scan. A

PRPG is used to generate test patterns, that are loaded into several scan chains in parallel. The

system is clocked to capture the output responses to the scan cells. The output responses are

compacted by shifting them to a MISR, with the scan chains. New test patterns are generated

and shifted in at the same time, while the output responses are shifted out. [7]

3.2.4 Latches in logic BIST designs

Non-scannable latches in a logic BIST design can cause unknown values to emanate to the

ORA, corrupting the BIST operation. They should be dealt with by bypassing them or

initializing them into known states.

A more practical way to deal with latches is to make them scannable, increasing the fault

coverage that can be achieved. Making the latches scannable means that they can be used in

logic BIST architectures utilizing scan chains. The LSSD scan cell is typically used as the

replacement cell for the latches. Like in the scan design case, the downside is the added area of

the LSSD scan cells.

A way of integrating a latch-based register bank to a logic BIST, using the STUMPS

architecture, is presented in [16], that uses an optimized LSSD scan style. Each latch, in the

register bank stores one bit of data in functional mode. For the scan shifting the latches are

35

grouped into pairs of L1 and L2* latches that form LSSD scan cells. When the test patterns are

shifted through the scan chain both the L1 and L2* latches of each LSSD scan cell contains the

same data. When the data is dispatched downstream from both latches in the response capture

window, the correlated data can lead to some faults being masked. Another consideration is the

data capture into the L1 and L2* latches. When the test response is shifted out with the scan

chains, by first clocking the L1 latch, the test data is destroyed in the L1 latches. A logic BIST

clock control scheme, that supresses the L1 clock during the first shift operation roughly half

of the time, can be used to improve the testability of the logic feeding the L1 latches. [16]

3.3 Memory built-in self-test

Digital circuits often require storing large amounts of data. This is often achieved with the use

of embedded memories. Memories can be constructed out of flip-flops, but they are not ideal

for large memories, due to their high area. Other memory types exist, that trade performance

for smaller area. The simplest static random-access memory (SRAM) cell is made from just

two cross-coupled inverters described in section 2.1.1 [1]. Dynamic random-access memory

(DRAM) cell stores a bit of data in the presence or absence of charge in a capacitor and is even

smaller [1].

Memories made from flip-flops or latches can be tested using scan or logic BIST methods

by replacing the flip-flops or latches with scan cells. If the area overhead is unacceptable, or

the other, non-scannable, memory types are used, other testability methods are required.

Memory BIST is to most used DFT method for testing large, embedded memories. It is used

to detect manufacturing defects in the address decoding logic, the read and write logic, and the

memory cells of the embedded memory. [15]

The memory BIST test typically consists of writing values based on a specific test algorithm

to the memory and reading the written values from the memory. One such popular algorithm is

the checkerboard algorithm, consisting of writing and reading 0s and 1s from the memory in a

checkerboard pattern. Another popular family of algorithms are the march tests algorithms,

consisting of applying sets of operations, called march elements to the memory. A curious

reader can find many march test algorithms described in literature, for example in [7], [15] and

[17], and even a methodology for creating your own march test algorithms, described in [18].

Memory BISTs using pseudo-random testing also exist but are not as common due to them

providing worse fault coverage with a larger set of test patterns. [7][15]

A typical memory BIST, shown in Figure 19, consists of a memory BIST controller, an

address generator, a test pattern generator, and an output response analyser. The memory BIST

controller is used to create the testing control signals and can be implemented, for example, as

a finite-state machine (FSM). The address generator is used to step through all the addresses in

the memory. For march tests, the address generator should be able to generate addresses in both

ascending and descending order. A reversible maximum-length LFSR is typically used as an

address generator, instead of a reversible binary counter, due to the smaller area. The test pattern

generator is used to generate test data based on an algorithm and can be made, for example, as

an FSM. Output response analysis can be done with an MISR but is often done by deterministic

comparison due to the regular structure of the memory. A reference data generator can be used

to generate the expected read data and it can be compared against the actual read data. A mutual

comparator can be used, when multiple identical memories are tested simultaneously, by

comparing the read data from each memory to each other. [15]

36

 Address
generator

Memory BIST
controllerMemory

TPG

ORA

control

address

writeData

readData

Figure 19. Structure of a typical memory BIST.

A simple and area optimal TPG can be implemented with a simple FSM that implements a

fixed test algorithm. The downside is that the FSM needs to be changed every time the test

algorithm is changed.

Several programmable memory BISTs architectures have been proposed in literature, for

example in [19], that allow the test algorithm to be changed after manufacturing, providing

flexibility. A common downside of programmable memory BIST architectures is the area

overhead of the more complicated TPG. Some architectures reduce the area overhead by

loading each operation one at a time instead of programming all the operations in the beginning,

like is done in [20] with the help of scan chains, and in [21] and [22] with the help of an

embedded microprocessor. The obvious downside is that the testing time is increased.

The architectures proposed in [19], [20] and [22] dealt with only a single embedded memory.

Every embedded memory having their own memory BIST in a multi memory design would

result in unnecessary area overhead.

Distributed memory BIST architectures reduce the area overhead of the BIST logic by

sharing some of it for multiple memories. One such distributed memory BIST architecture is

proposed in [23], that shares the BIST controller for all memories. A limitation is that all the

memories need to be the same type and size [23]. An improved distributed memory BIST

architecture is proposed in [24], that allows memories that have the same number of words or

memories that have the same word width to share BIST logic.

3.4 Test point insertion

Designs usually contain many internal nodes that are hard to control or hard to observe, even

in a scan or a logic BIST design. Test point insertion is a common method of improving the

37

controllability and observability of the internal nodes, by inserting control points or observation

points [7].

Adding an observation point consists of adding a scan flip-flop and connecting a hard to

observe node to its input. Observation points can be shared by connecting several hard to

observe nodes through an XOR gate network to a single observation flip-flop. [7]

Control points consists of a scannable flip-flop and combinational logic connecting its output

to a hard to control node. In a multiplexer control point, a multiplexer is inserted to the hard to

control node. In test mode, the multiplexer selects the control flip-flop output to drive the hard

to control node. In normal mode, the multiplexer selects the normal functional path. [7]

An OR control point, shown in Figure 20, is used to for improving the controllability of hard

to control high nodes. The control point is OR gated with the original net driver, so that it can

be used to set the hard to control node into high state. An AND gate is used to enable the control

point in test mode and disable it during normal functional operation. The control value is loaded

to the scannable flip-flop with a scan chain, during scan testing. [25]

OR

Control point ena

D Q

AND

Original node driver
To hard to control node

Figure 20. An OR control point.

An AND control point, shown in Figure 21, is used for improving the controllability of hard

to control low nodes. The control point is AND gated with the original net driver, so that it can

be used to set the hard to control node into a low state. A NAND gate is used to enable the

control point in test mode and disable it during normal functional operation. The control value

is loaded to the scannable flip-flop with a scan chain, during scan testing. [25]

Control point ena

D Q

Original node driver
To hard to control node

NAND

AND

Figure 21. An AND control point.

38

A downside of using control points is that it adds additional delay to the logic path, that can

cause hold time violations. Adding control points to critical paths should be therefore avoided.

[7]

39

4 LATCH REPLACEMENT

This chapter presents an implementation of a latch-based register bank, using partial scan as the

DFT method. Chapter 4.1 presents a reference PMIC model that is used as the starting point for

the latch register design. Chapter 4.2 presents the reasons why flip-flops in the registers were

selected to be replaced with latches. Chapter 4.3 presents the implementation of the latch

registers, developed in this thesis. Chapter 4.4 presents the reasons for selecting partial scan as

the DFT method. Chapter 4.5 presents the implementation of the partial scan design, developed

in this thesis.

4.1 A reference PMIC model

A power management integrated circuit that is used to provide clean supply voltages to the rest

of an electric device, is used as a reference design for this thesis. It consists of voltage

regulators, converters, and their control circuitry. A simplified model of the reference PMIC is

shown in Figure 22. It can be controlled by two host SoCs, with the inter-integrated circuit

(I2C) communication protocol.

PMIC

PMIC digital

Register
bank 1

In
te

rc
o

n
n

ec
t

Register
bank 4

I2C
secondary

I2C
secondary

Other ip

FSMs &
counters

Analogue

Host SoC 1

I2C
primary

Host SoC 2

SDA

SCL

SDA
SCL

I2C
primary

Register
bank 2

Sync

Sync

Register
bank 3

Figure 22. Simplified model of a PMIC.

The digital logic is used to control the operation of the PMIC, and it consists of several

different blocks. The two I2C secondaries are used to convert the I2C transfers to the Advanced

Microcontroller Bus Architecture (AMBA) Advanced Peripheral Bus (APB) protocol used by

the interconnect. The interconnect is used to arbitrate several hosts accessing the same register

banks simultaneously. It uses the APB protocol to access the register banks. The register banks

are banks of control and status registers that a host SoC can write to control the PMIC or read

the status of the PMIC. Finite state machines determine the state of the PMIC. They are

40

controlled by control registers and status signals from analogue logic blocks, and they create

control signals to analogue logic blocks. Counters are used to provide accurate timing for state

machines. Synchronizers are used to synchronize asynchronous status signals coming from

analogue logic blocks.

4.1.1 AMBA APB protocol

A System-on-chip (SoC) often consist of several components, such as processor cores, memory,

input or output (I/O) devices on the same chip. Connecting blocks using different interfaces and

communication protocols would require the use of glue logic. [26]

Different bus protocols have been developed to allow easy integration and re-use of

functional blocks. The advantage of designing functional blocks to use a common bus protocol

is to allow them to be developed independently of each other. It also allows the functional

blocks to be re-used easily in different designs utilizing the same protocol. [26]

The Advanced Microcontroller Bus Architecture (AMBA) by ARM is a standard for

connecting and managing functional blocks in a SoC. It provides several bus protocols with

different levels of performance. One such protocol is the Advanced Peripheral Bus (APB)

protocol. [27]

The APB protocol is used to access the programmable control registers of low-bandwidth

peripheral devices. It is a low-cost interface, optimized for minimum power consumption and

reduced complexity. It can be interfaced with other, higher performance, AMBA bus protocols.

[27]

The original APB specification Rev E was released in 1998. There have been several

revisions since. The AMBA 2 APB Specification defined the interface signals, defined basic

read and write transactions, and added the APB bridge and the APB secondary components.

The AMBA 3 APB Protocol Specification v1.0 added wait states to the transactions and error

reporting. The latest revision, AMBA APB Protocol Secification v2.0 added transaction

protection and sparce data transfer. [28]

Signal transitions in the APB protocol happen at the positive edge of the clock. The protocol

uses independent buses for read and write data, that can be up to 32 bits wide. The two buses

cannot operate simultaneously, due to sharing handshake signals. [28]

Table 2 below presents the signals used in the APB protocol and short explanations on what

they are [28]. The following sub-chapters present the read and write protocols. Error reporting,

transaction protection and sparce data transfer are not relevant for this thesis and are not covered

here. A curious reader can read the AMBA APB Protocol Specification v2.0 [28] to familiarise

him- or herself with the additional features.

Table 2. AMBA APB protocol signals

Signal Description

PCLK Clock.

PRESETn Active low reset.

PADDR
Secondary address. APB bridge indicates which location in the

secondary device is accessed.

PPROT
Protection type. APB bridge indicates protection level of access. Tied

low when not used.

PSELx
Secondary selection. APB bridge indicates which secondary device is

accessed.

41

PENABLE Transfer enable. APB bridge enables the transfer.

PWRITE Transfer direction. APB bridge indicates write access when high and
read access when low.

PWDATA Write data. Bus containing write data from APB bridge.

PSTRB Write strobes. APB bridge indicates which byte lanes are updated
during a write transfer.

PREADY
Ready handshake. Secondary device indicates write or read access has
been finished. Tied high when read access or write access is not
extended.

PRDATA Read data. Bus containing read data from a secondary device.

PSLVERR Transfer error. Secondary device indicates read or write transfer
failure. Tied low when not used.

4.1.1.1 APB write transfer

Figure 23 below shows the AMBA APB write transfer protocol. The setup phase of the write
transfer starts at time 2 with the register address PADDR and write data PWDATA becoming
valid. At the same time select PSEL and write PWRITE signals are set high to indicate that this
secondary device has been selected and that it is a write access, respectively.

Figure 23. AMBA APB write transfer.

The access phase starts at time 3 with the enable PENABLE signal being set high. The

secondary device indicates that it can complete the transfer on the next clock edge by setting
the ready PREADY signal high at time 6. The access phase ends at time 7 and the enable
PENABLE signal is deasserted. In case there is another transfer to the same secondary device,
the select signal PSEL is left high. Otherwise, it is also deasserted at the end of the access phase.
[28]

The address PADDR, write data PWDATA and control signals need to remain valid during
the setup and access phases, from time 2 to 7. The address PADDR, write data PWDATA and
write PWRITE signals can be left as is after the transfer until another access, to reduce power
consumption. [28]

The ready PREADY signal is used to extend the write transfer by any number of cycles from
zero upward. The ready PREADY signal can have any value when the enable PENABLE signal
is low. When the enable PENABLE signal is high, it indicates that the secondary device can
finish the access on the next clock edge. In the case that the secondary device has a fixed two
cycle access, the PREADY signal can be tied high. [28]

42

4.1.1.2 APB read transfer

Figure 24 below shows the AMBA APB read transfer protocol. It is similar to the write transfer
protocol presented in section 2.2.1. The read data RDATA bus is used in the read access instead
of the write data WDATA bus. The difference in the setup phase, at time 2, is that the PWRITE
signal is set low to indicate that it is a read access and the read data PRDATA bus does not have
to contain valid data. [28]

Figure 24. AMBA APB read transfer.

The access phase also starts at time 3 with the enable PENABLE signal being set high. The
secondary device sets the ready PREADY signal high, at time 6, to indicate that the read data
RDATA bus contains valid data. [28]

4.1.2 Register banks

The PMIC contains several different register banks. The banks are divided into one bank for
digital registers, and three banks for different analogue logic blocks. The register bank 1
contains all the control registers and status registers for digital logic. The register banks 2-4
contain control registers used to control different analogue logic blocks directly.

The banks are made of several different types of registers, that can be 1 to 8 bits wide. In
total, there are 443 registers, storing 1973 bits of data. On average, one register is storing about
4.5 bits of data.

The PSEL signal of the APB protocol is used to select which register bank is accessed. The
PADDR signal is used to select which register is accessed in the bank. If the register being
accessed is less than 8 bits wide, the most significant bits (MSB) of the PWDATA signal are
discarded in the write access and the PRDATA signal is zero padded to 8 bits in the read access.
The PREADY signal is tied high in the register banks to indicate the write and read accesses
are not extended.

Since the read and write buses are a byte wide, the PSTRB signal is unnecessary and not
used in the register banks. The PPROT and PSLVERR signals are also not used and tied low.

43

4.1.2.1 Read-write register

The most common type of register used is the read-write register shown in Figure 25. It is a

simple parallel loaded register that can be written to and read from with the APB protocol.

During the read access, when PWRITE, PSEL, PENABLE signals are high and the PADDR

indicates this specific register is accessed, the multiplexer is used to select the 4 least significant

bits of the PWDATA that are loaded into the register. During all other times, the multiplexer

selects the output of the register, and the old value is kept. The read-write register, of Figure

25, implemented in SystemVerilog, is shown in Figure 26.

Register bank

Example of read-write register

D Q

 1

0

M
U

X

PWRITE &&
PSEL &&
PENABLE &&
PADDR==ID_REG1

PRESET

PADDR

PSEL

PENABLE

PWRITE

PCLK

Data[3:0]PWDATA[7:0]

PRDATA[7:0]

fsmConf[3:0]

FSM

fsmConf

PWDATA

PREADY

PRDATA

 Read logic

Figure 25. Example of a read-write register.

Figure 26. Example of a read-write register coded in SystemVerilog.

From the area and power consumption point of view, it is beneficial to use clock gating to

control the loading of multi-bit registers instead of multiplexers. In that case, the multiplexers,

of Figure 25, are replaced with a single clock gate. PWDATA is now connected straight to the

inputs of the flip-flops and loading new data to the register is controlled by the clock gate.

Synthesis tools can do this optimization automatically when automatic clock gating is enabled.

The Design Compiler synthesis tool, made by Synopsys, gates the clock for registers that are

3-bits or larger, by default [29].

44

4.1.2.2 One-time programmable register

The exact output voltages for voltage regulators vary with process variations. This limitation is

often overcome by trimming the output voltage to the correct value. The problem is that the

correct trimming values are only known after manufacturing, while the reset values of normal

registers must be defined before manufacturing. The use of one-time programmable (OTP)

memory allows the default values of OTP registers to be programmed after manufacturing.

The OTP register, shown in Figure 27, is the second most common type of register used.

The OTP register consists of a flip-flops and OTP logic. The flip-flops store the state of the

OTP register. The OTP logic is combinational logic that determines the next state of the OTP

register, based on the write data and the OTP values in OTP memory, and decodes the output

of the OTP register based on the state of the OTP register and the OTP values in OTP memory.

The use of the OTP register, and not just the OTP memory, allows the value of the OTP register

to be changed with a register write. In case of a reset, the OTP register is reset back to the OTP

value, coming from the OTP memory.

 OTP
memory

Register bank

Example of otp register

D Q

 1

0

M
U

X

PWRITE &&
PSEL &&
PENABLE &&
PADDR==ID_REG2

PRESET

PADDR

PSEL

PENABLE

PWRITE

PCLK

Data[5:0]

PWDATA[7:0]

PRDATA[7:0]

trim[5:0]

Analogue
block

trim

PWDATA

PREADY

PRDATA

otpTrim[5:0]

Reg2[5:0]

 Read logic

OTP
logic

OTP
logic

Figure 27. Example of an OTP register.

4.1.2.3 Set-clear register

The set-clear register, shown in Figure 28, can be used to turn some functionality on or off bit

wise, without modifying the value of other bits. When a 1 is written to a bit position with the

set address, the flip-flop corresponding to that bit location is set to 1. When a 1 is written to a

bit position with the clear address, the flip-flop corresponding to that location is cleared to 0.

Writing 0 to a bit location with the set or clear address does not change the state of the register.

The state of the set-clear register can be read from both the set and clear addresses. The reset

value of each bit location can be defined to be either 1 or 0.

45

FSM

Register bank

Example of set-clear register

D Q

PRESET

PADDR

PSEL

PENABLE

PWRITE

PCLK

PWDATA[7:0]

PRDATA[7:0]

Reg3[1:0]
request[1:0]

request1[0]

PWDATA

PREADY

PRDATA

FSM
request2[0]

OR

PADDR==ID_CLR_REG3

 1

 0

M
U

X

AND

PWRITE &&
PSEL &&
PENABLE &&
(PADDR==ID_SET_REG3 ||
PADDR==ID_CLR_REG3)

 1

 0

M
U

X

Data[1:0]

 Read logic

Figure 28. Example of a set-clear register.

The advantage of using a set-clear register is that the controlling host can only set or clear

some specified bit locations in the register, while not affecting the others. This is especially

useful when there are several hosts controlling the same registers. For example, if the PMIC

contains several LDO regulators utilized by different hosts, they can be independently turned

on and off with the set-clear register without the different hosts needing to know whether the

LDO regulator utilized by a different host needs to be on or off. With a read-write register, all

the bit locations are updated on each write and the host needs to know what value to write into

each bit location. Reading the state of a read-write register, modifying the read data, and writing

the modified data back takes more time and power, than using a set-clear register.

4.1.2.4 Task register

The task register, shown in Figure 29, is used to execute some functionality once. When a 1 is

written to a bit position in the task register, a one clock cycle positive pulse is created in the

corresponding flip-flop. This is caused by the fact that a 0 is loaded to the flip-flop, when the

task register is not being written to. Writing a 0 to a bit position in the task register does not

affect the state of the corresponding flip-flop. The reset value of the task register needs to be 0

for all bit locations.

46

Register bank

Example of task register

D Q

 1

0

M
U

X

PWRITE &&
PSEL &&
PENABLE &&
PADDR==ID_REG4

PRESET

PADDR

PSEL

PENABLE

PWRITE

PCLK

Data[0]

PWDATA[7:0]

PRDATA[7:0]

taskUpdate[0]

PWDATA

PREADY

PRDATA

FSM

update[0]
0

 Read logic

Figure 29. Example of a task register.

The advantage of using a task register is that the controlling host can write pulse like controls

to the registers with a single write access. Writing a 1 and then a 0, like would need to be done

with a read-write register, takes more time and power than using a task register.

4.1.2.5 Read-only register

A read-only register, shown in Figure 30, differs from the other types of register as it is not

actually a register but just a signal mapping that can only be read. A digital signal or a

combination of several signals can be routed to a multiplexer input that is selected by PADDR.

The flip-flops after the read logic are not necessarily needed but are used to reduce timing

problems. If the combinational read logic is large and flip-flops at the output of the register

bank are not used, the setup time from the flip-flops in the registers, to the flip-flops in the

interconnect read logic could be easily violated.

Register bank

Example of read-only register

PRESET

PADDR

PSEL

PENABLE

PWRITE

PCLK

PWDATA

PREADY

PRDATA

Read logic

M
U

X

PADDR

PRDATA[7:0] status[1:0]

SYNC

status1[0]

SYNC

status2[0]

 Analogue
block

 Analogue
block

DQ

M
U

X
 1

 0

!PWRITE &&
PSEL

Figure 30. Example of a read-only register.

47

4.2 Latch replacement selection

Latches and pulsed latches are an enticing alternative to flip-flops from the area point of view.

However, it is important to not just consider the area benefits of replacing flip-flops with pulsed

latches or latches, but to also consider the effect on power consumption and hidden costs. Power

consumption is an extremely important metric, especially for battery powered devices, and it

should not be increased from the replacement. Another important consideration is the effect of

the replacement on the time to market of the products it is implemented in. If the design

difficulty is increased significantly or the design flow made longer, the replacement may

become unpractical.

4.2.1 Pulsed latch considerations

When considering the pulsed latch style, the effect of a pulser on power consumption needs to

be considered. A pulser creates pulses from the clock and is therefore switching all the time. It

stands to reason that the switching power consumption of a pulser is large compared to a flip-

flop or a latch. The pulser in [30] consumes almost 14 times as much power as a single latch

and 7 latches need to share a single pulser to achieve slightly lower power consumption than 7

flip-flops. It was found in [31], that 8 latches need to share a pulser, so that the power

consumption is slightly smaller than that of 8 flip-flops.

In the case of the reference design presented in chapter 4.1, the maximum register width is

8 bits, but the average register width is only roughly 4.5 bits. The other arrays of flip-flops,

found in counters and FSMs, are similarly much less than 8 bits wide on average. To get the

power consumption lower than that of flip-flops, several registers would need to share the same

pulser. The pulser was integrated into the clock gate of the registers in [31]. Sharing a pulser

for several registers would prevent its integration with the clock gates and the power

consumption of the pulser would increase since it would not be gated. Pulsed latches could be

only used for the largest registers to keep the power consumption down, but it would negate

much of the area benefit of using latches. From the power consumption point of view, the pulsed

latches are not ideal in this case.

The effect of pulsed latches to the synthesis flow needs to be considered. A pulsed latch

synthesis flow is presented in [32], that uses the normal flip-flop-based synthesis flow but adds

additional steps, where the flip-flops are replaced, pulsers are placed, and their effect on timing

is analysed and violations are fixed. From the synthesis flow point of view, pulsed latches cause

extra synthesis steps and are not ideal.

The pulsed latches are suited for scan testing. The scan synthesis flow and pattern generation

could be done with the flip-flop-based design flow and then the scannable flip-flops could be

replaced with scannable pulsed latches.

Another consideration is the technology library support. The library used for this thesis does

not contain any pulsers. Pulsers can be made from existing discrete library cells, but the area

would be much larger than that of a custom pulser library cell. For full area benefit, custom

pulser library cells would need to be created.

48

4.2.2 Latch considerations

Since a primary-secondary flip-flop is made of two latches, it would stand to reason that short

circuit and leakage power consumption of a latch would be roughly half of that of a flip-flop.

It would also stand to reason that the switching power consumption of the clock pin of the latch

would be half of that of a flip-flop, as the clock pin of the flip-flop is driving two latches. The

data input of a flip-flop is only driving a single latch, so the switching power consumption the

data input would be expected to be roughly the same. The switching power consumption of the

data output would also be expected to be the roughly same, assuming the same load. The

technology library used in this thesis mostly follows these assumptions, except for the switching

power consumption of the clock pin. The load capacitance of the clock pin of the latch is

roughly double that of a flip-flop, also leading to roughly double the switching power

consumption. The unexpected switching power consumption of the technology library used

leads to the power consumption of latches to be higher than that of flip-flops. Since the pulser

is eliminated by using latches instead of pulsed latches, the latch design style is still preferred

over the pulsed latch style, from the power consumption point of view.

In addition to the power consumption, latches also have the benefit that they fit to the flip-

flop-based synthesis flow without additional steps and there is no need to create a custom pulser

library cell, compared to pulsed latches.

Latches however have a large drawback compared to flip-flops and pulsed latches. Due to

the transparent nature of latches, feedback from the output of a latch to its input is not allowed.

Two back-to-back latches being transparent at the same time is also not allowed. These

restrictions mean that only some flip-flops in a flip-flop-based design can be replaced with

latches, without serious redesigns.

A basic synchronizer is just two series connected D flip-flops, where the second flip-flop is

used to block metastability propagating from the first flip-flop. D latches, clocked with normal

50% duty cycle clocks, are not well suited for synchronizers. Connecting two D latches to the

same clock would mean both are transparent at the same time and the asynchronous signal can

propagate through them. The clock to one of the latches can be inverted, but now we have a

primary-secondary flip-flop. At least a third latch would need to be added, that removes the

metastability of the primary-secondary flip-flop. A problem is that the first flip-flop would have

half the time to recover from a metastable state with a third latch, compared to the two-flip-flop

synchronizer.

Counters consist of flip-flops, that store the value of the counter, and combinational logic,

that calculate the next value of the counter. The current value of a counter is used in calculating

the next, meaning there are feedback paths from the outputs of the flip-flops to the inputs.

Latches are not well suited to replace the flip-flops as the feedback will cause race conditions.

The counters would need to be redesigned without feedback paths from the output of a latch to

the input of the same latch, leading to increased design difficulty.

State machines similarly consist of flip-flops and combinational logic. Similar feedback

paths exist, from the outputs of the flip-flops to the inputs, that are used in determining the next

state of the FSM, making latches not well suited for FSMs.

 Register banks consists of read-write, OTP, set-clear, task and read-only registers. Their

structure is presented in chapter 4.1.2. The read-write and OTP registers contain a feedback

path used for keeping the old value of the register. This feedback can be removed by using

clock gating, instead of multiplexers, to control whether a new value is loaded. The feedback

paths in set-clear registers are used to determine the loaded value based on the previous value

of the register and cannot be removed with clock gating, making set-clear register not suitable

49

for latches. The read-only register does not contain flip-flops in the register bank as it is a signal

mapping.

Read-write and OTP registers are by far the most common types of registers, and they make

up of roughly 30% of all flip-flops in the design. Even with only replacing their flip-flops with

latches, large area gains are available.

4.3 Latch register design

The read-write register, shown in Figure 25, contains a feedback path through a multiplexer,

that is used to keep the register value when it is not written to. The feedback can be removed

by using clock gating to control the loading of the register instead of a multiplexer, allowing

the flip-flops of the read-write registers to be replaced with latches.

Now we have a situation where there is a path from the flip-flops generating PWDATA

signals to the latch registers, and from the latch registers to flip-flops in the read logic. A

problem with connecting a positive level active latch between two positive edge triggered flip-

flops is that a change in the output of the first flip-flop on a clock edge will propagate straight

through the latch to the input of the second flip-flop, which might cause a hold time issue. A

possible solution would be to make sure the data at the output of the first flip-flop is stable

before enabling the clock to the latch, by modifying the write protocol, and setting the path

from the first flip-flop to the second flip-flop as a multi-cycle path. This solution would result

in a 3 cycle APB write access, so it is not optimal. A better solution is to latch the write data

through a negative level active clock.

The resulting read-write register made with latches and clock gating is shown in Figure 31.

The negative level active write latches load the data in PWDATA to wDataLat on the negative

level of the clock. The clock gate contains a negative level triggered latch and an AND gate,

that are used to create the gated clock signal. When the register is written to, the clock gate is

enabled, and a clock pulse is provided to load the value from wDataLat into the register latches

on the positive level of the clock. The read-write latch register, of Figure 31, implemented in

SystemVerilog, is shown in Figure 32.

Register bank

Example of read-write register using a latch

PWRITE &&
PSEL &&
PENABLE &&
PADDR==ID_REG1

PRESET

PADDR

PSEL

PENABLE

PWRITE

PCLK

PRDATA[7:0]

fsmConf[3:0]

PWDATA

PREADY

PRDATA

D Q

ck

Clock gate

D Q

ck

AND

ck

ena ckG

PCLK

 Read logic

D Q

ck

wDataLat[7:0]

Figure 31. Example of a read-write register using latches and clock-gating.

50

Figure 32. Example of a read-write latch register coded in SystemVerilog.

By latching the write data, PWDATA, through negative level active latches instead routing

it straight to the register latches, positive edge triggered operation can be maintained, with the

negative level triggered write latches acting as the primary latches and the positive level

triggered register latches acting as the secondary latches. A difference to a flip-flop-based

implementation is that the master latches can be shared by all the latch-based registers in a

single register bank.

OTP register, shown in Figure 27, also contains a feedback path through a multiplexer that

can be implemented with a clock gate. An OTP register made with latches and clock gating is

shown in Figure 33. When the register is written to, the clock gate is enabled, and a clock pulse

is provided to load the value determined by wDataLat and otpTrim into the register latches.

There is a possible race condition if the OTP values come from a positive level triggered source.

This is not however the case as the OTP values are stable during normal functional operation

of the circuit.

51

 OTP
memory

Register bank

Example of otp register using latch

PWRITE &&
PSEL &&
PENABLE &&
PADDR==ID_REG2

Data[5:0]
wDataLat[7:0]

PRDATA[7:0]

trim[5:0]

otpTrim[5:0]

Reg2[5:0]

 Read logic

D Q

ck

Clock gate

ck

ena ckG

PCLK

PRESET

PADDR

PSEL

PENABLE

PWRITE

PCLK

PWDATA

PREADY

PRDATA

D Q

ck

OTP
logic

OTP
logic

Figure 33. Example of an OTP register using latches and clock-gating.

A write access to the read-write latch register of Figure 31, is shown in Figure 34. The setup

phase starts at time 2, when the address PADDR indicates this register is accessed and write

data PWDATA become valid. At the same time, PSEL and PWRITE signals go high to indicate

that this register bank is selected and that it is a write transfer, respectively. At time 3, the write

access starts by PENALBE signal going high, causing the clock gate enable to go high.

PREADY signal being tied high indicates the write access can be completed on the next cycle.

The write access finishes at time 4, with PENABLE signal going low. At the same time, a clock

pulse is created through the clock gate and the data in wDataLat is loaded to the register latches.

52

Figure 34. A read-write latch register being written to with the APB protocol.

If the negative level active latches, creating the wDataLat signal, were not used, correct data
from PWDATA would be first loaded to the latch register at time 4, but then invalid data would
propagate to the latch register and be loaded to it. The negative level active latches keep the
data at the input of the latch register valid for half a clock cycle longer, until the latch register
clock becomes inactive.

The use of latches does not affect the APB read access, as the clock to the latch register is
inactive during the whole access and the latch will keep its value like a flip-flop would. A fixed
two cycle read access to the read-write latch register of Figure 31, is shown in Figure 35. The
setup phase starts at time 2, when the address PADDR indicates this register is accessed. At the
same time, PSEL signal goes high and PWRITE signal goes low, to indicate that this register
bank is selected and that it is a write transfer, respectively. At time 3, the read access starts by
PENALBE signal going high. PREADY signal being tied high indicates the read access can be
finished on the next cycle. The read access finishes at time 4 with the PENABLE signal going
low.

53

Figure 35. A read-write latch register being read from with the APB protocol.

4.4 DFT method selection

Manufacturing testing is an important step in ensuring that defective components are not
shipped to customers. For the latch replacement to be practical, for actual products, the fault
coverage should not be decreased significantly, while keeping the area overhead and testing
time of the DFT solution manageable. The different DFT options are considered in this chapter,
and one is selected to be studied further.

4.4.1 Scan design considerations

The flip-flop-based reference design is manufacturing tested using the muxed-D scan style.
From the design flow perspective, using the muxed-D scan style for the latch register design
would be preferred. Scan testing is a well-known and often utilized method to test flip-flop-
based circuits. The transparent nature of latches makes them ill-suited for use in scan chains.

4.4.1.1 Full-scan design consideration

For the controllability and observability of a full-scan design to be preserved, the latches would
need to be made scannable. A proposed custom muxed-D scan cell is shown in Figure 36. It

54

acts as two latches in normal mode and as a single flip-flop, with both data inputs XORed

together, in scan mode, SM.

Custom muxed-D scan cell

D Q

ck

 0

1

M
U

X

SE

D Q

ck

 1

 0

M
U

X

ckSM

DI1

DI2

SI

SE

ck

DO1

DO2/SO

 1

0

M
U

X

SM
SM

XOR

XOR

AND

Figure 36. A custom muxed-D scan cell.

The downside of this proposed scan cell is that the area benefit of using latches is destroyed

by all the testability logic. Another disadvantage is that the data in both data outputs is the same

in scan mode, SM, which could make some faults downstream of the scan cell untestable.

LSSD scan style has been typically used for scan testing latches. A downside is that it would

require converting the design into LSSD style and creating LSSD library cells. The standard

LSSD style is not suitable, as the added dummy latches would destroy the area benefit. The

optimized LSSD style in [11], is better from area point of view. The downside of it is that it

requires two different scan modes and the logic downstream of the L1 and L2* latches to be

able to be tested independently of each other. The scan modes could be combined by using an

XOR gate to combine both inputs together and using a multiplexer to route the L2 output to the

L1 output, similarly to the proposed muxed-D scan cell of Figure 36. The area overhead of the

optimized LSSD style would be smaller than using the muxed-D scan cell of Figure 36, but it

would still not be very optimal.

From the other full-scan methods briefly introduced in chapter 3.1.4, the asynchronous scan-

latch controller, presented in [14], is also an unsuitable solution. Integrating the controller on-

chip would be unacceptable due to the area overhead of the controller and the clock tree. Having

the controller off-chip is unrealistic due to the need for one test clock for each latch in the

design.

4.4.1.2 Partial-scan design consideration

Since the area overhead that would result from making latches transparent is unacceptably large,

leaving them non-scannable can be considered, resulting in a partial scan design. By leaving

the latch registers non-scannable, they need to be sequentially tested, with a sequential depth of

55

2. The controllability and observability are reduced, as the latches and the logic around the

latches now needs to be controlled from flip-flops in the write logic and observed from flip-

flops in the read logic.

The reduced controllability and observability can negatively affect the fault coverage. The

fault coverage loss should be able to be minimized, to an acceptable level, by improving the

testability with control and observation points.

The reduced controllability and observability can also result in more test patterns being

needed, for the same fault coverage, resulting in increased testing time. The number of test

patterns needed can also be reduced with control and observation points, but likely not enough

to match a full-scan design, without increasing the area significantly.

4.4.2 Logic BIST considerations

Logic BIST schemes require the latches to be made scannable, to reach high fault coverages,

leading to high area overhead from the scan testability logic. They also suffer from the added

area overhead of the BIST logic. Logic BIST schemes are unsuitable in this case, as in the field

testing is not required, and they are not investigated further.

4.4.3 Memory BIST considerations

Memory BIST schemes have been found suitable for manufacturing testing large, embedded

memories. The memory in this case differs from typical memories, bringing several challenges

in implementing a memory BIST.

Embedded memories are often large, making the area overhead of the BIST logic negligible.

In this case, only 1973 bits are stored in the register banks and of those, only 1618 bits are in

read-write and OTP registers. Making the memory BIST small enough not to increase the area

significantly would be a real challenge.

Embedded memories are usually uniform, made from the same type, width, and length

memory. In this case the memory is made of several different types of registers, with different

widths. Due to the irregular structure of the memory, the output response analysis and the

address generation is made more complicated. The known distributed memory BIST

architectures, of chapter 3.3, are also not suitable due to the irregular structure.

The expected read data depends on the type and width of the register accessed. Generating

the expected read data on-chip without storing this information seems unfeasible and storing

the type and width of the register in each address would lead to large area overhead. A MISR

and comparing the output to a golden signature would most likely need to be used, leading to

area overhead and some fault masking.

Since the register banks in this case only contain the number of registers that is necessary

for the design, the number of registers is unlikely to be a power of 2. This would result in empty

register locations being tested when using an LFSR as the address generator, leading to

unnecessarily long testing time. A binary counter could be used as the address generator to

avoid this issue, but the area would be larger.

Another structural difference is that the outputs of the registers in the digital register bank

are connected to the rest of the digital logic. To facilitate the testing of the digital logic

downstream of the registers, the latches would need to be made transparent or bypassed during

scan testing anyways.

56

For the above reasons, memory BIST schemes are not well suited in this case, and they

should be only considered, if the fault coverage from a partial scan design is deemed too low.

Partial scan is deemed the most promising option and selected as the DFT style to be researched

further.

4.5 Partial scan design

To keep the area benefit of using latches, they can be left non-scannable, resulting in a partial

scan design. The partial scan design can be sequentially tested, by making the latches

transparent during the shift operation, and then using multiple capture cycles to sequentially

observe the latches.

The reduced controllability and observability of the partial scan design results in loss of fault

coverage and an increased number of test patterns. The loss of fault coverage can be reduced,

with the strategic use of control and observation points. The main downside of the partial scan

design is the increased number of test patterns, which cannot be so easily decreased without

large area overhead.

Chapter 4.5.1 presents how latches were made transparent during scan testing. Chapter 4.5.2

present how the observability was increased. Chapter 4.5.3 presents how the controllability was

increased. All the modifications to the reference design, using the replacement technique

developed in this thesis were made in the register-transfer level (RTL), using SystemVerilog as

the coding language.

4.5.1 Making latches transparent

To maximise the fault coverage of the partial scan design, the latches need be made transparent

during scan testing. For the Tessent ATPG tool, made by Siemens AG, to identify the latches

as transparent, the latches need to be transparent between setting values on primary inputs and

measuring values from primary outputs, while the clock is low [25].

Transparency for the register latches can be achieved by OR gating the clock to all the

positive edge active latches with the shift enable signal, shown in Figure 37. This allows the

latch to be transparent when patterns are shifted in and out, but also allows the ATPG tool to

manipulate the clock to the latches in capture, allowing the latches to be sequentially tested.

The clock gate latches, and the write latches are negative clock level active and do not need any

modifications to be identified as transparent.

57

Latch register

D Q

ck
Clock gate

ck

ena
ckG OR ckT

shiftEna

Figure 37. Making register latches transparent with an OR gate.

4.5.2 Improving observability

The enable for the clock gates of the latch registers is generated in a large combinational logic

tree. When scannable flip-flops are used, faults in the clock gating logic can be seen in whether

the value in the flip-flop is updated. In a latch-based register, the effect of the clock gating logic

needs to be sequentially observed from flip-flops downstream of the latches. The structure of

the analogue register banks means that only one latch register, in a register bank, can be

observed at a time from the flip-flops in the read logic. The reduced observability results in a

large decrease in the fault coverage of the clock gating enable logic.

A solution to this loss in fault coverage would be to add observation points for observing the

clock gating logic of all the latch registers. This solution however would result in unnecessarily

high area overhead and increased power consumption.

A more area and power efficient solution is to keep the first bit of each latch register as a

flip-flop, instead of replacing all the flip-flops with latches. Since the clock gating logic is the

same for all the bits in a register, by keeping one flip-flop in each register, the clock gating logic

can be observed from it.

A latch register, with one bit location kept as a flip-flop, is shown in Figure 38. Bit location

0 of each latch register is kept as a flip-flop and the input is taken straight from PWDATA[0],

instead of latching it through a negative level active latch. The rest of the bit locations in the

latch register are implemented with latches. The clock to the flip-flop needs to be taken from

before the OR gate making the latches transparent during shift, so that shifting in values to the

flip-flops is not disturbed. The clock gate now also needs to contain an OR gate to enable the

clock to the flip-flops during shift. The latch register, of Figure 38, implemented in

SystemVerilog, is shown in Figure 39.

58

Register bank

Latch register after DFT

PRESET

PADDR

PSEL

PENABLE

PWRITE

PCLK

wDataLat[7:1]

PRDATA[7:0]

fsmConf[3:0]PWDATA

PREADY

PRDATA

D Q

ck

Clock gate

D Q

ck

AND

ck

ena ckG

PCLK

 Read logic

D Q

ck

wDataLat[3:1]

shiftEna
OR

OR
ckT

transpCtrl

D QPWDATA[0]

shiftEnaCtrl

Reg1[3:1]

Reg1[0]

PRESET_lat

transpCtrl

shiftEnaCtrl

PWRITE &&
PSEL &&
PENABLE &&
PADDR==ID_REG1

PRESET_lat
R

PRESET

R

Figure 38. A read-write latch register after DFT measures.

Figure 39. A read-write latch register after DFT measures coded in SystemVerilog.

59

4.5.3 Improving controllability

The added OR gates, making the latches transparent during shift, bring a problem of

controllability. The port of the OR gate, that is connected to the shift enable, cannot be fully

stuck-at tested since it is always low during capture. This results in large fault coverage loss as

there is one of these OR gates for every latch register. The controllability can be increased by

OR gating the shift enable with a control point, like in Figure 40. An AND gate is used to

disable the control point when not in scan mode. Two flip-flops are used in the control point so

that sequential control patterns can be created by the ATPG tool. The same control point is

shared by all the OR gates, that make the register latches transparent, minimising the area

overhead. The control point allows the OR gates to be fully stuck-at tested.

PMIC digital

OR

scanMode

D Q

AND

Register bank 4

transpCtrl

shiftEna

D Q

shiftEnaCtrl

scanMode

D Q

AND

D Q

OR

shiftEna

arst

D QD Q

shiftEna AND

 0

1

M
U

X

PRESET_lat

Latch register

Latch register

Register bank 3

transpCtrl

shiftEnaCtrl

PRESET_lat

Latch register

Latch register

Register bank 2

transpCtrl

shiftEnaCtrl

PRESET_lat

Latch register

Latch register

Register bank 1

transpCtrl

shiftEnaCtrl

PRESET_lat

Latch register

Latch registerscanMode

Figure 40. Increasing fault coverage by adding control points.

60

Since the address, PADDR, signal is used to create the enable signal to the clock gates of

the latch registers, the clock to only one register can be on at a time, resulting in low

controllability. The controllability can be increased by OR gating the shift enable with a control

point, like in Figure 40. The control point is identical to the control point used for the OR gates

making latches transparent. Two different control points are used to avoid masked faults, since

the control points converge at the OR gate making the latches transparent. All the latch register

clock gates share the same control point, making it possible for the ATPG tool to enable the

clock for all the latch registers simultaneously, resulting in increased fault coverage.

The reset pin of scan flip-flops can be stuck-at tested by shifting in an opposite value to the

reset value, pulsing the reset active and then shifting out and checking that the value inside the

flip-flop was changed to the reset value [33]. The reset pin of latches cannot be tested this way

since the latches are not scannable. The reset pin of latches can be made testable by connecting

it to a control point, like in Figure 40. A multiplexer is used to select the control point in scan

mode and the normal reset in normal mode. An AND gate is used to ensure that the reset is

inactive during shift, and that the latches are kept transparent. Two flip-flops are used in the

control point, so that sequential reset patterns can be created. The pattern for the reset is shifted

to the scannable flip-flops and then executed during capture.

61

5 RESULTS

A reference design, implemented entirely with flip-flops, and a proposed latch register design,

were synthesized. This chapter presents three types of results gathered from the synthesized

designs. The area results of the latch register and reference designs are compared to see the area

benefit of the latch replacement. Then, the power consumption results are compared to see the

effect of the latch replacement on power consumption. Lastly, the ATPG results are compared

to see the effect of the latch replacement on fault coverage and testing time.

5.1 Area results

To get area results, the latch register design, described in chapters 4.3 and 4.5, and the reference

design, described in chapter 4.1, were synthesized. Design Compiler [29], made by Synopsys,

was used as the synthesis tool.

All read-write and OTP registers that are 3-bits or wider, were implemented with latches in

the latch register design. Read-write and OTP registers, that are 2 bits or smaller were

implemented entirely with flip-flops. Both designs were synthesized with automatic clock

gating, with the tool configured to insert clock gates to registers that are 3-bits or wider.

Area results, for the synthesized reference and latch register designs, are presented in Table

3. The total sequential area of the latch register design is decreased roughly 9% compared to

the reference design. This results from 1220 flip-flops being replaced with latches in the latch

register design. Some of the area gain is lost because of the 28 low active write data latches and

the 6 control flip-flops that were added to the latch register design.

Table 3. Area results

 Reference
Latch register Latch register as % of

reference

Data latches 0 1220

Flip-flops 5428 4214

Clock gates 600 600

Combinational

area
408 969 um2 421 977 um2 103%

Sequential

area
707 620 um2 640 810 um2 91%

Total area 1 116 588 um2 1 062 787 um2 95%

Gates in

NAND2

equivalents

71 211 67 780 95%

The latch replacement also results in roughly 3% combinational area increase compared to

the reference design. This mostly results from there being an extra OR gates in the clock tree

for each latch register.

The increased combinational area is overshadowed by the decreased sequential area. The

latch replacement ends up resulting in an overall area decrease of 5%, compared to the reference

design.

The benefit of the latch registers is somewhat masked by all the area in the rest of the digital

logic. The benefit is seen more clearly from the register bank area results, presented in Table 4.

62

The latch replacement results in roughly 15% register bank area decrease, compared to the flip-

flop-based reference design.

Table 4. Register bank area results

 Reference
Latch register Latch register as % of

reference

Register bank 1

area
138 059 um2 118 726 um2 86%

Register bank 2

area
41 169 um2 34 499 um2 84%

Register bank 3

area
95 444 um2 81 799 um2 86%

Register bank 4

area
81 341 um2 66 113 um2 81%

Total register

bank area
356 014 um2 301 137 um2 85%

5.2 Power consumption results

Power consumption is an important metric, along with area, that should be considered when

assessing the overall benefit of the latch replacement. The synthesized gate level netlist and a

switching activity information format (SAIF) file, generated from RTL simulations, were used

to gather the power consumption results. The activity information was taken from a simulation,

where register bank 1 was being written to and read from. This activity information was chosen,

so that the effect of the latch replacement would be seen more clearly than from more realistic

activity information, where the register banks are not accessed as often.

The power consumption results, for the reference and latch register designs, are presented in

Table 5. The dynamic power consumption of the latch register design is roughly 1.6% larger

than for the reference design. The static power consumption of the latch register design is

roughly 0.7% smaller. Since the dynamic power consumption is much larger than the static

power consumption, the total power consumption, for the latch register design, ends up being

roughly 1.5% larger.

Table 5. Power consumption results

 Reference
Latch register Latch register as % of

reference

Dynamic

power

consumption

1.112 mW 1.130 mW 101.6%

Static power

consumption
1.924 uW 1.910 uW 99.3%

Total power

consumption
1.114 mW 1.131 mW 101.5%

The increased dynamic power consumption results from the switching power consumption

of the clock pins of the latches being higher compared to flip-flops and from the OR gates that

were added to make the register latches transparent.

63

5.3 ATPG results

Cost is an important metric, along with area and power consumption, that should be considered

when assessing the benefit of the latch replacement. Reduced fault coverage will lead to more

defective products being shipped to customers, increasing returns and costs. Increased testing

time increases the cost of the testing itself.

Test patterns for stuck-at, IDDQ and transition faults were generated with Tessent [25], made

by Siemens AG. The patterns, for both the reference and latch register designs, were generated

using the same tool settings.

5.3.1 Stuck-at fault results

The stuck-at fault ATPG results, for the reference and latch register designs, are presented in

Table 6. With the help of the DFT methods presented in chapter 4.5, a stuck-at fault coverage

of 99.06% was achieved for the latch register design, while the reference design achieves a

99.09% stuck-at fault coverage. The stuck-at fault coverage of the 4 register banks is similarly

close between the reference and latch register designs.

Table 6. Stuck-at fault results

 Reference Latch register

Test coverage 99.13% 99.10%

Fault coverage 99.09% 99.06%

ATPG

effectiveness
100.00% 99.97%

Test patterns 920 1803

Basic patterns 918 400

Sequential

patterns
2 1403

Register bank 1

fault coverage
98.31% 98.22%

Register bank 2

fault coverage
99.84% 99.83%

Register bank 3

fault coverage
99.95% 99.95%

Register bank 4

fault coverage
99.94% 99.94%

The main drawback of the latch register design is the increased number of test patterns. As

there are roughly 97% more test patterns for the latch register design, the testing time is

increased.

64

5.3.2 IDDQ fault results

The IDDQ fault ATPG results, for the reference and latch register designs, are presented in

Table 7. The latch register design has a worse IDDQ fault coverage, for the register banks. This

results from the ATPG tool being unable to generate sequential patterns to test the inputs of the

latches, reporting them as blocked.

Table 7. IDDQ fault results

 Reference Latch register

Test coverage 98.65% 98.59%

Fault coverage 92.85% 91.33%

ATPG

effectiveness
100.00% 100.00%

Test patterns 519 587

Basic patterns 505 565

Sequential

patterns
14 22

Register bank 1

fault coverage
92.78% 88.08%

Register bank 2

fault coverage
90.70% 84.93%

Register bank 3

fault coverage
93.65% 88.56%

Register bank 4

fault coverage
90.83% 83.79%

The latch replacement does not affect the number of IDDQ test patterns as significantly as

the number of stuck-at test patterns. The number of IDDQ test patterns is roughly 13% higher

for the latch register design.

5.3.3 Transition fault results

The transition fault ATPG results, for the reference and latch register designs, are presented in

Table 8. The overall fault coverage and the register bank fault coverage is higher for the latch

register design. The higher fault coverage results from the DFT measures of chapter 4.5.3

improving controllability. The ATPG tool manages to report fault coverage for the reset pins

of the latches, while the reset pins of the scan flip-flops are not fully covered. This results from

the control point connected to the resets pins of the latches. The ATPG tool also manages to

report fault coverage for faults in the scan enable pins of the manually inserted clock gating

cells, also caused by the control point that was inserted in the latch register design.

Table 8. Transition fault results

 Reference Latch register

Test coverage 84.19% 85.31%

Fault coverage 82.46% 83.54%

ATPG

effectiveness
99.65% 99.78%

65

Test patterns 3000 3300

Basic patterns 9 9

Sequential

patterns
2991 3291

Register bank 1

fault coverage
79.36% 83.09%

Register bank 2

fault coverage
83.72% 86.64%

Register bank 3

fault coverage
87.23% 90.60%

Register bank 4

fault coverage
83.87% 87.25%

The latch replacement also increases the testing time of transition faults. The number of

transition test patterns is 10% larger for the latch register design.

66

6 DISCUSSION

The main goal for the thesis was to decrease area of digital logic in a PMIC. The goal was

reached with a total area decrease of 5% and a register bank area decrease of 15%, compared

to the reference PMIC. The 5% area decrease is significant as it can already result in large

profits when millions of ICs are manufactured.

The area benefit of the latch replacement is highly PMIC dependent. It is determined by the

flip-flop area in read-write and OTP registers, compared to the rest of the digital area. Designs

with more registers benefit more from this method. The average width of the read-write and

OTP registers also effect the area benefit. As future work, studying how to fully populate all

registers to be 8-bit wide could be considered to maximise the area benefit of the replacement.

Read-write and OTP registers are the most common source of flip-flops in the reference

design, and they were also found the best suited for latch replacement due to their structure.

This already resulted in roughly 25% of all the flip-flops to be replaced with latches. As future

work, determining other suitable flip-flops to be replaced, and replacing them could be

considered.

Although the latch replacement method was developed with PMICs particularly in mind, it

is suited for all ICs containing flip-flop-based register banks. This is significant as Nordic

Semiconductor also makes Bluetooth, Wi-Fi and cellular IoT ICs that most likely could use the

latch replacement method. As future work, finding out which products at Nordic Semiconductor

are suited for the latch replacement method could be considered.

The second goal of not significantly increasing the power consumption was also met, as the

total power consumption increased by only 1.5%. The effect of the latch replacement on power

consumption was contradictory, as the dynamic power consumption was increased by 1.6%,

but the static power consumption was decreased by 0.7%. The results were taken from activity,

where a register bank was continuously written to and read from. In a more realistic situation,

the PMIC might be configured at start-up, but then the configuration registers would probably

be seldomly accessed and the clock would be off most of the time. Because of that, the

decreased static power consumption is significant.

The increase in the dynamic power consumption resulted from the OR gates, that were added

to the clock three, and from the switching power consumption of the clock pins of latches

unexpectedly being higher than of flip-flops according to the modelled library data. As future

work, the reason for this unexpected switching power consumption could be researched, so that

the power consumption could be decreased.

The third goal of maintaining the quality of manufacturing testing was also met. As the stuck-

at fault model is a widely used fault model, and stuck-at test patterns have been shown to detect

many of the faults based on other models, the most effort in this thesis was spent on improving

the stuck-at fault coverage of the latch register design. The innovation of leaving one bit of each

register as a flip-flop was significant in improving fault coverage, without increasing the silicon

area significantly. The stuck-at fault coverage ended up being roughly the same compared to

the reference design. The drawback is that the number of test patterns needed to achieve this

coverage was roughly doubled.

Due to the reduced observability of the faults in the latch registers, most of the faults in the

rest of the circuit are detected in the first test patterns and the later test patterns only detect a

comparatively small number of faults in the latch registers. This means that the testing time

could be significantly decreased by sacrificing some fault coverage in the latch registers. As

future work, the optimal number of test patterns could be studied to optimize the costs from

increased returns with the costs from decreased testing time.

67

The quality of the transition testing was improved, as the fault coverage was increased. The

improvement caused by the improved controllability of the scan enable pins of the clock gates

is deceptive and can be disregarded, as they are only used in scan testing and do not affect the

normal operation of the circuit. The increased fault coverage for the reset pins of the latches

compared to the reset pins of flip-flops is more significant. A slight downside is that the number

of test patterns was increased by 10%.

The quality of the IDDQ testing was not completely maintained, as the fault coverage was

decreased. The testing time was also slightly increased, with a 13% increase in the number of

test pattern. The fault coverage decrease is not very significant, as the number of dedicated

IDDQ test patterns is small compared to total number of patterns. Monitoring the quiescent

supply current during stuck-at testing already gives quite good IDDQ fault coverage. As future

work, the IDDQ fault coverage of the latch register design could be also improved closer to that

of the reference design.

The LSSD scan style, covered in chapter 3.1.3, is the most well-known method of dealing

with latches. The main downside with it is that a dummy latch needs to be added for each latch

in the design. Another downside is that it requires 2 extra clock signals to be routed. The partial

scan method developed in this thesis is much more area efficient, only having the first bit of

each latch register scannable, only using one OR gate per latch register and having less routing

complexity.

The most similar partial scan method, found during researching the theory part of the thesis,

was the method of modelling the latches as combinational gates and preloading them with

known values, of [12], presented in chapter 3.1.4. The method requires adding multiplexers to

the data inputs of the latches and OR gating a force write signal to the clock inputs of the latches.

Since the latches are also modelled as combinational gates, it requires modifying the gate level

netlists. The partial scan method developed in this thesis is much more area efficient, only using

a single OR gate per latch register to bring the latches into known states. The improved

observability from the innovation of leaving one bit as a scannable flip-flop and the added

control points most likely also results in much larger fault coverage. Another upside of the

partial scan method developed in this thesis is that it is well supported by the existing design

automation tools, not requiring any gate-level netlists to be manually modified.

68

7 SUMMARY

The main purpose of this thesis was to decrease the area of a flip-flop-based reference PMIC

by replacing selected flip-flops with latches. The secondary goals for the thesis were to not

increase the power consumption and not to decrease the manufacturing fault coverage, caused

by the latch replacement method.

The thesis first provided some necessary background theory on the differences of latches

and flip-flops. Latches are transparent on clock active level, whereas flip-flops are transparent

only on clock active edge. The transparent nature of latches makes them ill-suited for shift

registers and so ill-suited for the most common manufacturing testing method of scan testing.

Pulsed latches and pulsed flip-flops behave similarly to flip-flops if the clock pulse is short

enough. A disadvantage is the increased power consumption caused by the pulser.

The thesis then provided some necessary background theory on design for testability

methods. Scan testing improves the controllability and observability of a design by replacing

flip-flops in a design with scan flip-flops and connecting into scan chains. Partial scan reduces

the area overhead of the scan cells by leaving some sequential elements as non-scannable. A

disadvantage is that the fault coverage can decrease and the testing time increase, due to the

reduced controllability and observability. BIST schemes incorporate testing features on the

CUT itself. A disadvantage of the BIST methods is the area overhead of the BIST logic.

As the average register width of the reference PMIC was small, and the power consumption

overhead of the pulser in a pulsed latch design is dependent on how many latches can share a

pulser, it was decided to investigate decreasing the area with latches instead. Flip-flops in read-

write and OTP registers, of the reference PMIC, were identified as suitable to be replaced with

latches.

The latch register method developed in this thesis saves area, by sharing the primary latches

for all the latch registers. The write data is loaded to shared negative level active primary latches

on the negative level of the clock. The primary latch outputs are connected to several secondary

latches. Clock gating is used to determine which latch register, acting as the secondary latches,

the data is loaded to on the positive level of the clock.

The area overhead of the traditionally used DFT methods for testing latches, such as memory

and logic BIST and LSSD scan style were determined to be suboptimal due to their large area

overhead. Partial scan was selected as the DFT method instead, as it was estimated that the fault

coverage could be maintained with the sequential depth only being 2.

The register latches were made transparent during the shift operation of scan testing with

OR gates. This allowed the latches to be set into known states during shift and then sequentially

tested during capture. Observability of clock gating logic was improved by keeping the first bit

of each latch register as flip-flop, allowing the clock gating logic to be observed from the flip-

flop directly. A sequential multiplexer control point was added to the asynchronous reset pins

of the latches, to be able to stuck-at test them. A sequential OR control point was added to the

shift enable pins of the latch clock gates, to improve the controllability of the clock gates.

Another sequential OR control point was added to the pins of the OR gates, making the latches

transparent, to make them stuck-at testable.

The latch replacement resulted in 5% total area decrease and 15% register bank area

decrease. The price of the area decrease is a slight increase in power consumption. The latch

replacement method manages to maintain stuck-at fault coverage, but results in roughly twice

as many test patterns needed to achieve that coverage. Another disadvantage of the replacement

is some IDDQ fault coverage being lost.

69

8 REFERENCES

[1] Harris, D. M. & Harris, S. L. (2007). Digital design and computer architecture. Morgan

Kaufmann.

[2] Holdsworth, B. & Woods, R. C. (2002). Digital logic design (4th ed.). Newnes.

[3] Sinclair, I. R., & Dunton, J. (2007). Practical Electronics Handbook: Vol. 6th ed. Newnes.

[4] Mano, M. M., & Ciletti, M. (2013). Digital design: with an introduction to the Verilog

HDL. Pearson.

[5] Harris, D. M. (2001). Skew-tolerant Circuit Design. Morgan Kaufmann.

[6] Wai Kai Chen. (2005). The Electrical Engineering Handbook. Academic Press.

[7] Laung-Terng W., Cheng-Wen W., & Xiaoqing W. (2006). VLSI Test Principles and

Architectures : Design for Testability. Morgan Kaufmann.

[8] Williams, M.J., & Angell, J.B. (1973). Enhancing Testability of Large-Scale Integrated

Circuits via Test Points and Additional Logic. In: IEEE Transactions on Computers, vol.

C-22, no. 1, pp. 46-60, Jan. 1973, doi: 10.1109/T-C.1973.223600.

[9] Eichelberger, E.B., & Williams, T.W. (1977). A logic design structure for LSI testability.

In: Proceedings of the 14th Design Automation Conference (DAC '77). IEEE Press, 462–

468, doi: 10.1145/62882.62924.

[10] TestMAX DFT User Guide, version S-2021.06-SP5. Available:

https://spdocs.synopsys.com/dow_retrieve/latest/home_public/tm_dft.html

[11] Beest, F.T., Peeters, A.M., Kerkhoff, H.G., & Berkel, K.V. (2002). Scan Chain

Optimization for Asynchronous Circuits. In: Proceedings Prorisc workshop (pp. 288-

294).

[12] Hui, M. M. Y., & Nadeau-Dostie, B. (1992). Scan testing of latch arrays. In: Digest of

Papers. 1992 IEEE VLSI Test Symposium, Atlantic City, NJ, USA, 1992, pp. 31-36, doi:

10.1109/VTEST.1992.232720.

[13] Sheth, A. M., & Savir, J. (2003). Single-clock, single-latch, scan design. In: IEEE

Transactions on Instrumentation and Measurement, vol. 52, no. 5, pp. 1455-1457, Oct.

2003, doi: 10.1109/TIM.2003.818550.

[14] Tsukisaka, M., Imai, M., & Nanya, T. (2004). Asynchronous scan-latch controller for low

area overhead DFT. In: IEEE International Conference on Computer Design: VLSI in

Computers and Processors, 2004. ICCD 2004. Proceedings., pp. 66-71, doi:

10.1109/ICCD.2004.1347901.

[15] Bushnell, M. L. & Agrawal, V. D. (2000). Essentials of electronic testing for digital,

memory and mixed-signal VLSI circuits. Kluwer Academic.

[16] Chickermane, V., Richter, S., & Barnhart, C. (2000). Integrating Logic BIST in VLSI

Designs with Embedded Memories. In: Proceedings 18th IEEE VLSI Test Symposium,

2000, pp. 157-164, doi: 10.1109/VTEST.2000.843840.

[17] Van de Goor, A. J., & Tlili, I. B. (1998). March tests for word-oriented memories. In:

Proceedings Design, Automation and Test in Europe, pp. 501-508, doi:

10.1109/DATE.1998.655905.

[18] Al-Harbi, S. M., & Gupta, S. K. (2001). An efficient methodology for generating optimal

and uniform march tests. In: Proceedings 19th IEEE VLSI Test Symposium. VTS 2001,

2001, pp. 231-237, doi: 10.1109/VTS.2001.923444.

[19] Zarrineh, K., & Upadhyaya, S. J. (1999). On programmable memory built-in self test

architectures. In: Design, Automation and Test in Europe Conference and Exhibition,

70

1999. Proceedings (Cat. No. PR00078), 1999, pp. 708-713, doi:

10.1109/DATE.1999.761207.

[20] Boutobza, S., Nicolaidis, M., Lamara, K. M., & Costa, A. (2005). Programmable memory

BIST. In IEEE International Conference on Test, 2005, pp. 10 pp.-1164, doi:

10.1109/TEST.2005.1584083.

[21] Rajsuman, R. (1999). Testing a system-on-a-chip with embedded microprocessor. In:

International Test Conference 1999. Proceedings (IEEE Cat. No. 99CH37034), 1999, pp.

499-508, doi: 10.1109/TEST.1999.805773.

[22] Tsai, C. H., & Wu, C. W. (2001). Processor-programmable memory BIST for bus-

connected embedded memories. In: Proceedings of the 2001 Asia and South Pacific

Design Automation Conference, 2001, pp. 325-330, doi:

10.1109/ASPDAC.2001.913327.

[23] Bodoni, M. L., Benso, A., Chiusano, S., Di Carlo, S., Di Natale, G., & Prinetto, P. (2000).

An effective distributed BIST architecture for RAMs. In: Proceedings IEEE European

Test Workshop, 2000, pp. 119-124, doi: 10.1109/ETW.2000.873788.

[24] Miyazaki, M., Yoneda, T., & Fujiwara, H. (2006). A memory grouping method for

sharing memory BIST logic. In Proceedings of the 2006 Asia and South Pacific Design

Automation Conference, 2006, pp. 671-676, doi: 10.1109/ASPDAC.2006.1594763.

[25] Tessent Scan and ATPG User’s Manual, Software version 2021.4, document revision 23.

Available: https://support.sw.siemens.com/en-US/product/852852118

[26] Mitić, M., & Stojčev, M. (2006). An overview of on-chip buses. In: Facta universitatis-

series: Electronics and Energetics, 19(3), 405-428.

[27] AMBA Specification (Rev 2.0).

[28] AMBA APB Protocol Secification v2.0.

[29] Design Compiler User Guide, version T-2022.03. Available:

https://spdocs.synopsys.com/dow_retrieve/latest/home_public/synthesis.html

[30] Paik, S., & Shin, Y. (2010). Pulsed-latch circuits to push the envelope of ASIC design.

In: International SoC Design Conference, 2010, pp. 150-153, doi:

10.1109/SOCDC.2010.5682949.

[31] Bernard, S. (2014). Robust and energy-efficient explicit pulse-triggered flip-flops in

28nm FDSOI technology for ultra-wide voltage range and ultra-low power circuits.

[32] Chang, C. L., Jiang, I. H. R., Yang, Y. M., Tsai, E. Y. W., & Chen, A. S. H. (2012). Novel

pulsed-latch replacement based on time borrowing and spiral clustering. In: Proceedings

of the 2012 ACM international symposium on International Symposium on Physical

Design, March 2012, pp. 121-128, doi: 10.1145/2160916.2160944.

[33] Why some patterns do not have capture clock pulse? (Accessed April 21, 2022). Siemens

AG, URL: https://support.sw.siemens.com/knowledge-base/MG57862

https://support.sw.siemens.com/en-US/product/852852118
https://spdocs.synopsys.com/dow_retrieve/latest/home_public/synthesis.html
https://support.sw.siemens.com/knowledge-base/MG57862

