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ABSTRACT 

The purpose of this thesis was to decrease the area of digital logic in a power management 

integrated circuit (PMIC), by replacing selected flip-flops with latches. The thesis consists 

of a theory part, that provides background theory for the thesis, and a practical part, that 

presents a latch register design and design for testability (DFT) method for achieving an 

acceptable level of manufacturing fault coverage for it. 

The total area was decreased by replacing flip-flops of read-write and one-time 

programmable registers with latches. One set of negative level active primary latches were 

shared with all the positive level active latch registers in the same register bank. Clock 

gating was used to select which latch register the write data was loaded to from the 

primary latches. The latches were made transparent during the shift operation of partial 

scan testing. The observability of the latch register clock gating logic was improved by 

leaving the first bit of each latch register as a flip-flop. The controllability was improved 

by inserting control points. 

The latch register design, developed in this thesis, resulted in a total area decrease of 

5% and a register bank area decrease of 15% compared to a flip-flop-based reference 

design. The latch register design manages to maintain the same stuck-at fault coverage as 

the reference design. 

 

Key words: manufacturing testing, partial scan testing, power management integrated 

circuit, area, power consumption and fault coverage. 
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TIIVISTELMÄ 

Tämän opinnäytetyön tarkoituksena oli pienentää digitaalisen logiikan pinta-alaa 

integroidussa tehonhallintapiirissä, korvaamalla valitut kiikut salpapiireillä. 

Opinnäytetyö koostuu teoriaosasta, joka antaa taustatietoa opinnäytetyölle, ja käytännön 

osuudesta, jossa esitellään salparekisteripiiri ja testattavuussuunnittelun menetelmä, jolla 

saavutettiin riittävän hyvä virhekattavuus salparekisteripiirille. 

Kokonaispinta-alaa pienennettiin korvaamalla luku-kirjoitusrekistereiden ja kerran 

ohjelmoitavien rekistereiden kiikut salpapiireillä. Yhdet negatiivisella tasolla aktiiviset 

isäntä-salpapiirit jaettiin kaikkien samassa rekisteripankissa olevien positiivisella tasolla 

aktiivisten salparekistereiden kanssa. Kellon portittamisella valittiin mihin 

salparekisteriin kirjoitusdata ladattiin yhteisistä isäntä-salpapireistä. Osittaisessa 

testipolkuihin perustuvassa testauksessa salpapiirit tehtiin läpinäkyviksi siirto-

operaation aikana. Salparekisterin kellon portituslogiikan havaittavuutta parannettiin 

jättämällä jokaisen salparekisterin ensimmäinen bitti kiikuksi. Ohjattavuutta 

parannettiin lisäämällä ohjauspisteitä. 

Salparekisteripiiri, joka suunniteltiin tässä diplomityössä, pienensi kokonaispinta-alaa 

5 % ja rekisteripankin pinta-alaa 15 % verrattuna kiikkuperäiseen vertailupiiriin. 

Salparekisteripiiri onnistuu pitämään saman juuttumisvikamallin virhekattavuuden kuin 

vertailupiiri. 

 

Avainsanat: tuotannon testaus, osittainen testipolkuihin perustuva testaus, integroitu 

tehonhallintapiiri, pinta-ala, tehonkulutus ja virhekattavuus. 
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1 INTRODUCTION 

The emergence of the internet of things (IoT) phenomenon has brought an explosion of 

lightweight sensors being placed in all kinds of objects and sharing the sensor data wirelessly. 

For the analogue, digital, and mixed signal circuits of these IoT devices to work properly, they 

should be provided with clean and correct level supply voltages. Such voltages are converted 

from raw supplies, like batteries, with power management integrated circuits (PMICs). 

A simple PMICs can be just a low-dropout (LDO) regulator, that converts the battery voltage 

to a clean and correct level supply voltage. Most PMICs are much more complicated, often 

offering safety and control features. These more complex features are often implemented, at 

least in part, with digital logic. 

The cost, size, and power consumption are important characteristics of PMICs. These 

characteristics are however often in conflict with each other. Integrated circuits (ICs) have 

traditionally incorporated ever increasing amounts of logic on smaller areas by moving to 

smaller and smaller technology nodes. PMICs have not been able to fully harness the area 

benefits of these smaller nodes due to their power requirements. PMICs need to be able to 

handle all the current going through them that go to the rest of the system. Transistors with 

large currents going through them need to be made large, regardless of the technology size. 

Making large transistors in small technologies is more expensive than in larger technologies. 

The power density also needs to be kept at an acceptable level. If the PMIC is made too small, 

too much power can be concentrated on a small area, leading to high temperatures. Another 

consideration, especially for battery powered applications, is the quiescent current 

consumption. The subthreshold leakage current generally increases when the channel length of 

a transistor decreases in the smaller technologies. 

Another option to decrease the area is to implement the same functionality with fewer 

transistors. Most of the digital logic area consists of D flip-flops. From the area point of view, 

large area savings are available if they were replaced with D latches, since D latches are roughly 

half the size of D flip-flops. Replacing flip-flops with laches would result in either smaller area, 

and reduced chip cost, or more functionality in the same area, and increased chip value. The 

area of digital logic directly affects the size and cost of a product. With large volumes, even a 

slight cost decrease can produce large profits. 

The main objective of the thesis is to decrease the area of digital logic in a PMIC, by 

replacing selected flip-flops with latches. The latch replacement should not significantly 

increase the power consumption of a PMIC. The latch replacement should also not significantly 

affect the quality of manufacturing testing. 

The scope of the thesis is as follows: 

 

• Literature review of flip-flop and latch characteristics is carried out to help in selecting 

flip-flops that are suited to be replaced with latches or pulsed latches in a PMIC. 

• Literature review of design for testability (DFT) methods is carried out to help in 

selecting a suitable DFT method for the latch based PMIC design. 

• Selecting and implementing a suitable latch based PMIC design, based on findings from 

the literature review, and the structure of a reference PMIC. 

• Selecting and implementing a suitable DFT method, based on findings from the 

literature review and the structure of the latch based PMIC. 

 

The thesis is organized into the following chapters: 
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• Chapter 1 introduces the thesis and describes the motivation and objectives for the 

thesis. 

• Chapter 2 presents the background theory of sequential logic.  

• Chapter 3 presents background theory of design for testability methods. 

• Chapter 4 presents a latch register design using partial scan as the DFT method, that 

reduces the area of a flip-flop-based reference PMIC design. 

• Chapter 5 presents the area, power consumption and automatic pattern generation 

results for the latch register design, compared against the flip-flop-based reference 

design. 

• Chapter 6 provides discussion on the practical work, the results, and possible future 

work. 
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2 SEQUENTIAL LOGIC 

Digital circuits consist of combinational and sequential logic. Combinational logic consists of 

logic gates, such as NAND and NOR gates. The outputs of combinational logic depend only on 

the states of its inputs. Unlike combinational logic, the outputs of sequential logic also depend 

on the previous state of its inputs through feedback. Sequential logic has memory and is made 

of flip-flops and latches.  [1, 2] 

The distinction between latches and flip-flops is not always completely clear. Edge triggered 

circuits are considered flip-flops in [1] and [2], while level triggered circuits are considered 

latches. On the other hand, level triggered circuits are considered flip-flops in [3]. This thesis 

considers edge triggered circuits to be flip-flops, where the output changes on the positive or 

negative edge of the clock signal. Level triggered circuits are considered synchronous latches, 

where the output changes when the clock signal is either high or low. Asynchronous latches do 

not have a clock input and the output changes when the inputs are changed. 

 

 

2.1 Latches 

Two cross-coupled inverters form a building block of sequential circuits, a bistable element. 

The element, in Figure 1, has zero inputs and two complementary outputs, Q and Q̅. The outputs 

have two stable states, Q=0 and Q̅=1 or Q=1 and Q̅=0, which makes the element bistable. It can 

store one bit of information, but it is not very useful as it has no inputs to control its state. [1, 

2] 

Q

  
 

Figure 1. Cross-coupled inverter pair. 

 

Replacing the two cross-coupled inverters with two NAND gates, like in Figure 2, or two 

NOR gates, like in Figure 3, gives us the SR latch. The state of the SR latch can now be 

controlled though the S and R inputs. The difference between the NAND and NOR 

implementations is the polarity at which the inputs are asserted active. The NOR 

implementation has active high inputs, and the NAND implementation has active low inputs. 

The S input sets the output Q high, and the R input resets it low. If neither the S nor R input is 

asserted, the output keeps its previous state. Having both inputs asserted at the same time, would 

lead to both outputs, Q and Q̅, having the same value. It would mean the two outputs are no 

longer complementary. If both inputs are then de-asserted at the same time, the next output will 

be unpredictable. For these reasons, having both inputs asserted at the same time is an invalid 

condition. [1, 2, 3] 
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Q
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Figure 2. Asynchronous SR latch with two NAND gates. 

 

Q

  

NOR

NOR

R

S
 

Figure 3. Asynchronous SR latch with two NOR gates. 

 

The SR latch presented above is asynchronous by nature, the change in input is seen 

immediately in the output. It can be made synchronous by slightly modifying it and adding a 

clock input, like in Figure 4. The clock, ck, signal can now be used to control the transparency 

of the latch. When ck is low, the outputs of the first two NAND gates will be high, regardless 

of the values of S and R and the latch keeps its old output value. When ck is high, the S and R 

inputs have immediate effect on the Q and Q̅ outputs. [2, 3] 

 

Q

  

S

R

NAND

NAND

NAND

NAND

ck

 
Figure 4. Synchronous SR latch with four NAND gates. 

 

Adding cross coupled feedback to the synchronous SR latch gives use the JK latch of Figure 

5. Note that the input signal names have been changed from S to J and R to K. The benefit of 

the added feedback is that both inputs can be active at the same time because complementary 

outputs, for Q and Q̅, are guaranteed. However, there is still the problem that when both inputs 

and the clock are active, the outputs will oscillate back and forth from high to low, until the 

clock signal goes inactive. Similarly to the synchronous SR latch, the JK latch is set when the 
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J input and clock are high and reset when the K input and clock are high. The JK latch also 

keeps its previous state if the clock is low, regardless of the values of the J and K inputs. [2, 3] 

 

Q

  

J

K

NAND

NAND

NAND

ck

Q

  

NAND

 
Figure 5. JK latch from the synchronous SR latch with feedback. 

 

The clocked SR latch can be turned into a D latch by connecting an inverter from the S input 

to the R input. The S input is now renamed the D input and the R input is removed. The result 

is the D latch presented in Figure 6. The strange behaviour of setting and resetting the SR latch 

at the same time can now be avoided. It also has the advantage of only having one data input 

compared to the SR and JK latches. The clock is used to control when the latch is transparent. 

When ck is high, the latch is transparent, and the value of the D input is continuously loaded to 

the output of the latch. When ck is low, the output is latched to the last input, and the value of 

D input does not affect the output. [1, 2] 

 

Q

  

NAND

NAND

NAND

NAND

ck

 
Figure 6. D latch with four NAND gates and an inverter. 

 

The transparency of the latches makes them problematic to use in sequential circuits. Latches 

cannot be connected in series with the same polarity clock. If all the series connected latches 

are transparent when clock is high, a change in the input of the first latch can propagate through 

all the latches. Latches are prone to race conditions. If the input of the latch changes due to 

feedback paths, while the latch is still transparent, there will be an additional change to the 

output. Latches are also prone to glitches. Glitches at the input of the latch can propagate to the 

output when the latch is transparent. The solution is to modify the latches to be edge-triggered 

instead of level-triggered, giving us flip-flops. [2, 3] 
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2.2 Flip-flops 

A simple way of making latches edge triggered is to make the clock pulse very short, giving us 

the pulsed latch or the pulsed flip-flop. An edge detector, often also called a pulser, can be used 

to detect the rising edge of a normal 50% duty cycle clock signal and convert it to a narrow 

output pulse. [3] 

A simple edge detector can be made by connecting the clock signal to the input of an AND 

gate and connecting an inverted and delayed clock signal to the other input, like in Figure 7. 

The clock signal is delayed by the gate delay of the inverters and the number of inverters can 

be used to control the width of the output pulse. An odd number of inverters is needed to invert 

the clock signal. [3] 

 

ANDck ckPulse

 
Figure 7. Edge detector using an AND gate and three inverters. 

 

If the edge detector is integrated inside each sequential element, the element is often called 

a pulsed flip-flop, shown in Figure 8. Several latches can be made to share a single edge 

detector, often called pulsed latches, to save area and power consumption. 

 

Pulsed D flip-fop

D Q

ck

D Q

ck

ckPulse

AND

 
Figure 8. Pulsed D flip-flop from an edge detector and a D latch. 

 

The problem with using edge detection circuitry is guaranteeing the width of the output 

pulse. The gate delays of logic gates vary with different process and environmental corners such 
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as temperature and supply voltage. Using pulsed latches can be impractical for designs with 

fast clocks. [2, 3] 

A more widely used method of achieving edge triggered operation is to use a primary-

secondary structure, giving us the flip-flop. In it, a primary and a secondary latch are connected 

in series and using complementary clocks. The first latch is called the primary and the second 

latch the secondary. Since the latches use complementary clocks, both are never transparent at 

the same time. The flip-flop will be positive edge triggered if the inverted clock is provided to 

the primary latch. For negative edge triggering, the inverted clock is provided to the secondary 

latch instead. [1, 2] 

A primary-secondary D flip-flop can be constructed from two D latches, like in Figure 9. It 

works by loading the value of its data input to its output on the positive edge of the clock signal. 

When the clock signal is low, the primary latch is transparent, and the value of the data input 

signal is loaded to the output of the primary latch. On the other hand, the secondary latch is 

disabled, and it keeps its old state. Changes in the data input can only affect the output of the 

primary, but not the secondary. When the clock signal rises, the primary latch closes, and it 

retains the state it had just before the clock edge. At the same time, the secondary latch becomes 

transparent, and the output of the primary is loaded into the secondary. Since the primary latch 

is disabled, a change in the data input will not affect the output of the flip-flop. The output of 

the flip-flop can change only at the positive edge of the clock. A waveform to illustrate the 

positive edge active operation of the primary-secondary D flip-flop, of Figure 9, is shown in 

Figure 10. [1] 

 

D flip-fop

D Q

ck

D Q

ck

tmp

ckInv

D Q

ck

 
Figure 9. Primary-secondary D flip-flop from two D latches and an inverter. 
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Figure 10. An example waveform of a positive edge active primary-secondary D flip-flop. 
 

The D flip-flop is the most widely used type of sequential element [2]. It has the benefit of 
having only one data input compared to the SR and JK flip-flops. It can also be constructed out 
of a smaller number of logic gates than the JK flip-flop [4]. It also does not suffer from the 
transparency of the latches. However, as the D latch is roughly half the size of the primary 
secondary D flip-flop, it is an enticing option even with its timing problems. The pulsed flip-
flop also brings a slight size decrease, being roughly ¾ the size of a primary secondary flip-
flop. 

 
 

2.3 Resettable sequential logic 

A reset is used to force the digital circuit into a known state, especially after the voltage supplies 
are provided. When a flip-flop or a latch is reset, it ignores the data input and resets the output 
low. If the output of the sequential element is instead reset to high, it is then often called a set. 
The reset can be either active high or active low. An active high reset causes a reset when it is 
high and an active low when it is low. The reset can be either synchronous or asynchronous. 
The reset is asynchronous if it resets the flip-flops and latches immediately after the reset is 
asserted, regardless of the clock signal. The reset is synchronous if it resets the flip-flops and 
latches only after the clock is active. [1] 

A synchronous reset can easily be implemented with combinational logic to the data input 
of a latch or a flip-flop. For example, an active low synchronous reset can be implemented by 
connecting the data signal and the reset signal through an AND gate to the D input of a D flip-
flop, like in Figure 11. When the reset signal is low, the output of the AND gate is low, 
regardless of the data signal. When the reset signal is high, the output of the AND gate is 
determined by the data signal. [1] 
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D Q
data

reset

ck

AND

 
Figure 11. Synchronously resettable D flip-flop. 

 

To implement an asynchronous reset, the internal structure of the of the flip-flop or latch 

needs to be modified [1]. For example, an active low asynchronous set can be implemented by 

adding a S input to the NAND gate producing the Q output of a D latch. An active low 

asynchronous reset can be implemented by adding a R input to the NAND gate producing the 

Q̅ output. Figure 12 shows an asynchronously settable and resettable D latch. When the reset 

signal is low, it forces the Q̅ output high and Q output low. When the set signal is low, it forces 

the Q output high and the Q̅ output low. [3] 

 

Q

  

NAND

NAND

ck

NAND

NAND

S

R
 

Figure 12. Asynchronously resettable and settable D latch. 

 

 

2.4 Registers 

Flip-flops, using the same clock, can be grouped together to form registers. A group of n flip-

flops can store n-bits of binary data. In addition to flip-flops, a register can also have 

combinational logic to control how data is transferred to the flip-flops. [4] 

If all the flip-flops of a register are loaded simultaneously, it is called a parallel loaded 

register. This type of register is an important building block in digital circuits. A simple register 

with no combinational logic, like in Figure 13, transfers the data from its inputs to the outputs 

on each active clock edge. Typically, a control signal and additional logic is needed to control 

whether a new value is loaded to the register or whether the old value is kept. [4] 
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Figure 13. A four bit register with D flip-flops. 

 

Keeping the old value can be achieved by stopping the clock from running. When the control 

signal is inactive, a clock gate is used to disable the clock to the register. The flip-flops inside 

the register are prevented from updating their value due to the lack of the clock signal. This 

method has the disadvantage of adding logic on the clock path. [4] 

Another way to retain the state of the register is to control the data input of the register. The 

register output can be fed back to the input for the register to retain its value. Multiplexer 

combinational logic and the control signal can be used to select whether the register output or 

the regular load signal is fed to the input of the register. [4] 

A clock gate is larger than a multiplexer, but as the same clock gate can be used to stop the 

clock to all the flip-flops in a single register, whereas every flip-flop in a register needs their 

own multiplexer to feed back the old value, from the area point of view, clock gating is 

beneficial for multi-bit registers. 

A shift register differs from a typical register by the fact that the flip-flops are connected in 

series. The input of the first flip-flop is connected to a serial input and the output of the last flip-

flip is connected to serial output. Data is loaded to the shift register by inputting it to the serial 

input. On each clock cycle the data is shifted forward from all flip-flops in the shift register to 

the next one in the shift register. A simple shift register consists only of flip-flops, but 

combinational logic can be inserted to control when the data is shifted forwards, similar to the 

case with the parallel loaded register. [4] 

Registers are typically made from D flip-flops [1]. The parallel loaded register could be 

constructed using D latches to save area. Due to the latch being transparent on the whole active 

clock level, clock gating could be used as the loading control to reduce glitches at the same 
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time. The shift register is problematic to construct using D latches. Due to the latch being 

transparent on the whole active clock level, data input to the first latch would propagate through 

as many latches as the gate delays would permit [2]. A solution would be to have every second 

latch be positive level active and every other latch negative level active. 

 

 

2.5 Timing analysis of sequential logic 

The use of sequential logic allows for orderly operation of a circuit. Sequential storage elements 

store the state of the circuit. Combinational logic calculates the next state of the circuit from the 

current state and the external inputs. The next state of the circuit is loaded to the sequential 

elements on the next active clock edge or level. For the operation of the circuit to be clearly 

defined, the memory elements cannot mix data from the next or previous cycles with the data 

from the current cycle [5]. Minimum and maximum propagation delays can be defined between 

sequential elements. 

 

 

2.5.1 Timing of flip-flops 

On the active edge of a clock, the data input of a flip-flop is transferred to the output. The output 

starts to change after a clock-to-Q contamination delay, 𝑡𝑐𝑞𝑐𝑑, at the earliest and the change has 

finished after a clock-to-Q propagation delay, 𝑡𝑐𝑞𝑝𝑑, at the latest. [1, 5] 

The data propagates through the combinational logic to the next flip-flop after a 

contamination delay, 𝑡𝑐𝑑, at the earliest and after a propagation delay, 𝑡𝑝𝑑, at the latest. The 

flip-flop samples the correct value, if the data inputs settle a setup time, 𝑡𝑠𝑒𝑡𝑢𝑝, before the active 

clock edge and stay stable a hold time, 𝑡ℎ𝑜𝑙𝑑, after. Possible skew, 𝑡𝑠𝑘𝑒𝑤, between the clocks to 

the launching and receiving flip-flops needs to be also taken to account in the timing analysis. 

The time window, that the data inputs need to be stable in, is show in Figure 14. [1, 5] 
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Figure 14. The setup and hold requirements of a D flip-flop. 

 

Since the clock period is often a fixed requirement and the clock-to-Q propagation delay, 

setup time and hold times are specified by the technology used, the only variable usually 

controllable by the designer is the propagation delay of the combinational logic paths. The 

maximum propagation delay allowed between flip-flops for the data to arrive setup time before 

the next active clock edge is 

 

 𝑡𝑝𝑑 ≤ 𝑇𝑐 − 𝑡𝑐𝑞𝑝𝑑 − 𝑡𝑠𝑘𝑒𝑤 − 𝑡𝑠𝑒𝑡𝑢𝑝, (1) 

 



 

 

20 

where 𝑡𝑝𝑑 is the propagation delay between two flip-flops, 𝑇𝑐 is the clock period, 𝑡𝑐𝑞𝑝𝑑 is the 

clock-to-Q propagation delay of a flip-flop, 𝑡𝑠𝑘𝑒𝑤 is the clock skew between the flip-flops and 

𝑡𝑠𝑒𝑡𝑢𝑝 is the setup time requirement. [1, 5] 

The minimum contamination delay allowed between flip-flops for the data to arrive hold 

time after the current active clock edge is  

 

 𝑡𝑐𝑑 ≥ 𝑡ℎ𝑜𝑙𝑑 + 𝑡𝑠𝑘𝑒𝑤 − 𝑡𝑐𝑞𝑐𝑑, (2) 

 

 

where 𝑡𝑐𝑑 is contamination delay between two flip-flops, 𝑡ℎ𝑜𝑙𝑑 is the hold time requirement, 

𝑡𝑠𝑘𝑒𝑤 is the clock skew between the flip-flops and 𝑡𝑐𝑞𝑐𝑑 is the clock-to-Q contamination delay 

of a flip-flop. [1, 5] 

 

 

2.5.2 Timing of latches 

Analysing the timing of latches is more complicated, as the latch is transparent on the active 

clock level and not just the edge. All consecutive latches need to use non-overlapping clocks 

so that they are not transparent at the same time. The simplest way is to use complemented 

clocks. This means one latch is transparent for the first half clock cycle and the next latch is 

transparent for the other half cycle. Another way is to use clocks with less than 50% duty cycle, 

with enough phase shift between them to not overlap. [5] 

Latches load the new data at any point in the active clock level, depending on when it arrives. 

If the data arrives before the active clock edge, the data is loaded from the input to the output 

on the active edge of the clock. A change in output is seen after a clock-to-Q contamination 

delay, 𝑡𝑐𝑞𝑐𝑑, at the earliest and after a clock-to-Q propagation delay, 𝑡𝑐𝑞𝑝𝑑, at the latest. If the 

data arrives when the clock level is already active, the data is loaded from the input to the output 

after a D-to-Q contamination delay, 𝑡𝑑𝑞𝑐𝑑, at the earliest and after a D-to-Q propagation 

delay, 𝑡𝑑𝑞𝑝𝑑, at the latest. [5] 

Similarly, to the flip-flops, the data propagates to the input of the next latch after a 

contamination delay, 𝑡𝑐𝑑, at the earliest and after a propagation delay, 𝑡𝑝𝑑, at the latest. The 

latch samples the correct value, if the data input has settled setup time, 𝑡𝑠𝑒𝑡𝑢𝑝, before the inactive 

clock edge and stays stable a hold time, 𝑡ℎ𝑜𝑙𝑑, after. [5] 

Due to the level transparent nature of latches, they can be used in a way that the data arrives 

more than the setup time and clock skew before the inactive clock edge. In that case the setup 

time and clock skew can be left out of the maximum allowed propagation delay analysis. The 

maximum allowed propagation delay between two latches using different clock edges is 

 

 𝑡𝑝𝑑 ≤
𝑇𝑐

2
− 𝑡𝑑𝑞𝑝𝑑, (3) 

 

where 𝑡𝑝𝑑 is the propagation delay between two latches, 𝑇𝑐 is the clock period and 𝑡𝑑𝑞𝑝𝑑 is the 

D-to-Q propagation delay of a latch. The clock period is divided by two, as two back-to-back 

latches use complemented clocks.  [5] 

The minimum contamination delay allowed between two latches for the data to arrive hold 

time after the inactive clock edge to the first latch is 

 

 𝑡𝑐𝑑 ≥ 𝑡ℎ𝑜𝑙𝑑 + 𝑡𝑠𝑘𝑒𝑤 − 𝑡𝑐𝑞𝑐𝑑, (4) 
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where 𝑡𝑐𝑑 is contamination delay between two latches, 𝑡ℎ𝑜𝑙𝑑 is the hold time requirement, 𝑡𝑠𝑘𝑒𝑤 

is the clock skew between the latches and 𝑡𝑐𝑞𝑐𝑑 is the clock-to-Q contamination delay of a latch. 

The clock-to-Q contamination delay is used for minimum contamination delay analysis instead 

of the D-to-Q contamination delay, as the output of the first latch can change from the active 

edge of the clock at the earliest. [5] 

 

 

2.5.3 Timing of pulsed latches 

Pulsed latches behave the same as the normal latch, with the difference being that they use short 

pulses as clock instead of the normal 50% duty cycle clock. The pulsed latches can use the same 

clock signal if the clock pulse is shorter than the propagation delay between the pulsed latches 

and the hold time requirement is not violated. If the pulses are short enough, the timing of 

pulsed latch starts to resemble that of the flip-flop. [5] 

The data input of the pulsed latch must settle setup time and clock skew before the inactive 

edge of the clock pulse. The setup time may be before the active clock edge or after, depending 

on the width of the clock pulse and the clock skew. If the clock pulse is wider than the setup 

time and clock skew combined, the data needs to only arrive when the latch is already 

transparent, and the timing analysis for the propagation delay is the same as for the normal 

latch. If the clock pulse is shorter, the data needs to arrive while the latch is not yet transparent. 

In that case the setup time and clock skew need to be considered in the maximum allowed 

propagation delay, similarly to the flip-flop case. The maximum allowed propagation delay 

between two pulsed latches is 

 

 𝑡𝑝𝑑 ≤ 𝑇𝑐 − 𝑡𝑑𝑞𝑝𝑑 − max (0, 𝑡𝑠𝑒𝑡𝑢𝑝 +  𝑡𝑠𝑘𝑒𝑤 −  𝑡𝑝𝑤), (5) 

 

where 𝑡𝑝𝑑 is the propagation delay between two latches, 𝑇𝑐 is the clock period, 𝑡𝑑𝑞𝑝𝑑, is the D-

to-Q propagation delay of a latch, 𝑡𝑠𝑒𝑡𝑢𝑝 is the setup time, 𝑡𝑠𝑘𝑒𝑤 is the clock skew and 𝑡𝑝𝑤 is 

the pulse width of the clock. [5] 

The data output of the first latch can change at the active clock edge at the earliest. The data 

input of the second latch cannot change until a hold time and clock skew after the inactive edge 

of the pulse. The minimum contamination delay allowed between two latches for the data to 

arrive hold time after the inactive clock edge to the first latch is 

 

 𝑡𝑐𝑑 ≥ 𝑡𝑝𝑤 + 𝑡ℎ𝑜𝑙𝑑 + 𝑡𝑠𝑘𝑒𝑤 − 𝑡𝑐𝑞𝑐𝑑, (6) 

 

where 𝑡𝑐𝑑 is contamination delay between two latches, 𝑡𝑝𝑤 is the width of the clock pulse, 𝑡ℎ𝑜𝑙𝑑 

is the hold time requirement, 𝑡𝑠𝑘𝑒𝑤 is the clock skew between the latches and 𝑡𝑐𝑞𝑐𝑑 is the clock-

to-Q contamination delay of a latch. [5] 

As can be seen from comparing the contamination delay equations of flip-flops (4) and 

pulsed latches (6), the contamination delay of the pulsed latch depends on the pulse width and 

needs to be larger. This can result, in pulsed latch designs, to more hold time violations, that 

need to be fixed.  
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2.5.4 Time borrowing 

Due to the level transparent nature of a latch, data can arrive to the input of the latch at any time 

on the active clock level and it will propagate to the output. The propagation delay from one 

latch to the input of the next does not need to be exactly half a clock cycle. Some logic blocks 

can have larger delays while some have shorter delays. Slow logic using time allocated to faster 

logic is called time borrowing. As flip-flops are edge triggered, time borrowing is not possible 

with them. [5] 

The direction of time borrowing depends on when the latches update on the clock cycle. If 

the latches update in the beginning of the active clock level, the next latch can borrow time and 

update later in the active clock level. If the latches update at the end of the clock level, the next 

latch can update earlier and not have to wait for the end of the active clock level, giving more 

time to the next latches. Time borrowing can happen over multiple latches, as long as the data 

does not arrive so late as to cause a setup time violation in any of the latches. [5] 

As the latches update as soon as the data arrives on the active level, they naturally move to 

updating at the active clock edge. In that case, the amount of time allowed for borrowing is at 

its highest. If the data departs the first latch on its active clock edge, it normally arrives at the 

next latch half a clock cycle later. The circuit will still operate correctly if it arrives setup time 

and clock skew before the inactive clock edge of the second latch instead. The maximum time 

that can be borrowed therefore is  

 

 𝑡𝑏𝑜𝑟𝑟𝑜𝑤 ≤
𝑇𝑐

2
− 𝑡𝑠𝑒𝑡𝑢𝑝 − 𝑡𝑠𝑘𝑒𝑤, (7) 

 

where 𝑡𝑏𝑜𝑟𝑟𝑜𝑤 is the time borrowed, 𝑇𝑐 is the clock period, 𝑡𝑠𝑒𝑡𝑢𝑝 is the required setup time and 

𝑡𝑠𝑘𝑒𝑤 is the clock skew between the latches. [5] 

If the latches are transparent shorter amount of time in the cycle, the amount of time that can 

be borrowed reduces. The maximum time that can be borrowed with pulsed latches is 

 

 𝑡𝑏𝑜𝑟𝑟𝑜𝑤 ≤ 𝑡𝑝𝑤− 𝑡𝑠𝑒𝑡𝑢𝑝 − 𝑡𝑠𝑘𝑒𝑤, (8) 

 

where 𝑡𝑏𝑜𝑟𝑟𝑜𝑤 is the time borrowed, 𝑡𝑝𝑤 is the width of the clock pulse, 𝑡𝑠𝑒𝑡𝑢𝑝 is the required 

setup time and 𝑡𝑠𝑘𝑒𝑤 is the clock skew between the latches. If the pulse width is shorter than 

setup time and clock skew, time borrowing is not possible. [5] 

 

 

2.5.5 Fixing timing violations 

Violating either the setup or hold time constraints means that memory element can sample the 

input while it is still changing leading to an ambiguous output. [5] 

 To fix setup time violations, the designer can redesign the combinational logic paths 

between the sequential elements to be shorter or add sequential elements in the middle of the 

combinational logic. As we can see from equations (1), (3) and (5), the clock period can also 

be made larger to increase the allowed propagation delay.  

To fix hold time violations, the designer can add buffers between the sequential elements, 

that increase the contamination delay. As we can see from equations (2), (4) and (6), the clock 

period does not affect the contamination delay and so it cannot be used to fix hold time 

violations. [5] 
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2.6 Power consumption of CMOS logic 

The power consumption in digital complementary metal-oxide-semiconductor (CMOS) logic 

consists of static and dynamic power consumption. Dynamic power consumption results from 

the switching activity of the circuit and consists of switching power consumption and short-

circuit power consumption. When the value of a logic gate changes, its load capacitance needs 

to be charged or discharged resulting in the switching power consumption of 

 

 𝑃𝑠𝑤 = 𝐶𝐿 ∗ 𝑉𝑑𝑑
2 ∗ 𝑓 ∗ 𝑎, (9) 

 

where 𝐶𝐿 is the load capacitance, 𝑉𝑑𝑑 is the supply voltage, 𝑓 is the clock frequency and 𝑎 is 

the switching activity factor. Short-circuit current results from a momentary short-circuit 

through the transistors from the supply voltage to ground when the logic gate is switching its 

state. Short-circuit power consumption can be expressed as 

 

 𝑃𝑠𝑐 = 𝐼𝑠𝑐 ∗ 𝑉𝑑𝑑 , (10) 

 

where 𝑉𝑑𝑑 is the supply voltage and 𝐼𝑠𝑐 is the average short-circuit current. [6] 

The static power consumption represents the power consumption when the circuit is inactive. 

The transistors in the circuit conduct small amounts of leakage current event when in the cut-

off state. The static current consumption can be expressed as  

 

 𝑃𝑠𝑡 = 𝐼𝑙𝑘 ∗ 𝑉𝑑𝑑, (11) 

 

 

where 𝑉𝑑𝑑 is the supply voltage and 𝐼𝑙𝑘 is the leakage current. [6] 
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3 DESIGN FOR TESTABILITY 

Modern integrated circuits (ICs) are made with nanometre-scale lithographic techniques. Some 

of these manufactured ICs are faulty due to manufacturing defects. During the manufacturing 

process, all the ICs need to be tested to remove the faulty ones. Inadequate testing leads to faulty 

ICs being shipped to the customers. 

Manufacturing testing of digital logic is typically done with the help of automatic test 

equipment (ATE) and automatic test pattern generation (ATPG) tools. ATPG tools use 

algorithms to generate test patterns that detect faults in a faulty circuit. ATE is computer-

controlled equipment that applies test patterns to the circuit under test (CUT) and compares the 

circuit responses to the stored responses of a fault-free circuit. Fault simulations are used to 

estimate the quality of the generated test patterns. [7] 

The test patterns are usually generated based on specific fault models, that represent specific 

faults resulting from manufacturing defects. The stuck-at fault (SAF) model is a widely used 

fault model. It assumes that a faulty signal line is stuck to either a logic 1 or a logic 0. The 

stuck-at fault can be detected by driving the specific signal line to the opposite state than the 

assumed fault and observing whether the line was stuck or not. Test pattern that detects both 

stuck at 1 and stuck at 0 faults on every signal line need to be generated to reach 100% stuck-

at fault coverage. Test patterns generated based on the stuck-at fault model also detect most 

faults based on other models. The stuck-at fault model however does not guarantee detecting 

all possible defects and a combination of tests, made with different fault models, are typically 

used in digital testing. [7] 

For the circuit to behave correctly, it should not only perform the correct logical operation, 

but also perform it fast enough for the change to propagate to the next flip-flop. At-speed testing 

refers to tests that detect delay defects from a circuit running at functional speed. The transition 

fault (TF) model assumes a single faulty gate is either slow to rise or slow to fall, so that the 

transition does not reach the flip-flop or primary output within the clock period. Transition 

faults are detected by first setting the target node to an initial value, then causing a transition to 

the target node, and finally observing the fault effect from a scannable flip-flop or a primary 

output. [7] 

Some defects may not affect the correct operation of the circuit but can result in increased 

power consumption. Leakage current (IDDQ) test measures the CUT supply current in steady 

state condition to detect defects. The IDDQ test can detect shorts between signal lines or 

between signal lines and supply lines, from the increased leakage current of the shorts. IDDQ 

testing requires that the internal nodes can be controlled, to toggle the internal nodes to different 

states, but does not require observation, since the pass and fail condition is determined only on 

the supply current consumption. [7] 

Integrated circuits can consist of deep sequential logic. Internal signal lines in this kind of 

circuit can be extremely hard to control and observe from the primary inputs and outputs of the 

circuit, which can result in very complex test patterns and low fault coverage. [7] 

Design for testability (DFT) methods have been developed to improve the testing of digital 

integrated circuits. They refer to methods, where the testability of the digital circuit is 

considered already in the designing of the circuit. Logic structures, meant to facilitate testing, 

are added to the design to reduce the time and therefore the cost of testing, and to improve 

testing fault coverage. [7] 
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3.1 Scan design 

Scan design is the most widely used DFT approach for improving testability. In it, the 

controllability and observability of sequential elements is improved by providing external 

access to them. This is done by converting the sequential elements to scannable sequential 

elements, called scan cells, and connecting them to form shift registers, called scan chains. [7] 

The use of scan chains allows test stimulus to be easily shifted to the storage elements inside 

the IC, without having to control the primary inputs of the circuit for several clock cycles in 

order to bring the internal storage elements to a desired state. The use of scan chains also allows 

the test response to be easily shifted out of the internal storage elements. Since the inputs to 

combinational logic blocks can be controlled directly and the outputs of combinational logic 

blocks can be observed directly, the test pattern complexity required to test specific faults is 

greatly reduced. [7] 

The scan cells have two inputs. The data input is connected to the normal combinational 

logic path. The scan input is connected to the output of another scan cell. The scan chain is 

made accessible by connecting the scan input of the first scan cell, in the chain, to a primary 

input of the IC and connecting the output of the last scan cell, in the chain, to a primary output 

of the IC. [7] 

Shifting the test stimulus in and the test response out of a scan chain made of n storage 

elements takes n clock cycles. Having several scan chains reduces the clock cycles needed for 

shifting, with the disadvantage of one primary input and output needed for each scan chain. [7] 

A scan design has several modes of operation. In normal mode, all the added scan 

functionality is disabled, and the design operates like before adding the additional logic. In scan 

mode, all scan related fixes, to improve test coverage or to guarantee safe operation during scan 

testing, are turned on. In shift mode, all scan and shift related fixes are turned on, and scan 

chains are enabled to allow shifting in test patterns or shifting out test results. Table 1 below 

shows a set of scan design rules and their suggested fixes. [7] 

 

Table 1. Scan design rules  

Rule Recommended fix 

Avoid tristate 

buses during shift 

Two or more bus drivers trying to drive a tristate bus to opposite logic 

values causes bus contention. It should be guaranteed that only one 

driver controls the bus at a time during shift. This can be done by 

forcing one bus driver enable signal high and all others low during 

shift. 

Avoid 

bidirectional input 

or output (I/O) 

ports during shift 

Conflicts can occur at a bidirectional port during shift operation if it is 

used as an input port and the output tristate buffer is controlled by 

logic connected to a scan cell. The output tristate buffer should be 

disabled during shift. This can be done by forcing the enable signal 

controlling the output tristate buffer low during shift. 

Avoid gated clocks 

during shift 

Clock gating can prevent shift operation from happening correctly by 

blocking the scan clock from reaching the scan cells. Clock gating 

should be disabled during shift. This can be done by forcing the 

enable signal of all clock gates high during shift. 

Avoid derived 

clocks during scan 

A clock generated internally in the digital logic is a derived clock. 

They should be bypassed during the scan test, in order to test the logic 

driven by the derived clocks. This can be done by using a multiplexer 

to provide a scan clock instead of the derived clock during scan. 
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Avoid 

combinational 

feedback loops 

during scan 

The use of combinational feedback loops can lead to loss of fault 

coverage, since they cannot be controlled, or their value determined. 

Combinational feedback loops should be removed from the design. If 

removing is not possible, they should be broken during scan. This can 

be done by inserting a scan cell in the loop that is used during scan. 

Avoid 

asynchronous set 

and reset signals 

during scan 

Internally generated asynchronous set and reset signals to scan cells, 

that are not directly controlled from a primary input, can prevent shift 

operation from happening correctly. Asynchronous set and reset 

signals to scan cells should be forced to inactive state during scan.  

Avoid clocks 

driving data during 

scan 

Clock used as a data input can cause race condition when the test 

response is captured. Clock path to data input of flip-flop should be 

blocked during scan. 

Avoid floating 

buses during scan 

Bus-holders should be added for the tri-state buses to keep their last 

value. 

Avoid floating 

inputs during scan 
Floating inputs should be tied to logic 0 or logic 1 during scan. 

Avoid non-scan 

storage elements in 

full-scan designs 

Should be made transparent, bypassed, or initialized into a known 

state during scan.  

 

The added scan operation of the circuit is controlled with the use of added test signals or test 

clocks. A primary input pin is often added to the design for the signal that is used to enter scan 

mode. Extra pins for the rest of the test signals, the scan inputs and the scan outputs can be 

saved by connecting them to existing primary I/O pins with multiplexers and using the scan 

mode signal as the enable for the multiplexers. The different test signals and test clocks used in 

different types of scan designs are discussed in the following sub-chapters. 

Typically, all the sequential elements in a design are connected to scan chains. The 

advantage of full-scan is that all the inputs to combinational logic can be controlled and all the 

outputs to combinational logic can be observed. It makes it easier for ATPG programs to create 

test patterns to detect faults. A disadvantage of full scan is that the added propagation delays of 

scan logic on critical paths might lead to timing violations. Another disadvantage is the 

increased area overhead caused by the scan logic. [7] 

Partial scan refers to designs where some of the sequential elements are not scannable. 

Sequential elements in critical paths can be left as normal sequential elements to meet timing 

requirements. Another advantage of partial scan is that it reduces the area overhead of using 

scan cells. Since not all sequential elements are controllable and observable in partial scan, the 

test generation complexity is increased. This can result in reduced fault coverage and increased 

testing time compared to full-scan. [7] 

 

 

3.1.1 Muxed-D scan style 

The most widely used scan style is the muxed-D style. It was developed at Stanford by M. J. 

Y. Williams and J. B. Angell in 1973 [8]. In it, the D flip-flops are replaced with edge triggered 

muxed-D scan cells, shown in Figure 15. The muxed-D scan cell is made from a D flip-flop 

and a multiplexer. The multiplexer is used to select between the data input, DI, and scan input, 

SI. [7] 
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Figure 15. Muxed-D scan cell made from a D flip-flop and a multiplexer. 
 

In normal and scan modes, the value at the data input is selected and loaded to the output of 
the flip-flop on the active edge of the clock. In shift mode, a shift enable, SE, signal is used to 
select the scan input. The value from the scan input is loaded to the output of the flip-flop on 
the active edge of the clock. [7] 

The scan testing of a muxed-D scan design consists of the following steps, also shown in 
Figure 16 [7]. 

 
• All scan related fixes are turned on by setting the scan mode, SM, signal high. 
• The scan chain portion of the first test pattern is loaded from the primary scan input, 

PSI, to the chain by setting the shift enable, SE, signal high and clocking the circuit n 
times, where n is the number of scan cells in the scan chain. 

• The test pattern is applied to the primary inputs. 
• The test response is observed from the primary outputs. 
• Shift enable, SE, signal is set low, and the CUT is clocked once to capture the test 

response of the combinational logic to the scan cells. 
• The test response from the scan cells is shifted out from the primary scan output, PSO, 

and at the same time the next test pattern is shifted in from the primary scan input, PSI, 
by setting the scan enable, SE, high and clocking the circuit n times, where n is the 
number of scan cells in the scan chain. 

• The capture and shift operations are repeated until all test patterns are tested. 
 

Scan related fixes Shift test pattern in Set PIs captureObserve POs
Shift test response out
& new test pattern in

Repeat until all patterns tested
 

Figure 16. Muxed-D scan testing example waveform. 
 

A disadvantage of using muxed-D scan cells is the added multiplexer delay to the data path 
and the area increase. A benefit is the compatibility of muxed-D scan cells with modern designs 
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primarily using edge triggered D flip-flops. Another benefit is that the existing design 

automation tools provide good support for muxed-D scan style. [7] 

 

 

 

3.1.2 Clocked-scan style 

In the clocked-scan style, the D flip-flops are replaced with clocked-scan cells. The clocked 

scan cell also has a data input and a scan input. In contrast to the muxed-D scan cell, the input 

selection in the clocked scan cell is done using two independent clocks, the data clock, and the 

shift clock. [7] 

In normal and scan modes, the value from the data input, DI, is loaded to the output on the 

active edge of the data clock, CKD. In shift mode, the value from the scan input, SI, is loaded 

on the active edge of the shift clock, CKS, instead. [7] 

The scan testing of a clocked-scan design is similar to the muxed-D scan design. The main 

difference between them is in the shift operation. The clocked-scan design does not have the 

shift enable signal. The shifting is done through the primary scan input, PSI, and the primary 

scan output, PSO, by clocking the shift clock, CKS, n times, where n is the number of scan cells 

in the scan chain. During the shift operation, the data clock, CKD, is held inactive. The shift 

clock, CKS, is held inactive during the capture operation. The test response is captured to the 

scan cells by clocking the data clock, CKD, once. 

A big advantage of the clocked-scan style is that it does not add any logic delays to the data 

path. The disadvantage is that it requires routing an extra shift clock to all the clocked-scan 

cells. [7] 

 

 

3.1.3 LSSD style 

Level-sensitive scan design (LSSD) was developed at the International Business Machines 

Corporation by E.B. Eichelberger and T.W. Williams in 1977 [9]. It is the primary scan style 

used for level-sensitive, latch-based designs. In it, the D latches and D flip-flops are replaced 

with LSSD scan cells, shown in Figure 17. The scan cell contains two latches, a primary D 

latch, L1, and a secondary D latch, L2, and three clocks, the primary clock, CKA, the scan 

clock, CKS, and the secondary clock, CKB. The primary latch has a data input, DI, and a scan 

input, SI. The selection of which input is loaded to the output of the primary latch is made with 

the primary and scan clocks. The secondary clock is used to load the data at the primary latch 

output to the secondary latch output. [7] 

 



 

 

29 

L1

L2

D Q

ck

SO

CKB

DO
NAND

NAND
CKA

DI

NAND

NAND
CKS

SI

NAND

NAND

 
Figure 17. Single-latch LSSD scan cell from a primary two-input D latch and a secondary D 

latch. 

 

In normal and scan modes, the value at data input is loaded to the primary latch output on 

the active level of the primary clock. In shift mode, the value at scan input is loaded to the 

primary latch output at the active level of scan clock. For flip-flops, the data at the primary latch 

output is loaded to the secondary latch output on the positive edge of the secondary clock in all 

modes. For latches, the data is loaded with the secondary clock in only shift mode. All the 

clocks need to be operated in a non-overlapping manner to avoid race conditions. [7] 

When replacing D latches with the LSSD scan cell, the data output, DO, is taken from the 

output of the primary latch and the scan output, SO, is taken from the output of the secondary 

latch, like in Figure 17. There also needs to be at least two non-overlapping system clocks, 

CKA1 and CKA2, supplied to the CKA ports of the LSSD scan cells to prevent back-to-back 

latches from being transparent at the same time. When replacing D flip-flops with the LSSD 

scan cell, both outputs are taken from the output of the secondary latch. [7] 

The scan testing of a LSSD design is similar to the muxed-D scan design. The shifting is 

done through the primary scan input, PSI, and the primary scan output, PSO, by clocking the 

shift clock, CKS, and the secondary clock, CKB, n times in a non-overlapping manner, where 

n is the number of scan cells in the scan chain. During the shift operation, the primary clock, 

CKA, is held inactive. The shift clock, CKS, is held inactive during the capture operation. The 

test response is captured to the D flip-flop scan cells by clocking the primary clock, CKA, and 

secondary clock, CKB, in a non-overlapping manner once. The test response is loaded to the D 

latch scan cells by clocking the two system clocks, CKA1 and CKA2, in a non-overlapping 

manner once. [7] 

The scan enabled LSSD scan cell uses a scan enable, SE, signal to choose between the data 

input, DI, and the scan input, SI, of the primary latch instead of a scan clock. The secondary 

latch has the same functionality as in the traditional LSSD style. [10] 

The advantage of using LSSD is that it allows scan chains to be used in latch-based designs. 

A disadvantage is that two additional clocks need to be routed when replacing latches and one 
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additional clock needs to be routed when replacing flip-flops, resulting in increased routing 

complexity, and ultimately increased area. [7] 

Replacing the D latches in a design with LSSD scan cells results in an additional secondary 

D latch being added for every D latch in the design, wasting a lot of area. The L1L2* scan 

optimization technique saves this area by removing these dummy latches. In it, latches in the 

design, that are independent of each other, are grouped in pairs of L1 and L2* latches. The logic 

connected to these latches can be tested independently of each other with two different test 

modes, L1test and L2test. In the L1test, the L1 latch is the primary latch and L2* latch is used 

as the secondary latch for the L1 latch. In the L2test the L2* latch is the primary latch and the 

L1 latch is used as the secondary latch for the L2* latch. A problem with this optimization 

technique is choosing which latches can be grouped together. Real designs often cannot 

completely group all latches together and some dummy latches need to be used. Another 

problem is that the ATPG tool needs a remodelled netlists for both tests, where the parts that 

are not tested are removed from the files. [11] 

 

 

3.1.4 Latches in scan designs 

While the LSSD scan style presented in chapter 3.1.3 is usually used in designs containing 

latches, there are other ways of dealing with latches in scan designs. The simplest solution that 

comes to mind is to not replace the latches with scannable elements. In that case, the latches 

need to be initialized into known states, bypassed, or made transparent during the scan test [7]. 

The disadvantage is that we have now a partial scan or a non-scan design with the decreased 

testability that comes with that. 

The principle of initializing the latches to known states is used in [12], where the latch 

registers are modelled as combinational gates and preloaded with values before each scan test. 

This method allows the ability of the latches to hold data to be tested also. Preloading the 

background data requires adding multiplexers to the data input of the latches and OR gating a 

force write signal to the clock inputs of the latches. A downside of this method is that the 

background data needs to be supplied to the scan model by manually modifying the netlist 

provided to the ATPG tool. This manually modified model needs to be then also verified against 

the functional model with simulations. Having the same background data for all the latch 

registers during the test can cause some combinational logic faults to be untestable due to the 

reconvergence of the background data. A way around this problem is to use different 

background data for different groups of registers. Another way is to replace some key latches 

by scannable flip-flops. [12] 

A single-latch and single-clock solution is proposed in [13], that uses the pulsed latch 

principle covered in section 2.1.5.3. A test signal is used to select between the data and scan 

inputs of the latch. The upper width of the test clock pulse is bounded by the shortest 

propagation delay of the latch design. [13] 

A problem with the single-latch and single-clock solution is that it is not supported by the 

existing design automation tools. 

An asynchronous scan-latch controller solution is proposed in [14], that uses the 

asynchronous symmetric pulse persistent protocol to control the scan chain made from latches. 

The asynchronous scan-latch controller is used to control the transparency of the latches in shift 

mode. The active edge in the scan clock causes the asynchronous scan-latch controller to pulse 

the clock input of each latch in the scan chain in turn. The last latch in the scan chain is updated 

first, followed by the rest all the way the first latch in the scan chain. The pulses to the clock 
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inputs of the latches are timed in a manner that no two latches are transparent at the same time. 

[14] 

A disadvantage with the asynchronous scan latch controller solution is the added design 

complexity of the controller and the additional clock tree needed from the controller to the 

latches. This solution is also not supported by the existing design automation tools. 

 

 

3.2 Logic built-in self-test 

Logic built-in self-test (BIST) is a DFT method that incorporates testing features on the CUT 

itself. Logic structures to generate test patterns and to analyse the output responses are 

embedded on the designed circuit. [7] 

Logic BIST techniques can be divided into two main categories [7]. 

 

• Online BIST techniques, where the test functionalities are performed while circuit 

operates in normal mode, with normal functionality. 

• Offline BIST techniques, where the test functionalities are performed in a test mode. 

 

In functional offline BIST techniques, the tests are performed based on the functional 

specification of the circuitry. In structural offline BIST techniques, the tests are preformed 

based on the structure of the circuitry instead. The test pattern generation and the output 

response analysis in a structural offline BIST can be done either with the help of the functional 

storage elements, an internal BIST, or with separate added logic, an external BIST. [7] 

BIST schemes most commonly convert the storage elements of a circuit to scan cells for 

combinational circuit testing. Some schemes, involving sequential testing by applying test 

patterns to the inputs of the circuit and analysing the responses at the outputs also exist. [7] 

A typical logic BIST, using the structural offline BIST scheme, is shown in Figure 18. It 

consists of a test pattern generator (TPG) that automatically generates test patterns for the CUT 

once it is activated. An output response analyser (ORA) is used to automatically compact the 

output response into a signature. A BIST controller activates the test, compares the ORA 

signatures against golden signatures and reports a pass or a failure once the BIST operation is 

complete. [7] 
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Figure 18. Structure of a typical logic BIST. 

 

The structural offline BIST technique has several advantages compared to the traditional 

scan techniques. Test costs are reduced as it requires simpler ATE and ATPG, less test time and 

less tester memory. The tests can be run at functional clock speed, allowing the detection of 

delay faults. The tests can be run at any time, without the help of an external tester. [7] 

There are also several disadvantages compared to traditional scan techniques. There are even 

more stringent BIST design rules that need to be followed compared to the scan design rules. 

Since any unknown values that propagate to the ORA in a BIST design will corrupt the 

signature, following BIST design rules is mandatory for BIST designs. In contrast, breaking 

many of the scan design rules in a scan design will only result in the loss of fault coverage. 

Another disadvantage is that the BIST fault coverage is less than that of a scan design, and 

additional test points might need to be added to increase it to a sufficient level. [7] 

 

 

3.2.1 Test pattern generation 

Several different methods of constructing TPGs exist for generating test patterns for exhaustive, 

pseudo-exhaustive and pseudo-random testing. [7] 

Exhaustive testing achieves maximum fault coverage by applying all possible 2𝑛 input 

patterns to a circuit consisting of n inputs [7]. Exhaustive testing becomes impractical already 

for circuits consisting of more than 20 inputs [15]. 
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Pseudo-exhaustive testing aims to reduce test length, while keeping the high fault coverage 

of exhaustive testing. Pseudo-exhaustive testing aims to exhaustively test a circuit, without 

applying all possible input patterns by taking advantage of the fact that all the outputs of a 

circuit do not usually depend on all the inputs. [7] 

Pseudo-random testing aims to reduce test length even further by sacrificing fault coverage. 

In it, a pseudo-random sequence of test patterns is generated with a pseudo-random pattern 

generator (PRPG). Fault simulation is used to calculate the fault coverage of the pseudo-random 

test patterns. It is the most used technique for BIST test pattern generation. A downside of 

pseudo-random testing is that random pattern resistant faults can limit the fault coverage. Test 

point insertion, mixed-mode BIST, and hybrid BIST techniques can be used to increase the 

fault coverage of random pattern resistant circuits. [7] 

Considering how test patterns are generated in scan designs, generating the test patterns with 

an ATPG tool comes to mind. Good test patterns can be generated with an ATPG and saved in 

read only memory (ROM) on the circuit [15]. This method is impractical due to high area 

overhead of the ROM [15]. 

Binary counters can be used to create exhaustive test patterns. They are simple to design but 

require more hardware than the typical linear feedback shift register (LFSR). [15] 

Linear feedback shift registers use very little hardware, and they are the preferred TPG 

method for logic BISTs. A LFSR is a shift register made from flip-flops and feedback from 

outputs of selected flip-flops to the inputs of selected flip-flops through XOR gates. [15] 

 

 

3.2.2 Output response analysis 

For a logic BIST, storing the golden responses on-chip and doing bit by bit comparison of the 

output responses is impractical due to the extreme memory area that would be required. Output 

response analysis techniques can be employed that compact the output response into a signature.  

The signature is compared to a stored golden signature, that is compacted with the same 

compression mechanism from a golden output response. Compaction differs from compression 

by it being lossy instead of loss-less. It is important for the compaction technique to produce 

different signatures for faulty and fault-free circuits, otherwise the errors are masked. [7] 

Signature analysis is the most used output response analysis technique. Serial signature 

analysis technique is used in circuits having a single output and parallel signature analysis 

technique in circuits having multiple outputs. Ones count and transition count methods, for 

example presented in [7], are simpler but suffer from more fault masking. [7] 

A single-input signature register (SISR) uses an additional XOR gate at the input of an LFSR 

for compacting the output response. The LFSR needs to be initialized to a seed value, usually 

all zeros, before loading the output sequence. [7] 

A problem with the SISR is that one analyser is needed for each output of the CUT. Hardware 

can be saved by choosing each output at a time with a multiplexer and using one common 

analyser, but the test time is increased by the number of outputs in the CUT. Superposition can 

be used to compact several output sequences to the same LFSR. A multiple-input signature 

register (MISR) uses n extra XOR gates to connect n L-bit output sequences to the different 

stages of a single LFSR. [7][15] 
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3.2.3 Logic BIST architectures 

Many architectures exist for incorporating BIST techniques into a design. The simplest 

architectures do not use any special structures in the CUT and are used in the board or system 

level. Some architectures, test-per-scan BISTs, utilize scan chains in the BIST circuitry and 

provide better access to the internal circuitry of the CUT. Other architectures, test-per-clock 

BISTs, go even further and use redesigned internal storage elements for test pattern generation 

and output response analysis to reduce the testing time. Some architectures have been developed 

that remove the need for an ORA by using concurrent checking circuitry. [7] 

Architectures utilizing scan chains provide better fault coverage for sequential circuits and 

are therefore the focus of this chapter. A curious reader can find many other architectures 

proposed in literature, for example in [7], that are not covered here. 

 

 

3.2.3.1 LSSD on-ship self-test 

The LSSD on-chip self-test (LOCST) architecture incorporates an external scan chain, 

comprising of all primary inputs and outputs, to the design. The external scan chain is connected 

to the internal scan chain, consisting of LSSD scan cells. A PRPG is used to generate test 

patterns that are shifted into the combined scan chain. The system is clocked to capture the 

output response to the scan cells. The output response is compacted to a signature by shifting it 

to a SISR, with the combined scan chain. The signature is compared to a golden signature and 

a pass, or a failure signal is generated. [7] 

 

 

3.2.3.2 Self-testing using MISR and parallel SRSG 

The Self-Testing Using MISR and parallel shift register sequence generator (STUMPS) 

architecture is widely used in industry, due to it being easy to integrate with traditional scan. A 

PRPG is used to generate test patterns, that are loaded into several scan chains in parallel. The 

system is clocked to capture the output responses to the scan cells. The output responses are 

compacted by shifting them to a MISR, with the scan chains. New test patterns are generated 

and shifted in at the same time, while the output responses are shifted out. [7] 

 

 

3.2.4 Latches in logic BIST designs 

Non-scannable latches in a logic BIST design can cause unknown values to emanate to the 

ORA, corrupting the BIST operation. They should be dealt with by bypassing them or 

initializing them into known states.  

A more practical way to deal with latches is to make them scannable, increasing the fault 

coverage that can be achieved. Making the latches scannable means that they can be used in 

logic BIST architectures utilizing scan chains. The LSSD scan cell is typically used as the 

replacement cell for the latches. Like in the scan design case, the downside is the added area of 

the LSSD scan cells. 

A way of integrating a latch-based register bank to a logic BIST, using the STUMPS 

architecture, is presented in [16], that uses an optimized LSSD scan style. Each latch, in the 

register bank stores one bit of data in functional mode. For the scan shifting the latches are 
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grouped into pairs of L1 and L2* latches that form LSSD scan cells. When the test patterns are 

shifted through the scan chain both the L1 and L2* latches of each LSSD scan cell contains the 

same data. When the data is dispatched downstream from both latches in the response capture 

window, the correlated data can lead to some faults being masked. Another consideration is the 

data capture into the L1 and L2* latches. When the test response is shifted out with the scan 

chains, by first clocking the L1 latch, the test data is destroyed in the L1 latches. A logic BIST 

clock control scheme, that supresses the L1 clock during the first shift operation roughly half 

of the time, can be used to improve the testability of the logic feeding the L1 latches. [16] 

 

 

3.3 Memory built-in self-test 

Digital circuits often require storing large amounts of data. This is often achieved with the use 

of embedded memories. Memories can be constructed out of flip-flops, but they are not ideal 

for large memories, due to their high area. Other memory types exist, that trade performance 

for smaller area. The simplest static random-access memory (SRAM) cell is made from just 

two cross-coupled inverters described in section 2.1.1 [1]. Dynamic random-access memory 

(DRAM) cell stores a bit of data in the presence or absence of charge in a capacitor and is even 

smaller [1]. 

Memories made from flip-flops or latches can be tested using scan or logic BIST methods 

by replacing the flip-flops or latches with scan cells. If the area overhead is unacceptable, or 

the other, non-scannable, memory types are used, other testability methods are required. 

Memory BIST is to most used DFT method for testing large, embedded memories. It is used 

to detect manufacturing defects in the address decoding logic, the read and write logic, and the 

memory cells of the embedded memory. [15] 

The memory BIST test typically consists of writing values based on a specific test algorithm 

to the memory and reading the written values from the memory. One such popular algorithm is 

the checkerboard algorithm, consisting of writing and reading 0s and 1s from the memory in a 

checkerboard pattern. Another popular family of algorithms are the march tests algorithms, 

consisting of applying sets of operations, called march elements to the memory. A curious 

reader can find many march test algorithms described in literature, for example in [7], [15] and 

[17], and even a methodology for creating your own march test algorithms, described in [18]. 

Memory BISTs using pseudo-random testing also exist but are not as common due to them 

providing worse fault coverage with a larger set of test patterns. [7][15] 

A typical memory BIST, shown in Figure 19, consists of a memory BIST controller, an 

address generator, a test pattern generator, and an output response analyser. The memory BIST 

controller is used to create the testing control signals and can be implemented, for example, as 

a finite-state machine (FSM). The address generator is used to step through all the addresses in 

the memory. For march tests, the address generator should be able to generate addresses in both 

ascending and descending order. A reversible maximum-length LFSR is typically used as an 

address generator, instead of a reversible binary counter, due to the smaller area. The test pattern 

generator is used to generate test data based on an algorithm and can be made, for example, as 

an FSM. Output response analysis can be done with an MISR but is often done by deterministic 

comparison due to the regular structure of the memory. A reference data generator can be used 

to generate the expected read data and it can be compared against the actual read data. A mutual 

comparator can be used, when multiple identical memories are tested simultaneously, by 

comparing the read data from each memory to each other. [15] 
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Figure 19. Structure of a typical memory BIST. 

 

A simple and area optimal TPG can be implemented with a simple FSM that implements a 

fixed test algorithm. The downside is that the FSM needs to be changed every time the test 

algorithm is changed. 

Several programmable memory BISTs architectures have been proposed in literature, for 

example in [19], that allow the test algorithm to be changed after manufacturing, providing 

flexibility. A common downside of programmable memory BIST architectures is the area 

overhead of the more complicated TPG. Some architectures reduce the area overhead by 

loading each operation one at a time instead of programming all the operations in the beginning, 

like is done in [20] with the help of scan chains, and in [21] and [22] with the help of an 

embedded microprocessor. The obvious downside is that the testing time is increased. 

The architectures proposed in [19], [20] and [22] dealt with only a single embedded memory. 

Every embedded memory having their own memory BIST in a multi memory design would 

result in unnecessary area overhead. 

Distributed memory BIST architectures reduce the area overhead of the BIST logic by 

sharing some of it for multiple memories. One such distributed memory BIST architecture is 

proposed in [23], that shares the BIST controller for all memories. A limitation is that all the 

memories need to be the same type and size [23]. An improved distributed memory BIST 

architecture is proposed in [24], that allows memories that have the same number of words or 

memories that have the same word width to share BIST logic. 

 

 

3.4 Test point insertion 

Designs usually contain many internal nodes that are hard to control or hard to observe, even 

in a scan or a logic BIST design. Test point insertion is a common method of improving the 
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controllability and observability of the internal nodes, by inserting control points or observation 

points [7]. 

Adding an observation point consists of adding a scan flip-flop and connecting a hard to 

observe node to its input. Observation points can be shared by connecting several hard to 

observe nodes through an XOR gate network to a single observation flip-flop. [7] 

Control points consists of a scannable flip-flop and combinational logic connecting its output 

to a hard to control node. In a multiplexer control point, a multiplexer is inserted to the hard to 

control node. In test mode, the multiplexer selects the control flip-flop output to drive the hard 

to control node. In normal mode, the multiplexer selects the normal functional path. [7] 

An OR control point, shown in Figure 20, is used to for improving the controllability of hard 

to control high nodes. The control point is OR gated with the original net driver, so that it can 

be used to set the hard to control node into high state. An AND gate is used to enable the control 

point in test mode and disable it during normal functional operation. The control value is loaded 

to the scannable flip-flop with a scan chain, during scan testing. [25] 
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Figure 20. An OR control point. 

 

An AND control point, shown in Figure 21, is used for improving the controllability of hard 

to control low nodes. The control point is AND gated with the original net driver, so that it can 

be used to set the hard to control node into a low state. A NAND gate is used to enable the 

control point in test mode and disable it during normal functional operation. The control value 

is loaded to the scannable flip-flop with a scan chain, during scan testing.  [25] 
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Figure 21. An AND control point. 

 



 

 

38 

A downside of using control points is that it adds additional delay to the logic path, that can 

cause hold time violations. Adding control points to critical paths should be therefore avoided. 

[7] 
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4 LATCH REPLACEMENT 

This chapter presents an implementation of a latch-based register bank, using partial scan as the 

DFT method. Chapter 4.1 presents a reference PMIC model that is used as the starting point for 

the latch register design. Chapter 4.2 presents the reasons why flip-flops in the registers were 

selected to be replaced with latches. Chapter 4.3 presents the implementation of the latch 

registers, developed in this thesis. Chapter 4.4 presents the reasons for selecting partial scan as 

the DFT method. Chapter 4.5 presents the implementation of the partial scan design, developed 

in this thesis. 

 

 

4.1 A reference PMIC model 

A power management integrated circuit that is used to provide clean supply voltages to the rest 

of an electric device, is used as a reference design for this thesis. It consists of voltage 

regulators, converters, and their control circuitry. A simplified model of the reference PMIC is 

shown in Figure 22. It can be controlled by two host SoCs, with the inter-integrated circuit 

(I2C) communication protocol. 
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Figure 22. Simplified model of a PMIC. 

 

The digital logic is used to control the operation of the PMIC, and it consists of several 

different blocks. The two I2C secondaries are used to convert the I2C transfers to the Advanced 

Microcontroller Bus Architecture (AMBA) Advanced Peripheral Bus (APB) protocol used by 

the interconnect. The interconnect is used to arbitrate several hosts accessing the same register 

banks simultaneously. It uses the APB protocol to access the register banks. The register banks 

are banks of control and status registers that a host SoC can write to control the PMIC or read 

the status of the PMIC. Finite state machines determine the state of the PMIC. They are 
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controlled by control registers and status signals from analogue logic blocks, and they create 

control signals to analogue logic blocks. Counters are used to provide accurate timing for state 

machines. Synchronizers are used to synchronize asynchronous status signals coming from 

analogue logic blocks. 

 

 

4.1.1 AMBA APB protocol 

A System-on-chip (SoC) often consist of several components, such as processor cores, memory, 

input or output (I/O) devices on the same chip. Connecting blocks using different interfaces and 

communication protocols would require the use of glue logic. [26] 

Different bus protocols have been developed to allow easy integration and re-use of 

functional blocks. The advantage of designing functional blocks to use a common bus protocol 

is to allow them to be developed independently of each other. It also allows the functional 

blocks to be re-used easily in different designs utilizing the same protocol. [26] 

The Advanced Microcontroller Bus Architecture (AMBA) by ARM is a standard for 

connecting and managing functional blocks in a SoC. It provides several bus protocols with 

different levels of performance. One such protocol is the Advanced Peripheral Bus (APB) 

protocol. [27] 

The APB protocol is used to access the programmable control registers of low-bandwidth 

peripheral devices. It is a low-cost interface, optimized for minimum power consumption and 

reduced complexity. It can be interfaced with other, higher performance, AMBA bus protocols. 

[27] 

The original APB specification Rev E was released in 1998. There have been several 

revisions since. The AMBA 2 APB Specification defined the interface signals, defined basic 

read and write transactions, and added the APB bridge and the APB secondary components. 

The AMBA 3 APB Protocol Specification v1.0 added wait states to the transactions and error 

reporting. The latest revision, AMBA APB Protocol Secification v2.0 added transaction 

protection and sparce data transfer. [28] 

Signal transitions in the APB protocol happen at the positive edge of the clock. The protocol 

uses independent buses for read and write data, that can be up to 32 bits wide. The two buses 

cannot operate simultaneously, due to sharing handshake signals. [28] 

Table 2 below presents the signals used in the APB protocol and short explanations on what 

they are [28]. The following sub-chapters present the read and write protocols. Error reporting, 

transaction protection and sparce data transfer are not relevant for this thesis and are not covered 

here. A curious reader can read the AMBA APB Protocol Specification v2.0 [28] to familiarise 

him- or herself with the additional features. 

 

Table 2. AMBA APB protocol signals  

Signal Description 

PCLK Clock. 

PRESETn Active low reset. 

PADDR 
Secondary address. APB bridge indicates which location in the 

secondary device is accessed. 

PPROT 
Protection type. APB bridge indicates protection level of access. Tied 

low when not used. 

PSELx 
Secondary selection. APB bridge indicates which secondary device is 

accessed. 
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PENABLE Transfer enable. APB bridge enables the transfer. 

PWRITE Transfer direction. APB bridge indicates write access when high and 
read access when low. 

PWDATA Write data. Bus containing write data from APB bridge. 

PSTRB Write strobes. APB bridge indicates which byte lanes are updated 
during a write transfer. 

PREADY 
Ready handshake. Secondary device indicates write or read access has 
been finished. Tied high when read access or write access is not 
extended. 

PRDATA Read data. Bus containing read data from a secondary device. 

PSLVERR Transfer error. Secondary device indicates read or write transfer 
failure. Tied low when not used. 

 
 

4.1.1.1 APB write transfer 

Figure 23 below shows the AMBA APB write transfer protocol. The setup phase of the write 
transfer starts at time 2 with the register address PADDR and write data PWDATA becoming 
valid. At the same time select PSEL and write PWRITE signals are set high to indicate that this 
secondary device has been selected and that it is a write access, respectively.  

 

 
Figure 23. AMBA APB write transfer. 

 
The access phase starts at time 3 with the enable PENABLE signal being set high. The 

secondary device indicates that it can complete the transfer on the next clock edge by setting 
the ready PREADY signal high at time 6. The access phase ends at time 7 and the enable 
PENABLE signal is deasserted. In case there is another transfer to the same secondary device, 
the select signal PSEL is left high. Otherwise, it is also deasserted at the end of the access phase. 
[28] 

The address PADDR, write data PWDATA and control signals need to remain valid during 
the setup and access phases, from time 2 to 7. The address PADDR, write data PWDATA and 
write PWRITE signals can be left as is after the transfer until another access, to reduce power 
consumption. [28] 

The ready PREADY signal is used to extend the write transfer by any number of cycles from 
zero upward. The ready PREADY signal can have any value when the enable PENABLE signal 
is low. When the enable PENABLE signal is high, it indicates that the secondary device can 
finish the access on the next clock edge. In the case that the secondary device has a fixed two 
cycle access, the PREADY signal can be tied high. [28] 
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4.1.1.2 APB read transfer 

Figure 24 below shows the AMBA APB read transfer protocol. It is similar to the write transfer 
protocol presented in section 2.2.1. The read data RDATA bus is used in the read access instead 
of the write data WDATA bus. The difference in the setup phase, at time 2, is that the PWRITE 
signal is set low to indicate that it is a read access and the read data PRDATA bus does not have 
to contain valid data. [28] 
 

 
Figure 24. AMBA APB read transfer. 
 

The access phase also starts at time 3 with the enable PENABLE signal being set high. The 
secondary device sets the ready PREADY signal high, at time 6, to indicate that the read data 
RDATA bus contains valid data. [28] 

 
 

4.1.2 Register banks 

The PMIC contains several different register banks. The banks are divided into one bank for 
digital registers, and three banks for different analogue logic blocks. The register bank 1 
contains all the control registers and status registers for digital logic. The register banks 2-4 
contain control registers used to control different analogue logic blocks directly. 

The banks are made of several different types of registers, that can be 1 to 8 bits wide. In 
total, there are 443 registers, storing 1973 bits of data. On average, one register is storing about 
4.5 bits of data. 

The PSEL signal of the APB protocol is used to select which register bank is accessed. The 
PADDR signal is used to select which register is accessed in the bank. If the register being 
accessed is less than 8 bits wide, the most significant bits (MSB) of the PWDATA signal are 
discarded in the write access and the PRDATA signal is zero padded to 8 bits in the read access. 
The PREADY signal is tied high in the register banks to indicate the write and read accesses 
are not extended. 

Since the read and write buses are a byte wide, the PSTRB signal is unnecessary and not 
used in the register banks. The PPROT and PSLVERR signals are also not used and tied low. 
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4.1.2.1 Read-write register 

The most common type of register used is the read-write register shown in Figure 25. It is a 

simple parallel loaded register that can be written to and read from with the APB protocol. 

During the read access, when PWRITE, PSEL, PENABLE signals are high and the PADDR 

indicates this specific register is accessed, the multiplexer is used to select the 4 least significant 

bits of the PWDATA that are loaded into the register. During all other times, the multiplexer 

selects the output of the register, and the old value is kept. The read-write register, of Figure 

25, implemented in SystemVerilog, is shown in Figure 26. 
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Figure 25. Example of a read-write register. 

 

 
Figure 26. Example of a read-write register coded in SystemVerilog. 

 

From the area and power consumption point of view, it is beneficial to use clock gating to 

control the loading of multi-bit registers instead of multiplexers. In that case, the multiplexers, 

of Figure 25, are replaced with a single clock gate. PWDATA is now connected straight to the 

inputs of the flip-flops and loading new data to the register is controlled by the clock gate. 

Synthesis tools can do this optimization automatically when automatic clock gating is enabled. 

The Design Compiler synthesis tool, made by Synopsys, gates the clock for registers that are 

3-bits or larger, by default [29]. 
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4.1.2.2 One-time programmable register 

The exact output voltages for voltage regulators vary with process variations. This limitation is 

often overcome by trimming the output voltage to the correct value. The problem is that the 

correct trimming values are only known after manufacturing, while the reset values of normal 

registers must be defined before manufacturing. The use of one-time programmable (OTP) 

memory allows the default values of OTP registers to be programmed after manufacturing.  

The OTP register, shown in Figure 27, is the second most common type of register used. 

The OTP register consists of a flip-flops and OTP logic. The flip-flops store the state of the 

OTP register. The OTP logic is combinational logic that determines the next state of the OTP 

register, based on the write data and the OTP values in OTP memory, and decodes the output 

of the OTP register based on the state of the OTP register and the OTP values in OTP memory. 

The use of the OTP register, and not just the OTP memory, allows the value of the OTP register 

to be changed with a register write. In case of a reset, the OTP register is reset back to the OTP 

value, coming from the OTP memory. 

 

  OTP 
memory

Register bank

Example of otp register

D Q

 1
   

   
   

0
   

   
 

M
U

X

PWRITE && 
PSEL && 
PENABLE && 
PADDR==ID_REG2

PRESET

PADDR

PSEL

PENABLE

PWRITE

PCLK

Data[5:0]

PWDATA[7:0]

PRDATA[7:0]

trim[5:0]

Analogue 
block

trim

PWDATA

PREADY

PRDATA

otpTrim[5:0]

Reg2[5:0]

  Read logic

OTP
logic

OTP
logic

 
Figure 27. Example of an OTP register. 

 

 

4.1.2.3 Set-clear register 

The set-clear register, shown in Figure 28, can be used to turn some functionality on or off bit 

wise, without modifying the value of other bits. When a 1 is written to a bit position with the 

set address, the flip-flop corresponding to that bit location is set to 1. When a 1 is written to a 

bit position with the clear address, the flip-flop corresponding to that location is cleared to 0. 

Writing 0 to a bit location with the set or clear address does not change the state of the register. 

The state of the set-clear register can be read from both the set and clear addresses. The reset 

value of each bit location can be defined to be either 1 or 0. 
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Figure 28. Example of a set-clear register. 

 

The advantage of using a set-clear register is that the controlling host can only set or clear 

some specified bit locations in the register, while not affecting the others. This is especially 

useful when there are several hosts controlling the same registers. For example, if the PMIC 

contains several LDO regulators utilized by different hosts, they can be independently turned 

on and off with the set-clear register without the different hosts needing to know whether the 

LDO regulator utilized by a different host needs to be on or off. With a read-write register, all 

the bit locations are updated on each write and the host needs to know what value to write into 

each bit location. Reading the state of a read-write register, modifying the read data, and writing 

the modified data back takes more time and power, than using a set-clear register. 

 

 

4.1.2.4 Task register 

The task register, shown in Figure 29, is used to execute some functionality once. When a 1 is 

written to a bit position in the task register, a one clock cycle positive pulse is created in the 

corresponding flip-flop. This is caused by the fact that a 0 is loaded to the flip-flop, when the 

task register is not being written to. Writing a 0 to a bit position in the task register does not 

affect the state of the corresponding flip-flop. The reset value of the task register needs to be 0 

for all bit locations. 

 



 

 

46 

Register bank

Example of task register

D Q

 1
   

   
   

0
   

   
 

M
U

X

PWRITE && 
PSEL && 
PENABLE && 
PADDR==ID_REG4

PRESET

PADDR

PSEL

PENABLE

PWRITE

PCLK

Data[0]

PWDATA[7:0]

PRDATA[7:0]

taskUpdate[0]

PWDATA

PREADY

PRDATA

FSM

update[0]
0

  Read logic

 
Figure 29. Example of a task register. 

  

The advantage of using a task register is that the controlling host can write pulse like controls 

to the registers with a single write access. Writing a 1 and then a 0, like would need to be done 

with a read-write register, takes more time and power than using a task register. 

 

 

4.1.2.5 Read-only register 

A read-only register, shown in Figure 30, differs from the other types of register as it is not 

actually a register but just a signal mapping that can only be read. A digital signal or a 

combination of several signals can be routed to a multiplexer input that is selected by PADDR. 

The flip-flops after the read logic are not necessarily needed but are used to reduce timing 

problems. If the combinational read logic is large and flip-flops at the output of the register 

bank are not used, the setup time from the flip-flops in the registers, to the flip-flops in the 

interconnect read logic could be easily violated. 
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Figure 30. Example of a read-only register. 
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4.2 Latch replacement selection 

Latches and pulsed latches are an enticing alternative to flip-flops from the area point of view. 

However, it is important to not just consider the area benefits of replacing flip-flops with pulsed 

latches or latches, but to also consider the effect on power consumption and hidden costs. Power 

consumption is an extremely important metric, especially for battery powered devices, and it 

should not be increased from the replacement. Another important consideration is the effect of 

the replacement on the time to market of the products it is implemented in. If the design 

difficulty is increased significantly or the design flow made longer, the replacement may 

become unpractical. 

 

 

4.2.1 Pulsed latch considerations 

When considering the pulsed latch style, the effect of a pulser on power consumption needs to 

be considered. A pulser creates pulses from the clock and is therefore switching all the time. It 

stands to reason that the switching power consumption of a pulser is large compared to a flip-

flop or a latch. The pulser in [30] consumes almost 14 times as much power as a single latch 

and 7 latches need to share a single pulser to achieve slightly lower power consumption than 7 

flip-flops. It was found in [31], that 8 latches need to share a pulser, so that the power 

consumption is slightly smaller than that of 8 flip-flops. 

In the case of the reference design presented in chapter 4.1, the maximum register width is 

8 bits, but the average register width is only roughly 4.5 bits. The other arrays of flip-flops, 

found in counters and FSMs, are similarly much less than 8 bits wide on average. To get the 

power consumption lower than that of flip-flops, several registers would need to share the same 

pulser. The pulser was integrated into the clock gate of the registers in [31]. Sharing a pulser 

for several registers would prevent its integration with the clock gates and the power 

consumption of the pulser would increase since it would not be gated. Pulsed latches could be 

only used for the largest registers to keep the power consumption down, but it would negate 

much of the area benefit of using latches. From the power consumption point of view, the pulsed 

latches are not ideal in this case.  

The effect of pulsed latches to the synthesis flow needs to be considered. A pulsed latch 

synthesis flow is presented in [32], that uses the normal flip-flop-based synthesis flow but adds 

additional steps, where the flip-flops are replaced, pulsers are placed, and their effect on timing 

is analysed and violations are fixed. From the synthesis flow point of view, pulsed latches cause 

extra synthesis steps and are not ideal. 

The pulsed latches are suited for scan testing. The scan synthesis flow and pattern generation 

could be done with the flip-flop-based design flow and then the scannable flip-flops could be 

replaced with scannable pulsed latches. 

Another consideration is the technology library support. The library used for this thesis does 

not contain any pulsers. Pulsers can be made from existing discrete library cells, but the area 

would be much larger than that of a custom pulser library cell. For full area benefit, custom 

pulser library cells would need to be created. 
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4.2.2 Latch considerations 

Since a primary-secondary flip-flop is made of two latches, it would stand to reason that short 

circuit and leakage power consumption of a latch would be roughly half of that of a flip-flop. 

It would also stand to reason that the switching power consumption of the clock pin of the latch 

would be half of that of a flip-flop, as the clock pin of the flip-flop is driving two latches. The 

data input of a flip-flop is only driving a single latch, so the switching power consumption the 

data input would be expected to be roughly the same. The switching power consumption of the 

data output would also be expected to be the roughly same, assuming the same load. The 

technology library used in this thesis mostly follows these assumptions, except for the switching 

power consumption of the clock pin. The load capacitance of the clock pin of the latch is 

roughly double that of a flip-flop, also leading to roughly double the switching power 

consumption. The unexpected switching power consumption of the technology library used 

leads to the power consumption of latches to be higher than that of flip-flops. Since the pulser 

is eliminated by using latches instead of pulsed latches, the latch design style is still preferred 

over the pulsed latch style, from the power consumption point of view. 

In addition to the power consumption, latches also have the benefit that they fit to the flip-

flop-based synthesis flow without additional steps and there is no need to create a custom pulser 

library cell, compared to pulsed latches. 

Latches however have a large drawback compared to flip-flops and pulsed latches. Due to 

the transparent nature of latches, feedback from the output of a latch to its input is not allowed. 

Two back-to-back latches being transparent at the same time is also not allowed. These 

restrictions mean that only some flip-flops in a flip-flop-based design can be replaced with 

latches, without serious redesigns. 

A basic synchronizer is just two series connected D flip-flops, where the second flip-flop is 

used to block metastability propagating from the first flip-flop. D latches, clocked with normal 

50% duty cycle clocks, are not well suited for synchronizers. Connecting two D latches to the 

same clock would mean both are transparent at the same time and the asynchronous signal can 

propagate through them. The clock to one of the latches can be inverted, but now we have a 

primary-secondary flip-flop. At least a third latch would need to be added, that removes the 

metastability of the primary-secondary flip-flop. A problem is that the first flip-flop would have 

half the time to recover from a metastable state with a third latch, compared to the two-flip-flop 

synchronizer. 

Counters consist of flip-flops, that store the value of the counter, and combinational logic, 

that calculate the next value of the counter. The current value of a counter is used in calculating 

the next, meaning there are feedback paths from the outputs of the flip-flops to the inputs. 

Latches are not well suited to replace the flip-flops as the feedback will cause race conditions. 

The counters would need to be redesigned without feedback paths from the output of a latch to 

the input of the same latch, leading to increased design difficulty. 

State machines similarly consist of flip-flops and combinational logic. Similar feedback 

paths exist, from the outputs of the flip-flops to the inputs, that are used in determining the next 

state of the FSM, making latches not well suited for FSMs. 

 Register banks consists of read-write, OTP, set-clear, task and read-only registers. Their 

structure is presented in chapter 4.1.2. The read-write and OTP registers contain a feedback 

path used for keeping the old value of the register. This feedback can be removed by using 

clock gating, instead of multiplexers, to control whether a new value is loaded. The feedback 

paths in set-clear registers are used to determine the loaded value based on the previous value 

of the register and cannot be removed with clock gating, making set-clear register not suitable 
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for latches. The read-only register does not contain flip-flops in the register bank as it is a signal 

mapping. 

Read-write and OTP registers are by far the most common types of registers, and they make 

up of roughly 30% of all flip-flops in the design. Even with only replacing their flip-flops with 

latches, large area gains are available. 

 

 

4.3 Latch register design 

The read-write register, shown in Figure 25, contains a feedback path through a multiplexer, 

that is used to keep the register value when it is not written to. The feedback can be removed 

by using clock gating to control the loading of the register instead of a multiplexer, allowing 

the flip-flops of the read-write registers to be replaced with latches. 

Now we have a situation where there is a path from the flip-flops generating PWDATA 

signals to the latch registers, and from the latch registers to flip-flops in the read logic. A 

problem with connecting a positive level active latch between two positive edge triggered flip-

flops is that a change in the output of the first flip-flop on a clock edge will propagate straight 

through the latch to the input of the second flip-flop, which might cause a hold time issue. A 

possible solution would be to make sure the data at the output of the first flip-flop is stable 

before enabling the clock to the latch, by modifying the write protocol, and setting the path 

from the first flip-flop to the second flip-flop as a multi-cycle path. This solution would result 

in a 3 cycle APB write access, so it is not optimal. A better solution is to latch the write data 

through a negative level active clock. 

The resulting read-write register made with latches and clock gating is shown in Figure 31. 

The negative level active write latches load the data in PWDATA to wDataLat on the negative 

level of the clock. The clock gate contains a negative level triggered latch and an AND gate, 

that are used to create the gated clock signal. When the register is written to, the clock gate is 

enabled, and a clock pulse is provided to load the value from wDataLat into the register latches 

on the positive level of the clock. The read-write latch register, of Figure 31, implemented in 

SystemVerilog, is shown in Figure 32. 
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Figure 31. Example of a read-write register using latches and clock-gating. 
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Figure 32. Example of a read-write latch register coded in SystemVerilog. 

 

By latching the write data, PWDATA, through negative level active latches instead routing 

it straight to the register latches, positive edge triggered operation can be maintained, with the 

negative level triggered write latches acting as the primary latches and the positive level 

triggered register latches acting as the secondary latches. A difference to a flip-flop-based 

implementation is that the master latches can be shared by all the latch-based registers in a 

single register bank. 

OTP register, shown in Figure 27, also contains a feedback path through a multiplexer that 

can be implemented with a clock gate. An OTP register made with latches and clock gating is 

shown in Figure 33. When the register is written to, the clock gate is enabled, and a clock pulse 

is provided to load the value determined by wDataLat and otpTrim into the register latches. 

There is a possible race condition if the OTP values come from a positive level triggered source. 

This is not however the case as the OTP values are stable during normal functional operation 

of the circuit. 
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Figure 33. Example of an OTP register using latches and clock-gating. 

 

A write access to the read-write latch register of Figure 31, is shown in Figure 34. The setup 

phase starts at time 2, when the address PADDR indicates this register is accessed and write 

data PWDATA become valid. At the same time, PSEL and PWRITE signals go high to indicate 

that this register bank is selected and that it is a write transfer, respectively. At time 3, the write 

access starts by PENALBE signal going high, causing the clock gate enable to go high. 

PREADY signal being tied high indicates the write access can be completed on the next cycle. 

The write access finishes at time 4, with PENABLE signal going low. At the same time, a clock 

pulse is created through the clock gate and the data in wDataLat is loaded to the register latches.  
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Figure 34. A read-write latch register being written to with the APB protocol. 
 

If the negative level active latches, creating the wDataLat signal, were not used, correct data 
from PWDATA would be first loaded to the latch register at time 4, but then invalid data would 
propagate to the latch register and be loaded to it. The negative level active latches keep the 
data at the input of the latch register valid for half a clock cycle longer, until the latch register 
clock becomes inactive. 

The use of latches does not affect the APB read access, as the clock to the latch register is 
inactive during the whole access and the latch will keep its value like a flip-flop would. A fixed 
two cycle read access to the read-write latch register of Figure 31, is shown in Figure 35. The 
setup phase starts at time 2, when the address PADDR indicates this register is accessed. At the 
same time, PSEL signal goes high and PWRITE signal goes low, to indicate that this register 
bank is selected and that it is a write transfer, respectively. At time 3, the read access starts by 
PENALBE signal going high. PREADY signal being tied high indicates the read access can be 
finished on the next cycle. The read access finishes at time 4 with the PENABLE signal going 
low. 
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Figure 35. A read-write latch register being read from with the APB protocol. 

 
 

4.4 DFT method selection 

Manufacturing testing is an important step in ensuring that defective components are not 
shipped to customers. For the latch replacement to be practical, for actual products, the fault 
coverage should not be decreased significantly, while keeping the area overhead and testing 
time of the DFT solution manageable. The different DFT options are considered in this chapter, 
and one is selected to be studied further. 

 
 

4.4.1 Scan design considerations 

The flip-flop-based reference design is manufacturing tested using the muxed-D scan style. 
From the design flow perspective, using the muxed-D scan style for the latch register design 
would be preferred. Scan testing is a well-known and often utilized method to test flip-flop-
based circuits. The transparent nature of latches makes them ill-suited for use in scan chains. 

 
4.4.1.1 Full-scan design consideration 

For the controllability and observability of a full-scan design to be preserved, the latches would 
need to be made scannable. A proposed custom muxed-D scan cell is shown in Figure 36. It 
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acts as two latches in normal mode and as a single flip-flop, with both data inputs XORed 

together, in scan mode, SM. 
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Figure 36. A custom muxed-D scan cell. 

 

The downside of this proposed scan cell is that the area benefit of using latches is destroyed 

by all the testability logic. Another disadvantage is that the data in both data outputs is the same 

in scan mode, SM, which could make some faults downstream of the scan cell untestable. 

LSSD scan style has been typically used for scan testing latches. A downside is that it would 

require converting the design into LSSD style and creating LSSD library cells. The standard 

LSSD style is not suitable, as the added dummy latches would destroy the area benefit. The 

optimized LSSD style in [11], is better from area point of view. The downside of it is that it 

requires two different scan modes and the logic downstream of the L1 and L2* latches to be 

able to be tested independently of each other. The scan modes could be combined by using an 

XOR gate to combine both inputs together and using a multiplexer to route the L2 output to the 

L1 output, similarly to the proposed muxed-D scan cell of Figure 36. The area overhead of the 

optimized LSSD style would be smaller than using the muxed-D scan cell of Figure 36, but it 

would still not be very optimal. 

From the other full-scan methods briefly introduced in chapter 3.1.4, the asynchronous scan-

latch controller, presented in [14], is also an unsuitable solution. Integrating the controller on-

chip would be unacceptable due to the area overhead of the controller and the clock tree. Having 

the controller off-chip is unrealistic due to the need for one test clock for each latch in the 

design. 

 

 

4.4.1.2 Partial-scan design consideration 

Since the area overhead that would result from making latches transparent is unacceptably large, 

leaving them non-scannable can be considered, resulting in a partial scan design. By leaving 

the latch registers non-scannable, they need to be sequentially tested, with a sequential depth of 
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2. The controllability and observability are reduced, as the latches and the logic around the 

latches now needs to be controlled from flip-flops in the write logic and observed from flip-

flops in the read logic.  

The reduced controllability and observability can negatively affect the fault coverage. The 

fault coverage loss should be able to be minimized, to an acceptable level, by improving the 

testability with control and observation points. 

The reduced controllability and observability can also result in more test patterns being 

needed, for the same fault coverage, resulting in increased testing time. The number of test 

patterns needed can also be reduced with control and observation points, but likely not enough 

to match a full-scan design, without increasing the area significantly. 

 

 

4.4.2 Logic BIST considerations 

Logic BIST schemes require the latches to be made scannable, to reach high fault coverages, 

leading to high area overhead from the scan testability logic. They also suffer from the added 

area overhead of the BIST logic. Logic BIST schemes are unsuitable in this case, as in the field 

testing is not required, and they are not investigated further. 

 

 

4.4.3 Memory BIST considerations 

Memory BIST schemes have been found suitable for manufacturing testing large, embedded 

memories. The memory in this case differs from typical memories, bringing several challenges 

in implementing a memory BIST. 

Embedded memories are often large, making the area overhead of the BIST logic negligible. 

In this case, only 1973 bits are stored in the register banks and of those, only 1618 bits are in 

read-write and OTP registers. Making the memory BIST small enough not to increase the area 

significantly would be a real challenge. 

Embedded memories are usually uniform, made from the same type, width, and length 

memory. In this case the memory is made of several different types of registers, with different 

widths. Due to the irregular structure of the memory, the output response analysis and the 

address generation is made more complicated. The known distributed memory BIST 

architectures, of chapter 3.3, are also not suitable due to the irregular structure. 

The expected read data depends on the type and width of the register accessed. Generating 

the expected read data on-chip without storing this information seems unfeasible and storing 

the type and width of the register in each address would lead to large area overhead. A MISR 

and comparing the output to a golden signature would most likely need to be used, leading to 

area overhead and some fault masking. 

Since the register banks in this case only contain the number of registers that is necessary 

for the design, the number of registers is unlikely to be a power of 2. This would result in empty 

register locations being tested when using an LFSR as the address generator, leading to 

unnecessarily long testing time. A binary counter could be used as the address generator to 

avoid this issue, but the area would be larger.  

Another structural difference is that the outputs of the registers in the digital register bank 

are connected to the rest of the digital logic. To facilitate the testing of the digital logic 

downstream of the registers, the latches would need to be made transparent or bypassed during 

scan testing anyways. 



 

 

56 

For the above reasons, memory BIST schemes are not well suited in this case, and they 

should be only considered, if the fault coverage from a partial scan design is deemed too low. 

Partial scan is deemed the most promising option and selected as the DFT style to be researched 

further. 

 

 

4.5 Partial scan design 

To keep the area benefit of using latches, they can be left non-scannable, resulting in a partial 

scan design. The partial scan design can be sequentially tested, by making the latches 

transparent during the shift operation, and then using multiple capture cycles to sequentially 

observe the latches. 

The reduced controllability and observability of the partial scan design results in loss of fault 

coverage and an increased number of test patterns. The loss of fault coverage can be reduced, 

with the strategic use of control and observation points. The main downside of the partial scan 

design is the increased number of test patterns, which cannot be so easily decreased without 

large area overhead. 

Chapter 4.5.1 presents how latches were made transparent during scan testing. Chapter 4.5.2 

present how the observability was increased. Chapter 4.5.3 presents how the controllability was 

increased. All the modifications to the reference design, using the replacement technique 

developed in this thesis were made in the register-transfer level (RTL), using SystemVerilog as 

the coding language. 

 

 

4.5.1 Making latches transparent 

To maximise the fault coverage of the partial scan design, the latches need be made transparent 

during scan testing. For the Tessent ATPG tool, made by Siemens AG, to identify the latches 

as transparent, the latches need to be transparent between setting values on primary inputs and 

measuring values from primary outputs, while the clock is low [25]. 

Transparency for the register latches can be achieved by OR gating the clock to all the 

positive edge active latches with the shift enable signal, shown in Figure 37. This allows the 

latch to be transparent when patterns are shifted in and out, but also allows the ATPG tool to 

manipulate the clock to the latches in capture, allowing the latches to be sequentially tested. 

The clock gate latches, and the write latches are negative clock level active and do not need any 

modifications to be identified as transparent. 
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Figure 37. Making register latches transparent with an OR gate. 

 

 

4.5.2 Improving observability 

The enable for the clock gates of the latch registers is generated in a large combinational logic 

tree. When scannable flip-flops are used, faults in the clock gating logic can be seen in whether 

the value in the flip-flop is updated. In a latch-based register, the effect of the clock gating logic 

needs to be sequentially observed from flip-flops downstream of the latches. The structure of 

the analogue register banks means that only one latch register, in a register bank, can be 

observed at a time from the flip-flops in the read logic. The reduced observability results in a 

large decrease in the fault coverage of the clock gating enable logic. 

A solution to this loss in fault coverage would be to add observation points for observing the 

clock gating logic of all the latch registers. This solution however would result in unnecessarily 

high area overhead and increased power consumption. 

A more area and power efficient solution is to keep the first bit of each latch register as a 

flip-flop, instead of replacing all the flip-flops with latches. Since the clock gating logic is the 

same for all the bits in a register, by keeping one flip-flop in each register, the clock gating logic 

can be observed from it.  

A latch register, with one bit location kept as a flip-flop, is shown in Figure 38. Bit location 

0 of each latch register is kept as a flip-flop and the input is taken straight from PWDATA[0], 

instead of latching it through a negative level active latch. The rest of the bit locations in the 

latch register are implemented with latches. The clock to the flip-flop needs to be taken from 

before the OR gate making the latches transparent during shift, so that shifting in values to the 

flip-flops is not disturbed. The clock gate now also needs to contain an OR gate to enable the 

clock to the flip-flops during shift. The latch register, of Figure 38, implemented in 

SystemVerilog, is shown in Figure 39. 
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Figure 38. A read-write latch register after DFT measures. 

 

 
Figure 39. A read-write latch register after DFT measures coded in SystemVerilog. 
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4.5.3 Improving controllability 

The added OR gates, making the latches transparent during shift, bring a problem of 

controllability. The port of the OR gate, that is connected to the shift enable, cannot be fully 

stuck-at tested since it is always low during capture. This results in large fault coverage loss as 

there is one of these OR gates for every latch register. The controllability can be increased by 

OR gating the shift enable with a control point, like in Figure 40. An AND gate is used to 

disable the control point when not in scan mode. Two flip-flops are used in the control point so 

that sequential control patterns can be created by the ATPG tool. The same control point is 

shared by all the OR gates, that make the register latches transparent, minimising the area 

overhead. The control point allows the OR gates to be fully stuck-at tested. 
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Figure 40. Increasing fault coverage by adding control points. 
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Since the address, PADDR, signal is used to create the enable signal to the clock gates of 

the latch registers, the clock to only one register can be on at a time, resulting in low 

controllability. The controllability can be increased by OR gating the shift enable with a control 

point, like in Figure 40. The control point is identical to the control point used for the OR gates 

making latches transparent. Two different control points are used to avoid masked faults, since 

the control points converge at the OR gate making the latches transparent. All the latch register 

clock gates share the same control point, making it possible for the ATPG tool to enable the 

clock for all the latch registers simultaneously, resulting in increased fault coverage. 

The reset pin of scan flip-flops can be stuck-at tested by shifting in an opposite value to the 

reset value, pulsing the reset active and then shifting out and checking that the value inside the 

flip-flop was changed to the reset value [33]. The reset pin of latches cannot be tested this way 

since the latches are not scannable. The reset pin of latches can be made testable by connecting 

it to a control point, like in Figure 40. A multiplexer is used to select the control point in scan 

mode and the normal reset in normal mode. An AND gate is used to ensure that the reset is 

inactive during shift, and that the latches are kept transparent. Two flip-flops are used in the 

control point, so that sequential reset patterns can be created. The pattern for the reset is shifted 

to the scannable flip-flops and then executed during capture. 
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5 RESULTS 

A reference design, implemented entirely with flip-flops, and a proposed latch register design, 

were synthesized. This chapter presents three types of results gathered from the synthesized 

designs. The area results of the latch register and reference designs are compared to see the area 

benefit of the latch replacement. Then, the power consumption results are compared to see the 

effect of the latch replacement on power consumption. Lastly, the ATPG results are compared 

to see the effect of the latch replacement on fault coverage and testing time. 

 

 

5.1 Area results 

To get area results, the latch register design, described in chapters 4.3 and 4.5, and the reference 

design, described in chapter 4.1, were synthesized. Design Compiler [29], made by Synopsys, 

was used as the synthesis tool. 

All read-write and OTP registers that are 3-bits or wider, were implemented with latches in 

the latch register design. Read-write and OTP registers, that are 2 bits or smaller were 

implemented entirely with flip-flops. Both designs were synthesized with automatic clock 

gating, with the tool configured to insert clock gates to registers that are 3-bits or wider. 

Area results, for the synthesized reference and latch register designs, are presented in Table 

3. The total sequential area of the latch register design is decreased roughly 9% compared to 

the reference design. This results from 1220 flip-flops being replaced with latches in the latch 

register design. Some of the area gain is lost because of the 28 low active write data latches and 

the 6 control flip-flops that were added to the latch register design. 

 

Table 3. Area results 

 Reference 
Latch register  Latch register as % of 

reference 

Data latches 0 1220  

Flip-flops 5428 4214  

Clock gates 600 600  

Combinational 

area 
408 969 um2 421 977 um2 103% 

Sequential 

area 
707 620 um2 640 810 um2 91% 

Total area 1 116 588 um2 1 062 787 um2 95% 

Gates in 

NAND2 

equivalents 

71 211 67 780 95% 

 

The latch replacement also results in roughly 3% combinational area increase compared to 

the reference design. This mostly results from there being an extra OR gates in the clock tree 

for each latch register. 

The increased combinational area is overshadowed by the decreased sequential area. The 

latch replacement ends up resulting in an overall area decrease of 5%, compared to the reference 

design. 

The benefit of the latch registers is somewhat masked by all the area in the rest of the digital 

logic. The benefit is seen more clearly from the register bank area results, presented in Table 4. 
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The latch replacement results in roughly 15% register bank area decrease, compared to the flip-

flop-based reference design. 

 

Table 4. Register bank area results 

 Reference 
Latch register Latch register as % of 

reference 

Register bank 1 

area 
138 059 um2 118 726 um2 86% 

Register bank 2 

area 
41 169 um2 34 499 um2 84% 

Register bank 3 

area 
95 444 um2 81 799 um2 86% 

Register bank 4 

area 
81 341 um2 66 113 um2 81% 

Total register 

bank area 
356 014 um2 301 137 um2 85% 

 

 

5.2 Power consumption results 

Power consumption is an important metric, along with area, that should be considered when 

assessing the overall benefit of the latch replacement. The synthesized gate level netlist and a 

switching activity information format (SAIF) file, generated from RTL simulations, were used 

to gather the power consumption results. The activity information was taken from a simulation, 

where register bank 1 was being written to and read from. This activity information was chosen, 

so that the effect of the latch replacement would be seen more clearly than from more realistic 

activity information, where the register banks are not accessed as often. 

The power consumption results, for the reference and latch register designs, are presented in 

Table 5. The dynamic power consumption of the latch register design is roughly 1.6% larger 

than for the reference design. The static power consumption of the latch register design is 

roughly 0.7% smaller. Since the dynamic power consumption is much larger than the static 

power consumption, the total power consumption, for the latch register design, ends up being 

roughly 1.5% larger. 

 

Table 5. Power consumption results 

 Reference 
Latch register Latch register as % of 

reference 

Dynamic 

power 

consumption 

1.112 mW 1.130 mW 101.6% 

Static power 

consumption 
1.924 uW 1.910 uW 99.3% 

Total power 

consumption 
1.114 mW 1.131 mW 101.5% 

 

The increased dynamic power consumption results from the switching power consumption 

of the clock pins of the latches being higher compared to flip-flops and from the OR gates that 

were added to make the register latches transparent.  
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5.3 ATPG results 

Cost is an important metric, along with area and power consumption, that should be considered 

when assessing the benefit of the latch replacement. Reduced fault coverage will lead to more 

defective products being shipped to customers, increasing returns and costs. Increased testing 

time increases the cost of the testing itself.  

Test patterns for stuck-at, IDDQ and transition faults were generated with Tessent [25], made 

by Siemens AG. The patterns, for both the reference and latch register designs, were generated 

using the same tool settings. 

 

 

5.3.1 Stuck-at fault results 

The stuck-at fault ATPG results, for the reference and latch register designs, are presented in 

Table 6. With the help of the DFT methods presented in chapter 4.5, a stuck-at fault coverage 

of 99.06% was achieved for the latch register design, while the reference design achieves a 

99.09% stuck-at fault coverage. The stuck-at fault coverage of the 4 register banks is similarly 

close between the reference and latch register designs. 

 

Table 6. Stuck-at fault results 

 Reference Latch register 

Test coverage 99.13% 99.10% 

Fault coverage 99.09% 99.06% 

ATPG 

effectiveness 
100.00% 99.97% 

Test patterns 920 1803 

Basic patterns 918 400 

Sequential 

patterns 
2 1403 

Register bank 1 

fault coverage 
98.31% 98.22% 

Register bank 2 

fault coverage 
99.84% 99.83% 

Register bank 3 

fault coverage 
99.95% 99.95% 

Register bank 4 

fault coverage 
99.94% 99.94% 

 

The main drawback of the latch register design is the increased number of test patterns. As 

there are roughly 97% more test patterns for the latch register design, the testing time is 

increased. 
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5.3.2 IDDQ fault results 

The IDDQ fault ATPG results, for the reference and latch register designs, are presented in 

Table 7. The latch register design has a worse IDDQ fault coverage, for the register banks. This 

results from the ATPG tool being unable to generate sequential patterns to test the inputs of the 

latches, reporting them as blocked. 

 

Table 7. IDDQ fault results 

 Reference Latch register 

Test coverage 98.65% 98.59% 

Fault coverage 92.85% 91.33% 

ATPG 

effectiveness 
100.00% 100.00% 

Test patterns 519 587 

Basic patterns 505 565 

Sequential 

patterns 
14 22 

Register bank 1 

fault coverage 
92.78% 88.08% 

Register bank 2 

fault coverage 
90.70% 84.93% 

Register bank 3 

fault coverage 
93.65% 88.56% 

Register bank 4 

fault coverage 
90.83% 83.79% 

 

The latch replacement does not affect the number of IDDQ test patterns as significantly as 

the number of stuck-at test patterns. The number of IDDQ test patterns is roughly 13% higher 

for the latch register design. 

 

 

5.3.3 Transition fault results 

The transition fault ATPG results, for the reference and latch register designs, are presented in 

Table 8. The overall fault coverage and the register bank fault coverage is higher for the latch 

register design. The higher fault coverage results from the DFT measures of chapter 4.5.3 

improving controllability. The ATPG tool manages to report fault coverage for the reset pins 

of the latches, while the reset pins of the scan flip-flops are not fully covered. This results from 

the control point connected to the resets pins of the latches. The ATPG tool also manages to 

report fault coverage for faults in the scan enable pins of the manually inserted clock gating 

cells, also caused by the control point that was inserted in the latch register design. 

 

Table 8. Transition fault results 

 Reference Latch register 

Test coverage 84.19% 85.31% 

Fault coverage 82.46% 83.54% 

ATPG 

effectiveness 
99.65% 99.78% 
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Test patterns 3000 3300 

Basic patterns 9 9 

Sequential 

patterns 
2991 3291 

Register bank 1 

fault coverage 
79.36% 83.09% 

Register bank 2 

fault coverage 
83.72% 86.64% 

Register bank 3 

fault coverage 
87.23% 90.60% 

Register bank 4 

fault coverage 
83.87% 87.25% 

 

The latch replacement also increases the testing time of transition faults. The number of 

transition test patterns is 10% larger for the latch register design. 
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6 DISCUSSION 

The main goal for the thesis was to decrease area of digital logic in a PMIC. The goal was 

reached with a total area decrease of 5% and a register bank area decrease of 15%, compared 

to the reference PMIC. The 5% area decrease is significant as it can already result in large 

profits when millions of ICs are manufactured. 

The area benefit of the latch replacement is highly PMIC dependent. It is determined by the 

flip-flop area in read-write and OTP registers, compared to the rest of the digital area. Designs 

with more registers benefit more from this method. The average width of the read-write and 

OTP registers also effect the area benefit. As future work, studying how to fully populate all 

registers to be 8-bit wide could be considered to maximise the area benefit of the replacement. 

Read-write and OTP registers are the most common source of flip-flops in the reference 

design, and they were also found the best suited for latch replacement due to their structure. 

This already resulted in roughly 25% of all the flip-flops to be replaced with latches. As future 

work, determining other suitable flip-flops to be replaced, and replacing them could be 

considered. 

Although the latch replacement method was developed with PMICs particularly in mind, it 

is suited for all ICs containing flip-flop-based register banks. This is significant as Nordic 

Semiconductor also makes Bluetooth, Wi-Fi and cellular IoT ICs that most likely could use the 

latch replacement method. As future work, finding out which products at Nordic Semiconductor 

are suited for the latch replacement method could be considered. 

The second goal of not significantly increasing the power consumption was also met, as the 

total power consumption increased by only 1.5%. The effect of the latch replacement on power 

consumption was contradictory, as the dynamic power consumption was increased by 1.6%, 

but the static power consumption was decreased by 0.7%. The results were taken from activity, 

where a register bank was continuously written to and read from. In a more realistic situation, 

the PMIC might be configured at start-up, but then the configuration registers would probably 

be seldomly accessed and the clock would be off most of the time. Because of that, the 

decreased static power consumption is significant. 

The increase in the dynamic power consumption resulted from the OR gates, that were added 

to the clock three, and from the switching power consumption of the clock pins of latches 

unexpectedly being higher than of flip-flops according to the modelled library data. As future 

work, the reason for this unexpected switching power consumption could be researched, so that 

the power consumption could be decreased. 

The third goal of maintaining the quality of manufacturing testing was also met. As the stuck-

at fault model is a widely used fault model, and stuck-at test patterns have been shown to detect 

many of the faults based on other models, the most effort in this thesis was spent on improving 

the stuck-at fault coverage of the latch register design. The innovation of leaving one bit of each 

register as a flip-flop was significant in improving fault coverage, without increasing the silicon 

area significantly. The stuck-at fault coverage ended up being roughly the same compared to 

the reference design. The drawback is that the number of test patterns needed to achieve this 

coverage was roughly doubled. 

Due to the reduced observability of the faults in the latch registers, most of the faults in the 

rest of the circuit are detected in the first test patterns and the later test patterns only detect a 

comparatively small number of faults in the latch registers. This means that the testing time 

could be significantly decreased by sacrificing some fault coverage in the latch registers. As 

future work, the optimal number of test patterns could be studied to optimize the costs from 

increased returns with the costs from decreased testing time. 
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The quality of the transition testing was improved, as the fault coverage was increased. The 

improvement caused by the improved controllability of the scan enable pins of the clock gates 

is deceptive and can be disregarded, as they are only used in scan testing and do not affect the 

normal operation of the circuit. The increased fault coverage for the reset pins of the latches 

compared to the reset pins of flip-flops is more significant. A slight downside is that the number 

of test patterns was increased by 10%. 

The quality of the IDDQ testing was not completely maintained, as the fault coverage was 

decreased. The testing time was also slightly increased, with a 13% increase in the number of 

test pattern. The fault coverage decrease is not very significant, as the number of dedicated 

IDDQ test patterns is small compared to total number of patterns. Monitoring the quiescent 

supply current during stuck-at testing already gives quite good IDDQ fault coverage. As future 

work, the IDDQ fault coverage of the latch register design could be also improved closer to that 

of the reference design. 

The LSSD scan style, covered in chapter 3.1.3, is the most well-known method of dealing 

with latches. The main downside with it is that a dummy latch needs to be added for each latch 

in the design. Another downside is that it requires 2 extra clock signals to be routed. The partial 

scan method developed in this thesis is much more area efficient, only having the first bit of 

each latch register scannable, only using one OR gate per latch register and having less routing 

complexity. 

The most similar partial scan method, found during researching the theory part of the thesis, 

was the method of modelling the latches as combinational gates and preloading them with 

known values, of [12], presented in chapter 3.1.4. The method requires adding multiplexers to 

the data inputs of the latches and OR gating a force write signal to the clock inputs of the latches. 

Since the latches are also modelled as combinational gates, it requires modifying the gate level 

netlists. The partial scan method developed in this thesis is much more area efficient, only using 

a single OR gate per latch register to bring the latches into known states. The improved 

observability from the innovation of leaving one bit as a scannable flip-flop and the added 

control points most likely also results in much larger fault coverage. Another upside of the 

partial scan method developed in this thesis is that it is well supported by the existing design 

automation tools, not requiring any gate-level netlists to be manually modified. 
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7 SUMMARY 

The main purpose of this thesis was to decrease the area of a flip-flop-based reference PMIC 

by replacing selected flip-flops with latches. The secondary goals for the thesis were to not 

increase the power consumption and not to decrease the manufacturing fault coverage, caused 

by the latch replacement method. 

The thesis first provided some necessary background theory on the differences of latches 

and flip-flops. Latches are transparent on clock active level, whereas flip-flops are transparent 

only on clock active edge. The transparent nature of latches makes them ill-suited for shift 

registers and so ill-suited for the most common manufacturing testing method of scan testing. 

Pulsed latches and pulsed flip-flops behave similarly to flip-flops if the clock pulse is short 

enough. A disadvantage is the increased power consumption caused by the pulser. 

The thesis then provided some necessary background theory on design for testability 

methods. Scan testing improves the controllability and observability of a design by replacing 

flip-flops in a design with scan flip-flops and connecting into scan chains. Partial scan reduces 

the area overhead of the scan cells by leaving some sequential elements as non-scannable. A 

disadvantage is that the fault coverage can decrease and the testing time increase, due to the 

reduced controllability and observability. BIST schemes incorporate testing features on the 

CUT itself. A disadvantage of the BIST methods is the area overhead of the BIST logic. 

As the average register width of the reference PMIC was small, and the power consumption 

overhead of the pulser in a pulsed latch design is dependent on how many latches can share a 

pulser, it was decided to investigate decreasing the area with latches instead. Flip-flops in read-

write and OTP registers, of the reference PMIC, were identified as suitable to be replaced with 

latches. 

The latch register method developed in this thesis saves area, by sharing the primary latches 

for all the latch registers. The write data is loaded to shared negative level active primary latches 

on the negative level of the clock. The primary latch outputs are connected to several secondary 

latches. Clock gating is used to determine which latch register, acting as the secondary latches, 

the data is loaded to on the positive level of the clock. 

The area overhead of the traditionally used DFT methods for testing latches, such as memory 

and logic BIST and LSSD scan style were determined to be suboptimal due to their large area 

overhead. Partial scan was selected as the DFT method instead, as it was estimated that the fault 

coverage could be maintained with the sequential depth only being 2. 

The register latches were made transparent during the shift operation of scan testing with 

OR gates. This allowed the latches to be set into known states during shift and then sequentially 

tested during capture. Observability of clock gating logic was improved by keeping the first bit 

of each latch register as flip-flop, allowing the clock gating logic to be observed from the flip-

flop directly. A sequential multiplexer control point was added to the asynchronous reset pins 

of the latches, to be able to stuck-at test them. A sequential OR control point was added to the 

shift enable pins of the latch clock gates, to improve the controllability of the clock gates. 

Another sequential OR control point was added to the pins of the OR gates, making the latches 

transparent, to make them stuck-at testable. 

The latch replacement resulted in 5% total area decrease and 15% register bank area 

decrease. The price of the area decrease is a slight increase in power consumption. The latch 

replacement method manages to maintain stuck-at fault coverage, but results in roughly twice 

as many test patterns needed to achieve that coverage. Another disadvantage of the replacement 

is some IDDQ fault coverage being lost. 
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