4,473 research outputs found

    About adaptive state knowledge extraction for septic shock mortality prediction

    Get PDF
    The early prediction of mortality is one of the unresolved tasks in intensive care medicine. This contribution models medical symptoms as observations cased by transitions between hidden markov states. Learning the underlying state transition probabilities results in a prediction probability success of about 91%. The results are discussed and put in relation to the model used. Finally, the rationales for using the model are reflected: Are there states in the septic shock data

    Left ventricular systolic function evaluated by strain echocardiography and relationship with mortality in patients with severe sepsis or septic shock. a systematic review and meta-analysis

    Get PDF
    Sepsis-induced myocardial dysfunction is associated with poor outcomes, but traditional measurements of systolic function such as left ventricular ejection fraction (LVEF) do not directly correlate with prognosis. Global longitudinal strain (GLS) utilizing speckle-tracking echocardiography (STE) could be a better marker of intrinsic left ventricular (LV) function, reflecting myocardial deformation rather than displacement and volume changes. We sought to investigate the prognostic value of GLS in patients with sepsis and/or septic shock

    Machine learning in critical care: state-of-the-art and a sepsis case study

    Get PDF
    Background: Like other scientific fields, such as cosmology, high-energy physics, or even the life sciences, medicine and healthcare face the challenge of an extremely quick transformation into data-driven sciences. This challenge entails the daunting task of extracting usable knowledge from these data using algorithmic methods. In the medical context this may for instance realized through the design of medical decision support systems for diagnosis, prognosis and patient management. The intensive care unit (ICU), and by extension the whole area of critical care, is becoming one of the most data-driven clinical environments. Results: The increasing availability of complex and heterogeneous data at the point of patient attention in critical care environments makes the development of fresh approaches to data analysis almost compulsory. Computational Intelligence (CI) and Machine Learning (ML) methods can provide such approaches and have already shown their usefulness in addressing problems in this context. The current study has a dual goal: it is first a review of the state-of-the-art on the use and application of such methods in the field of critical care. Such review is presented from the viewpoint of the different subfields of critical care, but also from the viewpoint of the different available ML and CI techniques. The second goal is presenting a collection of results that illustrate the breath of possibilities opened by ML and CI methods using a single problem, the investigation of septic shock at the ICU. Conclusion: We have presented a structured state-of-the-art that illustrates the broad-ranging ways in which ML and CI methods can make a difference in problems affecting the manifold areas of critical care. The potential of ML and CI has been illustrated in detail through an example concerning the sepsis pathology. The new definitions of sepsis and the relevance of using the systemic inflammatory response syndrome (SIRS) in its diagnosis have been considered. Conditional independence models have been used to address this problem, showing that SIRS depends on both organ dysfunction measured through the Sequential Organ Failure (SOFA) score and the ICU outcome, thus concluding that SIRS should still be considered in the study of the pathophysiology of Sepsis. Current assessment of the risk of dead at the ICU lacks specificity. ML and CI techniques are shown to improve the assessment using both indicators already in place and other clinical variables that are routinely measured. Kernel methods in particular are shown to provide the best performance balance while being amenable to representation through graphical models, which increases their interpretability and, with it, their likelihood to be accepted in medical practice.Peer ReviewedPostprint (published version

    Machine Learning Methods for Septic Shock Prediction

    Get PDF
    Sepsis is an organ dysfunction life-threatening disease that is caused by a dysregulated body response to infection. Sepsis is difficult to detect at an early stage, and when not detected early, is difficult to treat and results in high mortality rates. Developing improved methods for identifying patients in high risk of suffering septic shock has been the focus of much research in recent years. Building on this body of literature, this dissertation develops an improved method for septic shock prediction. Using the data from the MMIC-III database, an ensemble classifier is trained to identify high-risk patients. A robust prediction model is built by obtaining a risk score from fitting the Cox Hazard model on multiple input features. The score is added to the list of features and the Random Forest ensemble classifier is trained to produce the model. The Cox Enhanced Random Forest (CERF) proposed method is evaluated by comparing its predictive accuracy to those of extant methods

    Rethinking animal models of sepsis - working towards improved clinical translation whilst integrating the 3Rs.

    Get PDF
    Sepsis is a major worldwide healthcare issue with unmet clinical need. Despite extensive animal research in this area, successful clinical translation has been largely unsuccessful. We propose one reason for this is that, sometimes, the experimental question is misdirected or unrealistic expectations are being made of the animal model. As sepsis models can lead to a rapid and substantial suffering - it is essential that we continually review experimental approaches and undertake a full harm:benefit impact assessment for each study. In some instances, this may require refinement of existing sepsis models. In other cases, it may be replacement to a different experimental system altogether, answering a mechanistic question whilst aligning with the principles of reduction, refinement and replacement (3Rs). We discuss making better use of patient data to identify potentially useful therapeutic targets which can subsequently be validated in preclinical systems. This may be achieved through greater use of construct validity models, from which mechanistic conclusions are drawn. We argue that such models could provide equally useful scientific data as face validity models, but with an improved 3Rs impact. Indeed, construct validity models may not require sepsis to be modelled, per se. We propose that approaches that could support and refine clinical translation of research findings, whilst reducing the overall welfare burden on research animals

    Development of Artificial Intelligence Algorithms for Early Diagnosis of Sepsis

    Get PDF
    Sepsis is a prevalent syndrome that manifests itself through an uncontrolled response from the body to an infection, that may lead to organ dysfunction. Its diagnosis is urgent since early treatment can reduce the patients’ chances of having long-term consequences. Yet, there are many obstacles to achieving this early detection. Some stem from the syndrome’s pathogenesis, which lacks a characteristic biomarker. The available clinical detection tools are either too complex or lack sensitivity, in both cases delaying the diagnosis. Another obstacle relates to modern technology, that when paired with the many clinical parameters that are monitored to detect sepsis, result in extremely heterogenous and complex medical records, which constitute a big obstacle for the responsible clinicians, that are forced to analyse them to diagnose the syndrome. To help achieve this early diagnosis, as well as understand which parameters are most relevant to obtain it, an approach based on the use of Artificial Intelligence algorithms is proposed in this work, with the model being implemented in the alert system of a sepsis monitoring platform. This platform uses a Random Forest algorithm, based on supervised machine learning classification, that is capable of detecting the syndrome in two different scenarios. The earliest detection can happen if there are only five vital sign parameters available for measurement, namely heart rate, systolic and diastolic blood pressures, blood oxygen saturation level, and body temperature, in which case, the model has a score of 83% precision and 62% sensitivity. If besides the mentioned variables, laboratory analysis measurements of bilirubin, creatinine, hemoglobin, leukocytes, platelet count, and Creactive protein levels are available, the platform’s sensitivity increases to 77%. With this, it has also been found that the blood oxygen saturation level is one of the most important variables to take into account for the task, in both cases. Once the platform is tested in real clinical situations, together with an increase in the available clinical data, it is believed that the platform’s performance will be even better.A sépsis é uma síndrome com elevada incidência a nível global, que se manifesta através de uma resposta desregulada por parte do organismo a uma infeção, podendo resultar em disfunções orgânicas generalizadas. O diagnóstico da mesma é urgente, uma vez que um tratamento precoce pode reduzir as hipóteses de consequências a longo prazo para os doentes. Apesar desta necessidade, existem vários obstáculos. Alguns deles advêm da patogenia da síndrome, que carece de um biomarcador específico. As ferramentas de deteção clínica são demasiado complexas, ou pouco sensíveis, em ambos os casos atrasando o diagnóstico. Outro obstáculo relaciona-se com os avanços da tecnologia, que, com os vários parâmetros clínicos que são monitorizados, resulta em registos médicos heterogéneos e complexos, o que constitui um grande obstáculo para os profissionais de saúde, que se vêm forçados a analisá-los para diagnosticar a síndrome. Para atingir este diagnóstico precoce, bem como compreender quais os parâmetros mais relevantes para o alcançar, é proposta neste trabalho uma abordagem baseada num algoritmo de Inteligência Artificial, sendo o modelo implementado no sistema de alerta de uma plataforma de monitorização de sépsis. Esta plataforma utiliza um classificador Random Forest baseado em aprendizagem automática supervisionada, capaz de diagnosticar a síndrome de duas formas. Uma deteção mais precoce pode ocorrer através de cinco parâmetros vitais, nomeadamente frequência cardíaca, pressão arterial sistólica e diastólica, nível de saturação de oxigénio no sangue e temperatura corporal, caso em que o modelo atinge valores de 83% de precisão e 62% de sensibilidade. Se, para além das variáveis mencionadas, estiverem disponíveis análises laboratoriais de bilirrubina, creatinina, hemoglobina, leucócitos, contagem de plaquetas e níveis de proteína C-reativa, a sensibilidade da plataforma sobre para 77%. Concluiu-se que o nível de saturação de oxigénio no sangue é uma das variáveis mais importantes a ter em conta para o diagnóstico, em ambos os casos. A partir do momento que a plataforma venha a ser utilizada em situações clínicas reais, com o consequente aumento dos dados disponíveis, crê-se que o desempenho venha a ser ainda melhor

    On the intelligent management of sepsis in the intensive care unit

    Get PDF
    The management of the Intensive Care Unit (ICU) in a hospital has its own, very specific requirements that involve, amongst others, issues of risk-adjusted mortality and average length of stay; nurse turnover and communication with physicians; technical quality of care; the ability to meet patient's family needs; and avoid medical error due rapidly changing circumstances and work overload. In the end, good ICU management should lead to an improvement in patient outcomes. Decision making at the ICU environment is a real-time challenge that works according to very tight guidelines, which relate to often complex and sensitive research ethics issues. Clinicians in this context must act upon as much available information as possible, and could therefore, in general, benefit from at least partially automated computer-based decision support based on qualitative and quantitative information. Those taking executive decisions at ICUs will require methods that are not only reliable, but also, and this is a key issue, readily interpretable. Otherwise, any decision tool, regardless its sophistication and accuracy, risks being rendered useless. This thesis addresses this through the design and development of computer based decision making tools to assist clinicians at the ICU. It focuses on one of the main problems that they must face: the management of the Sepsis pathology. Sepsis is one of the main causes of death for non-coronary ICU patients. Its mortality rate can reach almost up to one out of two patients for septic shock, its most acute manifestation. It is a transversal condition affecting people of all ages. Surprisingly, its definition has only been standardized two decades ago as a systemic inflammatory response syndrome with confirmed infection. The research reported in this document deals with the problem of Sepsis data analysis in general and, more specifically, with the problem of survival prediction for patients affected with Severe Sepsis. The tools at the core of the investigated data analysis procedures stem from the fields of multivariate and algebraic statistics, algebraic geometry, machine learning and computational intelligence. Beyond data analysis itself, the current thesis makes contributions from a clinical point of view, as it provides substantial evidence to the debate about the impact of the preadmission use of statin drugs in the ICU outcome. It also sheds light into the dependence between Septic Shock and Multi Organic Dysfunction Syndrome. Moreover, it defines a latent set of Sepsis descriptors to be used as prognostic factors for the prediction of mortality and achieves an improvement on predictive capability over indicators currently in use.La gestió d'una Unitat de Cures Intensives (UCI) hospitalària presenta uns requisits força específics incloent, entre altres, la disminució de la taxa de mortalitat, la durada de l'ingrès, la rotació d'infermeres i la comunicació entre metges amb al finalitad de donar una atenció de qualitat atenent als requisits tant dels malalts com dels familiars. També és força important controlar i minimitzar els error mèdics deguts a canvis sobtats i a la presa ràpida de deicisions assistencials. Al cap i a la fi, la bona gestió de la UCI hauria de resultar en una reducció de la mortalitat i durada d'estada. La presa de decisions en un entorn de crítics suposa un repte de presa de decisions en temps real d'acord a unes guies clíniques molt restrictives i que, pel que fa a la recerca, poden resultar en problemes ètics força sensibles i complexos. Per tant, el personal sanitari que ha de prendre decisions sobre la gestió de malalts crítics no només requereix eines de suport a la decisió que siguin fiables sinó que, a més a més, han de ser interpretables. Altrament qualsevol eina de decisió que no presenti aquests trets no és considerarà d'utilitat clínica. Aquesta tesi doctoral adreça aquests requisits mitjançant el desenvolupament d'eines de suport a la decisió per als intensivistes i es focalitza en un dels principals problemes als que s'han denfrontar: el maneig del malalt sèptic. La Sèpsia és una de les principals causes de mortalitats a les UCIS no-coronàries i la seva taxa de mortalitat pot arribar fins a la meitat dels malalts amb xoc sèptic, la seva manifestació més severa. La Sèpsia és un síndrome transversal, que afecta a persones de totes les edats. Sorprenentment, la seva definició ha estat estandaritzada, fa només vint anys, com a la resposta inflamatòria sistèmica a una infecció corfimada. La recerca presentada en aquest document fa referència a l'anàlisi de dades de la Sèpsia en general i, de forma més específica, al problema de la predicció de la supervivència de malalts afectats amb Sèpsia Greu. Les eines i mètodes que formen la clau de bòveda d'aquest treball provenen de diversos camps com l'estadística multivariant i algebràica, geometria algebraica, aprenentatge automàtic i inteligència computacional. Més enllà de l'anàlisi per-se, aquesta tesi també presenta una contribució des de el punt de vista clínic atès que presenta evidència substancial en el debat sobre l'impacte de l'administració d'estatines previ a l'ingrès a la UCI en els malalts sèptics. També s'aclareix la forta dependència entre el xoc sèptic i el Síndrome de Disfunció Multiorgànica. Finalment, també es defineix un conjunt de descriptors latents de la Sèpsia com a factors de pronòstic per a la predicció de la mortalitat, que millora sobre els mètodes actualment més utilitzats en la UCI

    The Convergence of Human and Artificial Intelligence on Clinical Care - Part I

    Get PDF
    This edited book contains twelve studies, large and pilots, in five main categories: (i) adaptive imputation to increase the density of clinical data for improving downstream modeling; (ii) machine-learning-empowered diagnosis models; (iii) machine learning models for outcome prediction; (iv) innovative use of AI to improve our understanding of the public view; and (v) understanding of the attitude of providers in trusting insights from AI for complex cases. This collection is an excellent example of how technology can add value in healthcare settings and hints at some of the pressing challenges in the field. Artificial intelligence is gradually becoming a go-to technology in clinical care; therefore, it is important to work collaboratively and to shift from performance-driven outcomes to risk-sensitive model optimization, improved transparency, and better patient representation, to ensure more equitable healthcare for all
    corecore