119 research outputs found

    Giving robots a voice: human-in-the-loop voice creation and open-ended labeling

    Get PDF
    Speech is a natural interface for humans to interact with robots. Yet, aligning a robot’s voice to its appearance is challenging due to the rich vocabulary of both modalities. Previous research has explored a few labels to describe robots and tested them on a limited number of robots and existing voices. Here, we develop a robot-voice creation tool followed by large-scale behavioral human experiments (N=2,505). First, participants collectively tune robotic voices to match 175 robot images using an adaptive human-in-the-loop pipeline. Then, participants describe their impression of the robot or their matched voice using another human-in-the-loop paradigm for open-ended labeling. The elicited taxonomy is then used to rate robot attributes and to predict the best voice for an unseen robot. We offer a web interface to aid engineers in customizing robot voices, demonstrating the synergy between cognitive science and machine learning for engineering tools

    Data analytics 2016: proceedings of the fifth international conference on data analytics

    Get PDF

    Survey on Additive Manufacturing, Cloud 3D Printing and Services

    Full text link
    Cloud Manufacturing (CM) is the concept of using manufacturing resources in a service oriented way over the Internet. Recent developments in Additive Manufacturing (AM) are making it possible to utilise resources ad-hoc as replacement for traditional manufacturing resources in case of spontaneous problems in the established manufacturing processes. In order to be of use in these scenarios the AM resources must adhere to a strict principle of transparency and service composition in adherence to the Cloud Computing (CC) paradigm. With this review we provide an overview over CM, AM and relevant domains as well as present the historical development of scientific research in these fields, starting from 2002. Part of this work is also a meta-review on the domain to further detail its development and structure

    Modélisation formelle des systèmes de détection d'intrusions

    Get PDF
    L’écosystème de la cybersécurité évolue en permanence en termes du nombre, de la diversité, et de la complexité des attaques. De ce fait, les outils de détection deviennent inefficaces face à certaines attaques. On distingue généralement trois types de systèmes de détection d’intrusions : détection par anomalies, détection par signatures et détection hybride. La détection par anomalies est fondée sur la caractérisation du comportement habituel du système, typiquement de manière statistique. Elle permet de détecter des attaques connues ou inconnues, mais génère aussi un très grand nombre de faux positifs. La détection par signatures permet de détecter des attaques connues en définissant des règles qui décrivent le comportement connu d’un attaquant. Cela demande une bonne connaissance du comportement de l’attaquant. La détection hybride repose sur plusieurs méthodes de détection incluant celles sus-citées. Elle présente l’avantage d’être plus précise pendant la détection. Des outils tels que Snort et Zeek offrent des langages de bas niveau pour l’expression de règles de reconnaissance d’attaques. Le nombre d’attaques potentielles étant très grand, ces bases de règles deviennent rapidement difficiles à gérer et à maintenir. De plus, l’expression de règles avec état dit stateful est particulièrement ardue pour reconnaître une séquence d’événements. Dans cette thèse, nous proposons une approche stateful basée sur les diagrammes d’état-transition algébriques (ASTDs) afin d’identifier des attaques complexes. Les ASTDs permettent de représenter de façon graphique et modulaire une spécification, ce qui facilite la maintenance et la compréhension des règles. Nous étendons la notation ASTD avec de nouvelles fonctionnalités pour représenter des attaques complexes. Ensuite, nous spécifions plusieurs attaques avec la notation étendue et exécutons les spécifications obtenues sur des flots d’événements à l’aide d’un interpréteur pour identifier des attaques. Nous évaluons aussi les performances de l’interpréteur avec des outils industriels tels que Snort et Zeek. Puis, nous réalisons un compilateur afin de générer du code exécutable à partir d’une spécification ASTD, capable d’identifier de façon efficiente les séquences d’événements.Abstract : The cybersecurity ecosystem continuously evolves with the number, the diversity, and the complexity of cyber attacks. Generally, we have three types of Intrusion Detection System (IDS) : anomaly-based detection, signature-based detection, and hybrid detection. Anomaly detection is based on the usual behavior description of the system, typically in a static manner. It enables detecting known or unknown attacks but also generating a large number of false positives. Signature based detection enables detecting known attacks by defining rules that describe known attacker’s behavior. It needs a good knowledge of attacker behavior. Hybrid detection relies on several detection methods including the previous ones. It has the advantage of being more precise during detection. Tools like Snort and Zeek offer low level languages to represent rules for detecting attacks. The number of potential attacks being large, these rule bases become quickly hard to manage and maintain. Moreover, the representation of stateful rules to recognize a sequence of events is particularly arduous. In this thesis, we propose a stateful approach based on algebraic state-transition diagrams (ASTDs) to identify complex attacks. ASTDs allow a graphical and modular representation of a specification, that facilitates maintenance and understanding of rules. We extend the ASTD notation with new features to represent complex attacks. Next, we specify several attacks with the extended notation and run the resulting specifications on event streams using an interpreter to identify attacks. We also evaluate the performance of the interpreter with industrial tools such as Snort and Zeek. Then, we build a compiler in order to generate executable code from an ASTD specification, able to efficiently identify sequences of events

    Human Action Recognition from Various Data Modalities:A Review

    Get PDF
    Human Action Recognition (HAR), aiming to understand human behaviors and then assign category labels, has a wide range of applications, and thus has been attracting increasing attention in the field of computer vision. Generally, human actions can be represented using various data modalities, such as RGB, skeleton, depth, infrared sequence, point cloud, event stream, audio, acceleration, radar, and WiFi, etc., which encode different sources of useful yet distinct information and have various advantages and application scenarios. Consequently, lots of existing works have attempted to investigate different types of approaches for HAR using various modalities. In this paper, we give a comprehensive survey for HAR from the perspective of the input data modalities. Specifically, we review both the hand-crafted feature-based and deep learning-based methods for single data modalities, and also review the methods based on multiple modalities, including the fusion-based frameworks and the co-learning-based approaches. The current benchmark datasets for HAR are also introduced. Finally, we discuss some potentially important research directions in this area

    Condition Assessment of Concrete Bridge Decks Using Ground and Airborne Infrared Thermography

    Get PDF
    Applications of nondestructive testing (NDT) technologies have shown promise in assessing the condition of existing concrete bridges. Infrared thermography (IRT) has gradually gained wider acceptance as a NDT and evaluation tool in the civil engineering field. The high capability of IRT in detecting subsurface delamination, commercial availability of infrared cameras, lower cost compared with other technologies, speed of data collection, and remote sensing are some of the expected benefits of applying this technique in bridge deck inspection practices. The research conducted in this thesis aims at developing a rational condition assessment system for concrete bridge decks based on IRT technology, and automating its analysis process in order to add this invaluable technique to the bridge inspector’s tool box. Ground penetrating radar (GPR) has also been vastly recognized as a NDT technique capable of evaluating the potential of active corrosion. Therefore, integrating IRT and GPR results in this research provides more precise assessments of bridge deck conditions. In addition, the research aims to establish a unique link between NDT technologies and inspector findings by developing a novel bridge deck condition rating index (BDCI). The proposed procedure captures the integrated results of IRT and GPR techniques, along with visual inspection judgements, thus overcoming the inherent scientific uncertainties of this process. Finally, the research aims to explore the potential application of unmanned aerial vehicle (UAV) infrared thermography for detecting hidden defects in concrete bridge decks. The NDT work in this thesis was conducted on full-scale deteriorated reinforced concrete bridge decks located in Montreal, Quebec and London, Ontario. The proposed models have been validated through various case studies. IRT, either from the ground or by utilizing a UAV with high-resolution thermal infrared imagery, was found to be an appropriate technology for inspecting and precisely detecting subsurface anomalies in concrete bridge decks. The proposed analysis produced thermal mosaic maps from the individual IR images. The k-means clustering classification technique was utilized to segment the mosaics and identify objective thresholds and, hence, to delineate different categories of delamination severity in the entire bridge decks. The proposed integration methodology of NDT technologies and visual inspection results provided more reliable BDCI. The information that was sought to identify the parameters affecting the integration process was gathered from bridge engineers with extensive experience and intuition. The analysis process utilized the fuzzy set theory to account for uncertainties and imprecision in the measurements of bridge deck defects detected by IRT and GPR testing along with bridge inspector observations. The developed system and models should stimulate wider acceptance of IRT as a rapid, systematic and cost-effective evaluation technique for detecting bridge deck delaminations. The proposed combination of IRT and GPR results should expand their correlative use in bridge deck inspection. Integrating the proposed BDCI procedure with existing bridge management systems can provide a detailed and timely picture of bridge health, thus helping transportation agencies in identifying critical deficiencies at various service life stages. Consequently, this can yield sizeable reductions in bridge inspection costs, effective allocation of limited maintenance and repair funds, and promote the safety, mobility, longevity, and reliability of our highway transportation assets

    Early Mechanisms of Retinal Degeneration in the harlequin Mouse

    Get PDF
    Retinal diseases are personally debilitating and expensive, yet many early disease mechanisms leading to their onset and progression remain poorly understood. The harlequin mouse is a model of human mitochondrial dysfunction and parainflammation leading to subsequent cerebellar and retinal degeneration. Diagnosis of retinal degeneration can be tracked in vivo and is associated with AIF dysfunction. Here, retinal dysfunction in the harlequin mouse was first quantified using electroretinography followed by assay of blood-retinal-barrier integrity and transcriptome alterations in young adulthood. Nonmetric multidimensional scaling of oscillatory potentials provided a novel, comprehensive assessment of inner-retinal health and can detect shifts in OP parameters. Barrier integrity ruled out confounding exogenous antigens and confirmed an endogenous source of retinal tissue malfunction. In addition, transcriptome alterations support the necessity of the hq retina to maintain metabolic demands. Alternative metabolism pathways are hypothesized to be important for hq complex I mitochondrial-dysfunction associated retinal degeneration

    Behavioral analysis in cybersecurity using machine learning: a study based on graph representation, class imbalance and temporal dissection

    Get PDF
    The main goal of this thesis is to improve behavioral cybersecurity analysis using machine learning, exploiting graph structures, temporal dissection, and addressing imbalance problems.This main objective is divided into four specific goals: OBJ1: To study the influence of the temporal resolution on highlighting micro-dynamics in the entity behavior classification problem. In real use cases, time-series information could be not enough for describing the entity behavior classification. For this reason, we plan to exploit graph structures for integrating both structured and unstructured data in a representation of entities and their relationships. In this way, it will be possible to appreciate not only the single temporal communication but the whole behavior of these entities. Nevertheless, entity behaviors evolve over time and therefore, a static graph may not be enoughto describe all these changes. For this reason, we propose to use a temporal dissection for creating temporal subgraphs and therefore, analyze the influence of the temporal resolution on the graph creation and the entity behaviors within. Furthermore, we propose to study how the temporal granularity should be used for highlighting network micro-dynamics and short-term behavioral changes which can be a hint of suspicious activities. OBJ2: To develop novel sampling methods that work with disconnected graphs for addressing imbalanced problems avoiding component topology changes. Graph imbalance problem is a very common and challenging task and traditional graph sampling techniques that work directly on these structures cannot be used without modifying the graph’s intrinsic information or introducing bias. Furthermore, existing techniques have shown to be limited when disconnected graphs are used. For this reason, novel resampling methods for balancing the number of nodes that can be directly applied over disconnected graphs, without altering component topologies, need to be introduced. In particular, we propose to take advantage of the existence of disconnected graphs to detect and replicate the most relevant graph components without changing their topology, while considering traditional data-level strategies for handling the entity behaviors within. OBJ3: To study the usefulness of the generative adversarial networks for addressing the class imbalance problem in cybersecurity applications. Although traditional data-level pre-processing techniques have shown to be effective for addressing class imbalance problems, they have also shown downside effects when highly variable datasets are used, as it happens in cybersecurity. For this reason, new techniques that can exploit the overall data distribution for learning highly variable behaviors should be investigated. In this sense, GANs have shown promising results in the image and video domain, however, their extension to tabular data is not trivial. For this reason, we propose to adapt GANs for working with cybersecurity data and exploit their ability in learning and reproducing the input distribution for addressing the class imbalance problem (as an oversampling technique). Furthermore, since it is not possible to find a unique GAN solution that works for every scenario, we propose to study several GAN architectures with several training configurations to detect which is the best option for a cybersecurity application. OBJ4: To analyze temporal data trends and performance drift for enhancing cyber threat analysis. Temporal dynamics and incoming new data can affect the quality of the predictions compromising the model reliability. This phenomenon makes models get outdated without noticing. In this sense, it is very important to be able to extract more insightful information from the application domain analyzing data trends, learning processes, and performance drifts over time. For this reason, we propose to develop a systematic approach for analyzing how the data quality and their amount affect the learning process. Moreover, in the contextof CTI, we propose to study the relations between temporal performance drifts and the input data distribution for detecting possible model limitations, enhancing cyber threat analysis.Programa de Doctorado en Ciencias y Tecnologías Industriales (RD 99/2011) Industria Zientzietako eta Teknologietako Doktoretza Programa (ED 99/2011
    • …
    corecore