
PUBLIC UNIVERSITY OF NAVARRE

DEPARTMENT OF STATISTICS, COMPUTER SCIENCE

AND MATHEMATICS

Behavioral analysis in Cybersecurity using

Machine Learning. A study based on graph representation,

class imbalance and temporal dissection

Francesco Zola

DOCTORAL THESIS

Pamplona, June 2022

https://doi.org/10.48035/Tesis/2454/44259

https://creativecommons.org/licenses/by-nc-sa/4.0/

PUBLIC UNIVERSITY OF NAVARRE

DEPARTMENT OF STATISTICS, COMPUTER SCIENCE

AND MATHEMATICS

Behavioral analysis in Cybersecurity using

Machine Learning. A study based on graph representation,

class imbalance and temporal dissection

Thesis presented by

Francesco Zola

to qualify for the PhD degree at

Public University of Navarre

Pamplona, June 2022

Acknowledgements

Un camino durato tre anni pieno di insidie, momenti belli e brutti, attimi di gioia e di frus-
tazione. Sono stati tre anni intensi divisi tra gli obiettivi del lavoro e quelli personali, con la
consapevolezza di potercela fare e di poter arrivare a questo splendido traguardo. In tutto questo
tempo, la passione per il lavoro e la voglia di mettersi in gioco (aiutato dalla mia testardaggine),
mi hanno portato a non mollare mai e dare tutto me stesso, fino a diventare la persona che sono
oggi. Guardandomi indietro, non posso che essere soddistatto di tutti i traguardi raggiunti in
questi anni siano essi a livello lavorativo ma anche a livello umano e affettivo.

Inanzitutto, vorrei ringrazie Margherita, amica, fidanzata ed ora moglie che mi ha sempre
su(o)pportato in tutti questi anni. Grazie per aver creduto sempre in me ed aver assecondato molte
mie follie, come quella di lasciare tutto e partire per San Sebastian. Un ringraziamento speciale va
ai miei genitori Ada e Vincenzo, anche se a 1.800km di distanza, sono sempre stati presenti. Loro
mi hanno insegnato che nella vita nulla è dovuto, e che bisogna lavorare ed impegnarsi seriamente
per ottenere ció che veramente si desidera. Insieme a loro vorrei ringraziare mia sorella Chiara e
la sua splendida famiglia, grazie a Helena e Nathan che mi hanno riempito la vita di molteplici
gioie.

Sentimentalismi a parte, un enorme grazie va ai miei 2 (+1) tutori, a coloro grazie ai quali é
stato possible completare questo percorso, che mi hanno arrichito professionalmente e personal-
mente, mi hanno spronato a dare il meglio, a volte anche con revisioni molto dure. É stato un
onore lavorare con il Dr. Jan Bruse ed il Dr. Mikel Galar, grazie per la vostra infinita pazienza
ed il vostro immenso aiuto. Un ringraziamento speciale va al Dr. Raul Orduna che, anche senza
un coinvolgimento “ufficiale”, ha manovrato tutto nell’ombra, e mi ha guidato in questo lungo
cammino.

Vorrei inoltre ringraziare il prof. Dr. Lorenzo Cavallaro per avermi dato l’opportunitá di
collaborare con l’University College of London (UCL) ed il prof. Dr. Zeno J.M.H. Geradts per
avermi accolto nel Netherlands Forensic Institute (NFI). Entrambe sono state due grandissime
esperienze formative che mi ha permesso di vedere il mondo della ricerca da diverse prospettive
e mi hanno aiutato a dare un impronta internazionale al mio lavoro.

C’e un ultimo gruppo di pazzi scalmanati che desidero ringraziare per avermi accompagnato in
questo percorso, parlo di Jon, Lander, Xabi, Telmo, Alvaro, Maria, Juan, Idoia, David, Roberto,
Igor, Oscar, Ines, e molti altri (sarebbe impossible elencarli tutti), con i quali ho condiviso progetti,
publicazioni, riunioni, preoccupazioni, ma anche pintxos, area days, manga, feste e molto altro.

v

vi Acknowledgements

Con loro il lavoro é sembrato meno faticoso ed é stato molto piú piacevole. Per finire, un doveroso
ringraziamento va anche al centro di ricerca Vicomtech, che mi ha dato l’opportunitá di conseguire
questo splendido traguardo.

Grazie mille a tutti, anche a coloro che non ci sono piú, e che hanno lasciato un segno indelebile
nella mia vita. Grazie per avermi accompagnato in questo meraviglioso viaggio.

GRAZIE MILLE! GRACIAS A TODOS!

Eskerrik asko guztioi!

Index

I. Thesis 3

1. Introduction . 3

2. Problem Statement . 7

2.1. Cybersecurity . 8

2.1.1. Classification . 11

2.1.2. Anomaly detection . 12

2.2. Graph Representation . 14

2.2.1. Graph Theory . 14

2.2.2. Graph Construction Techniques 15

2.2.3. Graph Machine Learning . 18

2.2.4. Graph Convolutional Network (GCN) 20

2.3. Class imbalance problem . 21

2.4. Generative Adversarial Networks . 24

2.5. Cyber Threat Intelligence . 27

2.5.1. Concept Drift . 28

3. Motivation . 30

4. Objective . 32

5. Discussion . 33

5.1. Bitcoin and cybersecurity: Temporal dissection of blockchain data to unveil
changes in entity behavioral patterns . 33

5.2. Network traffic analysis through node behaviour classification: a graph-
based approach with temporal dissection and data-level preprocessing . . . 35

5.3. Attacking Bitcoin anonymity: Generative Adversarial Networks for impro-
ving Bitcoin entity classification . 38

vii

viii INDEX

5.4. Cyber Threat Intelligence for Malware Classification in the Presence of
Concept Drift . 42

6. Conclusions . 45

7. Future works . 46

Bibliography 49

II. Published, accepted and submitted publications 67

1. Bitcoin and cybersecurity: Temporal dissection of blockchain data to unveil changes
in entity behavioral patterns . 67

2. Network traffic analysis through node behaviour classification: a graph-based ap-
proach with temporal dissection and data-level preprocessing 89

3. Attacking Bitcoin anonymity: Generative Adversarial Networks for improving Bit-
coin entity classification . 109

4. Cyber Threat Intelligence for Malware Classification in the Presence of Concept Drift137

Part I. Thesis

1. Introduction

Nowadays, cybersecurity plays a key role in everyday life. Each day more and more devices
are interconnected sharing information, communications, and connections. Paradigms like IoT,
Industry 4.0, Smart Factory, 5G, have increased the velocity of such growth. According to [LPS21],
there are about 20 billion devices connected to the global net, like wearables, medical devices,
automotive control units, smartphones, televisions, fridges, and so on. In this scenario, the attack
surface [ROC+20] has increased enhancing the number of possible threats and vulnerabilities that
can be exploited by a cyber-attack. A cyber-attack can be seen as an attack on the Confidentiality,
Availability, and Integrity (CIA triad) of an information system, network, software, etc. [SC14].
The consequences of a cyber-attack are not only limited to digital leaks or information losses,
but can have a very huge impact in economical, ethical, digital, and societal terms for the attac-
ked company. For this reason, data protection and the management/monitoring of information
systems has become a primary task for many companies [MPDH19], as well as for the European
Community.

Cybersecurity researchers and experts have started to exploit new paradigms and technologies
for increasing the ability to detect threats and vulnerabilities. This is the case of Machine Learning
(ML) [XKL+18], a branch of Artificial Intelligence (AI) that helps to build automatic learning
models, i.e., systems able to learn specific behaviors from a training dataset. Then, these systems,
also known as models, can be used to perform predictions over previously unseen data. Machi-
ne learning, and derived techniques such as Deep Learning (DL), have shown to be promising
solutions for discovering new insights from data and for quantifying cyber risks [SKB+20].

ML models can be divided into several groups according to their learning process or the signal
used as input. In particular, the main categories are supervised, unsupervised and reinforcement
learning. However, in this thesis, we focus on the first two categories, which are introduced and
further discussed. Supervised learning is a ML approach in which algorithms are trained with
labeled data, i.e., the used dataset has information about the desired target [KZP+07]. In this
way, during the learning process, the model is driven for reaching the desired output. These models
are mainly used for classification or regression tasks. In unsupervised learning, the training dataset
has no information about the desired output, so the models are trained for searching similarities
and patterns among the input data [UQR+19]. These models are mainly used for clustering,
dimensionality reduction, and anomaly detection. Notably, among the unsupervised approaches,
Generative Adversarial Networks (GANs) have shown an increasing interest, since they allow one
to learn the input distribution making possible to generate realistic synthetic samples. GANs
are composed of two networks that are trained simultaneously via an adversarial process. This
competition during the training process allows the networks to improve their abilities and their
final performances [GPAM+14]

ML algorithms are mainly applied in the cybersecurity domain to analyze the input data as
time series [ZCFM06,CKBR06]. In fact, when we talk about events, communications, logs, and

4 Parte I. Thesis

transactions, it is common to analyze the temporal relation between the data. This temporal
characteristic is very relevant since it allows one to evaluate and predict immediate threats and
take appropriate decisions. In fact, based on the threat/vulnerability prediction, it is possible to
propose strategic and operational decisions to operators/experts in order to mitigate the pos-
sible problem, facilitate backup, disaster recovery, diversity planning, maintenance scheduling,
etc. [PRT+17]. Although this approach is well-suited for real-time systems and critical infrastruc-
tures, i.e., applications where timing is fundamental in order to quickly apply countermeasures
and reduce the impact of a cyber-attack, it is also true that this time series analysis only pro-
vides a partial view of what is going on. This partial information can produce skewed results
characterized by a high number of false positive elements [LAF15], which can consequently lead
to take inappropriate actions over the environment, compromising its usability and its performan-
ce. Furthermore, in complex systems, entity interactions can evolve, disappear, emerge or simply
change their dynamics and so time-series information is not enough for adequately addressing
classification or anomaly detection tasks.

As shown in previous works [ATK15,LJRH11], a solution to these problems can be implemen-
ted by exploiting graph-based structures. These graphs promote the integration of both structured
and unstructured data highlighting entities (nodes) and their relationships (edges), allowing the
representation and definition of more complex behaviors. This approach allows getting a wider vi-
sion of the problem, generating complementary results to the ones obtained by exploiting directly
the time series. In particular, using graph-based structures, the evaluation is not only performed
on the single connection, transaction, or event, but it is possible to evaluate the behavior of the
entity that has generated it, allowing to take more appropriate actions. Inspired by their promi-
sing results and potentialities, which have been little explored in the cybersecurity domain, in
this thesis, graph-based structures are considered.

These graph representations can be used for node, link, or graph prediction/classification.
Node classification is a common task on graph data in which the goal is to assign a category/label
to each node of the graph. For example, this operation is used for analyzing users’ behaviors in
social networks [LPL21], or for detecting botnets [CKA+17]. Link prediction is a task that can be
used to predict both a category/label of an existing edge or a “missing” edge between nodes. This
operation is used, for example, for recommending content to users on social platforms [Sch14] or
predicting drug side effects [AAD+21]. Graph classification is a task used for analyzing the whole
graph structure (topology) and for determining a category/label for the graph. This is the case
of molecule toxicity [JWW21] or computer program analysis [YYJ19].

However, as mentioned before, in cybersecurity applications, the available information is inhe-
rently stored as time series or sequential data, so for creating the graph structures, three main
questions need to be addressed.

1. How should the nodes be defined?

2. What should the edges connecting the nodes represent?

3. How is the behavior of a node modelled?

1. Introduction 5

For example, using a network traffic dataset, it is possible to define nodes as different internet
protocol (IP) addresses, media access control (MAC) addresses, or even services. At the same time,
edges can be used for representing packets, traffic flows, routine calls, byte flows, etc., whereas
the behaviors can be computed by evaluating the nodes’ interactions within the obtained graph.
An example of this approach is introduced in [IPF+07] and [JSZ09], where Traffic Dispersion
Graph (TDG) and Traffic Activity Graphs (TAGs) are described, respectively. However, these
definitions can change according to the input data used, for example, to analyze transaction
networks address-transaction graphs can be used [FKP15], for social networks or mobile phone
data MultiAspect Graphs (MAGs) [WFZ16] or Time-Varying Graphs (TVG) [CFQS12] can be
considered, while for program binary data, Abstract Syntax Trees (ASTs) and Control Flow
Graphs (CFGs) can be applied [PRP21]. Hence, the process of graph creation strongly depends
on the application domain and the goal to be achieved. In particular, in this thesis, we focus
the analysis on three specific cybersecurity applications, two based on node classification using
network traffic data and crypto-transactions, and the third one based on graph classification using
malware binaries.

In several applications, data temporality can affect the graph representation [GCC20,HML+14].
This is the case of node classification using network traffic data and crypto-transactions in which
we have network behaviors evolving continuously. In these scenarios, the temporal aspect plays a
key role and should be analyzed too. In fact, considering the whole dataset at once for creating
a unique static and monolithic graph can require too much computational effort making the real
application of the model complex and heavy. Furthermore, the created graph can get overloaded
with information, where key aspects may be unnoticed. Inspired by [IFM09], which extends the
concept of TDG by introducing a temporal TDG, in this thesis, when node classification problems
are analyzed, we propose and validate temporal dissection approaches that try to deal with the
data temporality. On the other hand, in cases in which the goal is to classify the entire graph
structure, as in the case of malware binaries, the temporal aspect is not directly involved in the
graph creation, since every structure is defined in a static file. In this sense, temporality should
be studied in how the properties of malware binaries evolve over time.

Once the graphs representations are defined, and eventual temporal concerns addressed, we
propose to use ML models for the final classification. In this sense, two main approaches are
commonly used when the information is represented as a graph. On the one hand, it is possible to
extract characteristics (also called features or embeddings) that represent the entire graph or each
node (according to the classification goal) [CZC18], and then use this information for training
and testing traditional ML models. In this way, relational information is not directly analyzed,
since the input of the model is a numeric vector of characteristics. In this thesis, we call these
models no-relational. On the other hand, as introduced in [SGT+08, KW17], it is possible to
apply DL paradigms directly over the graphs with the aim to facilitate the training process and
enhance the model performance in discovering network patterns. In this way, the graph relations
are directly involved in the classification tasks. We referred to them as relational models. In
this thesis, we implement and explore both relational and no-relational models depending on the
specific application, and in particular, we directly compare them in a behavioral classification
task using network data.

6 Parte I. Thesis

The classification performance of a model strongly depends on the data used during the trai-
ning process. For this reason, the used dataset needs to be analyzed to detect eventual bias or
imbalance problems that can skew the learning process. In fact, in many cybersecurity appli-
cations, as well as in many other domains, datasets are often characterized by a highly non-
homogeneously population, which means that some classes present in the dataset are more po-
pulated than others, causing a class imbalance problem [FGG+18b]. This is because it is easier
to find information about normal activities rather than about “rare” ones. This phenomenon
can strongly affect the quality of the classification especially when supervised ML techniques are
used [JS02]. More specifically, when graph-based structures are involved, traditional data-level
preprocessing techniques [FGG+18b], as well as graph sampling techniques based on a node or
edge sampling [WCA+16], cannot be used without altering the graph topology and consequently,
the problem description, whereas graph transversal sampling techniques [HL13] show limitations
with disconnected graphs. For this reason, in this thesis, we focus the analysis on addressing
imbalance problems directly over disconnected graphs, avoiding the changes in the graph compo-
nents’ topology. On the other hand, we analyze the cybersecurity imbalance problem also from
a different point of view, proposing an unsupervised approach based on GAN for generating new
synthetic data that can be used for balancing the initial dataset. In particular, this approach is not
validated directly using graph structures, but using tabular data that represent node behaviors
extracted from graphs.

Usually, in cybersecurity applications, ML experts and researchers are mainly focused on
analyzing and evaluating the model performance [UAB19,SH18]. In this sense, they try to exploit
different data structures such as time-series or graphs, address class imbalance problems, clean
noisy data, and so on, with the main goal to improve the classification performance. However,
they neglect the interpretation of the results, which is a fundamental task for extracting more
knowledge about the input data, model behavior, and their evolution over time. This task becomes
even more relevant in the cybersecurity domain, since operators and analysts are not ML experts.
Hence, they see the trained ML models as “black boxes”, in which input data is converted into a
classification prediction without understating the motivation behind the decision. This situation
favors generic pitfalls and assumptions that can lead to over-optimistic results, conclusions, and
lessons learned [AQP+22]. For this reason, for addressing these concerns, in this thesis, we propose
a Cyber Threat Intelligence (CTI) approach which helps to switch the focus from the classifier
performance to the feature trends and drift in order to resume the control over the problem. CTI
represents a crucial step for evaluating and learning more information about the data evolution
and the classifier behavior [CDD18]. This information can be then used for enhancing the analyst’s
expertise and for improving the detection of future attacks [DCD+18].

In summary, in this thesis, we present the analyses, proposals, and results obtained by applying
graph representation for behavioral classification in the cybersecurity domain. More specifically,
we propose to carefully consider the temporal aspect that can affect the graph creation as well as
the usability and performance of the final classifier. Then, we introduce two novel approaches that
can be used for addressing the class imbalance problem directly over the graph-based structures.
At the same time, we explore other novel techniques that have already shown good results in
other domains, like the ones based on GANs, that need adaptations to be used with cybersecurity

2. Problem Statement 7

behavioral data. Nevertheless, these techniques do not work directly over the graph but over
data extracted from graph structures. Finally, we propose an extensive analysis for extracting
additional insights from trained models for enhancing CTI. The idea of this analysis is not to
focus the attention just on the performance results, but to highlight trends and behaviors that
can generate performance drift and reduce the reliability of the model.

To accomplish these objectives the thesis is divided into two parts:

Part I. Includes the problem statement, motivation and objectives, as well as the main
results, discussion and final conclusions

Part II. Contains the publications associated with this thesis.

In Part I, after a brief introduction, general concepts about cybersecurity, graphs, class im-
balance, and GANs are introduced in Section 2. In Section 3, the motivation of this thesis is
presented, whereas in Section 4 the objectives are discussed. Afterward, in Section 5, we summa-
rize the works carried out along this dissertation as well as the discussion about the main results.
Finally, conclusions are drawn in Section 6, whereas possible improvements and future works are
analyzed in Section 7.

In Part II, the four publications related to the thesis are provided:

Bitcoin and cybersecurity: Temporal dissection of blockchain data to unveil changes in entity
behavioral patterns

Network traffic analysis through node behaviour classification: a graph-based approach with
temporal dissection and data-level preprocessing

Attacking Bitcoin anonymity: Generative Adversarial Networks for improving Bitcoin entity
classification

Cyber Threat Intelligence for Malware Classification in the Presence of Concept Drift

2. Problem Statement

Today, there are about 20 billion devices connected to the global net [LPS21], which belong to
companies across multiple sectors, from Information and Communications Technology (ICT) to
medical, automotive to energy plants, transportation, etc. Furthermore, mobile phones, tablets,
wearables, smart TVs, and even house lights have brought private users’ information into the
loop [TBS+18]. In this sense, the consequences of a cyber-attack can impact economical, social,
and human aspects (in terms of safety, privacy, reputation, or psychology) [ANG+18]. This novel
scenario has increased cybersecurity concerns in private and public entities, companies, and com-
munities. More specifically, the European Union (EU) is leading efforts to improve the resilience
to cyber threats and to reduce the risks associated with cybersecurity 1.

1https://digital-strategy.ec.europa.eu/en/policies/cybersecurity-strategy

8 Parte I. Thesis

This growth in the device interconnections makes also possible to gather a huge amount of
information that can be used by Law Enforcement Agencies (LEAs), analysts, and operators
for forensic investigation, detecting cybercrimes, money-laundering monitoring, fighting counter-
terrorism, cross-border tracking, and so on [Int21]. However, such a large amount of data slows
down investigations, since LEAs, analysts, and operators need to spend a lot of time on data pro-
cessing tasks. In this sense, new paradigms such as Artificial Intelligence (AI), Machine Learning
(ML), and Cyber Threat Intelligence (CTI) can be exploited to speed up these tasks allowing one
to react faster and manage the time and effort for each investigation more effectively.

For this reason, in this thesis, we investigate how to combine ML algorithms, graph repre-
sentation, and temporal dissection for cybersecurity behavioral analysis. More specifically, on the
one hand, we propose to analyze how behaviors evolve over time, which can be a hint of malicious
or anomaly traffic. On the other hand, we propose to address common ML problems such as class
imbalance, for improving the model performance and so the quality of the results. Finally, we
exploit CTI concepts for drawing a methodology that can be used in cybersecurity applications
for extracting novel knowledge and helping operators and analysts in their tasks.

To guide the reader during this thesis, we first need to clarify several general aspects of cyber-
security, the taxonomy considered, and which are the most relevant cybersecurity task (Section
2.1). Then, since this thesis proposes the usage of graph-based structure, concepts related to
graph theory, techniques used for graph representation, and graph machine learning are descri-
bed (Section 2.2). In Section 2.3, the class imbalance problem and traditional techniques used for
addressing it in tabular and graph-based data are recalled. Finally, in Section 2.4, an overview
of the GAN architecture, possible downside effects, and its common applications are reported,
whereas in Section 2.5 several concepts related to CTI are described.

2.1. Cybersecurity

According to the standard ISO/IEC 270002, a cyber-attack can be defined as “an attempt
to destroy, expose, alter, disable, steal or gain unauthorized access to or make unauthorized use
of anything that has value to the organization”. Furthermore, when a cyber-attack is deployed
violating the law, we are in presence of a cybercrime [SRP12]. Usually, cybercrimes are carried out
for profit purposes, however, they can be also used for directly damaging a system, smuggling child
pornography and intellectual property, stealing an identity, violating the privacy, etc. In this sense,
cybersecurity tries to apply defense mechanisms (countermeasures) for protecting any systems,
services, networks, and data from cyber-attacks. These defense mechanisms are implemented to
preserve the three pillars of information security (Figure 1), which are Confidentiality, Integrity,
and Availability [C+07].

Confidentiality ensures that only authorized users can access the protected information
limiting disclosure and unauthorized use.

Integrity is focused on ensuring the authenticity of the protected information. In particular,

2https://www.iso.org/obp/ui/#iso:std:iso-iec:27000:ed-1:v1:en

2. Problem Statement 9

in any stage (storage, transit, process), the information may have not been altered by
unauthorized users.

Availability ensures that the information to be protected is accessible only by authori-
zed users. In this sense, policies such as fault tolerance, redundancy, reliable backup, and
prevention of data loss or destruction can be applied.

Figure 1: CIA triad.

These three pillars are also known as the CIA triad and are fundamental for evaluating infor-
mation security. In fact, the lack of one of these pillars can facilitate cyber-attack deployments.
In this sense, many attacks are deployed toward each one of these pillars, for example, Denial-
of-Service (DoS) or Distributed DoS (DDoS) are implemented for compromising Availability,
whereas Trojan, Cross-Site Scripting, and SQL injection are for the Integrity. Lately, Port Scan,
Eavesdropping, Phishing, and Man in the middle attacks are drawn to compromise Confidentiality.

In cybersecurity, it is important to differentiate concepts like threat, vulnerability and risk. In
fact, a threat is defined as an incident with the potential to harm a system, i.e, more in general, it
represents the possibility of a successful cyber-attack. A vulnerability is a weakness in the system
that an unauthorized user (hacker) can exploit, whereas a risk measures the potential damage
that a threat generates when a vulnerability is exploited. These three cybersecurity elements are
usually reported with the equation: threat+ vulnerability = risk.

The National Institute of Standards and Technology3 (NIST) has created a Cybersecurity Fra-
mework4 (CSF) that consists of three main components: Core, Tiers, and Profile. Core represents
a set of guidelines that should be used by private and public entities to improve cybersecurity
infrastructure [She14]; Tiers provide information about how an entity views cybersecurity risks
and how it should handle them; and finally, Profile is in charge of the alignment of standards and
practices with the Core framework. Although, the NIST CSF is not designed to replace existing
processes, it continuously evolves for including new changes in cybersecurity threats and techno-
logies. In this way, it can effectively help private and public entities to evaluate their cyber-risks
and develop a proper roadmap of improvements.

3https://www.nist.gov/
4https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04162018.pdf

10 Parte I. Thesis

For the purpose of this thesis, we are interested in introducing the 5 functions that compose
the Core component (Figure 2), which are:

1. Identify: allows one to detect which process (asset, system, data, service) is more exposed
to cyber risk and needs to be protected;

2. Protect: suggests applying appropriate safeguards for protecting the identified process
(asset, system, data, service) and ensuring delivery of critical infrastructure services;

3. Detect: allows one to develop and implement solutions for quickly detecting cybersecurity
incidents and events;

4. Respond: allows one to deploy appropriate countermeasures and actions for mitigating the
impact of a (detected) incident;

5. Recover: proposes to restore the process (asset, system, data, service) affected during the
incident for regaining system health (resilience).

Figure 2: NIST Cybersecurity Framework (CSF) Core.
https://www.nist.gov/cyberframework

Once the main cybersecurity concepts are introduced, this thesis is focused on novel solutions
that can improve the Detect function. In fact, cybersecurity is a rapidly evolving sector, and
new knowledge promoted by using new technologies has led to the creation of more “intelligent”
attacks even more involved in cybercrimes. This situation has raised the need to create new
defense solutions that promptly detect these new threats and at the same time are able to adapt
themselves to the continuous changes. In this scenario, Artificial Intelligence (AI) represents a
key technology for improving “traditional”detection techniques which in turn can be used for
quantifying cyber risks, optimizing cybersecurity operations [SKB+20], increasing the resilience
of the infrastructure, supporting Law Enforcement Officers (LEOs) investigation, and so on. In
this thesis, our analyses are focused on using two AI approaches, classification and anomaly
detection, to cybersecurity detection tasks.

2. Problem Statement 11

2.1.1. Classification

Classification is a supervised learning task in which input observations are classified into two
or more classes, as shown in Figure 3. In supervised learning, models need to be trained with
labeled data in order to perform their tasks. In particular, the number of possible classes (labels)
is a finite discrete number, otherwise, if labels are real numbers, we would be talking about a
regression tasks. According to the label distribution, we can have three kinds of classification:
binary, multi-class and multi-label. As the name suggests, in binary classification, the dataset is
composed of samples that belong to two classes. In this sense, a classifier is trained for predicting
the class to which a new sample belongs. In multi-class classification, the initial dataset has three
or more classes, whereas, in multi-label classification, every single sample can belong to one or
more classes.

The observations are usually split into training, validation, and test dataset. The training
dataset is used by the classifier to understand how the input data and their classes are related.
In this way, it tries to generalize these relations that are relevant for the classification of new
and unknown observations. The validation dataset is used for tuning the learning process of the
model and for evaluating its performance. In particular, this operation is important for detecting
problems such as underfitting and overfitting, which can affect the quality of the classification.
More specifically, underfitting happens when a model is not able to learn the relations between
data and classes during the training. Hence, it may neither classify the training data nor new
observations correctly. On the other hand, overfitting refers to a model which is not able to
generalize the relations learned during the training process, showing very low performance in the
validation operation [NMB+18]. In this sense, a good approach is to reach a balance between
these two scenarios. Finally, the test dataset is used for recreating a real-world application, i.e.,
to assess the model performance with new unseen data.

There are two main ways to learn classifiers, one based on lazy learners and the other based
on eager learners. In the first case, the models store the information received during the training
and perform the classification evaluating how the test data are similar to the stored ones. In this
sense, these models show very quick training time but they need more time for the prediction. On
the other hand, eager learning uses the training dataset to actually learn the dataset distribution
and create a space used for the classification of new samples. This approach generates models
which take more time for the initial training but are more quickly in the prediction.

Figure 3: Example of multi-class classification.

Generally, to obtain a good classification model, it is necessary to train it with a balanced

12 Parte I. Thesis

data set, i.e, a dataset with a homogenous population of all the desired classes. In this way, all
classes have equal importance. On the contrary, a class imbalance problem can negatively affect
the quality of the model (see Section 2.3). The quality of the classification, as well as limitations
introduced by underfitting and overfitting problems, can be evaluated using common metrics such
as Accuracy, Precision, Sensitivity (or Recall), F1-score, and Area Under the Receiver Operating
Characteristic Curve (AUC-ROC or AUROC) [FHOM09, HOFFR12]. In particular, Accuracy
represents the overall effectiveness of a classifier, however, it can lose reliability when the dataset
is not balanced. Precision is a measure of a classifier’s exactness, and it is used to evaluate the
quality of the model in the classification, whereas Sensitivity represents a measure of a classifier’s
completeness, i.e., it is used to evaluate the amount of correct element classified. These two metrics
can be combined through a harmonic mean in a unique measure called F1-score. The F1-score
shows the relation between actual positive labels and those given by the classifier, and it works
well on imbalanced data. Finally, AUC-ROC is used for visual comparison of classification models
and it represents the classifier’s ability to distinguish between classes.

2.1.2. Anomaly detection

Anomaly detection (AD) is a task in which models learn the distribution of given data and try
to detect points that are different from the norm, thereby classifying them as anomalies [CBK09].
Although AD techniques are sometimes referred to as an unsupervised problem with unlabeled
data [ALPA17,LL05], in general, they also include the possibility of considering labeled data for
this task [CC19,Agg17]. AD approach is a very relevant task that can help analysts and experts
detect potentially dangerous situations and at the same time reduce the amount of information
to look at. In fact, AD can be used for both threat detection and threat prevention in a wide
variety of domains, such as bank or insurance fraud detection, cybersecurity intrusion detection
system (IDS), fault detection in safety-critical systems, and so on. However, it is to be noted that,
an anomaly does not represent directly an attack sample or a malicious activity but it represents
something noisy, novelty, or an outlier with respect to normal behaviors previously defined. In
particular, these behaviors can be defined differently according to the available data, as shown
in Figure 4. For example, when a 2-dimensional dataset is used (Figure 4a), points that have
similar values for their characteristics generated dense areas which can be used for identifying
normal behaviors, whereas points that are sufficiently far away from these areas can be detected as
anomalies. Instead, when a time-series dataset is used (Figure 4b), normal behavior can be defined
by analyzing all the temporal values, and the points that are far away from it can be labeled as
anomalies. In simple cases, this normal behavior can be computed using statistic operations such
as the average, percentiles, and the variance.

Initially, static rule-based solutions were implemented for detecting anomalies. However, these
solutions are less flexible and can require high efforts, especially in management operations. In
fact, in cases in which normal behaviors slightly change periodically, the solutions need constant
reviews for removing or adding new static rules [AA18]. In this sense, the evolution of AI has led
researchers to implement anomaly detection systems that are more “intelligent” and with greater
adaptability [VWK+20]. In fact, several detectors based on AI and ML paradigms are able to
directly define normal behaviors and automatically change these definitions over time [AOC07,

2. Problem Statement 13

Normal data
Anomaly

X1

X2

(a) Anomalies in a 2-dimensional dataset.

me

X1

Anomaly

(b) Anomalies in time series dataset.

Figure 4: Example of anomalies in different datasets.

ONJ13]. Hence, they allow the detector to evolve with the data and the system, facilitating its
deployment in a new environment.

Traditional AD techniques are based on generating an anomaly score. This value represents
a numeric value for each input instance which is used for defining it as normal behavior or not.
In many cases, this decision is taken by setting a threshold that can be decided a priori or
dynamically computed during the training process.

According to [CC19,Agg17,GU16], anomaly detection techniques based on ML algorithms can
be separated into supervised AD, semi-supervised AD and unsupervised AD. This classification
can be performed according to their training setup and the usage of the labeled data.

Supervised AD represents an approach that recalls the classification task (Section 2.1.1)
when a specific class corresponds to anomalies. In this sense, although the problem is ad-
dressed in the same way (classification task), conceptually, in AD, this approach shows two
relevant problems that affect its usage and the quality of the results [Agg17,GU16]. On the
one hand, anomalous instances are usually strongly outnumbered with respect to normal
ones, generating highly imbalanced classification problems. On the other hand, especially
in cybersecurity, it is not easy to find labeled anomaly datasets to be used in the training
phase. For this reason, as also admitted in [Agg17,GU16], this approach is not very relevant
for AD tasks.

Semi-supervised AD is implemented following the one-class classification idea, i.e, by
using a training dataset in which there is only information of a single class, which represents
the normal behavior. In this way, the model should learn to produce a low anomaly score
only for instances that belongs to the normal behavior, whereas it should show a high
anomaly score for instances that are detected as outliers. Although this approach recalls
several concepts of semi-supervised learning [VEH20], these two strategies should not be
confused. Support Vector Machines (SVMs) [WYA19], Autoencoders [ZP17], and Isolation
Forests [XWMZ17] are examples of ML technology that can be used as semi-supervised AD.

Unsupervised AD is implemented using the whole dataset at once, without considering
the label information. In this way, the model learns to create areas (or clusters) with similar

14 Parte I. Thesis

data which represent the normal behaviors, whereas all the points that are not clusteri-
zed are identified as anomalies. Cluster-based techniques such as Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) [TK11], k-Nearest Neighbors [Su11], and
Ordering Points To Identify the Clustering Structure (OPTICS) [AMKM17] can be used as
unsupervised AD.

2.2. Graph Representation

In this section, several concepts related to graphs and their analysis are introduced. In particu-
lar, in Section 2.2.1, graph theory definitions and a taxonomy used in this thesis, are introduced,
whereas in Section 2.2.2, common techniques used for extracting graph-based structures are des-
cribed. Finally, in Section 2.2.3, the learning methods that can be applied directly using graph
information are discussed.

2.2.1. Graph Theory

The aim of this study is to exploit graph structures in cybersecurity applications in order to
improve classification performance. More specifically, the idea is to translate a time series infor-
mation into graph-based structures which can represent complex entity/node behaviors highligh-
ting their interactions and changes over time. For this reason, following the definition presented
in [Bol13], several key concepts related to graph theory are introduced.

Definition 1. A graph G is defined as the ordered pair G = (V,E), where V represents vertex
or node set and E is an unordered pair of elements of V called the set of edges. The number of
nodes and edges for G will be |V | and |E| respectively.
Definition 2. A graph is called simple graph if an edge connects two different vertices and there
are no two edges that connect the same pair of vertices (Figure 5a). On the other hand, if the
graph has multiple edges that connect the same pair of vertices, it is called multigraph (Figure
5b).

Definition 3. An undirected graph is a graph in which the edge set is composed of unordered
vertex pairs, i.e, edges can be traversed from any direction (Figure 5c). A directed graph (or
digraph) is a graph in which the edge set is composed of ordered vertex (node) pairs, i.e, edges
can only be traversed from the specified direction (Figure 5d).

Definition 4. Let G = (V,E) be a graph. Two vertices u, v ∈ V are incident with the edge
ei ∈ E iff ei = {u, v}. A walk consists of an alternating sequence of consecutive incident vertices
and edges that begins and ends with a vertex. A path is a walk without repeated vertices.

Definition 5. Let G = (V,E) be a graph and vi a node in it (vi ∈ V). A path that starts and
ends in vi is called cycle. A graph with at least one cycle is called cyclic graph, whereas a graph
with no cycles is called acyclic graph. Graphs in Figure 5a and Figure 5c can be also seen as cyclic
graph and acyclic graph, respectively.

2. Problem Statement 15

(a) Simple graph. (b) Multigraph.
(c) Undirected
graph. (d) Directed graph.

Figure 5: Graph structures based on edges.

Definition 6. Let G = (V,E) be a graph and u is a vertex in it. If G is an undirected graph, the
degree of u is the number of edges incident on it; if G is a directed graph the indegree of a node is
the number of edges leading into that node and its outdegree is the number of edges leading away
from it. A graph in which all the nodes have the same degree d is called regular or d-regular. The
graph in Figure 5a can be also seen as a 2-regular graph.

Definition 7. Let G = (V,E) be a graph. G is connected iff ∀u, v ∈ V , ∃ a sequence of edges
e1, e2, ..., en ∈ E such that there is a path from u to v. More specifically, there is a path from any
node to any other node in the graph. A graph that is not connected is said to be disconnected.
All the graphs in Figure 5 can be also seen as connected graphs.

Definition 8. Let G = (V,E) be a graph. Then, G′ = (V ′, E′) is a subgraph of G iff V ′ ⊆ V
and E′ ⊆ E (Figure 6a). It can be written as G′ ⊆ G. Every connected maximal subgraph is
called a component of the graph (Figure 6b). A graph composed by many components represents
a disconnected graph.

(a) Example of subgraph. (b) Example of component.

Figure 6: Graph internal structures.

2.2.2. Graph Construction Techniques

The transformation among domains can always cause a distortion or loss of the initial in-
formation. These problems can even be more relevant when the aim is to convert vector-based

16 Parte I. Thesis

data or a time series to a graph data representation, since several heuristics need to be defined to
correctly describe the problem and to encode as much information as possible [SZ12]. Usually, in
cybersecurity, datasets are composed of information gathered from networks and are represented
as time series, i.e, each row contains features related to connections, transactions, logs, events
between one or more sources and destinations (depending on the granularity of the dataset). For
this reason, the conversion of this time series data into a graph-based structure is not trivial, and
in many cases depends on the problem to be addressed.

Several techniques used for converting vector-based and time-series data into a graph represen-
tation are discussed in [SZ16]. In particular, common approaches are based on creating networks
using k-nearest neighbors. These methods propose to consider each row of the dataset as a node
of the graph and then they establish links only between the k most similar vertices [SZ12,CZ18].
A similar approach is called ε-radius technique in which edges are created if two nodes have a
dissimilarity value less than a fixed ε [SZ12,CZ18]. These two techniques treat both dense and
sparse regions in the same way, for this reason, they are also known as static network methods. On
the other hand, techniques such as linear neighborhood [WZ07], b-matching network [SZ16], and
clustering heuristics technique [CHZ13] represent adaptive or dynamic methods. The former is ba-
sed on the assumption that a data point can be linearly reconstructed from its neighborhood, and
hence, it proposes to approximate an entire graph by a series of linear neighborhood data points,
while linear embedding is used for dynamically computing the edge weights. The b-matching tech-
niques ensure that the nodes in the graph have exactly b neighbors, producing a regular graph.
The clustering heuristics technique uses a single-link heuristic for constructing connected and
sparse networks. This single-link heuristic ensures to keep the cluster structure of the original
dataset.

However, in several real-world applications, edges could connect more than two nodes at a
time, different graphs can be interconnected between them, or even they can share a specific node
although they represent distinct problems. In this sense, k-uniform hypergraphs (or k-graph)
[Ber84] is a technique based on hypergraphs used for representing edges with multiple vertices,
whereas multilayer networks [KAB+14] are used for describing the interconnections among distinct
interdependent graphs, also called layers. These layers can represent distinct problems such as
the bus network, the tramway network, the subway network, and so on. Graph generalization
techniques for time-varying networks, i.e, networks that may vary in time, have been proposed
in [HS12,FMS13]. On the other hand, MultiAspect Graphs (MAGs) [WFZ16] are introduced for
integrating several aspects (a finite list of sets) in the same representation, such as layers and/or
time. This representation is mainly used in dynamic complex networks, for example in face-to-
face in-person contact networks, mobile phone networks, urban transportation networks, brain
networks, and social networks. Time-Varying Graphs (TVGs [CFQS12]) are specific MAGs based
on multilayer and time-varying networks. TVGs can be drawn using an algebraic representation
[WZF15]) as shown in Figure 7a, in which spatial edges are indicated as solid lines, whereas
temporal edges are drawn as dashed lines.

Furthermore, several representations have been introduced for working with specific use ca-
ses. This is the case of the Traffic Dispersion Graph (TDG) introduced in [IPF+07] for working
directly with network traffic data. These TDGs are graphical representations of various interac-

2. Problem Statement 17

tions of a group of nodes (“who talks to whom”). The authors exploit network-wide interactions
of hosts for extracting graph structures from network traffic datasets, considering each node as a
distinct IP address and edges as their communication flows. Furthermore, although the definition
of the TDG’s nodes is a simple process, the principal task is the definition of the edges. This
can be done based on the available information, for example, the first sent packet, the amount
of exchanged information, the protocol used, and so on. These edges can be both directed or
undirected, according to the final goal. This mapping represents a viable solution when inputs are
network traffic data. In particular, it allows monitoring, analyzing, and visualizing the relations
among defined nodes using social interaction paradigms [IPF+07].

In [IFM09], the concept of TDG is extended by introducing a temporal factor, i.e.. the authors
propose to split the initial data into subintervals, also called temporal batches, and extract a
graph from each subinterval. In particular, as shown in Figure 7b, temporal TDGs do not have
temporal relations, i.e., the node 1 in t0 can represent a different entity from the node 1 in t1. A
similar approach is presented in [JSZ09], in which authors propose to use Traffic Activity Graphs
(TAGs) for linking IP addresses (nodes) with flows that represent communications or interactions
(edges). The authors state that TAGs can be used to represent network traffic activities including
HTTP, Email, DNS, peer-to-peer (P2P), online chat, and gaming applications. In [DSSVW11],
authors propose to use a protocol graph, i.e., a graph that represents Secure Shell Protocol (SSH)
information as a directed multigraph relating IP addresses (nodes) through the activated SSH
sessions (edges). Each edge is characterized by features like the start and finish times of the flow.
Furthermore, the author proposes to decompose this protocol graph into telescoping subgraphs
(TSGs) that gather information about a single user or attacker. A TSG represents a direct acyclic
graph (DGA) that satisfies predetermined telescoping conditions defined by the authors.

(a) Example of Time-Varying Graphs with alge-
braic representation.

(b) Example of temporal Traffic Dispersion
Graph.

Figure 7: TVGs and TDGs comparison.

Other specific graph representations are related to money transactions since this information
has a natural graph structure when connecting two or more banking accounts, crypto wallets, or
addresses directly in a transaction. For example, using cryptocurrencies, it is easy to compute
an address-transaction graph [FKP15] like the one reported in Figure 8a. This graph is directly
obtained by using the information gathered from the blockchain and provides an estimation of the
flow of crypto money linking public key addresses over time. The vertices represent the addresses
(a1, a2, ..., aN) and the transactions (tx1, tx2, ..., txM). The directed edges (arrows) between entities

18 Parte I. Thesis

and transactions indicate the incoming relations, while directed edges between transactions and
entities correspond to outgoing relations. Each directed edge can also include additional features
such as values, time-stamps, etc. Furthermore, starting from the address-transaction graph, and
knowing the good practice related to crypto anonymization, it is possible to cluster addresses
belonging to the same logical user (or entities). An entity is defined as a person or organization
that controls or can control multiple public key addresses. This definition allows us to simplify
the address-transaction graph into the entity-transaction graph, as shown in Figure 8b.

(a) Address-transaction graph
with cryptocurrency data.

(b) Entity-transaction graph with cry-
ptocurrency data.

Figure 8: Graph representation for money transactions.

Abstract Syntax Tree (AST) and Control Flow Graph (CFG) are two graph representations
used with program code data [PRP21]. AST allows a tree representation of the structural and
content-related information of a program code (Figure 9a). On the other hand, CFG is a graph
representation that models all of the paths of execution that a program might take during its
lifetime. In the graph, the vertices are the basic blocks, sequential code without branches or jump
targets, of the program, and the edges represent the jumps in the control flow of the program,
as shown in Figure 9b. One of the advantages of this representation is that it has been shown to
be very difficult for a polymorphic virus to create a semantically similar version of itself while
modifying its control flow graph enough to avoid detection.

In this thesis, the method used for creating the initial graph is performed according to the
input information and the available knowledge of the domain. In this sense, a direct representation
of address-transaction is used when Bitcoin blockchain data are used, whereas temporal TDGs
are used for representing the network traffic dataset, following the indication provided in [IFM09].
Finally, CFGs are used for extracting graph structure from source codes.

2.2.3. Graph Machine Learning

ML has gained massive success in the last years, being used in tasks related to the classification
of both structured and non-structured data such as images, videos, speech, etc. In this scenario,

2. Problem Statement 19

(a) Example of AST. (b) Example of CFG.

Figure 9: Graph representation for program code data.

problems characterized by non-Euclidean spaces that include complex relationships and interde-
pendence between samples have increasingly emerged. This is the case of graph data, in which
these non-regularities in the structure have led researchers to create new learning paradigms that
work directly with the graph information for performing the classification task.

Graph learning techniques can be categorized depending on their applications, i.e., if they
are used for performing graph, node, community, or link classification/regression [Ham20], or
according to the ML algorithms involved, i.e, if they use graph signal processing (GSP), matrix
factorization, random walk, or DL methods [XSY+21]. Among these techniques, the promising
results obtained by graph learning techniques based on DL methods have attracted researchers
and the community to better explore their possible applications, converting them into powerful
solutions for graph analysis [ZCZ20]. However, there are many graph variants that have led to the
creation of different graph DL architectures. In particular, Wu et al. [WPC+20], separate graph
DL techniques into four different categories:

1. Recurrent GNN (RecGNN): these algorithms use recurrent neural architectures. More spe-
cifically, they are able to generate outputs by analyzing the state embedding of a node which
also contains the information about the neighborhood of the node itself [ZCZ+18,SGT+08].

2. Convolutional GNN (convGNN or GCN): these techniques generalize the operation of con-
volution directly using the graph representation. The main idea of these approaches is to
use high-level node representations and aggregate them through a convolutional operation,
as happens in other domains such as image processing.

3. Graph autoencoders (GAEs): includes algorithms that recall the concepts of the autoenco-
ders. In particular, GAE techniques are used for encoding the nodes/graphs structures and
then reconstructing them by learning the network embeddings.

4. Spatio-temporal GNNs (STGNNs): these techniques combine spatial and temporal informa-
tion. They are able to capture the dynamism of graphs and usually combine the GCN and

20 Parte I. Thesis

RecGNN approaches.

Due to their potential and promising results [JDW+21,YHZ+21], GCNs represent the most
interesting and prominent graph DL technology [ZTXM19]. For this reason, in this thesis, GCNs
are thoroughly analyzed and adapted for working in cybersecurity applications.

2.2.4. Graph Convolutional Network (GCN)

These networks were introduced in [KW17] for learning the local and global structural pat-
terns of a graph. The aim of GCNs is to consider the relationships among the nodes through a
convolution operation resembling the Convolutional Neural Networks (CNNs) applied to 2D or
3D information. In fact, these two technologies (CNNs and GCNs) are very similar in their key
concepts. Nevertheless, the first one is built specifically to operate with Euclidean data, whereas
the second one is suited for non-Euclidean data, such as the graphs that contain nodes, connec-
tions, relations, and unordered information. According to the chosen filter and its application,
convolution operations can be separated into spatial-based and spectral-based convolution. In
the first category, the operation is applied directly on the graph nodes, for example, using a
weighted average function over a node and its neighborhood [HYL17,MBM+17]. In the second
case, the filters are defined following graph signal processing concepts. In particular, the Lapla-
cian Matrix of the graph is used to perform a Fourier transformation, and the graph filtering
operators within [KW17,DBV16]. While it is straightforward to compute the convolution in the
spatial domain, it is more complex in the spectral domain. In fact, the convolution in the spatial
domain is similar to the “traditional” image convolution, in which the central pixel (now cen-
tral node) is convolved with its neighbors for determining the new value. This concept is also
similar to the message passing techniques used by several RecGNNs methods, such as the gated
GNN [LTBZ15]. On the other hand, in the spectral domain, the convolution operation is defined
using a scalar vector (a scalar for every node in the graph), the matrix of eigenvectors of the
Laplacian Matrix of the graph, and the filter in the Fourier domain. Nevertheless, solving this
equation can be computationally complex and unreachable, particularly for large graphs. For this
reason, Chebyshev polynomials with k degrees, i.e, a polynomial function that can be computed
recursively, can be used for simplifying the equation [DBV16]. Furthermore, Kipf et al. [KW17]
demonstrate that a good approximation can be reached by truncating the Chebichev polynomial
to get a linear polynomial (k = 1) and by performing a renormalization trick to avoid numerical
instabilities and vanishing gradients.

GCNs are used in a wide range of applications, especially for detecting similarity among net-
works and for discovering patterns among the nodes’ relations. In [LWK+20], the authors present
a GCN-based framework for predicting Microbe-Drugs associations in SARS-CoV-2 and two an-
timicrobial drugs, whereas Coley et al. [CJR+19] use the GCN to predict the result of a chemical
reaction given the components. Moreover, a graph convolutional solution is combined with reinfor-
cement learning to generate molecules in [YLY+18], while a GCN-based framework able to predict
the properties of a material by analyzing its crystal structure is presented in [XG18]. GCNs found
applications also in social science for implementing recommendation systems [WSH+18,JGH+20].
In the last years, the good results and the potential of this DL graph technology have led resear-

2. Problem Statement 21

chers to explore their application in other domains like cybersecurity. Zhao et al. [ZLY+20] use
the GCN to transform the botnet detection problem into a semi-supervised classification pro-
blem, whereas, in a second research [ZYL+20], they propose a new framework for cyber threat
discovery based on the processing Indicator of Compromises (IOCs). Oba et al. [OT20] present
a solution based on GCN able to analyze a multigraph based on triplets of client IP, server IP
and TCP/UDP ports. In [GCZ21], heterogeneous graphs and GCNs are combined for classifying
Android malware, meanwhile, for the same task, in [PYT20], the GCN and recurrent networks
are used for identifying and learning semantic and sequential patterns. In [YYJ19], the authors
disassemble the malware codes in control flow graphs (CFGs) and use GCN for the malware clas-
sification task. GCN can be also applied for implementing malicious domain detectors [SYWL20]
or for creating an anomaly detection system for threat and fraud detection [JCG+19]. In [ZLL+19]
an anomalous edge detection framework based on GCN with an attention model (Gated Recurrent
Unit) is presented, whereas in [WSH+20] graph-based information is combined with flow-based
data for detecting botnets.

Following these promising trends, in this thesis, we propose to analyze the benefits and limita-
tions of applying graph convolutional approaches directly for entity behavior classification. More
specifically, we propose to explore how this technology works with both imbalanced and balanced
graphs, and at the same time, we propose to evaluate how the graph relations affect the learning
task. In particular, we propose to compare results obtained by GCN with the ones obtained by
using other models that do not consider the graph relations in the classification task.

2.3. Class imbalance problem

Many real-world applications are characterized by the class imbalance problem, i.e, skewed
scenarios in which a particular class, category, or event is more frequent than other rare ones.
This situation is even more relevant in the cybersecurity domain, where data from network traffic
[MS15], fraud transactions [WLC+13], or malware binaries [ODY+19] are analyzed for detecting
attacks or illicit operations. In fact, in these applications, it is easier to find information about
“normal” events (majority class) than information of rare ones (minority class).

The imbalance problem can be directly exploited for performing an anomaly detection (AD)
analysis. This usually happens when the number of the minority observations is very low with
respect to the overall observations (high imbalance ratio). In this case, as introduced in Section
2.1.2, unsupervised ML techniques can be used for learning the input data distribution, defining
a common trend (or behavior) in the given data, and finally detecting those points (anomalies)
that are different from the defined common trend [CBK09]. Of course, in this way, an anomaly is
not necessarily related to a threat or an attack, but it represents something rare in the input data
distribution. In cybersecurity, this approach is widely used for implementing Intrusion Detection
Systems (IDS) [KGVK19].

When the number of observations is enough to describe the minority population, it is possible
to directly address the imbalance problem and apply classification approaches, as introduced in
Section 2.1.1. If the class imbalance is not addressed, the skewed dataset may introduce a bias that
affects the quality of the classification, since the trained models tend to favor the majority class

22 Parte I. Thesis

over the others, making hard to discover robust patterns for under-represented classes [GYD+08].
The main characteristics of a skewed distribution that can degrade the learning performances are
related to small sample size, overlapping, and small disjuncts.

Small sample size: it occurs when the ratio between majority and minority classes is very
high meaning that the dataset is affected by a strong class imbalance (Figure 10a). Hen-
ce, the amount of information in the minority classes is not enough for generalizing their
distribution leading to fail the classification [WC09].

Overlapping : it is present when the samples of the majority and minority classes are mixed
in the same space creating ambiguous regions, as shown in Figure 10b. These ambiguous
regions are areas in which the boundaries of the classes are not clearly defined and sam-
ples of two or more classes can be found [GC17]. This scenario increases the difficulty for
the classifier to separate the different samples thus producing misclassifications. Although
ambiguous regions can be formed also in balanced datasets, they are very critical in im-
balanced datasets since the small number of samples in the minority classes can facilitate
their creation [LFG+13].

Small disjuncts : this phenomenon occurs when the minority classes are formed of smaller
subclusters of samples, as shown in Figure 10c. This situation increases the complexity of the
problem, especially when dealing with imbalanced datasets, since it is difficult to separate
the different samples and at the same time to determine if the clusters represent noisy or
relevant information [LFG+13].

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
class 0
class 1
class 2

(a) Small samples size

0.0 0.2 0.4 0.6 0.8 1.0
0.2

0.0

0.2

0.4

0.6

0.8

1.0
class 0
class 1
class 2

(b) Overlapping

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0 class 0
class 1
class 2

(c) Small disjuncts

Figure 10: Example of the main problems in class imbalanced dataset

These phenomena can be mitigated by applying techniques for addressing class imbalance.
These techniques are widely used with tabular data and can be grouped into four categories
[FGG+18b]:

Cost-sensitive learning. These algorithms use cost values associated with features or asso-
ciated with classes for driving the training process when imbalanced data are used [ZZ20]. For
the case of class imbalance, different costs are usually assigned to the missclassification of the
different classes, giving more priority to examples from the minority classes. In this scenario,
the crucial task is to define the cost matrix, since a wrong initialization can impair the learning

2. Problem Statement 23

process. MetaCost, cost-sensitive decision trees, and cost-sensitive SVMs [FGG+18a] are just an
example of the most used algorithms that belong to this category.

Data-level preprocessing. These techniques operate directly over the dataset for addressing
the class imbalance through a resampling approach. In this sense, according to the process used
for obtaining a more balanced population, algorithms can be grouped into undersampling, over-
sampling, or hybrid methods. Undersampling methods remove samples from the majority class,
as proposed by Random Under Sampling (RUS) or Tomek’s links (TL [PCSJ20]) algorithms.
On the other hand, oversampling strategies are based on adding new elements to the minority
class. Well-known oversampling strategies are Random Over Sampling (ROS), Synthetic Minority
Over-sampling Technique (SMOTE [FGHC18]), and Adaptive Synthetic (ADASYN [VNVL21]).
Finally, hybrid approaches combine both techniques, e.g., for the SMOTE+TL strategy [RAC+20].

Algorithm-level approaches. These approaches address the imbalance problem by directly
modifying the learning process. In particular, it is important to analyze which procedures and
mechanisms are the most prone to introduce a bias towards the majority class [FGG+18a]. For
this reason, these approaches require a deep knowledge of the classifier and the factors that lead to
misclassification. However, each model requires its own adaptation, for example, for in SVMs, the
kernel can be adapted including a weighting scheme, whereas in Bayesian classifiers it is possible
to manipulate class prior probabilities.

Ensemble learning approaches. These techniques are designed to combine ensemble lear-
ning models with the previously introduced imbalance techniques [GFB+11]. In fact, although
the ensemble models are able to optimize ML results, they do not directly address the imbalance
problem. In this sense, the most common approach is to combine ensemble models with data-level
preprocessing techniques, i.e., using these data-level preprocessing before training each classifier
of the ensemble [FHR18,SKPM20]. On the other hand, other studies propose to combine ensemble
learning with cost-sensitive approaches [SKWW07].

However, the application of these techniques when dealing with graph-structured data is not
straightforward and can be misleading. In fact, these techniques are focused on the feature space
and if applied without modifications to the graph, they can change its internal structure (topology)
altering the problem representation. For this reason, it is important to introduce graph sampling
techniques that can be used directly over the graph with the aim to address the class imbalance
problem without altering the graph topology.

The most common graph sampling techniques are designed for extracting reduced graphs that
are “representative” and “look similar to” the original graph, preserving its properties [HL13].
Thus, the aim of these techniques is not directly to address the graph imbalance problem, but
to alleviate scalability issues related to large graphs [HL13], to gather information about hidden
populations [CWH18], to handle with graph sparsification [SS11], to perform dimensionality re-
duction and visualization [Raf05], etc. These techniques have been mainly used in statistics, data
mining, visualization, and social media analysis. In particular, they can be grouped into three
categories [WCA+16]:

Node-based samplings : these techniques are based on extracting a subgraph from the original
graph by randomly selecting a subset of nodes. At the same time, all the edges in which the

24 Parte I. Thesis

selected nodes are involved, are selected as well. This is how Random Node [LF06] strategy
works, whereas Random Degree Node [SWM05] uses node degree as a probability to select
each node.

Edge-based samplings: similar to the node-based techniques, these methods are based on
randomly selecting edges in the graphs and the nodes connected to them, as happens in
Random Edge techniques. An alternative is represented by DropEdge [RHXH19], which
proposes to randomly remove a certain number of edges from the input graph, whereas
GAUG [ZLN+20] proposes to use a neural network as edge predictors for data augmentation
operation.

Transversal-based samplings : these strategies are based on selecting a node (or edge) in a
graph and then expanding it by exploring all the edges/nodes in the neighborhood. For this
reason, they are also called “topology-based sampling” or “sampling by exploration”. In fact,
with the exploration of the neighborhood these techniques are able to preserve the graph
topology. Random Walk, Snowball Sampling [SKR+16] and Forest Fire Sampling (FFS)
[LF06] are among the most common transversal-based samplings techniques. However, these
approaches can introduce a bias toward high-degree nodes, i.e, during the exploration, they
favor high-degree nodes more than low-degree or peripheral ones. Moreover, if the graph is
composed of many components, these methods could get stuck in a single component during
the exploration, leaving part of the graph structure unexplored.

Although these techniques can be directly used over graph structures, they are designed to
perform a graph sampling to address scalability issues when analyzing large graphs, and not
for addressing the class imbalance problem. In fact, as introduced in [HL13,WCA+16], node-
based samplings and edge-based samplings do not respect the graph topology and therefore, they
can alter the problem representation. On the other hand, transversal-based sampling cannot be
directly used with disconnected graphs. These techniques are more proned to introduce a bias
towards high-degree nodes, i.e, they favor the selection of high-degree nodes removing mainly the
low-degree or peripheral nodes. For this reason, as part of this thesis, we propose novel graph
sampling techniques which can work directly on disconnected graphs avoiding component topology
changes for addressing the graph imbalance problem.

2.4. Generative Adversarial Networks

Generative Adversarial Networks, or GANs, are deep-learning-based generative models intro-
duced in [GPAM+14], whose aim is to learn a data distribution and generate realistic synthetic
samples which follow that distribution. A GAN is composed of two neural networks: a Generator
(G) and a Discriminator (D). These networks compete with each other, thereby increasing their
ability to learn from each other. In particular, the aim of G is to generate synthetic samples from
a random uniform distribution, while D evaluates their authenticity, i.e., it determines if samples
belong to the synthetic or real distribution.

In this adversarial learning, the generator output is connected directly to the discriminator
input, whereas the discriminator output is connected with the generator through the backpro-

2. Problem Statement 25

Figure 11: Generative Adversarial Network

pagation of the gradients, as shown in Figure 11. In this way, their loss functions are involved
in a zero-sum non-cooperative game, in which one network tries to maximize the effects of its
actions, while the second network tries to minimize its effects. This task, also called minimax
problem, can be mathematically formulated using Equation I.1 [GPAM+14]. This equation repre-
sents the two-players functions as V (D,G), while z and x represent a random uniform sample and
a real sample from the input distribution, respectively. G(z) represents the generator’s output,
i.e., the synthetic data, D(x) is the discriminator’s estimation of the probability that x is real,
while D(G(z)) is the discriminator’s estimation of the probability that G(z) is real. Ex∼pdata(x)

is the expected value over all real data associated to the probability distribution of the real data
pdata(x) and Ez∼pz(z) is the expected value over all random inputs to the generator associated to
a predefined prior noise distribution pz(z).

min
G

max
D

V (D,G) = Ex∼pdata(x)[log(D(x))] + Ez∼pz(z)[log(1−D(G(z))] (I.1)

Following Equation I.1, the GAN can be seen as a dynamic learning system whose training
goal is to find an equilibrium between the two players. In this sense, training converges when
one player will not change its actions regardless of what the opponent may do [O+04], reaching
the well-known Nash equilibrium (NE) [FRL+17]. This equilibrium in the cost function can be
computed using stochastic gradient descent (SGD). More specifically, SGD [GPAM+14] repre-
sents a common optimization technique that computes the gradient and updates for both G and
D simultaneously [Rud16]. Nevertheless, other studies [RLWFM17,MNG17] propose alternative
optimization algorithms since, in several scenarios, SGD is not able to converge properly.

Despite its power, due to the inappropriate design of network architecture, the cost function,
hyper-parameters, and variety of optimization algorithms, common collateral effects [LMPS17]
can affect the GAN performance. The major drawbacks that can generate limitations in the GAN
training and generation of synthetic samples are mainly non-convergence, vanishing gradients and
mode collapse.

Non-convergence: it occurs when it is not possible to find a NE between G and D. This
commonly occurs in GD when the optimization gets stuck in local minima or saddle points.

26 Parte I. Thesis

In this scenario, the two players reverse each other’s progress generating a training stale-
mate that can produce a solution that does not converge, or even oscillation in the model
parameters and thus instability [Goo16]. To alleviate this issue, in [AB17] and [RLNH17],
the authors proposed methods for alleviating the non-convergence situation: in the first
case, they added noise to D’s inputs, whereas in the second they penalized D’s weights.

Vanishing gradient : it occurs when D is so strong that it overpowers G, i.e, it is able to
detect fake and real samples without problems limiting the information backpropagated to
the generato, as shown in Figure 12a. This phenomenon is common in DL models that use
gradient-based optimization as well as in the traditional GAN [GPAM+14] implementation.
In particular, during the GAN training when D(x) = 1, ∀x ∈ pdata(x) and D(G(z)) =
0, ∀G(z) ∈ pz(z) the gradient is squeezed close to zero and thus no useful information is
propagated to the generator (flat areas in Figure 12a). This effect generates slows down
training which may even lead to non-convergence. Solutions for addressing the vanishing
gradient are mainly based on using alternative loss functions such as those based on least-
squares [MLX+17], Wasserstain distance [AB17], or f -divergences [NCT16].

Mode Collapse: also known as the Helvetica scenario, it occurs when G learns just a small
part of the input distribution that does not represent the entire population. Therefore, G
generate samples with low diversity, as shown in Figure 12b. In the worst case, the model
“collapses”, generating always the same sample. This situation can easily happen when
D does not have high generalization capabilities, for example, when it gets stuck in local
minima and hence, G learns how to “fool” it without exploring the entire input distribution.
This scenario represents a very critical and relevant problem in GAN implementations, since
its main goal is to create a variety of realistic samples. Although it is easy to detect and
visualize the mode collapse especially when images are used, its solution is not trivial.
In [MPPSD17], the authors propose to update the G function not only considering the
current backpropagation of D, but also future outputs in order to avoid over-optimization.

(a) Vanishing gradient (b) Mode collapse

Figure 12: GAN drawbacks

In order to mitigate these effects, different GAN architectures have been designed and imple-
mented. For this reason, apart from the traditional GAN architecture, also called Vanilla GAN,

2. Problem Statement 27

many studies [WSW21, SC21] are mainly focused on the re-engineering of the network architec-
tures, looking for new cost functions, or proposing alternative optimization algorithms. In fact,
it is to be noted that, GAN architecture and its configuration needs to be changed according to
the problem to be addressed, the application domain, and of course used dataset.

The use of GANs appears to be promising as numerous studies have demonstrated good
results in the image and speech processing domain. The main goal of these adversarial networks
concerns the analysis and generation of synthetic images - for example, creating super-resolution
images [SZW+19], realistic photographs of human faces [HZS+20] or image inpainting [XZLH20].
For the speech domain, GANs are used to enhance the quality of speech contaminated by additive
noise [PBS17], to improve Neural Machine Translation (NMT) results by generating human-like
translations [YCWX18] and for emotion recognition by creating synthetic audios from audio-
visual datasets [AHA20]. In the context of (supervised) ML problems, GAN data augmentation
has generated clear improvements in classifier performance [OHB19, DB18], especially in (bio-
)medical research, where analyses suffer from class imbalance due to privacy issues and the rarity
of some pathological findings [MMKSM18].

Only a few recent studies apply GANs in the context of cybersecurity analysis for generating
new cyber-attack samples from existing data [MSS+19,YM19], to address the imbalance problem
in encrypted traffic datasets [WLY+20] or as anomaly detectors for potential security attacks on
mobile phones [SKK20]. Two interesting approaches are introduced in [ZBB+20] and [HWH20].
In both cases the authors try to use GANs to address a cybersecurity class imbalance problem,
however, they use very limited datasets and the obtained results were strongly affected by GANs
downside effects (mainly mode collapse). Therefore, no clear classification improvements were
produced. For this reason, inspired by the approaches presented in [ZBB+20,HWH20], as a part
of this thesis, we investigate how GANs models should be adapted for working with cybersecurity
tabular data with the aim to address the class imbalance and improve the final behavior classifica-
tion. More specifically, since this approach is based on creating synthetic samples for the minority
classes, it can be seen as an alternative to the common data-level preprocessing techniques.

2.5. Cyber Threat Intelligence

Although there is no a single definition for Cyber Threat Intelligence (CTI), according to
Gartner research [McM13],“CTI is the task of gathering evidence-based knowledge such as con-
text, mechanisms, indicators, implications, and actionable advice, about an existing or emerging
menace or hazard to assets that can be used to inform decisions regarding the subject’s response to
that menace or hazard”. On the other hand, based on Dalziel [Dal14], the CTI information should
be relevant, i.e., the information should be related to the organization’s interests; actionable, i.e.,
it should be clear for defining prompt actions/responses; and valuable, i.e., it should contribute to
any useful outcome. Following these definitions, we can state that CTI allows experts and practi-
tioners to unveil and understand attacker motivations, targets, and actions. This novel-generated
knowledge can be used on the one hand, for creating and applying new ad-hoc countermeasures
able to adapt themselves to attacker behavioral changes. On the other hand, this new knowledge
can be used for training the defenders, increasing their expertise.

28 Parte I. Thesis

Several studies try to define a unique CTI ontology such as Targeted Attack Premonition
using Integrated Operational data (TAPIO) [SW15], Situation and Threat Understanding by
Correlating Contextual Observations (STUCCO) [IBN+15], a three-level modular analysis for
cyber security called CRATELO [OCWM14], Cyber-investigation Analysis Standard Expression
(CASE)5, and security ontology [FE09]. However, as presented in [MB17], it is not possible to
define a standardization in terms of taxonomy, threat actor motivations, goals, and types, since all
these ontologies are built for specific applications and they are not prone to interoperability. On
the contrary, in terms of sharing threat information, Structured Threat Information eXpression
(STIX) [Bar12] represents one of the most used approaches [SSMB17].

Following military concepts and definitions, CTI can be separated into four sub-domains
[CR15, TR18]: Strategic, Operational, Tactical and Technical threat intelligence. The first sub-
domain contains high-level information that can be used for identifying and evaluating unknown
threats and risks. In this case, usually, reports, briefings, or conversations are held for defining
policies and strategies. The second sub-domain contains information about upcoming attacks. This
information is very hard to gather especially for private entities, whereas, it is easier for military
and government organizations. The third sub-domain contains information about how attackers
deploy their offensive, for example, which tools or methodologies they use. In this sense, technical
or white papers are used to gather attackers’ information. Finally, the fourth sub-domain contains
information about technical resources (firewalls, mail filtering devices, logs systems, etc.), and it
shows this information through monitoring tools, dashboards, or analytics tools. This information
is extracted from the attacks in the form of indicators of compromise (IOC), which are directly
involved in intelligence analysis.

In this thesis, we focus our investigation on technical threat intelligence. Our idea is to extract
additional insight from attacker behaviors and how they change over time. In this sense, this
information can be seen as an IOC. More specifically, we are interested in analyzing uncontrolled
changes in the input distribution that can generate inconsistent and misleading results, especially
when ML models are in the loop. In fact, in this case, models trained on old data can show skewed
results when novel information is used as input [Tsy04]. This problem is usually known as concept
drift [WK96] or dataset shifting [QCSSL08]. An effective learner (adaptive learner) should be able
to react to this problem, by detecting such changes and re-adjusting its predictions.

2.5.1. Concept Drift

As previously mentioned, concept drift is generated by uncontrolled changes in the input
distribution, and, according to the temporal patterns of these changes, four main different drifts
can be detected [LLD+18]: abrupt, incremental, gradual or reoccuring, as shown in Figure 13.
Concept drift is defined as abrupt when the change occurs instantaneously, for example, a sensor
that breaks down (Figure 13a). If performance changes are slow in time and in values, they are
considered incremental drifts. This is the case, for example, for a worn-out sensor (Figure 13b).
On the other hand, if the changes are only slow in time but not in value (Figure 13c), they are
considered as gradual drift. Finally, if performance changes are repeated over a certain interval

5https://caseontology.org/

2. Problem Statement 29

(e.g., seasonal), there may be reoccurring drifts, as in an external temperature sensor (Figure
13d). It is to be noted that, although outliers and noise can be seen as points that instantaneously
change the data distribution, formally they are not considered as concept drift [LLD+18].

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
t im e (days)

0.0

0.2

0.4

0.6

0.8

1.0

da
ta

di
st

ri
bu

tio
n

(a) Sudden/abrupt drift.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
t im e (days)

0.0

0.2

0.4

0.6

0.8

1.0

da
ta

di
st

ri
bu

tio
n

(b) Incremental drift.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
t im e (days)

0.0

0.2

0.4

0.6

0.8

1.0

da
ta

di
st

ri
bu

tio
n

(c) Gradual drift.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
t im e (days)

0.0

0.2

0.4

0.6

0.8

1.0

da
ta

di
st

ri
bu

tio
n

(d) Reoccurring drift.

Figure 13: Drift patterns of changes over time (one-dimensional data).

Concept drift is a highly relevant problem in cybersecurity applications, especially when ML
models are implemented. It has been predominantly studied in applications such as anomaly
detection [GBR+17], fraud [DPBC+15] and spam [SYZ+16] detection. However, in recent years,
concept drift has been started to be investigated also in malware detection. This is because
malware continuously evolves over time, since authors try to create new variants for evading their
detection. In this sense, a machine learning model can be outdated just after a couple of months.
More specifically, in [HMZ+17] and [DGAH+21], authors try to improve classifier’s performance
by detecting concept drift online, i.e., detecting drift while being in operation and addressing it by
retraining the model with more recent data. They propose a rolling-window approach for selecting
data to be used to evaluate the performance and eventually retrain the models. Other studies,
such as [JSD+17] and [SWL12], propose novel methods for detecting concept drift, however, they
do not deeply analyze the relationship between these performance decays and the actual input of
the malware classifier.

Inspired by these studies, in this thesis, we propose to analyze concept drift in-depth to improve
our CTI analysis. In this sense, our objective is not only to detect concept drift points (where
model performance drops), but also to relate this phenomenon with changes in the input features
that may have generated them. Through such an approach, drifts could be detected before their
actual appearance, and cyber analysts and operators could apply precautionary actions to avoid
model failure.

30 Parte I. Thesis

3. Motivation

Once the main concepts on which this manuscript is focused have been introduced, the open
problems that motivate this thesis are presented.

M1 - Temporal behavior definition. Usually, in cybersecurity applications, researchers
try to directly classify single connections for identifying anomalous or malicious traffic.
This task is performed considering network traffic, events, logs, transactions, etc., as times
series [BGCML21, CMF19]. In these cases, the idea is to promptly detect the anomalous
situations and take the appropriate actions on the connection to avoid more serious damages,
increasing network cybersecurity. However, this approach can be very resource-consuming
due to the huge amount of information to be processed. Moreover, an incorrect classification
of a single connection can lead to making inappropriate decisions, for example, excluding or
shutting down a certain entity. In fact, malformed communications carried out by normal
entities can result in falsely detected malicious flows (false positives), or malicious activities
can be obfuscated in a complex routine to be unnoticed (false negatives) [CKBR06]. For
this reason, it is very important not only to evaluate the single connections but also the
behavior of the entities that have generated them. This operation can be performed by
representing the information as a graph structure defining entities, relations, and topology.
Entity behaviors can be defined for each node by evaluating their interactions within the
network. However, the graph topology, as well as the behavior definition, strongly depends
on the temporal component, since networks and entities evolve over time, and the usage
of a static graph cannot properly represent the problem. For this reason, an operation of
temporal dissection should be used. This temporal dissection is based on dividing time into
chunks in which the graphs are built. To carry out the temporal dissection, the temporal
resolution must be set. However, the main problem is that there is no way to know in
advance which temporal resolution is the best. For this reason, it is very important to study
how the temporal resolution affects the graph representation, and which values should be
used for highlighting changes in the entity behaviors.

M2 – Graph imbalance problem. As already discussed, temporal graphs can be used
for highlighting entity behaviors and relations within the network. However, these temporal
graphs can be characterized by an imbalanced population, i.e., one or more classes being
more represented than others. This imbalance problem is a relevant and common problem
in ML applications, especially in supervised learning [FGG+18b]. Furthermore, the imba-
lance problem can be very challenging in domains where it is hard to detect and collect
new observations, as in the case of cybersecurity applications. Clearly, the presence of this
phenomenon changes the classification results introducing a bias in favor of the majority
classes. The problem is that common data-level preprocessing strategies cannot be directly
applied to graph representations. In fact, relational information (topology) must be taken
into account for resampling. These techniques are focused on the feature space and if ap-
plied without modifications to the graph, the topology would be modified, changing its
intrinsic information and altering the problem. In this sense, graph sampling techniques
that work directly over the graph can be used. These techniques are based on nodes/edge

3. Motivation 31

selections or in topology exploration [HL13]. In the former, nodes or edges are randomly
selected to reduce the representation of the majority class in the original graph, altering
the graph topology. In the latter, a random node is first selected and its neighborhood is
explored to preserve network topology. However, these techniques showed a bias towards
preserving high-degree nodes, i.e, these nodes have more probability to be explored and
used in the balanced graph, whereas low-degree and peripheral nodes are the most prone to
be removed. At the same time, these techniques show high limitations when disconnected
graphs are considered since the exploration process can be trapped in dense components, i.e,
components with high-degree nodes, limiting the search. Moreover, components that do not
contain the starting node will never be sampled [WCA+16]. For this reason, novel data-level
preprocessing methods for addressing graph imbalance problems directly over disconnected
graphs avoiding topology changes, need to be introduced.

M3 – Cybersecurity imbalance problem. As previously discussed, the class imbalance
is a very common and relevant problem that affects the quality of the classification perfor-
mance. Although the class imbalance can be directly addressed over the graph, in several cy-
bersecurity applications, even if graph structures are used for representing the information,
the classification task is performed using feature vectors (or embeddings) directly extracted
from the graphs. In these cases, graph relations are not directly used in the classification
phase, and for this reason, the imbalance problem can be addressed by applying traditional
data-level strategies. However, they also have limitations, for example, random samplings
such as RUS and ROS can easily generate overfitting or underfitting effects, whereas tech-
niques based on neighborhoods such as SMOTE and ADASYN generate new synthetic
samples around the original points without considering the overall distribution [GS17]. For
this reason, they can introduce noisy information when highly variable datasets are used.
In this situation, a novel approach based on generative adversarial learning could have a
strong impact. More specifically, generative adversarial networks (GANs) have shown their
ability to learn the underlying data distribution from a limited number of available sam-
ples, allowing them to be used to address the class imbalance problem. In fact, they have
been successfully used in image and video processing for this purpose [BDS18,VPT16]. Ne-
vertheless, their adaptation to cybersecurity applications and their usage with tabular data
has not been yet well explored. In fact, the high variability of the tabular data and the
difficulty in validating their results compared to the images or videos (which can be visually
validated), make cybersecurity GANs implementation very challenging. Moreover, since it
is impossible to find a unique GAN solution that works for every scenario, different GAN
architectures are currently available in the state of the art. For this reason, a study about
which GAN architecture is suitable to address the class imbalance problem in cybersecurity
is required. Furthermore, it is interesting to analyze how the GAN training configuration
affects the quality of the generated samples.

M4 – Cyber Threat Intelligence. In cybersecurity, an important task is the implemen-
tation of detection systems able to classify new anomalous patterns and anomalies. In this
sense, the majority of cybersecurity studies exploit ML and DL solutions to improve detec-
tion performance. However, although these paradigms are able to discover new potentially

32 Parte I. Thesis

dangerous information, the same information can also be used by attackers to improve their
knowledge and create new disruptive and undetected attacks. In this scenario, trained ML
models can become outdated after just a couple of months without noticing [PPJ+19]. At
the same time, the improper usage of ML and DL paradigms can result in over-optimistic
results and conclusions [AQP+22]. For this reason, it is important not only to focus research
on improving classification performance but also on extracting insightful information about
data trends and performance drift as well as their evolution over time. In this way, it will
be possible to enhance the cyber threat information and improve the domain knowledge.

4. Objective

The main goal of this thesis is to improve behavioral cybersecurity analysis using machine
learning, exploiting graph structures, temporal dissection, and addressing imbalance problems. This
main objective is divided into four specific goals, each one related to one (or more) of the needs
introduced previously in Section 3.

OBJ1: To study the influence of the temporal resolution on highlighting micro-dynamics in
the entity behavior classification problem. In real use cases, time-series information could
be not enough for describing the entity behavior classification. For this reason, we plan to
exploit graph structures for integrating both structured and unstructured data in a repre-
sentation of entities and their relationships. In this way, it will be possible to appreciate not
only the single temporal communication but the whole behavior of these entities. Neverthe-
less, entity behaviors evolve over time and therefore, a static graph may not be enough
to describe all these changes. For this reason, we propose to use a temporal dissection for
creating temporal subgraphs and therefore, analyze the influence of the temporal resolution
on the graph creation and the entity behaviors within. Furthermore, we propose to study
how the temporal granularity should be used for highlighting network micro-dynamics and
short-term behavioral changes which can be a hint of suspicious activities.

OBJ2: To develop novel sampling methods that work with disconnected graphs for addressing
imbalanced problems avoiding component topology changes. Graph imbalance problem is a
very common and challenging task and traditional graph sampling techniques that work
directly on these structures cannot be used without modifying the graph’s intrinsic infor-
mation or introducing bias. Furthermore, existing techniques have shown to be limited when
disconnected graphs are used. For this reason, novel resampling methods for balancing the
number of nodes that can be directly applied over disconnected graphs, without altering
component topologies, need to be introduced. In particular, we propose to take advantage
of the existence of disconnected graphs to detect and replicate the most relevant graph com-
ponents without changing their topology, while considering traditional data-level strategies
for handling the entity behaviors within.

OBJ3: To study the usefulness of the generative adversarial networks for addressing the
class imbalance problem in cybersecurity applications. Although traditional data-level pre-

5. Discussion 33

processing techniques have shown to be effective for addressing class imbalance problems,
they have also shown downside effects when highly variable datasets are used, as it happens
in cybersecurity. For this reason, new techniques that can exploit the overall data distribu-
tion for learning highly variable behaviors should be investigated. In this sense, GANs have
shown promising results in the image and video domain, however, their extension to tabular
data is not trivial. For this reason, we propose to adapt GANs for working with cyberse-
curity data and exploit their ability in learning and reproducing the input distribution for
addressing the class imbalance problem (as an oversampling technique). Furthermore, since
it is not possible to find a unique GAN solution that works for every scenario, we propose
to study several GAN architectures with several training configurations to detect which is
the best option for a cybersecurity application.

OBJ4: To analyze temporal data trends and performance drift for enhancing cyber threat
analysis. Temporal dynamics and incoming new data can affect the quality of the predictions
compromising the model reliability. This phenomenon makes models get outdated without
noticing. In this sense, it is very important to be able to extract more insightful information
from the application domain analyzing data trends, learning processes, and performance
drifts over time. For this reason, we propose to develop a systematic approach for analyzing
how the data quality and their amount affect the learning process. Moreover, in the context
of CTI, we propose to study the relations between temporal performance drifts and the
input data distribution for detecting possible model limitations, enhancing cyber threat
analysis.

5. Discussion

In this Section, for each publication that composes this thesis, a brief description and its main
results are reported.

5.1. Bitcoin and cybersecurity: Temporal dissection of blockchain data to un-
veil changes in entity behavioral patterns

In this work, we propose an approach for highlighting changes in the entity behaviors extracted
from a graph-based network. For this reason, we firstly propose to define the entity behaviors as
the interactions of each node within the network. Then, we focus the study on analyzing how
the temporal resolution, i.e., the time interval in which a graph structure is extracted, affects this
behavior definition. The temporal resolution is analyzed by introducing an operation known as
temporal dissection, dividing the initial dataset into several time-fixed batches. Our hypothesis
is that a model trained on entity behaviors of a certain batch would achieve a high classification
performance when testing it on another temporal batch only if they share the same behavioral
patterns, that is, behaviors are not changed.

The temporal resolution is reversely related to the time step size, i.e., the size of the temporal
batches. In fact, a low temporal resolution generates batches with a large time step size, which in

34 Parte I. Thesis

turn favor the appearance of macro-dynamics. These macro-dynamics are not only less related to
cybersecurity threats, but they can also skew the learning process of a model. On the other hand,
a high temporal resolution produces batches with a small time step size which could not contain
enough information for properly detecting the entity behaviors. For this reason, the choice of this
temporal resolution is not trivial and, in order to find a trade-off between the two cases, we study
how it should be selected for highlighting entity behavioral changes.

This study is performed using Bitcoin blockchain data with the main goal of detecting typical,
recurrent entity behavioral patterns and at the same time detecting abrupt changes that can be
hints of attacks or illicit activities. In particular, six entity behaviors are considered: Exchange,
Gambling, Mixer, Mining Pool, Marketplace and eWallet. Once the operation of temporal dissec-
tion is performed over the blockchain, four graph structures [ZEBU19] are extracted from each
batch. These graphs are combined by a cascading ML classifier, i.e., an ensemble that stacks
several classifiers. This approach is evaluated using four different temporal resolutions to better
understand how this parameter affects the micro-dynamics detection.

The results of the proposed analysis have shown that the temporal resolution affects the con-
sidered entity behaviors (or classes) differently. Some classes (Exchange, Gambling, and eWallet)
have shown a consistent behavior that does not vary significantly overtime in the past 3 years.
In fact, using a high temporal resolution slightly affects the performance of the model for these
behaviors. Moreover, the results suggest that it is not necessary to use the full blockchain data
to identify those classes. Otherwise, other classes (Market and Mixer) worsen their performance
when a high temporal resolution is used. This is probably due to the fact that when high temporal
resolution is used, too few samples of these classes remain in each batch, as previously discussed.
Finally, the last class (Mining pool) changes dramatically its performance when a high temporal
resolution is used, although it has a sufficient population in the small batches. Furthermore, this
class shows a high performance variability from batch to batch, highlighting its changes over ti-
me. These temporal changes can be a hint of illicit activities, as well as a potential cyber-attack
suffered, as also shown in [VTM14,JLG+14].

Based on the results that we have obtained in this study, the following conclusions can be
highlighted:

The proposed approach based on temporal dissection not only helps to reduce problem
complexity and computational effort related to the Bitcoin data processing, but also suc-
cessfully shows the usefulness of adjusting the temporal resolution for highlighting entity
behavioral changes over time. In fact, the classification results highlight which entities show
a relatively consistent behavior from batch to batch (making them less likely to be related
to illicit activities or cyber-attacks) and which entities show strongly varying behavior over
time (thus revealing short-term changes in behavior that could suggest suspicious network
activities).

It is not possible to select a unique value for the temporal resolution, since each entity
class is affected differently. In fact, the study shows that for several classes, a high temporal
resolution generates batches with too few samples for defining a behavior. On the other
side, a low temporal resolution promotes the classification of macro-dynamics over micro-

5. Discussion 35

dynamics, hiding the temporal changes. Hence, the temporal resolution should be selected
according to the specific target, i.e., the class which is most interesting to be studied. More
specifically, in our study, for a specific class (Mining pool), it is possible to appreciate that
a higher temporal resolution successfully highlights micro-dynamics, and its variability over
time could be a symptom of suspicious activities (or cyber-attacks).

Finally, the analysis shows that models trained with recent data perform well in classifying
past behaviors when a high temporal resolution is used. This suggests that generally, it is
more difficult to predict the future and that, the class behaviors are continuously evolving.
This implies that earlier models do not capture future behaviors as well, but recent models
do seem to contain behavioral elements that can help the definition of past data. The aim
of this analysis is not to implement a classifier to be used in real applications, since future
data are used for predicting past behaviors, but to exploit CTI concepts for extracting more
insights, enhancing domain knowledge.

The introduced approach can be used for improving crime investigation, for example for
developing new forensics tools which can assist law enforcement officers (LEOs) in uncovering
illegal activities within the Bitcoin network. Furthermore, it can be applied to other cybersecurity
scenarios with the aim of enhancing the information about behavioral changes that can be related
to malicious activities or cyber-attacks, such as analyzing network traffic or malware structures.

A more extensive discussion about the experiments and the obtained results is included in the
following publication:

∗ Zola F., Bruse J.L., Eguimendia M., Galar M. and Orduna Urrutia R., Bitcoin and cy-
bersecurity: Temporal dissection of blockchain data to unveil changes in entity behavioral
patterns, Applied Sciences, 9(23), pp.5003, DOI: 10.3390/app9235003

5.2. Network traffic analysis through node behaviour classification: a graph-
based approach with temporal dissection and data-level preprocessing

In this work, we present novel methodologies for addressing graph imbalance problems in dis-
connected graphs. Graph representations can be used to define and visualize entities’ interactions
and their behaviors over time. However, these graphs can easily suffer from class imbalance, i.e,
when nodes/entities of a majority class are more frequent than nodes/entities of the other mino-
rity classes. In this scenario, existing graph sampling techniques tend to alter graph topology or
suffer from bias toward preserving high-degree nodes. Furthermore, these techniques have shown
strong limitations when disconnected graphs are used. For this reason, in this work, we introduce
and compare two novel sampling approaches specially designed for disconnected graphs. These
techniques are not only able to address the imbalance problem avoiding component topology
changes, but can also enhance the entity classification performance.

More specifically, we introduce two novel approaches, named R-hybrid and SM-hybrid, for
addressing the imbalance problem directly over the disconnected graphs. The proposed approa-
ches exploit the disconnected structures for avoiding component topology changes. In particular,

36 Parte I. Thesis

when graph structures are used, we need to consider that not only the node behavior need to be
synthesized, but also its relations with other nodes (topology). For this reason, the introduced
techniques reduce the graph complexity by randomly eliminating components composed only of
elements from the majority class. Then, we replicate the most “interesting” components topolo-
gies, i.e, topologies composed by at least 60% of nodes of the minority class. In this way, all the
components that satisfy the previous conditions have the same probability to be eliminated or
replicated. Finally, R-hybrid and SM-hybrid differ in the way the node features in the replicated
components are generated. On the one hand, R-hybrid assigns an entity behavior to each node of
the replicated component using a ROS strategy, i.e, not only the component topology but also the
node behaviors within are replicated. On the other hand, SM-hybrid computes the entity behavior
using both ROS and SMOTE strategies. In particular, the ROS technique is used for replicating
the behaviors of the nodes belonging to the majority class, whereas SMOTE technique is used
for generating new synthetic node behaviors of the minority class.

In this study, these approaches are tested for addressing the imbalance problem in temporal
disconnected graphs extracted from network traffic communications (or flows). In particular,
a network traffic dataset that includes information about flows of normal and different attack
families is used. However, for the aim of this study, we consider all attack families as a unique class
to perform a binary classification. These flows are mapped into nodes/entities and edges/relations
using temporal Traffic Dispersion Graphs (TDGs) [IFM09]. A temporal TDG represents a graph
extracted in a temporal batch. Due to the nature of the problem, these temporal TDGs are
characterized by disconnected graphs. Furthermore, since in the network traffic dataset normal
activities outnumber malicious activities or attacks, the same imbalance problem is propagated to
the generated disconnected graphs, where normal nodes outnumber attack ones. Similarly to the
temporal graphs considered in the previous work (Section 5.1), TDGs have a strong dependency
on the temporal resolution, for this reason, it is interesting to analyze how this temporal resolution
affects their creation, as well as the graph population distribution (class imbalance). Finally, the
choice of the ML model to be used when dealing with graph-based structures is not trivial,
since methods that exploit both behavioral features and graph relations or models based only
on analyzing behavioral features can be used. Therefore, we also propose to study whether using
graph relations can enhance the performance with respect to only considering behavioral features.

Accordingly, we plan to address the following main questions:

1. Do the introduced graph sampling approaches generate a more balanced dataset when dis-
connected graphs are used? How does the balanced information affects the classification per-
formance?

2. How does the temporal resolution affect entity behavior classification?

3. Which is the best learning model and which configuration should be used?

To answer these questions we analyze the goodness of our approaches by evaluating the impro-
vements achieved in the classification of normal and attack entity behaviors after balancing the
dataset. More specifically, we evaluate the performance of three supervised ML models by compa-
ring the usage of R-hybrid and SM-hybrid with respect to not applying any strategy for the class

5. Discussion 37

imbalance problem. Regarding the used supervised models, two of them are graph convolutional
networks (GCNs), which can exploit both behavioral features and graph relations, whereas the
other is a neural network (NN), which only considers behavioral features. In particular, the two
GCNs are tested with high-order and low-order approximations for the convolution filter. We do
not include common graph sampling techniques in the comparison since, as previously discussed,
they are not adequate for working directly with disconnected graphs. For this reason, in order
to evaluate the benefits and the limitation of the proposed approaches, we compare the obtained
results with the ones achieved by 5 anomaly detection (AD) models. These models can also be
appropriate to deal with highly imbalanced datasets. More specifically, three models are trained
using a semi-supervised AD setup, whereas the other two follow an unsupervised AD training
setup [Agg17,GU16].

To answer the second question, three different temporal resolutions (300s, 600s, and 900s) are
considered and analyzed. In particular, the effect of these resolutions in the graph extraction, as
well as in the classification performance, is compared. Finally, the third question is addressed by
gathering and comparing the results obtained by the best configuration of the three supervised
ML models. Moreover, although the whole analysis is performed as a binary classification, we also
develop a study about the attack families detected by each model to extract more insights about
their quality.

Due to the high complexity and high computational costs caused by all possible combinations
of the configuration parameters, we fix some parameters in each question. In particular, for ad-
dressing the first question, we use a fixed value for the temporal resolution (600s) to validate the
proposed approaches. Then, for the second question, the best graph sampling strategy detected
is used for analyzing the influence of the other two temporal resolutions. Finally, for the third
question, the best configurations, one for each supervised ML model, are compared in terms of
performance in both binary and attack families detection.

Results show that both R-hybrid and SM-hybrid techniques correctly address the class imba-
lance problem in disconnected graphs generating a more homogenized population among normal
and attack entities. Moreover, using this balanced graph dataset, all supervised ML models show
improvements in their performance. In fact, models trained as semi-supervised AD together with
the GCN classifiers are strongly affected by the imbalanced information, achieving very low per-
formance if resampling is not applied. Otherwise, NN and models trained as unsupervised AD
using the same imbalanced dataset, achieve promising results even if they are worse than the ones
obtained by supervised ML model with balanced information. In this scenario, the best overall
performance is obtained by applying SM-hybrid for addressing graph imbalance and implementing
a GCN with a high-order approximation.

Regarding the impact of the temporal resolutions, results show that all supervised models
generate their best classification results using a specific value (600s) for the given dataset. In
particular, a change in the temporal resolution strongly affects the NN performance, regardless
of the graph imbalance problem. In fact, performances achieved by using the balanced dataset
with resolutions of 300s and 900s are lower than the ones obtained using the imbalanced dataset
with resolution of 600s. Furthermore, results highlight that a low temporal resolution has a huge
impact on the training time of the GCN model with a high-order approximation.

38 Parte I. Thesis

Overall, supervised models achieve their best results using the same configuration (temporal
resolution of 600s and using SM-hybrid technique). Results highlight that graph relations can be
used for improving the entity classification performance when GCN with a high-order approxima-
tion is implemented. Otherwise, using a GCN with a low-order approximation, the classification
performance is negatively affected. Further analysis shows that GCN with a high-order appro-
ximation detects seven out of eight attack families with very high accuracy. Nevertheless, two
concrete attack families are detected more precisely by using the NN, whereas all the models fail
in detecting a (single) specific family.

According to the results of this work, the following conclusions can be highlighted:

Both introduced techniques (R-hybrid and SM-hybrid) correctly address the graph imba-
lance problem when disconnected graphs are used. Both techniques are able to create a
balanced population between normal and attack entities. Furthermore, considering entire
components’ structure at once helps them to not modify component relations (topology)
while avoiding changes in the untouched components.

R-hybrid and SM-hybrid allow one to improve entity classification performance, especially
for the GCNs. Among both methods, models trained on datasets preprocessed with SM-
Hybrid achieved the highest classification performance, highlighting that new synthetic
behaviors help the ML models to enhance their learning process.

The classification performance can be improved considering graph relations if a high-order
approximation is used. However, this comes at the cost of higher complexity and compu-
tational efforts, increasing training times.

Finally, in this study, establishing the temporal resolution has shown to be a key factor
to properly differentiating normal and attack classes. Using the lowest resolution may not
allow the behaviors to be properly represented, whereas using the highest resolution may
produce behaviors to be overlooked by more complex macro-dynamics

A deeper discussion about results and conclusion, as well as a comparison between our clas-
sification approaches and previously published models, is reported in the following publication:

∗ Zola F., Segurola Gil L., Bruse J.L., Galar M. and Orduna Urrutia R., Network traf-
fic analysis through node behaviour classification: a graph-based approach with temporal
dissection and data-level preprocessing, Computers & Security, 115 (2022): 102632, DOI:
10.1016/j.cose.2022.102632

5.3. Attacking Bitcoin anonymity: Generative Adversarial Networks for im-
proving Bitcoin entity classification

In this work, we propose a study about how Generative Adversarial Networks (GANs) can
be used as an alternative to the traditional data-level preprocessing techniques for addressing

5. Discussion 39

class imbalance problems when cybersecurity tabular data are involved. In fact, common data-
level preprocessing methods can generate downside effects such as underfitting and overfitting, or
generate samples with low variability. In this scenario, our hypothesis is that the usage of GANs
can unveil more information in the dataset, generating more variable samples that can help to
better explore the feature space, increasing classifier abilities. However, as introduced in Section
2.4, many GANs architectures are available, since a unique solution that works in every scenario
does not exist. For this reason, we implement three of the main GAN architectures and use them
for generating synthetic samples and addressing the imbalance problem in cybersecurity tabular
data. Finally, we evaluate the quality of the generated synthetic samples evaluating their impact
on the classification performance.

More specifically, we use GANs to model the real data distribution and then perform an over-
sampling using the synthetic data generated by GANs. Our idea is to train a GAN for each under-
represented (minority) class. Then, each generator of the GAN is used to generate synthetic data
so that each class reaches the population of the majority one. This operation creates an enriched
dataset formed of synthetic and real data that is used to train the final classifier. In this way,
it is possible to evaluate the quality of the synthetic samples based on the entity classification
performance. In particular, we propose to study three of the main GAN architectures, known as
Vanilla GAN, Wasserstein GAN (WGAN) and unrolled GAN. The first architecture is selected
for its simplicity and flexibility in the implementation, representing a reference solution. The
second architecture (WGAN) is chosen for its ability to improve the model stability and make
the training process easier [ACB17]. Finally, the third architecture (unrolled GAN) is selected as
it allows one to improve the GAN dynamics by bringing the discriminator closer to an optimal
response [MPPSD17]. These GAN architectures create a good benchmark set for evaluating the
benefits and limitations of this technology when cybersecurity tabular data are used. However,
the quality of the samples generated by a GAN is strongly related to the number of epochs used
to train the GAN itself. In this sense, setting improper parameters for training the GAN can
produce downside effects such as non-convergence, vanishing gradient, or mode collapse (Section
2.4), hindering the quality of the generated samples. At the same time, we need to be sure that
the generated samples and the effect they generate in the classification, do not represent outlier
solutions. Finally, since we aim to use GANs to create synthetic samples for balancing the initial
dataset, this approach must be compared with traditional data-level techniques to evaluate its
usefulness.

In this study, the introduced GAN strategy for addressing class imbalance is validated using a
Bitcoin blockchain dataset. A similar dataset was also used in Section 5.1 for analyzing temporal
behavior consistency. However, in this case, our main goal is to use GANs for generalizing Bitcoin
entity behaviors and generating new synthetic samples, which address the Bitcoin imbalance
problem. In this way, the GAN-balanced dataset is expected to enhance the model performance
in the entity classification task, where six different entity behaviors are considered: Exchange,
Gambling, Marketplace, Mining Pool, Mixer and Service. These behaviors are characterized by
the nodes’ interactions within the address-transaction graph (Section 2.2.2). Nevertheless, the
gathered dataset suffers from class imbalance, since it is easier to gather information about entities
related to licit activities (Exchange, Gambling) than about entities involved in illicit ones (Mixer,

40 Parte I. Thesis

Service).

In this scenario, we plan the following main questions:

1. Do GAN strategies address the Bitcoin imbalance problem and enhance the entity behavior
classification? Which is the best GAN architecture and how does the number of epochs used
in the training affect its learning process?

2. Are the results obtained by the best GAN configuration repeatable (randomness analysis)?

3. Could the GAN strategy represent an alternative to common data-level preprocessing tech-
niques?

In order to answer the first question, we compare the classification performance obtained by
classifiers in which the imbalance problem is addressed using the three GAN architectures with a
classifier that uses directly the imbalanced information (baseline model). Moreover, for evaluating
the effect of the number of epochs in the GAN learning process, for each architecture, we consider
six different training checkpoints. A training checkpoint represents a fixed number of epochs in
which we stop the GAN training. At each stop, the GAN generators are used to create a balanced
version of the initial dataset, which in turn is used to train a new entity behavior classifier. This
approach let us analyze the relation between the GAN architecture, the number of epochs, and
the quality of the generated samples.

After validating the approach, the second question is addressed by analyzing the repeatability
of the results of the best solution. In this sense, the best GAN configuration previously detected
is used to train five GANs for each class sharing the hyper-parameters, which are then used to
implement five entity behavior classifiers with artificially balanced datasets. This approach helps
us to analyze and evaluate the repeatability of the results obtained by using a specific GAN
configuration.

Finally, the third question is addressed by comparing the results obtained by the introdu-
ced GAN-based approach with results obtained applying five traditional data-level preprocessing
techniques (RUS, ROS, TL, SMOTE, and ADASYN).

Overall, improvements in the classification performance are obtained by addressing the class
imbalance problem using the introduced GAN approach. More specifically, overall enhancements
are obtained regardless of the used GAN architecture and the number of training epochs, although
the Vanilla and unrolled GANs perform better using fewer training epochs, whereas WGAN
require more epochs for obtaining better synthetic samples. Analyzing the model performance
per class, all the classifiers that use the datasets balanced by the Vanilla and unrolled GANs
show improvements in detecting all the entities, regardless of the number of epochs used. On the
other hand, classifiers trained with datasets balanced by the WGAN show a deterioration in the
Mining Pool detection. The best overall performance is achieved by the classifier trained with the
dataset balanced by the Vanilla GAN trained for a few epochs (1,000).

The best solution also shows a high repeatability in its results. In fact, repeating the GAN
training five more times with as many classifiers, very low performances deviations are obtained.

5. Discussion 41

The study shows also that our GAN-based approach generates improvements in the overall clas-
sification performance better than other techniques such as RUS, TL, SMOTE, and ADASYN.
However, they are slightly lower than the ones generated by the ROS strategy. This is mainly due
to the low quality of the GAN samples generated for two specific classes (Mining Pool and Servi-
ce). In fact, for these classes, the presence of dense regions in the training data distribution lead
GAN to learn and generate only partial information, hence limiting its performance. Finally, in
terms of computational costs, excluding the two random resampling techniques (RUS and ROS),
our GAN approach is the most efficient strategy. To complement this analysis we performed an
additional comparison with previous works on Bitcoin entity classification. In particular, our clas-
sifier learned using the GAN balanced dataset is the best in classifying two classes (Exchange and
Marketplace) and is the second-best solution for other two (Gambling and Service). However, it
shows problems in detecting the last two classes (Mining Pool and Mixer).

Based on the results obtained in this work, the following conclusions are highlighted:

Class imbalance problem should be tackled for improving the quality of the classification
performance. GAN solutions are a promising alternative to traditional resampling techni-
ques also when cybersecurity tabular data are used. In particular, they show the ability to
learn and generalize behavioral entities which in turn helps them in generating high-quality
samples, improving the final entity behavior classification. Our study shows that overall
improvements in the classification are obtained regardless of the GAN architecture used.
Among the tested architectures, the best results are achieved using a Vanilla GAN.

The number of training epochs affects the quality of the samples in different ways accor-
ding to the GAN architecture. In fact, we have found that Vanilla GAN and unrolled GAN
perform better when trained with fewer epochs, whereas WGAN requires a larger num-
ber of epochs. Hence, the GAN training duration needs to be carefully considered in each
architecture and use case.

The learning process of GANs depends on the input data distribution. Dense areas in the
feature space can lead GANs to fail their task, since they can focus on learning just certain
behaviors, generating only partial information (recalling the mode collapse effect). In our
case study, this phenomenon has been identified in two specific classes (Mining Pool and
Service)

Generative models can be effectively used to recreate activities carried out by real Bitcoin
users to discover new patterns and prevent unknown cyber-threats.

The complete information on this work has been published in the following article:

∗ Zola F., Segurola Gil L., Bruse J.L., Galar M. and Orduna Urrutia R., Attacking Bit-
coin anonymity: Generative Adversarial Networks for improving Bitcoin entity classifica-
tion, Appl Intell (2022), DOI: 10.1007/s10489-022-03378-7

42 Parte I. Thesis

5.4. Cyber Threat Intelligence for Malware Classification in the Presence of
Concept Drift

In this work, we present a novel methodology for enhancing CTI based on temporal analysis,
concept drift, and an in-depth misclassification investigation. The main idea is to shed light on
the underlying issues related to cybersecurity ML-based classification and investigate potential
causes of model failures. In this way, it is possible to extract insightful information relevant to cy-
bersecurity practitioners and analysts. In fact, in recent years, in cybersecurity applications, ML
algorithms have been mainly used for modelling the input data [MTICGN19] and improving the
performance of classification tasks, especially in malware analysis [UAB19,SH18], becoming a race
toward the best classification performance while neglecting the interpretation of the results. Being
so focused on performance improvement, it is common to overlook issues that can lead to overly
optimistic conclusions that do not reflect real-world cybersecurity scenarios [AQP+22]. Additio-
nally, in several cases, conclusions are drawn from laboratory settings, i.e., “static” environments,
which do not represent the real world in which behaviours and patterns are continuously evolving
over time [AQP+22]. These dynamics in the data may cause trained ML models to become out-
dated after only a few months without being noticed [PPJ+19]. This situation can result in a loss
of control over the model behavior, especially knowing that usually the ML models are trained
by experts that are neither the actual cybersecurity operators nor analysts [SBE19].

In this dissertation, we introduce a methodology for extracting insightful information related to
data distribution and concept drifts that can affect ML models in cybersecurity and enhance CTI.
More specifically, we focus the analysis on malware classification using Portable Executables (PEs)
of 6 different families (Adware, Dropper, Spyware, File Infector, Worm, and Downloader) gathered
from January 2017 to April 2019 (28 months) and included in the SOREL-20M dataset [HR20].
To evaluate the model performance, its evolution over time and concept drift, we consider the
F1-score and the Area Under Time (AUT) [PPJ+19], which is the area formed by the F1-scores
obtained over time. Our methodology is based on the following three steps:

1. Classification. In this step, we first convert the PE malwares to CFGs and then, we use 10
common graph properties (feature embeddings) to describe each CFG. These embeddings
are split considering the temporal factor, i.e., knowing that the whole dataset contains
information of 28 months. The first 18 are used for the training dataset, the following 5 for
the validation dataset and the last 5 months for creating the test dataset. These datasets are
finally used for training, validating, and testing ML models based on Random Forest. More
specifically, a grid-search over the validation set is performed to tune the values regarding
the number of trees and the tree depth. Afterwards, we used the test set to evaluate the
generalization capabilities of the model and check whether the temporal difference causes a
significant drop in performance compared to validation metrics.

2. Temporal analysis.We propose a temporal analysis based on two main concepts: temporal
dissection and temporal aggregation. In temporal dissection, as introduced in Section 5.1,
we evaluate how the behaviors change over time and how they affect the classification
performance using a rolling window approach. In this sense, we divide the initial dataset
into chunks of 1 month. Then, the rolling window is used to keep selecting two consecutive

5. Discussion 43

months for training a classifier, whereas the following months are used for testing it. The
process is repeated by moving the rolling window over the available dataset. On the other
hand, the temporal aggregation changes the size of the training dataset to incorporate more
information. In particular, we apply the temporal aggregation for training 5 different models,
using training datasets composed of 2, 4, 6, 12, and 18 months. This approach simulates
training with as much data as one has at hand in an equivalent real-world scenario, and it
helps to detect consistent performance drops, i.e., drops found even when larger datasets
are used during the model training. These points can be related to concept drifts and must
be further analyzed.

3. Misclassification and feature trends. Once drops are detected, we analyze their possible
causes by focusing on the misclassification results and temporal trends of the input features.
In this case, we first extract and analyze the confusion matrices of the models on the dates
on which they show the performance drop. We restrict our feature trend analysis to the most
important features, which are found using the Mean Decrease Impurity (MDI) [Sco20]. The
trend of these features is extracted and observed in the performance drop points, looking
for abrupt changes and rare behaviors that may help to explain what the model learned
and why it misclassified certain classes.

These three steps are tested in the malware classification problem. In the first step, all the
tested models reach promising values in terms of F1-score in the validation set (≥ 82%). The
results highlight that the depth of the tree is the parameter that allows improving the perfor-
mance of the classifier, whereas the number of trees predominantly has an impact on the training
time. However, when evaluating the generalization of the model with the test set, we find a loss
of performance with respect to the validation set. This can be due to how the malware fami-
lies’ distribution changes over time. In fact, although a balanced dataset is considered, several
malware families (Dropper and Spyware) have more samples in the validation dataset than in the
train dataset, whereas others (Worm) have more samples in the test dataset than in the train
and validation sets, due to the temporal data partitioning scheme used. Therefore, a temporal
analysis should be performed to investigate how model performance evolves over time and identify
performance drop points.

In the second step, the temporal dissection shows that models trained with the early months in
the dataset generate very poor results in terms of F1-score in almost every test month. However,
when more recent months are used, the models show immediate high values in terms of F1-sore
for the next 5 months, but they worsen their classification performance afterwards, hinting at
the presence of concept drift. On the other hand, the temporal aggregation shows that the model
trained with just the first 2 months achieves very low values in all the considered metrics, whereas
the model trained with 18 months shows higher values. This trend apparently confirms that the
larger the training dataset is, the better the overall classifier performance is. Nevertheless, the
other models, trained with 4, 6, and 12 months, show highly varying trends depending on the
considered dates. In this sense, comparing the performance between the models trained for only
2 months (dissection models) and their respective models trained with all the data available until
those months (aggregation models), it is to be noted that in several cases, dissection models can

44 Parte I. Thesis

be competitive, i.e., including more data into the training process do not generate substantial
improvements. Furthermore, models trained with fewer data show a gradual concept drift, since
they present a first strong decline and a subsequent loss of performance. On the other hand,
models trained with more data do not show a clear concept drift pattern, even if, on specific
dates, they show strong performance drops. These drop points can be considered as an abrupt
concept drift or outliers. More specifically, three abrupt drops were further analyzed to detect
their possible causes, since they were present even when models were trained with larger datasets.

Therefore, in the third step, we analyze the three performance drop points. First, we study
the confusion matrices of the models. In this way, we focus the considerations and conclusions
just over the confused classes. In the first drop point, Dropper elements are mainly confused
with Spyware and File Infector, whereas in the second and third drop points, they are confused
with Adware and Downloader samples, and Spyware elements are confused with Worm and File
Infector. Then, to analyze the behavior of the input features over time for the confused classes,
we identify the most important features using MDI. The feature importance analysis shows that
9 out of 10 of the used structural graph properties extracted from the CFG are used by all
the models for the final classification, although each one with a different importance score. This
analysis is important to understand which property represents a sensitive target and hence, the
most prone to be used in an attack. In fact, a slight change in its value has a greater influence on
misclassification. The top-4 features with the highest importance scores in all the implemented
models are transitivity, number of strongly connected components, average degree of nodes and
number of nodes. For these features, we analyze their temporal trend and observed that usually
there is at least one feature that changed substantially in the drop points. More specifically, the
values of these features for the confused classes seem to line up, only in the model failure dates.
Probably this alignment of such features leads to misclassifications.

Based on the results obtained in this work, the following conclusions are highlighted:

Concept drift and several distinct points of model failure should be analyzed in order to
identify the limitations of the models, even for models trained on a relatively large amount
of data.

The temporal dissection approach highlighted that several models trained with only 2
months of recent data performed accurately in months closer to the months used for training
them, whereas their performance dropped drastically when evaluating data from about 5
months later, showing concept drifts and distinct points of model failure. This highlight
that, especially in real-world applications, models have a “lifetime” and they should be
re-trained throughout their life cycle.

The temporal aggregation approach helps to discover model limitations and model failure
points that also affect models trained with a relatively large amount of data. The obtained
results showed that considering always the largest amount of data in the training dataset
for improving the classification performance is not enough. In fact, these models also show
performance drops, and in several cases, their performance in the classification of the closest
temporal samples does not generate substantial improvements with respect to the ones
obtained using models trained with fewer data.

6. Conclusions 45

Analyzing the trends of the most important features over time for the confused classes,
it is possible to extract novel information for relating input trends to critical points of
model failure. In our case study, model failures are linked to substantial changes in at least
one input feature. This information could be used by cyber analysts and experts to train
adaptative ML models able to evolve together with the input data, limiting performance
decays.

The complete work corresponding to this part can be found in the following article:

∗ Zola F., Bruse J.L., Galar M. and Cavallaro L., Cyber Threat Intelligence for Malware
Classification in the Presence of Concept Drift, Submitted.

6. Conclusions

In this section, we report the outcomes of this thesis focused on behavioral analysis in Cyber-
security using Machine Learning. The study is based on graph representation, class imbalance,
and temporal dissection. The conclusions are drawn from the different works previously described.

In cybersecurity applications, time-series information could be not enough to describe beha-
viors of complex systems in which entities and relations evolve over time. Therefore, in this thesis,
we focused on using a graph-based representation that can be used for highlighting network dy-
namics favoring the classification and visualization of such information. However, in this dynamic
scenario, it is relevant to analyze how the data temporality affects the problem description, i.e.,
how it affects the graph representation, behavior definitions, and consequently their classification.
For this reason, specific analysis needs to be performed depending on the domain application. In
this thesis, we considered two different operations: temporal dissection and temporal aggregation.
The first strategy is used for highlighting micro-dynamics in the graphs and evaluating how entity
behaviors change over time, whereas the second is used for detecting drifts in the classification
performance.

Cybersecurity behavioral analysis can be performed directly using the graph representation
or using tabular data (features or behaviors) extracted from the graph. However, in both cases,
class imbalance represents a very challenging problem that affects the quality of the predictions.
In this thesis, we firstly analyzed and addressed the class imbalance directly in the graphs. In
particular, we implemented two novel strategies able to exploit disconnected graphs for addressing
the imbalance. Both strategies are drawn to avoid component topology modification. On the other
hand, we presented a solution based on GANs for working with the tabular data extracted from
a graph. In this case, the GANs are used for learning complex behaviors and for generating new
synthetic ones, which are finally used for addressing the imbalance in the tabular dataset, as an
oversampling technique.

In this thesis, we did not limit the analysis only to the performance evaluation, but we aimed
to highlight the problems that may arise when ML models are used for real-world cybersecurity
tasks. In this sense, we used CTI concepts and mechanisms for discovering new insights that

46 Parte I. Thesis

cyber analysts and operators can use during their tasks for increasing their domain knowledge. In
particular, we considered the misclassification, data trends, and feature importance information
for investigating potential causes of model failure and for shedding light on the model decisions.

In summary, the main conclusions extracted from this thesis are the following:

Graph representations allow one to obtain a different and value-adding perspective in cyber-
security behavioral analyses. This approach showed to improve the state-of-the-art results,
especially in classification tasks where graphs were used for representing complex systems
such as blockchain networks, communications networks, and malware binaries.

Data temporality affects differently the input distribution and the classification performan-
ce. More specifically, temporal dissection allows for checking the consistency of the entity
behaviors over time, and it highlights micro-dynamics in the graph. On the other hand,
temporal aggregation allows one to detect eventual drifts in the classification performance.

Two novel solutions for addressing the graph imbalance problem using disconnected graphs
are implemented. Both techniques allow one to create a more balanced population in the
graph structure avoiding component topologies modification. Moreover, the usage of these
balanced graphs generated improvement in the behavioral classification performance.

GANs allow one to learn complex entity behaviors and create synthetic ones that can be used
for addressing the imbalance problem, as an oversampling technique. This thesis showed
that the results of GANs depend on the chosen architecture and the number of epochs
used for training it. Furthermore, although the GAN approach enhances the classification
performance, these improvements are still lower than the results obtained by using the ROS
strategy.

CTI can be used to relate misclassification and feature trends and highlight patterns that
may generate concept drift over time. In this sense, for helping cyber analysts and experts
in their task and for avoiding unexpected drifts, it is better to train models on fewer but
recent data, apply them for a few months only, and then re-train the model using the newest
data again.

7. Future works

We conclude the first part of this thesis by drawing guidelines and future works that can be
developed from the presented outcomes.

To replicate temporal behaviors in a controlled environment for discovering new
unknown behavioral patterns

As presented in this thesis, entity behaviors are continuously evolving over time creating micro-
dynamics that are hard to be detected. In this sense, the high variability of the samples is usually
not properly represented in the training dataset, limiting the performance of the classification
models. Furthermore, in several applications such as blockchain transactions, entity behaviors are

7. Future works 47

strictly related among them due to action-reaction links. In fact, a behavior not only depends on
the generated transactions of the specific entity, but also on the received transactions generated by
the others. In this complex and multi-related scenario, it is interesting to be able to simulate such
relations in a controlled environment. More specifically, in the case of blockchain-related behaviors,
the testbed presented in [ZPSZ+19] could be used for deploying a private blockchain network and
generating transactions among its participants. This approach could be used for replicating and
simulating known (typical) behaviors, specific types of attacks, or illicit activities related to certain
entities allowing us to dissect all the small interactions and highlight which transactions are the
most relevant for defining the entity behavior. Furthermore, this synthetic information could be
directly included in real-world models to validate how the simulated behaviors recall the real ones.

To develop new graph sampling techniques based on node behavior for decreasing
the computational cost and improving the effectiveness of the analysis

As shown in this thesis, using graph representation in the cybersecurity domain generates
promising results, regardless of the nature of the data. However, we need to deal with very large
graphs that in several cases can require high computational costs. In this sense, it would be
interesting to reduce the graph representation without losing relevant information by proposing
new graph sampling techniques. An interesting solution could be based on aggregating similar
node behaviors to reduce the overall information. This operation could have a strong impact,
especially when the initial dataset is characterized by a huge number of similar nodes or by
noisy data. For example, density-based clustering could be considered. This cluster approach uses
unsupervised learning methods to identify contiguous regions of high point density (clusters) and
regions of low point density (noise/outliers) [KKSZ11]. Once similar behaviors were detected,
they could be merged into a unique behavior that represents all of them. Hence, the information
to be analyzed would be reduced, reducing the computational costs. This approach could be also
integrated in both R-hybrid and SM-hybrid strategies introduced in Section 5.2, replacing the
RUS operation. However, the impact that this modification would generate in addressing the
graph imbalance problem and in the final analysis, should be explored.

To study the usefulness of inductive embeddings for codifying graph/nodes and
improving the final performance of the classifiers

Regarding the classification task, in this thesis, we have analyzed two approaches. On the one
hand, we directly used real-world features and graph topology for training graph ML techniques
(Section 5.2). On the other hand, we extracted and used graph properties (or node behaviors)
as input for traditional ML models (Section 5.1 and Section 5.4). However, in future works, it
would be interesting to apply techniques able to convert high-dimensional sparse graphs into low-
dimensional and continuous vector spaces (embeddings). This approach would help to reduce high
computational costs and excessive memory usage, as well as obtain heterogeneous characteristics
that can preserve graph properties improving the final performance. More specifically, it would
be interesting to analyze a specific class of embedding called inductive. This category includes
techniques that are able to predict the embedding of unseen nodes, unlike the transductive which
can only work with nodes seen during the training phase [HYL17]. This strategy could be used
for enhancing different graph analytics tasks such as node classification, graph similarity, link
prediction, visualization, etc. In particular, inductive techniques in cybersecurity applications

48 Parte I. Thesis

could be studied in terms of properties, i.e., which embedding provides a better representation
of nodes/graph; scalability, i.e., how they can preserve the properties when huge graphs are
analyzed; and finally in terms of optimal dimensionality, i.e., finding optimal dimensions of the
representation of the graph (according to the application domain).

To favor the explainability of the results by relating CTI information with real-
world data structures

The CTI methodology introduced in this thesis (Section 5.4) allows one to extract information
about how the performance of a malware classifier changes over time. The approach highlighted
that malware classifiers need to be frequently retrained (after a couple of months) to avoid drifts,
since malware binaries are continuously evolving changing their CFG representation. In this sense,
this thesis showed how the performance decay can be related to several CFG properties that were
used as inputs of the classifier. However, in future works, it would be interesting to relate the
performance decay directly to the malware calls and routines, i.e., the nodes of the CFG. In
fact, in this way, it would be possible to understand which part of the CFG is the most relevant
during the classification, highlighting which part of the CFG is typical of each malware family.
This approach would help cyber analysts and operators to better explain and understand the
decision taken by the ML model. On the other hand, once specific structures for each malware
family were defined, other binaries such as firmware, drivers, and more complex codes, could be
analyzed for discovering structural similarities between them and malware, which can be a hint
of a vulnerability. Finally, it must be taken into account that the explainability of the results, i.e.,
the knowledge about relations between model decisions and real-world data structures, can also be
used by hackers and malicious actors to change the internal structure of their malware for creating
more “intelligent” threats, which can mislead the detector. For this reason, a CTI methodology
for sharing and protecting this sensitive information should be proposed and validated.

Bibliography

[AA18] Alsehibani S. y Almuhammadi S. (2018) Anomaly detection: Firewalls capabilities
and limitations. In 2018 International Conference on Computing Sciences and
Engineering (ICCSE), pages 1–5. IEEE.

[AAD+21] Abbas K., Abbasi A., Dong S., Niu L., Yu L., Chen B., Cai S.-M., y Hasan Q. (2021)
Application of network link prediction in drug discovery. BMC bioinformatics
22(1): 1–21.

[AB17] Arjovsky M. y Bottou L. (2017) Towards principled methods for training generative
adversarial networks. arXiv preprint arXiv:1701.04862 .

[ACB17] Arjovsky M., Chintala S., y Bottou L. (06–11 Aug 2017) Wasserstein generative
adversarial networks. In Precup D. y Teh Y. W. (Eds.) Proceedings of the 34th In-
ternational Conference on Machine Learning, volumen 70, pages 214–223. PMLR.

[Agg17] Aggarwal C. C. (2017) An introduction to outlier analysis. In Outlier analysis,
pages 1–34. Springer.

[AHA20] Athanasiadis C., Hortal E., y Asteriadis S. (2020) Audio–visual domain adaptation
using conditional semi-supervised generative adversarial networks. Neurocomputing
397: 331–344.

[ALPA17] Ahmad S., Lavin A., Purdy S., y Agha Z. (2017) Unsupervised real-time anomaly
detection for streaming data. Neurocomputing 262: 134–147.

[AMKM17] Abid A., Masmoudi A., Kachouri A., y Mahfoudhi A. (2017) Outlier detection in
wireless sensor networks based on optics method for events and errors identification.
Wireless Personal Communications 97(1): 1503–1515.

[ANG+18] Agrafiotis I., Nurse J. R. C., Goldsmith M., Creese S., y Upton D. (2018) A ta-
xonomy of cyber-harms: Defining the impacts of cyber-attacks and understanding
how they propagate. J. Cybersecur. 4: tyy006.

[AOC07] Ahmed T., Oreshkin B., y Coates M. (2007) Machine learning approaches to net-
work anomaly detection. In Proceedings of the 2nd USENIX workshop on Tackling
computer systems problems with machine learning techniques, pages 1–6. USENIX
Association.

49

50 BIBLIOGRAPHY

[AQP+22] Arp D., Quiring E., Pendlebury F., Warnecke A., Pierazzi F., Wressnegger C.,
Cavallaro L., y Rieck K. (2022) Dos and don’ts of machine learning in computer
security. In Proc. of the USENIX Security Symposium.

[ATK15] Akoglu L., Tong H., y Koutra D. (2015) Graph based anomaly detection and des-
cription: a survey. Data mining and knowledge discovery 29(3): 626–688.

[Bar12] Barnum S. (2012) Standardizing cyber threat intelligence information with the
structured threat information expression (stix). Mitre Corporation 11: 1–22.

[BDS18] Brock A., Donahue J., y Simonyan K. (2018) Large scale gan training for high
fidelity natural image synthesis. In International Conference on Learning Repre-
sentations.

[Ber84] Berge C. (1984) Hypergraphs: combinatorics of finite sets, volumen 45. Elsevier.

[BGCML21] Blázquez-Garćıa A., Conde A., Mori U., y Lozano J. A. (2021) A review on
outlier/anomaly detection in time series data. ACM Computing Surveys (CSUR)
54(3): 1–33.

[Bol13] Bollobás B. (2013) Modern graph theory, volumen 184. Springer Science & Business
Media.

[C+07] Council N. R. et al. (2007) Toward a safer and more secure cyberspace. National
Academies Press.

[CBK09] Chandola V., Banerjee A., y Kumar V. (2009) Anomaly detection: A survey. ACM
computing surveys (CSUR) 41(3): 1–58.

[CC19] Chalapathy R. y Chawla S. (2019) Deep learning for anomaly detection: A survey.
arXiv preprint arXiv:1901.03407 .

[CDD18] Conti M., Dargahi T., y Dehghantanha A. (2018) Cyber threat intelligence: cha-
llenges and opportunities. In Cyber Threat Intelligence, pages 1–6. Springer.

[CFQS12] Casteigts A., Flocchini P., Quattrociocchi W., y Santoro N. (2012) Time-varying
graphs and dynamic networks. International Journal of Parallel, Emergent and
Distributed Systems 27(5): 387–408.

[CHZ13] Cupertino T. H., Huertas J., y Zhao L. (2013) Data clustering using controlled
consensus in complex networks. Neurocomputing 118: 132–140.

[CJR+19] Coley C. W., Jin W., Rogers L., Jamison T. F., Jaakkola T. S., Green W. H.,
Barzilay R., y Jensen K. F. (2019) A graph-convolutional neural network model
for the prediction of chemical reactivity. Chemical science 10(2): 370–377.

[CKA+17] Chowdhury S., Khanzadeh M., Akula R., Zhang F., Zhang S., Medal H., Marufuz-
zaman M., y Bian L. (2017) Botnet detection using graph-based feature clustering.
Journal of Big Data 4(1): 1–23.

BIBLIOGRAPHY 51

[CKBR06] Carl G., Kesidis G., Brooks R. R., y Rai S. (2006) Denial-of-service attack-detection
techniques. IEEE Internet computing 10(1): 82–89.

[CMF19] Cook A. A., Mısırlı G., y Fan Z. (2019) Anomaly detection for iot time-series data:
A survey. IEEE Internet of Things Journal 7(7): 6481–6494.

[CR15] Chismon D. y Ruks M. (2015) Threat intelligence: Collecting, analysing, evaluating.
MWR InfoSecurity Ltd. https://www.foo.be/docs/informations-sharing/Threat-
Intelligence-Whitepaper.pdf .

[CWH18] Crawford F. W., Wu J., y Heimer R. (2018) Hidden population size estimation
from respondent-driven sampling: a network approach. Journal of the American
Statistical Association 113(522): 755–766.

[CZ18] Carneiro M. G. y Zhao L. (2018) Analysis of graph construction methods in super-
vised data classification. In 2018 7th Brazilian Conference on Intelligent Systems
(BRACIS), pages 390–395. IEEE.

[CZC18] Cai H., Zheng V. W., y Chang K. C.-C. (2018) A comprehensive survey of graph
embedding: Problems, techniques, and applications. IEEE Transactions on Know-
ledge and Data Engineering 30(9): 1616–1637.

[Dal14] Dalziel H. (2014) How to define and build an effective cyber threat intelligence
capability. Syngress.

[DB18] Douzas G. y Bacao F. (2018) Effective data generation for imbalanced learning
using conditional generative adversarial networks. Expert Systems with applications
91: 464–471.

[DBV16] Defferrard M., Bresson X., y Vandergheynst P. (2016) Convolutional neural net-
works on graphs with fast localized spectral filtering. In Advances in neural infor-
mation processing systems, pages 3844–3852.

[DCD+18] Dehghantanha A., Conti M., Dargahi T., et al. (2018) Cyber threat intelligence.
Springer.

[DGAH+21] Darem A. A., Ghaleb F. A., Al-Hashmi A. A., Abawajy J. H., Alanazi S. M., y
Al-Rezami A. Y. (2021) An adaptive behavioral-based incremental batch learning
malware variants detection model using concept drift detection and sequential deep
learning. IEEE Access 9: 97180–97196.

[DPBC+15] Dal Pozzolo A., Boracchi G., Caelen O., Alippi C., y Bontempi G. (2015) Credit
card fraud detection and concept-drift adaptation with delayed supervised infor-
mation. In 2015 international joint conference on Neural networks (IJCNN), pages
1–8. IEEE.

[DSSVW11] Djidjev H., Sandine G., Storlie C., y Vander Wiel S. (2011) Graph based statistical
analysis of network traffic. In Proceedings of the Ninth Workshop on Mining and
Learning with Graphs.

52 BIBLIOGRAPHY

[FE09] Fenz S. y Ekelhart A. (2009) Formalizing information security knowledge. In Pro-
ceedings of the 4th international Symposium on information, Computer, and Com-
munications Security, pages 183–194.

[FGG+18a] Fernández A., Garćıa S., Galar M., Prati R. C., Krawczyk B., y Herrera F. (2018)
Algorithm-level approaches. In Learning from Imbalanced Data Sets, pages 123–
146. Springer.

[FGG+18b] Fernández A., Garćıa S., Galar M., Prati R. C., Krawczyk B., y Herrera F. (2018)
Learning from imbalanced data sets, volumen 11. Springer.

[FGHC18] Fernandez A., Garcia S., Herrera F., y Chawla N. V. (2018) Smote for learning
from imbalanced data: progress and challenges, marking the 15-year anniversary.
Journal of artificial intelligence research 61: 863–905.

[FHOM09] Ferri C., Hernández-Orallo J., y Modroiu R. (2009) An experimental comparison
of performance measures for classification. Pattern recognition letters 30(1): 27–38.

[FHR18] Feng W., Huang W., y Ren J. (2018) Class imbalance ensemble learning based on
the margin theory. Applied Sciences 8(5): 815.

[FKP15] Fleder M., Kester M. S., y Pillai S. (2015) Bitcoin transaction graph analysis. arXiv
preprint arXiv:1502.01657 .

[FMS13] Flocchini P., Mans B., y Santoro N. (2013) On the exploration of time-varying
networks. Theoretical Computer Science 469: 53–68.

[FRL+17] Fedus W., Rosca M., Lakshminarayanan B., Dai A. M., Mohamed S., y Goodfellow
I. (2017) Many paths to equilibrium: Gans do not need to decrease a divergence at
every step. arXiv preprint arXiv:1710.08446 .

[GBR+17] Gomes H. M., Bifet A., Read J., Barddal J. P., Enembreck F., Pfharinger B.,
Holmes G., y Abdessalem T. (2017) Adaptive random forests for evolving data
stream classification. Machine Learning 106(9): 1469–1495.

[GC17] Gu Y. y Cheng L. (2017) Classification of class overlapping datasets by kernel-mts
method. International Journal of Innovative Computing, Information and Control
13(5): 1759–1767.

[GCC20] Goyal P., Chhetri S. R., y Canedo A. (2020) dyngraph2vec: Capturing network
dynamics using dynamic graph representation learning. Knowledge-Based Systems
187: 104816.

[GCZ21] Gao H., Cheng S., y Zhang W. (2021) Gdroid: Android malware detection and
classification with graph convolutional network. Computers & Security 106: 102264.

BIBLIOGRAPHY 53

[GFB+11] Galar M., Fernandez A., Barrenechea E., Bustince H., y Herrera F. (2011) A review
on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-
based approaches. IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews) 42(4): 463–484.

[Goo16] Goodfellow I. (2016) Nips 2016 tutorial: Generative adversarial networks. arXiv
preprint arXiv:1701.00160 .

[GPAM+14] Goodfellow I., Pouget-Abadie J., Mirza M., Xu B., Warde-Farley D., Ozair S.,
Courville A., y Bengio Y. (2014) Generative adversarial nets. Advances in neural
information processing systems 27.

[GS17] Gosain A. y Sardana S. (2017) Handling class imbalance problem using oversam-
pling techniques: A review. In 2017 international conference on advances in com-
puting, communications and informatics (ICACCI), pages 79–85. IEEE.

[GU16] Goldstein M. y Uchida S. (2016) A comparative evaluation of unsupervised anomaly
detection algorithms for multivariate data. PloS one 11(4): e0152173.

[GYD+08] Guo X., Yin Y., Dong C., Yang G., y Zhou G. (2008) On the class imbalance
problem. In Fourth international conference on natural computation, volumen 4,
pages 192–201. IEEE.

[Ham20] Hamilton W. L. (2020) Graph representation learning. Synthesis Lectures on Ar-
tifical Intelligence and Machine Learning 14(3): 1–159.

[HL13] Hu P. y Lau W. C. (2013) A survey and taxonomy of graph sampling. arXiv
preprint arXiv:1308.5865 .

[HML+14] Han W., Miao Y., Li K., Wu M., Yang F., Zhou L., Prabhakaran V., Chen W., y
Chen E. (2014) Chronos: a graph engine for temporal graph analysis. In Proceedings
of the Ninth European Conference on Computer Systems, pages 1–14.

[HMZ+17] Hu D., Ma Z., Zhang X., Li P., Ye D., y Ling B. (2017) The concept drift problem in
android malware detection and its solution. Security and Communication Networks
2017.

[HOFFR12] Hernández-Orallo J., Flach P., y Ferri Ramı́rez C. (2012) A unified view of per-
formance metrics: Translating threshold choice into expected classification loss.
Journal of Machine Learning Research 13: 2813–2869.

[HR20] Harang R. y Rudd E. M. (2020) Sorel-20m: A large scale benchmark dataset for
malicious pe detection.

[HS12] Holme P. y Saramäki J. (2012) Temporal networks. Physics reports 519(3): 97–125.

[HWH20] Han J., Woo J., y Hong J. W.-K. (2020) Oversampling techniques for detecting bit-
coin illegal transactions. In 21st Asia-Pacific Network Operations and Management
Symposium (APNOMS), pages 330–333. IEEE.

54 BIBLIOGRAPHY

[HYL17] Hamilton W., Ying Z., y Leskovec J. (2017) Inductive representation learning on
large graphs. Advances in neural information processing systems 30.

[HZS+20] He J., Zheng J., Shen Y., Guo Y., y Zhou H. (2020) Facial image synthesis and
super-resolution with stacked generative adversarial network. Neurocomputing .

[IBN+15] Iannacone M., Bohn S., Nakamura G., Gerth J., Huffer K., Bridges R., Ferragut E.,
y Goodall J. (2015) Developing an ontology for cyber security knowledge graphs.
In Proceedings of the 10th Annual Cyber and Information Security Research Con-
ference, pages 1–4.

[IFM09] Iliofotou M., Faloutsos M., y Mitzenmacher M. (2009) Exploiting dynamicity in
graph-based traffic analysis: Techniques and applications. In Proceedings of the
5th international conference on Emerging networking experiments and technologies,
pages 241–252.

[Int21] Interpol (2021) National cybercrime strategy guidebook.
https://www.interpol.int/content/download/16455/file/National%20Cybercrime%20
Strategy%20Guidebook.pdf. Accessed 01 May 2022.

[IPF+07] Iliofotou M., Pappu P., Faloutsos M., Mitzenmacher M., Singh S., y Varghese G.
(2007) Network monitoring using traffic dispersion graphs (tdgs). In Proceedings
of the 7th ACM SIGCOMM conference on Internet measurement, pages 315–320.

[JCG+19] Jiang J., Chen J., Gu T., Choo K.-K. R., Liu C., Yu M., Huang W., y Mohapatra
P. (2019) Anomaly detection with graph convolutional networks for insider th-
reat and fraud detection. In MILCOM 2019-2019 IEEE Military Communications
Conference (MILCOM), pages 109–114. IEEE.

[JDW+21] Jin W., Derr T., Wang Y., Ma Y., Liu Z., y Tang J. (2021) Node similarity preser-
ving graph convolutional networks. In Proceedings of the 14th ACM International
Conference on Web Search and Data Mining, pages 148–156.

[JGH+20] Jin B., Gao C., He X., Jin D., y Li Y. (2020) Multi-behavior recommendation
with graph convolutional networks. In Proceedings of the 43rd International ACM
SIGIR Conference on Research and Development in Information Retrieval, pages
659–668.

[JLG+14] Johnson B., Laszka A., Grossklags J., Vasek M., y Moore T. (2014) Game-theoretic
analysis of ddos attacks against bitcoin mining pools. In International Conference
on Financial Cryptography and Data Security, pages 72–86. Springer.

[JS02] Japkowicz N. y Stephen S. (2002) The class imbalance problem: A systematic study.
Intelligent data analysis 6(5): 429–449.

[JSD+17] Jordaney R., Sharad K., Dash S. K., Wang Z., Papini D., Nouretdinov I., y Cava-
llaro L. (2017) Transcend: Detecting concept drift in malware classification models.
In 26th USENIX Security Symposium (USENIX Security 17), pages 625–642.

BIBLIOGRAPHY 55

[JSZ09] Jin Y., Sharafuddin E., y Zhang Z.-L. (2009) Unveiling core network-wide commu-
nication patterns through application traffic activity graph decomposition. ACM
SIGMETRICS Performance Evaluation Review 37(1): 49–60.

[JWW21] Jiang J., Wang R., y Wei G.-W. (2021) Ggl-tox: Geometric graph learning for
toxicity prediction. Journal of chemical information and modeling 61(4): 1691–
1700.

[KAB+14] Kivelä M., Arenas A., Barthelemy M., Gleeson J. P., Moreno Y., y Porter M. A.
(2014) Multilayer networks. Journal of complex networks 2(3): 203–271.

[KGVK19] Khraisat A., Gondal I., Vamplew P., y Kamruzzaman J. (2019) Survey of intrusion
detection systems: techniques, datasets and challenges. Cybersecurity 2(1): 1–22.

[KKSZ11] Kriegel H.-P., Kröger P., Sander J., y Zimek A. (2011) Density-based clustering.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 1(3): 231–
240.

[KW17] Kipf T. N. y Welling M. (2017) Semi-supervised classification with graph convolu-
tional networks. In International Conference on Learning Representations (ICLR).

[KZP+07] Kotsiantis S. B., Zaharakis I., Pintelas P., et al. (2007) Supervised machine learning:
A review of classification techniques. Emerging artificial intelligence applications
in computer engineering 160(1): 3–24.

[LAF15] Laptev N., Amizadeh S., y Flint I. (2015) Generic and scalable framework for au-
tomated time-series anomaly detection. In Proceedings of the 21th ACM SIGKDD
international conference on knowledge discovery and data mining, pages 1939–1947.

[LF06] Leskovec J. y Faloutsos C. (2006) Sampling from large graphs. In Proceedings of
the 12th ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 631–636.

[LFG+13] López V., Fernández A., Garćıa S., Palade V., y Herrera F. (2013) An insight into
classification with imbalanced data: Empirical results and current trends on using
data intrinsic characteristics. Information sciences 250: 113–141.

[LJRH11] Le D. Q., Jeong T., Roman H. E., y Hong J. W.-K. (2011) Traffic dispersion graph
based anomaly detection. In Proceedings of the Second Symposium on Information
and Communication Technology, pages 36–41.

[LL05] Leung K. y Leckie C. (2005) Unsupervised anomaly detection in network intru-
sion detection using clusters. In Proceedings of the Twenty-eighth Australasian
conference on Computer Science-Volume 38, pages 333–342.

[LLD+18] Lu J., Liu A., Dong F., Gu F., Gama J., y Zhang G. (2018) Learning under concept
drift: A review. IEEE Transactions on Knowledge and Data Engineering 31(12):
2346–2363.

56 BIBLIOGRAPHY

[LMPS17] Li J., Madry A., Peebles J., y Schmidt L. (2017) Towards understanding the dy-
namics of generative adversarial networks. arXiv preprint arXiv:1706.09884 .

[LPL21] Li B., Pi D., y Lin Y. (2021) Learning ladder neural networks for semi-supervised
node classification in social network. Expert Systems with Applications 165: 113957.

[LPS21] Lombardi M., Pascale F., y Santaniello D. (2021) Internet of things: A general
overview between architectures, protocols and applications. Information 12(2): 87.

[LTBZ15] Li Y., Tarlow D., Brockschmidt M., y Zemel R. (2015) Gated graph sequence neural
networks. arXiv preprint arXiv:1511.05493 .

[LWK+20] Long Y., Wu M., Kwoh C. K., Luo J., y Li X. (2020) Predicting human microbe-
drug associations via graph convolutional network with conditional random field.
Bioinformatics .

[MB17] Mavroeidis V. y Bromander S. (2017) Cyber threat intelligence model: an evalua-
tion of taxonomies, sharing standards, and ontologies within cyber threat intelli-
gence. In 2017 European Intelligence and Security Informatics Conference (EISIC),
pages 91–98. IEEE.

[MBM+17] Monti F., Boscaini D., Masci J., Rodola E., Svoboda J., y Bronstein M. M. (2017)
Geometric deep learning on graphs and manifolds using mixture model cnns. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 5115–5124.

[McM13] McMillan R. (2013) Definition: threat intelligence. Gartner.
https://www.gartner.com/en/documents/2487216 Accessed 01 May 2022.

[MLX+17] Mao X., Li Q., Xie H., Lau R. Y., Wang Z., y Paul Smolley S. (2017) Least squares
generative adversarial networks. In Proceedings of the IEEE international confe-
rence on computer vision, pages 2794–2802.

[MMKSM18] Madani A., Moradi M., Karargyris A., y Syeda-Mahmood T. (2018) Chest x-ray
generation and data augmentation for cardiovascular abnormality classification. In
Medical Imaging 2018: Image Processing, volumen 10574, pages 105741M. Interna-
tional Society for Optics and Photonics.

[MNG17] Mescheder L., Nowozin S., y Geiger A. (2017) Adversarial variational bayes: Unif-
ying variational autoencoders and generative adversarial networks. In International
Conference on Machine Learning, pages 2391–2400. PMLR.

[MPDH19] Markopoulou D., Papakonstantinou V., y De Hert P. (2019) The new eu cyberse-
curity framework: The nis directive, enisa’s role and the general data protection
regulation. Computer Law & Security Review 35(6): 105336.

[MPPSD17] Metz L., Poole B., Pfau D., y Sohl-Dickstein J. (2017) Unrolled generative ad-
versarial networks. In 5th International Conference on Learning Representations,
Conference Track Proceedings. OpenReview.net.

BIBLIOGRAPHY 57

[MS15] Moustafa N. y Slay J. (2015) Unsw-nb15: a comprehensive data set for network
intrusion detection systems (unsw-nb15 network data set). In 2015 military com-
munications and information systems conference (MilCIS), pages 1–6. IEEE.

[MSS+19] Merino T., Stillwell M., Steele M., Coplan M., Patton J., Stoyanov A., y Deng
L. (2019) Expansion of cyber attack data from unbalanced datasets using gene-
rative adversarial networks. In International Conference on Software Engineering
Research, Management and Applications, pages 131–145. Springer.

[MTICGN19] Mart́ınez Torres J., Iglesias Comesaña C., y Garćıa-Nieto P. J. (2019) Machine
learning techniques applied to cybersecurity. International Journal of Machine
Learning and Cybernetics 10(10): 2823–2836.

[NCT16] Nowozin S., Cseke B., y Tomioka R. (2016) f-gan: Training generative neural sam-
plers using variational divergence minimization. Advances in neural information
processing systems 29.

[NMB+18] Neal B., Mittal S., Baratin A., Tantia V., Scicluna M., Lacoste-Julien S., y Mitliag-
kas I. (2018) A modern take on the bias-variance tradeoff in neural networks. arXiv
preprint arXiv:1810.08591 .

[O+04] Osborne M. J. et al. (2004) An introduction to game theory, volumen 3. Oxford
university press New York.

[OCWM14] Oltramari A., Cranor L. F., Walls R. J., y McDaniel P. D. (2014) Building an
ontology of cyber security. In STIDS, pages 54–61. Citeseer.

[ODY+19] Oak R., Du M., Yan D., Takawale H., y Amit I. (2019) Malware detection on
highly imbalanced data through sequence modeling. In Proceedings of the 12th
ACM Workshop on artificial intelligence and security, pages 37–48.

[OHB19] Oh J.-H., Hong J. Y., y Baek J.-G. (2019) Oversampling method using outlier
detectable generative adversarial network. Expert Systems with Applications 133:
1–8.

[ONJ13] Omar S., Ngadi A., y Jebur H. H. (2013) Machine learning techniques for anomaly
detection: an overview. International Journal of Computer Applications 79(2).

[OT20] Oba T. y Taniguchi T. (2020) Graph convolutional network-based suspicious com-
munication pair estimation for industrial control systems. arXiv preprint ar-
Xiv:2007.10204 .

[PBS17] Pascual S., Bonafonte A., y Serrà J. (2017) Segan: Speech enhancement generative
adversarial network. In INTERSPEECH, pages 3642–3646.

[PCSJ20] Pereira R. M., Costa Y. M., y Silla Jr C. N. (2020) Mltl: A multi-label approach
for the tomek link undersampling algorithm. Neurocomputing 383: 95–105.

58 BIBLIOGRAPHY

[PPJ+19] Pendlebury F., Pierazzi F., Jordaney R., Kinder J., y Cavallaro L. (2019)
{TESSERACT}: Eliminating experimental bias in malware classification across
space and time. In 28th {USENIX} Security Symposium ({USENIX} Security 19),
pages 729–746.

[PRP21] Putra I. S., Rukmono S. A., y Perdana R. S. (2021) Abstract syntax tree (ast) and
control flow graph (cfg) construction of notasi algoritmik. In 2021 International
Conference on Data and Software Engineering (ICoDSE), pages 1–6. IEEE.

[PRT+17] Pokhrel N. R., Rodrigo H., Tsokos C. P., et al. (2017) Cybersecurity: Time series
predictive modeling of vulnerabilities of desktop operating system using linear and
non-linear approach. Journal of Information Security 8(04): 362.

[PYT20] Pei X., Yu L., y Tian S. (2020) Amalnet: A deep learning framework based on
graph convolutional networks for malware detection. Computers & Security 93:
101792.

[QCSSL08] Quiñonero-Candela J., Sugiyama M., Schwaighofer A., y Lawrence N. D. (2008)
Dataset shift in machine learning. Mit Press.

[RAC+20] Rendon E., Alejo R., Castorena C., Isidro-Ortega F. J., y Granda-Gutierrez E. E.
(2020) Data sampling methods to deal with the big data multi-class imbalance
problem. Applied Sciences 10(4): 1276.

[Raf05] Rafiei D. (2005) Effectively visualizing large networks through sampling. In VIS
05. IEEE Visualization, 2005., pages 375–382. IEEE.

[RHXH19] Rong Y., Huang W., Xu T., y Huang J. (2019) Dropedge: Towards deep graph
convolutional networks on node classification. arXiv preprint arXiv:1907.10903 .

[RLNH17] Roth K., Lucchi A., Nowozin S., y Hofmann T. (2017) Stabilizing training of gene-
rative adversarial networks through regularization. Advances in neural information
processing systems 30.

[RLWFM17] Rosca M., Lakshminarayanan B., Warde-Farley D., y Mohamed S. (2017) Variatio-
nal approaches for auto-encoding generative adversarial networks. arXiv preprint
arXiv:1706.04987 .

[ROC+20] Rizvi S., Orr R., Cox A., Ashokkumar P., y Rizvi M. R. (2020) Identifying the
attack surface for iot network. Internet of Things 9: 100162.

[Rud16] Ruder S. (2016) An overview of gradient descent optimization algorithms. arXiv
preprint arXiv:1609.04747 .

[SBE19] Saad S., Briguglio W., y Elmiligi H. (2019) The curious case of machine learning
in malware detection. arXiv preprint arXiv:1905.07573 .

[SC14] Samonas S. y Coss D. (2014) The cia strikes back: Redefining confidentiality, inte-
grity and availability in security. Journal of Information System Security 10(3).

BIBLIOGRAPHY 59

[SC21] Saxena D. y Cao J. (2021) Generative adversarial networks (gans) challenges, so-
lutions, and future directions. ACM Computing Surveys (CSUR) 54(3): 1–42.

[Sch14] Schall D. (2014) Link prediction in directed social networks. Social Network Analy-
sis and Mining 4(1): 1–14.

[Sco20] Scornet E. (2020) Trees, forests, and impurity-based variable importance. arXiv
preprint arXiv:2001.04295 .

[SGT+08] Scarselli F., Gori M., Tsoi A. C., Hagenbuchner M., y Monfardini G. (2008) The
graph neural network model. IEEE Transactions on Neural Networks 20(1): 61–80.

[SH18] Souri A. y Hosseini R. (2018) A state-of-the-art survey of malware detection ap-
proaches using data mining techniques. Human-centric Computing and Information
Sciences 8(1): 1–22.

[She14] Shen L. (2014) The nist cybersecurity framework: Overview and potential impacts.
Scitech Lawyer 10(4): 16.

[SKB+20] Sarker I. H., Kayes A., Badsha S., Alqahtani H., Watters P., y Ng A. (2020) Cy-
bersecurity data science: an overview from machine learning perspective. Journal
of Big Data 7(1): 1–29.

[SKK20] Shin S.-Y., Kang Y.-W., y Kim Y.-G. (2020) Android-gan: Defending against an-
droid pattern attacks using multi-modal generative network as anomaly detector.
Expert Systems with Applications 141: 112964.

[SKPM20] Sarkar S., Khatedi N., Pramanik A., y Maiti J. (2020) An ensemble learning-based
undersampling technique for handling class-imbalance problem. In Proceedings of
ICETIT 2019, pages 586–595. Springer.

[SKR+16] Stivala A. D., Koskinen J. H., Rolls D. A., Wang P., y Robins G. L. (2016) Snowball
sampling for estimating exponential random graph models for large networks. Social
Networks 47: 167–188.

[SKWW07] Sun Y., Kamel M. S., Wong A. K., y Wang Y. (2007) Cost-sensitive boosting for
classification of imbalanced data. Pattern recognition 40(12): 3358–3378.

[SRP12] Saini H., Rao Y. S., y Panda T. C. (2012) Cyber-crimes and their impacts: A review.
International Journal of Engineering Research and Applications 2(2): 202–209.

[SS11] Spielman D. A. y Srivastava N. (2011) Graph sparsification by effective resistances.
SIAM Journal on Computing 40(6): 1913–1926.

[SSMB17] Sauerwein C., Sillaber C., Mussmann A., y Breu R. (2017) Threat intelligence sha-
ring platforms: An exploratory study of software vendors and research perspectives.
Wirtschaftsinformatik .

60 BIBLIOGRAPHY

[Su11] Su M.-Y. (2011) Real-time anomaly detection systems for denial-of-service attacks
by weighted k-nearest-neighbor classifiers. Expert Systems with Applications 38(4):
3492–3498.

[SW15] Salem M. B. y Wacek C. (2015) Enabling new technologies for cyber security de-
fense with the icas cyber security ontology. In STIDS, pages 42–49.

[SWL12] Singh A., Walenstein A., y Lakhotia A. (2012) Tracking concept drift in malwa-
re families. In Proceedings of the 5th ACM workshop on Security and artificial
intelligence, pages 81–92.

[SWM05] Stumpf M., Wiuf C., y May R. (04 2005) Subnets of scale-free networks are not
scale-free: Sampling properties of networks. Proceedings of the National Academy
of Sciences of the United States of America 102: 4221–4.

[SYWL20] Sun X., Yang J., Wang Z., y Liu H. (2020) Hgdom: Heterogeneous graph convolu-
tional networks for malicious domain detection. In NOMS 2020-2020 IEEE/IFIP
Network Operations and Management Symposium, pages 1–9. IEEE.

[SYZ+16] Song G., Ye Y., Zhang H., Xu X., Lau R. Y., y Liu F. (2016) Dynamic cluste-
ring forest: an ensemble framework to efficiently classify textual data stream with
concept drift. Information Sciences 357: 125–143.

[SZ12] Silva T. C. y Zhao L. (2012) Network-based high level data classification. IEEE
Transactions on Neural Networks and Learning Systems 23(6): 954–970.

[SZ16] Silva T. C. y Zhao L. (2016) Machine learning in complex networks, volumen 1.
Springer.

[SZW+19] Shamsolmoali P., Zareapoor M., Wang R., Jain D. K., y Yang J. (2019) G-ganisr:
Gradual generative adversarial network for image super resolution. Neurocomputing
366: 140–153.

[TBS+18] Toch E., Bettini C., Shmueli E., Radaelli L., Lanzi A., Riboni D., y Lepri B. (2018)
The privacy implications of cyber security systems: A technological survey. ACM
Computing Surveys (CSUR) 51(2): 1–27.

[TK11] Thang T. M. y Kim J. (2011) The anomaly detection by using dbscan clustering
with multiple parameters. In 2011 International Conference on Information Scien-
ce and Applications, pages 1–5. IEEE.

[TR18] Tounsi W. y Rais H. (2018) A survey on technical threat intelligence in the age of
sophisticated cyber attacks. Computers & security 72: 212–233.

[Tsy04] Tsymbal A. (2004) The problem of concept drift: definitions and related work.
Computer Science Department, Trinity College Dublin 106(2): 58.

[UAB19] Ucci D., Aniello L., y Baldoni R. (2019) Survey of machine learning techniques for
malware analysis. Computers & Security 81: 123–147.

BIBLIOGRAPHY 61

[UQR+19] Usama M., Qadir J., Raza A., Arif H., Yau K.-L. A., Elkhatib Y., Hussain A., y
Al-Fuqaha A. (2019) Unsupervised machine learning for networking: Techniques,
applications and research challenges. IEEE access 7: 65579–65615.

[VEH20] Van Engelen J. E. y Hoos H. H. (2020) A survey on semi-supervised learning.
Machine Learning 109(2): 373–440.

[VNVL21] Vo M. T., Nguyen T., Vo H. A., y Le T. (2021) Noise-adaptive synthetic oversam-
pling technique. Applied Intelligence pages 1–10.

[VPT16] Vondrick C., Pirsiavash H., y Torralba A. (2016) Generating videos with scene
dynamics. Advances in neural information processing systems 29.

[VTM14] Vasek M., Thornton M., y Moore T. (2014) Empirical analysis of denial-of-service
attacks in the bitcoin ecosystem. In International conference on financial crypto-
graphy and data security, pages 57–71. Springer.

[VWK+20] Verbraeken J., Wolting M., Katzy J., Kloppenburg J., Verbelen T., y Rellermeyer
J. S. (2020) A survey on distributed machine learning. ACM Computing Surveys
(CSUR) 53(2): 1–33.

[WC09] Wasikowski M. y Chen X.-w. (2009) Combating the small sample class imbalance
problem using feature selection. IEEE Transactions on knowledge and data engi-
neering 22(10): 1388–1400.

[WCA+16] Wu Y., Cao N., Archambault D., Shen Q., Qu H., y Cui W. (2016) Evaluation of
graph sampling: A visualization perspective. IEEE transactions on visualization
and computer graphics 23(1): 401–410.

[WFZ16] Wehmuth K., Fleury É., y Ziviani A. (2016) On multiaspect graphs. Theoretical
Computer Science 651: 50–61.

[WK96] Widmer G. y Kubat M. (1996) Learning in the presence of concept drift and hidden
contexts. Machine learning 23(1): 69–101.

[WLC+13] Wei W., Li J., Cao L., Ou Y., y Chen J. (2013) Effective detection of sophisticated
online banking fraud on extremely imbalanced data. World Wide Web 16(4): 449–
475.

[WLY+20] Wang P., Li S., Ye F., Wang Z., y Zhang M. (2020) Packetcgan: Exploratory study
of class imbalance for encrypted traffic classification using cgan. In ICC 2020-2020
IEEE International Conference on Communications (ICC), pages 1–7. IEEE.

[WPC+20] Wu Z., Pan S., Chen F., Long G., Zhang C., y Philip S. Y. (2020) A comprehensive
survey on graph neural networks. IEEE Transactions on Neural Networks and
Learning Systems .

62 BIBLIOGRAPHY

[WSH+18] Wu L., Sun P., Hong R., Fu Y., Wang X., y Wang M. (2018) Socialgcn: An effi-
cient graph convolutional network based model for social recommendation. arXiv
preprint arXiv:1811.02815 .

[WSH+20] Wang W., Shang Y., He Y., Li Y., y Liu J. (2020) Botmark: Automated botnet
detection with hybrid analysis of flow-based and graph-based traffic behaviors.
Information Sciences 511: 284–296.

[WSW21] Wang Z., She Q., y Ward T. E. (2021) Generative adversarial networks in computer
vision: A survey and taxonomy. ACM Computing Surveys (CSUR) 54(2): 1–38.

[WYA19] Wang X., Yang I., y Ahn S.-H. (2019) Sample efficient home power anomaly detec-
tion in real time using semi-supervised learning. IEEE Access 7: 139712–139725.

[WZ07] Wang F. y Zhang C. (2007) Label propagation through linear neighborhoods. IEEE
Transactions on Knowledge and Data Engineering 20(1): 55–67.

[WZF15] Wehmuth K., Ziviani A., y Fleury E. (2015) A unifying model for representing
time-varying graphs. In 2015 IEEE International Conference on Data Science and
Advanced Analytics (DSAA), pages 1–10. IEEE.

[XG18] Xie T. y Grossman J. C. (2018) Crystal graph convolutional neural networks for
an accurate and interpretable prediction of material properties. Physical review
letters 120(14): 145301.

[XKL+18] Xin Y., Kong L., Liu Z., Chen Y., Li Y., Zhu H., Gao M., Hou H., y Wang C.
(2018) Machine learning and deep learning methods for cybersecurity. Ieee access
6: 35365–35381.

[XSY+21] Xia F., Sun K., Yu S., Aziz A., Wan L., Pan S., y Liu H. (2021) Graph learning:
A survey. IEEE Transactions on Artificial Intelligence 2(2): 109–127.

[XWMZ17] Xu D., Wang Y., Meng Y., y Zhang Z. (2017) An improved data anomaly detec-
tion method based on isolation forest. In 2017 10th international symposium on
computational intelligence and design (ISCID), volumen 2, pages 287–291. IEEE.

[XZLH20] Xu L., Zeng X., Li W., y Huang Z. (2020) Multi-granularity generative adversarial
nets with reconstructive sampling for image inpainting. Neurocomputing .

[YCWX18] Yang Z., Chen W., Wang F., y Xu B. (2018) Generative adversarial training for
neural machine translation. Neurocomputing 321: 146–155.

[YHZ+21] Yu Z., Huang F., Zhao X., Xiao W., y Zhang W. (2021) Predicting drug–disease
associations through layer attention graph convolutional network. Briefings in
Bioinformatics 22(4): bbaa243.

[YLY+18] You J., Liu B., Ying Z., Pande V., y Leskovec J. (2018) Graph convolutional po-
licy network for goal-directed molecular graph generation. In Advances in neural
information processing systems.

BIBLIOGRAPHY 63

[YM19] Yilmaz I. y Masum R. (2019) Expansion of cyber attack data from unbalanced
datasets using generative techniques. arXiv preprint arXiv:1912.04549 .

[YYJ19] Yan J., Yan G., y Jin D. (2019) Classifying malware represented as control flow
graphs using deep graph convolutional neural network. In 2019 49th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN),
pages 52–63. IEEE.

[ZBB+20] Zola F., Bruse J. L., Barrio X. E., Galar M., y Urrutia R. O. (2020) Generative
adversarial networks for bitcoin data augmentation. In 2nd Conference on Block-
chain Research & Applications for Innovative Networks and Services (BRAINS),
pages 136–143. IEEE.

[ZCFM06] Zhang S., Chakrabarti A., Ford J., y Makedon F. (2006) Attack detection in ti-
me series for recommender systems. In Proceedings of the 12th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 809–814.

[ZCZ+18] Zhou J., Cui G., Zhang Z., Yang C., Liu Z., Wang L., Li C., y Sun M. (2018)
Graph neural networks: A review of methods and applications. arXiv preprint
arXiv:1812.08434 .

[ZCZ20] Zhang Z., Cui P., y Zhu W. (2020) Deep learning on graphs: A survey. IEEE
Transactions on Knowledge and Data Engineering .

[ZEBU19] Zola F., Eguimendia M., Bruse J. L., y Urrutia R. O. (2019) Cascading machine
learning to attack bitcoin anonymity. In 2019 IEEE International Conference on
Blockchain (Blockchain), pages 10–17. IEEE.

[ZLL+19] Zheng L., Li Z., Li J., Li Z., y Gao J. (2019) Addgraph: Anomaly detection in
dynamic graph using attention-based temporal gcn. In IJCAI, pages 4419–4425.

[ZLN+20] Zhao T., Liu Y., Neves L., Woodford O., Jiang M., y Shah N. (2020) Data aug-
mentation for graph neural networks. arXiv preprint arXiv:2006.06830 .

[ZLY+20] Zhao J., Liu X., Yan Q., Li B., Shao M., y Peng H. (2020) Multi-attributed hetero-
geneous graph convolutional network for bot detection. Information Sciences 537:
380–393.

[ZP17] Zhou C. y Paffenroth R. C. (2017) Anomaly detection with robust deep auto-
encoders. In Proceedings of the 23rd ACM SIGKDD international conference on
knowledge discovery and data mining, pages 665–674.

[ZPSZ+19] Zola F., Pérez-Solà C., Zubia J. E., Eguimendia M., y Herrera-Joancomart́ı J.
(2019) Kriptosare. gen, a dockerized bitcoin testbed: analysis of server performance.
In 2019 10th IFIP International Conference on New Technologies, Mobility and
Security (NTMS), pages 1–5. IEEE.

64 BIBLIOGRAPHY

[ZTXM19] Zhang S., Tong H., Xu J., y Maciejewski R. (2019) Graph convolutional networks:
a comprehensive review. Computational Social Networks 6(1): 1–23.

[ZYL+20] Zhao J., Yan Q., Liu X., Li B., y Zuo G. (2020) Cyber threat intelligence modeling
based on heterogeneous graph convolutional network. In 23rd International Sym-
posium on Research in Attacks, Intrusions and Defenses ({RAID} 2020), pages
241–256.

[ZZ20] Zheng W. y Zhao H. (2020) Cost-sensitive hierarchical classification for imbalance
classes. Applied Intelligence 50(8): 2328–2338.

Part II. Published, accepted and
submitted publications

1. Bitcoin and cybersecurity: Temporal dissection of blockchain
data to unveil changes in entity behavioral patterns

The work related to this part is:

Zola F., Bruse J.L., Eguimendia M., Galar M. and Orduna Urrutia R., Bitcoin and cy-
bersecurity: Temporal dissection of blockchain data to unveil changes in entity behavioral
patterns, Applied Sciences, 9(23), pp.5003, DOI: 10.3390/app9235003

� Status: Published.

� Impact Factor (JCR 2019): 2.474.

� Knowledge area:

◦ Engineering, Multidisciplinary. Ranking 32/91 (Q2).

◦ Chemistry, Multidisciplinary. Ranking 88/177 (Q2).

◦ Materials Science, Multidisciplinary. Ranking 161/314 (Q3).

◦ Physics, Applied. Ranking 63/155 (Q2).

applied
sciences

Article

Bitcoin and Cybersecurity: Temporal Dissection of
Blockchain Data to Unveil Changes in Entity
Behavioral Patterns

Francesco Zola 1,* , Jan Lukas Bruse 1 , Maria Eguimendia 1, Mikel Galar 2 and

Raul Orduna Urrutia 1

1 Vicomtech, 20009 Donostia/San Sebastian, Spain; jbruse@vicomtech.org (J.L.B.);
meguimendia@vicomtech.org (M.E.); rorduna@vicomtech.org (R.O.U.)

2 Institute of Smart Cities, Public University of Navarre, 31006 Pamplona, Spain; mikel.galar@unavarra.es
* Correspondence: fzola@vicomtech.org

Received: 18 October 2019; Accepted: 16 November 2019; Published: 20 November 2019 ��������	
�������

Abstract: The Bitcoin network not only is vulnerable to cyber-attacks but currently represents the
most frequently used cryptocurrency for concealing illicit activities. Typically, Bitcoin activity is
monitored by decreasing anonymity of its entities using machine learning-based techniques, which
consider the whole blockchain. This entails two issues: first, it increases the complexity of the analysis
requiring higher efforts and, second, it may hide network micro-dynamics important for detecting
short-term changes in entity behavioral patterns. The aim of this paper is to address both issues by
performing a “temporal dissection” of the Bitcoin blockchain, i.e., dividing it into smaller temporal
batches to achieve entity classification. The idea is that a machine learning model trained on a certain
time-interval (batch) should achieve good classification performance when tested on another batch if
entity behavioral patterns are similar. We apply cascading machine learning principles—a type of
ensemble learning applying stacking techniques—introducing a “k-fold cross-testing” concept across
batches of varying size. Results show that blockchain batch size used for entity classification could
be reduced for certain classes (Exchange, Gambling, and eWallet) as classification rates did not vary
significantly with batch size; suggesting that behavioral patterns did not change significantly over
time. Mixer and Market class detection, however, can be negatively affected. A deeper analysis of
Mining Pool behavior showed that models trained on recent data perform better than models trained
on older data, suggesting that “typical” Mining Pool behavior may be represented better by recent
data. This work provides a first step towards uncovering entity behavioral changes via temporal
dissection of blockchain data.

Keywords: Bitcoin analysis; behavioral patterns; machine learning; time-series analysis; entities
detection; ensemble learning

1. Introduction

Bitcoin is a decentralized peer-to-peer cryptocurrency (or crypto) where all transactions are stored
in a blockchain [1]—a public ledger that cannot be manipulated or changed [2]. Its features have made
Bitcoin one of the most frequently used and priced cryptocurrencies.

The increasing price of Bitcoin has recently raised questions concerning the cybersecurity of
the Bitcoin network. Its blockchain architecture makes Bitcoin almost invulnerable and too hard to
attack [3], which has led hackers to directly attack single nodes (entities) of the network.

According to a study presented in [4], entities such as Exchanges, Mining Pools, Gambling
operators, eWallets, and financial services are much more likely to be attacked than other services.

Appl. Sci. 2019, 9, 5003; doi:10.3390/app9235003 www.mdpi.com/journal/applsci

Appl. Sci. 2019, 9, 5003 2 of 20

In particular, Ref. [4] demonstrated that the size of Mining Pools, for example, is related to the
probability of being a target of an attack.

Bitcoin not only is vulnerable to cyber-attacks but is also the most frequently used
cryptocurrency for concealing illicit activities, as confirmed by Jonathan Levin, co-founder and
COO of Chainalysis [5,6]. In [7], authors state that Bitcoin is the dominant cryptocurrency used
in criminal activities due to the non-transparent transactions and due to the lack of effective regulatory
mechanisms. Fanusie et al. [8] describes that, from 2013 to 2016, the number of illicit entities
(Market, Ponzi, Malware, etc.) were multiplied by five and two types of services—Mixers and
Gambling—increased their volume of transactions involved in money laundering activities.

Hence, a crucial step to address Bitcoin network security and detect both cyber-attacks and illicit
activities is to uncover the network behavior of sensible targets—of entities potentially involved
in or targets of illicit activities. Generally, this is achieved by reducing the anonymity of users.
Although Bitcoin is usually described as an anonymous system, it is actually pseudo-anonymous [9],
as it is possible to track, identify, and classify Bitcoin entities within the blockchain network by joining
public addresses and private keys.

Prior studies have tried to classify entities according to classes representing specific entity
behavior within the network [10–12]. These techniques usually consider the whole blockchain
and thus classification is performed considering all network (macro) dynamics among users. First
of all, using the entire blockchain data typically comes at high computational and resource costs,
which could be reduced by considering smaller amounts of input data. Furthermore, increasing the
“temporal resolution” by considering shorter time intervals of blockchain data may highlight network
micro-dynamics, i.e., small, short-term behavioral changes that can change the classification of an
entity over time. These changes in classification could be useful for detecting suspicious activities.
For example, a usually well-performing model for a certain entity class that all of a sudden fails to
detect known elements of that class could be a hint for critical behavioral changes related to attacks or
illicit activities.

The key idea behind our study is that a model trained on a batch with a certain time-interval
should achieve good classification performance when testing it on another temporal batch—if similarity
between behavioral patterns of the detected entities within those batches is sufficiently high.

It is to be noted that the aim of this work is not to directly investigate cyber-attacks or to improve
classification rates of Bitcoin entities, but to investigate the effect of considering Bitcoin blockchain
data as a time-series, dividing it into temporal batches and studying micro-changes of behavioral
entity patterns over time. Results could highlight which entities show relatively consistent behavior
from batch to batch (making them less likely to be affected by illicit activities and narrowing down the
time interval necessary to obtain “typical” entity behavior) and which entities show strongly varying
behavior over time (thus revealing short-term changes in behavior that could suggest suspicious
network activities or sensible targets).

We believe that our novel approach could be valuable for future forensic tools as it may highlight
the importance of considering blockchain data as a time-series to reveal short-term behavioral changes,
hence shifting the paradigm of forensic blockchain analysis from a “macro” or “black-box” approach
towards taking into account network micro-dynamics. As a byproduct, these considerations can reduce
the complexity and the required resources for forensics analysis.

Specifically, the present analysis is based on extending cascading machine learning concepts
presented in Zola et al. [10], which essentially apply ensemble learning and stacking of several
classifiers trained with different datasets derived from blockchain data. The idea behind this
technique is to classify Bitcoin entities using prior classification information, combine them with new
blockchain-derived data, and then compute a final classification to improve predictive performance.

All data were normalized with respect to the considered batches (time-intervals). This operation
allows us to generalize the derived classifiers and use them with data from different sources or from
other blockchains, which increases transferability of our results.

Appl. Sci. 2019, 9, 5003 3 of 20

We carry out four experiments considering different batch sizes, where a cascading approach with
data extracted from blockchain batches is used. We started using a batch size of 60,000 consecutive
blocks (approx. 12 months of data); in the second experiment we used 30,000 consecutive blocks
(approx. six months of data); in the third experiment we chose 20,000 consecutive blocks (approx.
four months of data), and in the last experiment we used 10,000 consecutive blocks (approx. two
months of data). In each experiment, we used one batch to train the initial classifiers, meanwhile the
others—left out from training—were used to test them. This procedure is repeated for each batch
extracted from the blockchain until each one has been used once for training (“k-fold cross-testing”).
These tests allow us to analyze similarities between entity behavior over time and investigate if certain
behavioral patterns are repeated across different blockchain batches. We consider six different types of
Bitcoin entities: Exchange, Gambling, Marketplace, Mining Pool, Mixer, and eWallet. At the end of the
four experiments, following previous studies [4,13] that considered Mining Pool entities as sensitive
targets (potentially subject to cyber-attacks), a deeper analysis of Mining Pool behavior is shown.

The rest of the paper is organized as follows. Section 2 describes related work. Afterwards,
Section 3 presents an overview of the used data. Section 4 introduces the graph models and the
machine learning models implemented; then, in Section 5, the experimental analysis is presented.
Finally, in Sections 6 and 7, we draw conclusions and provide some guidelines for future work.

2. Related Works

Bitcoin properties have led hackers to deploy various cyber-attacks in order to introduce
chaos/noise into the network and take advantage of it. In [14], an analysis about the impact of
Distributed Denial-of-Service (DDoS) attacks on the volume traded on the Exchange is presented,
in particular regarding 17 attack cases that occurred across 2016 and 2018. In [15], transactions related
to 35 ransomware families (malware) are analyzed, determining a minimum market worth about USD
12,768,536. These kinds of attacks allowed hackers to steal Bitcoin (BTC); for example, as admitted
by Changpeng Zhao (CEO of Binance, one of the largest Exchanges), hackers stole more than 7000
BTC [16], about 40 USD million in 7 May 2019, considering the exchange rate (closing market value on
that day) equals USD 5829.50 [17].

Criminal concerns related to the Bitcoin network can be grouped into three classes: Bitcoin-specific
crimes, money laundering and Bitcoin-facilitated crimes [18]. User anonymity not only has been the
keystone for dissemination of cryptocurrencies, but it has promoted illegal activities and cyber-attacks
within the Bitcoin network. In fact, as discussed in the Introduction, knowing the identity of users
involved in the network helps determine sensible targets [4]. Moreover, short-term changes of entity
behavior, for example in Mining Pools [13], could be symptoms of a cyber-attack.

In [19,20], current measures used by the Bitcoin protocol to preserve anonymity within the
network are analyzed. As shown in [21], such measures are, however, not enough to protect user
privacy. In fact, it is possible to decrease Bitcoin network anonymity by using address clustering and
combining information from various sources. For example, in [22], an address clustering is computed
in order to identify the CryptoLocker (a family of ransomware) and in [23] the clustering is based on
conservative constraints (patterns). Reid et al. [24] exploit topological and external information in
order to investigate a large theft of Bitcoins. Meanwhile, Fleder et al. make use of information scraped
from forums and social media in order to characterize known and unknown users [25].

In [26], a study on two graphs generated by the Bitcoin transaction network using anomaly
detection techniques is presented, aiming to detect which users and transactions were the most
suspicious. Nevertheless, Monamo et al. [27] uses an unsupervised learning algorithm for classifying
anomalies (financial fraud and money laundering) on the Bitcoin network based on transaction patterns.
An unsupervised k-means classifier is applied in [28] in order to identify atypical transactions related
to money laundering. Bartoletti et al. [29] use machine learning algorithms to identify Ponzi schemes
in the Bitcoin network. Yin et al. in [30] apply supervised learning techniques in order to determine a
“big picture” of cybercrime-related entities in the Bitcoin ecosystem.

Appl. Sci. 2019, 9, 5003 4 of 20

In [10,12], methods for attacking Bitcoin user anonymity are presented. Both methods use
the whole blockchain to create supervised machine learning models and classify Bitcoin entities.
In particular, a cascading machine learning model is introduced in [10], which is essentially ensemble
learning based on the stacking concept presented in [31]. The idea of the cascading model is to
implement a cascade of (weak) classifiers, such that prior classification results can be joined and can be
used to enrich a final (strong) classification. The cascading machine learning approach is compared
with other techniques as [11,32], and showed that the new approach not only reduces the complexity of
the model by reducing the features implied in the classification, but also reaches a very high accuracy
considering six Bitcoin entity classes.

In anomaly detection, changes in network traffic are often a symptom of attacks. Nevertheless, it
is generally difficult to detect and evaluate these changes in early stages of an attack as such changes
in traffic cannot easily be distinguished from usual traffic fluctuation [33]. The following studies
applied division of data into subsets or batches, similar to the work presented in this paper. In [34],
a new process for training a hidden Markov model (HMM) to detect a denial-of-service attack (DoS)
in program behavior data (system calls produced by processes of a program) is described, aiming
to reduce training times. Authors first divide the long observation sequence into multiple subsets
of sequences. Then, they join all the generated sub-models reducing the training time by about 60%
compared to conventional training.

The approach of dividing information in subsets is used as well when analyzing graph structures.
In these cases, the evolution of the graph over time is analyzed, creating a graph stream [35].
For example, in [36], a monthly call graph is divided into weekly snapshots in order to consider
new dynamics of the call network and achieve churn prediction. Furthermore, in [37], a parallel
partitioning approach to discover cyber-threats in computer network traffic focusing on substructures
is presented.

In this paper, the idea is to join the machine learning model introduced in [10] with the concept of
batch analysis applied, for example, in anomalies detection [34,38]. We aim to add a “temporal view”
to Bitcoin entity analysis in order to unveil changes in behavioral patterns over time. This approach
provides a magnifying lens allowing us (a) to study how using smaller batches of Bitcoin data affects
classification performance and (b) to analyze micro-dynamics present in the Bitcoin blockchain network.
All used features are normalized in order to reduce dependency on the chosen block size, and results
may help data scientists reduce the complexity and the size of the initial dataset in forensic analysis.

3. Datasets

In studies of Bitcoin behavior, it is difficult to identify a ground-truth labeled dataset due to
the anonymity of the network and due to the activity of its entities, which can change over time.
However, here we aim to analyze these changes and determine how they affect the entity behavior
classification. Such change in the classification over time may help us determine suspicious situations
and sensitive targets.

We therefore used two datasets, the first one downloaded from WalletExplorer [39]—a platform
that can be considered a benchmark for Bitcoin entities detection—and the second one consisting of
Bitcoin blockchain data downloaded from the mainnet [40].

WalletExplorer is a web-page where data and information about different known entities detected
until today are collected. The dataset is continuously being updated and its information has been used
as a starting point for many Bitcoin-related studies, such as [15,32,41]. For our purpose, each entity
was downloaded with its origin name and its related detected addresses.

The downloaded entities belong to seven different classes:

• Exchange: entities that allow their customers to trade cryptocurrencies or to exchange cryptos for
fiat currencies (or vice versa);

• Gambling: entities that offer gambling services based on Bitcoin currency (casino, betting,
roulette, etc.);

Appl. Sci. 2019, 9, 5003 5 of 20

• Mining Pool: entities composed of a group of miners that work together sharing their resources in
order to reduce the volatility of their returns;

• Mixer: entities that offer a service to obscure the traceability of their Bitcoin clients’ transactions;
• Marketplace: entities allowing to buy any kind of goods or services using cryptocurrencies. They

are frequently used to buy illegal goods;
• eWallet: entities that allow an individual to create online accounts that can be used to receive

and send money. Users never need to download the Bitcoin software themselves and all of the
user’s transactions are made on behalf of the user by the eWallet service, using keys controlled by
the service [23];

• Lending: entities that allow users to lend Bitcoins and passively earn interests on it, or allow them
to request a loan.

As shown in Table 1, 315 different entities and more than 18,000,000 addresses were downloaded
from WalletExplorer. However, after creating a first overview of the dataset, we decided to not use the
Lending class because seven entities were considered too few to implement and train the cascading
machine learning system.

Table 1. Overview of WalletExplorer entities and address data.

Class Abbrev.
Entity

Total
Entity
3 years

% Entity
Ratio

Address
Total

Address
3 years

% Address
Ratio

Exchange Ex 137 124 90.51 9,950,742 6,361,096 63.93
Gambling Gmb 76 59 77.63 3,054,477 1,711,407 56.03

Marketplace Mrk 20 19 95.00 2,349,300 171,966 7.32
Mining Pool Pool 25 17 68.00 76,297 43,041 56.41

Mixer Mxr 37 35 94.59 476,400 273,228 57.35
eWallet eWal 13 13 100.0 2,604,111 2,191,129 84.14
Lending Len 7 - - 113,900 - -

Total 315 267 18,625,227 10,751,867

The second dataset was directly downloaded from the Bitcoin mainnet through the Bitcoin Core
program [42]. Our analysis focuses on the last (about) three years of lifetime of Bitcoin blockchain only,
so we used the Bitcoin blockchain data created from blocks height 390,000 to 570,000, corresponding
to blocks mined from 24 December 2015, 5:33:51 p.m. until 3 April 2019, 9:20:08 a.m., respectively.
This decision was taken in order to decrease the computational cost for carrying out the experiments.

Table 1 shows the amount of different entities and addresses calculated in the last three
years as well, and the ratio between the samples in the considered time interval compared to the
whole population.

The final dataset was composed by data belonging to six classes: Exchange, Gambling, Marketplace,
Mining Pool, Mixer, and eWallet. All entities were represented by more than 65% of distinct samples,
and also by more than 50% of distinct addresses, except for the Marketplace with just 7.32% of samples.
A first analysis highlighted that these Marketplace entities were mainly active in the first six years of the
blockchain lifetime. Then, over time, they were closed from Law Enforcement Officers (LEOs) in case
of illicit activities or owners decided to close their services.

In this study, the downloaded Bitcoin data of the last three years were cross-referenced with the
(labelled) WalletExplorer data in order to re-size the original dataset and remove all unlabelled and
unusable data for our supervised cascading machine learning approach.

4. Methodology

In this section, the four graph models used in this work are presented: address-transaction graph,
entity-transaction graph, and 1_motif and 2_motif graph. Each graph representation allows us to
analyze a different aspect of the behavior of an entity. These graph models represent the sources for

Appl. Sci. 2019, 9, 5003 6 of 20

extracting dataframes (tabulated data), which were used for implementing the cascading machine
learning models.

4.1. Blockchain and Motifs’ Graphs

Blockchain data can be directly represented through an address-transaction graph (Figure 1).
In this graph, vertices represent addresses and transactions, while directed edges (arrows) between
addresses and transactions indicate incoming relations, and directed edges between transactions and
addresses correspond to outgoing relations. Each directed edge can also include additional information
such as values, time-stamps, etc.

Figure 1. Address-transaction graph computed with one block of the Bitcoin mainnet.

According to Bitcoin.org [43], each single user has the responsibility for adopting good practices
in order to protect his/her anonymity and remain private. The basic recommendation is to use a new
Bitcoin address for any new payment, and additionally use multiple wallets for different purposes.
These suggestions create new dynamics in the network increasing the complexity of user behavior
detection. Nevertheless, over time, these same concepts were used to define several heuristic properties
with the aim to find related addresses for subsequent address clustering. This process is used to find all
addresses that belong to a certain user, and this allows us to introduce the entity concept. In particular,
we refer to an entity as a physical person or organization related to one or multiple public key addresses
belonging to one or more wallets. Using these clusters of addresses and the relation among transactions,
it is possible to create the entity-transaction graph starting from the address-transaction graph.

Heuristic properties have been developed and presented in different studies such as [20,23,44].
However, in this study, we do not need to apply heuristic assumptions since, as indicated in Section 3,
the Bitcoin blockchain data were combined with labelled data gathered from WalletExplorer, such that
relations among addresses (i.e., clusters) are known.

Appl. Sci. 2019, 9, 5003 7 of 20

The motifs graph used here is usually applied in bioinformatics, specifically in metabolic network
analysis [45]. However, prior studies such as [11,32] have successfully translated the concept of motifs
to Bitcoin analyses.

According to [10], a N_moti f graph is a graph composed by paths from the entity-transaction
graph with length 2N that starts and ends with an entity. Let (e1, .., eM) ∈ E be a class of entities and
(t1, .., tN) ∈ T be a class of transactions, with M ≤ N + 1, then:

N_moti f = (e1, t1, ..., tN, eM). (1)

From this particular graph, it is possible to extract information concerning the relations among
entities, but also concerning the topology that such relations create among entities. If two different
entities are connected through one transaction, the topology is called Direct Distinct. If one entity is
connected with itself (again through one transaction) the topology is called Direct Loop (Figure 2).

Figure 2. Example of 2_motif graph topology.

Starting from the results presented in [10], in the present study, only the 1_moti f and 2_moti f
graphs were used.

4.2. Temporal Batch

Larger time intervals may cover specific behavioral changes of an entity affecting its detection.
Moreover, the amount of data in a larger time interval increases the complexity of the problem,
often leading to the creation of highly non-transparent “black-box” models. Our approach involves
dissecting data temporally, so dividing everything into smaller batches that can then be studied by
themselves (thus using “smaller black-boxes”, which may help to understand better the internal
dynamics within the large black-box of the full data).

The idea behind our approach is that a model trained on a batch with a certain time-interval can
be used for unveiling behavioral entity patterns when testing it on another temporal batch. Thereby,
higher classification performance would relate to higher similarity between behavioral entity patterns
within the training and test batch. Hence, in this analysis, it is important to divide the whole Bitcoin
dataset into temporal batches, where each batch represents a dataset composed by the transactions
belonging to a fixed number of consecutive blocks.

Let min_blk be the minimum block height and max_blk the maximum block height in the
(considered) Bitcoin blockchain data, and let batch_size be the size (in blocks) of a single batch, then the
number of generated batches can be computed through Equation (2)

#batches =
max_blk − min_blk

batch_size
. (2)

In our analysis, we considered min_blk with a value of 390,000 blocks and max_blk with a value
of 570,000, and four different values for batch_size. We started creating batches of 60,000 consecutive
blocks (representing approx. 12 months) in the first experiment. In the second one, we chose a value of
30,000 (representing approx. six months), in the third one, a value of 20,000 (representing approx. four
months) was used and, finally, in the last experiment, the batch_size was fixed to 10,000 consecutive
blocks (representing approx. two months).

Appl. Sci. 2019, 9, 5003 8 of 20

Table 2 shows the number of batches considered in each experiment and the related distinct
known entities divided per class. This table shows that the majority of the detected entities belonged
to batches with “old or past” data, since the number of distinct known entities for almost all the classes
decreases over time.

Table 2. Distinct known entities in each experiment and for each batch.

batch_size = 60,000

#
batch

#
Ex

#
Gmb

#
Mrk

#
Pool

#
Mxr

#
eWal

1 122 51 18 14 30 12
2 104 46 12 12 12 11
3 81 27 9 9 1 10

batch_size = 30,000

#
batch

#
Ex

#
Gmb

#
Mrk

#
Pool

#
Mxr

#
eWal

1 121 50 14 13 18 12
2 109 40 17 11 20 12
3 102 46 12 11 11 10
4 89 27 6 7 3 11
5 74 23 5 6 1 9
6 73 22 7 6 1 8

batch_size = 20,000

#
batch

#
Ex

#
Gmb

#
Mrk

#
Pool

#
Mxr

#
eWal

1 119 50 14 13 13 11
2 110 41 15 10 18 12
3 104 39 10 11 11 10
4 100 42 12 10 11 10
5 90 39 10 8 3 10
6 79 24 4 6 2 11
7 74 21 1 6 1 9
8 63 22 6 5 1 7
9 68 19 5 4 1 7

batch_size = 10,000

#
batch

#
Ex

#
Gmb

#
Mrk

#
Pool

#
Mxr

#
eWal

1 117 48 13 13 8 11
2 105 44 13 11 8 11
3 106 40 9 10 13 12
4 98 37 15 10 11 12
5 93 37 6 8 8 10
6 99 36 10 10 8 10
7 95 36 11 8 8 10
8 93 38 9 10 7 10
9 86 39 9 7 2 10

10 80 25 4 5 3 8
11 75 22 4 6 2 11
12 68 21 4 3 1 7
13 67 19 0 6 1 8
14 63 19 1 4 1 9
15 58 20 4 3 1 6
16 59 19 2 5 1 7
17 57 17 5 3 1 6
18 62 17 0 3 1 7

4.3. Features

In each experiment and for each temporal batch generated, the four graph models presented in
Section 4.1 were created. Then, from each graph model, four dataframes (two-dimensional labelled
data structure or data table with samples as rows and extracted features as columns) were created
extracting several features. All the features are presented in detail in [10]:

Appl. Sci. 2019, 9, 5003 9 of 20

• Entity dataframe contains all features extracted from the entity-transaction graph and contains
a total of seven features.

• Address dataframe contains all features extracted from the address-transaction graph and contains
a total of seven features.

• 1_motif dataframe contains the information directly extracted from the 1_moti f graph and contains
a total of nine features.

• 2_motif dataframe contains information gathered from the 2_moti f graph and contains a total of
18 features.

In order to compare information from different batches, and in order to reduce the complexity
of the models, the features (excluding the ones related to an amount or balance) were normalized
on a range between 0 and 1. This normalization was computed with respect to the minimum and
maximum values in the corresponding batch. This process allow us to re-use these models with other
batch sizes and to use them with input data from other sources/blockchains in future studies.

Let X be the value to be normalized, Xmin the minimum and Xmax the maximum of the considered
feature in a certain batch, then the normalized value Xnorm was computed using Equation (3):

Xnorm =
X − Xmin

Xmax − Xmin
. (3)

4.4. Cascading Machine Learning

In this study, we used and extended the cascading machine learning concepts introduced in [10],
which have shown excellent classification results when using the whole blockchain data. As mentioned
in Section 2, the cascading machine learning optimizes the number of features used in the classification
and ensures high accuracy value, comparing them with output accuracy of other techniques [10].
Our cascading model is a type of ensemble learning applying stacking techniques [46]. The idea
transferred to the Bitcoin network is based on enriching Bitcoin entity data with information obtained
from prior classifications creating cascading classifiers, as shown in Figure 3.

Figure 3. Cascading machine learning architecture.

The first step to create the cascading system was to split the address, 1_motif and 2_motif
dataframes into train/test datasets. In particular, this operation was computed using a proportion of
50/50. Then, the created train datasets were used to implement the weak classifiers called C_address,
C_motif1 and C_motif2 in relation with their own input data (zero-level in Figure 3). This process was
computed by applying a k-fold cross-validation with k = 5. In k-fold cross-validation, the dataset is

Appl. Sci. 2019, 9, 5003 10 of 20

divided into k folds, where k − 1 folds are used for training the model and the one left out during the
training phase is used to validate it. The whole process is repeated until each fold is used only once
for validating.

Once the cross-validation was ended and the models were generated/trained, the test dataset
was used as input. The output of the classification from the Level 0 classifiers was joined with the
information in the entity dataframe in order to create the enriched entity dataframe. Then, this new
enriched dataframe was used for training the final (strong) classifier called C_final (first-level
in Figure 3).

Thanks to the initial dataset split into train and test, the information generated from the weak
classifiers was created from a completely unseen dataset. In fact, if the data that were used to train the
zero-level learner were also used to generate the enriched dataset for training the first-level learner,
there would be a high risk of overfitting [47], which hence has been avoided here.

The outgoing information from the zero-level classifiers was processed following an enrichment
process, as indicated in [10]. This process consists of assigning one of the six possible output classes to
each entry in the input dataframe and joining the input label (from WalletExplorer) with the computed
output class. Then, the input label was grouped counting how many times a sample belonging to
a particular entity has been detected in each of the considered classes. This value was then normalized
as indicated in Equation (4), where E represents the entities set and N is the number of considered
classes (N = 6 in this study). The term ‖ Pe| j ‖ represents how many times a sample originally labelled
with entity e generates a prediction belonging to class j, while the term ∑N

i=1 ‖ Pe| i ‖ counts all the
predictions generated from samples with labelled input belonging to entity e:

∀e ∈ E
‖ Pe| j ‖

∑N
i=1 ‖ Pe| i ‖

∗ 100 with j ∈ N. (4)

Finally, the enrichment process allows us to generate a set of six new features from each weak
model, which were used to enrich (extend) the entity dataframe extracted from blockchain data.

In this paper, we implemented the first three classifiers (weak) as Random Forest (RF) and the
final one as Gradient Boosting (GB) model, since such implementation has been shown to yield good
classification performance in terms of Precision, Recall, and F1-score for entity classification [10].
Specifically, all Random Forest models were implemented with the number of estimators set to 10,
with a Gini function to measure the quality of the split and without a maximum depth of the tree.
The Gradient Boosting model was implemented with the number of estimators set to 100, the learning
rate was set to 0.1, and the maximum depth for limiting the number of nodes was set to 3.

In order to unveil patterns in entity behavior and detect the similarity among training and
test batches, we evaluated the classification performance in terms of Precision, Recall, and F1-score
calculated per class:

• Precision is the number of true positives over the total number of true positives plus false positives.
It represents a measure of a classifier’s exactness given as a value between 0 and 1, with 1 relating
to high precision;

• Recall is the number of true positives over the number of true positives plus false negatives.
It represents a measure of a classifier’s completeness given as a value between 0 and 1;

• F1-score is the harmonic mean of Precision and Recall. It takes values between 0 and 1, with 1
relating to perfect Precision and Recall, and is calculated with Equation (5);

F1score = 2 ∗ Precision ∗ Recall
Precision + Recall

. (5)

Appl. Sci. 2019, 9, 5003 11 of 20

4.5. K-Fold Cross-Testing

In this study, we aimed to analyze how entity behavior changes over time. The idea is to detect
similarity between the distinct temporal batches, represented by good classification performance
that indicates the presence of a recurrent pattern. To achieve this goal, we apply a type of “k-fold
cross-testing”, which allows us to estimate the performance of the implemented cascading machine
learning approach. This procedure recalls concepts from k-fold cross-validation and applies them to
testing as well, hence the chosen name. In particular, this method allows us to evaluate similarity
among different batches generating unique output values for each trained model.

In “k-fold cross-testing”, we divided the dataset into k folds (or batches), as explained in the
previous section. This batch creation was done without shuffling the data because in Bitcoin analysis it
is important to maintain the sequentiality of the data. The number of the generated folds was computed
through Equation (2), which generated respectively 3-fold cross-testing for the first experiment, 6-fold
cross-testing for the second one, 9-fold cross-testing for the third experiment, and 18-fold cross-testing
for the last one. In general, the k-fold cross-testing approach generates a total of k distinct models,
each of them obtained by training a system with just one batch (i.e., each fold is used exactly one time
for training a model). Then, each model is tested with the remaining k − 1 batches left out during the
training, as shown in Figure 4. The “k-fold cross-testing” generates k outputs, one for each trained
model. A single output represents the average and the standard deviation of the k − 1 tests computed
over the same trained model.

Figure 4. Example of k-fold cross-testing applied with k = 3.

5. Results

In this paper, we present an analysis for evaluating similarity between behavioral patterns of
Bitcoin entities using cascading machine learning. The presented process introduces a “temporal view”
of the blockchain data aiming to evaluate short-term changes in Bitcoin entity behavior. The approach
consists of dividing the whole blockchain into several batches, in order to reduce the complexity of
the problem, reducing the amount of data, simplifying the implemented models, and increasing the
transferability of the solution.

In order to unveil behavioral patterns in the Bitcoin network and study how the size of the batches
affects the final classification, four experiments are presented. Each experiment was achieved with
a different value of batch size, respectively with 60,000 blocks (approx. 12 months), 30,000 (approx.
six months), 20,000 (approx. four months) and 10,000 blocks (approx. two months). The discovered
behavioral patterns were divided into six classes: Exchange, Gambling, Market, Mining Pool, Mixer,
and eWallet.

Figures 5 and 6 show the F1-score calculated in each experiment separated per class. In particular,
in each graph, the x-axis represents the number of batch used to train the models and the y-value

Appl. Sci. 2019, 9, 5003 12 of 20

represents the F1-score computed using “k-fold cross-testing” (Section 4.5). The F1-score values are
shown with their own standard deviation.

1 2 3

batch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1
-s

c
o
re

exchange gambling market

(a) Batch size = 60,000

1 2 3 4 5 6

batch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1
-s

c
o
re

exchange gambling market

(b) Batch size = 30,000

1 2 3 4 5 6 7 8 9

batch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1
-s

c
o
re

exchange gambling market

(c) Batch size = 10,000 (1st to 9th test batches)

10 11 12 13 14 15 16 17 18

batch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
F
1
-s

c
o
re

exchange gambling market

(d) Batch size = 10,000 (10th to 18th test batches)

1 2 3 4 5 6 7 8 9

batch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1
-s

c
o
re

exchange gambling market

(e) Batch size = 20,000

Figure 5. F1-score computed in the four presented experiments with different batch_size for Exchange,
Gambling, and Market classes.

Appl. Sci. 2019, 9, 5003 13 of 20

1 2 3

batch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1
-s

c
o
re

mining mixer eWallet

(a) Batch size = 60, 000

1 2 3 4 5 6

batch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1
-s

c
o
re

mining mixer eWallet

(b) Batch size = 30,000

1 2 3 4 5 6 7 8 9

batch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1
-s

c
o
re

mining mixer eWallet

(c) Batch size = 10,000 (1st to 9th test batches)

10 11 12 13 14 15 16 17 18

batch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1
-s

c
o
re

mining mixer eWallet

(d) Batch size = 10,000 (10th to 18th test batches)

1 2 3 4 5 6 7 8 9

batch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1
-s

c
o
re

mining mixer eWallet

(e) Batch size = 20,000

Figure 6. F1-score computed in the four presented experiments with different batch_size for Mining
Pool, Mixer, and eWallet classes.

The graphs in Figures 5 and 6 indicate that Exchange, Gambling, and eWallet behavior are only
slightly affected by the chosen batch size. In fact, decreasing the batch size, the average F1-score
over samples belonging to these three classes is weakly increased. At the same time, smaller batch
size penalizes the ability of the models to discover Mixer and Market elements and generates strong
changes in the detection of the Mining Pool class. Behavioral changes of those Mining Pools become
visible when decreasing the batch size to 20, 000 blocks, for example.

These trends are confirmed in Table 3, where the overall average F1-score and standard deviation
are reported for each experiment. One can observe that reducing the batch size slightly increases the
detection of Exchange and Gambling elements. In particular, considering data from 10,000 blocks

Appl. Sci. 2019, 9, 5003 14 of 20

(fourth experiment), F1-score values of 0.72 and 0.39, respectively, were reached. However, the batch
size reduction also increases the variability of the classification, generating high standard deviation
values for four of the six considered classes. The highest values of standard deviation are obtained
for classifying Mining Pool and Market elements. These two classes generate a standard deviation of
0.218 for a F1-score value of 0.29, and 0.112 for a F1-score value of 0.08, respectively.

Table 3. F1-score average and standard deviation average computed with data from each experiment.

Class

Batch
60,000

Batch
30,000

Batch
20,000

Batch
10,000

F1
Average

std. dev.
Average

F1
Average

std. dev.
Average

F1
Average

std. dev.
Average

F1
Average

std. dev.
Average

Exchange 0.68 0.047 0.71 0.039 0.70 0.040 0.72 0.050
Gambling 0.34 0.052 0.34 0.071 0.32 0.070 0.39 0.084

Market 0.07 0.050 0.06 0.054 0.08 0.099 0.08 0.112
Mining Pool 0.34 0.038 0.24 0.175 0.28 0.138 0.29 0.218

Mixer 0.16 0.143 0.08 0.083 0.10 0.128 0.07 0.099
eWallet 0.10 0.037 0.15 0.126 0.14 0.098 0.13 0.102

The results shown in Figure 6 and Table 3 motivated us to analyze more in-depth the strong
changes that could be observed in the Mining Pool class detection, which, following our initial
idea, relate to changes in behavioral patterns that only become visible when reducing the batch size.
For batch size 20,000, for example, Mining Pool behavior trained with temporal batch 7 yielded on
average much better classification results than the model trained on other batches. This shows that
the Mining Pool behavior captured in batch 7 is more representative than the behavior defined in all
other batches.

Figure 7 shows detailed associations among F1-score, recall, precision, and normalized number of
samples for the Mining Pool behavior for each batch and batch size as Radar graphs. In particular,
the highest values of recall and F1-score were obtained with batch size set to 20,000 blocks training
the models with batch number 7 (0.46 and 0.52, respectively), while the highest values of precision is
obtained by training the models with batch number 9 (0.86), as shown in Figure 7c. Decreasing the
batch size down to 10,000 generates a linear variance in precision between 0.25 and 0.75, keeping the
F1-score in range 0.25–0.50 (Figure 7d).

Figure 8 provides another interesting picture of the Mining Pool behavior. These graphs represent
confusion matrices where the values of shown F1-scores were not averaged but represent the actual
values computed for each test run. Each cell-value represents the F1-score of the models trained with
the i-th batch and tested with the j-th batch. In case of i = j, the value was not computed setting the
cell to −1 (due to this, they are shown in black).

Using heatmaps [48], it becomes clear that decreasing the batch size generates an improvement
in terms of F1-score in the detection of Mining Pool behavioral patterns (Figure 8a–d). In the first
experiment, there were 0 elements with F1-score above 0.70 (a threshold that we chose to indicate a
good classification). In fact, the highest value was 0.38. In the second experiment, there was just one
test with F1-score above the chosen threshold reaching the value of 0.71. In the third experiment, no
values above the threshold were achieved; however, the highest value of 0.67 was reached in three
different cases. In the fourth experiment (smallest batch size of 10,000), 14 tests presented values
above the threshold reaching a maximum value of 0.88. Interestingly, Figure 8c (batch size 20,000)
clearly shows how “early” models (trained on temporally earlier blocks) up to batch number 6 do not
yield good classification performance in neither previous nor following batches. Models trained on
batches 6–8, though, achieved good performance in the first batches highlighting that generally it was
more difficult to “predict the future” (earlier models perform poorly for future batches). Moreover,
Mining Pool behavior in batch 7, for example, seems to represent a “typical” behavioral pattern that is
recurrent over time across several batches.

Appl. Sci. 2019, 9, 5003 15 of 20

f1
 score

precision

recall

samples

0.25 0.50 0.75 1

1 batch

2 batch

3 batch

(a) Batch size = 60,000

f1
 score

precision

recall

samples

0.25 0.50 0.75 1

1 batch

2 batch

3 batch

4 batch

5 batch

6 batch

(b) Batch size = 30,000

f1
 score

precision

recall

samples

0.25 0.50 0.75 1

1 batch

2 batch

3 batch

4 batch

5 batch

6 batch

7 batch

8 batch

9 batch

(c) Batch size = 20,000

f1
 score

precision

recall

samples

0.25 0.50 0.75 1

1 batch

2 batch

3 batch

4 batch

5 batch

6 batch

7 batch

8 batch

9 batch

10 batch

11 batch

12 batch

13 batch

14 batch

15 batch

16 batch

17 batch

18 batch

(d) Batch size = 10,000

Figure 7. Radar graph with precision, recall, F1-score, and number of samples (normalized) for the
Mining Pool class.

t
e
s
t
1

t
e
s
t
2

t
e
s
t
3

train1

train2

train3

0.0

0.2

0.4

0.6

0.8

1.0

(a) Batch size = 60, 000

t
e
s
t
1

t
e
s
t
2

t
e
s
t
3

t
e
s
t
4

t
e
s
t
5

t
e
s
t
6

train1

train2

train3

train4

train5

train6

0.0

0.2

0.4

0.6

0.8

1.0

(b) Batch size = 30, 000

t
e
s
t
1

t
e
s
t
2

t
e
s
t
3

t
e
s
t
4

t
e
s
t
5

t
e
s
t
6

t
e
s
t
7

t
e
s
t
8

t
e
s
t
9

train1

train2

train3

train4

train5

train6

train7

train8

train9

0.0

0.2

0.4

0.6

0.8

1.0

(c) Batch size = 20, 000

t
e
s
t
1

t
e
s
t
2

t
e
s
t
3

t
e
s
t
4

t
e
s
t
5

t
e
s
t
6

t
e
s
t
7

t
e
s
t
8

t
e
s
t
9

t
e
s
t
1
0

t
e
s
t
1
1

t
e
s
t
1
2

t
e
s
t
1
3

t
e
s
t
1
4

t
e
s
t
1
5

t
e
s
t
1
6

t
e
s
t
1
7

t
e
s
t
1
8

train1

train2

train3

train4

train5

train6

train7

train8

train9

train10

train11

train12

train13

train14

train15

train16

train17

train18
0.0

0.2

0.4

0.6

0.8

1.0

(d) Batch size = 10, 000

Figure 8. Mining Pool F1-score of each test in the four presented experiments.

Appl. Sci. 2019, 9, 5003 16 of 20

6. Discussion

The general aim of this paper was to address problems that are associated with using the
entire blockchain for entity classification in machine learning forensics—which are higher complexity
(requiring larger computational efforts) and the inherent problem of hiding network micro-dynamics
potentially important for detecting short-term changes in entity behavior. We therefore considered
Bitcoin blockchain data as time-series and divided it into temporal batches of varying size.

Our study showed that considering the blockchain as a time-series (i.e., dividing Bitcoin
data into temporal batches) yields interesting insights into behavioral changes of network entities
over time, which may be a starting point for future studies focusing on the investigation of
network micro-dynamics.

The key idea behind our approach was that a model trained on a batch of a certain time-interval
should achieve good classification performance when testing it on another temporal batch, in case
entity behavioral patterns (described by the chosen, extracted features) within those batches is similar.
Thus, each temporal batch was used to define and extract entity behavior, which allowed us to analyze
how the chosen interval and batch size affects classification performance. Classification methods were
based on cascading machine learning principles and “k-fold cross-testing”, which implies training
models on one batch and testing it on all other batches until all batches have been used for training.

From Section 5, and in particular from Figures 5 and 6, we observed that the choice of batch size did
affect all considered classes. Exchange, Gambling, and eWallet classifications were only slightly affected
and yielded a weakly increasing trend in F1-score with decreasing batch size. In particular, reducing
the batch size (thus considering micro-dynamics within the Bitcoin network) did not show great
changes in the final classification of these classes. Moreover, for the Exchange class, this demonstrated
that a smaller temporal batch size indeed seemed to be sufficient for Exchange classification—results
suggest that it is not necessary to use the full blockchain data to obtain good classification rates.

Market and Mixer classification performance instead worsened when decreasing the batch size.
This is reflected in Figure 5e and Figure 6e where F1-scores of these classes reached values close to
or equal to 0. In this case, results probably depended on the small sample size of Market and Mixer
entities prevalent in smaller batches.

However, the most interesting effect of batch size reduction occurred for the Mining Pool
classification. In fact, Mining Pool classification performance changed dramatically when moving to
smaller batch sizes, interestingly showing increasing standard deviations of averaged F1-scores for
smaller batches, hinting at higher performance differences from batch to batch. These results led us to
analyze Mining Pool behavior more in detail—especially as this class represents a sensitive target for
cyber-attacks, as presented in [4,13].

Confusion matrices shown in Figure 8a indicate that, for Mining Pool behavior, the best
classification was obtained by training models with “recent” data in order to predict “past” behavior
when moving to smaller batch sizes, as the majority of the highest F1-scores were below the main
diagonal. This suggests that, generally, it was more difficult to “predict the future”. In fact, earlier
models did not capture future behavior, but recent models did seem to contain behavioral elements
that can be seen in the past as well as new elements belonging to more recent data. This could imply
a certain development of network behavior over time, using old patterns of which certain features are
kept but where new features evolve. Future work could investigate these findings more in detail in
other networks as well.

Our findings further highlight that decreasing the batch size (to 10,000, i.e., two months of data,
for example) provided a higher “temporal resolution” allowing us to detect behavioral changes that
were not visible with larger batch sizes. In particular, results shown in Figure 8d corresponding to the
model trained with batch number 12, are interesting. It is possible to observe that the model achieved
good classification scores for test batch numbers 1, 2, 3 and 5, but decreased its accuracy in batch 4.
This situation could be a symptom of a suspicious activity (or cyber-attacks) of entities in the fourth
test batch. In fact, the low score in batch 4 suggests a sudden change of behavior. These kinds of

Appl. Sci. 2019, 9, 5003 17 of 20

changes can only be appreciated focusing on a small time interval, as using the whole blockchain
data most likely would hide these micro-effects. We believe that such findings for particular entities
could be investigated more in detail in future work by cross-referencing them a posteriori with known
attacks or malicious activities.

Our results, compared with results presented in [10] (where the whole blockchain is considered),
showed lower classification rates across all considered classes (from 30% to 90%). However,
as mentioned in Section 1, improving classification rates was not the aim of this study. Our idea
was to introduce temporal batch division of blockchain data and aimed to analyze whether this
approach may uncover micro-dynamics that determine changes in entity behavior. In fact, sudden,
short-term behavioral changes of a fixed entity represented by changes of classification scores could be
a symptom of suspicious behavior or an attack. Rather than looking to absolute classification scores,
we therefore focused on changes or variability of scores from batch to batch.

Furthermore, it became apparent that batch size affects the detection of changes in entity behavior
in different ways. A batch size that is too small seems to create difficulty in micro-dynamics detection
in a small dataset (for example for Mixer, Market and Mining Pool), but entity behavior in general
(Exchange, Gambling and eWallet) is enhanced.

To the best of our knowledge, this is the first study using temporal batch division of Bitcoin
blockchain data, and hence we are unable to perform a comparison against similar approaches. To date,
no other study has focused on detecting similarities between entity behavioral patterns in various time
batches of Bitcoin blockchain data.

We acknowledge that our approach does not fully get rid of the “black-box model”, but we believe
that our temporal dissection into “smaller black-boxes” has shown interesting changes in entity pattern
behavior and consider it a first step towards investigating Bitcoin behavioral pattern evolution in
much more detail.

One major drawback of our approach is the dependence on WalletExplorer data. This dataset
allows us to only include well-known entities that were already detected, while special entities or
individual users could not be included.

Furthermore, our work provides guidelines which could be used to model a “typical” Mining
Pool and, in particular, we plan to use this information to develop a model to detect abnormal or
illicit behavior and behavioral changes posing possible security threats—for example, by exploiting
results presented in [49], where it is stated that a type of cyber-attack produces short-term effects in
the Mining Pool itself.

Future development could also be aimed at providing customization of behavioral patterns and
simulating them in a controlled environment. This would allow researchers to replicate “typical”
entity behavior or specific types of attacks or illicit activities related to certain entities. Furthermore,
the controlled environment, for example the one presented in [50], could be used to detect limitations
of the protocol, creating specific scenarios or defining new entity behavior not yet discovered in
the mainnet.

7. Conclusions

We conclude that the right choice of time interval size helped reduce the complexity for some
classes and helped with the detection of abnormal/interesting activities and behavioral changes for
other classes of Bitcoin entities. Due to these properties, we believe that the presented analysis can be
a starting point to significantly improve some forensics tools that currently apply machine learning
on the whole blockchain—providing novel, more in-depth insight into what is happening within the
Bitcoin network by carefully choosing the “temporal resolution” of the analysis.

Author Contributions: Conceptualization, F.Z., J.L.B., and R.O.U.; Related Work, F.Z.; Datasets, F.Z. and M.E.;
Methodology, F.Z.; Results, F.Z.; Discussion, F.Z., J.L.B., and M.G.; Writing—original draft preparation, F.Z.;
Writing—review and editing, J.L.B. and M.G.; Supervision, R.O.U.

Appl. Sci. 2019, 9, 5003 18 of 20

Funding: This work was partially funded by the European Commission through the Horizon 2020 research and
innovation program, as part of the “TITANIUM” project (Grant Agreement No. 740558).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

BTC Bitcoin
CEO Chief Executive Officer
COO Chief Operating Officer
DDoS Distributed Denial-of-Service
DoS Denial–of–Service
GB Gradient Boosting
HMM Hidden Markov Model
LEO Law Enforcement Officer
RF Random Forest
STPN Spatio-Temporal Pattern Network
USD United States Dollar

References

1. Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System; Bitcoin: Saint Christopher, saint Christopher and
nevis, 2008.

2. Crosby, M.; Pattanayak, P.; Verma, S.; Kalyanaraman, V. Blockchain technology: Beyond bitcoin. Appl. Innov.
2016, 2, 71.

3. Narayanan, A.; Bonneau, J.; Felten, E.; Miller, A.; Goldfeder, S. Bitcoin and Cryptocurrency Technologies;
Princeton University Press: New Jersey, NJ, USA, 2016.

4. Vasek, M.; Thornton, M.; Moore, T. Empirical analysis of denial-of-service attacks in the Bitcoin
ecosystem. In Proceedings of the International Conference on Financial Cryptography and Data Security,
Christ Church, Barbados, 3–7 March 2014; pp. 57–71.

5. Bitcoin Accounts for 95% of Cryptocurrency Crime, Says Analyst. Available online: https://fortune.com/
2019/04/24/bitcoin-cryptocurrency-crime/ (accessed on 19 November 2019).

6. Building Trust in Blockchains. Available online: https://www.chainalysis.com (accessed on
19 November 2019).

7. Kethineni, S.; Cao, Y. The Rise in Popularity of Cryptocurrency and Associated Criminal Activity. Int. Crim.
Justice Rev. 2019. [CrossRef]

8. Fanusie, Y.; Robinson, T. Bitcoin Laundering: An Analysis of Illicit Flows Into Digital Currency Services; Elliptic:
London, UK, 2018.

9. Conti, M.; Kumar, E.S.; Lal, C.; Ruj, S. A survey on security and privacy issues of bitcoin. IEEE Commun.
Surv. Tutor. 2018, 20, 3416–3452. [CrossRef]

10. Zola, F.; Eguimendia, M.; Bruse, J.L.; Orduna Urrutia, R. Cascading Machine Learning to Attack Bitcoin
Anonymity. In Proceedings of the 2nd IEEE International Conference on Blockchain, Atlanta, GA, USA,
14–17 July 2019; pp. 1–8.

11. Jourdan, M.; Blandin, S.; Wynter, L.; Deshpande, P. Characterizing Entities in the Bitcoin Blockchain. arXiv
2018, arXiv:1810.11956.

12. Harlev, M.A.; Sun Yin, H.; Langenheldt, K.C.; Mukkamala, R.; Vatrapu, R. Breaking bad: De-anonymising
entity types on the bitcoin blockchain using supervised machine learning. In Proceedings of the 51st Hawaii
International Conference on System Sciences, Waikoloa Village, HI, USA, 3–6 January 2018.

13. Johnson, B.; Laszka, A.; Grossklags, J.; Vasek, M.; Moore, T. Game-theoretic analysis of DDoS attacks against
Bitcoin mining pools. In Proceedings of the International Conference on Financial Cryptography and Data
Security, Christ Church, Barbados, 3–7 March 2014; pp. 72–86.

14. Abhishta, A.; Joosten, R.; Dragomiretskiy, S.; Nieuwenhuis, L.J. Impact of Successful DDoS Attacks on
a Major Crypto-currency Exchange. In Proceedings of the 27th Euromicro International Conference on
Parallel, Distributed and Network-Based Processing (PDP), Pavia, Italy, 13–15 February 2019; pp. 379–384.

Appl. Sci. 2019, 9, 5003 19 of 20

15. Paquet-Clouston, M.; Haslhofer, B.; Dupont, B. Ransomware payments in the bitcoin ecosystem. J. Cybersecur.
2019, 5, 1–11. [CrossRef]

16. Binance Security Breach Update. Available online: https://binance.zendesk.com/hc/en-us/articles/
360028031711-Binance-Security-Breach-Update (accessed on 19 November 2019).

17. Top 100 Cryptocurrencies by Market Capitalization. Available online: https://coinmarketcap.com (accessed
on 19 November 2019).

18. Böhme, R.; Christin, N.; Edelman, B.; Moore, T. Bitcoin: Economics, technology, and governance.
J. Econ. Perspect. 2015, 29, 213–38. [CrossRef]

19. Meiklejohn, S.; Orlandi, C. Privacy-enhancing overlays in bitcoin. In Proceedings of the International
Conference on Financial Cryptography and Data Security, San Juan, Puerto Rico, 26–30 January 2015;
pp. 127–141.

20. Androulaki, E.; Karame, G.O.; Roeschlin, M.; Scherer, T.; Capkun, S. Evaluating user privacy in bitcoin.
In Proceedings of the International Conference on Financial Cryptography and Data Security, Okinawa, Japan,
1–5 April 2013; pp. 34–51.

21. Herrera-Joancomarti, J. Research and challenges on bitcoin anonymity. In Data Privacy Management,
Autonomous Spontaneous Security, and Security Assurance; Springer: Wroclaw, Poland, 2015; pp. 3–16.

22. Liao, K.; Zhao, Z.; Doupé, A.; Ahn, G.J. Behind closed doors: Measurement and analysis of CryptoLocker
ransoms in Bitcoin. In Proceedings of the 2016 APWG Symposium on Electronic Crime Research (eCrime),
Toronto, ON, Canada, 1–3 June 2016; pp. 1–13.

23. Koshy, P.; Koshy, D.; McDaniel, P. An analysis of anonymity in bitcoin using p2p network
traffic. In Proceedings of the International Conference on Financial Cryptography and Data Security,
Christ Church, Barbados, 3–7 March 2014; pp. 469–485.

24. Reid, F.; Harrigan, M. An analysis of anonymity in the bitcoin system. In Security and Privacy in Social
Networks; Springer: New York, NY, USA, 2013; pp. 197–223.

25. Fleder, M.; Kester, M.S.; Pillai, S. Bitcoin transaction graph analysis. arXiv 2015, arXiv:1502.01657.
26. Pham, T.; Lee, S. Anomaly detection in bitcoin network using unsupervised learning methods. arXiv 2016,

arXiv:1611.03941.
27. Monamo, P.; Marivate, V.; Twala, B. Unsupervised learning for robust Bitcoin fraud detection. In Proceedings

of the 2016 Information Security for South Africa (ISSA), Johannesburg, South Africa, 17–18 August 2016;
pp. 129–134.

28. Hirshman, J.; Huang, Y.; Macke, S. Unsupervised Approaches to Detecting Anomalous Behavior in The Bitcoin
Transaction Network, 3rd ed.; Technical Report; Stanford University: Stanford, CA, USA, 2013.

29. Bartoletti, M.; Pes, B.; Serusi, S. Data mining for detecting Bitcoin Ponzi schemes. In Proceedings of the
2018 Crypto Valley Conference on Blockchain Technology (CVCBT), Zug, Switzerland, 20–22 June 2018;
pp. 75–84.

30. Yin, H.S.; Vatrapu, R. A first estimation of the proportion of cybercriminal entities in the bitcoin ecosystem
using supervised machine learning. In Proceedings of the 2017 IEEE International Conference on Big Data
(Big Data), Boston, MA, USA, 11–14 December 2017; pp. 3690–3699.

31. Wolpert, D.H. Stacked generalization. Neural Netw. 1992, 5, 241–259. [CrossRef]
32. Ranshous, S.; Joslyn, C.A.; Kreyling, S.; Nowak, K.; Samatova, N.F.; West, C.L.; Winters, S. Exchange pattern

mining in the bitcoin transaction directed hypergraph. In Proceedings of the International Conference on
Financial Cryptography and Data Security, Sliema, Malta, 3–7 April 2017; pp. 248–263.

33. Basseville, M.; Nikiforov, I.V. Detection of Abrupt Changes: Theory and Application; Prentice Hall Englewood
Cliffs: Upper Saddle River, NJ, USA, 1993; Volume 104.

34. Hoang, X.; Hu, J. An efficient hidden Markov model training scheme for anomaly intrusion detection of
server applications based on system calls. In Proceedings of the 2004 12th IEEE International Conference on
Networks (ICON 2004), Singapore, 16–19 November 2004; Volume 2, pp. 470–474.

35. Aggarwal, C.C.; Zhao, Y.; Philip, S.Y. Outlier detection in graph streams. In Proceedings of the 2011 IEEE
27th International Conference on Data Engineering, Hannover, Germany, 11–16 April 2011; pp. 399–409.

36. Mitrović, S.; Baesens, B.; Lemahieu, W.; De Weerdt, J. Churn prediction using dynamic rfm-augmented
node2vec. In Proceedings of the International Workshop on Personal Analytics and Privacy, Dublin, Ireland,
10–14 September 2017; pp. 122–138.

Appl. Sci. 2019, 9, 5003 20 of 20

37. Eberle, W.; Holder, L. Incremental Anomaly Detection in Graphs. In Proceedings of the 2013 IEEE 13th
International Conference on Data Mining Workshops, Dallas, TX, USA, 7–10 December 2013; pp. 521–528.

38. Blazek, R.B.; Kim, H.; Rozovskii, B.; Tartakovsky, A. A novel approach to detection of denial-of-service
attacks via adaptive sequential and batch-sequential change-point detection methods. In Proceedings of
IEEE Systems, Man and Cybernetics Information Assurance Workshop, West Point, NY, USA, 5–6 June 2001

39. Bitcoin Block Explorer with Address Grouping and Wallet Labeling. Available online: https://www.
walletexplorer.com/ (accessed on 19 November 2019).

40. Mainnet, Bitcoin Main Network. Available online: https://bitcoin.org/en/glossary/mainnet (accessed on
19 November 2019).

41. Samsudeen, Z.; Perera, D.; Fernando, M. Behavioral Analysis of Bitcoin Users on Illegal Transactions.
Adv. Sci. Technol. Eng. Syst. J. 2019, 4, 402–412. [CrossRef]

42. Download Bitcoin Core. Available online: https://bitcoin.org/en/download (accessed on
19 November 2019).

43. Protect Your Privacy. Available online: https://bitcoin.org/en/protect-your-privacy (accessed on
19 November 2019).

44. Ermilov, D.; Panov, M.; Yanovich, Y. Automatic Bitcoin address clustering. In Proceedings of the 2017
16th IEEE International Conference on Machine Learning and Applications (ICMLA), Cancun, Mexico,
18–21 December 2017; pp. 461–466.

45. Lacroix, V.; Fernandes, C.G.; Sagot, M.F. Motif search in graphs: Application to metabolic networks.
IEEE/ACM Trans. Comput. Biol. Bioinform. 2006, 3, 360–368. [CrossRef] [PubMed]

46. Van der Laan, M.J.; Polle, E.C.; Hubbard, A.E. Super learner. Stat. Appl. Genet. Mol. Biol. 2007, 6. [CrossRef]
[PubMed]

47. Zhou, Z.H. Ensemble methods: Foundations and Algorithms; Chapman and Hall: London, UK;
CRC: Boca Raton, FL, USA, 2012.

48. seaborn.heatmap. Available online: https://seaborn.pydata.org/generated/seaborn.heatmap.html
(accessed on 19 November 2019).

49. Laszka, A.; Johnson, B.; Grossklags, J. When bitcoin mining pools run dry. In Proceedings of the International
Conference on Financial Cryptography and Data Security, San Juan, Puerto Rico, 26–30 January 2015;
pp. 63–77.

50. Zola, F.; Pérez-Solà, C.; Zubia, J.E.; Eguimendia, M.; Herrera-Joancomartí, J. Kriptosare. gen, a Dockerized
Bitcoin Testbed: Analysis of Server Performance. In Proceedings of the 2019 10th IFIP International
Conference on New Technologies, Mobility and Security (NTMS), Canary Islands, Spain, 24–26 June 2019;
pp. 1–5.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

2. Network traffic analysis through node behaviour classifica-
tion: a graph-based approach with temporal dissection and
data-level preprocessing

The work related to this part is:

Zola F., Segurola Gil L., Bruse J.L., Galar M. and Orduna Urrutia R., Network traf-
fic analysis through node behaviour classification: a graph-based approach with temporal
dissection and data-level preprocessing, Computers & Security, 115 (2022): 102632, DOI:
10.1016/j.cose.2022.102632

Status: Published.

Impact Factor (JCR 2020): 4.438.

Knowledge area:

� Computer Science, Information Systems. Ranking 40/161 (Q1).

Computers & Security 115 (2022) 102632

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

Network traffic analysis through node behaviour classification: a

graph-based approach with temporal dissection and data-level

preprocessing �

F. Zola a , b , 1 , ∗, L. Segurola-Gil a , 2 , J.L. Bruse a , 3 , M. Galar b , 4 , R. Orduna-Urrutia a , 5

a Vicomtech Foundation, Basque Research and Technology Alliance (BRTA) Paseo Mikeletegi 57, Donostia/San Sebastian 20 0 09, Spain
b Institute of Smart Cities, Public University of Navarre, Pamplona 31006, Spain

a r t i c l e i n f o

Article history:

Received 28 July 2021

Revised 4 January 2022

Accepted 27 January 2022

Available online 29 January 2022

Keywords:

Network analysis

Graph imbalance problem

Graph Convolutional Networks

Temporal dissection

Deep Learning

a b s t r a c t

Network traffic analysis is an important cybersecurity task, which helps to classify anomalous, potentially

dangerous connections. In many cases, it is critical not only to detect individual malicious connections,

but to detect which node in a network has generated malicious traffic so that appropriate actions can

be taken to reduce the threat and increase the system’s cybersecurity. Instead of analysing connections

only, node behavioural analysis can be performed by exploiting the graph information encoded in a con-

nection network. Network traffic, however, is temporal data and extracting graph information without

a fixed time scope may only unveil macro-dynamics that are less related to cybersecurity threats. To

address these issues, a threefold approach is proposed here: firstly, temporal dissection for extracting

graph-based information is applied. As the resulting graphs are typically affected by class imbalance (i.e.

malicious nodes are under-represented), two novel graph data-level preprocessing techniques - R-hybrid

and SM-hybrid - are introduced, which focus on exploiting the most relevant graph substructures. Finally,

a Neural Network (NN) and two Graph Convolutional Network (GCN) approaches are compared when per-

forming node behaviour classification. Furthermore, we compare the node classification performance of

these supervised models with traditional unsupervised anomaly detection techniques. Results show that

temporal dissection parameters affected classification performance, while the data-level preprocessing

strategies reduced class imbalance and led to improved supervised node behaviour classification, outper-

forming anomaly detection models. In particular, Neural Network (NN) outperformed Graph Convolutional

Network (GCN) approaches for two attack families and was less affected by class imbalance, yet one GCN

performed best overall. The presented study successfully applies a temporal graph-based approach for

malicious actor detection in network traffic data.

© 2022 The Author(s). Published by Elsevier Ltd.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

� This work has been partially supported by the Spanish Centre for the Devel-

opment of Industrial Technology (CDTI) under the project ÉGIDA (EXP 00122721 /

CER-20191012) - RED DE EXCELENCIA EN TECNOLOGIAS DE SEGURIDAD Y PRIVACI-

DAD.
∗ Corresponding author.
E-mail addresses: fzola@vicomtech.org (F. Zola), lsegurola@vicomtech.org (L.

Segurola-Gil), jbruse@vicomtech.org (J.L. Bruse), mikel.galar@unavarra.es (M. Galar),

rorduna@vicomtech.org (R. Orduna-Urrutia).
1 orcid: 0 0 0 0-0 0 02-1733-5515 .
2 orcid: 0 0 0 0-0 0 03-4278-9081 .
3 orcid: 0 0 0 0-0 0 02-5774-1593 .
4 orcid: 0 0 0 0-0 0 03-2865-6549 .
5 orcid: 0 0 0 0-0 0 02-5932-0987 .

1. Introduction

Today, cyber attacks are becoming more sophisticated and more

destructive than ever. Attackers increasingly try to find vulnera-

bilities and exploit breaches in order to gain unauthorized access,

damage or steal information, assets, network or any kind of sensi-

tive data. If a cyber attack compromises at least one of the three

security pillars of a target - confidentiality, integrity or availability

- it can generate a considerable loss of value for the owner, in eco-

nomical, ethical, digital, psychological and societal terms (Agrafiotis

et al., 2018; Formosa et al., 2021).

Currently, increasing efforts are being made to prevent such

cyber threats and reduce their impact (Khraisat et al., 2019;

Van Schaik et al., 2020). However, as it is difficult to determine

rules for manual or semi-automatic threat detection, there is a

https://doi.org/10.1016/j.cose.2022.102632

0167-4048/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

F. Zola, L. Segurola-Gil, J.L. Bruse et al. Computers & Security 115 (2022) 102632

need for new solutions based on Artificial Intelligence (Xin et al.,

2018). Derived techniques such as Deep Learning have shown

promising results in terms of quantifying cyber risks and optimiz-

ing cybersecurity operations (Sarker et al., 2020).

Machine learning (ML) techniques are often used to perform

anomaly detection (AD) (Omar et al., 2013), an operation that can

be used for both threat detection and threat prevention. In par-

ticular, anomaly detection tasks considering time series analyses

have been extensively explored in recent years (Li et al., 2021).

However, in a complex system of actors or entities, interaction

patterns can evolve as entities may disappear, emerge or simply

change their dynamics. Considering network traffic information in

a graph-based representation can highlight these changes and fa-

vors the definition, classification and visualization of such informa-

tion (Akoglu et al., 2015; Tan et al., 2020) as graphs integrate both

structured and unstructured data in a representation of entities

and their relationships (Zhou et al., 2009). However, approaches

that apply Deep Learning paradigms directly to graphs have so far

mainly been applied in other domains (Kipf and Welling, 2017;

Scarselli et al., 2008).

The majority of graph-based studies in the cybersecurity do-

main are focused on identifying anomalous or malicious traf-

fic by directly classifying node communications using statistical

(Djidjev et al., 2011), data mining (Iliofotou et al., 2009b) or ma-

chine learning (Yao et al., 2018; Zheng et al., 2019) techniques.

However, analyzing every single connection in real networks may

be resource-consuming due to the large amount of flows to be

processed. Furthermore, malformed communications carried out by

normal entities can result in falsely detected malicious flows (false

positives), and attackers could generate normal activities in a com-

plex attack routine for obfuscating their presence in the network.

In these cases, it is interesting to classify a single connection

and at the same time detect who has generated it, in order to

make appropriate decisions that may increase network cybersecu-

rity (i.e. exclude, isolate entities etc.). For these reasons, we intro-

duce here a novel methodology that shifts the focus from analyz-

ing the edges of a graph (nodes communication) to its nodes (enti-

ties behaviour) for malicious/attack detection. More concretely, this

novel methodology intends to translate an attack classification task

into a (node) behavioural classification task, thus converting time

series network traffic into graph-based structures. Our approach is

presented in three distinct phases: graph creation, data-level prepro-

cessing, and finally, classification .

In the first phase, the main idea is to split the entire network

information into temporal intervals and extract graph-based struc-

tures from each of them, recalling the concept of a temporal Traf-

fic Dispersion Graph (TDG) (Iliofotou et al., 2009a). In this way, it

is possible to visualize entity interactions and their dynamics over

time. Furthermore, this temporal dissection avoids small, scarce

interactions between entities being obfuscated by more frequent

ones. In fact, considering the whole graph at once can generate

skewed scenarios that may encourage machine learning models to

classify macro-dynamics over more critical micro-dynamics. Fur-

ther, long times would be required to detect attack activities, mak-

ing macro-dynamics approach less usable.

After extracting the graphs - as in almost any classification

problem related to cybersecurity - it is important to deal with

class imbalance (Japkowicz and Stephen, 2002) since typically nor-

mal network activities outnumber anomalous activities or attacks.

This phenomena can strongly degrade the quality of classification

performance, especially when supervised machine learning tech-

niques are used (Fernández et al., 2018). Since common data-level

methods for class imbalance cannot directly be applied to graph

data, new approaches are required. For this reason, in the second

phase, we propose two novel approaches for dealing with class im-

balance in graph structures, which we call R-hybrid and SM-hybrid .

The key idea is to apply operations of data-level preprocessing to

graph structures, while avoiding the distortion of their topology.

In phase three, behavioural classification tasks using the newly

balanced graph-based structures are performed. The main goal of

this phase is to compare the performance of models that are able

to exploit both behavioural features and graph relations (such as

Graph Convolutional Networks, GCNs), with the ones using be-

havioural features only (such as Neural Networks, NNs). In this

way, it is possible to analyze how much the information related

to graph connections affects the classification task.

Furthermore, in order to explore the benefits and limitations of

our approach, we compare classification results achieved by train-

ing graph-based supervised models on the balanced dataset with

several common state-of-the-art unsupervised anomaly detection

techniques. These unsupervised models are trained with the imbal-

anced dataset as their main goal is to detect anomalies in the data

distribution (outliers) (Goldstein and Uchida, 2016), (Leung and

Leckie, 2005). A relevant cybersecurity dataset (Moustafa and

Slay, 2015) containing network traffic data is used to validate the

presented approach.

To the best of our knowledge, this is the first work that pro-

poses an entire pipeline for working with network traffic data ex-

tracting temporal graph-based (node) behaviours, handling class

imbalance in graph structures and finally performing classification

to detect malicious entities/nodes.

The rest of the paper is organized as follows. Section 2 in-

troduces several key concepts concerning graph theory and then

presents related work in terms of graph construction techniques,

class imbalance and Deep Learning on graphs. In Section 3 , moti-

vations and contributions are described as well as our novel ap-

proach and its phases. Section 4 provides an overview of the used

datasets and their limitations, the metrics used to evaluate the

experiments, the extracted graphs and presents the experiments.

Section 5 describes and discusses the obtained classification re-

sults. Finally, conclusions and guidelines for future work are given

in Section 6 .

2. Preliminaries

In this section, theoretic concepts applied in this study are in-

troduced. In particular in Section 2.1 , key concepts related to graph

theory are presented, whereas in Section 2.2 related works are de-

scribed.

2.1. Graph Theory

The aim of this study is to classify node behaviours extracted

from network traffic and analyze them in a graph domain. For this

reason, key concepts related to graph theory are reported, follow-

ing their definitions in Bollobás (2013) .

Definition 2.1. A graph G is defined as the ordered pair G = (V, E) ,

where V represents vertex or node set and E is an unordered pair

of elements of V called the set of edges. The number of nodes and

edges for G will be | V | and | E| respectively.
Definition 2.2. Let G = (V, E) be a graph. Two vertices u, v ∈ V are

incident with the edge e i ∈ E iff e i = { u, v } . A walk consists of an al-
ternating sequence of consecutive incident vertices and edges that

begins and ends with a vertex. A path is a walk without repeated

vertices.

Definition 2.3. Let G = (V, E) be a graph. Then, G ′ = (V ′ , E ′) is a
subgraph of G iff V ′ ⊆ V and E ′ ⊆ E. It can be written as G ′ ⊆ G .
Definition 2.4. Let G = (V, E) be a graph. G is connected iff ∀ u, v ∈

V , ∃ a sequence of edges e 1 , e 2 , ..., e n ∈ E such that there is a path

2

F. Zola, L. Segurola-Gil, J.L. Bruse et al. Computers & Security 115 (2022) 102632

from u to v . If a graph is not connected, every connected maximal
subgraph of it is called a component of the graph.

Definition 2.5. Let G = (V, E) be a graph and let e ∈ E be an edge

of the graph. Let G ′ = (V, E − { e }) be the subgraph of G with e cut.
Let c(G) denote the number of components of the graph G . Then,

e is said to be a bridge of G iff c(G ′) = c(G) + 1 .

In this work, the focus is on graphs and its components. There-

fore, and abusing the notation, the term subgraph is used for refer-

ring to each component of a graph for the rest of this paper.

2.2. Related Work

In this section, related work is introduced, organized as fol-

lows: in Section 2.2.1 techniques for extracting graph information

from time series are analyzed, while in Section 2.2.2 , techniques

for addressing class imbalance are presented. In Section 2.2.3 , re-

lated work based on Graph Convolutional Networks is described,

and finally in Section 2.2.4 , models used for anomaly detection are

introduced

2.2.1. Graph Construction Techniques from Time Series

Network traffic datasets are composed of information gathered

from a network that is usually represented as time series. Each row

in these datasets contains information and features related to pack-

ages, connections or flows between a source and a destination (de-

pending on the granularity of the dataset). For simplicity, we use

the word flow to indicate a row of any network traffic dataset.

The first step is to convert this time series information into

temporal graph structures. However, domain transformation can

always cause distortion or loss of information. These problems

can be even more severe when converting unstructured data or

a time series into a network data representation. In Silva and

Zhao (2016) , several techniques for transforming unstructured data,

vector-based data, or even time series data into networks are de-

scribed.

In Wehmuth et al. (2015) , a model for representing finite dis-

crete Time-Varying Graphs (TVGs, typically used to model complex

dynamic network systems), is presented, whereas in Crovella and

Kolaczyk (2003) a graph wavelet approach is applied on elements

connected via an arbitrary graph topology (spatial domain). In

Djidjev et al. (2011) and Jin et al. (2009) , temporal graph represen-

tations for analyzing large networks are introduced, using telescop-

ing subgraphs (TSGs) in the first case and Traffic Activity Graphs

(TAGs), in the second case.

An alternative was presented by Ilioftou et al Iliofotou et al.

(2007) , known as Traffic Dispersion Graph (TDG). These graphs

are graphical representations of various interactions of a group of

nodes (“who talks to whom”). The authors exploit network-wide

interactions between hosts for extracting graph structures from

network traffic datasets, considering each node as a distinct IP ad-

dress and edges as their communication flows. Although the defi-

nition of the TDG’s nodes is a simple process, the principal task is

the definition of the edges. This can be done based on the available

information as, for example, the first sent packet, the amount of

exchanged information, the protocol used and so on. These edges

can be both directed or undirected, according to the final goal.

This mapping represents a viable solution when inputs are net-

work traffic data. In particular, it allows monitoring, analyzing and

visualizing relations among defined nodes using social interaction

paradigms (Iliofotou et al., 2007). In Iliofotou et al. (2009a) , the

concept of TDGs is extended introducing a temporal factor. The au-

thors propose to split the initial data into subintervals and extract

a graph from each subinterval.

In this study, temporal TDGs are used as a starting point for

translating the attack classification problem into a node behaviour

classification task.

2.2.2. Class Imbalance Problem

One of the most common challenges when facing classification

tasks is addressing an uneven distribution among classes, which

can produce skewed behavioural models (Fernández et al., 2018).

In this regard, data-level techniques are one of the most straight-

forward and effective ways to address class imbalance (Leevy et al.,

2018). These techniques can be divided into under-sampling, over-

sampling or hybrid methods, depending on how they modify the

data distribution (removing or adding samples from the dataset).

The simplest, yet effective alternative for under-sampling is

known as Random Under-Sampling (RUS), removing random sam-

ples from the majority class until the dataset is balanced. Other

methods in this category are Tomek links (Tomek et al., 1976),

Condensed nearest neighbor rule (Hart, 1968) and Near miss un-

dersampling (Yen and Lee, 2006). Among the over-sampling ap-

proaches, the most common are Random Over-Sampling (ROS) and

Synthetic Minority Oversampling Technique (SMOTE) (Chawla et al.,

2002) . ROS takes samples from less represented classes and ran-

domly replicates them until reaching the population size of the

majority one, whereas SMOTE is based on exploiting k -nearest

neighbors to create new elements. Other over-sampling methods

are Adaptive Synthetic (ADASYN) He et al. (2008) and Bordeline over-

sampling Nguyen et al. (2011) .

When dealing with graph structured data, the application of

these techniques is not straightforward and can be misleading. In

fact, these techniques are focused on the feature space and if ap-

plied without modifications the graph structure might be modified,

changing its intrinsic information. For this reason, several tech-

niques have been proposed for working with graph structures in

order to reduce their size and preserve properties, as shown in

Hu and Lau (2013) . Commonly studied sampling techniques can

be grouped in three classes (Wu et al., 2016): Node-based sam-

plings, Edge-based samplings and Transversal-based samplings . Ran-

dom Node technique Leskovec and Faloutsos (2006) and Random

Degree Node Stumpf et al. (2005) are typical examples of the first

strategy; Random Edge Technique, DropEdge Rong et al. (2019) and

GAUG Zhao et al. (2020c) belongs to Edge-based samplings . Finally,

Snowball Sampling Stivala et al. (2016) and Forest Fire Sampling

(FFS) Leskovec and Faloutsos (2006) are Transversal-based samplings

strategies.

All introduced approaches, although with different impact, gen-

erate changes in the graph topology, thereby altering its intrinsic

information. For this reason, we present two novel approaches for

handling graph data-level preprocessing based on the idea of pre-

serving subgraph properties and topology (Section 3.3).

2.2.3. Graph Convolutional Network

In recent years, Deep Learning has been successfully applied

in many fields related to image, video, recorded speech data etc.

(Garcia-Garcia et al., 2018). However, when real world applications

are characterized by complex relationships and interdependence

between samples, new learning paradigms are required to exploit

such kind of structures (Wu et al., 2020). Graph Neural Networks

(GNNs) were introduced in Scarselli et al. (2008) to handle super-

vised machine learning tasks using graph structured data (cyclic,

directed, undirected, or a mixture of these) in which each node is

defined by its features and its relation to other nodes in the graph.

The idea of GNNs is to generate outputs by analyzing the embed-

ded state of a node, which also contains information about the

neighborhood of the node itself (Zhou et al., 2018). Further, Graph

Convolutional Networks (GCNs) (Kipf and Welling, 2017) exploit

the local and global structural patterns of a graph. The aim of GCNs

3

F. Zola, L. Segurola-Gil, J.L. Bruse et al. Computers & Security 115 (2022) 102632

is to consider the relation among nodes through a convolution op-

eration similar to the one used in Convolutional Neural Networks

(CNNs). While CNNs and GCNs have very similar underlying key

concepts, CNNs are specifically built to operate on Euclidean data,

while GCNs are suited for non-Euclidean data such as graphs that

contain nodes, connections, relations and unordered information.

According to the chosen filter and its application, graph convolu-

tion operations can be separated into spatial-based and spectral-

based convolution (Zhang et al., 2019). In the first category, the

operation is applied directly on the graph nodes and its neighbor-

hood, i.e. through some aggregations of graph signals within the

node neighborhood. In the second case, the filters are defined fol-

lowing graph signal processing concepts, i.e. using graph Laplacian

Matrix to define the graph Fourier transformation, and the graph

filtering operators within (Defferrard et al., 2016; Kipf and Welling,

2017).

While it is straightforward to compute the convolution in the

spatial domain (for example by applying a weighted average func-

tion over a node and its neighborhood (Hamilton et al., 2017;

Monti et al., 2017)), it is more complex in the spectral domain.

In particular, in this second case, the convolution operation is de-

fined through Equation 1 , where x ∈ R N represents a scalar vector

(a scalar for every node in the graph), U is the matrix of eigen-

vectors of L, the Laplacian of the graph, and g θ (�) is a function of

the eigenvalues of L and it represents the filter in the Fourier do-

main. Nevertheless, solving this equation can be computationally

complex and unreachable, particularly for large graphs.

y = g θ ∗ x = U g θ (�) U T x (1)

For this reason, a solution for Equation 1 is obtained

by parameterizing the term g θ (�) as a polynomial function

that can be computed recursively. More specifically, Cheby-

shev polynomials with a K degree can be used, as shown in

Defferrard et al. (2016) (Equation 2). In particular, g θ (�) can be

approximated by a truncated expansion of the Chebyshev poly-

nomials T k (x) up to K degree, where T k (x) is recursively defined

as T k (x) = 2 xT k −1 (x) − T k −2 (x) , with T 0 (x) = 1 and T 1 (x) = x . In

Defferrard et al. (2016) , the authors suggest rescaling the filters by ˜ � =

2
λmax

� - I N , where λmax is the largest eigenvalue of Lapla-

cian matrix L and I N is the identity matrix. θ
′ ∈ R

K is a vector of

Chebyshev coefficients.

g θ ′ (�) �

K ∑

k =0
θ ′
k T k (̃

 �) (2)

Kipf et al. Kipf and Welling (2017) demonstrate that a good

approximation can be reached by truncating the Chebichev poly-

nomial to get a linear polynomial (k = 1) and by performing

a renormalization trick in order to avoid numerical instabilities

and vanishing gradients. In this scenario, Equation 1 is reduced

to Equation 3 (Kipf and Welling, 2017), where σ represents an

activation function, e.g., ReLU(·) = max (0 , ·) , H (l) is the matrix of
activations in the l th layer with H (0) = X ∈ R

NxC , i.e. a matrix of

N nodes each one associated with a C-dimensional feature vector,

and W

(l) denotes a layer-specific trainable weight matrix. The term ˜ A is the adjacency matrix with the identity matrix added (part

of the renormalization trick), and ˜ D i j =

∑ ˜ A i j . Basically, the term

˜ D −
1
2 ̃ A ̃ D −

1
2 is used to normalize the graph structure and to convert

it to a regular neural network function. In Kipf and Welling (2017) ,

an in-depth discussion of this approximation is presented.

H (l+1) = σ (̃ D −
1
2 ̃ A ̃ D −

1
2 H (l) W

(l)) (3)

Thanks to its ability to learn graph representations, Graph Con-

volutional Networks are used in a wide range of applications,

especially for detecting similarity among networks and for dis-

covering patterns among the nodes’ relations. Examples include

applications in chemistry, biology and bioinformatics for classi-

fying drugs (Long et al., 2020), chemical reactions (Coley et al.,

2019), molecules (You et al., 2018) and material properties (Xie and

Grossman, 2018), or in social science for implementing recom-

mendation systems (Jin et al., 2020; Wu et al., 2018). Regarding

the cybersecurity domain, Zhao et al. Zhao et al. (2020a,b) first

used a GCN to transform a botnet detection problem into a semi-

supervised classification problem and proposed a new framework

for cyber threat discovery based on multi-granular attention and

Indicator of Compromises (IOCs) extraction. In Gao et al. (2021) ,

heterogeneous graphs and GCNs are combined for classifying An-

droid malware, meanwhile, for the same task, in Pei et al. (2020) ,

the GCN and recurrent networks are used for identifying and

learning semantic and sequential patterns. Oba et al. Oba and

Taniguchi (2020) presented a solution based on a GCN able to an-

alyze a multigraph based on triplets of client IP, server IP and

TCP/UDP ports. Crovella et al. Crovella and Kolaczyk (2003) use

graphs for representing and analyzing incoming and outgoing flows

of an access link and identify denial of service (DoS) attacks. In

Nagaraja et al. (2010) and in Wang et al. (2020) graph-based infor-

mation is combined with flow-based data for detecting botnets.

In Sun et al. (2020b) and Sun et al. (2020a) , new malicious

domain detection systems based on GCNs were introduced ex-

ploiting Heterogeneous Information Network for analyzing rela-

tions among domains, clients and IP address and finally extract

meta-path information for detecting malicious activities. Jiang et al.

Jiang et al. (2019) presented a GCN-based anomaly detection sys-

tem for threat and fraud detection. Results showed that GCNs out-

perform 4 state-of-the-art techniques. In Zheng et al. (2019) , an

anomalous edge detection framework based on GCNs with an at-

tention model (Gated Recurrent Unit) was presented.

Following these promising trends, we explore here benefits and

limitations of graph convolutional approaches for node behaviour

classification and compare them with unsupervised anomaly de-

tection techniques, as well as with a more traditional neural net-

work approach, where only feature information is used.

2.2.4. Anomaly detection (AD)

Anomaly detection (AD) is a task in which models learn the

distribution of given data and try to detect points that are dif-

ferent from the norm, thereby classifying them as anomalies

(Chandola et al., 2009). Even though this paper is focused on pre-

senting a novel graph-based methodology to address graph-related

class imbalance to improve node behaviour classification using su-

pervised approaches, it is interesting to compare our results with

traditional anomaly detection approaches that can be directly ap-

plied to the imbalanced graph-based dataset. For this reason, as

part of our study, we implemented 5 different anomaly detection

models, which, although all based on unsupervised machine learn-

ing, can be separated into semi-supervised AD and unsupervised

AD based on their training setup (Aggarwal, 2017),(Goldstein and

Uchida, 2016) (Section 4.5). This selection of algorithms is not ex-

haustive but we think that it represents a good benchmark set

for evaluating the benefits and limitations of our approach. In

particular, Isolation Forest (IForest) (Liu et al., 2012), Local Out-

lier Factor (LOF) (Breunig et al., 20 0 0), Density-Based Spatial Clus-

tering of Applications with Noise (DBSCAN) (Ester et al., 1996), k-

Nearest Neighbors (k -NN)(Liao and Vemuri, 2002) and Autoencoder

(AE) (Zhou and Paffenroth, 2017) were implemented here.

3. Methodology

In this section, a novel methodology is presented, which con-

verts network traffic classification into node behaviour classifi-

cation. In Section 3.1 , the problems to be addressed and the

main contributions of this work are presented. In Section 3.2 and

4

F. Zola, L. Segurola-Gil, J.L. Bruse et al. Computers & Security 115 (2022) 102632

Section 3.3 , the operations for extracting the Traffic Dispersion

Graphs (TDGs) via temporal dissection and the novel graph data-

level preprocessing techniques are described. Finally, in Section 3.4 ,

the applied classification operations are detailed.

3.1. Motivation and Contributions

In graph analysis based on real use cases, it may be useful to

not only classify a single node’s communication, but also to detect

the entity that has generated the communication in order to iso-

late or exclude it from the network. However, when graph struc-

tures are extracted from network traffic data, it should be noted

that it is not possible to use the whole dataset at once for creating

a unique static and monolithic graph. In fact, due to the structure

of common network traffic datasets that usually involve captures of

many hours or even days, the amount of data in the created graph

can require too much computational effort, making the applica-

tion of these graph approaches difficult. For example, using a graph

generated by a 10-hour long capture-day for training a model, the

final application (the test), would require a graph of comparable

size (other ∼ 10 hours). This can compromise the usability of the
trained model as attack detection timing is fundamental in order

to mitigate a threat promptly.

For this reason, in this work, we propose to extract and analyze

graph-based information from time series data (TDGs) by defining

entities/nodes and their links/edges. Furthermore, we add an op-

eration of temporal dissection, i.e. a fragmentation of the initial

dataset into fixed time intervals (or temporal snapshots) to high-

light network micro-dynamics and hence increase the usability of

the solution. In particular, a study analyzing the effect of three dif-

ferent temporal snapshot sizes on the behaviour definition is pre-

sented. Further, an enrichment operation is performed in which

graph features are extracted from each TDG and added to the en-

tities, enhancing their behaviour description.

As these temporal TDGs show a strong graph class imbalance

(due to the dominance of traffic information related to normal ac-

tivities rather than attack connections), we analyze and compare

two different approaches. On the one hand, we test unsupervised

models for anomaly detection, which directly assess the imbal-

anced dataset. On the other hand, we implement two supervised

machine learning approaches for node behaviour classification; one

that involves behavioural descriptions only (Neural Networks or

NN) and two others that additionally use graph neighborhood

information (Graph Convolutional Networks or GCN). Specifically,

two distinct approximations for the GCN convolution filter are

tested. Furthermore, in order to improve the supervised machine

learning results, two novel techniques for addressing the class im-

balance problem in graph-structured data are introduced. These

two graph data-level preprocessing techniques called R-hybrid and

SM-hybrid , exploit the fragmented TDGs for reducing their impact

on subgraph topology.

Figure 1 shows how the methodology for the supervised ML

is separated into three distinct phases: Graph creation; Data-level

Preprocessing; and finally, Classification . Note that the unsupervised

approach does not need the Data-level Preprocessing phase.

In summary, the main contributions of this work are:

• A temporal analysis using different time intervals for transform-
ing network traffic data into graph-based structures (TDGs) is

presented;

• Connection information is converted into node behaviours for
characterizing graph entities;

• Two novel graph data-level preprocessing techniques are intro-
duced to tackle class imbalance in graph data;

• Three Deep Learning approaches are compared in terms of node
behaviour classification performance (one based on behavioural

features only and the other two using graph relational informa-

tion as well).

• The results obtained using our approach based on supervised
machine learning and based on a balanced dataset (classifica-

tion) are compared to the ones obtained using 5 state-of-the-

art unsupervised techniques applied to the imbalanced dataset

(anomaly detection).

3.2. Phase 1: Graph creation

The first phase can be split into two parts; the first one fo-

cussing on the temporal dissection and TDG creation, and the sec-

ond one implementing an enrichment process.

3.2.1. Temporal Dissection and Traffic Dispersion Graphs (TDGs)

As the node behaviour classification task is here addressed as a

supervised machine learning task, an initial labelled dataset is re-

quired, which is relevant for the definition of normal and attack

behaviour. Figure 2 a shows how the time series datasets contain

information about traffic flows between a source and a destina-

tion, each one identified by several features such as IP, port, pro-

tocol, bytes and so on. We propose to use a temporal dissection

operation, which allows us to split the network traffic dataset into

fixed-time intervals, generating so-called temporal snapshots. From

each of these, Traffic Dispersion Graphs (TDGs) are extracted.

Each TDG is characterized by nodes - also referred to as enti-

ties - as a combination of IP and port number, and edges that in-

dicate if traffic is exchanged between nodes. Following these def-

initions, each row of the network traffic dataset can be seen as

an undirected edge. In fact, each row contains information about

data exchanged between the source and the destination, as well

as the information about the response sent by the destination to

the source (bidirectional flow). In this way, each row can be re-

duced to a 4-tuple of source entity, destination entity, edge fea-

tures and edge label (Figure 2 b). This operation allows us to gen-

erate a first version of the TDG from each temporal snapshot, as

shown in Figure 2 c. However, traffic information is still stored on

the edges of the graph, which is why an operation for translating

them into node behaviour is required (Figure 2 d). This operation

is performed by combining all the edge feature vectors in which

a certain node is involved. Let all the edges related to node i be

described as a feature vector e j = { f j 1 , f j 2 , ..., f j N } , where N is the
number of features and f j h represents the h − th feature of the
j − th edge, then it is possible to compute node i ’s behaviour B i
by combining its edge features with an averaging operation. For

example, following Figure 2 d, B 3 , i.e. the behaviour of the node 3 ,

could be computed by combining the edges’ features vectors of e 3 ,

e 7 and e 8 as indicated in Equation 4 .

B 3 = { f 3 1 + f 7 1 + f 8 1
3

,
f 3 2 + f 7 2 + f 8 2

3
, ...,

f 3 N + f 7 N + f 8 N
3

} (4)

Furthermore, it is possible to enhance the node behaviour de-

scription by enriching it with m additional features that can be

computed considering extra information such as the number of

joined edges, the maximum number of edges with the same entity,

and so on. This operation increases the behavioural vector dimen-

sionality from N to N + m elements.

Once TDGs are generated and edge information is converted

into node behaviours, it is important to assign a label to each node

in order to distinguish normal and attacker nodes. For executing

common attacks like Reconnaissance, Denial-of-Service, Port Scan,

Exploits, Fuzzers and many others in real use cases, attackers rep-

resent active entities that start the communication with its targets.

Hence, in order to label normal and attacker behaviour, only labels

related to edges in which a node appears as source entity are con-

sidered and combined. If among these labels the majority are nor-

5

F. Zola, L. Segurola-Gil, J.L. Bruse et al. Computers & Security 115 (2022) 102632

Fig. 1. Methodology phases.

Fig. 2. Pipeline for extracting Traffic Dispersion Graphs (TDGs).

mal edges, the node is labelled as normal. Otherwise, it is labelled

as attacker.

From here onward, in this paper, the terms behavioural features

will refer to the features that define each node behaviour, and 0-

class and 1-class will be used to indicate normal (0) and attacker (1)

behaviour, respectively.

3.2.2. Graph Features Enrichment

Our approach proposes to extract new information from TDG

structures in order to enhance/enrich node descriptions. In this

manner, each node behaviour is ultimately identified by both be-

havioural and graph features.

Creating the temporal TDG based on the network traffic dataset

and defining nodes as a combination of IP and port number

generates highly fragmented graphs characterized by many sub-

graph structures (Figure 3), which is in accordance with litera-

ture (Iliofotou et al., 2009a). In fact, it is normal that in a fixed,

short time interval activities related to a certain node are limited

- which promotes the creation of simple and disconnected graph-

structures. Yet, in rare cases, complex structures are generated in

which the subgraph is composed of two dense parts that are only

connected by one node. In order to denote these complex struc-

tures, the concepts of r-nodebridge, set of r-nodebridges and e -bridge

are defined.

Definition 3.1. Let G = (V, E) be a graph and u, v , z ∈ V be nodes

of G with u
 = v
 = z. Let e 1 = { v , u } , e 2 = { v , z} ∈ E be the only two

adjacent edges between those nodes, and suppose that both e 1 and

e 2 are bridges of G .

Let G ′ e i = (V ′ e i , E
′
e i
) and G ′′ e i = (V ′′ e i , E

′′
e i
) with i = 1 , 2 be the com-

ponents obtained by cutting e 1 or e 2 , respectively and let r =

max
i =1 , 2

min {| V ′ e i | , | V ′′ e i |} . Then, v is called r-nodebridge and W s is the set

of r-nodebridges for r ≥ s . The removed edge will be called e-bridge .

This definition allows for detecting all elements of the W s . For

each one, its e -bridge is removed in order to split the two dense

parts and create two distinct subgraphs, thereby reducing the over-

all complexity.

In order to improve the definition of node behaviour, several

graph metrics are directly extracted from the temporal snapshot

and added to each node behaviour. In particular, 12 common graph

metrics are chosen, as indicated in Table 1 . Three of them are first

computed by considering the whole graph in a temporal snapshot

6

F. Zola, L. Segurola-Gil, J.L. Bruse et al. Computers & Security 115 (2022) 102632

Table 1

Overview of graph metrics used as features.

Graph features Category Input Range Description

1 Degree Centrality Centrality Graph Subgraph [0, 1] represents the normalized degree of a node, i.e. dividing it by the

maximum possible degree of the considered graph (or subgraph).

2 Betweenness Centrality Graph Subgraph [0, 1] quantifies the number of times a node acts as a bridge along the

shortest path between two other nodes, divided by the total number

of the shortest paths between them.

3 Closeness Centrality Graph Subgraph [0, 1] represents the reciprocal of the average length of the shortest path

between the node and all other nodes in the input graph (or

subgraph). Higher values of closeness indicate higher centrality.

4 Second Order Centrality Centrality Subgraph [0, + inf) is the standard the deviation of the return times of a permanent

unbiased random walk running on the topology

Kermarrec et al. (2011) . Lower values of second order centrality

indicate higher centrality.

5 Edge Betweenness Centrality Subgraph [0, 1] represents the betweenness centrality of an edge e (the same

concept as defined in Betweenness, but applied to an edge). In our

case, edges centrality that involve the same node are summed.

6 Eccentricity Distance Subgraph [0, + inf) is the maximum distance of a node to all others in the considered

subgraph.

7 Barycenter Distance Subgraph 0 or 1 indicates if the node is part of the barycenter of the considered

subgraph.

8 Center Distance Subgraph 0 or 1 indicates if the eccentricity of a node is equal to its subgraph radius.

9 Radius Distance Subgraph [0, + inf) is the minimum eccentricity in each considered subgraph

10 Size Shape Subgraph [1, + inf) is the number of nodes in the subgraph to which the considered

node belongs.

11 Weighted Degree Shape Node [0, + inf) is the sum of weights of all connections in which a node is involved.

12 Degree two hops Relational Node [0, + inf) represents the number of connections of a node considering two

hops, i.e. two consecutive connections.

Fig. 3. Example of a graph extracted from a temporal snapshot (reduced).

and then by considering the concrete subgraph to which the node

belongs, obtaining a total of 15 graph features.

3.3. Phase 2: Data-level preprocessing

While the process described in Section 3.2 transforms traffic

data into graph behavioural information, it does not address the

class imbalance problem. The distribution of normal and attack

behavioural nodes generated in Phase 1 keeps suffering from the

same imbalance as the initial dataset.

For this reason and for improving the supervised ML results,

in Phase 2, the idea is to balance the number of attackers and

normal nodes introducing two novel techniques that are able to

create new synthetic samples for each temporal TDG. On the one

hand, these operations try to remove repeated subgraphs in which

normal nodes (majority class) are involved. On the other hand,

they try to replicate the most ”interesting” subgraphs in which

the local-majority population is made up of attacker nodes (minor-

ity class). In this way, these methods address the graph imbalance

problem without modifying the structural topologies of each TDGs’

subgraphs (Figure 4). More specifically, the first approach com-

bines RUS and ROS techniques to obtain a comparable distribution

among the classes for each TDG (named as R-hybrid), whereas the

second approach exploits RUS, SMOTE and ROS techniques (named

as SM-hybrid).

As mentioned, the first step is the same for both approaches -

detecting subgraph structures in each temporal snapshot that are

characterized by nodes belonging to the most represented class

only (normal behaviour). Once these structures are detected, they

are randomly removed for each snapshot until the population of

that class is halved (Figure 4 a). In this manner, direct relational

information is not modified and neither are the structures of the

untouched subgraphs.

For each TDG subgraph, structures that are characterized by at

least 60% of nodes belonging to the less represented class (attacker

behaviour) are then selected and randomly replicated, as shown

in Figure 4 b. The chosen percentage between attacker and normal

nodes in the selected subgraphs is justified for ensuring the con-

vergence of this approach, i.e. in each iteration there are more ele-

ments added belonging to the less represented class than elements

belonging to the majority class, allowing to reach a balanced pop-

ulation. The replication process is stopped when the number of at-

tacker nodes reaches the initial population of the normal nodes,

i.e. the population before starting the replication operation. Al-

though both approaches replicate the subgraph structures in the

same way, their main difference is related to how they replicate

single node behaviour in each subgraph, as shown in Figure 5 .

1. R-hybrid : after applying RUS, this technique replicates not only

the most relevant subgraphs, but also their node behaviours us-

ing a ROS strategy, as shown in Figure 5 a.

2. SM-hybrid : after applying RUS, this technique replicates the

most relevant subgraphs, however, normal behaviour are repli-

cated using ROS technique, whereas attacker nodes are gen-

7

F. Zola, L. Segurola-Gil, J.L. Bruse et al. Computers & Security 115 (2022) 102632

Fig. 4. Example of the proposed method for data-level augmentation on graph data.

erated by applying a SMOTE technique considering the be-

havioural features of the whole attacker nodes only (B x , B y
and B z in Figure 5 b). In fact, graph features are not considered

in the SMOTE process since they directly depend on the cho-

sen subgraph and can be calculated afterwards, as explained

in Section 3.2.2 . In order to apply the SMOTE technique, the

minority class should be characterized by a minimum number

of neighbors (N). When this condition is not satisfied, the ROS

technique is used instead.

3.4. Phase 3: Classification

Finally, in Phase 3, the node behaviour classification is per-

formed by training Deep Learning models. Considering the pre-

sented data structures, we opted for comparing two distinct learn-

ing approaches - Neural Networks (NN) using behavioural and

graph features to classify normal and attacker nodes and Graph

Convolutional Networks (GCNs), which combine neighborhood in-

Fig. 5. Difference in node behaviour generation using R-hybrid and SM-hybrid

methods.

formation extracted from the graph via a convolution operation.

Here, we investigate two GCN implementations where Chebychev

polynomials up to K degrees are used for modelling the (spectral)

convolutional filters, as described in Section 2.2.3 . In particular, the

first implementation is based on maximum Chebychev degree K

equal to 3 (ChebyNet or 3-GCN), and the second implementation

based on a Chebychev simplification (linear polynomial) presented

in Kipf and Welling (2017) , called first-order GCN or 1-GCN.

4. Experimental Framework

A network traffic dataset is used to validate the methodology

introduced in this work. In Section 4.1 and Section 4.2 , the dataset

as well as its limitations are described. In Section 4.3 , an overview

of the temporal dissection and the graph results are presented,

whereas Section 4.4 and Section 4.5 show the metrics used to eval-

uate the Deep Learning models and their settings. Finally, the ex-

periments are detailed in Section 4.6

8

F. Zola, L. Segurola-Gil, J.L. Bruse et al. Computers & Security 115 (2022) 102632

4.1. Dataset Overview and Feature Selection

To test our approach for node behaviour classification, a widely

used cybersecurity dataset (Monshizadeh et al., 2019; Zhang et al.,

2018) called UNSW-NB15 6 is used. This dataset was created with

the aim to improve existing benchmark datasets, which may not be

able to provide a comprehensive representation of network traffic

and attack scenarios (Moustafa and Slay, 2015). The UNSW-NB15

dataset contains real normal and synthetic abnormal network traf-

fic generated in the University of New South Wales (UNSW) cyber-

security lab. UNSW-NB15 is characterized by nine major families of

attacks (Fuzzers, Analysis, Backdoors, Denial of Services, Exploits,

Generic, Reconnaissance, Shellcode and Worms) and normal traffic

generated over two distinct capture days, the first with a simula-

tion period of 16 hours and the second with a simulation period of

15 hours. Although it is not always possible to clearly distinguish

attack families due to their multi-purpose applications and corre-

lations, in this study the following three categories are considered

in order to facilitate the description of the nine families: attacks

for gathering information, attacks for making a resource unavail-

able and attacks for taking control of a target (hijacking):

Gather information

1. Analysis: composed of different attacks like port scan, spam and

HTML file penetrations.

2. Generic: techniques that try to decrypt information using meth-

ods that work against block ciphers (with a given block and key

size).

3. Reconnaissance (or Gather): attacks used for discovering more

information about a target, usually to start an investigation be-

fore deploying the real attack.

Target unavailable

4. Fuzzers: attacks that randomly send data as input to a target in

order to exploit vulnerabilities and bugs for generating failure,

crashes or unwanted behaviour.

5. Denial-of-Service (DoS): method that tries to make a target un-

available by flooding it with traffic, or by sending information

that triggers a crash.

Hijacking

6. Backdoor: technique that uses methods for gaining authorized

and/or unauthorized access bypassing system security mecha-

nisms.

7. Exploits: attacks that take advantage of known weaknesses of

the target (bugs or vulnerabilities) to take over control and/or

steal information.

8. Shellcode: method that uses a small piece of code (usually com-

mand shell) to exploit software vulnerabilities and take control

of the compromised machine.

9. Worms: malware that has the ability to self-replicate and spread

automatically across multiple devices exploiting target vulnera-

bilities.

Tools like Argus 7 and Bro-IDS 8 are used to generate a first

preprocessed dataset, in which network packets are aggregated

in cumulative records - each one defined by a total of 49 fea-

tures, including two different class labels generated by the detec-

tion tools. One general class label indicates if a connection repre-

sents a normal activity (0) or an attack (1), whereas the second

label specifies the attack category according to the nine available

6 https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/

ADFA- NB15- Datasets/
7 https://qosient.com/argus/index.shtml
8 https://zeek.org/

categories. This labelled dataset is available in a CSV format, and

contains clean data without missing values or duplicated records

(Moustafa, 2017). Using this labelled version of the UNSW-NB15

dataset reduces the captured duration to 12 h : 35 m : 10 s and

11 h : 57 m : 41 s for the first and second capture day, respectively.

This preprocessed dataset is characterized by 2,540,044 labelled

flows of which 2,218,761 are labelled as normal and 321,283 are

labelled as attack flows. As described in other studies (Moustafa

and Slay, 2017; Zhang et al., 2018), not all of the 49 available fea-

tures are relevant for the classification. Hence, only the follow-

ing 21 features were used and combined here for defining and

extracting node behaviours: source/destination IP, source/destination

port number, transaction protocol, state protocol, record total dura-

tion, source/destination to destination/source bytes, source /destina-

tion to destination/ source time to live, source/ destination packets

dropped, source/ destination bits per second, services (dns, ftp, ssh,..),

source/ destination to destination/ source packet count, record start

timestamp, record label and category label .

4.2. Dataset limitations and clean up

As presented in Section 4.1 , nine attack families are given in the

UNSW-NB15 dataset. However, the dataset suffers from two major

problems: class imbalance and class overlap (Zoghi, 2020). In this

study, class imbalance is addressed by applying novel data-level

preprocessing algorithms in the graph domain, whereas class over-

lap is mitigated by reducing noisy information and by focusing the

analysis on the most populated protocols and services only.

Class overlap is created when the space generated by class

features from one class overlaps the space generated by features

from another class. As shown in Zoghi (2020) , several classes of

the UNSW-NB15 dataset suffer from class overlap. To mitigate the

problem and reduce the randomness of the data without los-

ing important information, the analysis was focused on partic-

ular services and protocols only, following previous suggestions

(Zhang et al., 2018). More specifically, only services identified as

undefined, dns, http, smtp and ftp were chosen. This filtered dataset

was characterized by more than 100 protocols. As not all them

have the same relevance, we decided to keep only the 16 most

represented protocols. The final filtered dataset loses less than 10%

of the originally available information, as shown in Table 2 , where

the size of the dataset for each category is shown before and after

filtering. Regarding the population of the 1-class (attack, malicious

class), the Worm family was excluded from the analysis due to its

low representation (0.06%), reducing the considered attack families

to eight.

Even though the main goal of this study is to compute a bi-

nary classification to distinguish between normal and attacker be-

haviour, the eight remaining attack families are considered in-

dividually during the data-level preprocessing operations. In this

manner, all considered attack subcategories are replicated often

enough, mitigating the creation of small disjuncts in the classifi-

cation problem. A small disjunct is a disjunct that covers only a

few training examples and that generates high error rates in test-

ing (Weiss, 2010).

To the best of our knowledge, this is the first time that this

dataset has been used for defining a structured graph to highlight

and classify node behaviours.

4.3. Temporal graph extraction

As explained in Section 3.1 , we need to extract temporal TDGs

(graphs) from the network traffic dataset (time series) prior to run-

ning experiments. The first operation is to fragment the dataset

into fixed time intervals (temporal dissection). Here, three tempo-

9

F. Zola, L. Segurola-Gil, J.L. Bruse et al. Computers & Security 115 (2022) 102632

Table 2

Comparison between class distributions in the initial and the filtered, cleaned dataset.

Category Label # Initial dataset # Filtered dataset % Population 1-class

0 Normal 0-class 2,218,764 2,037,045 -

1 Analysis 1-class 2,677 1,773 0,59

2 Generic 1-class 215,481 214,616 71,09

3 Reconnaissance 1-class 13,987 13,116 4,34

4 Fuzzers 1-class 24,246 23,116 7,66

5 DoS 1-class 16,353 11,204 3,71

6 Backdoor 1-class 2,329 1,527 0,51

7 Exploits 1-class 44,525 34,841 11,54

8 Shellcode 1-class 1,511 1,511 0,50

9 Worm 1-class 174 174 0,06

total 2,540,047 2,338,923 100

Fig. 6. Overview of temporal configurations and created temporal snapshots for

both capture days.

Table 3

Overview of identified nodes per class in the second capture day.

Category 300s 600s 900s

0 Normal 1,181,488 1,166,477 1,158,271

1 Analysis 358 341 338

2 Generic 3,256 3,174 3,149

3 Reconnaissance 9,862 9,831 9,810

4 Fuzzers 15,811 15,667 15,649

5 DoS 2,988 2,973 2,963

6 Backdoor 296 295 294

7 Exploits 19,606 19,526 19,482

8 Shellcode 1,290 1,288 1,289

total 1,234,955 1,219,572 1,211,245

overall population 0-class 95.47% 95.45% 95.43%

overall population 1-class 4.53% 4.55% 4.57%

ral snapshots sizes are chosen: 30 0 s , 60 0 s and 90 0 s and for each

configuration, TDGs are built.

In Figure 6 , the number of snapshots obtained in each config-

uration depending on the capture day is reported, as well as the

number of snapshots that are fully characterized by normal nodes

(without attacks) and the number of snapshots with an empty

population (without any kind of nodes). Temporal dissection gener-

ates different results depending on the available data and the du-

ration of the capture day. In particular, more than 80% of the cre-

ated snapshots in the first capture day do not show attacker be-

haviour. For this reason, only non-empty snapshots obtained from

the second capture day are considered - which are 141, 71 and 48

for 300 s , 600 s and 900 s , respectively.

Table 3 shows that the overall number of 1-class nodes is still

much lower than the number of nodes belonging to the 0-class

when considering all nodes in all extracted TDGs on the second

capture day. This once again highlights the strong class imbalance

that affects this dataset (imbalance rate ∼ 22). In fact, the 1-class
population represents less than 5% of the whole graph-based in-

formation regardless of the chosen temporal snapshot size. Fur-

thermore, a strong reduction of the Generic family is shown af-

ter the Graph creation phase even though it was the most repre-

sented family in terms of single connections (Table 2). This is be-

cause there are only a few distinct nodes that belong to this family

(Table 3) that generate large attack traffic (flows).

Once these temporal TDGs are extracted, the elements of the

set W s of each TDG are detected and all e -bridges associated with

them are removed in order to simplify rare enclosed complex

graph structures. In particular, to detect the elements of the W s

set, we chose s equal to 6. After this reduction, graph features are

computed and used for enriching the node behaviours description,

generating the inputs for the experiments.

4.4. Evaluation Metrics

Classification metrics used to evaluate the graph Deep Learning

model implemented in our experiments are obtained via the con-

fusion matrix related to binary classifications, defining the values

of True Positives, True Negatives, False Positives and False Nega-

tives.

• True Positives (tp) represent cases in which both the predicted
and the real label indicate anomalies/attacks (class 1).

• True Negatives (tn) represent cases in which both the predicted
and the real label indicate no-anomalies/normal (class 0).

• False Positives (fp) represent cases in which the model pre-
dicts anomalies (class 1), however the real label indicates no-

anomalies (class 0).

• False Negatives (fn) represent cases in which the model predicts
no-anomalies (class 0), however the real label indicates anoma-

lies (class 1).

Starting from the confusion matrix, 5 important metrics are cal-

culated for evaluating the learning classifier: Accuracy, Precision,

Sensitivity, False Prositive Rate (FPR) and F1-score. Accuracy repre-

sents an overall effectiveness of a classifier; Precision is a mea-

sure of a classifier’s exactness; Sensitivity represents a measure of

a classifier’s completeness; FPR indicates the ratio of negative ele-

ments predicted as positive ones; F1-score shows the relation be-

tween actual positive labels and those given by the classifier. These

metrics, as well as their formulas and range values are reported

in Table 4 . Furthermore, we include the Area Under the Receiver

Operating Characteristic Curve (AUC-ROC or AUROC) (Fawcett, 2006)

for evaluating and comparing different classification performances.

The AUC-ROC represents the classifier’s ability to distinguish be-

tween classes and it takes values in a range between 0 and 1.

To perform the experiments, for the supervised models, the

temporal TDGs are randomly separated into train, validation and

test datasets keeping a fixed proportion of temporal snapshots of

60%, 20% and 20%, respectively. For the unsupervised LOF, AE, and

IForest the initial dataset is split into train and test dataset only,

10

F. Zola, L. Segurola-Gil, J.L. Bruse et al. Computers & Security 115 (2022) 102632

Table 4

Evaluation metrics used for binary classification.

Measure Formula Value Range

Accuracy (or Score)
t p + t n

t p + t n + f p + f n
x 100 [0, 100]

Precision
t p

t p + f p
[0, 1]

Sensitivity (or Recall)
t p

t p + f n
[0, 1]

False Positive Rate (FPR)
f p

f p + tn
[0, 1]

F1-score
2 ∗ (Recall ∗ Precision)
Recall + Precision

[0, 1]

with a proportion of 80% and 20%, respectively as they do not re-

quire a validation operation. In particular, all attack samples are

excluded from the train dataset in order to have the unsupervised

models learn normal behaviour only - using an anomaly detection

setup called semi-supervised AD (Aggarwal, 2017),(Goldstein and

Uchida, 2016). For the cluster-based unsupervised models DBSCAN

and k -NN, the whole dataset is used at once in order to create

clusters and detect outliers within them - using an anomaly detec-

tion setup called unsupervised AD (Aggarwal, 2017),(Goldstein and

Uchida, 2016).

For supervised models and semi-supervised AD, each experi-

ment is repeated 5 times with a different composition of their

partitions but keeping the described proportions. Hence, for such

models, the reported metrics represent an average over 5 rep-

etitions. Standard deviations are reported as well. The process

of calculating such metrics over multiple repetitions, however,

may introduce unintentional and undesired bias (Forman and

Scholz, 2010). There are several methodologies to overcome these

issues. As presented in Forman and Scholz (2010) , for AUC-ROC,

averaging the single values computed in each iteration represents

the best solution, whereas for F1-score, it is recommended to ap-

ply Equation (5) , where T P, F P and F N represent the total num-

ber of true positives, false positives and false negative over the all

repetitions, respectively. For the unsupervised AD setup, results are

obtained with a unique execution as the entire dataset is used at

once.

In this paper, we exploit the labeled data to compute classical

supervised metrics such as Precision, Recall, F1-score and AUC-ROC

for unsupervised models too, as in previous studies (Kwon et al.,

2019),(Meira et al., 2020),(Perez et al., 2019). In this way, it is easier

to compare both supervised and unsupervised results.

2 × T P
2 × T P + F P + F N

(5)

The terms F1-score avg and AUC-ROC are used to denote the met-

rics computed via averaging values obtained in each repetition,

whereas F1-score tp,fp is used to indicate the metric obtained using

Equation (5) . F1-score tp,fp does not have a standard deviation as it

is calculated combining data from all repetitions.

4.5. Machine learning model architectures and parameters

As explained in Section 3.3 , the minimum number of neighbors

(N) for allowing SMOTE operations in the SM-hybrid approach is

set to 6. In Table 5 , configuration parameters for the NN, 1-GCN

and 3-GCN learning models are reported. All models are imple-

mented using a similar structure, although they perform the clas-

sification task in different ways. Specifically, they are composed of

1 hidden layer of 300 neurons with a Rectified Linear Unit (ReLu)

as activation function and 0.50 as dropout value. ADAM optimiza-

tion algorithms with learning rate 0.0 0 05 are used. For the NN, 512

is chosen as batch size. Generally it is difficult to determine the

training duration without generating under-fitting or over-fitting

Table 5

Learning model parameters.

Parameters NN 1-GCN 3-GCN

Neurons in the hidden layer 300 300 300

Activation function ReLu ReLu ReLu

Dropout Value 0.5 0.5 0.5

Optimizer ADAM ADAM ADAM

Learning rate 0.0005 0.0005 0.0005

Batch size 512 - -

Max Training epochs 100 100 100

Early stopping 10 10 10

during neural network training. Hence, it is important to fix a

parameter called early stopping, which represents the number of

consecutive epochs in which the model performance is evaluated

(Prechelt, 1998). If performance degrades, the training process is

stopped. In our experiments, the maximum number of epochs is

set to 100 and the early stopping parameter is set to 10.

For LOF and k -NN, the minimum number of neighbors was set

to 7. Further, for the k -NN, the maximum distance was chosen as

80% of the data distribution, i.e. all the samples that had a distance

higher than 80% of the data distribution were considered anoma-

lies. The IForest was implemented with a number of estimators

set of 100 and with a threshold anomaly of 0.8. This threshold is

used to evaluate the predictions, i.e. if the predicted score of an

element exceeds such threshold, the point represents an anomaly,

otherwise normal behaviour. For the DBSCAN approach an ε (max-
imum distance between two samples) of 0.2 was chosen. The AE

was composed of one hidden layer to reduce the input dimension-

ality to 45, using a tanh function as activation and a sigmoid for

reconstructing the output. The AE was trained with a batch size of

512 during 50 epochs.

4.6. Experiments

The goal of this study is to classify normal and attacker be-

haviours in a network traffic dataset using a temporal graph-based

representation. For this reason, a novel methodology is introduced

applying temporal graph extraction while tackling class imbalance

and finally performing classification via Deep Learning-based ap-

proaches. Applying this methodology, however, raises the following

main questions:

1. Do the two novel data-level preprocessing approaches correctly ad-

dress graph class imbalance? How do unsupervised techniques per-

form with the original, unbalanced dataset?

2. How does temporal snapshot size (temporal dissection) affect node

behaviour classification?

3. Which is the best learning model to be used?

To address these issues, three main experiments are carried out.

Experiment 1 : The aim of this experiment is to compare the

performance of 3 graph-based supervised models trained with

the imbalanced graph dataset (baseline) versus the same models

trained using a balanced dataset that was obtained by applying

R-hybrid and SM-hybrid. Furthermore, 5 unsupervised models for

anomaly detection are implemented and compared. All the mod-

els are trained and tested with temporal TDGs extracted with only

one fixed time interval (600 s). Both supervised and unsupervised

models are first trained and tested with the imbalanced dataset,

then (as shown in Figure 7 a) for the supervised machine learning

models, the two data-level preprocessing approaches are directly

applied to the training dataset in order to create a more balanced

training population (Phase 2). As described in Section 4.2 , the data-

level preprocessing operations are performed considering the pop-

ulation of each attack family separately to avoid the creation of

11

F. Zola, L. Segurola-Gil, J.L. Bruse et al. Computers & Security 115 (2022) 102632

Fig. 7. Structure of the experiments.

Table 6

Training population in the first experiment (600 s).

Imbalanced Baseline Balanced R-hybrid Balanced SM-hybrid

Class # samples (%) # samples (%) # samples (%)

0-class 95.64 ±0.05 54.72 ±0.09 54.94 ±0.07
1-class 4.36 ±0.05 45.28 ±0.09 45.06 ±0.07

small disjuncts. For each temporal snapshot, data-level preprocess-

ing is executed until the sum of attack populations of all families

is equal to the initial normal population.

Experiment 2 : The goal of this experiment is to evaluate how

temporal snapshot sizes affect the definition of node behaviours

and their classification. For this reason, three temporal snapshot

sizes - 30 0 s , 60 0 s and 90 0 s - are used to split the dataset and ex-

tract the temporal TDGs. Then, for each temporal snapshot size,

a balanced version of these TDGs is used for training the learning

models. The balanced TDGs are obtained by applying the data-level

preprocessing operation that shows the best results in Experiment

1 . Finally, an analysis of how the temporal snapshot size affects the

duration of a single training epoch for each model is presented.

Experiment 3 : The aim of this experiment is to evaluate which

of the three learning approaches NN, 1-GCN and 3-GCN performs

best for the node behaviour classification. We compare the best

results each model has obtained in previous experiments and

also compare their different configurations. Although models are

trained to perform a binary classification only (attack/normal be-

haviour), a study regarding the most detected attack families is car-

ried out in order to highlight benefits and limitations of the pre-

sented methodology. For this, the population of a test dataset is

evaluated to count how many elements of each attack family are

actually classified as attacker node.

5. Experimental Study

In this section, our methodology is validated with a traffic

network dataset. In particular, in Section 5.1, Section 5.2 and

Section 5.3 the results of the three experiments are detailed, and

finally, in Section 5.4 , strengths and limitations are discussed.

5.1. Experiment 1: On the goodness of graph data-level preprocessing

Table 6 shows the average training population in 5 repetitions

of the first experiment, when a temporal snapshot size of 600 s

was used. Both data-level preprocessing techniques - R-hybrid and

Fig. 8. Attack families distribution in the 1-class training dataset (600 s).

SM-hybrid - allowed to address the graph imbalance in the train-

ing dataset, converting an initial distribution of 95.64% and 4.36%

for the 0-class and 1-class, respectively, to a more balanced dis-

tribution of ∼ 55 % and ∼ 45 %. Figure 8 reveals the structure of
the training dataset and, in particular the distribution of the at-

tack families that composed the 1-class set, averaged over 5 rep-

etitions. During data-level preprocessing, all attack families were

considered separately reshaping their distribution, i.e. the number

of samples belonging to each attack family was homogenized. This

effect is evident in Figure 8 , in which the Generic, Reconnaissance,

Fuzzers and DoS families tended towards a similar representation

between 16% and 20% and the Exploits family tended to a per-

centage between 23% and 25%. However, the three other families

- Analysis, Backdoor and Shellcode - did not seem to be affected by

data-level preprocessing, and their overall representation was de-

creased (less than 0.20%). This phenomena may be explained by

their graph structures, which may not have satisfied the minimum

requirements for being included in the data-level preprocessing,

i.e. attacker nodes may not have been involved in subgraphs with

at least 60% of attacked nodes.

In Table 7 , the classification results obtained after training the

learning models with the imbalanced dataset are presented. In par-

ticular, these results allow us to define the baseline performance

when several supervised as well as unsupervised models are ap-

plied. While class imbalance of the training dataset significantly

affected the two graph-based models (1-GCN and 3-GCN), it was

less relevant for NN and DBSCAN performance, which both reached

acceptable values in terms of F1-scores (more than 0.60) and AUC-

12

F. Zola, L. Segurola-Gil, J.L. Bruse et al. Computers & Security 115 (2022) 102632

Table 7

Comparison between models trained with imbalanced data, using 600 s as temporal snapshot size (Baseline results).

Supervised Machine Learning Unsupervised Machine Learning

Classification Semi-supervised AD Unsupervised AD

Metrics NN 1-GCN 3-GCN LOF AE IForest DBSCAN k -NN

Precision 0.71 ±0.10 - 0.50 ±0.20 1.00 ±0 1.00 ±0 1.00 ±0 1.00 1.00

Recall 0.64 ±0.13 0 ±0 0.03 ±0.02 0.28 ±0.01 0.25 ±0.01 0.24 ±0.02 0.48 0.41

F1-score tp,fp 0.66 0 0.06 0.44 0.40 0.38 0.64 0.58

F1-score avg 0.66 ±0.06 - 0.06 ±0.04 0.44 ±0.01 0.40 ±0.01 0.38 ±0.02 0.64 0.58

AUC-ROC 0.81 ±0.06 0.50 ±0 0.52 ±0.01 0.65 ±0.01 0.63 ±0.01 0.62 ±0.01 0.74 0.71

Table 8

Comparison between models trained with balanced (R-hybrid, SM-hybrid) data, using 600 s as tempo-

ral snapshot size.

Supervised Machine Learning

R-hybrid SM-hybrid

Metrics NN 1-GCN 3-GCN NN 1-GCN 3-GCN

Precision 0.53 ±0.05 0.53 ±0.03 0.59 ±0.02 0.54 ±0.03 0.54 ±0.03 0.60 ±0.02
Recall 0.89 ±0.01 0.77 ±0.02 0.93 ±0.01 0.89 ±0.04 0.81 ±0.02 0.93 ±0.02
F1-score tp,fp 0.66 0.63 0.73 0.67 0.65 0.73

F1-score avg 0.67 ±0.04 0.63 ±0.02 0.73 ±0.01 0.67 ±0.02 0.65 ±0.02 0.73 ±0.02
AUC-ROC 0.93 ±0.01 0.87 ±0.01 0.95 ±0.01 0.93 ±0.01 0.89 ±0.01 0.95 ±0.01

ROC (more than 0.70). More specifically, among the unsupervised

methods, the models based on unsupervised AD setup performed

better than the ones based on semi-supervised AD. However, all

of them (even though reaching best precision scores, i.e. no false

positives), showed a high number of false negatives and thus low

values of sensitivity (less than 0.50). Among the supervised mod-

els, 1-GCN showed very limited performance on the imbalanced

data since it learnt to classify all samples as belonging to the 0-

class. This effect generated an AUC-ROC value of 0.50, F1-score tp,fp
of 0 and made it impossible to calculate the F1-score avg . On the

other hand, the 3-GCN learnt a few details related to attacker be-

haviour (AUC-ROC = 0.52), which resulted though in rather low F1-

scores (F1-score tp,fp = F1-score avg = 0.06). The best results for imbal-

anced training data were obtained by the NN model with both F1-

scores equal to 0.66 and AUC-ROC equal to 0.81.

Table 8 shows the results based on a dataset balanced by

using the newly introduced data-level preprocessing techniques.

These results demonstrate that a more balanced dataset generated

clear improvements when supervised machine learning was used

in the classification task. Specifically, the 3-GCN presented the

best results in terms of F1-scores and AUC-ROC reaching 0.73 and

0.95, respectively, regardless of the data-level preprocessing used.

The 1-GCN improved as well when using the balanced dataset

and reached its best values with the SM-hybrid technique (F1-

scores = 0.65 and AUC-ROC = 0.89). The NN model, however, was

only slightly affected as its F1-score avg and AUC-ROC improved by

only 0.01 and 0.12 points, respectively.

This first experiment indicated that both data-level prepro-

cessing techniques generated classification improvements indepen-

dently of the supervised machine learning model used. Further-

more, the results obtained in this way were the best results, also

when comparing them with the ones obtained from the consid-

ered traditional, unsupervised models. More concretely, best re-

sults were generated with the SM-hybrid approach. For this rea-

son, only this data-level technique was considered for the second

experiment.

5.2. Experiment 2: Comparing different snapshot sizes

Table 9 highlights the effects of the temporal snapshot size

on node behaviour classification. The reported metrics were ob-

Fig. 9. Duration of a single training epoch when using the SM-hybrid balanced

dataset.

tained by training and testing the three learning models using dis-

tinct temporal snapshot sizes. SM-hybrid is used for balancing the

dataset in all cases. All models generated similar values in terms of

AUC-ROC regardless of temporal snapshot size, but they diverged

with respect to F1-scores. More specifically, all models showed

best results using a temporal snapshot size of 600 s , with an F1-

score avg of 0.67, 0.65 and 0.73 for the NN, 1-GCN and 3-GCN, re-

spectively. Increasing the temporal snapshot size to 900 s generated

the worst values in terms of F1-scores and the three models scored

0.06, 0.04 and 0.05 points less compared to their best results, re-

spectively, but kept the AUC-ROC values almost unchanged. On the

other hand, decreasing the temporal snapshot size to 300 s gener-

ated slightly lower values in terms of AUC-ROC, where NN, 1-GCN

and 3-GCN lost 0.01, 0.02 and 0.01 points, respectively.

Regarding the computational costs of the different approaches

when dealing with different tem poral snapshot sizes, Figure 9

shows the average duration of an epoch during the training pro-

cess. Epoch duration during NN and 1-GCN training was similar

and did not change visibly when changing temporal snapshot size.

However, for the case of 3-GCN training, the duration of an epoch

increased almost exponentially with increasing temporal snapshot

size, reaching a value of more than two minutes for a single epoch

when using a size of 900 s .

13

F. Zola, L. Segurola-Gil, J.L. Bruse et al. Computers & Security 115 (2022) 102632

Table 9

Classification metrics obtained in the second experiment by varying the temporal snapshot size and by using SM-hybrid data-level preprocessing.

Data-level SM-hybrid 300s. 600s. 900s.

Metrics NN 1-GCN 3-GCN NN 1-GCN 3-GCN NN 1-GCN 3-GCN

F1-score tp,fp 0.61 0.63 0.70 0.67 0.65 0.73 0.61 0.60 0.67

F1-score avg 0.62 ±0.06 0.63 ±0.01 0.70 ±0.02 0.67 ±0.02 0.65 ±0.02 0.73 ±0.02 0.61 ±0.03 0.61 ±0.03 0.68 ±0.03
AUC-ROC 0.92 ±0.02 0.87 ±0.02 0.94 ±0.01 0.93 ±0.01 0.89 ±0.01 0.95 ±0.01 0.92 ±0 0.89 ±0.01 0.95 ±0.01

Table 10

Best results achieved by the three tested learning models.

Metrics NN 1-GCN 3-GCN

Temporal snapshot size 600s 600s 600s

Data-level SM-hybrid SM-hybrid SM-hybrid

Accuracy 96.12 ±0.33 96.13 ±0 96.92 ±0
Precision 0.54 ±0.03 0.54 ±0.03 0.60 ±0.02
Recall 0.89 ±0.04 0.81 ±0.02 0.93 ±0.02
FPR 0.04 ±0 0.03 ±0 0.03 ±0
F1-score tp,fp 0.67 0.65 0.73

F1-score avg 0.67 ±0.02 0.65 ±0.02 0.73 ±0.02
AUC-ROC 0.93 ±0.01 0.89 ±0.01 0.95 ±0.01

Fig. 10. Attack families as detected by the three learning models in their best con-

figuration.

5.3. Experiment 3: Comparing different learning approaches

In Table 10 , the best configuration and the best results of each

learning approach are reported. All tested models - NN, 1-GCN,

and 3-GCN - showed their best results using the same configura-

tion, i.e. using a temporal snapshot size of 600 s and using train-

ing data balanced with the SM-hybrid technique. Observing this

table, the best results over all metrics were obtained using the 3-

GCN, which highlights the importance of considering graph rela-

tions during node behaviour classification. However, a linear ap-

proximation as applied in the 1-GCN did not show benefits since

Recall, F1-scores and AUC-ROC metrics were outperformed by the

NN model (Table 10).

Figure 10 details the percentages of detected attack families for

each of the three learning models when using the best configura-

tion. The 3-GCN detected 7 out of 8 attack families with accuracy

higher than 90% and for the Reconnaissance family even ∼ 99 %.
However, 3-GCN had problems detecting samples belonging to the

Analysis family, as demonstrated by low accuracy values (∼ 50 %)
and the high variability. The 1-GCN was again outperformed by the

NN, which for two families - Backdoors and Shellcode - also outper-

formed the 3-GCN classifier. However, NN showed lower accuracy

than 3-GCN in detecting Generic, Fuzzers, DoS and Exploits families

(between 85% to 90%), and a clear deficit regarding detection of the

Analysis family (∼ 27 %)

5.4. Discussion

In this paper, we aimed to classify node behaviours in network

traffic data by transforming the given time series data into graphs.

As the obtained graph-based dataset is characterized by strong

class imbalance, we tested two different approaches, one based on

supervised ML and the other based on unsupervised ML (anomaly

detection, AD). Both approaches initially showed low recall scores

and thus lower overall performance (F1-scores and AUC-ROC). For

this reason, we investigated the effects of class imbalance in the

input dataset and presented two new methods to tackle this issue.

Further, we analysed how the temporal snapshot size used for ex-

tracting the graphs affects the classification results.

Regarding class imbalance, it was found that the NN implemen-

tation was generally not strongly affected and aligned with the

unsupervised AD models, while both graph-based learning models

required the application of data-level preprocessing techniques in

order to improve classification performance. As the application of

data-level techniques in the graph domain is not straightforward,

we propose here two approaches: R-hybrid and SM-hybrid . Our ex-

periments show that SM-hybrid generally achieved better results.

This approach involves RUS, SMOTE and ROS techniques. Results

hence demonstrate that class imbalance is indeed an issue when

using graph-based approaches and that these data-level techniques

need to be carefully set up.

Regarding temporal snapshot size, in our case, interestingly all

models performed best with a size of 600 s and worsened when

increasing the size further. This indicates that it is important to

carefully choose temporal snapshot sizes when trying to detect at-

tack node behaviour in network data. Furthermore, it should be

noted that using graph-based approaches with higher order filter

approximation (such as the 3-GCN) with larger temporal snapshot

sizes may yield significantly longer training epochs as our results

have shown for the example dataset.

In all experiments, the best results with high Accuracy, Recall

and AUC-ROC values were obtained with a 3-GCN model, suggest-

ing that exploiting graph relations for classifying node behaviours

is a promising approach. However, experiments showed also that

these graph learning models need to be applied and configured

properly - as a linear approximation (1-GCN) did not seem to be

sufficient to take full advantage of the added graph-based infor-

mation. Interestingly, this model was outperformed (by a few score

points) by a NN model that did include graph-based features, but

did not consider relations generated by nodes. Furthermore, the

NN model proved to be robust against class imbalance and was not

affected in terms of training epoch duration by the chosen tempo-

ral size.

Interesting performance differences among the three consid-

ered models were revealed when looking at the attack families

that could be detected. Here, NN seemed to be the most suit-

able method for detecting Backdoors and Shellcode attacks, while

the 3-GCN approach performed very well for all other attack fami-

lies apart from Analysis . Actually, all compared models had prob-

lems in detecting samples belonging to the Analysis family. This

attack family, as well as the Backdoor and Shellcode families, are

the least represented ones in the training dataset as they do not

14

F. Zola, L. Segurola-Gil, J.L. Bruse et al. Computers & Security 115 (2022) 102632

participate in the data-level preprocessing. Although our approach

translates the attack classification problem into a behavioural clas-

sification task, the classification results of these three attack fam-

ilies can be traced back to the class overlap problem that charac-

terizes the UNSW-NB15 dataset. Analyzing the KMeans Interclus-

ter Distance Map of the original dataset (Zoghi, 2020), Backdoor

and Shellcode families suffer from this class overlap problem with

DoS and Fuzzers families, respectively. However, in the case of bi-

nary classification, this issue positively affects the results as more

represented classes contain information of less represented classes

as well. The Analysis family, on the other hand, suffers from class

overlap with the Worm family. This is the class that had been re-

moved due to its low number of samples. Hence, in this case, there

are no other attack families that have information regarding the

Analysis samples, most likely causing these low scores.

While our approach generated overall improvements - espe-

cially when graph-based learning was used - the values of F1-

scores could potentially be further improved. More precisely, as

demonstrated by the third experiment, Precision values are lim-

ited generating a loss of classification quality (although FPRs are

less than 0.04). This effect could be related to the application

of the UNSW-NB15 dataset and its limitations, as introduced in

Section 4.2 .

5.4.1. Methodology Limitations

Graphs created from network traffic data mainly depend on

the shape of the initial dataset, which should contain information

about sources and destinations as well as a temporal axis. One ad-

vantage of this approach is that the definition of a ”node” could

be easily adapted according to the problem at hand, promoting

its application to other domains. Moreover, the usage of node be-

haviour helps to maintain a stable supervision of entities, linking

behaviors between snapshots. Further, it allows evaluating features

that directly depend on the nodes, such as event logs or suspicious

actions in the operating system of the device. However, although

the presented methodology can be applied to several IT applica-

tions, forensic analysis etc., there are specific scenarios in which

its application may be limited. These scenarios include, for exam-

ple, analysing communication data in critical infrastructures (en-

ergy, industry, etc.) where timing is fundamental in order to ap-

ply countermeasures and reduce the impact of a cyber-attack very

quickly. In these cases, operators typically require reaction times

shorter than the temporal snapshots used here for extracting node

behaviours. Hence, in these scenarios, traditional intrusion detec-

tion systems (IDSs) based on time-series data may be more effec-

tive (see next section), which, however, do not provide information

regarding node behaviours.

There are also other limitations in our approach that should be

discussed. On the one hand, the introduced data-level preprocess-

ing operations are designed for balancing graph datasets in which

the information is fragmented and hence we focus on increasing

the substructures in which the minority class is present. This is

the case of temporal TDGs and network traffic data, but adapta-

tions will likely be required when the problem presents a unique

graph where all nodes are connected among them. On the other

hand, in terms of the GCN implementation, it is clear from the re-

sults that a higher order convolutional filter improves the ability

of the classifier, but at the same time it substantially increases the

training time.

5.4.2. UNSW-NB15 Comparative Study

This work introduces a novel methodology to analyze a net-

work traffic dataset using a graph-based approach for the classi-

fication of node behaviour. The idea is not to directly classify net-

work traffic itself (punctual or specific information), but to eval-

uate who has generated such flows by classifying node behaviour

in a temporal snapshot (summary information). With this graph-

based representation, it is therefore not possible to directly apply

temporal deep learning technologies like 1D-CNN, Long Short-Term

Memories (LSTMs) or Recurrent Neural Networks (RNNs) as the in-

formation that should be classified is not represented by a point in

a time series but by a complex graph composed of distinct nodes

that change their individual behaviour (state) over time.

When comparing our work with others in the literature, we

did not find any study directly related to our work. To the best

of our knowledge, our approach has not been explored before. For

this reason, Table 11 reports previous works that use the UNSW-

NB15 dataset for implementing different intrusion detection sys-

tems (IDSs). In these studies the network traffic dataset is ana-

lyzed as a time series with the aim of instantly detecting malicious

flows (typical IDS task). Hence, a direct one-to-one comparison

with our graph-based approach analysing node behaviours is diffi-

cult and potentially unfair. In particular, previous implementations

are mainly based on ML and Deep Learning (DL) models such as

Support Vector Machines (SVM), Random Forest (RF), Naive Bayes

(NB), Multilayer perceptron (MLP), CNNs, 1D-CNN and LSTMs.

As shown in Table 11 , the accuracy obtained with the proposed

node behaviour approach is quite similar to the one obtained by

directly classifying network connections; in fact, in their best im-

plementation they reach ∼96% and ∼99%, respectively. However,
analyzing the results in terms of Precision, Recall and F1 score, it is

clear that the node behaviour classification is a more complex and

challenging task than the one based on network connections. In

particular, in its best configuration, the introduced node behaviour

approach reaches values of 0.60, 0.93 and 0.73, for Precision, Re-

call and F1, respectively, while network connection classifiers show

values higher than 0.90 in all the three metrics. Yet, it is to be

noted that the network traffic approach generates very variable

results depending on the approximation and the algorithm used.

In terms of training time, some ML approaches were the fastest

with a duration of a couple of seconds only (NB), while more com-

plex approaches like CNN required more than 1 hour. The 3-GCN

implemented in this work required more than 2 hours for train-

ing the model, while the 1-GCN was faster than a simple CNN

(Jiang et al., 2020) and was totally aligned with the training time

of a CNN combined with a BiLSTM (Jiang et al., 2020). Note that he

reported values (strongly) depend on the computational resources

used, which varies in the different works.

Finally, we would like to point out again that a one-to-one com-

parison between our graph-based approach and previously pub-

lished models is challenging as these models predominantly anal-

yse time-series data of communication flows between actors in

the network to detect suspicious individual flows. Additionally, al-

though all the analyzed approaches start from the same initial

dataset, the extraction of TDGs for the node behaviour classifica-

tion alters the magnitude of the imbalance problem, increasing the

difficulty to compare the results. Furthermore, the models based

on time series do not provide broader information regarding the

actors, i.e., regarding the nodes themselves and their behaviour

over time. Unlike our graph-based approach they cannot classify

an entire node’s behaviour as a potentially malicious actor in the

network. Their results are thus instantaneous and therefore quicker

but without providing the bigger picture concerning all nodes’ be-

haviours. With our GCN-based models, one could identify mali-

cious actors within a network and then make decisions regarding

the isolation or exclusion of this actor in order to restore the cy-

bersecurity of the entire network. In fact, future elaborate network

monitoring systems may provide a combination of both detection

capabilities: time-series-based IDS for quick, short-term malicious

flow detection and longer term graph-based node analysis to pin-

point potentially malicious actors in the network based on their

behaviour.

15

F. Zola, L. Segurola-Gil, J.L. Bruse et al. Computers & Security 115 (2022) 102632

Table 11

Comparison of the GCNs implemented in this study with existing IDS models that analyse the UNSW-NB15 dataset (note, however, that results between node behavior

classification and network connection classification are not directly comparable).

Scope/

Classification Data Type Model Combined Ref. Accuracy (%) Precision Recall F1 AUC

Training

time (s)

Node

behaviour

Graph 1-GCN - - 96.13 0.54 0.81 0.65 0.89 2,863

3-GCN - - 96.92 0.60 0.93 0.73 0.95 8,081

Network

connection

Time series SVM - Belouch et al. (2018) 92.28 - 0.92 - - 38.91

Random

Forest

- Belouch et al. (2018) 97.49 - 0.94 - - 5.69

- Zhou et al. (2020) - 0.78 0.99 0.87 0.82 -

- Segurola-Gil et al. (2021) 99.00 0.94 0.99 0.97 - 217.97

- Azizjon et al. (2020) 87.82 0.90 0.87 0.87 - -

+ SGM Zhang et al. (2020) 98.68 0.91 - 0.95 - 9.28

Decision

Tree

- Belouch et al. (2018) 95.82 - 0.93 - - 4.80

+ SVD Ugwu et al. (2021) 92.08 0.76 0.81 0.79 - -

Naive

Bayes

- Belouch et al. (2018) 74.19 - 0.92 - - 2.25

- Zhou et al. (2020) - 0.75 0.98 0.85 0.81 -

+ AE Segurola-Gil et al. (2021) 98.00 0.91 0.98 0.94 - 169.15

+ SVD Ugwu et al. (2021) 86.31 0.78 0.70 0.73 - -

MLP - Segurola-Gil et al. (2021) 99.00 0.92 0.99 0.95 - 282.89

+ SGM Zhang et al. (2020) 98.74 0.91 - 0.95 - 7.90

1D-CNN - Azizjon et al. (2020) 91.20 0.88 0.96 0.92 - -

+ LSTM Azizjon et al. (2020) 89.93 0.86 0.95 0.90 - -

CNN - Dhillon and Haque (2021) 92.16 - - - - -

- Jiang et al. (2020) 74.65 0.80 0.76 0.78 - 4,522.56

+ SGM Zhang et al. (2020) 98.82 0.92 - 0.96 - 48.56

+ LSTM Dhillon and Haque (2021) 98.30 - - - - -

+ LSTM Zhou et al. (2020) - 0.80 0.96 0.87 0.83 -

+ BiLSTM Jiang et al. (2020) 76.82 0.82 0.79 0.80 - 2,750.47

LSTM - Ugwu et al. (2021) 84.68 0.61 0.40 0.48 - -

- Zhou et al. (2020) - 0.81 0.99 0.89 0.85 -

+ SVD Ugwu et al. (2021) 94.28 0.86 0.80 0.84 - -

Variational Zhou et al. (2020) - 0.86 0.98 0.91 0.90 -

6. Conclusions and Future work

In this study, we present a novel methodology that converts

an attack classification problem into a node behaviour classifica-

tion problem, thereby highlighting the importance of understand-

ing and correctly manipulating the input data and properly con-

figuring the classification model. Our approach allows extracting

temporal graph-based information (temporal TDGs) from network

traffic data while focusing on micro-dynamics and the evolution

of node behaviours. Two novel techniques for addressing class im-

balance in the graph domain were proposed (R-hybrid and SM-

hybrid) and proved to be suitable to reduce class imbalance while

minimizing changes in the graph topology. When temporally dis-

secting the given network traffic data to unveil network micro-

dynamics, we investigated the effect of the temporal snapshot

size on the classification of node behaviour. Finally, three differ-

ent Deep Learning approaches - Neural Network, 1-GCN, and 3-

GCN - were implemented and compared with more traditional

unsupervised anomaly detection methods that do not require a

balanced dataset. Overall, the methods presented in this paper

showed promising results that can be summarized as follows:

• It is possible to convert time series information into
graph-based structures by properly defining the concept of

node/entity and link/edge. Then, edge information can be

combined to characterize each node behaviour;

• The unsupervised models for anomaly detection trained as
semi-supervised AD together with the 1-GCN and 3-GCN were

most affected by class imbalance;

• The NN together with the DBSCAN (unsupervised AD) showed
good results for the imbalanced data;

• Novel proposed data-level preprocessing techniques - R-hybrid
and SM-hybrid - successfully solved the class imbalance prob-

lem in graph data and yielded good classification results. SM-

hybrid generated the best results.

• Temporal snapshot size is relevant when analysing network
traffic data using a graph-based approach. All learning models

generated the best classification results using a temporal snap-

shot size of 600 s for the given dataset.

• Increasing the temporal snapshot size heavily affected single
training epoch duration for the 3-GCN model (exponential up-

ward trend), while NN and 1-GCN training epoch duration was

less affected;

• The 3-GCN model including graph-based features showed best
overall classification performance. However, the graph-based

model applying linear approximation (1-GCN) was outper-

formed by the NN approach, which did not use any graph rela-

tions, regardless of the temporal snapshot size;

• Among the 8 considered attack families, the 3-GCN was able to
detect 7 of them with an Accuracy above 90%. However, the at-

tack families Backdoors and Shellcode could best be detected via

NN. None of the learning models were able to detect Analysis

attacks well.

The presented graph data-level preprocessing approaches were

developed in order not to modify the graph structures and topol-

ogy. Further, they needed to be applicable in situations in which

graph information is fragmented and the minority class creates

highly-represented substructures. As future work, it may be inter-

esting to modify these techniques so that they can be applied in

cases where entities are fairly mixed with other classes (as it is

the case for the Analysis, Backdoor and Shellcode families in our ex-

periment). Furthermore, the precision of the classification could be

improved by applying clustering operations after the TDGs creation

in order to aggregate similar behaviours, reducing noisy data and

enhancing small interactions between the nodes. The effectiveness

of distinct clustering algorithms should be compared in order to

understand how they affect the initial population as well as the fi-

nal classification. Finally, an approach based on Generative Adver-

sarial Networks (GANs) for creating new synthetic node behaviour

16

F. Zola, L. Segurola-Gil, J.L. Bruse et al. Computers & Security 115 (2022) 102632

and their connections within the graph could be a solution for im-

proving the variety of attack class samples.

Declaration of Competing Interest

The authors declare that they have no known competing finan-

cial interests or personal relationships that could have appeared to

influence the work reported in this paper.

CRediT authorship contribution statement

F. Zola: Conceptualization, Investigation, Methodology, Valida-

tion, Visualization, Writing – original draft. L. Segurola-Gil: Inves-

tigation, Data curation. J.L. Bruse: Visualization, Writing – review

& editing. M. Galar: Visualization, Writing – review & editing. R.

Orduna-Urrutia: Conceptualization, Supervision.

References

Aggarwal, C.C. , 2017. An introduction to outlier analysis. In: Outlier analysis.

Springer, pp. 1–34 .

Agrafiotis, I. , Nurse, J.R.C. , Goldsmith, M. , Creese, S. , Upton, D. , 2018. A taxonomy
of cyber-harms: Defining the impacts of cyber-attacks and understanding how

they propagate. Journal of Cybersecurity 4 (1), tyy006 .
Akoglu, L. , Tong, H. , Koutra, D. , 2015. Graph based anomaly detection and descrip-

tion: a survey. Data mining and knowledge discovery 29 (3), 626–688 .
Azizjon, M. , Jumabek, A. , Kim, W. , 2020. 1d CNN based network intrusion detec-

tion with normalization on imbalanced data. In: 2020 International Confer-
ence on Artificial Intelligence in Information and Communication (ICAIIC). IEEE,

pp. 218–224 .

Belouch, M. , El Hadaj, S. , Idhammad, M. , 2018. Performance evaluation of intrusion
detection based on machine learning using apache spark. Procedia Computer

Science 127, 1–6 .
Bollobás, B. , 2013. Modern graph theory, volume 184. Springer Science & Business

Media .
Breunig, M.M. , Kriegel, H.P. , Ng, R.T. , Sander, J. , 20 0 0. Lof: identifying density-based

local outliers. In: Proceedings of the 20 0 0 ACM SIGMOD international confer-

ence on Management of data, pp. 93–104 .
Chandola, V. , Banerjee, A. , Kumar, V. , 2009. Anomaly detection: A survey. ACM com-

puting surveys (CSUR) 41 (3), 1–58 .
Chawla, N.V. , Bowyer, K.W. , Hall, L.O. , Kegelmeyer, W.P. , 2002. Smote: synthetic

minority over-sampling technique. Journal of artificial intelligence research 16,
321–357 .

Coley, C.W. , Jin, W. , Rogers, L. , Jamison, T.F. , Jaakkola, T.S. , Green, W.H. , Barzilay, R. ,

Jensen, K.F. , 2019. A graph-convolutional neural network model for the predic-
tion of chemical reactivity. Chemical science 10 (2), 370–377 .

Crovella, M. , Kolaczyk, E. , 2003. Graph wavelets for spatial traffic analysis. In:
IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Com-

puter and Communications Societies (IEEE Cat. No. 03CH37428), volume 3. IEEE,
pp. 1848–1857 .

Defferrard, M. , Bresson, X. , Vandergheynst, P. , 2016. Convolutional neural networks

on graphs with fast localized spectral filtering. In: Advances in neural informa-
tion processing systems, pp. 3844–3852 .

Dhillon, H., Haque, A., 2021. Towards network traffic monitoring using deep transfer
learning. arXiv e-prints. arXiv:2101.00731 .

Djidjev, H. , Sandine, G. , Storlie, C. , Vander Wiel, S. , 2011. Graph based statistical
analysis of network traffic. In: Proceedings of the Ninth Workshop on Mining

and Learning with Graphs .

Ester, M. , Kriegel, H.P. , Sander, J. , Xu, X. , et al. , 1996. A density-based algorithm for
discovering clusters in large spatial databases with noise. In: kdd, volume 96,

pp. 226–231 .
Fawcett, T. , 2006. An introduction to ROC analysis. Pattern recognition letters (8)

861–874 .
Fernández, A. , García, S. , Galar, M. , Prati, R.C. , Krawczyk, B. , Herrera, F. , 2018. Learn-

ing from imbalanced data sets, volume 11. Springer .

Forman, G. , Scholz, M. , 2010. Apples-to-apples in cross-validation studies: pitfalls
in classifier performance measurement. Acm Sigkdd Explorations Newsletter 12

(1), 49–57 .
Formosa, P. , Wilson, M. , Richards, D. , 2021. A principlist framework for cybersecurity

ethics. Computers & Security 102382 .
Gao, H. , Cheng, S. , Zhang, W. , 2021. Gdroid: Android malware detection and classi-

fication with graph convolutional network. Computers & Security 106, 102264 .
Garcia-Garcia, A. , Orts-Escolano, S. , Oprea, S. , Villena-Martinez, V. , Martinez-Gon-

zalez, P. , Garcia-Rodriguez, J. , 2018. A survey on deep learning techniques for

image and video semantic segmentation. Applied Soft Computing 70, 41–65 .
Goldstein, M. , Uchida, S. , 2016. A comparative evaluation of unsupervised anomaly

detection algorithms for multivariate data. PloS one 11 (4), e0152173 .
Hamilton, W. , Ying, Z. , Leskovec, J. , 2017. Inductive representation learning on large

graphs. In: Advances in neural information processing systems, pp. 1024–1034 .

Hart, P. , 1968. The condensed nearest neighbor rule (corresp.). IEEE transactions on
information theory 14 (3), 515–516 .

He, H. , Bai, Y. , Garcia, E.A. , Li, S. , 2008. Adasyn: Adaptive synthetic sampling ap-
proach for imbalanced learning. In: 2008 IEEE international joint conference

on neural networks (IEEE world congress on computational intelligence). IEEE,
pp. 1322–1328 .

Hu, P. , Lau, W.C. . A survey and taxonomy of graph sampling .
Iliofotou, M. , Faloutsos, M. , Mitzenmacher, M. , 2009a. Exploiting dynamicity in

graph-based traffic analysis: Techniques and applications. In: Proceedings of the

5th international conference on Emerging networking experiments and tech-
nologies, pp. 241–252 .

Iliofotou, M. , Kim, H.c. , Faloutsos, M. , Mitzenmacher, M. , Pappu, P. , Varghese, G. ,
2009b. Graph-based p2p traffic classification at the internet backbone. In: IEEE

INFOCOM Workshops 2009. IEEE, pp. 1–6 .
Iliofotou, M. , Pappu, P. , Faloutsos, M. , Mitzenmacher, M. , Singh, S. , Varghese, G. ,

2007. Network monitoring using traffic dispersion graphs (tdgs). In: Proceedings

of the 7th ACM SIGCOMM conference on Internet measurement, pp. 315–320 .
Japkowicz, N. , Stephen, S. , 2002. The class imbalance problem: A systematic study.

Intelligent data analysis 6 (5), 429–449 .
Jiang, J. , Chen, J. , Gu, T. , Choo, K.K.R. , Liu, C. , Yu, M. , Huang, W. , Mohapatra, P. , 2019.

Anomaly detection with graph convolutional networks for insider threat and
fraud detection. In: MILCOM 2019-2019 IEEE Military Communications Confer-

ence (MILCOM). IEEE, pp. 109–114 .

Jiang, K. , Wang, W. , Wang, A. , Wu, H. , 2020. Network intrusion detection combined
hybrid sampling with deep hierarchical network. IEEE Access 8, 32464–32476 .

Jin, B. , Gao, C. , He, X. , Jin, D. , Li, Y. , 2020. Multi-behavior recommendation with
graph convolutional networks. In: Proceedings of the 43rd International ACM

SIGIR Conference on Research and Development in Information Retrieval,
pp. 659–668 .

Jin, Y. , Sharafuddin, E. , Zhang, Z.L. , 2009. Unveiling core network-wide communi-

cation patterns through application traffic activity graph decomposition. ACM

SIGMETRICS Performance Evaluation Review 37 (1), 49–60 .

Kermarrec, A.M. , Le Merrer, E. , Sericola, B. , Trédan, G. , 2011. Second order central-
ity: Distributed assessment of nodes criticity in complex networks. Computer

Communications 34 (5), 619–628 .
Khraisat, A. , Gondal, I. , Vamplew, P. , Kamruzzaman, J. , 2019. Survey of intrusion de-

tection systems: techniques, datasets and challenges. Cybersecurity 2 (1), 20 .

Kipf, T.N. , Welling, M. , 2017. Semi-supervised classification with graph convolutional
networks. In: International Conference on Learning Representations (ICLR) .

Kwon, D. , Kim, H. , Kim, J. , Suh, S.C. , Kim, I. , Kim, K.J. , 2019. A survey of deep learn-
ing-based network anomaly detection. Cluster Computing 22 (1), 949–961 .

Leevy, J.L. , Khoshgoftaar, T.M. , Bauder, R.A. , Seliya, N. , 2018. A survey on addressing
high-class imbalance in big data. Journal of Big Data 5 (1), 1–30 .

Leskovec, J. , Faloutsos, C. , 2006. Sampling from large graphs. In: Proceedings of the

12th ACM SIGKDD international conference on Knowledge discovery and data
mining, pp. 631–636 .

Leung, K. , Leckie, C. , 2005. Unsupervised anomaly detection in network intrusion
detection using clusters. In: Proceedings of the Twenty-eighth Australasian con-

ference on Computer Science-Volume 38, pp. 333–342 .
Li, J. , Izakian, H. , Pedrycz, W. , Jamal, I. , 2021. Clustering-based anomaly detection in

multivariate time series data. Applied Soft Computing 100, 106919 .
Liao, Y. , Vemuri, V.R. , 2002. Use of k-nearest neighbor classifier for intrusion detec-

tion. Computers & security 21 (5), 439–448 .

Liu, F.T. , Ting, K.M. , Zhou, Z.H. , 2012. Isolation-based anomaly detection. ACM Trans-
actions on Knowledge Discovery from Data (TKDD) 6 (1), 1–39 .

Long, Y. , Wu, M. , Kwoh, C.K. , Luo, J. , Li, X. , 2020. Predicting human microbe-drug
associations via graph convolutional network with conditional random field.

Bioinformatics .
Meira, J. , Andrade, R. , Praça, I. , Carneiro, J.a. , Bolón-Canedo, V. , Alonso-Betanzos, A. ,

Marreiros, G. , 2020. Performance evaluation of unsupervised techniques in cy-

ber-attack anomaly detection. Journal of Ambient Intelligence and Humanized
Computing 11 (11), 4 477–4 489 .

Monshizadeh, M. , Khatri, V. , Atli, B.G. , Kantola, R. , Yan, Z. , 2019. Performance evalua-
tion of a combined anomaly detection platform. IEEE Access 7, 100964–100978 .

Monti, F. , Boscaini, D. , Masci, J. , Rodola, E. , Svoboda, J. , Bronstein, M.M. , 2017. Ge-
ometric deep learning on graphs and manifolds using mixture model cnns. In:

Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion, pp. 5115–5124 .
Moustafa, N. , 2017. Designing an online and reliable statistical anomaly detection

framework for dealing with large high-speed network traffic. University of New
South Wales, Canberra, Australia .

Moustafa, N. , Slay, J. , 2015. Unsw-nb15: a comprehensive data set for network intru-
sion detection systems (unsw-nb15 network data set). In: 2015 military com-

munications and information systems conference (MilCIS). IEEE, pp. 1–6 .

Moustafa, N. , Slay, J. . Rcnf: Real-time collaborative network forensic scheme for ev-
idence analysis .

Nagaraja, S. , Mittal, P. , Hong, C.Y. , Caesar, M. , Borisov, N. , 2010. Botgrep: Finding p2p
bots with structured graph analysis. In: USENIX security symposium, volume 10,

pp. 95–110 .
Nguyen, H.M. , Cooper, E.W. , Kamei, K. , 2011. Borderline over-sampling for imbal-

anced data classification. International Journal of Knowledge Engineering and

Soft Data Paradigms 3 (1), 4–21 .
Oba, T. , Taniguchi, T. . Graph convolutional network-based suspicious communication

pair estimation for industrial control systems .
Omar, S. , Ngadi, A. , Jebur, H.H. , 2013. Machine learning techniques for anomaly de-

tection: an overview. International Journal of Computer Applications 79 (2) .

17

F. Zola, L. Segurola-Gil, J.L. Bruse et al. Computers & Security 115 (2022) 102632

Pei, X. , Yu, L. , Tian, S. , 2020. Amalnet: A deep learning framework based on
graph convolutional networks for malware detection. Computers & Security 93,

101792 .
Perez, D. , Alonso, S. , Moran, A. , Prada, M.A. , Fuertes, J.J. , Dominguez, M. , 2019. Com-

parison of network intrusion detection performance using feature representa-
tion. In: International Conference on Engineering Applications of Neural Net-

works. Springer, pp. 463–475 .
Prechelt, L. , 1998. Early stopping-but when? In: Neural Networks: Tricks of the

trade. Springer, pp. 55–69 .

Rong, Y. , Huang, W. , Xu, T. , Huang, J. . Dropedge: Towards deep graph convolutional
networks on node classification .

Sarker, I.H. , Kayes, A. , Badsha, S. , Alqahtani, H. , Watters, P. , Ng, A. , 2020. Cyberse-
curity data science: an overview from machine learning perspective. Journal of

Big Data 7 (1), 1–29 .
Scarselli, F. , Gori, M. , Tsoi, A.C. , Hagenbuchner, M. , Monfardini, G. , 2008. The graph

neural network model. IEEE Transactions on Neural Networks 20 (1), 61–80 .

Segurola-Gil, L. , Zola, F. , Echeberria-Barrio, X. , Orduna-Urrutia, R. . Nbcoded: network
attack classifiers based on encoder and naive bayes model for resource limited

devices .
Silva, T.C. , Zhao, L. , 2016. Machine learning in complex networks, volume 1. Springer .

Stivala, A.D. , Koskinen, J.H. , Rolls, D.A. , Wang, P. , Robins, G.L. , 2016. Snowball sam-
pling for estimating exponential random graph models for large networks. So-

cial Networks 47, 167–188 .

Stumpf, M., Wiuf, C., May, R., 2005. Subnets of scale-free networks are not scale-
free: Sampling properties of networks. Proceedings of the National Academy

of Sciences of the United States of America 102, 4221–4224. doi: 10.1073/pnas.
0501179102 .

Sun, X. , Wang, Z. , Yang, J. , Liu, X. , 2020a. Deepdom: Malicious domain detection
with scalable and heterogeneous graph convolutional networks. Computers &

Security 99, 102057 .

Sun, X. , Yang, J. , Wang, Z. , Liu, H. , 2020b. Hgdom: Heterogeneous graph convolu-
tional networks for malicious domain detection. In: NOMS 2020-2020 IEEE/IFIP

Network Operations and Management Symposium. IEEE, pp. 1–9 .
Tan, C.L. , Chiew, K.L. , Yong, K.S.C. , Abdullah, J. , Sebastian, Y. , et al. , 2020. A graph-the-

oretic approach for the detection of phishing webpages. Computers & Security
95, 101793 .

Tomek I., et al. Two modifications of CNN1976;.

Ugwu, C.C. , Obe, O.O. , Popoola, O.S. , Adetunmbi, A.O. , 2021. A distributed denial of
service attack detection system using long short term memory with singular

value decomposition. In: 2020 IEEE 2nd International Conference on Cyberspac
(CYBER NIGERIA). IEEE, pp. 112–118 .

Van Schaik, P. , Renaud, K. , Wilson, C. , Jansen, J. , Onibokun, J. , 2020. Risk as affect:
The affect heuristic in cybersecurity. Computers & Security 90, 101651 .

Wang, W. , Shang, Y. , He, Y. , Li, Y. , Liu, J. , 2020. Botmark: Automated botnet detection

with hybrid analysis of flow-based and graph-based traffic behaviors. Informa-
tion Sciences 511, 284–296 .

Wehmuth, K. , Ziviani, A. , Fleury, E. , 2015. A unifying model for representing time–
varying graphs. In: 2015 IEEE International Conference on Data Science and Ad-

vanced Analytics (DSAA). IEEE, pp. 1–10 .
Weiss, G.M. , 2010. The impact of small disjuncts on classifier learning. In: Data Min-

ing. Springer, pp. 193–226 .
Wu, L. , Sun, P. , Hong, R. , Fu, Y. , Wang, X. , Wang, M. . SocialGCN: An efficient graph

convolutional network based model for social recommendation .

Wu, Y. , Cao, N. , Archambault, D. , Shen, Q. , Qu, H. , Cui, W. , 2016. Evaluation of graph
sampling: A visualization perspective. IEEE transactions on visualization and

computer graphics 23 (1), 401–410 .
Wu, Z. , Pan, S. , Chen, F. , Long, G. , Zhang, C. , Philip, S.Y. , 2020. A comprehensive

survey on graph neural networks. IEEE Transactions on Neural Networks and
Learning Systems .

Xie, T. , Grossman, J.C. , 2018. Crystal graph convolutional neural networks for an ac-

curate and interpretable prediction of material properties. Physical review let-
ters 120 (14), 145301 .

Xin, Y. , Kong, L. , Liu, Z. , Chen, Y. , Li, Y. , Zhu, H. , Gao, M. , Hou, H. , Wang, C. , 2018.
Machine learning and deep learning methods for cybersecurity. IEEE Access 6,

35365–35381 .
Yao, Y. , Su, L. , Lu, Z. , 2018. DeepGFL: Deep feature learning via graph for attack

detection on flow-based network traffic. In: MILCOM 2018-2018 IEEE Military

Communications Conference (MILCOM). IEEE, pp. 579–584 .
Yen, S.J. , Lee, Y.S. , 2006. Under-sampling approaches for improving prediction of the

minority class in an imbalanced dataset. In: Intelligent Control and Automation.
Springer, pp. 731–740 .

You, J. , Liu, B. , Ying, Z. , Pande, V. , Leskovec, J. , 2018. Graph convolutional policy net-
work for goal-directed molecular graph generation. Advances in neural informa-

tion processing systems .

Zhang, H. , Huang, L. , Wu, C.Q. , Li, Z. , 2020. An effective convolutional neural net-
work based on SMOTE and gaussian mixture model for intrusion detection in

imbalanced dataset. Computer Networks 177, 107315 .
Zhang, H. , Wu, C.Q. , Gao, S. , Wang, Z. , Xu, Y. , Liu, Y. , 2018. An effective deep learn-

ing based scheme for network intrusion detection. In: 2018 24th International
Conference on Pattern Recognition (ICPR). IEEE, pp. 6 82–6 87 .

Zhang, S. , Tong, H. , Xu, J. , Maciejewski, R. , 2019. Graph convolutional networks: a

comprehensive review. Computational Social Networks 6 (1), 1–23 .

Zhao, J. , Liu, X. , Yan, Q. , Li, B. , Shao, M. , Peng, H. , 2020a. Multi-attributed heteroge-
neous graph convolutional network for bot detection. Information Sciences .

Zhao, J. , Yan, Q. , Liu, X. , Li, B. , Zuo, G. , 2020b. Cyber threat intelligence modeling
based on heterogeneous graph convolutional network. In: 23rd International

Symposium on Research in Attacks, Intrusions and Defenses ({ RAID } 2020),
pp. 241–256 .

Zhao, T. , Liu, Y. , Neves, L. , Woodford, O. , Jiang, M. , Shah, N. . Data augmentation for
graph neural networks .

Zheng, L. , Li, Z. , Li, J. , Li, Z. , Gao, J. , 2019. Addgraph: Anomaly detection in dynamic

graph using attention-based temporal GCN. In: IJCAI, pp. 4 419–4 425 .
Zhou, C. , Paffenroth, R.C. , 2017. Anomaly detection with robust deep autoencoders.

In: Proceedings of the 23rd ACM SIGKDD international conference on knowl-
edge discovery and data mining, pp. 665–674 .

Zhou, J. , Cui, G. , Zhang, Z. , Yang, C. , Liu, Z. , Wang, L. , Li, C. , Sun, M. . Graph neural
networks: A review of methods and applications .

Zhou, X. , Hu, Y. , Liang, W. , Ma, J. , Jin, Q. , 2020. Variational LSTM enhanced anomaly

detection for industrial big data. IEEE Transactions on Industrial Informatics 17
(5), 3469–3477 .

Zhou, Y. , Hu, G. , He, W. , 2009. Using graph to detect network traffic anomaly. In:
2009 International Conference on Communications, Circuits and Systems. IEEE,

pp. 341–345 .
Zoghi, Z. , 2020. Ensemble Classifier Design and Performance Evaluation for Intrusion

Detection Using UNSW-NB15 Dataset. University of Toledo .

Francesco Zola obtained his bachelor’s degree in Telecommunication Engineering
at University of Cassino and Southern Lazio, Italy, in 2012 and his master’s de-

gree in Computer Science in the same university, in 2015. He works as associate
researcher and data scientist in Vicomtech in the department of Digital Security

applying machine learning in cybersecurity projects. In 2019 he started his doc-
torate in collaboration with the Public University of Navarre (UPNA), focusing his

works on graph analysis, machine learning, data augmentation and classification.

Francesco is involved in several European and industrial projects related to cyber-
security, blockchain analysis and anomaly detection.

Lander Segurola-Gil is a mathematician who obtained his bachelor’s degree in the
University of País Vasco - Euskal Herriko Unibertsitatea (UPV-EHU) and received

a master’s degree in Mathematics and Applications from the University of Madrid
(UAM). Since 2019, he works as a research assistant in Vicomtech in the department

of Digital Security. His research interests are Naive Bayes networks, attack detection

and machine learning applied to time series.

Dr. Jan L. Bruse graduated in Mechanical Engineering at RWTH Aachen University,
Germany, in 2013 and received his doctorate in Biomedical Engineering from Uni-

versity College London, United Kingdom, in 2017. His PhD thesis combines Medical
Image Analysis, Computational Simulation and Machine Learning for the develop-

ment of Clinical Decision Support Systems. Jan has participated in several inter-

national and interdisciplinary research collaborations, has multiple peer-reviewed
publications in journals and congresses indexed in the engineering and clinical sec-

tor and is reviewer for several international journals. Since September 2017, Jan is
Research Engineer at Vicomtech, Spain, in the area of Data Intelligence for Energy

and Industrial Processes where he develops Artificial Intelligence (AI) and Machine
Learning platforms within the context of Industry 4.0 projects.

Dr. Mikel Galar received the MSc and PhD degrees in Computer Science in 2009

and 2012, both from the Public University of Navarre (UPNA), Spain. He is currently
an associate professor at the Department of Statistics, Computer Science and Math-

ematics at the UPNA. He is the author of 35 published original articles in interna-
tional journals and more than 50 contributions to conferences. He is also reviewer

of more than 35 international journals. His research interests are machine learning,
data mining, classification, fuzzy systems and big data. He is a member of the IEEE,

the European Society for Fuzzy Logic and Technology (EUSFLAT) and the Spanish As-

sociation of Artificial Intelligence (AEPIA). He has received the extraordinary prize
for his PhD thesis from the Public University of Navarre and the 2013 IEEE Trans-

actions on Fuzzy System Outstanding Paper Award for the paper “A New Approach
to Interval-Valued Choquet Integrals and the Problem of Ordering in Interval-Valued

Fuzzy Set Applications” (bestowed in 2016)

Dr. Raul Orduna-Urrutia received his degree in Computer Engineering at the Fac-
ulty of Informatics of San Sebastian by the University of the Basque Country

(UPV/EHU) and obtained a PhD degree in Computer Science and Artificial Intelli-
gence at the School of Industrial and Telecommunications Engineering (ETSIIT) of

the Public University of Navarre (UPNA). He is currently an associate professor at
the Department of Statistics and Computer Science at the UPNA, and, at the same

time, the Digital Security Director in Vicomtech. He has taken part or led projects

related with ethical hacking, forensic analysis, malware analysis, access control and
cryptography. He has participated in more than 6 successful funded projects, is the

author of 6 published original articles in international journals. He is also a re-
viewer of Fuzzy Sets and Systems.

18

3. Attacking Bitcoin anonymity: Generative Adversarial Net-
works for improving Bitcoin entity classification

The work related to this part is in:

Zola F., Segurola Gil L., Bruse J.L., Galar M. and Orduna Urrutia R., Attacking Bit-
coin anonymity: Generative Adversarial Networks for improving Bitcoin entity classifica-
tion, Appl Intell (2022), DOI: 10.1007/s10489-022-03378-7

Status: Published.

Impact Factor (JCR 2020): 5.086.

Knowledge area:

� Computer Science, Artificial Intelligence. Ranking 35/139 (Q2).

Applied Intelligence
https://doi.org/10.1007/s10489-022-03378-7

Attacking Bitcoin anonymity: generative adversarial networks

for improving Bitcoin entity classification

Francesco Zola1,2 · Lander Segurola-Gil1 · Jan L. Bruse1 ·Mikel Galar2 · Raul Orduna-Urrutia1

Accepted: 11 February 2022
© The Author(s) 2022

Abstract
Classification of Bitcoin entities is an important task to help Law Enforcement Agencies reduce anonymity in the Bitcoin
blockchain network and to detect classes more tied to illegal activities. However, this task is strongly conditioned by a
severe class imbalance in Bitcoin datasets. Existing approaches for addressing the class imbalance problem can be improved
considering generative adversarial networks (GANs) that can boost data diversity. However, GANs are mainly applied in
computer vision and natural language processing tasks, but not in Bitcoin entity behaviour classification where they may be
useful for learning and generating synthetic behaviours. Therefore, in this work, we present a novel approach to address the
class imbalance in Bitcoin entity classification by applying GANs. In particular, three GAN architectures were implemented
and compared in order to find the most suitable architecture for generating Bitcoin entity behaviours. More specifically,
GANs were used to address the Bitcoin imbalance problem by generating synthetic data of the less represented classes
before training the final entity classifier. The results were used to evaluate the capabilities of the different GAN architectures
in terms of training time, performance, repeatability, and computational costs. Finally, the results achieved by the proposed
GAN-based resampling were compared with those obtained using five well-known data-level preprocessing techniques.
Models trained with data resampled with our GAN-based approach achieved the highest accuracy improvements and were
among the best in terms of precision, recall and f1-score. Together with Random Oversampling (ROS), GANs proved to
be strong contenders in addressing Bitcoin class imbalance and consequently in reducing Bitcoin entity anonymity (overall
and per-class classification performance). To the best of our knowledge, this is the first work to explore the advantages
and limitations of GANs in generating specific Bitcoin data and “attacking” Bitcoin anonymity. The proposed methods
ultimately demonstrate that in Bitcoin applications, GANs are indeed able to learn the data distribution and generate new
samples starting from a very limited class representation, which leads to better detection of classes related to illegal activities.

Keywords Bitcoin address classification · Entity anonymity attack · Entity classification · Generative adversarial networks
(GAN) · Class imbalance problem

1 Introduction

Bitcoin represents a pseudo-anonymous peer-to-peer net-
work, which allows its users to communicate through
transactions stored in a public ledger called blockchain
[1]. To date, Bitcoin is the most frequently used cryp-
tocurrency for concealing illicit activities as quantified in
traffic of around $76 billion per year [2]. Users typically
feel shielded by Bitcoin anonymity and at the same time

� Francesco Zola
fzola@vicomtech.org

Extended author information available on the last page of the article.

conceive it as a convenient payment mechanism [3]. Fur-
thermore, although the volatility of cryptomarkets intro-
duces high risks, entrepreneurs and corporate executives
have high expectations regarding blockchain technology.
Several recommendations for blockchain platforms can be
found in [4]. An escalation of illegal activities and the goal
of improving the network’s resilience to cyber-attacks have
led researchers and Law Enforcement Agencies (LEAs)
to investigate how to reduce anonymity within the Bit-
coin blockchain network [5]. Anonymity can be decreased
through Bitcoin entity classification [6, 7], which aims to
detect and classify entities’ behavioural patterns within the
network. However, this classification problem - typically
addressed via supervised machine learning approaches -
strongly depends on the initial labelled Bitcoin dataset,

F. Zola et al.

which allows the definition of singular entity behaviour.
These kinds of datasets are often characterized by a non-
homogeneously distributed population, which means that
some entity classes present in the dataset are more popu-
lated than others, causing a severe class imbalance problem.
Especially for supervised machine learning problems, this
phenomenon dramatically affects the quality of the learn-
ing system. Classifiers trained using imbalanced datasets are
usually biased in favour of the majority classes and fail to
detect underrepresented ones [8].

The class imbalance problem becomes even more
relevant in applications where it is hard to detect and collect
new observations as is typically the case for Bitcoin-related
data. The lack of data, usually related to samples potentially
associated with illicit activities, negatively affects the
performance of a classifier for a behavioural prediction
system [9].

Traditional approaches used to address dataset imbalance
problems can be clustered into four groups [8]: cost-
sensitive learning, data-level preprocessing, algorithm-level
approaches, and ensemble learning. Cost-sensitive learning
uses cost values for penalizing misclassifications of some
classes to improve their importance during the training
phase [10]. Data-level approaches are based on adjusting the
initial distribution to construct a balanced training dataset
(resampling). Algorithm-level techniques try to modify
existing algorithms to address the class imbalance problem
directly inside the learning algorithm itself [11]. Ensemble
learning is composed of techniques that train different
classifiers with the original data and then combine their
results for the final classification [8].

Cost-sensitive and data-level approaches, as well as
a combination of both methods, are the most used
techniques when deep learning models are trained [12].
In particular, cost-sensitive modifications of the back-
propagation learning are made in order to improve the
sensitivity of the minority class. This operation promotes
the classification of samples in the minority class over the
majority ones, as shown in several works [12, 13].

Other interesting and more complex approaches for
addressing the imbalance problem are based on the
implementation of generative models for enhancing the size
and quality of the training data [14]. These approaches
have been widely and very successfully used for image
[15] and video [16] generation, since they are able
to learn underlying true data distributions from limited
available samples. In fact, as presented in [17], adversarial
technology, and more specifically generative models,
allow access and unlock hidden information in a dataset.
Moreover, these models are typically used for enhancing
the fairness in the original dataset to avoid bias in the
classification [18].

For this reason, in this paper, we introduce and analyse
a method based on adversarial learning (generative model)
to tackle the Bitcoin class imbalance problem, with the
ultimate goal of improving the performance of the final
classifier. Motivated by their good results in other domains
and their promising capabilities to learn complex data
distributions, we use here Generative Adversarial Networks
(GANs) [19] to create new synthetic samples balancing
the class distributions in the original dataset, and then use
the balanced dataset to train the classifier. In this way,
we can evaluate how the additional synthetic samples help
to improve the classifier and ultimately affect its ability
to decrease Bitcoin entity anonymity. Since our approach
is based on balancing the initial population by adding
new elements (resampling), we compare our GAN-based
methodology with commonly used data-level techniques.
GANs are typically implemented using two neural networks
competing with each other in order to improve the ability
of the whole system to learn and reproduce the input
distribution. These “adversarial” models are mainly used in
the domain of image processing [20] - currently being one of
the most promising machine learning models in tasks related
to image generation [21, 22].

Despite their potential, it is impossible to find a
unique GAN solution that works for every scenario, which
has led to the creation of different GAN architectures,
each one with different goals and different application
domains [23]. Therefore, one aim of this study is to
investigate which type of GAN architecture can be used to
generate synthetic Bitcoin address data behaviour and which
architecture generates the most “valuable” information, i.e.
valid synthetic samples that actually improve the Bitcoin
entity classification. We also investigate how GAN training
time affects classification results and whether results
achieved with the best performing GAN setup are consistent
when repeating the experiment. Finally, 5 state-of-the-art
resampling techniques are used here and compared to our
GAN approach in terms of classification performance and
computational efforts.

To the best of our knowledge, this is the first
work exploring the benefits and limitations of GANs in
generating specific Bitcoin data and investigating in detail
how the generated synthetic information affects Bitcoin
entity classification.

The rest of the paper is organized as follows. In Section 2,
concepts regarding the class imbalance problem and GANs
as well as related work are introduced. In Section 3, the
proposed solutions are presented, while Section 4 details the
used data, the metrics and the experiments carried out in this
study. In Section 5, results are reported and discussed and
finally, Section 6, provides conclusions and guidelines for
future work.

Attacking Bitcoin anonymity: generative adversarial networks for improving...

2 Preliminaries

In this Section, we recall the concepts behind Bitcoin
classification and attacking its anonymity, resampling
techniques to tackle class imbalance, and GANs. In
particular, in Section 2.1, the Bitcoin entity classification for
attacking Bitcoin anonymity is introduced. In Section 2.2,
GAN architectures and their applications and limitations are
described, finally, in Section 2.3, the most frequently used
techniques to address class imbalance problems and how
they are applied to Bitcoin data are reported.

2.1 Attack on Bitcoin anonymity

Bitcoin is the dominant cryptocurrency used in criminal
activities as it allows non-transparent transactions and lacks
effective regulatory mechanisms [24]. Over the years, the
volume of transactions, cyber-attacks on specific Bitcoin
entities [25] and illicit activities related to money laundering
(ransomware, Ponzi schemes etc.) have increased [26],
thereby promoting an increase in the usage of services
that offer to protect user anonymity (like mixers [27]).
Therefore, reducing anonymity within the network and
classifying Bitcoin entities have become challenging and
crucial tasks for Law Enforcement Agencies (LEAs) [5].

An entity is an actor in the Bitcoin network that controls
or can control multiple public keys (i.e. Bitcoin addresses)
and that does not always correspond to a single physical user
(organization, corporation, small group of people). Entity
classification represents an attack on Bitcoin’s anonymity
[28] as it allows the detection of entities that have a high
risk of being involved in illicit transactions [29], as well
as entities that are potentially more vulnerable to cyber-
attacks. In fact, as described in [30], there are classes (like
markets, ransomware, mixing, etc.) composed of entities
more prone to making illicit transactions, while others are
composed of entities that are more prone to be attacked (like
exchanges, pool, etc.) because they manage a large amount
of money [31, 32].

In Bitcoin entity detection, the idea is to exploit the
information available in the blockchain, i.e. blocks and
transactions, in order to define entity behaviours (or classes)
and thereby classify entities [6].

These transactions can be used to extract valuable
information linking input and output Bitcoin addresses, as
well as other characteristics such as amount, fees, times
etc. (Fig. 1). The available information provides a starting
point for analysing the money flow but could be insufficient
for defining the different entities. In this case, heuristics or
external datasets are used. In the first case, addresses are
clustered into entities following assumptions that represent
common behaviours in the network [33], whereas in the

Fig. 1 Example of information that can be extracted from a Bitcoin
transaction (TX1)

second case, entity characterization is based on using
external private or public Bitcoin “ground-truth” datasets
[30, 34], which contain clusters of addresses belonging to
known entities, the name of these entities and their related
classes (Exchange, Gambling, Market, etc.).

Combining Bitcoin transaction data with heuristics or
external datasets allows one to obtain an address-graph in
which each address is connected to a transaction and to other
addresses that belong to the same entity, as shown in Fig. 2.

Fig. 2 Example of address-graph extracted using the Bitcoin
transaction (TX1) data

F. Zola et al.

The address-graph is the starting point for many Bitcoin
entity classification studies [6, 29, 34, 35].

Entity behaviours are strictly related to the addresses
used to define them, so when the classification is performed
at the level of address information only (using input address
features only), the operation is also called Bitcoin address
classification [36]. Its aim is to define and predict entity
behaviour (or class) associated with one or more addresses.

First classification approaches used statistical analyses
and graph information as, for example, in [37], while
recent works tend to exploit the power of machine
learning techniques [29, 30]. This new trend makes it
appealing to transfer technologies that have already shown
good results in other domains to the Bitcoin blockchain
domain. However, Bitcoin datasets typically do not contain
homogeneous information regarding all Bitcoin entity
classes (such as Exchanges, Mixers, Mining Pools, etc.),
which means that there are more data pertaining to certain
classes whereas others are underrepresented. This class
imbalance problem represents a major obstacle during the
training phase of machine learning models [8], since it
dramatically affects the quality of classification results.

2.2 Generative adversarial networks (GANs)

A GAN is a generative model based on the joint
optimization of two neural networks. Both networks
represent players in a theoretical game designed to discover,
learn, and replicate input distributions. The two neural
networks are called Generator (G) and Discriminator (D),
according to their tasks during the training phase. The
objective of G is to learn the input distribution and generate
synthetic samples similar to the real ones. The objective
of D is to learn the difference between the synthetic and
the real data evaluating the quality of G’s samples. This
competition drives both networks to improve their ability
to learn from each other - creating a dynamic evolution of
their neural parameters. The adversarial training ends when
the optimization process stops, i.e. when the synthetically
generated samples are indistinguishable from the real ones
[19]. The first GAN, introduced in [19], follows the
architecture presented in Fig. 3.

Fig. 3 General Generative Adversarial Network (GAN) architecture

Adversarial learning is characterized by a zero-sum
non-cooperative game, also called minimax problem. The
minimax function used in GAN implementations can be
formulated with the parameterized networks G and D as
introduced in [19] and reported in (1). V (D, G) represents
the value function in the two-player game, D(x) is the
discriminator’s estimation of the probability that x (real
data) is real, Ex∼pdata(x) is the expected value over all real
data associated to the probability distribution of the real data
pdata(x), G(z) is the generator’s output (fake data) with
noise input z, Ez∼pz(z) is the expected value over all random
inputs to the generator associated to a predefined prior
noise distribution pz(z), and D(G(z)) is the discriminator’s
estimation of the probability that a fake sample is real.

min
G

max
D

V (D, G) = Ex∼pdata(x)[log(D(x))]
+ Ez∼pz(z)[log(1 − D(G(z))] (1)

Following (1), one network tries to maximize the effects
of its actions during the training phase, while the second
network tries to minimize its effects. Since the two networks
are related via a common equation, improvements of one
model worsen the other one, thus creating a dynamic
learning system. As introduced by Goodfellow et al. [19],
the goal of the training is to find a point of equilibrium
between the two competing concerns, i.e. training converges
when G and D reach the well-known Nash equilibrium [38].
A Nash equilibrium occurs when one player will not change
its action regardless of what the opponent may do.

In order to find the equilibrium in the cost function,
gradient descent optimization is used. This optimization
updates both G and D simultaneously through stochastic
gradient updates [39]. However, each scenario has its own
suitable optimization function and there is no unique GAN
architecture that works in every situation

GAN Limitations

Despite its learning abilities, the GAN architecture intro-
duced in [19] comes with some problems that limit its usage
compared to other architectures. Common collateral-effects
[40], known as non-convergence, vanishing gradients and
mode collapse, need to be taken into account at the time of
implementation.

• Non-convergence: commonly occurs during the gra-
dient descent optimization, where local minima and
saddle points can stall the training, for example. As
mentioned before, the goal of the training is to find an
equilibrium in a game between two players, the gen-
erator G and the discriminator D. In a scenario where
users “undo” each other’s progress, no convergent solu-
tion may be reached, in which case oscillation in the
models’ parameters generate instability [41].

Attacking Bitcoin anonymity: generative adversarial networks for improving...

• Vanishing gradient: is a known problem affecting deep
learning models that use gradient-based optimization.
This phenomenon can produce slow training - for
example when the solution follows a “pathological”
curvature, which may even lead to non-convergence
[42]. As presented in [43], the vanishing gradient can be
produced when D is too good so that it does not provide
enough information for G to learn the input distribution.

• Mode Collapse: also known as the Helvetica scenario, is
produced when G learns to cheat D by generating only
a limited variety of data regardless of the input. In this
case, G learns just a small part of the input distribution
that does not represent the entire population. In the
worst case, the model “collapses”, always generating
the same sample. As presented in [41], mode collapse
does not seem to be associated with any particular cost
function.

Generally, there is no perfect solution to address all
presented problems at once. However, previous studies tried
to evaluate and mitigate some of these issues by using
different GAN architectures, as proposed in Goodfellow
et al. [41], for example, in which the authors showed
that a modified minimax loss can be used to deal with
vanishing gradients. Arjovsky et al. [44] preferred to use
a Wasserstein distance as a loss function, creating the so-
called Wasserstein GAN (or WGAN). The Wasserstein
distance measures the distance between two probability
distributions, in this case, the distribution of the data
observed in the training dataset and the distribution
belonging to the synthetic dataset. In this implementation,
even when the supports of two distributions are located
in two disjoint lower-dimensional manifolds, a smooth
representation of the distance in-between is provided, which
results in a better stabilization of the learning process using
gradient descents. In fact, the WGAN presented in [44],
showed vanishing gradient and mode collapse effects being
drastically reduced. Yet, depending on the domain, WGANs
can suffer from unstable training, slow convergence after
weight clipping, and vanishing gradients. Local stability for
both the WGAN and the traditional GAN can be guaranteed
using an additional term during the gradient descent updates
[45].

Another interesting architecture is based on unrolled
GANs. In [46], it was shown how this technique solved the
problem related to mode collapse and how it stabilized the
training of GANs. In unrolled GANs, G not only considers
the current discriminator information but also k future
outputs of the discriminator versions in order to discourage
G to exploit local optima. In particular, G will try to take
steps that D will find difficult to respond to. For k steps,
back-propagation occurs only to update a version of D’s
parameters (G’s parameters being fixed) in order to allow

D to optimize its performance, playing always against a
specific G. The optimization is always performed through a
gradient descent operation. Once the k steps are done, G’s
parameters are updated by back-propagating through all k

steps (“unrolled” learning process).
In this paper, as in many other publications [47, 48],

the GAN architecture introduced in [19] is called Vanilla
GAN. Two more GAN architectures (Wasserstein [44] and
unrolled GAN [46]) are presented and implemented in the
following Sections.

GAN for Cybersecurity

The main goal of these adversarial networks is to
approximate the real data distribution and generate synthetic
samples for enhancing/enriching the original dataset [49]
- for example for creating infrared high-resolution images
[50, 51], realistic vehicle images [52], for enhancing
underwater images [53], for image inpainting [54] and
for palmprint recognition [55]. In the speech domain,
GANs are used to compute an enhancement operation
[56], to improve Neural Machine Translation (NMT) results
generating human-like translations [57] and for emotion
recognition by creating synthetic audios from audio-visual
datasets [58].

Only a few recent studies apply GANs in the context
of cybersecurity. In [59] and [60], GANs are used to
generate new cyber-attack samples from existing data. In the
former, the goal is to balance the initial dataset and improve
intrusion detection systems; in [60] the objective is to train
a binary classifier (attack, no-attack) and show the benefits
in terms of accuracy and f1-score generated by the balanced
dataset. Mukhtar et al. [61] propose an approach based
on GANs and Siamese networks for generating synthetic
data of side-channel attacks. In [62], a new GAN-based
framework is introduced to address the class imbalance in an
encrypted traffic dataset and is compared to models trained
with balanced datasets using SMOTE, ROS, and Vanilla
GAN techniques.

GAN architecture and its parameters always need to
be chosen carefully, depending on the given scenario. For
this reason, in this work, a wide variety of optimization
heuristics and GAN architectures have been compared with
the aim to detect the architecture that generates “highly-
valuable” synthetic samples. The “value” of synthetic
samples is evaluated by analysing the improvements they
generate in the classification results.

2.3 The class imbalance problem

In machine learning, the information available for describ-
ing a problem at hand is a key factor and the generation
of a machine learning model is strongly related to the

F. Zola et al.

number of observations. One or more categories (or classes)
in the initial dataset having more samples than others
may significantly affect the training phase, generating phe-
nomena called the class imbalance problem [63]. In this
situation, supervised machine learning systems tend to be
“overwhelmed” by the majority class, making it hard to
discover robust patterns for under-represented classes.

As we have already mentioned, the common algorithms
used for addressing class imbalance can be grouped into 4
categories. Among them, algorithm-level and cost-sensitive
methods are usually more dependent on the problem and
ad-hoc solutions could be required. In neural networks,
considering costs may be straightforward [12] and may
yield similar results as data-level techniques (e.g. random
oversampling) if weights are assigned for balancing the
importance of the classes. Otherwise, data-level techniques
tend to be more versatile, since they are independent of the
classifier used, acting directly on data. In this sense, they
provide more diversity in the samples, since new synthetic
data may be generated (e.g. SMOTE or ADASYN) favoring
the learning in neural networks.

In this work, we are interested in analysing data-level
techniques, which are among the most used strategies [64].
These approaches are based on resampling and thus allow us
to compare their results with our GAN-based approach. In
particular, data-level techniques are categorized into over-
sampling or under-sampling. In the first case, data are added
to the less populated classes in order to reach the same
(or similar) number of elements as the majority class. In
the second one, data are removed from the majority classes
in order to reduce the number of samples down to the
same (or similar) amount of elements that describe the least
represented class. Both sampling strategies can be combined
creating hybrid methods.

The usage of these strategies mitigates the problem
related to unbalanced data but can produce downside
effects in the supervised machine learning model [8].
For example, in under-sampling, the simplest technique
(Random Under Sampling or RUS) involves removing
random records from the majority class, which can cause
a loss of information. The simplest implementation of
over-sampling (Random Over Sampling or ROS) duplicates
random observations from the minority class, which, in
turn, can cause overfitting. These problems are addressed
by implementations of other - more complex - resampling
techniques such as Tomek Links (TL) [65], Synthetic
Minority Over-sampling Techniques (SMOTE) [66] and
Adaptive Synthetic (ADASYN) [67] approaches.

TL is based on a heuristic approach that uses an
enhancement of the Nearest-Neighbor rule. Even though
it is considered to be an under-sampling strategy (as it
removes Tomek links), its result is not a uniform dataset
with the same number of elements for each class.

SMOTE is an over-sampling technique that creates new
instances between minority class samples that are close to
each other in the feature space [66]. Typically, the algorithm
first computes the k-nearest neighbors for a sample of
the minority class and then creates the synthetic instance
by randomly choosing one point in the line segment that
connects one of the k neighbors with the considered sample.
The process is repeated until a degree of balance is reached.
The number of points generated for each data sample is
uniform, uniquely based on the chosen k.

ADASYN was implemented with the aim of improving
the results obtained via the SMOTE strategy [67]. The
main difference between them is how to decide the number
of synthetic samples generated for a particular point: in
ADASYN distribution is computed for each point, whereas
in SMOTE a uniform distribution is used.

More complex approaches for addressing the imbalance
problem are based on generative learning, which can be
categorized into two groups [14]: traditional generative
models and deep generative models. The first ones are based
on traditional machine learning algorithms that usually
use probability/density functions for approximating the
input distribution, while the second models are based on
deep learning algorithms, which allow them to learn and
generate more complex distributions. For this reason, deep
learning models represent more challenging and interesting
structures. Well-known examples are the deep Boltzmann
machine (DBM), deep belief networks (DBN), variational
autoencoder (VAE) among others. More specifically, DBM
and DBN are energy-based models, which means that
the joint probability is defined using an energy function.
In particular, for both approaches, their components are
trained separately and then joined in a separate phase
[68]. In this sense, the resulting generative model is more
difficult to stack without causing a quality loss. On the
other hand, VAE and GAN models are easier to be trained.
However, although VAEs facilitate the comparison among
different implementations, their performances are strongly
conditioned by the reconstruction error, which can generate
“blurred” samples. On the other hand, GANs allow one to
learn more complex distributions and efficiently generate
more realistic samples, even though they have some
limitations as described in Section 2.2. It is to be noted that
generative models not only increase the representation of
minority classes, but by learning the entire data distribution
they are able to generate more variable data. This broad
generation mitigates effects like underfitting and overfitting,
which are challenging problems for traditional resampling
techniques like RUS and ROS. Furthermore, for other
resampling techniques like SMOTE or ADASYN, synthetic
samples are based on local information (neighbors) only,
without taking into account the overall distribution [69].
For this reason, GAN sample generation can be seen

Attacking Bitcoin anonymity: generative adversarial networks for improving...

as an “intelligent over-sampling” in which complex and
high dimensional behaviours are created by analyzing all
available and not just partial information.

Inspired by the promising results that GANs have
demonstrated in computer vision and natural language
processing tasks [50, 58], in this work, we present an
approach that uses such deep generative models to address
the class imbalance problem related to Bitcoin entity
behaviour classification. More specifically, the ability of
GANs to learn and generate data by analysing the overall
data distribution and not only local information, could have
a strong impact on scenarios in which entities evolve over
time as it is the case in the Bitcoin domain. In these
scenarios, reduced local information may be related to
old and no longer relevant entity behaviour. Furthermore,
learning from the overall distribution allows GANs to
generalize Bitcoin entity behaviours. This generalization
is useful not only for exploring more deeply the feature
space and for increasing classifiers’ abilities, but could be
used by the community and LEAs for investigating novel
entity patterns that have not yet been detected in the Bitcoin
mainnet.

Class imbalance strongly affects the quality of classi-
fication, and it represents a relevant problem associated
with datasets such as the Bitcoin blockchain. In particu-
lar, in [70], the class imbalance problem is not considered,
and several supervised machine learning models are imple-
mented with the aim to identify 16 licit-illicit categories of
users. Authors conclude their work highlighting that due to
limited instances of classes in the training data several legal
and illegal classes were misclassified. Two methods fre-
quently used in fraud detection to tackle dataset imbalance,
cost-sensitive [10] and sampling-based [11] approaches, are
leveraged in [71] to address the Bitcoin class imbalance
problem while implementing a machine learning model
for detecting Bitcoin Ponzi schemes. In [72] and in [73],
authors implement models able to detect if an address
belongs to an Exchange (binary classification), resolving the
class imbalance problem using RUS. In [72], a sampling
technique is used over the transaction-directed hypergraph,
while in [73] a sampling technique is used for remov-
ing some nodes and for guaranteeing the balance between
elements of two considered classes (Exchange and not-
Exchange). In [36], a model for analysing Bitcoin addresses
aiming to detect abnormal activities is built, and the class
imbalance problem is managed by using stratified random
sampling. Harlev et al. [7] applied SMOTE in order to
enrich the original dataset and train a supervised machine
learning model for predicting entity classes. The model
trained with the SMOTE-resampled dataset showed slight
improvements in terms of overall accuracy and f1-score.
These improvements were limited as although SMOTE
generated improvements in f1-score values for the initial

minority classes, at the same time, it decreased the val-
ues of other considered classes. Monamo et al. [74] use
unsupervised machine learning (k-means) for detecting Bit-
coin frauds. They implement z-scores, chord distance, and
Hellinger distance with bagging and boosted classifiers in
order to describe the input dataset and compare the results
with a SMOTE-resampled dataset. The latter implementa-
tion outperformed all the considered methods generating
improvements for minority classes in terms of sensitivity.
Nevertheless, according to the authors, this oversampling
technique decreased the reliability and increased the number
of false positives.

Recently, GANs have been used for forecasting Bitcoin
market prices [75] or for analysing Bitcoin price trends
and the stock market [76]. In [77], we study the
best parameters to be used for training adversarial
algorithms for learning Bitcoin data. However, generation
was limited to one specific class only using a Vanilla-GAN
implementation, and without evaluating them for improving
the classification task. Han et al. [78] used conditional
Wasserstein GAN (WCGAN), Deep Regret Analytic
(DRAGAN), and SMOTE technologies for addressing
Bitcoin imbalance to perform a binary classification,
i.e. distinguish legitimate and illegitimate transactions.
However, they used a limited dataset gathered from a
single marketplace (named Silkroad) closed in November
2014, composed of 16 distinct features. The authors
acknowledged that the limited dataset and the fact that its
distribution is clearly concentrated on certain values could
promote the Mode Collapse effect. Furthermore, despite
testing different GAN architectures, they did not achieve
clear improvements in the (binary) classification task.

Inspired by the results presented in [77, 78], in this
work, we present a detailed analysis of three different
GAN architectures and their adaptation for addressing the
Bitcoin class imbalance problem. Then, we evaluate how
the generated synthetic samples improve the Bitcoin entity
classification (multi-class problem). Finally, the best results
obtained with GAN-resampled datasets, are compared
with other state-of-the-art resampling strategies, in order
to evaluate the benefits and limitations of the proposed
methods.

3 Proposal and contributions

In this work, we present a solution based on GAN
architectures for addressing the Bitcoin class imbalance
problem to improve entity classification and consequently
decrease Bitcoin entity anonymity. The idea is to use the
adversarial technique to model the real data distribution
and then perform data augmentation through synthetic
data generation (over-sampling strategy). As introduced in

F. Zola et al.

Section 2.3, these generative models allow to obtain a more
variable dataset, which not only avoids traditional downside
effects (under-sampling and over-sampling), but also helps
in the generalization of the entity behaviour.

In particular, our idea is that for each under-represented
(minority) class, i.e. for all the Bitcoin classes excluding the
most represented class, an adversarial model is trained. This
training is performed by considering each class separately.
Then, each GAN is used to generate sufficient synthetic
data so that each class reaches the population size of the
majority class. This operation creates an enriched hybrid
dataset (formed of synthetic and real data) used to train the
Bitcoin classifier, which is finally tested in order to evaluate
how the synthetic samples have affected entity anonymity.

In this study, we implement three different GAN
architectures: the Vanilla GAN, the Wasserstein GAN
(WGAN) and the unrolled GAN. In particular, the
first architecture helps us validate how possible GAN
downside effects affect the training of a simple GAN
when Bitcoin behavioural data are used. The second
architecture (WGAN) is chosen for its ability to improve
the model stability and make the training process easier
[44]. Finally, the third architecture (unrolled) is chosen as
it allows one to improve the GAN dynamics by bringing
the discriminator closer to an optimal response [46]. We
think that these three chosen GAN architectures represent
a good benchmark set for evaluating the benefits and
limitations of such technology when applied to the Bitcoin
domain.

These GAN architectures are studied and implemented in
order to determine the most suitable for the Bitcoin domain,
which can be used for creating an enriched version of the
initial dataset.

Each architecture is evaluated in several checkpoints,
i.e. using different GAN training times in terms of epochs.
This operation allows us to evaluate how the generation of
synthetic samples is related to GAN training epochs, and
when they are affected by GAN downside effects mentioned
above (overfitting). In each checkpoint, the respective data
generated by GAN Generators are used to train a distinct
version of the address classifier.

From this point onward, we indicate an address classifier
that has been generated based on data enriched with
synthetic samples produced by a GAN trained up to the
i − th checkpoint, as GAN-classifieri .

We repeat the implementation of the best performing
GAN architecture 5 times. This approach helps us to
validate the mean and standard deviation of the classifier’s
metrics in order to check its repeatability and robustness
when a GAN-resampled dataset is used. Finally, the
best performing GAN-based classifier is compared with
classifiers using data generated with other state-of-the-art
resampling strategies.

Our main contributions can be summarized as follow:

1. Adapting state-of-the-art GAN technologies in order to
learn Bitcoin behaviours;

2. Evaluating how synthetic Bitcoin samples generated by
GANs improve Bitcoin entity classification;

3. Comparing three different GAN architectures in terms
of generated classification improvements;

4. Studying how training time affects the GAN learning
process, the synthetic data generation and the final
Bitcoin entity classification;

5. Analysing the repeatability of the best GAN approach,
repeating the execution 5 times to evaluate metrics’
means and standard deviations;

6. Comparing the GAN-based approach with 5 traditional
data-level techniques in terms of obtained Bitcoin
classification performance and computational costs.

4 Experimental framework

In this Section, we will first provide an overview of the
data used in this study (Section 4.1), then, in Section 4.2,
preprocessing steps are presented and in Section 4.3 GAN
configurations are explained. In Section 4.4, the metrics
used for evaluating the models are listed and in Section 4.5,
the idea behind each experiment is described.

4.1 Dataset

For this study, we used information obtained from the
Bitcoin mainnet and the WalletExplorer1. The whole
Bitcoin blockchain was downloaded by using the Bitcoin
Core2, and in particular all blocks and transactions from the
beginning until block number 570,000 were downloaded,
corresponding to blocks mined until April 3rd 2019,
09:20:08 AM.

At the same time, we downloaded a labelled address-
entity dataset available on the website WalletExplorer. This
platform contains information about transactions, addresses
and real-world entity names detected over the years. Their
databases are continuously updated and thus have been used
as “ground truth” for many Bitcoin-related studies, as in [29,
79]. In this study, we considered six entity classes:

• Exchange: entities that allow their customers to trade
among cryptocurrencies or to change cryptos for fiat
currencies (or vice-versa);

• Gambling: entities that offer gambling services based
on Bitcoin currency (casino, betting, roulette, etc.);

1https://www.walletexplorer.com/
2https://bitcoin.org/en/download

Attacking Bitcoin anonymity: generative adversarial networks for improving...

• Mining Pool: entities composed of a group of miners
that work together sharing their resources in order to
reduce the volatility of their returns;

• Mixer: entities that offer a service to obscure the
traceability of their clients’ transactions;

• Marketplace: entities allowing to buy any kind of
goods or services using cryptocurrencies. Some of them
potentially related to illicit activities;

• Service: entities that allow users to lend Bitcoins and
passively earn interests, or allow them to request a loan.

As shown in Table 1, 327 different entities and
more than 16,000,000 addresses were downloaded from
WalletExplorer. Exchanges represent the most populated
class - its samples represent more than 44% of the entire
entity dataset and about 62% of the address dataset. On
the other hand, Mining Pool is the least populated class in
terms of addresses with a ratio of 0.53% and the Market
class is the minority in terms of entities (about 6%). This
overview highlights the class imbalance problem associated
with Bitcoin datasets.

Bitcoin blockchain and WalletExplorer data were com-
bined in order to obtain a labelled address dataset, funda-
mental for a supervised machine learning task. This new
dataset was used as a starting point for extracting the fea-
tures used to define address behaviours and subsequently
to create the address dataframe, as shown in Fig. 4. The
address dataframe was created following concepts presented
in [29], and extracting 7 features related to known Bitcoin
addresses: the number of transactions in which a certain
address is detected as receiver/sender, the amount of Bit-
coin (BTC) received/sent from/to this address, the balance,
uniqueness (if this address is used in one transaction only)
and siblings.

As shown in Fig. 4, the address dataframe was spilt into
training and testing datasets with a proportion of 50/50
keeping class distributions unchanged (stratified).

4.2 Data preprocessing

Analysing the training dataset and the dependence among
its available features, it was possible to perform a reduction

Fig. 4 Address dataset creation

of the dataset dimensionality. The total amount of BTC
received, the total amount of BTC sent and the balance are
non-independent variables, so we decided to train the GAN
such that it only learns two of them, whereas the third one
was calculated. Thereby, the GAN learned the distribution
of the amount of BTC received and the balance. The amount
of BTC sent was computed a posteriori. In the same way, the
uniqueness and the total received transactions are related,
since one address is unique (1) when it is used exactly
once for receiving money, otherwise, it is not unique (0).
Following this rule, the total of received transactions was
used to train the GAN, and the uniqueness values were
computed a posteriori. In this manner, the 7 initial features
were reduced to 5.

The training dataset was split separating the samples
of each class, obtaining 6 different datasets. Each class
dataset was then used for training a distinct GAN, except
for the (highly populated) Exchange dataset (Fig. 5). Before
training, each class dataset was normalized to reduce GAN
learning complexity by limiting the feature distributions
in a fixed range between 0 and 1. Let Fm be the set of
features that characterize each class dataset, ∀f ∈ Fm, i.e.
for each specific feature, the normalization was performed
following (2), where x are elements in f , Xmax = max(f),
Xmin = min(f), and x̃ represents the normalized value.
Once the GANs were trained and synthetic samples could
be generated, they were de-normalized using the (3) and,
after computing the non-independent features, they were
added to the initial (real) data, creating an Hybrid dataset,
as shown in Fig. 6. The de-normalization was performed

Table 1 Overview of the used
WalletExplorer (WE) data (the
overall values are in bold)

Class # Entity WE % Entity WE # Address WE % Address WE

Exchange 144 44.04 9,947,450 61.56

Gambling 76 23.24 3,050,899 18.88

Marketplace 20 6.12 2,349,111 14.54

Mining Pool 27 8.26 85,887 0.53

Mixer 37 11.31 475,781 2.94

Service 23 7.03 250,788 1.55

Total 327 100 16,159,916 100

F. Zola et al.

Fig. 5 Dimensional reduction, class separation and normalization for
GAN training

in order to work directly with Bitcoin data in their real
space.

x̃ = x − Xmin

Xmax − Xmin

(2)

x = [(Xmax − Xmin) × x̃] + Xmin (3)

4.3 GAN implementation

Despite using three different GAN architectures in this
paper, the Generator (G) and the Discriminator (D)
networks were the same. In [44], when working with
images, the authors suggest using a 4-layer Neural Network
for both G and D, where each layer is defined by
512 neurons. In our case, since the size of the Bitcoin
feature space is lower than the ones used for the images,
three hidden layers for both G and D were implemented,
following the specifications described in [77]. In particular,
G’s neural network was composed of three hidden layers
with 512, 256 and 128 neurons (Fig. 7), all using the
Rectified Linear Unit (ReLu) as activation function [77].
The output was fixed to 5, i.e. the same number of non-
independent features in the real samples. A technique called
Root Mean Square Propagation (RMSProp [80]) was used
in all implementations to optimize the relative cost function
with a learning rate set to 5e − 5, as indicated in [44].

Fig. 6 Creation of the hybrid (augmented) dataset

Fig. 7 Generator architecture

The value of the batch size, representing the number of
elements used at once for updating the weights of the neural
networks, was kept fixed to 1,000 samples. Furthermore,
for the unrolled GAN, the k value of the steps forward
was chosen to be equal to 5, as used in several tests in the
introduced paper [46].

D’s neural network was also composed of three hidden
layers with 256, 512 and 256 neurons (Fig. 8), all again
using the Rectified Linear Unit (ReLu) as activation
function [77]. As shown in Fig. 8, the input size of the
Discriminator was 5, i.e. equal to the number of non-
independent real features as well as to the number of
synthetically generated features.

For each architecture, 6 GAN training time checkpoints
were fixed a priori. These values represent the training
length of the adversarial networks, indicated in epochs. In
particular, checkpoints were fixed in: 1,000, 10,000, 25,000,
50,000, 75,000 and 100,000 epochs.

4.4 Evaluationmetrics

This Section describes the classification metrics used to
evaluate and compare the different machine learning models
in our experiments. Assuming N to be the total number of
classes and for each class i assuming tpi as true positive
value, fpi as false positive value, tni as true negative value,
f ni as false negative value, the following metrics were
defined.

Fig. 8 Discriminator architecture

Attacking Bitcoin anonymity: generative adversarial networks for improving...

• Accuracy or Score is defined as the number of correct
predictions divided by the total number of predictions
and is given as percentage (4).

∑N
i=1

tpi+tni

tpi+f ni+fpi+tni

N
(4)

• Precision (prec.) is the number of positive predictions
divided by the total number of the positive class values
predicted. It represents a measure of a classifier’s
exactness given as a value between 0 and 1, with 1
relating to high precision (5).

∑N
i=1 tpi∑N

i=1(tpi + fpi)
(5)

• Recall or Sensitivity represents a measure of a
classifier’s completeness quantifying the number of
positive class predictions made over all positive
examples in the dataset ((6)). It is given as a value
between 0 and 1

∑N
i=1 tpi∑N

i=1(tpi + f ni)
(6)

• f1-score is the harmonic mean of Precision and Recall.
It takes values between 0 and 1, with 1 relating to
perfect Precision and Recall and can be calculated using
(7)

F1score = 2 × Precision × Recall

P recision + Recall
(7)

• Matthews Correlation Coefficient (MCC) is a met-
ric yielding easy comparison with respect to a ran-
dom baseline, particularly appropriate for unbalanced
classes. It takes values between −1 and +1. A coeffi-
cient of +1 represents a perfect prediction, 0 an average
random prediction and −1 an inverse prediction. As
shown in [81], let K be the number of classes and C be
a confusion matrix with dimensions K × K , the MCC

can be calculated as shown in (10)

MCCp1 =

√√√√√∑
k

(∑
l

Ckl

)⎛⎝ ∑
f,g|f �=g

Cgf

⎞⎠ (8)

MCCp2 =

√√√√√∑
k

(∑
l

Clk

)⎛⎝ ∑
f,g|f �=g

Cfg

⎞⎠ (9)

MCC =
∑

k

∑
l

∑
m CkkClm − CklCmk

MCCp1 × MCCp2
(10)

• Area Under the Receiver Operating Characteristic
Curve (AUC) measures the two-dimensional area
underneath the ROC curve, which is a plot of the true
positive rate against the false positive rate. It indicates
the classifier’s ability to avoid false classification and
it takes values between 0 and 1, with 1 relating
to perfect predictions. AUC can be calculated for a
binary classification as described in (11). This equation
can be extended for multi-class problems with some
adjustments.

AUC = 1

2

(
tp

tp + f n
+ tn

tn + fp

)
(11)

Furthermore, the term avg. is used in the following to
indicate average results of an indicated metric and the term
std. is used to indicate the computed standard deviation.

4.5 Overview of the planned experiments

In this study, four experiments were carried out in order
to explore the GAN approach for addressing the Bitcoin
class imbalance problem. The obtained results were then
compared with current state-of-the-art techniques in order
to validate and check the limitations of the introduced
methods.

The first experiment introduces the baseline classifier
by directly using the training dataset obtained from the
address dataframe (Fig. 9). The creation of this baseline
model not only was used for detecting limitations in
the Bitcoin entity classification but was also used later
for evaluating improvements achieved by other presented
experiments involving resampled data. The baseline model
was implemented using a Random Forest model. Following
our previous study on Bitcoin classification [29], the number
of estimators was set to 10, and the Gini function was used
to measure the quality of the split without fixing a maximum
depth of the tree. The testing dataset was used to compute a
first evaluation of how the baseline classifier (trained with
real data) predicts entity classes related to a certain address.

In the second experiment, our solution based on
adversarial learning through GANs was implemented in
order to generate synthetic Bitcoin address behaviours.
The experiment started by training GANs based on the
training dataset. In particular, as described in Section 4.2,
a single GAN was implemented for each class that
was underrepresented in the training dataset (Gambling,
Market, Mining Pool, Mixer, and Service). Following this
specification, the GAN trained using on the largest dataset
was the GAN for generating synthetic Gambling data with
1,527,247 real samples, while the GAN using the smallest
dataset was the Mining Pool GAN based on 43,265 real
samples only (Table 2).

F. Zola et al.

Fig. 9 Schema of the first and second experiment

At the end of the training process, the Generators G of
each class GAN were used to create new synthetic samples
that were then de-normalized and joined with the real
training dataset (after computing the 2 dependent features),
creating the hybrid dataset (Section 4.2). Finally, this hybrid
information was used to train an address classifier (Fig. 9),
which was based on Random Forest models with the
same setup as in the first experiment. Once this classifier
was ready, it was tested using the testing dataset. This
experiment was carried out by stopping the GANs’ training
processes in 6 different checkpoints (epochs), as explained
in Section 4.3. In each one of them, the Gs were used to
enrich the real dataset creating different versions of the
hybrid dataset, thus creating a specific version i of the
GAN-classifiers (address classifiers).

The steps presented in Algorithm 1 were repeated
using the three types of GAN architectures, Vanilla GAN,
Wasserstein GAN (WGAN), and unrolled GAN. The latter
two techniques were used in order to evaluate and mitigate

possible collateral effects that typically affect adversarial
networks.

In the third experiment, the most promising solutions
detected in the second experiment were analysed in detail.
In particular, only architectures and checkpoints that had
shown the highest classification values were used. For
this configuration, the GAN training and the classifier
training were repeated 5 more times, in order to check
the repeatability of our results and avoid outlier solutions.
In the fourth and last experiment, the classification results
obtained in the third experiment were compared with
classification results obtained via several known resampling
techniques (Section 2.3). In this experiment, two under-
sampling techniques, RUS and TL, and three over-sampling
techniques, ROS, SMOTE, and ADASYN, were used.
These resampling techniques were directly applied to the
training dataset in order to use this enhanced dataset to
train the Bitcoin entity classifier. The subsequent model was
again a Random Forest classifier with the setup from the
previous experiments and was tested using the same testing
dataset.

The fourth experiment allowed us to determine the
suitability of current techniques for addressing class
imbalance problems in the Bitcoin domain and allowed us
to find insights about how these techniques affect Bitcoin
entity behaviour classification. Furthermore, comparing
resampling techniques with our GAN approach highlighted
the strengths and weaknesses of applying GANs to Bitcoin
data.

5 Experimental study

In this Section, the four experiments with their obtained
results are presented. In particular, in Section 5.1, the
baseline model is built, in Section 5.2, the three GAN
architectures are implemented and compared. Then, in
Section 5.3, the best GAN solutions are used to check
the repeatability of the results, whereas in Section 5.4, the
GAN approach is compared with 5 resampling techniques.
Finally, in Section 5.5, results are discussed.

5.1 Baselinemodel

Table 2 provides an overview of the results obtained by
testing the baseline model. In particular, the number of real
samples used for training the baseline model is reported as
well as the values for precision, recall and f1-score per class,
an overall average of these three metrics and the overall
accuracy obtained using the entire testing dataset.

The baseline model showed an overall good accuracy
value of 94.67%, however, it presented problems in detect-
ing samples belonging to minority classes, which suggests

Attacking Bitcoin anonymity: generative adversarial networks for improving...

Table 2 Baseline classifier
accuracy and f1-score obtained
with the testing dataset (the
average values are in bold)

Class # train samples prec. recall f1 score

Exchange 4,972,019 0.95 0.98 0.96

Gambling 1,527,247 0.93 0.89 0.91

Marketplace 1,174,468 0.99 0.97 0.98

Mining Pool 43,265 0.89 0.75 0.82

Mixer 237,725 0.86 0.80 0.83

Service 125,531 0.84 0.67 0.75

avg. 0.91 0.84 0,87

score % 94.67

that the class imbalance problem is affecting the classi-
fication of minority classes. While majority classes were
detected with high f1-score values over 0.90 (Exchange,
Gambling and Marketplace), less represented classes (Min-
ing Pool, Mixer, and Service) yielded respectively lower
values of 0.82, 0.83 and 0.75.

The f1-score values were conditioned by lower recall
values, indicating problems in detecting underrepresented
classes. For example, among all the Service samples in the
testing dataset, only 67% (i.e. recall 0.67) and only 75% and
80% of the Mining Pool and Mixer elements were correctly
classified.

The obtained results underline again the importance
of having a balanced dataset in multi-class classification
problems using supervised machine learning. Results were
affected by under-represented classes in the original Bitcoin
dataset.

5.2 Comparison among GAN architectures

GANs were used for generating synthetic data to enrich the
training dataset and create a hybrid dataset. The number
of synthetic samples generated by each GANs is correlated
with the class population of the initial training dataset
(Table 2). The idea is to balance the initial class distributions
by adding a sufficient amount of synthetic samples for each
minority class. In particular, as shown in Fig. 10, the most
populated class - Exchange - has 5,000,000 real samples,
hence we chose to generate 3,000,000 synthetic samples
for the Gambling class, 3,500,000 synthetic samples for
the Market class, and 4,500,000 synthetic samples for
Pool, Mixer, and Service class, respectively for each
checkpoint. In this manner, the new hybrid dataset contained
a new per-class distribution varied in a range between
4,527,247 (Gambling class) and 4,972,019 (Exchange
class).

Once the hybrid dataset belonging to a specific check-
point (epoch) was generated, it was denormalized and the
dependent features were computed. This new dataset was
used to train the GAN-classifier following the same pro-
cess used for creating the baseline model. This GAN-

classifier was then tested with the testing dataset, in order to
evaluate its global accuracy and precision, recall, and f1-
score for each class. This comparison over the same testing
dataset allowed us to evaluate how much the new synthetic
information generated by the GANs affected the entity
classification and consequently how much the GANs have
learned from the real distribution.

Results regarding the Vanilla GAN architecture are
reported in Table 3; in particular the values for f1-score,
precision and recall obtained from each GAN-classifier and
for each class are indicated. These metrics improved with
respect to the ones obtained with the baseline model, as
well as the overall accuracy and the average f1-score. The
two best solutions, GAN-classifier1 and GAN-classifier3,
achieved by training the GANs with 1,000 and 25,000
epochs, in terms of overall recall reaching both values
of 0.90 and in terms of f1-score as well, which was,
respectively 0.05 and 0.06 points higher than the baseline
values. Improvements were also visible analysing the
metrics of each class individually. Even the majority class
(Exchange), which was not affected by the resampling
strategy, increased its f1-score by 0.02 for the two best
solutions. From the results shown in Table 3, one can
observe that classifiers implemented with the hybrid dataset

Fig. 10 Synthetic and real sample distribution in the newly created
hybrid dataset

F. Zola et al.

generated by the Vanilla GANs which were trained with a
low number of epochs (1,000 and 25,000) performed much
better than the other ones.

The same study as presented for the Vanilla GAN was
carried out by using a WGAN architecture. The obtained
results are reported in Table 4. They showed a different
trend, as the classifiers with the best global f1-score were
obtained by creating the hybrid dataset using GANs that
were trained longer, i.e. the ones trained in 50,000, 75,000
and 100,000 epochs. These three best options achieved an
average f1-score of 0.90. However, the WGAN approach
presented problems in detecting Mining Pool samples.
In fact, although improvements in terms of recall were
generated, precision values dropped, causing a decrease of
f1-scores related to that class (about 0.2 - 0.3 below the
baseline result).

In Table 5, computed evaluation metrics for the unrolled
GAN architecture are reported. In this case, results tended
to follow the trend of the Vanilla GANs, where best
solutions were obtained with GANs that were trained less
(in terms of epochs), yet without reaching high scores.
The best solutions were obtained by using GAN-classifier1

and GAN-classifier3 (unrolled GAN trained for 1,000 and
25,000 epochs), showing the highest values in terms of
precision, recall and f1-score.

As can be seen from Table 6, all GAN solutions show
higher values in terms of AUC (0.98-0.99) regardless of
the chosen architecture and checkpoint. On the other hand,
both accuracy and MCC follow the trend of the averaged f1-
score shown in Tables 3, 4, and 5. The Vanilla GAN shows
the best accuracy and MCC for models trained respectively
with 1,000 and 25,000 epochs, similar to the unrolled GAN,
whereas the WGAN shows the highest accuracy and MCC
values in 50,000, 75,000 and 100,000 epochs.

Comparing the average recall and f1-scores achieved
with all GAN-classifiers implemented with the three
proposed GAN architectures, we found that the best
solutions with the highest improvements in Bitcoin entity
classification were obtained using the Vanilla GAN
architecture. In fact, the Vanilla GAN yielded important
improvements in terms of minority class detection, as shown
by high values of recall and f1-scores.

In Fig. 11, the overall accuracy of the GAN-classifiers
implemented using the three GAN architectures are
compared. The accuracy of the GAN-classifiers trained
with data generated from the Vanilla GAN model was
usually higher than the accuracy values obtained with the
classifiers trained based on data generated by the other
two GAN architectures. However, moving to longer epochs,
the downward trend in terms of accuracy that we observed
may be a symptom of mode collapse: potentially, the
GAN stopped learning the real distribution and started
generating similar samples only, which did not contribute

Ta
b
le
3

Pr
ec

is
io

n,
re

ca
ll

an
d

f1
-s

co
re

s
ob

ta
in

ed
w

ith
th

e
G

A
N

-c
la

ss
if

ie
rs

at
di

ff
er

en
te

po
ch

s
(t

ra
in

in
g

da
ta

se
te

nr
ic

he
d

w
ith

sy
nt

he
tic

sa
m

pl
es

ge
ne

ra
te

d
by

th
e

V
an

ill
a

G
A

N
).

A
ve

ra
ge

va
lu

es
ar

e
in

bo
ld

1,
00

0
ep

oc
hs

10
,0

00
ep

oc
hs

25
,0

00
ep

oc
hs

50
,0

00
ep

oc
hs

75
,0

00
ep

oc
hs

10
0,

00
0

ep
oc

hs

(G
A

N
-c

la
ss

if
ie

r 1
)

(G
A

N
-c

la
ss

if
ie

r 2
)

(G
A

N
-c

la
ss

if
ie

r 3
)

(G
A

N
-c

la
ss

if
ie

r 4
)

(G
A

N
-c

la
ss

if
ie

r 5
)

(G
A

N
-c

la
ss

if
ie

r 6
)

C
la

ss
pr

ec
.

re
ca

ll
f1

sc
or

e
pr

ec
.

re
ca

ll
f1

sc
or

e
pr

ec
.

re
ca

ll
f1

sc
or

e
pr

ec
.

re
ca

ll
f1

sc
or

e
pr

ec
.

re
ca

ll
f1

sc
or

e
pr

ec
.

re
ca

ll
f1

sc
or

e

E
xc

ha
ng

e
0.

97
0.

99
0.

98
0.

96
0.

98
0.

97
0.

96
0.

99
0.

98
0.

96
0.

99
0.

97
0.

96
0.

98
0.

97
0.

95
0.

98
0.

97

G
am

bl
in

g
0.

97
0.

93
0.

95
0.

95
0.

91
0.

93
0.

96
0.

92
0.

94
0.

96
0.

92
0.

94
0.

95
0.

91
0.

93
0.

94
0.

90
0.

92

M
ar

ke
t

0.
99

0.
98

0.
99

0.
99

0.
97

0.
98

0.
99

0.
98

0.
98

0.
99

0.
98

0.
98

0.
99

0.
97

0.
98

0.
99

0.
97

0.
98

Po
ol

0.
82

0.
83

0.
82

0.
77

0.
81

0.
79

0.
94

0.
84

0.
89

0.
92

0.
82

0.
87

0.
91

0.
79

0.
85

0.
90

0.
77

0.
83

M
ix

er
0.

91
0.

86
0.

88
0.

92
0.

85
0.

88
0.

92
0.

87
0.

90
0.

89
0.

83
0.

86
0.

88
0.

82
0.

85
0.

87
0.

81
0.

84

Se
rv

ic
e

0.
95

0.
83

0.
89

0.
90

0.
74

0.
81

0.
94

0.
80

0.
86

0.
93

0.
79

0.
86

0.
92

0.
77

0.
84

0.
87

0.
70

0.
78

av
g.

0.
94

0.
90

0.
92

0.
92

0.
88

0.
89

0.
95

0.
90

0.
93

0.
94

0.
89

0.
91

0.
94

0.
87

0.
90

0.
92

0.
86

0.
89

Attacking Bitcoin anonymity: generative adversarial networks for improving...

Ta
b
le
4

Pr
ec

is
io

n,
re

ca
ll

an
d

f1
-s

co
re

s
ob

ta
in

ed
w

ith
th

e
G

A
N

-c
la

ss
if

ie
rs

at
di

ff
er

en
te

po
ch

s
(t

ra
in

in
g

da
ta

se
te

nr
ic

he
d

w
ith

sy
nt

he
tic

sa
m

pl
es

ge
ne

ra
te

d
by

th
e

W
G

A
N

).
A

ve
ra

ge
va

lu
es

ar
e

in
bo

ld

1,
00

0
ep

oc
hs

10
,0

00
ep

oc
hs

25
,0

00
ep

oc
hs

50
,0

00
ep

oc
hs

75
,0

00
ep

oc
hs

10
0,

00
0

ep
oc

hs

(G
A

N
-c

la
ss

if
ie

r 1
)

(G
A

N
-c

la
ss

if
ie

r 2
)

(G
A

N
-c

la
ss

if
ie

r 3
)

(G
A

N
-c

la
ss

if
ie

r 4
)

(G
A

N
-c

la
ss

if
ie

r 5
)

(G
A

N
-c

la
ss

if
ie

r 6
)

C
la

ss
pr

ec
.

re
ca

ll
f1

sc
or

e
pr

ec
.

re
ca

ll
f1

sc
or

e
pr

ec
.

re
ca

ll
f1

sc
or

e
pr

ec
.

re
ca

ll
f1

sc
or

e
pr

ec
.

re
ca

ll
f1

sc
or

e
pr

ec
.

re
ca

ll
f1

sc
or

e

E
xc

ha
ng

e
0.

96
0.

98
0.

97
0.

96
0.

98
0.

97
0.

96
0.

98
0.

97
0.

96
0.

98
0.

97
0.

96
0.

98
0.

97
0.

96
0.

98
0.

97

G
am

bl
in

g
0.

95
0.

91
0.

93
0.

94
0.

91
0.

93
0.

94
0.

90
0.

92
0.

95
0.

92
0.

94
0.

95
0.

91
0.

93
0.

95
0.

92
0.

93

M
ar

ke
t

0.
99

0.
97

0.
98

0.
99

0.
97

0.
98

0.
99

0.
97

0.
98

0.
99

0.
98

0.
98

0.
99

0.
98

0.
98

0.
99

0.
98

0.
98

Po
ol

0.
86

0.
76

0.
81

0.
85

0.
76

0.
80

0.
80

0.
78

0.
79

0.
81

0.
78

0.
80

0.
79

0.
79

0.
79

0.
79

0.
80

0.
79

M
ix

er
0.

86
0.

81
0.

84
0.

89
0.

83
0.

86
0.

87
0.

81
0.

84
0.

89
0.

84
0.

87
0.

89
0.

83
0.

86
0.

90
0.

84
0.

87

Se
rv

ic
e

0.
87

0.
74

0.
80

0.
90

0.
74

0.
81

0.
83

0.
72

0.
77

0.
90

0.
78

0.
83

0.
89

0.
78

0.
83

0.
90

0.
76

0.
83

av
g.

0.
92

0.
86

0.
89

0.
92

0.
87

0.
89

0.
90

0.
86

0.
88

0.
92

0.
88

0.
90

0.
91

0.
88

0.
90

0.
92

0.
88

0.
90

Ta
b
le
5

Pr
ec

is
io

n,
re

ca
ll

an
d

f1
-s

co
re

s
ob

ta
in

ed
w

ith
th

e
G

A
N

-c
la

ss
if

ie
rs

at
di

ff
er

en
t

ep
oc

hs
(t

ra
in

in
g

da
ta

se
t

en
ri

ch
ed

w
ith

sy
nt

he
tic

sa
m

pl
es

ge
ne

ra
te

d
by

th
e

un
ro

lle
d

G
A

N
).

A
ve

ra
ge

va
lu

es
ar

e
in

bo
ld

1,
00

0
ep

oc
hs

10
,0

00
ep

oc
hs

25
,0

00
ep

oc
hs

50
,0

00
ep

oc
hs

75
,0

00
ep

oc
hs

10
0,

00
0

ep
oc

hs

(G
A

N
-c

la
ss

if
ie

r 1
)

(G
A

N
-c

la
ss

if
ie

r 2
)

(G
A

N
-c

la
ss

if
ie

r 3
)

(G
A

N
-c

la
ss

if
ie

r 4
)

(G
A

N
-c

la
ss

if
ie

r 5
)

(G
A

N
-c

la
ss

if
ie

r 6
)

C
la

ss
pr

ec
.

re
ca

ll
f1

sc
or

e
pr

ec
.

re
ca

ll
f1

sc
or

e
pr

ec
.

re
ca

ll
f1

sc
or

e
pr

ec
.

re
ca

ll
f1

sc
or

e
pr

ec
.

re
ca

ll
f1

sc
or

e
pr

ec
.

re
ca

ll
f1

sc
or

e

E
xc

ha
ng

e
0.

96
0.

98
0.

97
0.

96
0.

98
0.

97
0.

96
0.

98
0.

97
0.

96
0.

98
0.

97
0.

95
0.

98
0.

97
0.

95
0.

98
0.

97

G
am

bl
in

g
0.

95
0.

90
0.

93
0.

95
0.

90
0.

92
0.

95
0.

91
0.

93
0.

95
0.

90
0.

93
0.

94
0.

89
0.

92
0.

95
0.

90
0.

92

M
ar

ke
t

0.
99

0.
97

0.
98

0.
99

0.
97

0.
98

0.
99

0.
97

0.
98

0.
99

0.
97

0.
98

0.
99

0.
97

0.
98

0.
99

0.
97

0.
98

Po
ol

0.
89

0.
78

0.
83

0.
93

0.
80

0.
86

0.
93

0.
80

0.
86

0.
91

0.
78

0.
84

0.
91

0.
78

0.
84

0.
91

0.
77

0.
84

M
ix

er
0.

91
0.

85
0.

88
0.

94
0.

87
0.

90
0.

91
0.

85
0.

88
0.

89
0.

82
0.

86
0.

90
0.

83
0.

86
0.

90
0.

84
0.

87

Se
rv

ic
e

0.
92

0.
77

0.
84

0.
88

0.
72

0.
79

0.
92

0.
76

0.
83

0.
92

0.
77

0.
83

0.
89

0.
71

0.
79

0.
89

0.
71

0.
79

av
g.

0.
94

0.
88

0.
90

0.
94

0.
87

0.
90

0.
94

0.
88

0.
91

0.
94

0.
87

0.
90

0.
93

0.
86

0.
89

0.
93

0.
86

0.
90

F. Zola et al.

Table 6 Overall accuracy, MCC and AUC of each GAN-classifier at different epochs separated per architecture

Vanilla GAN WGAN unrolled GAN

epochs score % MCC AUC score % MCC AUC score % MCC AUC

1,000 96.85 0.94 0.99 95.74 0.92 0.98 95.86 0.93 0.99

10,000 95.93 0.93 0.99 95.66 0.92 0.99 95.69 0.92 0.99

25,000 96.60 0.94 0.99 95.23 0.91 0.98 95.99 0.93 0.99

50,000 96.26 0.93 0.99 96.12 0.93 0.99 95.74 0.92 0.99

75,000 95.93 0.93 0.99 95.98 0.93 0.99 95.23 0.92 0.99

100,000 95.23 0.91 0.98 96.03 0.93 0.99 95.53 0.92 0.99

to any new knowledge (“low-valuable” samples). The two
most promising configurations obtained with the Vanilla
GAN, GAN-classifier1 and GAN-classifier3, were analysed
in-depth in the third experiment.

5.3 Randomness of GANs

For the next experiment, GAN-classifier1 and GAN-
classifier3 (trained for 1,000 and 25,000 epochs, respec-
tively) were run five more times and tested. In particular, 5
new hybrid datasets were generated using 5 new generators.
These new hybrid datasets were then used to train as many
address classifiers (GAN-classifiers), each one tested again
using the testing dataset.

In Table 7, the values of global accuracy, precision,
recall and f1-scores as well as the averages of the metrics
over the 5 repetitions and their standard deviations are
shown for each new implementation. The best results were
again obtained with the model based on the data generated
from GANs trained for 1,000 epochs (GAN-classifier1);
its metrics showed good repeatability with 96.12% as the
lowest value of accuracy and 96.96% as the greatest, with a
global standard deviation of 0.282%. Slightly more unstable
were the values obtained with models using data generated

Fig. 11 Comparison of overall accuracy values obtained with the
GAN-classifiers at different epochs

from GANs trained for 25,000 epochs (GAN-classifier3). In
this case, accuracy went down to 95.30% and up to 96.60%,
with a global standard deviation of 0.472%.

Figure 12 shows a comparison of f1-scores averaged over
the 5 repetitions for each entity class. Both GAN-classifier1

and GAN-classifier3, presented very limited variability
related to Exchange, Gambling and Market classification.
Furthermore, GAN-classifier1 presented high repeatability
(limited variance) for the other three classes, while GAN-
classifier3 showed higher variability related to the Pool,
Mixer and Service classes.

5.4 GANs for resampling vs. classical resampling

methods

In the fourth and last experiment, the best solutions
from prior experiments were compared to several common
resampling techniques introduced in Section 2.3.

Table 8 indicates the per-class sample population after
applying each additional resampling technique. Techniques
such as RUS remove samples in order to reach the sample
size present in the minority class, and techniques like ROS,
SMOTE and ADASYN tend to create new samples in order
to match the majority class. Interestingly, the Tomek links
strategy did not change dramatically class distribution, even
though it removes unwanted overlap between classes.

In Table 9, the values of overall accuracy, precision,
recall, f1-score, MCC and AUC are reported, which were
obtained by using the same testing dataset over the baseline
model and over Bitcoin entity classifiers, in which the class
imbalance problem was addressed by applying common
resampling strategies and the novel GAN-based strategy
introduced in this paper. The results shown in Table 9
can be compared with the baseline results and can be
interpreted by dividing them into three categories: strategies
that negatively affect classification results, strategies that
do not seem to affect results and strategies that generate
improvements.

The RUS technique falls into the first category as,
in fact, this under-sampling algorithm removed important

Attacking Bitcoin anonymity: generative adversarial networks for improving...

Table 7 Overall accuracy,
precision, recall and f1-scores
obtained with GAN-classifier1
and GAN-classifier3 in 5
implementations

1,000 (GAN-classifier1) 25,000 (GAN-classifier3)

Repetition # score % prec. recall f1 score score % prec. recall f1 score

1 96.12 0.93 0.88 0.90 96.34 0.94 0.89 0.91

2 96.96 0.94 0.90 0.92 96.55 0.95 0.90 0.92

3 96.71 0.93 0.90 0.91 95.30 0.92 0.86 0.89

4 96.78 0.95 0.91 0.93 96.17 0.94 0.89 0.91

5 96.62 0.93 0.90 0.92 96.60 0.95 0.90 0.93

avg. 96.64 0.94 0.90 0.92 96.19 0.94 0.89 0.91

std. 0.282 0.007 0.010 0.075 0.472 0.012 0.014 0.013

In each one, the classifiers were trained with different hybrid datasets (newly generated using the best
Vanilla GAN configuration). Average and standard values are in bold

information and generated a quality loss in the classification
- reflected in a worsening of all the considered metrics.
Accuracy decreased by more than 10% and the f1-score was
0.03 points below the baseline metric.

Tomek links and ADASYN were included in the sec-
ond category. In particular, the under-sampling technique
did not change strongly the initial dataset, and thus its eval-
uation metrics matched the baseline values. Although the
ADASYN strategy generated improvements, we consider
them to be insignificant here as the accuracy was just 0.12%
and the f1-score was only 0.01 points above the baseline
values.

ROS, SMOTE and GANs strategies belonged to the
third category, as these techniques generated visible
improvements in the results compared to values obtained
by using the imbalanced Bitcoin dataset. In terms of overall
accuracy, the best solution was obtained by addressing the
imbalance problem using the GAN approach introduced in
this paper, and in particular using GAN-classifier1 i.e. a
configuration of Vanilla GANs trained for 1,000 epochs.
Our strategy showed an accuracy value of 96.64%; 0.07%

Fig. 12 Comparison of GAN-classifier1 and GAN-classifier3 f1-
scores averaged over the 5 repetitions and standard deviations for each
entity class

above the second-best accuracy value achieved by the
ROS strategy, and 1.97% above the baseline model. ROS
and GAN strategies shared the same values of MCC and
AUC (0.94 and 0.99, respectively). However, in terms of
precision, recall and f1-score the ROS technique generated
slightly better results, reaching an f1-score of 0.94 versus
0.92 obtained with the GAN strategy.

Furthermore, Table 9 shows that GAN-classifier3 gen-
erated better results than the majority of the presented
resampling techniques as well, in fact only GAN-classifier1

and ROS performed better.
In Fig. 13, improvements and breakdowns in terms of

precision are shown, and it is evident that the model trained
with data enriched by our GAN strategy, together with
ROS, were the best solutions. It is to be noted that the
GAN strategy showed a decrease of precision regarding the
Pool class (0.04 below baseline), while the model trained
based on ROS data did not present such problems (0.04
above baseline). Yet, for the Gambling class, it was the
GAN strategy that generated improvements (0.03 above
the baseline), while the model trained with ROS data
did not achieve this precision. Both techniques did not
generate precision improvement for the Market class, but
they generated similar improvements with respect to other
classes. For example, in the Service class, a value of 0.1
points above the baseline model was obtained.

Figure 14 shows the breakdown of scores achieved per
class in terms of recall. The best results were obtained using
the SMOTE strategy. This strategy generated improvements
in almost all classes. For the Service class, for example,
the recall was 0.28 points above the baseline score; only
in the Exchange class a lower score was registered (-0.03).
The RUS trend was aligned with the theory of under-
sampling techniques - removing random samples from the
majority classes in order to balance the dataset, recall scores
increased for underrepresented classes, while they were
dramatically decreased for Exchange, Gambling and Market
classes. Our GAN strategy improved recall values in all

F. Zola et al.

Table 8 Populations in
resampled datasets using 5
different resampling strategies

RUS TL ROS SMOTE ADASYN

Class Train size Train size Train size Train size Train size

Exchange 43,265 4,967,951 4,972,019 4,972,019 4,972,019

Gambling 43,265 1,524,202 4,972,019 4,972,019 4,975,061

Market 43,265 1,173,795 4,972,019 4,972,019 4,971,980

Pool 43,265 43,265 4,972,019 4,972,019 4,971,821

Mixer 43,265 236,155 4,972,019 4,972,019 4,972,000

Service 43,265 125,019 4,972,019 4,972,019 4,971,911

classes, except for the Market class. Nevertheless, these
improvements were limited to a range between 0.01 and
0.14 points above baseline and were larger in ROS and
SMOTE strategies.

In terms of f1-score (harmonic mean of precision
and recall), the ROS implementation generated the high-
est improvements especially regarding underrepresented
classes, with 0.09, 0.06 and 0.17 points above base-
line values for Mining Pool, Mixer and Service classes,
respectively (Fig. 15). Our GAN strategy followed the
trend of the ROS strategy for Exchange, Gambling, Mar-
ket and Mixer classes, however, for Pool and Service
classes, f1-scores were only 0.02 and 0.13 points above
baseline.

To investigate practical aspects regarding the implemen-
tation of different resampling techniques, Fig. 16 shows the
computational cost of implementing the different techniques
in terms of execution time. For state-of-the-art techniques,
which do not require a training process, the time in seconds
(s) they needed to create a more balanced training dataset
via resampling is indicated. For GAN resampling, the time
for training each GAN is now given in terms of seconds (s)
for allowing a comparison. Computational costs were com-
puted by performing resampling of the same input dataset
on a server with 64GB of RAM and 16 vCPUs of 2.20 GHz.

As shown in Fig. 16, RUS and ROS techniques were
the fastest strategies; they performed resampling in 8
and 17s, respectively. Meanwhile, the SMOTE algorithm
needed 817s. The TL and ADASYN techniques were more

costly, requiring hours for resampling the initial dataset
(respectively 6,291 and 14,058s). The GAN strategies
reached 1,000 epochs in a range of 409s to 521s; 25,000
epochs were reached in a range of 10,232s to 13,060s. This
computational test confirmed the linear dependence of GAN
training time - during the training process the execution time
required to reach 25,000 epochs was about 25 times the one
required to reach 1,000 epochs.

5.5 Discussion

In this study, an approach for using adversarial learning
(GANs) to tackle class imbalance in Bitcoin data was
introduced with the ultimate goal of decreasing Bitcoin
entity anonymity. Our approach showed promising results
that we can summarize as follows:

• All GAN architectures generated improvements in
Bitcoin entity classification;

• The classifier trained with the Vanilla GAN-generated
synthetic data yielded better results than classifiers
trained with WGANs and unrolled GANs;

• Vanilla GAN implementations performed better using
shorter training epochs;

• Vanilla GAN implementations using short training
epochs achieved high repeatability;

• Vanilla GAN classifiers generated overall higher
accuracy, precision, recall and f1-score than the
baseline model (based on imbalanced data);

Table 9 Classification metrics
obtained by models trained
with datasets resampled with
different strategies. The best
value of each metric is
highlighted

Score % prec. recall f1 score MCC AUC

Baseline 94.67 0.91 0.84 0.87 0.90 0.98

RUS 83.10 0.88 0.83 0.84 0.74 0.97

TL 94.67 0.91 0.84 0.87 0.90 0.98

ROS 96.57 0.95 0.93 0.94 0.94 0.99

SMOTE 95.70 0.85 0.96 0.90 0.93 0.99

ADASYN 94.79 0.90 0.87 0.88 0.91 0.99

GAN-classifier1 96.64 0.94 0.90 0.92 0.94 0.99

GAN-classifier3 96.20 0.94 0.89 0.91 0.93 0.99

Attacking Bitcoin anonymity: generative adversarial networks for improving...

Fig. 13 Improvements compared to baseline and breakdown in terms
of precision

• The best GAN-based classifiers were in the top 3
techniques for classification improvements in terms
of all considered metrics (overall accuracy, precision,
recall, f1-score, MCC and AUC) compared to other
resampling techniques (together with ROS);

• Except for the two random resampling techniques RUS
and ROS, the GAN technique was the most efficient
strategy in terms of single task computational costs.

Limitations and strengths

The model trained with data generated by the Vanilla GAN
architecture reached higher values of accuracy than models
trained with data generated from WGANs and unrolled
GANs. However, as shown in Tables 3, 4 and 5, none of
the classifiers generated sufficient improvements for the
Pool and Service classes (f1-scores below 0.90), regardless
of the considered GAN architectures and the number of
epochs. This effect motivates two hypotheses regarding

Fig. 14 Improvements compared to baseline and breakdown in terms
of recall

Fig. 15 Improvements compared to baseline and breakdown in terms
of f1-score

possible limitations of the dataset and limitations of the
GAN approach. On the one hand, the issue could be related
to the distribution of those affected classes in the training
dataset. In this case, after splitting into training and testing
datasets, the training set may not have enough sample
variety for describing all possible behaviours, which causes
a loss of quality during the GAN training. On the other
hand, it could happen that - although presenting a sparse
distribution - affected classes are characterized by several
high-density regions in the feature space. This phenomenon
may affect GAN training such that only behaviours in these
high-density regions are learnt.

The best values were obtained using a Vanilla GAN
architecture by training this network with a lower number of
epochs (1,000). In fact, too long training of this architecture
(using a high number of epochs) caused a decrease of
classification accuracy, probably due to known downside
effects of GANs as discussed in Section 2.2 (the mode
collapse effect - overfitting).

Fig. 16 Execution times of different resampling strategies for the same
input dataset. For GAN strategies, the training time is indicated

F. Zola et al.

This behaviour is highlighted in Fig. 11, which shows
the downward trend of obtained accuracy with increased
training time related to the Vanilla GAN. The same Figure
highlights how the WGAN was affected in a contrary way.
Results showed that more training time (more epochs) was
required for training the WGANs and for obtaining more
valuable synthetic samples. However, within the range of
epochs considered in the experiments, the accuracy of the
model trained with the WGAN architecture was lower than
the accuracy achieved by the classifier trained with the
Vanilla GAN.

The two best GAN configurations we found, the Vanilla
GAN trained with 1,000 and 25,000 epochs (GAN-
classifier1 and GAN-classifier3), were tested another 5
times changing the composition of the training dataset used
for training each class GAN, and they showed that the most
stable (least varying) classifier with highest accuracy value
was obtained by training GANs in a short period (1,000
epochs).

Comparison to other resampling techniques

The fourth experiment demonstrated once more that the
class imbalance problem is an important problem in the
Bitcoin entity classification task and that it strongly affects
the quality of the classifiers. All used over-sampling
techniques (ROS, SMOTE and ADASYN) generated
improvements in terms of recall, f1-score, MCC and AUC,
while under-sampling techniques (RUS and TL) performed
poorly (Table 9).

Comparing the GAN-based strategy with 5 frequently
used resampling techniques, our approach represented the
best solution in terms of accuracy with 96.64%; 1.97% more
than the baseline accuracy. The GAN-classifier1 together
with ROS reached also the highest overall MCC score of
0.94. However, in terms of overall precision, recall and
f1-score the ROS strategy outperformed the GAN strategy
slightly.

These results, together with the results obtained in the
third experiment (repeatability of the results) definitively
invalidate our first hypothesis related to the limitation
of the training dataset distribution. In fact, they show
that simple replication of the training samples (ROS
algorithms) generates good improvements in the Pool and
Service classes as well (Fig. 15). However, the small
improvements generated with the GAN resampled datasets
confirm our second hypothesis, that GANs learn partial
information of Pool and Service classes only, likely due
to the sparse distribution of their behaviours and the
presence of high-density regions in the feature space.
This assumption is confirmed by analysing Table 9 where
GAN-classifiers show high values of precision (i.e. low

false positives) and low values of recall (i.e. high false
negatives).

Finally, since GANs technologies help to generate
samples of specific entities with high variability, they are
less prone to overfitting than the ROS technique. Further,
following the results obtained, this sampling variability
does not strongly affect the classification performance as
it is the case of the other techniques generating higher
variability like SMOTE and ADASYN. This demonstrates
that not only in image applications [82], but also in Bitcoin
applications, GANs are able to learn the data distribution
and generate new samples starting from a very limited class
representation (very high imbalance ratio)

Comparison of execution times

In terms of execution cost, the two simple resampling
techniques (RUS and ROS) beat all the others in terms
of computation speed (less than 20s) by a lot. However,
comparing the remaining resampling techniques, the GAN
strategy presents a high cumulative training time. Neverthe-
less, using a parallel training process, the GAN technique
trained in 1,000 epochs became the next best solution after
RUS and ROS, as shown by its fast-training time (aver-
age ∼ 460s for each implementation). The training process
could be parallelized by training the 5 GANs at the same
time using different threads. In fact, a single GAN task
was 1.77 times faster than the whole SMOTE process, and
respectively 13.7 and 30.5 faster than the TL and ADASYN
algorithms.

Comparison with previous work

In Table 10, our GAN-based classification results are
compared with previous studies that directly apply Artificial
Neural Network (ANN), Random Forest (RF) [83], Gradient
Boosting Classifiers (GBC), GBC combined with SMOTE
[7], Logistic Regression (LR) and two implementations
of Light Gradient Boosting Machine (LGBM) [6, 36] in
terms of overall and per class f1-score. Our approach is
the best in terms of overall f1-score when using ROS
(0.94) and shares second place with the Light Gradient
Boosting Machine (LGBM) when using the GAN-based
method. In particular, our GAN-based approach represents
the best solution for detecting Exchange (0.98) and Market
(0.94) entities by a difference of several points compared to
previously published models. Further, it is in second place
for detecting Gambling (0.95) and Service (0.89) classes
(slightly outperformed by our ROS implementation for the
latter), while it has problems detecting Pool entities. More
specifically, the four classes in which our GAN approach

Attacking Bitcoin anonymity: generative adversarial networks for improving...

Table 10 Comparison of
per-class and overall f1-score
achieved by comparable
state-of-the-art works. The best
value, for each class, is
highlighted

f1-score

[83] [7] [6] [36] Proposed method

Class RF ANN GBC GBC
(SMOTE)

LR LGBM LGBM ROS GAN
classifier1

Exchange 0.78 0.56 0.86 0.84 0.91 0.92 0.89 0.98 0.98

Gambling 0.77 0.48 0.78 0.78 0.82 0.97 0.83 0.94 0.95

Market - - 0 0 - - 0.78 0.98 0.99

Pool 0.86 0.65 0.90 0.86 0.67 0.67 0.83 0.91 0.82

Mixer 0.82 0.45 0.33 0.97 - - 0.98 0.89 0.88

Service/Other* - - 0.22* 0.08* 0.87 0.88 - 0.92 0.89

Overall - - 0.75 0.76 0.87 0.92 0.87 0.94 0.92

performs better are also the ones that are interesting from an
investigation point of view since those four, together with
Mixers, represent the entities more prone to be involved in
illicit transactions such as money laundering (Section 2.1).
It is to be noted that our ROS and GAN-based approaches
together outperform all other models for the majority of
classes except LGBM for the Gambling and Mixer classes.
Further, our implementations generate overall precision,
recall and f1-score scores that are aligned with the results
presented in [70] (between 0.90 and 0.94), however, we
achieve better overall accuracy (∼ 5%), and better recall
values per class, especially for Exchange, Mining, Mixer
and Gambling classes.

Finally, comparing our GAN-based approach with work
presented in [78], our metrics exceed their results (with
respect to WCGAN, DRAGAN and SMOTE) in terms of
AUC (∼ 0.07) and recall (∼ 0.59), even though precision
decreases slightly (∼ 0.05).

6 Conclusions

Bitcoin entity classification is an important task in
cryptocurrency network analysis for decreasing entity
anonymity, for detecting classes related to abnormal
or illicit activities and for increasing the network’s
resilience to cyber-attacks (detecting the more vulnerable
classes). Typically, this task is performed by applying
supervised machine learning algorithms whose results are
strongly conditioned by ground truth Bitcoin datasets.
Yet, these labelled input datasets usually do not contain
a homogeneous population of the various Bitcoin entity
classes, yielding a class imbalance problem, which results
in poor classification performance.

Current blockchain studies are transferring a variety
of technologies that have already shown good results in
other domains to the Bitcoin blockchain domain. Following
this trend, in this work, we introduced the application of

Generative Adversarial Networks (GANs) to address the
Bitcoin imbalance problem with the aim to evaluate how this
synthetic information can improve the entity classification
task. GANs have mainly been used in the image or
video processing domain and specifically for addressing
imbalance problems. In this work, we investigated different
types of GAN architectures and how we can apply them
to the Bitcoin domain in order to address the imbalance
problem and improve the final multi-class classification.
Experiments were performed to check the repeatability of
GAN-based resampling and to compare our approach to
other common resampling techniques.

Our GAN-based classification approach generally
obtained promising results, achieving the best results in
terms of accuracy and was among the best in terms of
precision, recall and f1-score compared to other resam-
pling techniques. Furthermore, the presented methods
outperformed previously published models with regard to
Exchange, Market, Pool and Service entity classification.

Along the way, we detailed and highlighted here GAN-
specific characteristics such as the influence of training
epochs, which need to be taken into consideration when
applying GANs to Bitcoin-related data. Finally, we detailed
the limitations of this approach when the training dataset
is composed of dense areas in the features space. In these
cases, such distributions seem to force GANs to learn
certain behaviours and forget others.

This study represents a first step towards the usage of
GAN technologies with Bitcoin behavioural data. Motivated
by our promising results, future work could be directed
towards testing other optimization functions (like Adagrad
[84] or Adadelta [85]), evaluating changes in G and D
networks. In this way, it will be possible to evaluate if with
the help of a more robust optimizer the GANs will learn to
generate more valuable samples (in terms of classification
improvements). Further, it will be interesting to implement
multi-GAN solutions for each class, i.e. training more
than one GAN for each class in order to increase the

F. Zola et al.

knowledge about the training dataset and evaluate their
effects in generating information. Based on the promising
results presented in this paper, future studies could focus
on analysing alternative data augmentation techniques such
as Mixup [86] for Bitcoin entity classification. Finally, it
could be interesting to apply and validate the introduced
approach to address class imbalance problems using other
machine learning models different from Random Forest,
for example by including Neural Networks or tensor-
based classifiers [87]. Overall, our study has shown that
by applying carefully selected resampling techniques the
Bitcoin class imbalance problem can indeed be tackled,
leading to very good classification results across a broad
range of critical (and often under-represented) Bitcoin entity
classes, which may ultimately impact positively on Bitcoin
de-anonymization and the detection of illicit activities
within the network.

Acknowledgements This work has been partially supported by the
Spanish Centre for the Development of Industrial Technology (CDTI)
under the project ÉGIDA (CER20191012) - RED DE EXCELENCIA
EN TECNOLOGIAS DE SEGURIDAD Y PRIVACIDAD.

Author Contributions F. Zola: Conceptualization of this study, Related
Work, Methodology, Results, Discussion, Writing - Original draft
preparation

L. Segurola-Gil: Related Work, Data curation,
J.L. Bruse: Discussion, Writing - Review and editing
M. Galar: Discussion, Writing - Review and editing
R. Orduna-Urrutia: Conceptualization of this study, Supervision

Funding Not applicable

Declarations

Availability of Data andMaterial (Data Transparency) Not applicable

Code Availability Not applicable

Competing interests (check journal-specific guidelines for which
heading to use)

Conflict of Interests Not applicable

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

1. Nakamoto S (2019) Bitcoin: A peer-to-peer electronic cash
system. Technical Report, Manubot

2. Foley S, Karlsen JR, Putniņš TJ (2019) Sex, drugs, and bitcoin:
How much illegal activity is financed through cryptocurrencies?
Rev Financ Stud 32(5):1798–1853

3. Marella V, Upreti B, Merikivi J, Tuunainen VK (2020)
Understanding the creation of trust in cryptocurrencies: the case
of bitcoin. Electron Mark:1–13

4. Saez M (2020) Blockchain-enabled platforms: Challenges and
recommendations. Int J Interact Multimed Artif Intell 6(3)

5. Zola F, Bruse JL, Eguimendia M, Galar M, Orduna Urrutia
R (2019) Bitcoin and cybersecurity: temporal dissection of
blockchain data to unveil changes in entity behavioral patterns.
Appl Sci 9(23):5003

6. Jourdan M, Blandin S, Wynter L, Deshpande P (2018) Charac-
terizing entities in the bitcoin blockchain. In: IEEE International
Conference on Data Mining Workshops (ICDMW). IEEE, pp 55–
62

7. Harlev MA, Sun Yin H, Langenheldt KC, Mukkamala R,
Vatrapu R (2018) Breaking bad: De-anonymising entity types
on the bitcoin blockchain using supervised machine learning. In:
Proceedings of the 51st Hawaii international conference on system
sciences

8. Fernández A, Garcı́a S, Galar M, Prati RC, Krawczyk B, Herrera
F (2018) Learning from imbalanced data sets. Springer

9. Monamo PM, Marivate V, Twala B (2016) A multifaceted
approach to bitcoin fraud detection: Global and local outliers. In:
15th IEEE International Conference on Machine Learning and
Applications (ICMLA). IEEE, pp 188–194

10. Zheng W, Zhao H (2020) Cost-sensitive hierarchical classification
for imbalance classes. Appl Intell 50(8):2328–2338

11. Fernández A, Garcı́a S, Galar M, Prati RC, Krawczyk B, Herrera F
(2018) Algorithm-level approaches. In: Learning from imbalanced
data sets. Springer, pp 123–146

12. Wang S, Liu W, Wu J, Cao L, Meng Q, Kennedy PJ (2016)
Training deep neural networks on imbalanced data sets. In: 2016
international joint conference on neural networks (IJCNN). IEEE,
pp 4368–4374

13. Manju N, Harish BS, Nagadarshan N (2020) Multilayer feedfor-
ward neural network for internet traffic classification. Int J Interact
Multim Artif Intell 6(1):117–122

14. Alotaibi A (2020) Deep generative adversarial networks for
image-to-image translation: a review. Symmetry 12(10):1705

15. Brock A, Donahue J, Simonyan K (2018) Large scale gan
training for high fidelity natural image synthesis. In: International
conference on learning representations

16. Vondrick C, Pirsiavash H, Torralba A (2016) Generating videos
with scene dynamics. Adv Neural Inf Proces Syst 29

17. Bowles C, Chen L, Guerrero R, Bentley P, Gunn R, Hammers
A, Dickie DA, Hernández MV, Wardlaw J, Rueckert D (2018)
Gan augmentation: Augmenting training data using generative
adversarial networks. arXiv:1810.10863

18. Abusitta A, Aı̈meur E, Abdel Wahab O (2020) Generative
adversarial networks for mitigating biases in machine learning
systems. In: ECAI 2020. IOS Press, pp 937–944

19. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley
D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial
nets. In: Advances in neural information processing systems,
pp 2672–2680

20. Wang K, Gou C, Duan Y, Lin Y, Zheng X, Wang F-Y
(2017) Generative adversarial networks: introduction and outlook.
IEEE/CAA J Autom Sin 4(4):588–598

Attacking Bitcoin anonymity: generative adversarial networks for improving...

21. Shamsolmoali P, Zareapoor M, Wang R, Jain DK, Yang J (2019)
G-ganisr: Gradual generative adversarial network for image super
resolution. Neurocomputing 366:140–153

22. Ledig C, Theis L, Huszar F, Caballero J, Cunningham A,
Acosta A, Aitken A, Tejani A, Totz J, Wang Z et al (2017)
Photo-realistic single image super-resolution using a generative
adversarial network. In: Proceedings of the IEEE conference on
computer vision and pattern recognition, pp 4681–4690

23. Alqahtani H, Kavakli-Thorne M, Kumar G (2019) Applications of
generative adversarial networks (gans): an updated review. Arch
Comput Methods Eng:1–28

24. Kethineni S, Cao Y (2019) The rise in popularity of cryp-
tocurrency and associated criminal activity. Int Crim Justice
Rev:1057567719827051

25. Hu M, Chen J, Gan W, Chen C-M (2021) A jumping mining attack
and solution. Appl Intell 51(3):1367–1378

26. Fanusie Y, Robinson T (2018) Bitcoin laundering: an analysis of
illicit flows into digital currency services. Center on Sanctions &
Illicit Finance memorandum

27. Sun X, Yang T, Hu B (2021) Lstm-tc: Bitcoin coin mixing
detection method with a high recall. Appl Intell:1–14

28. Conti M, Kumar ES, Lal C, Ruj S (2018) A survey on security
and privacy issues of bitcoin. IEEE Commun Surv Tutorials
20(4):3416–3452

29. Zola F, Eguimendia M, Bruse JL, Urrutia RO (2019) Cascading
machine learning to attack bitcoin anonymity. In: IEEE Inter-
national conference on blockchain (Blockchain). IEEE, pp 10–
17

30. Yin HS, Vatrapu R (2017) A first estimation of the proportion of
cybercriminal entities in the bitcoin ecosystem using supervised
machine learning. In: IEEE International conference on big data
(Big Data). IEEE, pp 3690–3699

31. Hu M, Chen J, Gan W, Chen C-M (2020) A jumping mining attack
and solution. Appl Intell 51(3):1367–1378

32. Kim S, Kim B, Kim HJ (2018) Intrusion detection and mitigation
system using blockchain analysis for bitcoin exchange. In:
Proceedings of the international conference on cloud computing
and internet of things, pp 40–44

33. Zhang Y, Wang J, Luo J (2020) Heuristic-based address clustering
in bitcoin. IEEE Access 8:210582–210591

34. Paquet-Clouston M, Haslhofer B, Dupont B (2019) Ransomware
payments in the bitcoin ecosystem. J Cybersecur 5(1):tyz003

35. Haslhofer B, Karl R, Filtz E (2016) O bitcoin where art thou?
insight into large-scale transaction graphs. In: SEMANTiCS
(Posters, Demos, SuCCESS)

36. Lin Y-J, Wu P-W, Hsu C-H, Tu I-P, Liao S (2019) An evaluation
of bitcoin address classification based on transaction history
summarization. In: IEEE International Conference on Blockchain
and Cryptocurrency (ICBC). IEEE, pp 302–310

37. Liao K, Zhao Z, Doupé A, Ahn G-J (2016) Behind closed doors:
measurement and analysis of cryptolocker ransoms in bitcoin.
In: APWG Symposium on Electronic Crime Research (eCrime).
IEEE, pp 1–13

38. Farnia F, Ozdaglar A (2020) Do gans always have nash
equilibria? In: International conference on machine learning.
PMLR, pp 3029–3039

39. Yuan W, Hu F, Lu L (2021) A new non-adaptive optimiza-
tion method: stochastic gradient descent with momentum and
difference. Appl Intell:1–15

40. Sun R, Fang T, Schwing A (2020) Towards a better global loss
landscape of gans. Adv Neural Inf Process Syst 33

41. Goodfellow I (2016) Nips 2016 tutorial: Generative adversarial
networks. arXiv:1701.00160

42. Dai Y, Wang S, Chen X, Xu C, Guo W (2020) Generative
adversarial networks based on wasserstein distance for knowledge
graph embeddings. Knowl-Based Syst 190:105165

43. Martin A, Lon B (2017) Towards principled methods for
training generative adversarial networks. In: NIPS Workshop on
adversarial training. In review for ICLR, vol 2016

44. Arjovsky M, Chintala S, Bottou L (2017) Wasserstein generative
adversarial networks. In: Precup D, Teh YW (eds) Proceedings
of the 34th international conference on machine learning, vol 70.
PMLR, pp 214–223

45. Nagarajan V, Kolter JZ (2017) Gradient descent gan optimization
is locally stable. In: Advances in neural information processing
systems, pp 5585–5595

46. Metz L, Poole B, Pfau D, Sohl-Dickstein J (2017) Unrolled gen-
erative adversarial networks. In: 5th International conference on
learning representations, conference track proceedings. OpenRe-
view.net

47. Sahu S, Gupta R, Espy-Wilson C (2018) On enhancing speech
emotion recognition using generative adversarial networks. In:
INTERSPEECH

48. Yi X, Walia E, Babyn P (2019) Generative adversarial network in
medical imaging: a review. Med Image Anal 58:101552

49. Ali-Gombe A, Elyan E (2019) Mfc-gan: class-imbalanced dataset
classification using multiple fake class generative adversarial
network. Neurocomputing 361:212–221

50. Dai X, Yuan X, Wei X (2021) Data augmentation for thermal
infrared object detection with cascade pyramid generative
adversarial network. Appl Intell:1–15

51. Liu Q-M, Jia R-S, Liu Y-B, Sun H-B, Yu J-Z, Sun H-M
(2021) Infrared image super-resolution reconstruction by using
generative adversarial network with an attention mechanism. Appl
Intell 51(4):2018–2030

52. Zhang F, Ma Y, Yuan G, Zhang H, Ren J (2021) Multiview image
generation for vehicle reidentification. Appl Intell:1–18

53. Zong X, Chen Z, Wang D (2021) Local-cyclegan: a general end-
to-end network for visual enhancement in complex deep-water
environment. Appl Intell 51(4):1947–1958

54. Chen Y, Zhang H, Liu L, Chen X, Zhang Q, Yang K, Xia R, Xie
J (2021) Research on image inpainting algorithm of improved gan
based on two-discriminations networks. Appl Intell 51(6):3460–
3474

55. Chen S, Chen S, Guo Z, Zuo Y (2019) Low-resolution
palmprint image denoising by generative adversarial networks.
Neurocomputing 358:275–284

56. Li Y, Zhang Y, Yu K, Hu X (2021) Adversarial training with
wasserstein distance for learning cross-lingual word embeddings.
Appl Intell:1–13

57. Yang Z, Chen W, Wang F, Xu B (2018) Generative adver-
sarial training for neural machine translation. Neurocomputing
321:146–155

58. Athanasiadis C, Hortal E, Asteriadis S (2019) Audio–visual
domain adaptation using conditional semi-supervised generative
adversarial networks. Neurocomputing

59. Merino T, Stillwell M, Steele M, Coplan M, Patton J, Stoyanov A,
Deng L (2019) Expansion of cyber attack data from unbalanced
datasets using generative adversarial networks. In: International
conference on software engineering research, management and
applications. Springer, pp 131–145

60. Yilmaz I, Masum R (2019) Expansion of cyber attack
data from unbalanced datasets using generative techniques.
arXiv:1912.04549

61. Mukhtar N, Batina L, Picek S, Kong Y (2021) Fake it till you
make it: Data augmentation using generative adversarial networks
for all the crypto you need on small devices

62. Wang P, Li S, Ye F, Wang Z, Zhang M (2020) Packetcgan:
Exploratory study of class imbalance for encrypted traffic
classification using cgan. In: ICC 2020-2020 IEEE International
Conference on Communications (ICC). IEEE, pp 1–7

F. Zola et al.

63. Haixiang G, Yijing L, Shang J, Mingyun G, Yuanyue H, Bing G
(2017) Learning from class-imbalanced data: review of methods
and applications. Expert Syst Appl 73:220–239

64. Garcı́a V, Sánchez JS, Marqués AI, Florencia R, Rivera G (2019)
Understanding the apparent superiority of over-sampling through
an analysis of local information for class-imbalanced data. Expert
Syst Appl:113026

65. Pereira RM, Costa YandreMG, Silla Jr C N (2020) Mltl: A
multi-label approach for the tomek link undersampling algorithm.
Neurocomputing 383:95–105

66. Fernandez A, Garcia S, Herrera F, Chawla NV (2018) Smote for
learning from imbalanced data: progress and challenges, marking
the 15-year anniversary. J Artif Intell Res 61:863–905

67. Vo MT, Nguyen T, Vo HA, Le T (2021) Noise-adaptive synthetic
oversampling technique. Appl Intell:1–10

68. Oussidi A, Elhassouny A (2018) Deep generative models: Survey.
In: 2018 International Conference on Intelligent Systems and
Computer Vision (ISCV). IEEE, pp 1–8

69. Xie Y, Zhang T (2018) Imbalanced learning for fault diagnosis
problem of rotating machinery based on generative adversarial
networks. In: 2018 37th Chinese Control Conference (CCC).
IEEE, pp 6017–6022

70. Nerurkar P, Bhirud S, Patel D, Ludinard R, Busnel Y, Kumari S
(2021) Supervised learning model for identifying illegal activities
in bitcoin. Appl Intell 51(6):3824–3843

71. Bartoletti M, Pes B, Serusi S (2018) Data mining for detecting
bitcoin ponzi schemes. In: Crypto Valley Conference on
Blockchain Technology (CVCBT). IEEE, pp 75–84

72. Ranshous S, Joslyn CA, Kreyling S, Nowak K, Samatova NF,
West CL, Winters S (2017) Exchange pattern mining in the bitcoin
transaction directed hypergraph. In: International conference on
financial cryptography and data security. Springer, pp 248–263

73. Liang J, Li L, Luan S, Gan L, Zeng D (2019) Bitcoin exchange
addresses identification and its application in online drug trading
regulation. In: 23rd Pacific Asia Conference on Information
Systems: Secure ICT Platform for the 4th Industrial Revolution,
PACIS 2019

74. Monamo MP (2018) Anomaly detection in the open financial mar-
kets: A case for the bitcoin network. University of Johannesburg,
South Africa

75. Pfenninger M, Rikli S, Bigler DN (2021) Wasserstein gan: Deep
generation applied on financial time series. Available at SSRN
3877960

76. Grilli L, Santoro D (April 2020) Generative Adversarial Network
for Market Hourly Discrimination. In: 3RD International confer-
ence on mathematical and related sciences: current trends and
developments proceedings book

77. Zola F, Bruse JL, Barrio XE, Galar M, Urrutia RO (2020)
Generative adversarial networks for bitcoin data augmentation.
In: 2nd Conference on Blockchain Research & Applications for
Innovative Networks and Services (BRAINS). IEEE, pp 136–143

78. Han J, Woo J, Hong JW-K (2020) Oversampling techniques
for detecting bitcoin illegal transactions. In: 21st Asia-Pacific
Network Operations and Management Symposium (APNOMS).
IEEE, pp 330–333

79. Toyoda K, Ohtsuki T, Mathiopoulos PT (2018) Multi-class
bitcoin-enabled service identification based on transaction his-
tory summarization. In: IEEE International Conference on Internet
of Things (iThings) and IEEE Green Computing and Commu-
nications (GreenCom) and IEEE Cyber, Physical and Social

Computing (CPSCom) and IEEE Smart Data (SmartData). IEEE,
pp 1153–1160

80. Zou F, Shen L, Jie Z, Zhang W, Liu W (2019) A sufficient
condition for convergences of adam and rmsprop. In: Proceedings
of the IEEE/CVF Conference on computer vision and pattern
recognition, pp 11127–11135

81. Chicco D, Jurman G (2020) The advantages of the matthews
correlation coefficient (mcc) over f1 score and accuracy in binary
classification evaluation. BMC Genomics 21(1):1–13

82. Sampath V, Maurtua I, Martı́n JJA, Gutierrez A (2021) A survey
on generative adversarial networks for imbalance problems in
computer vision tasks. J Big Data 8(1):1–59

83. Lee C, Maharjan S, Ko K, Woo J, Hong JW-K (2020) Machine
learning based bitcoin address classification. In: International
conference on blockchain and trustworthy systems. Springer,
pp 517–531

84. Lydia A, Francis S (2019) Adagrad–an optimizer for stochastic
gradient descent. Int J Inf Comput Sci 6(5)

85. Dogo EM, Afolabi OJ, Nwulu NI, Twala B, Aigbavboa
CO (2018) A comparative analysis of gradient descent-based
optimization algorithms on convolutional neural networks. In:
2018 International Conference on Computational Techniques,
Electronics and Mechanical Systems (CTEMS). IEEE, pp 92–99

86. Liang D, Yang F, Zhang T, Yang P (2018) Understanding mixup
training methods. IEEE Access 6:58774–58783

87. Hu C, He S, Wang Y (2021) A classification method to detect
faults in a rotating machinery based on kernelled support tensor
machine and multilinear principal component analysis. Appl Intell
51(4):2609–2621

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Francesco Zola obtained his
Bachelors degree in Telecom-
munication Engineering at
University of Cassino and
Southern Lazio, Italy, in 2012
and his Master’s degree in
Computer Science in the same
university, in 2015. He works
as associate researcher and
data scientist in Vicomtech
in the department of Digital
Security applying machine
learning in cybersecurity
projects. In 2019 he started
his doctorate in collaboration
with the Public University of

Navarre (UPNA), focusing his works on graph analysis, machine
learning, data augmentation and classification. Francesco is involved
in several European and industrial projects related to cybersecurity,
blockchain analysis and anomaly detection.

Attacking Bitcoin anonymity: generative adversarial networks for improving...

Lander Segurola-Gil is a
mathematician who obtained
his Bachelors degree in the
University of Paı́s Vasco Euskal
Herriko Unibertsitatea (UPV-
EHU) and received a Masters
degree in Mathematics and
Applications from the Univer-
sity of Madrid (UAM). Since
2019, he works as a research
assistant in Vicomtech in the
department of Digital Secu-
rity. His research interests
are Naive Bayes networks,
attack detection and machine
learning applied to time series.

Dr. Jan L. Bruse graduated
in Mechanical Engineering
at RWTH Aachen Univer-
sity, Germany, in 2013 and
received his doctorate in
Biomedical Engineering from
University College London,
United Kingdom, in 2017.
His PhD thesis combines
Medical Image Analysis,
Computational Simulation
and Machine Learning for the
development of Clinical Deci-
sion Support Systems. Jan has
participated in several inter-
national and interdisciplinary

research collaborations, has multiple peer-reviewed publications in
journals and congresses indexed in the engineering and clinical sector
and is reviewer for several international journals. Since September
2017, Jan is Research Engineer at Vicomtech, Spain, in the area
of Data Intelligence for Energy and Industrial Processes where he
develops Artificial Intelligence (AI) and Machine Learning platforms
within the context of Industry 4.0 projects.

Dr. Mikel Galar received the
MSc and PhD degrees in
Computer Science in 2009
and 2012, both from the
Public University of Navarre
(UPNA), Spain. He is cur-
rently an associate professor at
the Department of Statistics,
Computer Science and Mathe-
matics at the UPNA. He is the
author of 35 published original
articles in international jour-
nals and more than 50 con-
tributions to conferences. He
is also reviewer of more than
35 international journals. His

research interests are machine learning, data mining, classification,
fuzzy systems and big data. He is a member of the IEEE, the European
Society for Fuzzy Logic and Technology (EUSFLAT) and the Span-
ish Association of Artificial Intelligence (AEPIA). He has received the
extraordinary prize for his PhD thesis from the Public University of
Navarre and the 2013 IEEE Transactions on Fuzzy System Outstand-
ing Paper Award for the paper “A New Approach to Interval-Valued
Choquet Integrals and the Problem of Ordering in Interval-Valued
Fuzzy Set Applications” (bestowed in 2016).

Dr. Raul Orduna-Urrutia
received his degree in Com-
puter Engineering at the
Faculty of Informatics of
San Sebastian by the Univer-
sity of the Basque Country
(UPV/EHU) and obtained
a PhD degree in Computer
Science and Artificial Intel-
ligence at the School of
Industrial and Telecommuni-
cations Engineering (ETSIIT)
of the Public University of
Navarre (UPNA). He is cur-
rently an associate professor
at the Department of Statistics

and Computer Science at the UPNA, and, at the same time, the Digital
Security Director in Vicomtech. He has taken part or led projects
related with ethical hacking, forensic analysis, malware analysis,
access control and cryptography. He has participated in more than
6 successful funded projects, is the author of 6 published original
articles in international journals. He is also a reviewer of Fuzzy Sets
and Systems.

F. Zola et al.

Affiliations

Francesco Zola1,2 · Lander Segurola-Gil1 · Jan L. Bruse1 · Mikel Galar2 · Raul Orduna-Urrutia1

Lander Segurola-Gil
lsegurola@vicomtech.org

Jan L. Bruse
jbruse@vicomtech.org

Mikel Galar
mikel.galar@unavarra.es

Raul Orduna-Urrutia
rorduna@vicomtech.org

1 Digital Security, Vicomtech Foundation, Basque Research and
Technology Alliance (BRTA), Paseo Mikeletegi, Donostia/San
Sebastian, 20009, Spain

2 Institute of Smart Cities, Public University of Navarre, Pamplona,
31006, Spain

4. Cyber Threat Intelligence for Malware Classification in the
Presence of Concept Drift

The work related to this part is in:

Zola F., Bruse J.L., Galar M. and Cavallaro L., Cyber Threat Intelligence for Malware
Classification in the Presence of Concept Drift

Status: Submitted

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Cyber Threat Intelligence for Malware Classification
in the Presence of Concept Drift

Francesco Zola∗†

fzola@vicomtech.org

Vicomtech Fundation
Spain

Jan L. Bruse
jbruse@vicomtech.org

Vicomtech Fundation
Spain

Mikel Galar
mikel.galar@unavarra.es

Public University of
Navarre
Spain

Lorenzo Cavallaro
l.cavallaro@ucl.ac.uk

University College London
UK

Abstract

In recent years, malware diversity and complexity have in-
creased substantially so that machine learning (ML)-based
approaches have been proposed to detect and classify the
growing number of malware families. However, these ap-
proaches are most focused on achieving high classification
performance scores in static scenarios, without taking into
account a key feature of malware: it is constantly evolv-
ing. This leads to ML models being outdated and performing
poorly after only a fewmonths, leaving stakeholders exposed
to potential security risks. With this work, we aim to high-
light the issues that may arise when applying ML-based clas-
sification to malware data and propose a three-step approach
to carry out an in-depth analysis favouring interpretation
of the results for enhancing Cyber Threat Intelligence (CTI).
First, we perform a multi-class classification using Control
Flow Graph (CFG) data extracted from portable executables,
followed by temporal analyses of concept drift and finally an
in-depth misclassification and feature analysis. We conclude
that caution is warranted when training ML models for mal-
ware analysis as concept drift and clear performance drops
were observed even for models trained on larger datasets.

CCSConcepts: • Security andprivacy→ Intrusion/anomaly

detection andmalwaremitigation; •Computingmethod-

ologies → Artificial intelligence.

Keywords: Malware classification, Control Flow Graphs,
Concept drift, Temporal dissection, Threat analysis

1 Introduction

Today, malicious software is more disrupting than ever with
more than 450,000 new malicious programs (malware) and
potentially unwanted applications (PUA) being registered ev-
ery day [1]. These malwares are frequently used for cyberat-
tacks aimed at stealing information, deploying ransomware,
or carrying out other illegal operations or cybercrimes. Fur-
thermore, their versatility allows one to adapt and use them
in a wide range of devices such as Internet of Things (IoT)
and mobile domains [36, 46].

∗F. Zola is also with the Public University of Navarre.
†This work was carried out while F. Zola was a visiting PhD student at
University College London, Department of Computer Science.

Modernization of security software and detection tech-
niques have led hackers and malicious operators to think
of new methods for bypassing firewalls, spreading malware
through a system, and injecting backdoors [45]. This trend
of building new malware variants based on techniques that
are able to mislead “traditional" detection systems such as
anti-virus scanners [11], has generated an increasing amount
and diversity of malware applications. For this reason, it is
not only important to detect malware but also to distinguish
the (growing number of) different types of malware families

in order to gain a better understanding of current and future
malware capabilities and their possible impacts [17]. In this
scenario, malware detection and classification has become a
key objective within the field of information security [31].
In recent years, multiple machine learning (ML) algo-

rithms have been proposed to detect malware elements.
These models are usually trained to extract, analyze, and
classify source programs as benign or malware [34]. Yet, the
majority of studies in recent literature [15, 31] are purely
focused on the classification task - typically racing towards
the best classification performance while neglecting the in-
terpretation of the results. More and more complex ML so-
lutions are implemented to squeeze and alter the initially
given information while common pitfalls are overlooked so
that often over-optimistic conclusions are drawn that do not
reflect real-world cybersecurity scenarios [5]. Furthermore,
learning-based systems are typically evaluated in a “static"
environment which does not represent the real world of con-
stantly evolving malware [5]. In fact, program behaviour
and malware families can change rapidly, leading trained ML
models to become outdated after only a few months without
being noticed [24]. Moreover, these learningmodels may also
be subject to cyber-attacks aimed at deliberately “confusing"
the model and altering prediction results, which in turn may
cause financial loss, infrastructure damages, etc. [4]. This
situation results in a loss of control over the original data, es-
pecially knowing that these models are implemented by ML
experts that are neither the actual cybersecurity operators
nor malware analysts [26].

Prior studies have tried to address these concerns [24, 44],
for example proposing an approach to evaluate temporal
decay on Android malware. However, the authors addressed

1

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

, , Zola, et al.

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

the problem as a binary classification but they did not ana-
lyze the causes that generate the drift. Concept drift is also
analyzed in [21] and [29]. In both cases, the authors only
applied methods to detect concept drift, without analyzing
the causes behind this performance decay and its relation
with the malware behaviour.

For these reasons, we propose here a novel Cyber Threat
Intelligence (CTI) approach for a portable executable (PE)
multi-class task to shed light on the underlying issues with
ML-basedmalware classification, investigate potential causes
of model failure, and thus ultimately extract insightful infor-
mation relevant to cybersecurity practitioners and analysts.
CTI is a crucial step for gaining more knowledge about the
input data evolution and the classifier behaviour [6], without
limiting the conclusions to model performance. In this work,
we perform a systematic study to analyze the given malware
implementation (also called behaviour) and its evolution over
time in order to detect potential threats and anomalies in the
model behaviour.
Our methodology is based on three main steps. In Step

1, inspired by previous approaches in which embeddings
were computed from malware Control Flow Graphs (CFGs)
[40, 42], we propose to directly use graph structural proper-
ties of CFGs as embeddings for implementing a MLmodel for
malware multi-class classification. The creation of a malware
classifier is relevant for establishing common guidelines for
the entire CTI process. Then, in Step 2, we analyze the tem-
poral consistency and reliability of the implemented models
to unveil concept drift and points of model failure. This
step first applies a temporal dissection approach dividing the
given data into short temporal chunks and using a rolling
window to train multiple models with the rolling-window
data in order to evaluate how the quality of the information
affects model performance over time. Then, we also apply
an additional temporal aggregation operation to take into
account the amount of information, i.e., the number of tem-
poral chunks used for training the models as well. Finally,
in Step 3, we carry out an in-depth misclassification and
feature analysis combining feature importance score, predic-
tion results, and feature trend analysis to understand trends
and patterns that may have generated the concept drift and
model failure.
By applying CTI concepts and recently published guide-

lines [5], it is possible to extract new domain knowledge
that could be used to enhance the analyst’s expertise and to
improve the detection of potential future attacks [10]. We
believe that the introduced methodology can be applied in
the training stage of a model to highlight behavioural trends
of both models and input data. This information can help an-
alysts create a more valid and transparent machine learning
model. Furthermore, users and practitioners can acquire ad-
ditional knowledge about the temporal consistency of their
data and can use this information to determine when to up-
date their model in order to prevent substantial performance

decays. Finally, they can relate concept drift to specific input
information, which may help devise precautionary actions
to avoid model failure.
To the best of our knowledge, this is the first work that

is not limited to merely analyzing PE malware multi-class
classification performance, but proposes to use a detailed
temporal analysis to detect and understand concept drift and
points of failure in the context of CTI.
The main contributions of this work can be summarized

as follows:
• We train a ML model able to classify 6 malware fami-

lies (multi-class problem) using structural graph-properties
obtained from malware CFGs;

• A temporal dissection operation is introduced to evalu-
ate the quality of the training data and how it affects
model performance over time (performance trend);

• We propose temporal aggregation to detect significant
concept drift points, even when a larger dataset is
used for training the model;

• An extensive misclassification and feature analysis is
performed to extract insightful information regarding
the causes that may have generated the found concept
drifts and model failures.

The rest of the paper is organized as follows. In Section 2,
concepts regarding malware classification and concept drift
are introduced. In Section 3, we present the proposedmethod-
ology, whereas in Section 4, the dataset and the evaluation
metrics considered, as well as the experiments configurations
are introduced. Then, in Section 5, results are presented and
discussions are reported in Section 6. Finally, Section 7 pro-
vides conclusions and guidelines for future work.

2 Background

In this Section, concepts about malware classification and
concept drift are introduced. More specifically, Section 2.1 de-
scribes the malware classification task and its related works,
whereas in Section 2.2 the concept drift problem is presented.

2.1 Malware Classification

Malware classification tasks are usually based on static, dy-
namic, or hybrid analyses. In the static case, malware binaries
are analyzed without actually running the code. The code is
used to extract information such as signatures, hashes, or for
creating graph structures on top of which the classification
is performed [39]. In dynamic analyses, the malware code is
executed in an isolated environment and its behaviour is stud-
ied, as shown in [12]. However, this approach can be more
complex and time-consuming due to the required malware
execution in a secure environment. Finally, in the hybrid
analysis, both static and dynamic information are combined
for the final prediction [3]. One of the most promising ap-
proaches is based on static analysis, extracting CFGs in order
to represent the flow of control between the basic blocks in

2

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Cyber Threat Intelligence for Malware , ,

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

the program, i.e., a maximal-length sequence of a branch-free
code [7]. In these CFGs, vertices represent sequential code
without branches or jump targets, whereas edges represent
the jumps in the control flow of the program.
Several works have made use of CFGs. In particular, Xu

et al. [41] used CFGs and data flow graphs extracted from
Android applications, whereas Xia et al. [39] proposed to
combine CFGs with Term Frequency-Inverse Document Fre-
quency for a malware family classification. A similar ap-
proach was explored in [38], where both semantic and struc-
tural features of CFGs were analyzed for the final classifi-
cation. Yan et al. [42] proposed to use a deep graph convo-
lutional neural network (DGCN) for exploiting structural
embedding and basic block attributes of CFGs. They directly
left the DGCN to learn how to transform graph information
into embedding and used them for the final classification.
A similar approach was introduced in Xu et al. [40], where
embeddings were directly extracted from the CFGs using
deep learning models and finally used for improving the mal-
ware similarity classification. However, since in both cases
embeddings were computed directly by the learning models,
they worked like “black boxes”, which do not allow linking
classification performance to the embedding values. In this
sense, it was not possible to extract additional insightful
information for improving CTI.

Inspired by the approaches presented in [40] and [42], in
this work, we propose to directly use the structural prop-
erties of the CFGs as graph embeddings and use them for
the final multi-class classification. In this way, our hypothe-
sis is that we can directly relate classification performance
to the structural graph embeddings and use the analysis of
input trends to improve malware CTI. Furthermore, while
[40] focused on firmware images or vulnerable functions for
binary classification, we extract CFGs directly from a large
PE malware dataset to perform a multi-class classification.

2.2 Concept Drift

In machine learning problems, results strongly depend on the
data used during the training process. Hence, uncontrolled
changes in the input features can generate inconsistent and
misleading results. This problem becomes even more rele-
vant when temporal data are analyzed and novel information
is used as input for models trained on old data [33]. This
problem is usually known as concept drift [37] or dataset
shift [25]. An effective learner (adaptive learner) should be
able to react to this problem, by detecting such changes and
re-adjusting its predictions.
Concept drifts can appear following different temporal

patterns. Usually, one can distinguish four categories [22]:
abrupt, incremental, gradual or reoccuring drift. Concept
drift is defined as abrupt when the change occurs instan-
taneously, for example, a sensor that breaks down. If perfor-
mance changes are slowed in time and in values, they are
considered incremental drifts. This is the case, for example,

for a worn-out sensor. On the other hand, if the changes are
only slowed in time but not in value, they are considered as
gradual drift. Finally, if performance changes are repeated
over a certain interval (e.g. seasonal), there may be reoccur-
ring drifts, as in an external temperature sensor. It is to be
noted that although outliers and noise can be seen as points
that instantaneously change the data distribution, formally
they are not considered as concept drift [22].

Concept drift is a highly relevant problem in cybersecurity
applications, especially when machine learning models are
implemented. It has been predominantly studied in applica-
tions such as anomaly detection [16], fraud [8] and spam [30]
detection. However, in recent years, concept drift has been
recognized as a key issue for malware detection as malware
developers constantly try to create new variants to avoid de-
tection, leading to continuously evolving malware behaviour
that may render certain machine learning models outdated
after a few months only. More specifically, in [20] and [9],
authors try to improve classifier performance by detecting
concept drift and creating adaptive models, i.e., systems able
to detect drift while being in operation (“on-running") and
address it by retraining themselves with more recent data.
Other studies, such as [21] and [29], propose novel methods
for detecting concept drift, however, they do not deeply ana-
lyze the relationship between these performance decays and
the actual input of the malware classifier.

For these reasons, in this work, we propose to analyze con-
cept drift in depth to improve our CTI analysis. Our objective
is not to directly mitigate the concept drift, but to propose
a method for studying it and for a better understanding of
how it affects model decisions models over time.

3 Towards practical malware threat
analysis

In this work, a methodology for enhancing CTI related to PE
malware is introduced and validated with a large binaries
dataset. The idea of this approach is not only to propose a
classification method for PE malware based on CFGs, but
also to extract insightful information about the limitations of
both the model and data. This methodology is based on three
main steps: Malware classification, Temporal analysis and
Misclassification and feature analysis. In the first step, mal-
ware binaries are converted into CFGs used for training ML
models, whereas in second step a temporal analysis for un-
veiling concept drifts is performed. Finally, in the third step,
misclassifications and feature trends are analyzed to discover
possible causes of performance decays. The methodology
steps are further detailed in the following sections.
Step 1 - Malware classification with CFG features.

We first perform a classification task by extracting CFGs
frommalware binaries samples belonging to several malware
families. Usually, malware binaries are shared “disarmed”,
i.e., they have several flags of their binary set to zero [18].

3

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

, , Zola, et al.

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

However, in order to analyze them properly, they need to be
“rearmed". After that, we extract their CFGs by using theAngr
tool1. Angr is a multi-architecture binary analysis toolkit,
with the ability to perform both static and dynamic symbolic
execution on binaries [28, 32]. Once the CFGs are extracted
from each malware sample, we use several common graph
properties to describe them. More specifically, the follow-
ing 10 graph structural properties are extracted from each
CFG: number of nodes, number of edges, the graph is strongly

connected (boolean) [23], number of strongly connected com-

ponents [23], number of weakly connected components [35],

number of isolated nodes, transitivity [19], maximum node

degree, minimum node degree, and node degree on average.
These CFG properties allow us to transform the graph in-
formation into feature vectors (embedding) that are finally
used for training ML classifiers.
Step 2 - Temporal Analysis. In this step, we propose

to apply a temporal analysis based on two main concepts:
temporal dissection and temporal aggregation. For temporal
dissection, our idea is to evaluate how the quality of the
data changes over time and how it affects the classification
performance. In this sense, we propose to split the dataset
into 𝑀 temporal chunks of fixed size, and then train sev-
eral ML models using a 𝑛-chunks rolling window data and
finally evaluate them with data from the following chunks,
respectively (Figure 1a). On the other hand, temporal ag-
gregation operation changes the size of the training dataset
to incorporate more chunks, as shown in Figure 1b. This
strategy helps us to detect more consistent drifts points in
the model performance, i.e., performance drops found when
larger datasets are used during the model training. These
drifts points are further analyzed in Step 3.

(a) Temporal dissection (two
chunks rolling window data).

(b) Temporal aggregation (train-
ing with different data amount).

Figure 1. Temporal analysis

Step 3 - Misclassification and feature analysis. In this
step, we propose an in-depth analysis to understand possible
causes for classification performance drops. In this sense, we
firstly analyze confusion matrices to highlight which mal-
ware families are misclassified. Then, a feature importance

1https://docs.angr.io/built-in-analyses/cfg

analysis is carried out. This operation can be performed us-
ing different approaches, such as the mean decrease impurity
(MDI) [27], permutation method [2], SHapley Additive exPla-
nation [14]. This approach helps us in ranking the features
and focusing the analysis just on the most relevant CFG-
related features used by the classifier. Finally, the temporal
trends of these features, i.e., the feature values per class in all
chunks, can be analyzed. In this way, it is possible to detect
rare behaviours in the data that may help to explain what
the model learned and why it misclassified certain classes.

4 Experimental Framework

In this Section, we describe the dataset, the used metrics
and the experiment configurations used in this work. More
specifically, in Section 4.1 an overview about the used dataset
is reported, whereas in Section 4.2 the metrics are described.
Finally, in Section 4.3, we present the classifier and the pa-
rameters used during the experiments.

4.1 Dataset

In this study, a PE Malware dataset called SOREL-20M [18]
is used. This dataset contains information about 20 million
binaries, of which 10 million are benign and 10 million ma-
licious, collected from January 1, 2017 to April 10, 2019 (28
months). The dataset publishes the executable files of the
malware only, which are opportunely disarmed. For each of
these malwares, a first-seen timestamp is provided as well as
one or more labels related to its malware family (multi-label
dataset). The dataset contains 11 malware families: Adware,
Dropper, Spyware, File Infector, Worm, Downloader, Flooder,

Ransomware, Packed, Cryptominer and Installer.
For the aim of this work, we focus only on the most repre-

sented classes which are Adware, Dropper, Spyware, Packed,
File Infector, Worm, and Downloader. Furthermore, from
this list, we exclude the Packed family as well, since the
compression of the malicious code works as an obfuscation
technique that obstacles their detection [43]. Hence, their
identification is out of the scope of this work. This leaves us
with 6 families to be distinguished.

Asmentioned,malware samples in the SOREL-20Mdataset
can have more than one tag (multi-label problem), however,
for the sake of simplicity, we focus on the ones that are
characterized by one tag only, addressing the problem as
a multi-class task. In order to decrease the computational
cost mainly related to CFG extraction, 10, 000 samples are
randomly chosen among the obtained multi-class data to
create the dataset for the experiments.

Dataset summary.The final dataset is composed of 60,000
single labelled malware samples (10,000 per class). All these
samples are selected following the temporal distribution
of the original SOREL-20M data (from January 2017 until
April 2019, i.e., 28 months). Furthermore, one-month data
will be used as a chunk for the temporal analysis, although

4

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

Cyber Threat Intelligence for Malware , ,

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

the chunk size may be variable across applications and the
availability of past data.

4.2 Metrics.

F1-score, Area Under the Receiver Operating Characteristic

Curve (AUC-ROC or AUC) and Area Under Time (AUT) are
used to compare the performance of the different models.
Hereby, F1-score represents the relation between actual posi-
tive labels and those given by the classifier; AUC represents
a classifier’s ability to distinguish between classes, and AUT

indicates the area under the performance curve over time
[24]. In our experiments, the AUT is computed using the
F1-score monthly curve. Furthermore, two AUT variants are
considered: AUTnext6 and AUTlast10. The first one is computed
considering only the 6 months following the ones used for
training the model, whereas the latter is computed using
only the last 10 months of the dataset. This is because the
last 10 months of the dataset are the only months shared
in all the validation datasets. For this reason, AUTlast10 can
be used for evaluating the performance of the models over
a common dataset. Finally, AUC at 10% is also computed
for comparing the models’ abilities. This value represents
the area under the ROC curve when the value of the false-
positive rate (FPR) was fixed to 0.10. A good model should
generate high values of the true positive rate for small values
of FPR (high values of AUC at 10%).

4.3 Experiment Configurations

In all the experiments, a Random Forest (RF) classifier is
used to learn and classify malware behaviours extracted
from CFGs, since it has shown to perform well in similar
tasks [13, 42]. In particular, in Step 1 - Malware classification

with CFG features, a grid-search is performed in order to
detect the best hyper-parameters for the RF model. More
specifically, four models are implemented testing two values
for the number of trees (100 and 1,000) and two for tree-depth
(10 and 1,000). To do so, the initial dataset, composed of the
graph properties (embeddings) extracted from each CFG, is
divided into train, validation, and test datasets. This split is
performed considering the temporal aspect, i.e., knowing
that the whole dataset contains information of 28 months,
the first 18 are used for creating the training dataset, the
following 5 for composing the validation dataset and the last
5 months for creating the test dataset. These datasets are
used for training, validating, and testing RF models.
For the Step 2 - Temporal analysis, the initial dataset is

split into chunks of 1 month, generating 28 chunks (𝑀). In
particular, during the temporal dissection, a rolling window
is applied to keep selecting 2 consecutive months (𝑛) to be
used for training a classifier, which is then evaluated with
data from the following months - while moving forward in
time, as described in Section 3. The process is repeated by
moving the rolling window until reaching month 18, hence,
generating 17 different models (𝑁). These models followed

the configuration of the ones that showed the best validation
results in the previous experiment. On the other hand, during
the temporal aggregation, 5 temporal sizes are used, i.e., 5
models are trained (𝑁). In particular, train datasets from the
first month until months 2, 4, 6, 12, and 18 are used. This
approach simulates training with as much data as one has
at hand in an equivalent real-world scenario, and it helps to
detect consistent performance drifts.

Finally, in Step 3 - Misclassification and feature analysis, the
MDI strategy is used for computing the feature importance,
since it is widely used as feature importance in RF models
[27]. TheMDI value represents the sum of the gain associated
with all the splits across all trees where the corresponding
feature is used. Moreover, we focus our temporal analysis of
the monthly feature trends to detect rare behaviours on the
top 4 features.

5 Experimental Results

In this section, the results obtained by applying our method-
ology to the introduced malware dataset, are reported. In
particular, in Section 5.1 the best RF configuration is identi-
fied (Step 1), whereas in Section 5.2, the temporal analyses
are reported (Step 2). Finally, in Section 5.3, CTI results in
the drop points are presented (Step 3).

5.1 Step 1 - Malware classification with CFG features.

As shown in Table 1, splitting the initial dataset following the
temporal aspect generates train, validation and test datasets
with 26,588, 18,152 and 15,260 samples, respectively. Table 1
shows that several malware families are used differently over
time. Although the full dataset is balanced, several malware
families like Dropper and Spyware have more samples in
the validation dataset than in the training dataset, while the
Worm family has more samples in the test dataset than in
the train and validation sets.

Short Train Validation Test

Months from 01/2017 07/2018 12/2018
Months to 06/2018 11/2018 04/2019
Adware Adw 6,062 (23%) 1,977 (11%) 1,961 (12%)
Dropper Dro 3,645 (14%) 4,250 (23%) 2,105 (14%)
Spyware Spy 3,515 (13%) 4,406 (24%) 2,079 (14%)
File Infector Fil 6,693 (25%) 1,737 (10%) 1,570 (10%)
Worm Wor 2,228 (8%) 2,952 (16%) 4,820 (32%)
Dowloader Dow 4,445 (17%) 2,830 (16%) 2,725 (18%)
Total 26,588 (100%) 18,152 (100%) 15,260 (100%)

Table 1. Malware families distribution in the split dataset.

In Table 2, the results obtained by the RF models trained
with different hyper-parameters in the validation dataset
are reported. All models reach values of F1-score and AUC
greater than the 82% and 96%, respectively. The results high-
light that the depth of the tree is the parameter that allows
for improving the performance of the classifier, whereas the

5

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

, , Zola, et al.

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

number of trees predominantly has an impact on the training
time. The classifier trained with 1,000 trees (each one with
a depth of 1,000), i.e., RF4, achieves the best results in the
validation.

Models # trees
depth

tree
F1-score AUC AUC 10%

training

time (s)

RF1 100 10 0.8291 0.9639 0.0826 2.17

RF2 1000 10 0.8225 0.9636 0.0824 21.65
RF3 100 1000 0.8537 0.9773 0.0871 2.91
RF4 1000 1000 0.8652 0.9791 0.0875 30.03

Table 2. Validation results for each trained model.

In Table 3, the results obtained by the RF4 on the validation
and test dataset are compared. One can observe a decrease in
model performance when the test dataset is used, especially
in terms of F1-score (−0.1769). Therefore, this indicates that
there is a strong decline when trying to generalize to new
PEs that are far away in time. To better understand this
behaviour, we will investigate model performance taking
into account the temporal evolution of the data in the next
experiment

5.2 Step 2 - Temporal analysis

Temporal dissection. In Figure 2, the monthly F1-scores
obtained by the RF models trained with 2-months rolling
window data are reported. Training themodels with the early
months in the dataset (from months 1 to 5) generates very
poor results in terms of F1-score in almost every test month
(Figure 2A). However, when months after 8 are used, the
models show immediate high values in terms of F1-sore for
the next 5 months until again breaking down on 18 (Figure
2B). Finally, training the models with data from 13 to 16
generate low performance scores (Figure 2C), while after
these dates the models reach their best performances with
F1-scores in a range of 0.60-0.90. Clear decay points, in which
model performance broke down substantially, are observed
for the months 12 and 19. These trends are confirmed by
analyzing the overall AUT, the AUTnext6, and the AUTlast10,
as shown in Table 4. Models trained on data from the early
months (until months 14) show very low values in terms
of overall AUT (≤0.55) and AUTlast10 (≤0.52). On the other
hand, several of them show to be promising in the 6 months
immediately after those used in the training process, such
as the model 10,11 (AUTnext6≥0.77). Results in Table 4 also
highlight that something happened in months 6-7, as well as

Metrics Validation Test
GAP

(Test-Validation)

F1-score 0.8652 0.6883 −0.1769
AUC 0.9791 0.8797 −0.0994
AUC 10% 0.0875 0.0555 −0.0320

Table 3. Validation and test results for the RF4 model.

between months 12 to 14, since models trained with these
data are not able to generalize the future, showing low values
even in closest months (AUTnext6 ≤0.56). Yet, the best values
are reached with the final months of data (training from
month 16), with all the metrics ≥0.70.

Figure 2.Monthly F1-score values for each model trained
with 2-months rolling window data (temporal dissection).

Temporal aggregation.As shown in Table 5, the 2-months
model achieves very low values in all the metrics (≤0.53),
whereas the 18-months model shows values ≥ 0.77. How-
ever, although the 12-months model is trained with a larger
amount of data, when compared with models trained with
only 2-months data (dissection models), it shows a lower
performance with respect to several models. Nevertheless,
testing months vary in this case. For this reason, Table 6
compares the difference in performance between the dis-
section models, i.e., models trained for only 2 months, and
their respective models trained with all the data available
until those months (aggregation models). Results show that
models trained with 2-months data can reach competitive
performance with respect to the models trained with larger
datasets, especially in predicting the closest months. This
is the case of 6-months and 12-months models that show

6

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

Cyber Threat Intelligence for Malware , ,

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

Model

name

Training

months
AUT AUTnext6 AUTlast10

1, 2 1, 2 (2017) 0.3633 0.5215 0.3132
2, 3 2, 3 (2017) 0.4250 0.6110 0.3987
3, 4 3, 4 (2017) 0.4066 0.5871 0.3814
4, 5 4, 5 (2017) 0.5424 0.6815 0.4646
5, 6 5, 6 (2017) 0.5280 0.6348 0.4583
6, 7 6, 7 (2017) 0.4695 0.5163 0.4154
7, 8 7, 8 (2017) 0.5060 0.6636 0.5142
8, 9 8, 9 (2017) 0.5147 0.6770 0.5181
9, 10 9, 10 (2017) 0.5190 0.7262 0.3925
10, 11 10, 11 (2017) 0.5171 0.7747 0.3839
11, 12 11, 12 (2017) 0.4806 0.7379 0.3607
12, 13 12 (2017), 1 (2018) 0.3508 0.4204 0.3121
13, 14 1, 2 (2018) 0.4315 0.5575 0.3971
14, 15 2, 3 (2018) 0.6689 0.7356 0.6316
15, 16 3, 4 (2018) 0.5525 0.5309 0.5528
16, 17 4, 5 (2018) 0.7100 0.7640 0.7090
17, 18 5, 6 (2018) 0.7347 0.7889 0.7347

Table 4. Overall AUT, AUTnext6 and AUTlast10 for models
trained with 2-months rolling window data (temporal dis-
section).

Model

name

Training

months
AUT AUTnext6 AUTlast10

2-months 1 - 2 0.3679 0.5239 0.3166
4-months 1 - 4 0.4498 0.6529 0.4086
6-months 1 - 6 0.5547 0.6502 0.4960
12-months 1 - 12 0.6168 0.7489 0.5758
18-months 1 - 18 0.7701 0.8258 0.7701

Table 5. Overall AUT, AUTnext6 and AUTlast10 for models
trainedwith different amount of data (temporal aggregation).

Aggregation

models (A)

Dissection

models (D)

AUT

(A-D)

AUTnext6

(A-D)

AUTlast10

(A-D)

2-months 1,2 0.0046 0.0024 0.0046
4-months 3,4 0.0432 0.0658 0.0215
6-months 5,6 0.0267 0.0154 0.0377
12-months 11,12 0.1362 0.0110 0.2151
18-months 17,18 0.0354 0.0369 0.0354

Table 6. Difference between models trained with all the
available data until a specific month (temporal aggregation -
A) and models trained with only the two previous months
(temporal dissection - D).

only an increase ≤ 0.016 in terms of AUTnext6 with respect
to models trained with just the last two months.
Figure 3 shows that each time new months are added to

the training dataset, model performance increased. In fact,
for each month, the F1-score of a model is always above the
F1-score of the model trained with fewer data. Although the
18-months model generates promising values in terms of
monthly F1-score, it is to be noted that the other models
show highly varying trends depending on the considered

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

0.0

0.2

0.4

0.6

0.8

1.0

2-months

4-months

6-months

12-months

18-months

Figure 3. Monthly F1-score computed for models trained
on differently sized temporal datasets (Step 2 - temporal
aggregation)

date (Figure 3). In particular, 2- and 4-months models are
affected by a gradual concept drift, since they show the
first strong decline on month 12 and a consequent loss of
performance (similar values) from months 14 to 21. On the
other hand, 6- and 12-months models do not show a clear
concept drift pattern even if, on specific dates, they show
performance drops that in some cases can be considered both
an abrupt concept drift or an outlier. Yet, it is interesting
that even 12-months broke down in the months 18 and 19,
which are determined as problematic months in the temporal
dissection step as well.
For this reason, we propose to investigate these lower

points (highest declines) in-depth, which are common to
all models even when larger datasets are used for training
them. In particular, the months 12, 18, and 19 in Figure 3 are
further investigated, since in all three cases, models show an
F1-score ≤0.40.

5.3 Misclassification and feature analysis

We start analyzing the misclassifications of the 2-, 4-, and
6-months models on month 12 (the complete confusion ma-
trices can be found in the appendix, Figure 5). Although
Adware, File Infector, and Downloader are detected pretty
well, the main problem is generated by the Dropper samples
which are classified as Spyware for the 2-months model (764
samples out of 841, approx. ∼ 91%), and as File Infector for 4-
and 6-months models, confusing approximately the 94% and
92% of the samples, respectively. The same analysis is carried
out for months 18 and 19 (the complete confusion matrices
can be found in the appendix, Figure 6 and Figure 7). On both
dates, 2-, 4-, and 6-months models tended to classify them
as Adware with a rate between 92% and 97%, whereas 12-
months model tended to label 72% and 93% of the samples as
Downloader in months 18 and 19, respectively. Furthermore,
all models show problems in detecting Spyware samples as
well on both dates.

As introduced in Section 4.3, theMDI for each feature in all
the trained models is computed (Table 7). Results show that

7

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

, , Zola, et al.

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

Mean Decrease Impurity (MDI)

Features 2-months 4-months 6-months 12-months avg.

nodes 0.1448 0.1135 0.1065 0.1254 0.1226

edges 0.1258 0.1086 0.1147 0.1242 0.1183
strongly conn. 0.0000 0.0000 0.0001 0.0001 0.0001
weakly conn. 0.0819 0.1109 0.1162 0.0887 0.0994
strongly conn. 0.1599 0.1377 0.1256 0.1295 0.1382

isolated nodes 0.0552 0.0612 0.0696 0.0525 0.0596
transitivity 0.1095 0.1576 0.1576 0.1477 0.1431

max. node degree 0.1217 0.1211 0.1239 0.1229 0.1224
min. node degree 0.0709 0.0718 0.0721 0.0775 0.0731
avg. node degree 0.1305 0.1177 0.1137 0.1315 0.1234

Table 7. Feature importance scores based on MDI analysis.
The most important feature for each model are highlighted,
as well as the top-4 on average.

4-, 6-, and 12-months models are highly aligned, producing
very similar importance scores for each feature. In particular,
for these models, the most important feature is transitivity,
whereas for the 2-months model the most important feature
is number of strongly connected components. Averaging the
importance score generated by all themodels for each feature,
the 4 most important features are transitivity, number of

strongly connected components, average degree of nodes and
number of nodes.
The temporal monthly trends of these top 4 features are

extracted and compared in order to detect rare behaviours in
the data that may help to explain what the model has learnt
and why it misclassifies certain classes. In particular, the 4
feature trends of Dropper, Spyware and File Infector samples
are analyzed until month 12 (Figure 4a) as these classes are
confused for this data. We observe that the transitivity in
the Dropper samples abruptly changes its average value in
months 11 and 12, reaching values never shown before those
dates. Furthermore, it is possible to appreciate also a change
in the trend of Dropper samples in terms of average node
degree and number of nodes (Figure 4a). In fact, in both
features, the Dropper elements have different behaviour in
the early months with respect to the other families. However,
in months 11 and 12 they change it to a similar behaviour
usually shown by Spyware and File Infector families.
In Figure 4b and Figure 4c, the trends of the features are

analyzed until months 19. In particular, from Figure 4b, it is
possible to explain why models misclassify Dropper samples
by analyzing the trends in the number of strongly connected
components and the number of node features. In fact, in
both cases, the trend of the Dropper samples follows low
values in the early months, always superseded by the values
of the other two classes, while, after month 17, the Dropper
values surpass the other two classes. Furthermore, in terms
of transitivity, the Dropper shows a highly varying trend,
ending in months 18 and 19 at close-to-zero values.

Regarding Spyware misclassification, as shown in Figure
4c, the Spyware transitivity reaches the same values as the
Worms family in months 17, 18, and 19. A similar behaviour
occurs for the number of nodes feature, in months 18 and 19,

in which the Spyware trend decreases reaching File Infector
values. In terms of average node degree, the Spyware samples
have always shown very low values, following the trend
of the Worm family, however, on month 19 they change
abruptly showing a peak.

6 Discussion

The temporality of the data and hence the lifetime ofmalware
has strongly affected model performance. This is highlighted
by a substantial decrease in the classification performance
comparing results for the validation and the test datasets
reported in Table 3. The same trend is confirmed by the
temporal dissection analysis we have carried out (Figure 2).
Analyzing the performance of models trained with the pre-
sented rolling window technique one can appreciate that
all models work better (and surprisingly well) in months
closer to the months used for training them, whereas their
performance decays dramatically when evaluating with far
away temporal data, i.e., malware developed about 5 months
later. This is an important finding as it warrants caution
when applying once-trained models in real-world applica-
tions: especially when dealing with malware, models do have
a “lifetime" and should be re-trained after defined intervals.
On the other hand, temporal aggregation strategy has shown
that the more data are used in the training dataset, the bet-
ter is the overall classifier performance (Table 5). However,
comparing the results of these models in terms of AUTnext6

with the ones obtained using temporal dissection models
(Table 6), it is to be noted that in several cases, they can
be competitive, i.e., including more data into the training
process do not generate substantial improvements. For this
reason, having a larger period for analysis could help under-
standing which is the right amount of data to be considered,
since it may always not be beneficial to consider too old data.
Furthermore, temporal aggregation analysis has shown that
even using a larger dataset in the training process, all the
considered models are affected by concept drift. In particular,
2- and 4-months models in Figure 3 show several clear points
of decline after which their monthly performance tended to
decrease. The other two models (6- and 12-months models
in Figure 3) do not show a clear concept drift pattern but
more occasional drops which can be considered both abrupt
concept drift or outliers.

In the final misclassification and feature analysis step, we
first analyze the confusion matrices extracted for the dates of
critical model failure. A misclassification in two consecutive
months, of the same malware families (Dropper and Spy-
ware) may be a symptom of something changing in the mal-
ware implementation, which lead their CFG similar to other
malware families. Table 7 shows that all structural graph
properties extracted from the CFG are useful for the final
classification, excluding the property of “graph is strongly
connected”, which can be removed in future applications to

8

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

Cyber Threat Intelligence for Malware , ,

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

�

�

�

�

�

�

�

�

�

(a) File Infector, Spyware and Dropper until
month 12

�

�

�

�

�

�

�

�

(b) Adware, Downloader and Dropper until
month 19

�

�

�

�

�

�

�

�

(c) File Infector, Worm and Spyware until
month 19

Figure 4. Trends of the top 4 features for the confused classes until months 12 and 19.

improve generalization and computational efficiency. This
analysis is important to understand which properties are the
most relevant for the classification, and so to detect which
ones represent the most prone to be used in an attack. In fact,
a slight change in their values can easily generate misclas-
sification. When analyzing the trends of the top-4 features
(Figure 4), we observe that usually there is at least one fea-
ture that changes substantially in the months affected by
the performance decays. At the same time, other features
seem to line up with features from the classes that the ini-
tial class is confused with. Both phenomena can favour the
misclassification.

Limitations. The three-step methodology proposed and
developed in this work has shown promising results when
applied to a relevant subset of the SOREL-20M dataset in the
context of multi-class PE classification. However, there are
some limitations to be considered. In this study, the malware

analysis is performed using CFGs extracted using external
tools (Angr). It should be considered that if this tool is no
longer available, supported, or improved, classification re-
sults may change. A further drawback is that even though
changes in feature trends are directly related to the graph
topology and its structure, they cannot currently be used to
identify a modification of the malware binary to highlight a
specific routine.

Relation with common pitfalls. In order to present the
quality of our methodology, we discuss here possible pitfalls
that can generate misinterpretation of research results. These
pitfalls are analyzed using the same notation as introduced
in [5].
P1. Samples Bias and P2. Label Inaccuracy represent the

hardest pitfalls to mitigate. In fact, although we have used a
single dataset for our analysis (SOREL-20M), it is composed
of information frommultiple sources (P1), whereas, we could

9

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

, , Zola, et al.

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

not verify the correctness of all the labels (P2). For this reason,
on the one hand, we accept the limitations of the dataset
(P1), being aware of the possible bias that it can introduce.
On the other hand, we have focused the analysis only on
samples with a single label (P2).

P3. Data Snooping, P4. Spurious Correlations and P5. Biased
Parameter Selection represent three pitfalls related to the sys-
tem design. P3 and P5 have been mitigated by splitting the
dataset into train, validation, and test sets for validating the
performance. On the other hand, regarding P4, we have pro-
vided analysis about feature importance to highlight which
features are more relevant for the classification, becoming
more prone to be used in an attack.
P6. Inappropriate Baseline, P7. Inappropriate Performance

Measures and P8. Base Rate Fallacy are common pitfalls re-
lated to the evaluation of the performance. In our approach,
the models themselves evaluated over time have been used
as the baseline models (P6). However, following suggestions
given for P7, appropriate performance measures are used,
such as AUC, AUT, and F1-score. Regarding P8, the overall
dataset is balanced, since we have selected the same amount
of samples for each class. However, classes are not balanced
temporally due to their distribution in the original dataset.

Finally, the last two pitfalls - P9. Lab-Only Evaluation and
P10. Inappropriate Threat Model. – are related to the deploy-
ment in real scenarios. In this work, we have dealt with
these two pitfalls trying to replicate real-world conditions,
such as considering data availability in time, the evolution
of behaviours, the amount of training information (which
can affect the model usability), etc. At the same time, we
have tried to outline recommendations for practitioners and
researchers which help to understand decisions predicted by
ML models, and that may help to draw conclusions in real
applications.

7 Conclusions and Future work

With this work, we aimed to highlight the problems that
may arise when applying ML-based multi-class classifica-
tion to real-world malware data and proposed a three-step
approach to carry out an in-depth analysis for Cyber Threat
Intelligence (CTI). First, we extracted Control Flow Graphs
(CFGs) from a large multi-class malware dataset and trained
a classifier in the traditional, static way. Then, we performed
a detailed temporal analysis of concept drifts, in which mod-
els were trained a) using data from 2-months rolling win-
dows (temporal dissection) and b) by gradually increasing the
amount of data available for training (temporal aggregation).
Finally, in the third and last step, performance breakdowns
related to concept drift are further analyzed. The outcomes
of this study can be summarized as follows:

• Malware families can be correctly classified using
structural graph properties extracted from Control
Flow Graphs (CFGs);

• Our temporal dissection approach highlighted that sev-
eral models trained with only 2 months of recent data
performed surprisingly well on immediately following
data;

• Concept drift and several distinct points of model
failure could be observed even using models trained
on a relatively large amount of data;

• Analyzing trends of the most important features over
time, in the lead-up to critical points of model failure it
was usually due to one feature changing substantially
and rather abruptly.

Our final conclusion is that malware features as captured
by structural graph properties from CFGs are constantly
changing and evolving over time leading to significant con-
cept drifts and points of classifier failure (in our case in par-
ticular for Dropper and Spyware classes). Therefore, train-
ing a model and leaving it in operation without re-training
presents a potentially serious security risk for practitioners
and stakeholders. Following our results, it may be beneficial
to train models on fewer but recent data, apply them for a
few months only and then re-train using the newest data
again (rolling-window approach) - even though further re-
search is necessary to confirm this hypothesis and to better
define re-train intervals.
In further future work, it may be interesting to focus the

analysis on validating the results via graph machine learning
techniques. Such algorithms are able to process graph infor-
mation without extracting graph properties. Furthermore,
all models implemented here showed concept drift and most
showed distinct points of model failure. This hints that the
problem of malware multi-class classification indeed is not
resolved yet and that other strategies need to be explored.
Finally, in terms of interpretation of the results, one could
link the behaviours detected in the graph properties like
transitivity, number of strongly connected components etc.,
with the actual malware binary (code), and thus directly link
graph behaviour with the part of the code that has generated
such change. Through this approach, cyber analysts could
apply precautionary actions to promptly detect and mitigate
concept drift, avoiding model failure.

Acknowledgments

Thiswork has been partially supported by the Spanish Centre
for the Development of Industrial Technology (CDTI) under
the project ÉGIDA (EXP 00122721 / CER-20191012).

References
[1] 2022. AV-TEST. Malware Statistics and Trends Report by AV-TEST. Re-

trieved June 11, from. https://www.av-test.org/en/statistics/malware/

[2] André Altmann, Laura Toloşi, Oliver Sander, and Thomas Lengauer.
2010. Permutation importance: a corrected feature importance mea-
sure. Bioinformatics 26, 10 (2010), 1340–1347.

[3] Blake Anderson, Curtis Storlie, and Terran Lane. 2012. Improving
malware classification: bridging the static/dynamic gap. In Proceedings

of the 5th ACM workshop on Security and artificial intelligence. 3–14.

10

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Cyber Threat Intelligence for Malware , ,

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

[4] Eirini Anthi, Lowri Williams, Matilda Rhode, Pete Burnap, and Adam
Wedgbury. 2021. Adversarial attacks on machine learning cyberse-
curity defences in industrial control systems. Journal of Information

Security and Applications 58 (2021), 102717.
[5] Daniel Arp, Erwin Quiring, Feargus Pendlebury, Alexander Warnecke,

Fabio Pierazzi, Christian Wressnegger, Lorenzo Cavallaro, and Konrad
Rieck. 2022. Dos and don’ts of machine learning in computer security.
In Proc. of the USENIX Security Symposium.

[6] Mauro Conti, Tooska Dargahi, and Ali Dehghantanha. 2018. Cyber
threat intelligence: challenges and opportunities. In Cyber Threat

Intelligence. Springer, 1–6.
[7] Keith Cooper and Linda Torczon. 2011. Engineering a compiler. Else-

vier.
[8] Andrea Dal Pozzolo, Giacomo Boracchi, Olivier Caelen, Cesare Alippi,

and Gianluca Bontempi. 2015. Credit card fraud detection and concept-
drift adaptation with delayed supervised information. In 2015 interna-

tional joint conference on Neural networks (IJCNN). IEEE, 1–8.
[9] Abdulbasit A Darem, Fuad A Ghaleb, Asma A Al-Hashmi, Jemal H

Abawajy, Sultan M Alanazi, and Afrah Y Al-Rezami. 2021. An Adap-
tive Behavioral-Based Incremental Batch Learning Malware Variants
Detection Model Using Concept Drift Detection and Sequential Deep
Learning. IEEE Access 9 (2021), 97180–97196.

[10] Ali Dehghantanha, Mauro Conti, Tooska Dargahi, et al. 2018. Cyber
threat intelligence. Springer.

[11] Jérémy Donadio, Guillaume Guerard, and Soufian Ben Amor. 2021.
Collection of the Main Anti-Virus Detection and Bypass Techniques.
In International Conference on Network and System Security. Springer.

[12] Ying Fang, Bo Yu, Yong Tang, Liu Liu, Zexin Lu, Yi Wang, and Qiang
Yang. 2017. A new malware classification approach based on malware
dynamic analysis. In Australasian Conference on Information Security

and Privacy. Springer, 173–189.
[13] Parvez Faruki, Vijay Laxmi, Manoj Singh Gaur, and P Vinod. 2012.

Mining control flow graph as api call-grams to detect portable exe-
cutable malware. In Proceedings of the Fifth International Conference

on Security of Information and Networks. 130–137.
[14] Daniel Fryer, Inga Strümke, and Hien Nguyen. 2021. Shapley values

for feature selection: The good, the bad, and the axioms. IEEE Access

9 (2021), 144352–144360.
[15] Ekta Gandotra, Divya Bansal, and Sanjeev Sofat. 2014. Malware analy-

sis and classification: A survey. Journal of Information Security (2014).
[16] Heitor M Gomes, Albert Bifet, Jesse Read, Jean Paul Barddal, Fabrício

Enembreck, Bernhard Pfharinger, GeoffHolmes, and Talel Abdessalem.
2017. Adaptive random forests for evolving data stream classification.
Machine Learning 106, 9 (2017), 1469–1495.

[17] Steven Strandlund Hansen, Thor Mark Tampus Larsen, Matija Ste-
vanovic, and Jens Myrup Pedersen. 2016. An approach for detection
and family classification of malware based on behavioral analysis. In
2016 International conference on computing, networking and communi-

cations (ICNC). IEEE, 1–5.
[18] Richard Harang and Ethan M. Rudd. 2020. SOREL-20M: A

Large Scale Benchmark Dataset for Malicious PE Detection.
arXiv:2012.07634 [cs.CR]

[19] Paul W Holland and Samuel Leinhardt. 1971. Transitivity in structural
models of small groups. Comparative group studies 2, 2 (1971), 107–124.

[20] Donghui Hu, ZhongjinMa, Xiaotian Zhang, Peipei Li, Dengpan Ye, and
Baohong Ling. 2017. The concept drift problem in Android malware
detection and its solution. Security and Communication Networks

(2017).
[21] Roberto Jordaney, Kumar Sharad, Santanu K Dash, Zhi Wang, Davide

Papini, Ilia Nouretdinov, and Lorenzo Cavallaro. 2017. Transcend: De-
tecting concept drift in malware classification models. In 26th USENIX

Security Symposium (USENIX Security 17). 625–642.
[22] Jie Lu, Anjin Liu, Fan Dong, Feng Gu, Joao Gama, and Guangquan

Zhang. 2018. Learning under concept drift: A review. IEEE Transactions

on Knowledge and Data Engineering 31, 12 (2018), 2346–2363.
[23] Esko Nuutila and Eljas Soisalon-Soininen. 1994. On finding the

strongly connected components in a directed graph. Information

processing letters 49, 1 (1994), 9–14.
[24] Feargus Pendlebury, Fabio Pierazzi, Roberto Jordaney, Johannes

Kinder, and Lorenzo Cavallaro. 2019. {TESSERACT}: Eliminating
experimental bias in malware classification across space and time. In
28th {USENIX} Security Symposium ({USENIX} Security 19). 729–746.

[25] Joaquin Quiñonero-Candela, Masashi Sugiyama, Anton Schwaighofer,
and Neil D Lawrence. 2008. Dataset shift in machine learning. Mit
Press.

[26] Sherif Saad, William Briguglio, and Haytham Elmiligi. 2019. The
curious case of machine learning in malware detection. arXiv preprint
arXiv:1905.07573 (2019).

[27] Erwan Scornet. 2020. Trees, forests, and impurity-based variable
importance. arXiv preprint arXiv:2001.04295 (2020).

[28] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens,
Mario Polino, Audrey Dutcher, John Grosen, Siji Feng, Christophe
Hauser, Christopher Kruegel, and Giovanni Vigna. 2016. SoK: (State
of) The Art of War: Offensive Techniques in Binary Analysis. (2016).

[29] Anshuman Singh, Andrew Walenstein, and Arun Lakhotia. 2012.
Tracking concept drift in malware families. In Proceedings of the 5th

ACM workshop on Security and artificial intelligence. 81–92.
[30] Ge Song, Yunming Ye, Haijun Zhang, Xiaofei Xu, Raymond YK Lau,

and Feng Liu. 2016. Dynamic clustering forest: an ensemble frame-
work to efficiently classify textual data stream with concept drift.
Information Sciences 357 (2016), 125–143.

[31] Alireza Souri and Rahil Hosseini. 2018. A state-of-the-art survey of
malware detection approaches using data mining techniques. Human-

centric Computing and Information Sciences 8, 1 (2018), 1–22.
[32] Nick Stephens, JohnGrosen, Christopher Salls, AudreyDutcher, Ruoyu

Wang, Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and
Giovanni Vigna. 2016. Driller: Augmenting Fuzzing Through Selective
Symbolic Execution. (2016).

[33] Alexey Tsymbal. 2004. The problem of concept drift: definitions and
related work. Computer Science Department, Trinity College Dublin

106, 2 (2004), 58.
[34] Daniele Ucci, Leonardo Aniello, and Roberto Baldoni. 2019. Survey

of machine learning techniques for malware analysis. Computers &

Security 81 (2019), 123–147.
[35] JJP Veerman and Ewan Kummel. 2019. Diffusion and consensus on

weakly connected directed graphs. Linear Algebra Appl. 578 (2019).
[36] Aohui Wang, Ruigang Liang, Xiaokang Liu, Yingjun Zhang, Kai Chen,

and Jin Li. 2017. An inside look at IoT malware. In International

Conference on Industrial IoT Technologies and Applications. Springer.
[37] Gerhard Widmer and Miroslav Kubat. 1996. Learning in the presence

of concept drift and hidden contexts. Machine learning 23, 1 (1996).
[38] Bolun Wu, Yuanhang Xu, and Futai Zou. 2021. Malware Classification

by Learning Semantic and Structural Features of Control Flow Graphs.
In 2021 IEEE 20th International Conference on Trust, Security and Privacy
in Computing and Communications (TrustCom). IEEE, 540–547.

[39] Rongze Xia and Baojiang Cui. 2021. Malware Classification Based on
Graph Neural Network Using Control Flow Graph. In International

Conference on Broadband and Wireless Computing, Communication and

Applications. Springer, 129–138.
[40] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn Song.

2017. Neural network-based graph embedding for cross-platform bi-
nary code similarity detection. In Proceedings of the 2017 ACM SIGSAC

Conference on Computer and Communications Security. 363–376.
[41] Zhiwu Xu, Kerong Ren, Shengchao Qin, and Florin Craciun. 2018.

CDGDroid: Android malware detection based on deep learning us-
ing CFG and DFG. In International Conference on Formal Engineering

Methods. Springer, 177–193.

11

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

, , Zola, et al.

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

[42] Jiaqi Yan, Guanhua Yan, and Dong Jin. 2019. Classifying malware
represented as control flow graphs using deep graph convolutional
neural network. In 2019 49th annual IEEE/IFIP international conference

on dependable systems and networks (DSN). IEEE, 52–63.
[43] Wei Yan, Zheng Zhang, and Nirwan Ansari. 2008. Revealing packed

malware. ieee seCurity & PrivaCy 6, 5 (2008), 65–69.
[44] Gaofeng Zhang, Yu Li, Xudan Bao, Chinmay Chakarborty, Joel JPC Ro-

drigues, Liping Zheng, Xuyun Zhang, Lianyong Qi, and Mohammad R
Khosravi. 2022. TSDroid: A Novel Android Malware Detection Frame-
work Based on Temporal & Spatial Metrics in IoMT. ACM Transactions

on Sensor Networks (TOSN) (2022).
[45] Qinghua Zhang and Douglas S Reeves. 2007. Metaaware: Identifying

metamorphic malware. In Twenty-Third Annual Computer Security

Applications Conference (ACSAC 2007). IEEE, 411–420.
[46] Saman Zonouz, Julian Rrushi, and Stephen McLaughlin. 2014. Detect-

ing industrial control malware using automated plc code analytics.
IEEE Security & Privacy 12, 6 (2014), 40–47.

A Confusion matrices

Adw Dro Spy Fil Wor Dow

Predicted label

A
d
w

D
ro

S
p
y

F
il

W
o
r

D
o
w

T
ru

e
 l
a
b
e
l

172 6 48 40 0 77

10 15 764 35 1 16

107 9 20 24 0 62

17 0 12 137 1 10

41 4 8 4 5 7

106 3 35 32 0 179

0

100

200

300

400

500

600

700

(a) 2-months model

Adw Dro Spy Fil Wor Dow

Predicted label

A
d
w

D
ro

S
p
y

F
il

W
o
r

D
o
w

T
ru

e
 l
a
b
e
l

254 2 24 18 0 45

16 5 17 788 0 15

59 7 106 19 0 31

12 0 10 146 2 7

41 0 7 8 10 3

116 5 17 52 3 162

0

100

200

300

400

500

600

700

(b) 4-months model

Adw Dro Spy Fil Wor Dow

Predicted label

A
d
w

D
ro

S
p
y

F
il

W
o
r

D
o
w

T
ru

e
 l
a
b
e
l

272 3 18 17 1 32

20 10 22 777 0 12

54 8 121 11 0 28

11 0 9 149 2 6

39 0 6 6 14 4

45 2 14 21 26 247

0

100

200

300

400

500

600

700

(c) 6-months model

Figure 5. Confusion matrices of the 2-, 4-, and 6-months
models computed using test data on month 12.

Adw Dro Spy Fil Wor Dow

Predicted label

A
d
w

D
ro

S
p
y

F
il

W
o
r

D
o
w

T
ru

e
 l
a
b
e
l

227 4 50 98 0 56

1151 1 17 44 0 25

441 3 37 162 6 57

118 4 22 197 0 511

115 8 11 25 157 71

19 4 33 184 4 172

0

200

400

600

800

1000

(a) 2-months model

Adw Dro Spy Fil Wor Dow

Predicted label

A
d
w

D
ro

S
p
y

F
il

W
o
r

D
o
w

T
ru

e
 l
a
b
e
l

282 0 88 45 1 19

1159 1 12 54 1 11

88 314 242 54 1 7

138 1 10 207 0 496

122 3 14 84 162 2

59 5 14 178 1 159

0

200

400

600

800

1000

(b) 4-months model

Adw Dro Spy Fil Wor Dow

Predicted label

A
d
w

D
ro

S
p
y

F
il

W
o
r

D
o
w

T
ru

e
 l
a
b
e
l

282 2 72 29 0 50

1150 3 14 27 1 43

94 5 244 30 9 324

110 4 15 695 2 26

102 7 26 80 170 2

24 4 20 153 4 211

0

200

400

600

800

1000

(c) 6-months model

Adw Dro Spy Fil Wor Dow

Predicted label

A
d
w

D
ro

S
p
y

F
il

W
o
r

D
o
w

T
ru

e
 l
a
b
e
l

311 4 69 28 0 23

305 10 11 19 0 893

84 318 250 39 9 6

129 1 6 704 4 8

101 3 15 69 197 2

46 2 18 149 6 195

0

100

200

300

400

500

600

700

800

(d) 12-months model

Figure 6. Confusion matrices of the 2-, 4-, 6-, and 12-months
models computed using test data on month 18.

Adw Dro Spy Fil Wor Dow

Predicted label

A
d
w

D
ro

S
p
y

F
il

W
o
r

D
o
w

T
ru

e
 l
a
b
e
l

252 6 62 64 1 86

2049 3 23 21 0 40

148 23 64 416 1227 197

36 1 102 198 0 146

60 5 20 37 331 51

28 4 27 108 1 122

0

250

500

750

1000

1250

1500

1750

2000

(a) 2-months model

Adw Dro Spy Fil Wor Dow

Predicted label

A
d
w

D
ro

S
p
y

F
il

W
o
r

D
o
w

T
ru

e
 l
a
b
e
l

333 2 71 23 0 42

2056 8 9 56 0 7

105 7 410 1509 4 40

30 0 77 240 0 136

80 0 6 63 352 3

35 5 12 122 1 115

0

250

500

750

1000

1250

1500

1750

2000

(b) 4-months model

Adw Dro Spy Fil Wor Dow

Predicted label

A
d
w

D
ro

S
p
y

F
il

W
o
r

D
o
w

T
ru

e
 l
a
b
e
l

335 1 58 20 0 57

2031 2 12 51 1 39

114 7 420 304 1179 51

22 0 79 370 6 6

52 0 21 63 366 2

28 3 19 98 4 138

0

250

500

750

1000

1250

1500

1750

2000

(c) 6-months model

Adw Dro Spy Fil Wor Dow

Predicted label

A
d
w

D
ro

S
p
y

F
il

W
o
r

D
o
w

T
ru

e
 l
a
b
e
l

360 3 55 18 0 35

88 21 14 26 2 1985

101 7 474 249 1232 12

22 0 4 447 3 7

50 2 18 56 377 1

32 1 19 108 6 124

0

250

500

750

1000

1250

1500

1750

(d) 12-months model

Figure 7. Confusion matrices of the 2-, 4-, 6-, and 12-months
models computed using test data on month 19.

12

