10 research outputs found

    Self-adaptive fuzzy-PID controller for AGC study in deregulated Power System

    Get PDF
    The aim of this paper elucidates the AGC issues in a large scale interconnected power system incorporating HVDC link under the deregulated environment. The performance of the system is degraded under the influence of abrupt load change, and parameter variation. To perceive a reliable and quality power supply, secondary robust controllers are essential. A novel self-adaptive Fuzzy-PID controller is proposed to ameliorate the dynamic performance of both the conventional PID and Fuzzy-PID controller, employed in the restructured power system. In self-adaptive Fuzzy-PID controller unlike the Fuzzy-PID controller, the output scaling factors are tuned dynamically while the controller is functioning. These three controllers are designed by enumerating different gains and scaling factors, applying a budding nature-inspired algorithm known as Wild Goat Algorithm (WGA). The superior dynamic performance of frequency and tie-line power deviation under self-adaptive Fuzzy-PID controller in comparison to its' counterparts is investigated by dispatching the scheduled and unscheduled power under different contracts such as poolco based transaction, bilateral transaction and contract violation based transaction through different tie-lines. The dynamic response under parameter variation and random load perturbation confers the robustness of the proposed controller

    Frequency deviations stabilizations in restructured power systems using coordinative controllers

    Get PDF
    Modern restructured power system faces excessive frequency aberrations due to the intermittent renewable generations and persistently changing load demands. An efficient and robust control strategy is obligatory to minimise deviations in the system frequency and tie-line to avoid any possible blackout. Hence, in this research, to achieve this target, automatic generation control (AGC) is utilized as a secondary controller to alleviate the changes in interconnected restructured systems at uncertainties. The objective of AGC is to quickly stabilize the deviations in frequency and tie-line power following load fluctuations. This thesis addresses the performance of AGC in two-area restructured power systems with many sophisticated control strategies in the presence of renewable and traditional power plants. As per literature of research work, there are quite a few research studies on AGC of a restructured system using optimized coordinative controllers. Besides, investigations on advanced optimized-based coordinative controller approaches are also rare to find in the literature. So, various combinations of two degrees of freedom (2DOF) controllers are utilized as supplementary controllers to diminish the frequency deviations. Nevertheless, the interconnected tie-lines are typically congested in areas with huge penetration of renewable sources, which may reduce the tie -line capability. Therefore, distinct FACTS controllers and ultra-capacitor (UC) are integrated into two-area restructured systems for strengthening the tie-line power and frequency. Further, new optimization techniques such as cuckoo search (CS), bat algorithm (BA), moth-flame optimization (MFO) are utilized in this work for investigating the suggested 2DOF controllers and compared their performance in all contracts of restructured systems. As per the simulation outcomes, the amalgamation of DPFC and UC with MFObased 2DOF PID-FOPDN shows low fluctuation rate in frequency and tie-line power. Besides, the settling times (ST) of two areas are 9.5 S for Ī”F1, 8.2 S for Ī”F2, and 10.15 S for Ī”Ptie. The robustness of the suggested controller has been verified by Ā±25% variations in system parameters and loading conditions

    Komparativna analiza primjene optimalnog upravljanja za automatsko upravljanje sustavima za proizvodnju električne energije

    Get PDF
    In this study, an attempt is made to present the application and comparative performance analysis of optimal control approach for automatic generation control (AGC) of electric power generating systems. Optimal controller is designed utilizing performance index minimization criterion. To conduct the study, various single and multi-area models with/without system nonlinearities from the literature are simulated under sudden load perturbation. In this comparative study, to corroborate the worth of optimal controller, the performance of optimal AGC controller is compared with that of I/PI controller optimized adopting recently published the best established techniques such as teacher learning based optimization (TLBO), differential evolution (DE), genetic algorithm (GA), particle swarm optimization (PSO), hybrid bacteria foraging optimization algorithm-PSO (hBFOA-PSO), craziness based PSO (CBPSO), firefly algorithm (FA), krill herd algorithm (KHA), moth-flame optimization (MFO), glow swarm optimization (GSO), simulated annealing (SA), bat algorithm (BA), stochastic fractal search (SFS) and hybrid SFS-local unimodal sampling (hSFS-LUS) technique. The simulated results are compared in terms of settling time (ST), peak undershoot (PU)/overshoot (PO), various performance indices (PIs), minimum damping ratio and system eigenvalues. A sensitivity study is conducted to certify the robustness of optimal controller.U ovom radu se razmatra primjena i komparativna analiza sustava za automatsko planiranje proizvodnje proizvođača električne energije. Sinteza optimalnog regulatora proporcionalno-integralne strukture je provedena koriÅ”tenjem integralnih kriterija. Različiti modeli s jednim područjem i viÅ”e područja te s i bez nelinearnosti koriÅ”teni su u simulaciji nagle promjena opterećenja. Kako bi se pokazala važnost optimalnog regulatora, u komparativnoj analizi su performanse dizajniranog optimalnog regulatora uspoređene s peformansama postignutim koriÅ”tenjem I i PI regulatora sintetiziranih primjenom postojećih uobičajeno koriÅ”tenih metoda kao Å”to su "teacher learning optimization", diferencijska evolucija, genetski algoritam, optimizacija rojem čestica, "hybrid bacteria foraging" optimizacijski algoritam, "craziness based" optimizacija rojem čestica, "firefly" algoritam, "krill herd" algoritam, "moth-flame" optimizacija, "glow swarm" optimizacija, metoda simuliranog kaljenja, "bat" algoritam, stohastično fraktalno traženje (eng. "stochastic fractal search", SFS) i metoda hibridnog SFS lokalnog unimodalnog uzorkovanja. Performanse primijenjenih algoritama upravljanja vrednovani su usporedbom ostvarenih vremena ustaljivanja, iznosa podbačaja i prebačaja te drugih pokazatelja performansi, minimalnih relativnih koeficijentima priguÅ”enja i svojstvenih vrijednosti sustava upravljanja. Provedena analiza osjetljivosti potvrđuje robusnost parametara optimalnog regulatora za Å”irok raspon radnih točaka i parametara sustava

    Data-Intensive Computing in Smart Microgrids

    Get PDF
    Microgrids have recently emerged as the building block of a smart grid, combining distributed renewable energy sources, energy storage devices, and load management in order to improve power system reliability, enhance sustainable development, and reduce carbon emissions. At the same time, rapid advancements in sensor and metering technologies, wireless and network communication, as well as cloud and fog computing are leading to the collection and accumulation of large amounts of data (e.g., device status data, energy generation data, consumption data). The application of big data analysis techniques (e.g., forecasting, classification, clustering) on such data can optimize the power generation and operation in real time by accurately predicting electricity demands, discovering electricity consumption patterns, and developing dynamic pricing mechanisms. An efficient and intelligent analysis of the data will enable smart microgrids to detect and recover from failures quickly, respond to electricity demand swiftly, supply more reliable and economical energy, and enable customers to have more control over their energy use. Overall, data-intensive analytics can provide effective and efficient decision support for all of the producers, operators, customers, and regulators in smart microgrids, in order to achieve holistic smart energy management, including energy generation, transmission, distribution, and demand-side management. This book contains an assortment of relevant novel research contributions that provide real-world applications of data-intensive analytics in smart grids and contribute to the dissemination of new ideas in this area

    Cuckoo search algorithm based for tunning both PI and FOPID controllers for the DFIG-Wind energy conversion system

    Get PDF
    Wind Energy has received great attention in this century. It influences the new power systems, adding new challenges to the power system expansion problem. Nowadays, double feed induction generator (DFIG) wind turbines are used majorly in wind farms, due to their advantages over other types. Therefore, the analysis of the system using this type has become very important. In this paper, a wind turbine modelling was introduced with suggested controllers, in order to enhance the system response, with respect to both pitch control and maximum output power. Cuckoo search algorithm (CSA), a meta-heuristic optimization technique, was implemented to determine the gains of a proportional-integral (PI) controller and fractional order proportional-integral-derivative (FOPID) controller to optimize the system, which considered three control loops: pitch, rotor-side converter, and grid-side converter control loop. Simulation results were determined using MATLAB/Simulink. The comparative analysis of the results showed that the PI Controller gave the simplest and the best response in case of the pitch and rotor-side control loops while the FOPID was the best when applied to the grid-side control loop. Based on the results and discussion, a suggestion of using a compination of each controller was introduced

    Load frequency control for multi-area interconnected power system using artificial intelligent controllers

    Get PDF
    Power system control and stability have been an area with different and continuous challenges in order to reach the desired operation that satisfies consumers and suppliers. To accomplish the purpose of stable operation in power systems, different loops have been equipped to control different parameters. For example, Load Frequency Control (LFC) is introduced to maintain the frequency at or near its nominal values, this loop is also responsible for maintaining the interchanged power between control areas interconnected via tie-lines at scheduled values. Other loops are also employed within power systems such as the Automatic Voltage Regulator (AVR). This thesis focuses on the problem of frequency deviation in power systems and proposes different solutions based on different theories. The proposed methods are implemented in two different power systems namely: unequal two-area interconnected thermal power system and the simplified Great Britain (GB) power system. Artificial intelligence-based controllers have recently dominated the field of control engineering as they are practicable with relatively low solution costs, this is in addition to providing a stable, reliable and robust dynamic performance of the controlled plant. They professionally can handle different technical issues resulting from nonlinearities and uncertainties. In order to achieve the best possible control and dynamic system behaviour, a soft computing technique based on the Bees Algorithm (BA) is suggested for tuning the parameters of the proposed controllers for LFC purposes. Fuzzy PID controller with filtered derivative action (Fuzzy PIDF) optimized by the BA is designed and implemented to improve the frequency performance in the two different systems under study during and after load disturbance. Further, three different fuzzy control configurations that offer higher reliability, namely Fuzzy Cascade PI āˆ’ PD, Fuzzy PI plus Fuzzy PD, and Fuzzy (PI + PD), optimized by the BA have also been implemented in the two-area interconnected power system. The robustness of these fuzzy configurations has been evidenced against parametric uncertainties of the controlled power systems Sliding Mode Control (SMC) design, modelling and implementation have also been conducted for LFC in the investigated systems where the parameters are tuned by the BA. The mathematical model design of the SMC is derived based on the parameters of the testbed systems. The robustness analysis of the proposed SMC against the controlled systemsā€™ parametric uncertainties has been carried out considering different scenarios. Furthermore, to authenticate the excellence of the proposed controllers, a comparative study is carried out based on the obtained results and those from previously introduced works based on classical PID tuned by the Losi Map-Based Chaotic Optimization Algorithm (LCOA), Fuzzy PID Optimized by Teaching Learning-Based Optimization (TLBO

    Situational Intelligence for Improving Power System Operations Under High Penetration of Photovoltaics

    Get PDF
    Nowadays, power grid operators are experiencing challenges and pressures to balance the interconnected grid frequency with rapidly increasing photovoltaic (PV) power penetration levels. PV sources are variable and intermittent. To mitigate the effect of this intermittency, power system frequency is regulated towards its security limits. Under aforementioned stressed regimes, frequency oscillations are inevitable, especially during disturbances and may lead to costly consequences as brownout or blackout. Hence, the power system operations need to be improved to make the appropriate decision in time. Specifically, concurrent or beforehand power system precise frequencies simplified straightforward-to-comprehend power system visualizations and cooperated well-performed automatic generation controls (AGC) for multiple areas are needed for operation centers to enhance. The first study in this dissertation focuses on developing frequency prediction general structures for PV and phasor measurement units integrated electric grids to improve the situational awareness (SA) of the power system operation center in making normal and emergency decisions ahead of time. Thus, in this dissertation, a frequency situational intelligence (FSI) methodology capable of multi-bus type and multi-timescale prediction is presented based on the cellular computational network (CCN) structure with a multi-layer proception (MLP) and a generalized neuron (GN) algorithms. The results present that both CCMLPN and CCGNN can provide precise multi-timescale frequency predictions. Moreover, the CCGNN has a superior performance than the CCMLPN. The second study of this dissertation is to improve the SA of the operation centers by developing the online visualization tool based on the synchronous generator vulnerability index (GVI) and the corresponding power system vulnerability index (SVI) considering dynamic PV penetration. The GVI and SVI are developed by the coherency grouping results of synchronous generator using K-Harmonic Means Clustering (KHMC) algorithm. Furthermore, the CCGNN based FSI method has been implemented for the online coherency grouping procedure to achieve a faster-than-real-time grouping performance. Last but not the least, the multi-area AGCs under different PV integrated power system operating conditions are investigated on the multi-area multi-source interconnected testbed, especially with severe load disturbances. Furthermore, an onward asynchronous tuning method and a two-step (synchronous) tuning method utilizing particle swarm optimization algorithm are developed to refine the multi-area AGCs, which provide more opportunities for power system balancing authorities to interconnect freely and to utilize more PV power. In summary, a number of methods for improving the interconnected power system situational intelligence for a high level of PV power penetration have been presented in this dissertation

    Advanced Modeling and Research in Hybrid Microgrid Control and Optimization

    Get PDF
    This book presents the latest solutions in fuel cell (FC) and renewable energy implementation in mobile and stationary applications. The implementation of advanced energy management and optimization strategies are detailed for fuel cell and renewable microgrids, and for the multi-FC stack architecture of FC/electric vehicles to enhance the reliability of these systems and to reduce the costs related to energy production and maintenance. Cyber-security methods based on blockchain technology to increase the resilience of FC renewable hybrid microgrids are also presented. Therefore, this book is for all readers interested in these challenging directions of research

    Model Predictive based load frequency control studies in a deregulated environment

    Get PDF
    A fundamental objective in power system operations is to ensure reliablity and quality supply, and one key action that aids the accomplishment of this objective is the load frequency control (LFC). Primarily, LFC is an automatic action that aims to restore system frequency and net tie line power between a control area (CA) and its neighbours to their scheduled values; these quantities deviate when there is an imbalance between active power demand and supply in a synchrononus interconnection. This thesis aims to investigate a model predictive control (MPC) technique for LFC problems in a deregulated power system environment which has become a challenging task. In deregulated power interconnections, generation companies (GenCos) and distribution companies (DisCos) exist in each CA, and a transmission system operator (TSO) in each area is responsible for grid reliability. Each TSO handles LFC in its CA and ensures that market participants (GenCos and DisCos) in other CAs have an unbiased and open access to its network. As a result, there has been a rise in cross-border transac- tions between GenCos and DisCos for bulk energy and load matching (LM) and consequently large frequency fluctuations recently. DisCos can participate in LFC by making bilateral LM contracts with GenCos. An extensive review of the LFC literature, in terms of strengths and weaknesses of different control techniques, is presented to identify the key gaps. The review reveals that MPC can bring some benefits in the deregulated environment but its strengths are underexploited. Beginning with a small-scale system to provide insights into deregulated system modelling and predictive control design, a centralised MPC (CMPC)-based LFC scheme is proposed for a 2-area deregulated power system with measured (contracted) and unmeasured (uncontracted) load changes, where the areas are assumed to equally rated. The 2-area deregulated system is developed by incorporating bilateral LM contracts in the well known traditional LFC model as a new set of information. It is assumed that DisCos handle contracted load changes via bilateral LM contracts with GenCos and a TSO handles any variations outside the LM con- tracts (uncontracted) via a supplementary control scheme which represents the CMPC. The CMPC algorithm is developed as a tracking one, with an observer to provide estimates of the system states and uncontracted load changes. Also, input and incremental state constraints, which depict limits on LFC control efforts and generation rate constraints (GRC) respectively, are considered. A simulation comparison of the proposed CMPC solution and optimal linear quadratic regulator (LQR) demonstrates the efficacy of CMPC. Developing deregulated LFC models for larger systems with complex topologies and a large number of CAs/market participants could be laborious. Therefore, a novel generalised modelling framework for deregulated LFC is further proposed. The key benefits of the generalised framework is that it provides a relatively easy and systematic procedure to develop deregulated LFC benchmark systems irrespective of the interconnection size, topology and number of market participants. It also offers the flexibility of accommodating LFC studies where CAs have either equal (often assumed) or unequal (more pragmatic) rated capacities. A 7-area deregulated benchmark model is developed from the generalised framework to illustrate its usage and significance, and the importance of incorporating area rated capacities is demonstrated via simulations. In addition, a 4-area benchmark model is developed to provide a reader with more insight into how the generalised formulation can be applied to develop LFC models for an arbitrary network. Furthermore, to demonstrate the scalability of an MPC design procedure, the CMPC proposed previously is extended to examine the LFC problem of the 7-area system. Key novelties here are CAs are assumed to have unequal rated capacities, some GenCos do not participate in supplementary control, and the control input to each GenCo is computed separately rather than a single lumped input for each CA which is the norm in previous deregulated LFC studies. The separate control inputs is to ensure that the input constraints of each GenCo is accounted for in the CMPC in addition to their GRCs and this is achieved by incorporating the area participation factors of the GenCos explicitly in the CMPC cost function. A test conducted on the 7-area benchmark confirms the benefits of this new approach. CMPC shows great potential for deregulated LFC in terms of multiple inputs coordination, effective disturbance rejection and constraints handling; however it is unrealistic for practical interconnections were CAs are operated by different organisations and have large geographical separations. This limitation is addressed by investigating a distributed MPC (DMPC) technique for rejecting incremental load changes, convenient for a finite number of control areas (subsystems), and therefore represents a more practical control architecture for LFC in multi-area systems. The proposed DMPC is non-cooperative and developed to operate using output feedback, where distributed observers using local measurements are developed to provide uncontracted load changes and subsystem statesā€™ estimates to local MPCs. Moreover, the DMPC, unlike other non-cooperative schemes, is simple and devoid of extensive offline parameter tuning. Using the 4-area and the 7-area benchmarks models developed as test systems for the proposed DMPC, some comparisons of simulations results, regulation cost and discussions are provided between the proposed DMPC and alternative MPC schemes
    corecore