2,004 research outputs found

    A new procedure to analyze RNA non-branching structures

    Get PDF
    RNA structure prediction and structural motifs analysis are challenging tasks in the investigation of RNA function. We propose a novel procedure to detect structural motifs shared between two RNAs (a reference and a target). In particular, we developed two core modules: (i) nbRSSP_extractor, to assign a unique structure to the reference RNA encoded by a set of non-branching structures; (ii) SSD_finder, to detect structural motifs that the target RNA shares with the reference, by means of a new score function that rewards the relative distance of the target non-branching structures compared to the reference ones. We integrated these algorithms with already existing software to reach a coherent pipeline able to perform the following two main tasks: prediction of RNA structures (integration of RNALfold and nbRSSP_extractor) and search for chains of matches (integration of Structator and SSD_finder)

    The Pharmacoepigenomics Informatics Pipeline and H-GREEN Hi-C Compiler: Discovering Pharmacogenomic Variants and Pathways with the Epigenome and Spatial Genome

    Full text link
    Over the last decade, biomedical science has been transformed by the epigenome and spatial genome, but the discipline of pharmacogenomics, the study of the genetic underpinnings of pharmacological phenotypes like drug response and adverse events, has not. Scientists have begun to use omics atlases of increasing depth, and inferences relating to the bidirectional causal relationship between the spatial epigenome and gene expression, as a foundational underpinning for genetics research. The epigenome and spatial genome are increasingly used to discover causative regulatory variants in the significance regions of genome-wide association studies, for the discovery of the biological mechanisms underlying these phenotypes and the design of genetic tests to predict them. Such variants often have more predictive power than coding variants, but in the area of pharmacogenomics, such advances have been radically underapplied. The majority of pharmacogenomics tests are designed manually on the basis of mechanistic work with coding variants in candidate genes, and where genome wide approaches are used, they are typically not interpreted with the epigenome. This work describes a series of analyses of pharmacogenomics association studies with the tools and datasets of the epigenome and spatial genome, undertaken with the intent of discovering causative regulatory variants to enable new genetic tests. It describes the potent regulatory variants discovered thereby to have a putative causative and predictive role in a number of medically important phenotypes, including analgesia and the treatment of depression, bipolar disorder, and traumatic brain injury with opiates, anxiolytics, antidepressants, lithium, and valproate, and in particular the tendency for such variants to cluster into spatially interacting, conceptually unified pathways which offer mechanistic insight into these phenotypes. It describes the Pharmacoepigenomics Informatics Pipeline (PIP), an integrative multiple omics variant discovery pipeline designed to make this kind of analysis easier and cheaper to perform, more reproducible, and amenable to the addition of advanced features. It described the successes of the PIP in rediscovering manually discovered gene networks for lithium response, as well as discovering a previously unknown genetic basis for warfarin response in anticoagulation therapy. It describes the H-GREEN Hi-C compiler, which was designed to analyze spatial genome data and discover the distant target genes of such regulatory variants, and its success in discovering spatial contacts not detectable by preceding methods and using them to build spatial contact networks that unite disparate TADs with phenotypic relationships. It describes a potential featureset of a future pipeline, using the latest epigenome research and the lessons of the previous pipeline. It describes my thinking about how to use the output of a multiple omics variant pipeline to design genetic tests that also incorporate clinical data. And it concludes by describing a long term vision for a comprehensive pharmacophenomic atlas, to be constructed by applying a variant pipeline and machine learning test design system, such as is described, to thousands of phenotypes in parallel. Scientists struggled to assay genotypes for the better part of a century, and in the last twenty years, succeeded. The struggle to predict phenotypes on the basis of the genotypes we assay remains ongoing. The use of multiple omics variant pipelines and machine learning models with omics atlases, genetic association, and medical records data will be an increasingly significant part of that struggle for the foreseeable future.PHDBioinformaticsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/145835/1/ariallyn_1.pd

    Genome-wide analysis of 30 -untranslated regions supports the existence of post-transcriptional regulons controlling gene expression in trypanosomes

    Get PDF
    In eukaryotic cells, a group of messenger ribonucleic acids (mRNAs) encoding functionally interrelated proteins together with the trans-acting factors that coordinately modulate their expression is termed a post-transcriptional regulon, due to their partial analogy to a prokaryotic polycistron. This mRNA clustering is organized by sequence-specific RNA-binding proteins (RBPs) that bind cis-regulatory elements in the noncoding regions of genes, and mediates the synchronized control of their fate. These recognition motifs are often characterized by conserved sequences and/or RNA structures, and it is likely that various classes of cis-elements remain undiscovered. Current evidence suggests that RNA regulons govern gene expression in trypanosomes, unicellular parasites which mainly use post-transcriptional mechanisms to control protein synthesis. In this study, we used motif discovery tools to test whether groups of functionally related trypanosomatid genes contain a common cis-regulatory element. We obtained conserved structured RNA motifs statistically enriched in the noncoding region of 38 out of 53 groups of metabolically related transcripts in comparison with a random control. These motifs have a hairpin loop structure, a preferred sense orientation and are located in close proximity to the open reading frames. We found that 15 out of these 38 groups represent unique motifs in which most 30 -UTR signature elements were group-specific. Two extensively studied Trypanosoma cruzi RBPs, TcUBP1 and TcRBP3 were found associated with a few candidate RNA regulons. Interestingly, 13 motifs showed a strong correlation with clusters of developmentally co-expressed genes and six RNA elements were enriched in gene clusters affected after hyperosmotic stress. Here we report a systematic genome-wide in silico screen to search for novel RNA-binding sites in transcripts, and describe an organized network of several coordinately regulated cohorts of mRNAs in T. cruzi. Moreover, we found that structured RNA elements are also conserved in other human pathogens. These results support a model of regulation of gene expression by multiple post-transcriptional regulons in trypanosomes.Fil: de Gaudenzi, Javier Gerardo. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de Investigaciones BiotecnolĂłgicas. Instituto de Investigaciones BiotecnolĂłgicas "Dr. RaĂșl AlfonsĂ­n" (sede ChascomĂșs). Universidad Nacional de San MartĂ­n. Instituto de Investigaciones BiotecnolĂłgicas. Instituto de Investigaciones BiotecnolĂłgicas "Dr. RaĂșl AlfonsĂ­n" (sede ChascomĂșs); ArgentinaFil: Carmona, Santiago Javier. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de Investigaciones BiotecnolĂłgicas. Instituto de Investigaciones BiotecnolĂłgicas "Dr. RaĂșl AlfonsĂ­n" (sede ChascomĂșs). Universidad Nacional de San MartĂ­n. Instituto de Investigaciones BiotecnolĂłgicas. Instituto de Investigaciones BiotecnolĂłgicas "Dr. RaĂșl AlfonsĂ­n" (sede ChascomĂșs); ArgentinaFil: AgĂŒero, Fernan Gonzalo. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de Investigaciones BiotecnolĂłgicas. Instituto de Investigaciones BiotecnolĂłgicas "Dr. RaĂșl AlfonsĂ­n" (sede ChascomĂșs). Universidad Nacional de San MartĂ­n. Instituto de Investigaciones BiotecnolĂłgicas. Instituto de Investigaciones BiotecnolĂłgicas "Dr. RaĂșl AlfonsĂ­n" (sede ChascomĂșs); ArgentinaFil: Frasch, Alberto Carlos C.. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de Investigaciones BiotecnolĂłgicas. Instituto de Investigaciones BiotecnolĂłgicas "Dr. RaĂșl AlfonsĂ­n" (sede ChascomĂșs). Universidad Nacional de San MartĂ­n. Instituto de Investigaciones BiotecnolĂłgicas. Instituto de Investigaciones BiotecnolĂłgicas "Dr. RaĂșl AlfonsĂ­n" (sede ChascomĂșs); Argentin

    Studying the regulatory landscape of flowering plants

    Get PDF

    Computational search for UV radiation resistance strategies in Deinococcus swuensis isolated from Paramo ecosystems

    Get PDF
    Ultraviolet radiation (UVR) is widely known as deleterious for many organisms since it can cause damage to biomolecules either directly or indirectly via the formation of reactive oxygen species. The goal of this study was to analyze the capacity of high-mountain Espeletia hartwegiana plant phyllosphere microorganisms to survive UVR and to identify genes related to resistance strategies. A strain of Deinococcus swuensis showed a high survival rate of up to 60% after UVR treatment at 800J/m2 and was used for differential expression analysis using RNA-seq after exposing cells to 400J/m2 of UVR (with \u3e95% survival rate). Differentially expressed genes were identified using the R-Bioconductor package NOISeq and compared with other reported resistance strategies reported for this genus. Genes identified as being overexpressed included transcriptional regulators and genes involved in protection against damage by UVR. Non-coding (nc)RNAs were also differentially expressed, some of which have not been previously implicated. This study characterized the immediate radiation response of D. swuensis and indicates the involvement of ncRNAs in the adaptation to extreme environmental conditions

    Balanced chromosomal rearrangements offer insights into coding and noncoding genomic features associated with developmental disorders

    Full text link
    Balanced chromosomal rearrangements (BCRs), including inversions, translocations, and insertions, reorganize large sections of the genome and contribute substantial risk for developmental disorders (DDs). However, the rarity and lack of systematic screening for BCRs in the population has precluded unbiased analyses of the genomic features and mechanisms associated with risk for DDs versus normal developmental outcomes. Here, we sequenced and analyzed 1,420 BCR breakpoints across 710 individuals, including 406 DD cases and the first large-scale collection of 304 control BCR carriers. We found that BCRs were not more likely to disrupt genes in DD cases than controls, but were seven-fold more likely to disrupt genes associated with dominant DDs (21.3% of cases vs. 3.4% of controls; P = 1.60×10−12^{−12}). Moreover, BCRs that did not disrupt a known DD gene were significantly enriched for breakpoints that altered topologically associated domains (TADs) containing dominant DD genes in cases compared to controls (odds ratio [OR] = 1.43, P = 0.036). We discovered six TADs enriched for noncoding BCRs (false discovery rate < 0.1) that contained known DD genes (MEF2C, FOXG1, SOX9, BCL11A, BCL11B, and SATB2) and represent candidate pathogenic long-range positional effect (LRPE) loci. These six TADs were collectively disrupted in 7.4% of the DD cohort. Phased Hi-C analyses of five cases with noncoding BCR breakpoints localized to one of these putative LRPEs, the 5q14.3 TAD encompassing MEF2C, confirmed extensive disruption to local 3D chromatin structures and reduced frequency of contact between the MEF2C promoter and annotated enhancers. We further identified six genomic features enriched in TADs preferentially disrupted by noncoding BCRs in DD cases versus controls and used these features to build a model to predict TADs at risk for LRPEs across the genome. These results emphasize the potential impact of noncoding structural variants to cause LRPEs in unsolved DD cases, as well as the complex interaction of features associated with predicting three-dimensional chromatin structures intolerant to disruption
    • 

    corecore