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Abstract 

We propose a novel procedure to detect structural motifs shared between two RNAs (a reference and a target). In 

particular, we developed two core modules: (i) nbRSSP_extractor, to assign a unique structure to the reference RNA 

encoded by a set of non-branching structures; (ii) SSD_finder, to detect structural motifs that the target RNA shares 

with the reference, by means of a new score function that rewards the relative distance of the target non-branching 

structures compared to the reference ones. We integrated these algorithms with already existing software to reach a 

coherent pipeline able to perform the following two main tasks: prediction of RNA structures (integration of RNALfold 

and nbRSSP_extractor) and search for chains of matches (integration of Structator and SSD_finder). 
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Background 

The prediction of RNA secondary structures and the search for structural motifs shared between two RNAs are really 

computational onerous problems, as much as cutting-edge topics in the RNA functional studies. Similarities between 

two nucleic acid chains are usually investigated by taking into account only for the primary structure (sequence) and 

thus ignoring structural elements. 

The issues become more complicate with the discovery of long non-coding RNAs (lncRNAs), generally classified as 

antisense, intronic or intergenic transcripts longer than 200 nucleotides and lacking significant open reading frames[1, 

2, 3, 4, 5, 6, 7, 8]. For a long time lncRNAs were dismissed as “transcriptional noise” [9] because of their low level of 

expression [10] and general absence of evolutionary sequence conservation [11]. However, it has become increasingly 

apparent that lncRNAs are important regulatory molecules in many physiological and pathological cellular processes 

[12, 13, 14]. In fact, a bulk of recent evidence shows that the expression of lncRNAs is modulated in response to 

specific stimuli[15, 16] and suggests their crucial involvement in transcriptional and post-transcriptional control 

mechanisms as well as in epigenetic processes and, particularly, in chromatin remodeling[17, 18, 19, 20]. This 

corroborates the assumption that the lack of conservation does not imply lack of functionality. Indeed, it has been 

suggested that some lncRNAs can act as scaffolds for multiple proteins or as guides to recruit effector proteins to 

specific genomic regions [21, 22]. Therefore, a way of functioning relied on lncRNAs structures can constitute a 

functional signature to search for in order to infer the putative mechanism of action of uncharacterized lncRNAs. 

To functionally characterize a lncRNA, or more generally, any RNA with unknown function (target RNA), one could 

search for structural motifs potentially common to a lncRNA (or RNA) whose function has been already identified 

(reference RNA). This implies to assign a structure to the reference RNA and to look for structural similarities with a 

target RNA. 

There exist several tools performing the RNA secondary structure prediction (Table 1 and 2), as well as detecting RNA 

structural similarities (Table 3 and 4). However, they are not immediately suitable to deal with lncRNAs for two main 

reasons. First, large part of the existing tools are unable to efficiently deal with long nucleotides sequences (e.g., all 

tools listed in Table 3 and mostly of Table 1 and Table 4); second, most of the listed tools requires multiple sequence 

alignment [23] (e.g., all tools listed in Table 2 and some of Table 3 and Table 4), which are generally not available for 

lncRNAs. 

Pursuing the idea of functionally characterize RNA by seeking structural similarities with a reference RNA, it would be 

very useful to have a unique software capable of analyzing RNA sequences of any length, short as well as long RNAs. 

Here we present a novel package MONSTER v1.0 (Method Of Non-branching STructures Extraction and seaRch), 

which integrates some existing tools with ad-hoc implemented algorithms in one new coherent pipeline. MONSTER 

v1.0 mostly consists of two core modules: one for extracting RNA non-branching structure (nbRSSP_extractor), and 

one for detecting chains of matches shared between two RNAs (SSD_finder). MONSTER v1.0 makes use of RNALfold 

from the Viennan RNA Package [24, 25], to obtain the folding predictions and make use of Structator [26] to obtain the 

searching of shared matches between target and reference RNA. 

This decision stems from the specific features of both selected tools. In particular, RNALfold is a prediction tool based 

on thermodynamic models[27, 28, 29, 30] that performs a local folding (i.e., a restriction on the span of base-pairs of 

the RNA molecule is taken into account, rather than the structure of the entire RNA). It has been shown that 

thermodynamic models leads to very fast algorithms and reliable local structure predictions [31, 32]. 

On the other hand, Structator appears as the most computationally efficient software to deal with long sequences. It is 

able to perform two different tasks: the matches and chains searching. The matches searching provides the occurrences 

of Non-Branching-Structures (NBSs), representing the reference structure, into a target sequence, considering as the 

only constraint the target base-paring. The chains searching identifies groups of matched NBSs representing sub-

structures shared between the reference and the target. 

Taking advantage of Structator efficiency, MONSTER v1.0 uses it to perform the matches searching sub-task, while 

employs a novel dynamic programming algorithm (SSD_finder) to achieve the chains searching sub-task. SSD_finder 

rewards the rightness of the NBS relative position in both the reference and the target with an appropriate score 

function. 
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Following [26], we choose to characterize the folding on an RNA sequence by means of a Sequence Structure 

Descriptor (SSD) (i.e., a sequence of NBSs positioned on the RNA sequence). However, a problem exists of 

output/input incompatibility between RNALfold, which provides in output overlapped branching structures, and 

Structator, which requires in input only NBSs. To overcome this limit, MONSTER v1.0 employs a new algorithm 

(nbRSSP_extractor) to extract from the RNALfold output the more stable NBSs and to encode them into the suitable 

format for Structator. 

To test the MONSTER procedure, we evaluate the performance of the two core modules (nbRSSP_extractor and 

SSD_finder), using dataset of RNAs with known structures (rRNAs) and class of RNA families obtained from online 

freely available database (e.g., Rfam and RNAstrand2.0). The results are reported in the section Results and Discussion. 

Finally, we use MONSTER v1.0 to study two lncRNAs, HOTAIR and ANRIL, that are long intergenic non-coding 

RNAs (lincRNAs). In particular, they constitute exemplar lncRNAs whose function is related to their structure. It has 

been shown [21, 22] that HOTAIR and ANRIL interact with the same chromatin-remodeling complex (Polycomb 

Repressive Complex 2), and they could share some structural motifs. The entire procedure is thoroughly explained in 

the “Basic Usage” section of the User_Guide (provided as an additional file of this paper). 

Materials and Methods 

 

In order to functional characterize an RNA (target RNA) one may search for structural motifs that are shared with RNA 

of known function (reference RNA). We propose that this task can be accomplished using MONSTER that consists in 

the following procedure (Figure 1): 

 

step 1. Selection of a functionally uncharacterized RNA (target RNA). 

step 2. Selection of a functionally annotated RNA (reference RNA). 

step 3. Extraction of the NBSs representing the reference RNA. 

step 4. Encoding of reference NBSs into an SSD. 

step 5. Searching for matches of the SSD of the reference RNA in the target RNA sequence. 

step 6. Filtering out of low-probability matches. 

step 7. Detecting top-candidate chains of matches that the target RNA may share with the reference RNA. 

 

In the following sub-sections, we discuss every step of the pipeline for a given pair of target and reference RNA. 

 

Step 3: extraction of the reference RNA non-branching structures 

The core module of MONSTER that we called nbRSSP_extractor performs this task. First of all, we need secondary 

structure predictions of the reference RNA. To this aim, we use RNALfold that provides locally stable sub-structures 

according to a given parameter L representing the maximum allowed distance between a base-pair. RNALfold also 

computes for each sub-structure both the starting position in the sequence and its free energy. It is worth noting that two 

or more sub-structures may overlap (i.e., more predictions correspond to an identical piece of sequence). Thus, 

RNALfold gives as output a list of all possible local sub-structures. However, a unique prediction has to be composed by 

non-overlapping sub-structures. The core module nbRSSP_extractor extracts a set of non-branching structures that do 

not overlap, representing the structure of the reference RNA. We introduce the following definitions: 

 

Definition 1 

Two local predictions of non-branching structures are the same sub-structures if: (i) their structural description 

coincides in length, base-pairs, and unpaired bases, and (ii) they are placed at the same initial position on the RNA 

sequence.  

 

Definition 2 

Two local predictions of non-branching structures that are not the same sub-structures have a non-branching sub-

structure in common if: (i) the length of their external loop is the same, and (ii) this loop is placed at the same positions 

on the RNA sequence.  
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Note that the common sub-structures of Definition 2 between two local predictions of non-branching structures extend 

before and after the external loop as long as paired and unpaired bases of the two predictions coincide. Therefore in the 

following, unless differently stated, the common part is the larger possible. 

 

The module nbRSSP_extractor extracts from the i-th sub-structure (i=1...N with N number of the sub-structures 

provided by RNALfold) the set of non-branching structures (nbsi). Let u
(i)

 be one of the non-branching structures 

belonging to nbsi of the i-th sub-structure and v
(j)

 one of the non-branching structures belonging to nbsj of the j-th sub-

structure. It may happen that u
(i)

 and v
(j)

 coincide or 
 
have a non-branching sub-structure in common (i.e., either u

(i)
 is 

strictly contained in v
(j)

, or v
(j)

 strictly contains u
(i)

, or the common part is strictly contained in both u
(i)

 and v
(j)

). Based 

on this observation, nbRSSP_extractor constructs the set of all different Non-Branching Predictions (NBP), including 

the ones that are in common between any pair of different predicted local structures computed by RNALfold.  

 

For each k ∈ NBP, the module nbRSSP_extractor computes the mean free energy per base defined as: 

( )

1

1
( )

( )

n k

i

pb

i i

e
me k

n k l

 
  
 

  

where ei is the free energy of the i-th sub-structure provided by RNALfold, li is its length, and n(k) represents the 

occurrences of k in the structure predictions. 

 

Then, nbRSSP_extractor sorts NPB according to decreasing mepb and, starting from the first element, constructs a list of 

NBSs by selecting all predictions that do not overlap. This list is then reordered according to increasing position in the 

sequence. 

 

Step 4: encoding of reference NBSs into an SSD 

 

This task is performed by the core module nbRSSP_extractor of MONSTER. An RNA secondary structure (Figure 2a) 

can be broken down into separated NBSs (Figure 2b) that are conveniently represented by dot-bracket notation (Figure 

2c). The list of NBSs that describes the RNA secondary structure is the SSD (Figure 2d). Following [26], we finally 

represent each NBS of the SSD as an RNA Sequence-Structure Pattern (RSSP). More specifically, an RSSP is a pair 

formed by a sequence (i.e., a string of bases) and a structure (i.e., a string representing the secondary structure in the 

dot-bracket notation). The format used includes also a list of parameters associated to the RSSP, such as its position in 

the sequence, the number of times it has been predicted and its mepb. 

Since we are interested in finding structural similarities without specific sequence constraints, we set all nucleotides of 

the RSSP sequences to wildcard characters N that can be equal to A/U/G/C. 

 

Summarizing, an SSD represents the set of non-overlapping NBSs that are likely to be present in the folded RNA. 

Contiguous subsets of these NBSs can be considered representative of structural motifs. 

 

Step 5: searching for matches of the SSD of the reference RNA in the target RNA sequence 

 

The Structator module called afsearch performs this task. It searches for all matches among sub-sequences in the target 

that could fold into the NBSs found in the reference by nbRSSP_extractor. The core module nbRSSP_extractor encodes 

the NBSs to be searched in the format required by Structator (i.e., the SSD descriptor of the reference RNA structure). 

 

First of all, we summarize the notation that we will use throughout the next sections: 

 R is the reference sequence; 

 S is the list of NBSs present in the predicted structure of R, sorted in increasing sequence positions; 

 si is the i-th NBS in S, pos(si) is its position in R, and length(si) its length; 

 T is the target sequence; 

 M is the list of matches found in T, sorted in increasing sequence positions; 

 mi is the i-th match in M, pos(mi) is its position in T, length(mi) its length, and nbs(mi) is the NBS in S which mi 

corresponds to; 



5 

 ind(∙) can be applied to both NBSs in S and matches in M, and it gives the index of the argument in the 

respective list (starting from 1). 

 

Structator takes as input S, T and the set of allowed base-pairings, and produces as output M, that corresponds to pairs 

consisting of: 

 

 the index i into S of the matching NBS si ; 

 the position pi of the matching subsequence of T (i.e., a subsequence that can potentially fold into si according 

to base-pairing rules). 

 

Note that M contains all potential matches, including overlapping matches and matches that do not respect the order of 

NBSs in S. Therefore, the latter have to be further processed to extract the ones that could correspond to interesting 

structural motifs. 

 

Step 6: filtering out of low-probability matches 

 

The module of MONSTER that we called matches_filter performs this task. This module filters out unlikely matches 

obtained from the step 5. 

In fact, the Structator module afsearch looks for matches taking into account the potential base-pairing as the only 

constraint. This represents only a necessary condition and it could produce many false positives. 

To discard unlikely matches, we apply again the equal schema used to predict the structural motifs of the reference 

sequence (step 3-4), with the difference that we use a less selective criterion to accept sub-structures of putative 

matches: only the matches whose NBSs appear in the list predicted by RNALfold/nbRSSP_extractor analysis are 

retained. Since the contribution of a match to find not trivial structural motifs can be associated to the corresponding 

NBS length, we assigned to each match a weight proportional to this length. 

 

Step 7: detecting top-candidate chains of matches that the target RNA may share with the reference RNA  

 

The core module of MONSTER that we called SSD_finder performs this task. This module finds groups of matches that 

may correspond to structural motifs shared between R and T. 

 

Since the step 6 returns a list of matches corresponding to single NBSs only, we should search for groups of matches 

that: 

 

 correspond to NBSs that are close on the reference sequence; 

 preserve on the target sequence the order and the relative positions that the corresponding NBSs have on the 

reference sequence. 

 

Let us consider a chain  
1 2
, ,...,

nj j jC m m m  of matches in M satisfying ,1 1i i n     the following conditions: 

   

 
1

1

(i) ind nbs( ) <ind nbs( )

(ii) pos( )+length( ) pos

i i

i i i

j j

j j j

m m

m m m






 

Note that condition (i) implies that C is ordered according to increasing positions in T, hence that  

1,  ,  1 1.i ij j i i n     To simplify notation, hereafter we will denote the matches in a chain as m1,..., mn. 

Based on these definitions, we define the score of C as follows: 

 

1

1

1 1

( ) ( ) Q( , )                                                          (1)
n n

i i i

i i

sc C P m m m




 

    

where: 

 P(mi) is the weight of match mi taking into account its individual relevance; 
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 Q(mi, mi+1) is a weight taking into account how much the pair (mi, mi+1) in T has positions consistent with the 

corresponding NBSs in R. 

 

This score is then used to select chains that could correspond to non-trivial structural motifs present both in R and T. 

 

As a comparison, the global chains search algorithm, implemented by Structator, sets Q to 0 for any pair of matches. In 

this way, Structator finds the chain containing the matches whose sum of weights is maximum independently of their 

relative positions. 

On the contrary, we define Q(mi, mi+1) as follows: 

 1 2 1 2

1

   if 0
( , )

         otherwise
i i

Q Q Q Q
Q m m 

   
 

  
where  

   1 1 1( , ) ind nbs( ) ind nbs( )i i nbs i iQ m m GAP m m       

and  

     

   

1 1

2 1

1

pos nbs( ) pos nbs( ) pos( ) pos( )
( , )

pos nbs( ) pos nbs( )

i i i i

i i pos

i i

m m m m
Q m m GAP

m m

 





    
 


 

 

nbsGAP  and 
posGAP

 
are two thresholds. The first one corresponds to distance between nbs(mi) and nbs(mi+1) beyond 

which Q1 becomes negative. The second one corresponds to the discrepancy between the distances of reference and 

target NBSs. We choose 3nbsGAP   meaning the nbs(mi) and nbs(mi+1) are considered close if the distance between the 

corresponding NBSs in the reference is lower than 3; and 0.1posGAP   meaning that the distance between mi and mi+1 

in the target is considerable acceptable if the difference with the corresponding distance in the reference is at most 10%. 

Note that the score (1) may evaluate -∞, when Q=-∞. This implies the rejection of chains containing matches whose 

positions on T are too different from the corresponding NBSs on R.  

In Figure 3 is shown an example of the importance of the Q term: given a reference RNA sequence composed of four 

RSSPs and a target RNA sequence having six matches to them, two chains of matches can be extracted (chain 1 and 

chain 2 in the figure). A shorter chain made of two RSSPs and a longer one made of four RSSPs. However, while the 

RSSP1-RSSP2 distance in the shorter chain is preserved, the same is distorted in the longer one. Thus, rewarding only 

the number of matched RSSPs (term P), the second chain would get the best score, neglecting the potentially most 

representative first chain. 

 

We compute the score for all chains of matches in M satisfying conditions (i) and (ii), and then select chains with the 

highest score. However, this is unfeasible for long sequences, since its complexity grows exponentially with the number 

of matches. To reduce the complexity we consider for all matches m ∈ M only the chain ending with m that has the 

highest score. This can be done with dynamic programming using the recursion: 

 ,( ) ( ) max ( ) ( )               (2)
j C

i i j i jOPT m P m Q m m OPT m


    

 

where:  

   {j | j i ind nbs( ) ind nbs( ) pos( ) length( ) pos( )},j i j j iC m m m m m        

and conventionally assuming that in the trivial case (C = ∅), the second term in (2) is equal to 0. 

OPT(mi) gives for any mi ∈ M the highest score of chains ending with mi and the corresponding optimal chain can be 

easily determined by backtracking. 

The dynamic programming algorithm therefore returns one optimal chain for every match in M and we can select chains 

with the highest scores as candidates to represent possible common structural motifs between reference and target 

sequences. 
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Results and Discussion 

 

In the following, we show the computational experiments carried out to test the performance of the MONSTER core 

modules (nbRSSP_extractor and SSD_finder). 

 

Evaluation of nbRSSP_extractor module performance 

 

To evaluate the performance of nbRSSP_extractor predictions, we use a dataset of rRNAs obtained from the 

RNAstrand_v2.0 database (http://www.rnasoft.ca/strand/). This database collects known RNA secondary structures for 

different RNA type and organisms. We select rRNAs with sequence length larger than 1000 bases: rRNA16S (723 

sequences) and rRNA23S (205 sequences). 

 

We use RNALfold to predict for each input sequence its secondary structure; we run nbRSSP_extractor module to 

extract the NBSs and hence to build the SSD (predicted SSD). Likewise, we take the known structures of rRNA16S and 

rRNA23S and we apply nbRSSP_extractor to extract the NBSs and hence to obtain the SSD of the known structures 

(known SSD). 

 

We implemented a further algorithm (SSD_compare
1
) to compare predicted and known SSDs. Moreover, we added an 

option to the module nbRSSP_extractor to exclude non-overlapping predictions of RNALfold in an alternative way
2
, that 

we called RNALfold_lnrz analysis. 

 

Finally, we compare RNALfold/nbRSSP_extractor analysis with the state-of-the-art prediction tool Rfold (with the usual 

base-pair span of 150), RNAfold (with default parameters) and with RNALfold_lnrz analysis. 

 

Table 5 shows the results obtained for the four analyzed procedures in term of True Positive (TP) and False Positive 

(FP) values. In particular, a TP value represents a base-pair of the predicted structure having a corresponding base-pair 

in the known one, whereas a FP value represents a predicted base-pair for which there is not a corresponding base-pair 

in the known structure. 

Our algorithm produces a number of TP higher than other considered tools, although it yields a higher number of FP 

too. However, it requires drastically lower computational costs, as discussed below.  

 

We then build a ROC curve for nbRSSP_extractor by computing the True Positive Rate (TPR, or sensitivity) and the 

False Positive Rate (FPR) as functions of the parameter mepb, assigned to each predicted NBS (Figure 4a for rRNA 16S 

and Figure 4b for rRNA 23S).  

TPR is defined as usually as: 

( )
( )

pb

pb

TP
T

P

me
mePR 

 
where TP(mepb) is the TP value when all predicted NBSs with score lesser tha mepb are discarded; while P is the set of 

all positive values, given by the total number of base-pairs in the known structure. 

FPR is defined as: 

( )
( )

pb

pb

F me
me

P
FPR

FP


 
where FP(mepb) is the FP value when all predicted NBSs with score lesser than mepb are discarded; while the 

denominator represents the total number of FP values (i.e., mepb set to zero). 

As previously observed, the explained algorithms show different computational complexity. Therefore, we measured 

the time required to compute the structure predictions and extract the NBSs for increasing sequence lengths (n). The 

results are shown in Figure 5. As expected the computational time of RNALfold followed by our nbRSSP_extractor to 

optimize the NBSs selection (red curve of Figure 5a) is linear with respect to n. In addition, Figure 5b depicts the 

comparison among all the tested algorithms for increasing n values, using a logarithmic scale for both axes. RNAfold 

                                                      
1 SSD_compare computed the matches between the known and the predicted structures. It returned the number of base-pairs that 

were correctly predicted by nbRSSP_extractor. 
2
 The predictions of RNALfold are selected basing their decreasing free energies, and then the non-overlapping ones are chosen. 

http://www.rnasoft.ca/strand/
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(violet curve in Figure 5b) has a polynomial computational time of 
2.4( )n . RNALfold with the optimized NBSs 

selection (red curve in Figure 5b) and RNALfold without any optimization (blue curve in Figure 5b) show the same 

performances (i.e., the curves overlap). In particular, their trend is equal to the RNAfold one up to an input size of 150 as 

expected, while it becomes linear for longer sequences. Lastly, also the local folding algorithm Rfold (green curve in 

Figure 5b) shows a double trend: it exhibits the time performances slightly higher than RNAfold up to the input size of 

150, while it reveals a trend slightly more than linear (
1.15( )n ) for larger sequence lengths, but with much higher 

multiplicative constants with respect to the RNALfold case. 

Evaluation of SSD_finder module performance 

 

To evaluate SSD_finder, we measure its performance in the identification of members of four families obtained from 

the RFAM 11.0 database (http://rfam.sanger.ac.uk/). RFAM is a curated database of ncRNA families aimed at 

providing an automated and common system for the analysis and annotation of ncRNA sequences. Each RNA family in 

the database is represented by a multiple sequence alignment that includes both a subset of manually-curated known 

members of the family and automatically inferred members based on sequence homologies. 

 

The selected RFAM families are the following: (i) the Citrus tristeza virus replication signal (RFAM Acc.: RF00193), a 

regulatory element which plays a crucial role in the virus replication through its structures [33]; (ii) the small ncRNAs 

OxyS family (RFAM Acc.: RF00035), induced in response to oxidative stress in Escherichia Coli [34]; (iii) the 

lncRNAs family HAR1A (RFAM Acc.: RF00635), overlapping the Human Accelerated Region 1 (HAR1); and (iv) the 

lncRNAs family HOTAIRM1 (RFAM Acc.: RF01975), acting in myeloid transcriptional regulation[35]. 

 

We apply MONSTER to each of the aforementioned families, the experiment workflow is the following (Figure 6): (i) 

the multiple sequences alignment of the family is used as the reference; (ii) a database of RNA sequences, including the 

four selected families and a subset of families randomly extracted from the RFAM and RNAstrand databases (more 

than 700 sequences in total), is used as the target; (iii) through RNAalifold [36], we obtain the consensus structure 

prediction of the family, that we use as input to nbRSSP_extractor to obtain the SSD of the reference (Figure 7); (iv) 

through Structator, we search for this reference SSD in the target; (v) the returned matches are used as an input to 

SSD_finder which computes the chains of matches with the highest score; note that, since the chains with length one 

can be conceivably considered not significant, we filter out them in this step. 

The chains returned by the MONSTER module SSD_finder for each family have been sorted in decreasing order with 

respect to the score in order to evaluate if this score can be able to discriminate the reference RFAM family among a 

width of false elements. 

 

For comparison, the chaining analysis for the same RFAM families is performed using Structator both in global and 

local modes (according to equations (2) and (3) of [26], respectively). The results for the four families are reported in 

Table 6. 

All three methods failed to recover all members the given family under exam. The reason could be that Structator 

matching algorithm only found matches to subsequences that may exactly fold into the reference NBSs. Consequently, 

it could happen that no matches are found for the family members that have significant gaps in the alignment between 

their structure and the consensus one. 

Focusing on the family members for which high score chains can be found, we note that SSD_finder and Structator 

global have the equal good performance for two families (RF00193 and RF00635), which are characterized by a quite 

specific SSD, consisting of 11 RSSPs and 4 complex RSSPs, respectively.  

 

Concerning the other two families (RF00035 and RF01975) both SSD_finder and Structator global are able to detect 

more than 80% of the members of families, however SSD_finder achieves higher specificity, since it attained this result 

with a significantly lower number of FPs. 

 

The Figure 8 shows the trend of the score computed by SSD_finder, Structator global and local with respect to the 

target sequences to be covered. In every case, the score computed by SSD_finder drastically decreases approaching to 

the number of sequences that corresponds to the number of the family members. By contrast, the score computed by 

http://rfam.sanger.ac.uk/
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Structator shows a gradual decrease, avoiding a clear identification of the exact number of detected members. Thus 

without a priori-knowledge about the TP values, the rapid decrease observed in the score of SSD_finder can be used as 

selection criterion of the sequences belonging to a given family. In fact, once the list of target sequences has been sorted 

based on the score, the number of elements belonging to a given reference family can be chosen as the value at which 

the jump occurs. 

 

Conclusions 

 

We built up a coherent pipeline for detecting structural motifs shared between two RNAs, by integrating some existing 

tools (i.e., RNALfold and Structator) with new implemented ad hoc tools. We called this procedure MONSTER. The 

rationale behind our work was to produce a tool able to infer the function of an RNA (target RNA), looking for 

structural motifs shared with an RNA whose function has been already identified (reference RNA). MONSTER 

assumes greater importance in the context of the new discovered long non-coding RNA whose function is more likely 

to be related to structure [37, 38]. 

 

The two core modules of MONSTER are: (i) nbRSSP_extractor, to assign a unique structure to reference RNA; (ii) 

SSD_finder, to detect the sub-structures, which a target RNA shares with the reference one.  

In terms of performances, the module nbRSSP_extractor has comparable reliability to existing tools (i.e., Rfold, 

RNAFold) and the advantage of significantly lower computational costs. 

On the other hand, the module SSD_finder offers several key advantages:(i) it identifies groups of matches with high 

specificity and sensitivity; (ii) it is flexible and hence suitable to interact with others methods which could perform the 

matches searching; iii) it relies on a specific score function which not only weights the single matches and the chains 

length, but also rewards the closer relative distance of the target NBSs compared to the reference ones; iv) it is 

computationally efficient. 

 

Availability and requirements 

The developed software package is available as supplementary file (zipped file named: “archive.zip”) 

 

Supplementary material 

Additional file 1: User_Guide.pdf. It contains details for setting up of MONSTER_v1.0 package, a tutorial of the 

MONSTER application, and additional advanced information about the MONSTER algorithms. 

Additional file 2: archive.zip. It contains the MONSTER_v1.0 software package, the “data” and “example_data” folders 

which store all needed files to run the tutorial of the User_Guide file. 

 

List of abbreviations 

 lncRNA = long non-coding RNA; 

 mfe = minimum free energy; 

 nt = nucleotides; 

 SCFGs = stochastic context-free grammars; 

 bp = base-pair; 

 bpp = base-pairing probability; 

 mea = maximum expected accuracy; 

 cpd = conditional probability distributions; 

 NBS = Non-Branching Structure; 

 RSSP = RNA Sequence Structure Pattern; 

 SSD = Secondary Structure Descriptor; 

 mepb = mean free energy per base; 

 e = free energy; 

 epb = free energy per base; 

 TP = True Positive; 

 FP = False Positive; 

 TPR = True Positive Rate; 

 FPR = False Positive Rate. 
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Parameters setting 

 L=150; 

 GAPpos=1/10; 

 GAPnbs=3. 
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Figures  

 
 

Figure 1 Overview of the MONSTER procedure. The pipeline is composed of three parts: (1) Structure prediction and SSD 

encoding of the reference (step 1-4 in the text) (2) Matches searching and filtering (step 5-6 in the text); (3) Chains of matches 

building (step 7 in the text). More details are given in the text and in the user guide. 

Legend: orange circles represent published available tools; green circles represent software developed by us; rectangles represent 

software input and output (I/O), colored with water blue and yellow for what concerns reference and target, respectively. 

 

 
 

Figure 2 Encoding of RNA secondary structures. a) Example of RNA secondary structure where structural non branching 

elements are highlighted: interior loops (i.e., sequences of unpaired bases linking two different helices); bulges (i.e., internal loops 

caused by unpaired bases only on one side); hairpins (i.e, sequences of unpaired bases closing a helix). b) The reference branching 

structure is broken down into a set of non-branching structures (e.g., NBS 1 and NBS 2). c) Representation of the RNA secondary 

structure in dot-bracket notation. The RSSPs are highlighted. d) The SSD offers an complete description of the RNA secondary 

structure. 
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Figure 3 Relevance of the Q term. An example of the chaining steps showing the relevance of including the evaluation of the 

distance between RSSPs (Q term) along with the number of RSSPs in the selection of the best chain of matches. 

 

 

 
 

Figure 4 ROC Curves. Plots show the performance of our method (RNALfold/nbRSSP_extractor) in terms of True Positive Rate 

(TPR) versus False Positive Rate (FPR), for rRNA16S (a) and rRNA23S (b). TPR and FPR are function of the mepb parameter. 

Reference performance for other tools (i.e., RNAfold, Rfold, and RNALfold_lnrz) are also indicated for comparison. The RNAfold, 

Rfold and RNALfold_lnrz performances do not depend on the parameter. 

Legend: blue solid line refers to our method; red dashed line refers to Rfold; green dashed line refers to RNAfold; violet dashed line 

refers to RNALfold_lnrz. 
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Figure 5 Computational time according to the input size. (a) Computational time of RNALfold/nbRSSP_extractor is plotted with 

respect to the input sequence length. (b) The time performance comparison of all tested algorithms to predict and extract the NBSs is 

depicted: computational time is plotted with respect to the increasing sequence length, both scales are logarithmic. 

Legend: blue and red curves (overlapped) represent the time performance of RNALfold/nbRSSP_extractor with both optimized and 

trivial NBSs selection; green curve refers to Rfold time performance; violet curve refers to RNAfold time performance. 

 

 

 

Figure 6 Workflow of the chaining experiment. The diagram depicts the pipeline applied to four selected RFAM families to test 

the performance of our chaining algorithm (SSD_finder). A full explanation of that is given in the subsection SSD_finder validation 

of the section Results and Discussion. 
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Figure 7 Consensus structures of the four selected RFAM families. The consensus secondary structures predicted by RNAalifold 

for each family (RF00035, RF00193, RF0635, and RF1975) are shown. These families are used as the starting point of the chaining 

experiment described in Figure 6. 

 

 
 

Figure 8 Chain scores evaluated from different tools. Each panel represents the efficiency of different tools (from left to right: 

SSD_finder, Structator global, Structator local) in the classification of the members of the four selected families depicted in Figure 7. 

Blue lines represent the score of our algorithm, SSD_finder, evaluated as in equation (1) in the text; red lines represent the global 

chain score of Structator (gcsc) evaluated as in equation (2) of the original paper [26]; green lines represent the local chain score of 

Structator (lcsc) evaluated as in equation (3) of the original paper [26]. The x axis represents the number of RNA sequences that 

constitute the database used as target in the chaining experiment (Figure 6). This database includes the four selected families (Figure 

7) and a subset of families randomly extracted from the RFAM and RNAstrand databases (more than 700 sequences in total). 
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Table 1 RNAs folding prediction 

Category Tool Input 
Input 

format 
Output Description  

Publication 
(year) 

T
h

e
rm

o
d

y
n

a
m

ic
 M

o
d

e
ls

 

mfold 

Single sequence 

 800 nt and 
9000 nt for batch 

FASTA mfe RNA secondary structure 
prediction  

 Dynamic programming method 

 Updated and renamed UNAfold [39] 

 Web server/standalone 

  Open source 

1989 
[40, 41, 42]  

RNA 

fold 

Single sequence 

 104 nt 

FASTA mfe RNA secondary structure (dot-
bracket) 

 Dynamic programming method 

 Web-server/standalone 

 Open source 

1994 

[43, 25] 

RNA 
subopt 

 Small sequence  

 Minimum 

energy threshold 

(met) 

FASTA sub-optimal structures (dot-bracket) 

with energy   met  

 Output grows exponentially with both 
sequence length and energy range 

 Standalone 

 Open source 

1999 [44] 

RNAL 

fold 

 Long sequence 

 Base-pair span 

of L 

FASTA Locally stable structures with its 
energy and the starting position of the 

local structure 

 It handles huge databases  

 Standalone 

 Open source 
2004 [24] 

Sfold 

Single sequence 

 200 nt and 
5000 nt for batch 

FASTA 

Plain text 

GenBank 

Ensemble of possible structures 

sampled from the Boltzmann 

probability-weighted structures 

 Comparison between mfe structure 

prediction and ensemble centroid 

 Cluster members and distances 
inter/intra clusters 

 K-means (using nt distances) and Calinski 

Harabasz- index 

 Evaluation of RNA/RNA interactions 

 4 modules: sRNA (general folding features 
and output ), siRNA (short-interfering RNAs), 

Soligo (antisense oligonucleotides), Sribo 

(ribozymes) 

 Web-server/ standalone 

 Proprietary 

2003 [45] 

RNA 
shapes 

Sequences<400 nt FASTA  mfe structure representative of each 
abstract shape (disjoint classes 

with common structures) and their 

probability 

 Consensus structures 

 Folding space partitioned in different abstract 
shapes  

 Running time grows exp with seq length 

 Web server /standalone 

 Open source 

2006 [46] 

Rfold 

 Single sequence 

 Base-pair span 
of L 

FASTA Local secondary structures based on 

the local bpp 
 Dynamic programming method 

 40 times slower than RNALfold [47] 

 Standalone 

 Open source 

2008 [48] 

RNA 

structure 

Single sequence 

(<2500nt for web 
server) 

FASTA 

Seq 
 mfe structures and bpp 

 mea 

 Includes pseudoknots 

 Web server /standalone 

 Open source 
2010 [49] 

M
a

ch
in

e
 

L
e

a
rn

in
g

 
a

lg
o

ri
th

m
  

CONTRA  

   fold 

Single sequence   
< 1000 nt with 

optional structural 

annotations 

FASTA 
BPSEQ 

plain text 

Secondary structure prediction 
according to the conditional log-linear 

models  

 Use statistical learning algorithms to derive 
model parameters  

 Not as accurate as the biophysics models 

 Web-server/standalone 

 Open source 

2006 [50] 

K
in

e
ti

cs
 F

o
ld

in
g

 

Kinfold 

Single sequence FASTA  Secondary structure considering 

the kinetic transcriptional 
parameters 

 Best fitting kinetic model among 

the all possible ones 

 Monte Carlo stochastic simulation of folding 

model as Markov process 

 Running time grows exp. with seq length 

 Standalone 

 Open source 

2000 [51] 

Kinefold 

Small sequence 

<400 nt, helix < 60 

base-pairs 

String of 

bases 
 Animated folding path  

 Programmable trajectory plot 
focusing on a few helices of 

interest  

 Stochastic folding simulations 

 It includes pseudo-knots 

 Computationally onerous 

 Web-server/standalone 

 Open source 

2003 

[52, 53]  

Kinwalker 

Single sequence 
(<1500 nt) 

Not 
specified 

Mfe secondary structures prediction at 
each step of the transcription 

 Not including pseudoknots 

 Standalone 

 Open source 
2008 [54] 

CoFold 

Single sequence FASTA 

plain text 

Secondary structures considering the 

co transcriptional folding and 

thermodynamic parameters 

 the accuracy increases  with seq length 

 Web-server/Standalone 

 Open source 
2013 [55] 

P
h

y
lo

-
g

e
n

e
ti

c 

PETfold 

Multiple sequence 

alignments  

FASTA  Secondary structures (score and 
reliability) 

 Consesus structures 

 Finds bp more likely to be evolutionary 
conserved and energetically favored 

 Web server/standalone 

 Open source 

2008 [56] 
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Table 2. RNAs folding and structure conservation 

 

  

Category Tool Input 
Input 

format 
Output Description  

Publication 
(year) 

F
o

ld
in

g
 a

n
d

 E
v

a
lu

a
ti

o
n

 o
f 

S
tr

u
ct

u
re

 C
o

n
se

rv
a

ti
o

n
 

C
o

n
se

rv
a

ti
o

n
 a

n
d

 T
h

er
m

o
d

y
n

a
m

ic
 s

ta
b

il
it

y
 

QRNA 

Pair-wise sequences 
alignment 

MFASTA 
(FASTA 

with gaps) 

 RNAs label as coding or 
non-coding  

 Conserved structures 
information 

 Uses comparative sequence analysis 

 Uses SCFGs to estimate a structure probability 

distribution 

 Uses pair hidden Markov model to predict 

evolutionarily conserved structure 

 Standalone 

 Open source 

2001 [57] 

RNAalifold 

Sequences 
alignments 

ClustalW 
FASTA 

Common mfe structures to the 
most of  folded sequences  

 Web-server/standalone 

 Open source 
2002 

[58, 36]  

Alifoldz 

Multiple sequence 
alignments based on 

the thermodynamic 

model provided by 
RNAalifold 

ClustalW 
FASTA 

 Conserved structures 

 Z-score (thermodynamic 

stability index) 

 Compares mfe consensus structure given by 
RNAalifold with one obtained by a 

randomized alignment  

 Standalone 

 Open source 

2004 [59] 

RNAz 

Sequences 
alignment 

ClustalWF
ASTA 

Phylip 

Nexus 
Maf 

Xmfa 

Thermodynamically stable and 
conserved structures using SCI 

(structure conservation index) 

and z-score 

 Uses the prediction of the consensus structure 
given by RNAalifold 

 Web-server/standalone 

 Open source 
2005 [60] 

Evofold 

Multiple Sequences 

alignment 

Newick 

Ama  

Structure of a multiple 

alignment regarding the 
probabilistic evolutionary 

model (phylo-SCFG) 

 Overlap in true positives with all of the 
thermodynamic-only tools 

 Standalone 

 Proprietary 

2006 [61] 

C
o

n
se

rv
a

ti
o

n
 a

n
d

 C
o

v
a

ri
a

n
ce

  

ddbRNA 

Multiple or pair-

wise sequences 

alignments (  3-

way alignments) 

MFASTA Secondary structure prediction 

through the covariance model 
 Counts the compensatory mutations of the 

alignment as a measure of the structure 
conservation with respect to a randomized 

alignment 

 High sensitive to the alignment quality 

 Running time   square sequence length 

 Performance worse than tools using SCI  

 Standalone 

 Proprietary 

2003 [62] 

MSARi 

Multiple or pair-
wise sequences 

alignments (10-15-

way alignment) 

ClustalW Secondary structure prediction 
through the covariance model 

(stack of compensatory 

mutations needed to keep the 
secondary structure  

functionality) 

 Evaluates the statistical significance of the 
short and contiguous regions of potential 

pairing, regarding different distribution 

models 

 Uses RNAfold to predict the bpp and analyzes 

the base-pairs in a window of 7nt looking for 
the compensatory mutations 

 Analyzes each base-pairs with probability 
>5% 

 Standalone 

 Proprietary 

2004 [63] 

O
th

er
 

TRANSAT 

 Multiple 
sequence 

alignments  

 Related 

sequences tree  

Not 
specified 

 Prediction of structural 
features including transient, 

pseudo-knotted and 

alternative structures  

 Reliability estimation of all 

the predictions  

 Sensitive to the alignment quality 

 Considers evolutionarily related RNA 

sequences from different organisms 

 Standalone 

 Proprietary 

2010 [64] 
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Table 3 RNAs comparison: Sequence-structure alignment 

 

Category Tool Input  
Input  

format 
Output  Description  

Publication 
(year) 

S
e

q
u

e
n

ce
-s

tr
u

ct
u

re
 a

li
g

n
m

e
n

t 

MARNA 

RNA 

sequences 
and their 

secondary 

structures 

FASTA 

Dot/bracket 

Multiple sequence-structure 

alignment 
 Not maintained since 2005 (replaced by locARNA) 

 Examines only partially conserved structures 

 Web-server/standalone 

 Open source 

2003 [65] 

locARNA 

RNA 
sequences 

(<2000 nt for 

an interactive 
job)  

FASTA Global or local pair-wise 
alignment regarding  the 

structure information  

 Variant of Sankoff's algorithm for simultaneous folding 
and alignment  

 Folding RNAfold 

 mlocARNA computes a multiple alignment to give as 

input to RNAalifold 

 Computationally expensive 

 Web-server/standalone 

 Open source 

2007 [66] 

expaRNA 

Two 

long/small 

ncRNAs to 
compare 

with/without 

pre-defined 
structures, 

using mfe 

structures 

FASTA  Pair-wise sequence-

structure alignment  

 Common sub-structures to 

two RNAs 

 Uses the predicted sequence structure motifs as anchor 

points for the whole alignment 

 Algorithm accuracy related to considered sequence-

structure motifs  

 Speed up state-of-the-art alignment methods 

 Web-server/standalone 

 Open source 

2009 [67] 

RNAG 

Set of RNA 
sequences not 

aligned  

FASTA  Alignment 

 Prediction of the 
consensus structure 

 Blocked Gibbs sampling algorithm  

 Iteratively samples from the cpd P(Structure|Alignment) 
and P(Alignment | Structure) improving the alignment 

and structure models 

 Uses the Markov chains Monte Carlo method 

 Web-server/standalone 

 Open source 

2011 [68] 

Carna 

 Sequences 
and structures 

based on the 
bpp 

 Structure 
constraints 

FASTA 
Dot/bracket 

Multiple alignments of RNA 
with different conserved 

structures or of whole set of 

structures  

 Able to align also pseudo-knots 

 Optimizes all the structural similarity of input RNA 

 Performance as good as the current alignment tools 

 Web server 

 Proprietary 

2012 [69] 

Graph-clust 

Set of not 

aligned 

lncRNA 
sequences  

FASTA Clustering: divides the RNAs 

into classes, each one 

characterized by RNA of 
similar structure and function 

 Linear-time prediction of local structural elements 

 Folding with RNAshapes to obtain sub-optimal structure 
representing each “shape” 

 Sequences-structures alignment with locARNA and 
Infernal used as a feedback control 

 Web-server/standalone 

 Open source 

2012 [70] 

Migal 

Two RNA 
structure-

sequences 

Dot/ 
bracket 

Bpseq 

Migal 

Xml 

 Two sequence alignment 

 Number of mismatches, 

insertions and deletions  

 4 layers representation of the secondary structure coded 
by a rooted orderer labelled tree (Level 0 multiloop 

network, Level 1 stems network, Level 2, helices 

network, Level 3 base paired and unpaired) 

 Edition algorithm: insertion, deletion, substitution plus 

node fusion/split edges fusion/split 

 Web-server/standalone 

 Open source 

2008 

[71, 72] 

Gardenia 

Set of RNA 

sequences 
with their 

secondary 

structures 

FASTA 

Dot/ 
Bracket 

Multiple sequence alignment 

regarding sequence and 
structure 

 Edit operations concerning free bases and concerning arcs 

between bases 

 Not including pseudoknots 

 Web-server/standalone 

 Open source 

2008 [73] 
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Table 4. RNAs motifs searching tools 

 

Category Tool Input  
Input  

format 
Output  Description  

Publication 
(year) 

S
tr

u
ct

u
re

-s
e

q
u

e
n

ce
 d

e
sc

ri
p

to
rs

 -
 b

a
se

d
 

RNAmotif 

 Descriptor 

file:specifies 
structure to 

look for 

 Target 
sequences 

Text file 

FASTA 
 Matched sub-

sequences 

 Match location  

 Score based on 
structural constraints 

 Computes the thermodynamic stability score of the 

candidates structure and classifies the free energy 

 Motif descriptor and scoring system not enough suitable 

 Standalone 

 Open source 

2001 [74] 

Locomotif 

Small ncRNAs 

sequences 

Graphical 

motif 
description 

languange 

RNA motifs matchings  Dynamic programming method who includes the 
structure thermodynamic model 

 Standalone 

 Proprietary 

2007 [75] 

STRMS 

(structural 
RNA motif 

search) 

 Query 

sequence or 
structures 

(including 

structural 
constraints) 

 Target 
sequence 

database 

FASTA All occurrences of the 

query in the target  
 Tree representation and dynamic programming 

 Based on subtree homeomorphism for ordered, rooted 
tree 

 Pre-folding, partitioning the target sequence into 
consecutive overlapping windows, folding them and 

converting each structure to a tree representation 

 Includes pseudoknots 

 Standalone 

 Open source 

2007 [76] 

Motifs-
search 

 SmallRNA 

sequence with 
known 

structure  

 Target 

sequence 

FASTA Structural homologies  Tree representation of the secondary structures 

 Searches all potential stem-loops similar to ones of the 
given RNA secondary structure 

 Based on located stem-loops detects potential 
homologous structural RNAs in genomic sequences 

 Standalone 

 Proprietary  

2007 [77] 

Structator 

 Target 
sequence 

 SSD (set of 

RSSP to 

describe the 

query global or 
local structure)  

FASTA 

Dot/bracket 
 Matches  

 Match chains 

 Nested and non-braching structure  

 Supports wide variety of pattern characterized by the 

wildcards nt and with stem-loop of variable length 

 Employs an innovative index-based bidirectional 

matching algorithm 

 Running time scales sub-linearly with the length of the 
searched sequences 

 Two programs: Afconstruct for the construction of the 
affix-array; Afsearch allows users to find all the possible 

matches with the pattern of RNA sequence-structure 

 Standalone 

 Open source 

2011 [26] 

S
e

a
rc

h
 f

o
r 

co
m

m
o

n
 m

o
ti

fs
 w

it
h

o
u

t 
d

e
sc

ri
p

to
rs

 

RNA 
profile 

 Number of 
hairpins (h) in 

the motifs 

 Set of not 

aligned 

smallRNA 
sequences  

Dot/bracket 
FASTA 

Most conserved regions 
with respect to sequence 

and structure according 

to base-pairing and 
thermodynamic rules 

 Greedy algorithm :generate a set of candidate regions 
whose mfe structure contains exactly h hairpins and 

compares the regions selected with each other to find the 
groups of most similar ones 

 Free-alignment method 

 Feasible computational complexity 

 Standalone 

 Open source 

2004 [78] 

Infernal 

 Multiple RNA 
alignment 

 Target 

sequence to 
look for 

Stockholm Statistical scoring 

system: quantitative 
ranking of the 

homologies in a 

sequence database  

 Use covariance model to searching RNA sequence 
databases for RNA structure and sequence similarity 

 Standalone 

 Open source 
2009 [79] 
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Table 5 Results of structure predictions performances for different tools. 

RNAs 
Base-pairs in the 

known structure 

(P) 

RNALfold/ 

nbRSSP_extractor 
Rfold RNAfold RNALfold_lnrz 

True 

Positive 

(TP) 

False 

Positive  

(FP) 

True  

Positive 

(TP) 

False 

Positive 

(FP) 

True 

Positive 

(TP) 

False 

Positive 

(FP) 

True 

Positive 

(TP) 

False 

Positive 

(FP) 

rRNA 16 S 218195 117950 153933 103811 104835 100955 90620 98922 111742 

rRNA 23 S 104340 60092 74191 49130 44922 51680 39778 48797 53531 

 

 

Table 6 Results of RFAM families detection for different tools 

 

RFAM 
reference 

family 

(# of RSSPs) 

# of detected members/ 

total family members 

# of sequences taken to cover the all family 

members 

SSD_finder 
Structator 

global 

Structator 

local 
SSD_finder 

Structator 

global 

Structator 

local 

RF00035 

(4 RSSPs) 
266/300 268/300 171/300 271 307 175 

RF00193 

(11 RSSPs) 
44/44 44/44 44/44 44 44 47 

RF00635 

(3 RSSPs) 
60/66 60/66 41/66 60 60 41 

RF01975 

(4 RSSPs) 
54/65 54/65 1/65 136 459 1 

 


