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Abstract

Ultraviolet radiation (UVR) is widely known as deleterious for many organisms since it can

cause damage to biomolecules either directly or indirectly via the formation of reactive oxy-

gen species. The goal of this study was to analyze the capacity of high-mountain Espeletia

hartwegiana plant phyllosphere microorganisms to survive UVR and to identify genes

related to resistance strategies. A strain of Deinococcus swuensis showed a high survival

rate of up to 60% after UVR treatment at 800J/m2 and was used for differential expression

analysis using RNA-seq after exposing cells to 400J/m2 of UVR (with >95% survival rate).

Differentially expressed genes were identified using the R-Bioconductor package NOISeq

and compared with other reported resistance strategies reported for this genus. Genes iden-

tified as being overexpressed included transcriptional regulators and genes involved in pro-

tection against damage by UVR. Non-coding (nc)RNAs were also differentially expressed,

some of which have not been previously implicated. This study characterized the immediate

radiation response of D. swuensis and indicates the involvement of ncRNAs in the adapta-

tion to extreme environmental conditions.

Introduction

Diverse natural and artificial environments exposed to extreme temperature, pressure and/or

radiation conditions are attractive sources of microorganisms with exceptional phenotypic

and genotypic properties. The high-mountain Paramo biome, similar to the tundra biome of

high latitudes, consists of high-elevation areas subject to harsh environmental conditions. The

Paramo biome has a high solar incidence that can induce damage by ultraviolet radiation

(UVR) that represents a survival challenge for organisms [1]. Ionizing radiation and UVR

affect organisms by damaging cellular components such as nucleic acids, proteins, and lipids

[2]. The deleterious effect on cells is caused by direct damage to DNA, such as chromosomal
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lesions that introduce both double-strand breaks (DSBs) and single-strand breaks (SSBs), and

damage due to pyrimidine dimerization and photoproducts that inhibit DNA replication and

transcription [3]. Most of the damage, however, is caused indirectly by the production of reac-

tive oxygen species (ROS), such as the chemically reactive superoxide and hydroxyl radicals

that in turn affect various cellular constituents, including proteins [2].

The harmful effects of UVR on cellular components depend on the wavelength: UVA can

travel farther into tissues and contributes to ROS (damage to lipids, proteins, and DNA)

whereas UVB produces direct breaks in the DNA structure (pyrimidine dimers) [4]. Even

though UVC radiation is not present on the Earth’s surface, its bactericidal potential is used

for studying UV sensitivity in bacteria with a high tolerance to UVB or UVA radiation [5].

Organisms resistant to radiation have been identified in all three domains of life. The mecha-

nisms proposed to be involved in resistance to UVR vary and include strategies for DNA

repair, protection against ROS using either enzymes or non-enzymatic antioxidative defenses,

such as intracellular manganese and pigment production, protein folding and degradation sys-

tems [6]. Bacteria, with their diverse metabolic capacity, have an uncanny ability to survive

under extreme conditions and colonize habitats that are inhospitable to other groups of organ-

isms [7]. Different levels of resistance to UVR have been reported in diverse bacterial species,

highlighting a wide variation in the response and a need for understanding the physiological,

biochemical and mechanical responses that confer UV tolerance in bacteria [8]. Perhaps the

most representative members of the extremely radiation-resistant bacteria belong to the family

Deinococcaceae, which can survive exposure to ionizing radiation over 12,000 Gy (J/Kg), UVR

over 1000J/m2 and can grow under harsh chronic irradiation of 50 Gy per hour [9]. Deinococ-
cus swuensis, whose genome was recently published from a strain isolated from soil in South

Korea, is also reported to have high resistance to UVR [10, 11].

Transcriptomic studies of D. radiodurans under radiation stress have shown induction of

genes involved in DNA repair, cell recovery and antioxidative defenses [12]. An RNA-Seq

analysis of D. gobiensis also showed induction of genes for DNA repair and regulation in

response to UVR [13]. These studies, together with more recent work [14], also indicate differ-

ential expression of a subset of small and noncoding RNAs (sRNAs/ncRNAs), molecules that

do not encode functional proteins but can play important roles in regulation of transcription

and translation [15].

The differential expression of ncRNAs, upon UVR treatment suggests that these molecules

could be important in triggering protective mechanisms, even though their precise role during

the stress response to high doses of radiation still remains to be determined. A new hypothesis

suggests that sRNAs could contribute to cellular post-exposure recovery because they would

remain largely undamaged due to their small size [14]. Experimental evidence places these

sRNAs into different metabolic pathways, such as response to changes in temperature, pH and

other lethal stressors [16]. Recently reported sRNAs identified to be involved in radiation resis-

tance are Y-RNAs, molecules that adopt specific secondary structures and bind to proteins

known as Ro that are conserved in several organisms [17]. In D. radiodurans Y-RNAs were

found to bind the Ro orthologue Rsr to form a ribonucleoprotein (Ro-RNP) complex that

functions as an effective machinery for bacterial RNA degradation [18]. D. radiodurans was

found to upregulate and accumulate Ro-RNPs in response to UVR and cells lacking the Ro

protein had decreased survival following UV exposure [19].

In this study we hypothesized that microorganisms capable of resisting UVR should be

present in locations exposed to high solar incidence, such as the Andean mountain high-alti-

tude Paramo biome. Previous results indicated that the phyllosphere microbiota associated

with Espeletia sp., a plant endemic to the Paramo, contained diverse microbial communities

and genes involved in resistance to UV and other stress conditions [1], and could thus provide
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insight into microbial resistance strategies. The main goal of this work was to isolate UV resis-

tant microorganisms from this plant phyllosphere and study their resistance mechanisms

through gene expression analysis. One bacterial strain identified as D. swuensis showed high

resistance to UV exposure in laboratory settings and differential regulation of genes and

sRNAs that provide clues to the immediate response of D. swuensis to radiation and extreme

environmental conditions, such as those found in high Andean ecosystems.

Materials and methods

Isolation of bacterial strains, culture conditions and characterization

Microorganisms were isolated from Espeletia hartwegiana leaves were collected at the National

Natural Park Los Nevados in Colombia (04˚52’27” N; 75˚15’51.4” W), as previously described

[1]. The sampling was done under MADS contract no. 76-2013 for access to genetic resources.

Microbes were first dislodged from leaf surfaces, as reported [20], and then plating serial dilu-

tions on R2A Agar (BD Difco, Franklin Lakes, NJ) and Tryptone soy agar (TSA, Oxoid), sup-

plemented with 50 mg/ml Nystatin (Sigma-Aldrich, St. Louis, MO) to avoid fungal growth,

when necessary. Plates were incubated at 25˚C for 15 days and checked daily for growth. Colo-

nies with distinct morphologies were re-streaked in the same growth media until pure colonies

were obtained. Strains were characterized microscopically using Gram staining and taxonomic

identification was done by analysis of the 16S rRNA gene or the ITS region for fungi. DNA

was obtained by resuspending colonies in 1ml Tris 10mM (pH 8.0), adding 25μl proteinase K

(10mg/ml) and incubating at 55˚C for 25 min. DNA was purified from 500μl of this cell sus-

pension using the MO BIO Microbial Ultraclean DNA Purification Kit (Qiagen, Germany).

PCR amplifications were done using primers 27F (5’ AGAGTTTGATCMTGGCTCAG 3’) and

1492R (5’ TACGGYTACCTTGTTACGACTT 3’) for bacteria, in a 50μl reaction volume con-

taining 1μl DNA template, 0.2μM of each primer, 0.2 mM dNTPs, 2.5 mM MgCl2, 1X Buffer

and 1.25 U of Taq DNA polymerase (CorpoGen, Colombia) and the following amplification

conditions: 4 min at 94˚C, 35 cycles of 30 s at 94˚C, 45 s at 55˚C, 1 min a 72˚C, and a final

extension of 10 min at 72˚C. Primers ITS5 (5’ GGAAGTAAAAGTCGTAACAAGG 3’) and

ITS4 (5’ TCCTCCGCTTATTGATATGC 3’) were used to amplify fungi as described above

but using 0.3 μM primers and PCR reactions of 2 min at 94˚C, followed by 35 cycles of 60 s at

94˚C, 60 s at 55˚C, 1 min a 72˚C, and a final extension of 5 min at 72˚C. Sequencing was per-

formed in an Applied Biosystems 3500 Genetic Analyzer. Forward and reverse reads were

assembled and analyzed using Geneious 8.2, removing low quality nuclotides, and queried

against the NCBI nucleotide database using BLAST.

Screen for UV resistance and D. swuensis survival curve

Strains were grown overnight in 3ml Tryptone soy broth (TSB, Oxoid), washed 3 times with

PBS, and 20μl of nine 1:10 serial dilutions were spotted, in triplicate, on TSA medium, allowed

to dry, and exposed to UVC in a UV hood to obtain a fluence rate from 50 to 800J/m2, as previ-

ously described [21] and determined using a radiometer with an LP 471 UVC probe (Delta

Ohm, HD2302.0). Survival was determined by plating irradiated cultures on TSA medium to

determine CFU/ml. Survival of D. swuensis was measured at various points along the growth

curve using three replicate cultures that were first grown overnight and then diluted 1:100 in

100 ml fresh TSB medium, and incubated at 30˚C, with continuous agitation at 150rpm. Sam-

ples were taken at 15, 24, 40, 48, and 72 hours and exposed to 800, 1600 and 2400J/m2 to deter-

mine survival (CFU/ml), as mentioned above.
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RNA extraction and sequencing

Triplicate 48-hour D. swuensis cultures were grown first for 48h in 3ml TSB, then diluted

1:100 into 100 ml fresh medium and re-grown for 24h. Ten ml of each 24h culture (ODffi 1;

approximately 1.6x108 CFU/ml) were transferred to a sterile Petri dish and submitted to 400J/
m2 irradiation. After exposure, bacterial cells were immediately placed on ice, and centrifuged

at 4600 x g for 15 minutes (4˚C). Control aliquots from the same culture were not submitted to

irradiation. After centrifugation, pellets were re-suspended in 1ml TriZol (Promega), lysed

with Matrix B lysing beads (MP Biomedicals) in a FastPrep (MP Biomedicals) using 6.5 m/s

for 40 seconds, and then centrifuged at 15,000 x g for 1 minute at 4˚C. RNA in supernatants

was recovered with the DirectZol RNA extraction kit (Zymo Research). Only RNA with a RIN

>8 was used for sequencing at Macrogen (Seoul, Korea) on an illumina Hi-seq 2000, with 100

nucleotide paired-end reads.

Preprocessing and mapping sequencing data

Quality control was made with FastQC (v.0.11.2) (http://www.bioinformatics.bbsrc.ac.uk/

projects/fastqc/), Illumina adapters were trimmed with Trimmomatic (v.0.36) [22], rRNA

depletion was performed with SortmeRNA (v.2.1) [23] using the Silva16S, 23S and 5S rRNA

gene databases (release 128 downloaded on January 2017 from https://www.arb-silva.de/

no_cache/download/archive/release_128/) [24]. Sequences were mapped against the D.
swuensis NCBI reference genome DY59 (accession number: GCF_000800395.1) [11] with

Subread (V1.5.0-p3) [25], parameters included an insert size of 250 bp, a maximum of 3

mismatches and 5 indels. Features present in the reference annotation were extracted from

the gff file and relative abundances were calculated with featureCounts, a tool included in

the R package subread (v.1.5.0-p3) [26], and an in-house script. Remaining (unmapped)

sequences were randomly subsampled (10%) and searched against the nt (nucleotide collec-

tion) database with Blastn and processed with MEGAN (v.6.9.4) at a threshold of 1X10−5

[27].

Differential expression analysis

Annotated features from the reference genome such as coding DNA sequences (CDS’s),

ncRNAs, pseudogenes, rRNAs and tRNAs were selected for analysis. The R-Bioconductor

package NoiseqBio (2.18.0) [28] was used to measure differential gene expression between

irradiated and non-irradiated control conditions. The workflow included a variance diagnostic

(Cochran C test), analysis of sequencing depth, search for biases due to i) feature length and

RNA amount and ii) detection of features with low counts, and the nonparametric analysis of

differentially expressed features (based on Bayesian statistics). Counts were normalized to

reads per kilobase of feature length per million mapped reads (RPKM) and by trimmed mean

of M-values (TMM). Filtering of features with low counts was applied in order to remove

those features that had an average expression of less than 5 CPM (counts per million) per con-

dition and a variation coefficient higher than 100 in all conditions, which introduces noise and

can lead to unreliable results for differential expression analysis [29]. According with develop-

ers suggestion, genes with a cut-off probability of expression above 0.8 and a log2 fold-change

greater than or equal to 1.0 were considered as differentially expressed genes [28]. Sequences

coding for annotated hypothetical proteins were queried against the NCBI nr database using

BLASTp and used for domain search with HMMER (V.3.1) [30] against the PFAM database

[31].

Computational search for UV radiation resistance strategies in Deinococcus swuensis

PLOS ONE | https://doi.org/10.1371/journal.pone.0221540 December 2, 2019 4 / 17

http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/
http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/
https://www.arb-silva.de/no_cache/download/archive/release_128/
https://www.arb-silva.de/no_cache/download/archive/release_128/
https://doi.org/10.1371/journal.pone.0221540


ncRNA computational analysis

Intergenic regions of the reference genome showing a significant number of mapped tran-

scriptomic reads (minimum 6X coverage) were retrieved as potentially containing ncRNAs.

Filters for the regions selected were based on the number of hits (read counts) and the region

length (>50pb). Candidate regions were compared against the Rfam and NCBI nucleotide-nr

databases [32, 33] using covariance models implemented in Infernal (V.1.1) [34]. All ncRNA

candidates were processed for differential expression analysis using the workflow described

above.

Quantitative real time PCR (qRT PCR) validation

Primers were designed using the IDT primerQuest tool (https://www.idtdna.com/

Primerquest/Home/Index) to have a TM = *60˚C, a final amplified product size of *200pb

and GC content *50% S1 Table. RNA samples were quantified using a Qubit fluorometric

system (Invitrogen) and used at the same concentrations for cDNA synthesis using Super

script III reverse transcriptase (Invitrogen). qPCRs were run in a LightCycler 1 96 System

(Roche) using the FastStart Essential DNA Green Master kit (Roche) and the following con-

ditions: 1 cycle of 600 s at 95˚C, then 45 cycles of 10 s at 95˚C, 10s at the annealing tempera-

ture and a final extension at 72˚C for 10s; a melting curve after the amplification confirmed a

single peak and indicated a specific qPCR product. Relative expression was obtained by nor-

malizing with the single copy gene QR90_RS09970 that codes for a succinate dehydrogenase,

that showed similar expression levels among the different samples and conditions in the

RNA-seq analysis, and the equation proposed by [35]. Primer efficiencies were determined

using 1:10 serial dilutions of genomic D. swuensis DNA and the same PCR program

described above.

Results

Strain isolation and radiation resistance

Microorganisms were isolated from the phyllosphere of Espeletia plants located in the National

Park Los Nevados in Colombia [1]. Isolates with distinct colony morphologies were obtained

by plating dilutions of the material dislodged from leaf surfaces on various media. Taxonomic

identification using both 16S rRNA gene and ITS sequence analyses showed that this collection

of isolates consisted of 10 fungi, 11 Gram-positive and 29 Gram-negative bacteria. To deter-

mine if any of these strains were resistant to UV radiation, as predicted for organisms living at

these high-altitude ecosystems [1], all isolates were subjected to irradiation with UVC. A

screen using varying levels of exposure, up to 800J/m2, showed that very few strains were capa-

ble of surviving these conditions. The most resistant strain was a bacterium identified as D.
swuensis (strain CG1225), followed by the fungi Cryptococcus flavescens and Rhodotorula muci-
laginosa Fig 1A. Other isolates showed reduced levels of resistance. Given that D. swuensis
CG1225 showed the highest resistance to UVC exposure, with>60% survival at the highest

dose tested (800J/m2), this strain was selected to further study its response to irradiation using

RNAseq analysis.

In order to determine the best conditions for RNA extraction, a survival curve was first per-

formed by harvesting D. swuensis cells at five different times along the growth curve and

exposing these cells to varying doses of UVC, including doses above 800J/m2 used previously

Fig 1B. Radiation resistance was similar for all time points examined along the growth curve

(15 h to 72 h cultures), even up to the maximum exposure tested (2400J/m2). However, degra-

dation of the extracted RNA was observed at increased doses of UV exposure. Thus we selected
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the treatment of 400J/m2 with cells grown for 24 h for subsequent RNA extractions to ensure

sufficient recovery of high-quality RNA.

Pre-processing and mapping sequencing data

Total RNA was obtained for three independent replicates of unexposed controls (C1, C2, and

C3) and irradiated cultures (IR1, IR2, and IR3). RNA-seq was carried out using 100-nucleotide

paired-end sequencing on an Illumina HiSeq. On average, 16.4 million reads were obtained

per sample Table 1. After quality processing and adapter removal, rRNA filtering was per-

formed using the SILVA database, which on average removed 90% of the reads, with the

exception of samples C2 and IR2 for which 95% and 43% of the reads were retained, respec-

tively, likely due to variation in the efficiency of experimental rRNA depletion [36]. Given the

high number of reads retained after filtering for samples C2 and IR2 Table 1, a Cochran C test

Fig 1. Survival to UV-C exposure of Espeletia phyllosphere-associated microorganisms. (A) Bacteria and yeast isolated from the plant phyllosphere

were exposed to different UVR doses. Survival was measured as the percentage of CFUs obtained when compared to unexposed cells of the same strain.

(B) Survival (mean±SD, n = 3) of D. Swuensis harvested at different time points along the growth curve (15-72h) and exposed to different doses of

UV-C.

https://doi.org/10.1371/journal.pone.0221540.g001

Table 1. Reads counts (in millions) per sample through the preprocessing and mapping pipeline.

Category Features1 C12 C2 C3 IR1 IR2 IR3

Raw reads 15.360 16.830 16.060 16.200 16.530 17.330

After adapter removal 15.360 16.820 16.050 16.200 16.520 17.320

After rRNA removal 1.820 16.090 2.290 1.300 6990 1.140

Unmapped 0.160 1.460 0.220 0.110 0.660 0.110

Mapped 3223 1.660 14.630 2.070 1.190 6.330 1.030

CDS3 3168 1.044 10.804 1.376 0.697 5.251 0.620

ncRNA3 1 0.079 0.539 0.090 0.049 0.299 0.034

rRNA3 7 0.036 0.005 0.045 0.059 0.034 0.073

tRNA3 47 0.004 0.123 0.005 0.005 0.010 0.003

Unassigned3 0.496 3.159 0.553 0.380 0.735 0.300

1 Number of features identified in the annotated genome.
2 Values in Millions of reads.
3 Features belonging to mapped category.

https://doi.org/10.1371/journal.pone.0221540.t001
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was performed to estimate significant differences in variance for any sample with respect to

the entire group variance. The sample variance for C2 (0.9226) was significantly higher than

the variance for the other samples (p-value of 2.2e-16) S2 Table, potentially leading to biases.

In consequence, the C2 sample was removed from subsequent analyses. For the IR2 sample, in

which 43% of reads were retained, the calculated variance (0.6849) was not significantly differ-

ent from the other samples.

Sequences were mapped against the reference D. swuensis genome DY59. The percentage of

mapped reads ranged between 90.55% and 91.38%, with a maximum of 3 allowed mismatches

Table 1. This range is expected when mapping against a different strain of the same species,

due to intraspecific variability [13, 14, 37]. Features annotated as CDS, ncRNA, rRNA, and

tRNAs were extracted from the dataset for differential expression analysis. The majority of the

mapped reads corresponded to CDS (67.48 ± 7.27%; mean ± SD) distributed among 3168

genes. A total of 4.15 ± 0.46% of the remaining reads mapped to a single ncRNA, making this

the highest-scoring single feature. rRNA (7 features; 2.82 ± 2.12%) and tRNAs (47 features;

0.37 ± 0.15%) showed lower counts. Approximately 25.15 ± 5.69% of mapped reads could not

be assigned to any annotated feature Table 1.

As can be seen in Table 1, on average 10% of the reads failed to map against the reference

genome. To identify the putative origin of these sequences, 10% of the unmapped reads

(182,615 for controls and 86,952 for irradiated samples) were queried against the NCBI non-

redundant (nr) nucleotide database using BLASTn. A total of 61,151 (33.49%) and 31,607

(36.35%) reads for controls and irradiated samples, respectively, were identified as having sig-

nificant hits to the database (with an e-value threshold of 1e-5). Taxonomic assignment of the

BLASTn results examined using MEGAN showed that for both controls and irradiated sam-

ples,*31.15 ± 0.19% of the reads corresponded to Deinococcus-related bacteria, another

*65.08 ± 2.025% had no hit to the database, and the remaining 3.98 ± 0.18% were assigned to

other bacterial groups S1 Fig. The fact that *30% out of the 10% unmapped reads were

assigned to other Deinococcus species suggests intraspecific strain variation, in concordance,

the alignment of these reads against reference genome DY59 (through Blast) recovered

matches associated to described protein and RNA metabolism with identity values over 85.

Differential expression analysis

To identify genes potentially involved in resistance to UV exposure, differential expression

analyses were performed using all identified genomic features (CDS, ncRNA, rRNA, and

tRNA) using control (C1 and C3) and irradiated samples (IR1, IR2 and IR3). Because an inde-

pendence assumption is required to obtain accurate conclusions, it is essential to minimize

external factors that could affect gene expression, regardless of the experimental condition

being tested. The data were therefore first filtered by removing low count features (less than 5

CPM [counts per million]) and normalized by 1) sequencing depth and feature length varia-

tion (RPKM), and 2) taking into account sample total RNA content using the TMM method,

(Trimmed Mean of M values is the average expression value after removing the most variant

features of the data); this normalization takes into account sample-to-sample variation Fig 2A

and 2B.

A total of 96 differentially expressed features with log2 fold-change values ranging between

-1.07 and 1.95 and a posterior probability for differential expression (p) >0.8 (NOISeq uses a

bayesian approach to calculate the differentially expressed genes) were obtained Fig 2C and

2D. The chromosomal location of features that were up or down regulated did not show a par-

ticular position bias. The 96 detected features corresponded to four rRNAs, 13 tRNAs and 79

CDS (23 were hypothetical proteins), but only 14 CDS presented log2 fold-change values>1,
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indicating an over expression of at least twice as much as the control condition. Of these, 10

had functional annotation and 4 were hypothetical-proteins Table 2. The over-expressed CDS

included genes for a GntR-like bacterial transcription factor, a proline dehydrogenase (key

gene for homeostasis and ROS control in cells), RNA helicase (involved in ribosome biogene-

sis, initiation of translation), CrcB (protein for transmembrane transport of fluoride), an

alpha/beta Hydrolase, a GTP-binding protein, Hemolysin, an ABC transporter ATP-binding

protein and a pyr operon involved in synthesis of pyrimidines.

Given that some of the genes previously reported for Deinococcus strains as being involved

in UVR resistance [12, 13], such as DNA repair mechanisms, pigment production and efflux

pumps (for Mn+2 mainly), were not present among the most differentially expressed genes, a

search for orthologues of radiation-resistance genes reported from D. radiodurans and

Fig 2. Differential expression analysis between irradiated and control samples. Boxplots showing expression values (in counts per million) for

control (C1, C3) and irradiated (IR1-IR3) samples before (A) and after (B) the filtering of low counts (CPM<5) and the normalization process done by

RPKM (reads per kilobase of feature length per million mapped reads) and TMM (trimmed mean of M-Values). (C) Volcano plot of log-fold change

(M) vs. the absolute value of the difference in expression between conditions; genes with a bayesian posterior probability of differential expression>0.8

are shown in red, values of M>0 represent upregulated genes. (D) Correlation plot between irradiated (x-axis) and control (y-axis) mean expression.

Genes deviating from expected with a probability>0.8 are shown in red. Values below and above the diagonal represent differentially expressed genes

for the irradiated condition.

https://doi.org/10.1371/journal.pone.0221540.g002
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D. gobiensis was performed. All twenty-seven reported genes (e.g., citB, ddrI, phoR, phrB and

mutT) were recovered with significant e-values (<0.01) but with low identity values (between

30-50% at the DNA level) and a log2 fold-change value not significant between the conditions

tested (maximum log2 fold-change 0.6). In consequence, those genes were not used for further

analyses.

To further characterize the 23 differentially expressed hypothetical proteins, these were ana-

lyzed for possible functional domains through HMM (Hidden Markov Models) search against

the pFam database. Several domains were identified, some of which were identified as related

to photosystem II (PsbP), type III secretion system lipoprotein chaperone (YscW), copper

chaperone pCu(A)C, WD domain (G-beta repeat), winged helix-turn helix, and DoxX catego-

ries. Four proteins were identified as containing conserved domains of unknown function

(DUF) Table 3.

qRT-PCR validation

In order to validate the differential expression found with RNASeq, RT-qPCR was performed

on three genes that had the highest log2 fold-change expression ratios: an RNA helicase

(QR90_RS09640), a GntR family transcriptional regulator (QR90_RS11755) and the gene for

proline dehydrogenase (QR90_RS11750). All three genes tested showed over 2-fold increase in

expression (2.31, 2.14 and 2.05, respectively), thus confirming the observed RNA-seq data.

Identification of ncRNAs

To identify additional differentially expressed features in the transcriptomes of UVC-exposed

D. swuensis cells, and according to recently-proposed roles of ncRNAs in the rapid recovery

after cellular stress, a de novo search for these regulatory entities was implemented [14].

Table 2. Differentially expressed genes.

GenID1 I_mean2 NI_mean2 Theta3 Prob4 Log2FC5 Function

QR90_RS11755 224.78 57.99 0.98 0.92 1.95 GntR

QR90_RS02510 984.31 332.59 1.24 0.9 1.57 Hypothetical protein

QR90_RS11750 289.78 98.42 0.92 0.85 1.56 Proline dehydrogenase

QR90_RS09640 226.93 88.31 1.11 0.92 1.36 RNA helicase

QR90_RS15645 40.86 16.31 0.87 0.8 1.33 CrcB protein

QR90_RS08275 14.76 5.95 0.65 0.81 1.31 Alpha/beta hydrolase

QR90_RS05520 4636.4 2108.59 1.58 0.98 1.14 30S ribosomal protein S8

QR90_RS09935 50.29 23.44 0.73 0.8 1.1 Hypothetical protein

QR90_RS15125 194.2 91.37 0.82 0.84 1.09 Hypothetical protein

QR90_RS06220 103.97 49.97 0.66 0.82 1.06 GTP-binding protein

QR90_RS15620 54.06 26.16 0.78 0.83 1.05 Hypothetical protein

QR90_RS03530 144.65 70 0.84 0.82 1.05 Hemolysin

QR90_RS09365 21 10.33 0.68 0.82 1.02 ABC ATP-binding protein

QR90_RS01280 253.16 124.44 0.74 0.8 1.02 Bifunctional pyr operon

1 Only CDS with probability value over 0.8 and log2 fold-change�1 are shown.
2 Irradiated (I) and non-irradiated (NI) expression means.
3 Theta: differential expression statistic calculated as (M + D)/2, where M is the log2-ratio of the two conditions and D is the difference in expression between conditions

(including a correction for the biological variability of the corresponding feature).
4 Prob: probability of mixed distribution (mixed because it is calculated from features changing between conditions and invariant features).
5 Log2 fold-change.

https://doi.org/10.1371/journal.pone.0221540.t002
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Analysis of 3,355 intergenic regions from the D. swuensis reference genome retrieved 1,979

candidate ncRNA sequences. The criteria included a minimum cut-off for intergenic regions

of 50bp and a minimum sequencing depth threshold of 6X, based on the mapping distribution,

to eliminate regions with low coverage S2 Fig. These candidates were compared against covari-

ance models (CMs) built from the Rfam database. CMs are statistical models of structurally

annotated RNA multiple sequence alignments that allow a flexible search for both primary and

secondary RNA structures against a known dataset [39].

The CM search reported a total of 1,598 matches, but only 290 were below a search thresh-

old of 0.1 (parameter that describes the number of hits one can “expect” to see by chance when

searching a database). These significant matches were composed by 109 RNAs involved in

post-transcriptional modification (such as snRNAs/snoRNAs), and 166 regulatory RNAs

(including 97 miRNAs, 20 lncRNAs, 29 cis-regulatory elements, 15 antisense and 5 CRISPR

RNAs). The remaining elements included one ribozyme, three antitoxin and 11 other RNA

classes. Six candidates Table 4 were significantly related to small cytoplasmic Y RNAs (Rsm Y)

(e-value <0.05). The log2 fold-change values for the differentially expressed ncRNAs oscillated

between -1.03 (for mir-234) and 1.68 (for CsrC), which doesn’t indicate a tendency towards

down or up-regulation under the UV-stress condition. However, the average of probability

values for all ncRNAs was only 0.26 ±0.23, whereas CsrC showed a probability of 0.79 Table 4.

Although this probability is not equivalent to a p-value, the higher it is, the more likely that the

difference in expression is due to the change in the experimental condition and not to chance.

Discussion

Natural ecosystems, and the organisms that inhabit them vary in their exposure to UVR. UVR

determines the distribution and survival of microorganisms and consequently influences eco-

system dynamics and biogeochemical cycles [40]. From an evolutionary point of view, sensitiv-

ity to radiation indicates that UVR is an effective promoter of mutations, stimulating genomic

variation, and could explain why high resistance is not widespread [41]. In this study, various

isolates obtained from the Espeletia plant phyllosphere showed differences in resistance to

UVR, indicating variability in their adaptability to UV exposure, despite being isolated from

the same habitat. Previous reports have indicated that strains from diverse environments can

differ in UVR sensitivity [41], while in other cases there can be similarity in resistance levels

within a phyllosphere microbial community [42]. In our case, habitat of origin did not

Table 3. Predicted domains present in hypothetical proteins reported by HMMER.

GenID Hits Found Identifier1 Decription1 E-value1 Log2FC2

QR90_RS02510 1 DUF4395 Domain of unknown function 5.2E-26 0.9

QR90_RS15125 6 WD40 WD domain, G-beta repeat 7.5E-06 0.84

QR90_RS03320 1 DUF456 Domain of unknown function 1.5E-35 0.81

QR90_RS10725 1 PsbP PsbP 7.6E-07 0.92

QR90_RS08755 1 HTH_33 Winged helix-turn helix 5E-14 0.92

QR90_RS15830 1 YscW Type III secretion system 1.6E-07 0.92

QR90_RS03570 1 DUF4384 Domain of unknown function 1.2E-10 0.91

QR90_RS08995 1 DUF1540 Domain of Unknown Function 8.2E-08 0.82

QR90_RS02980 1 PCuAC Copper chaperone PCu(A)C 8.4E-24 0.8

QR90_RS11035 1 DoxX DoxX 2.9E-10 0.87

1 Only values for top-hit are shown.
2 Log2 fold-change.

https://doi.org/10.1371/journal.pone.0221540.t003
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correlate with resistance to extreme UV-C radiation, indicating that heterogeneous microbial

phenotypes coexist in these natural ecosystems.

D. swuensis CG1225, with>60% survival at the highest dose tested (800J/m2), was the most

resistant isolate recovered based on our radiation resistance experiments. Deinococcus spp. are

widely recognized as being resistant to ionizing radiation at doses that are damaging to other

organisms [43]. This resistance is due to multiple mechanisms that can work synergistically to

guarantee genomic integrity [38][44]. Current reported strategies include efficient DNA repair

(such as RecA, Pprl, Ppr), antioxidant activities (CAT, SOD, POD, Mn+ 2), a unique cell struc-

ture (tetrad configuration for compartmentalization of DNA) [43], protection of proteins [45]

and, more recently, ncRNAs [14].

In this study, we used differential gene expression analysis to identify genes involved in the

cellular response of D. swuensis CG1225 to UVR, a strategy which has been used to study other

Deinococcus isolates [12–14, 46]. In contrast to previous studies in which treated cells were

recovered after varying lengths of time, even up to three hours post treatment [13], here the D.
swuensis CG1225 cells were harvested right after exposure and thus provide insight regarding

the immediate response to UVR exposure and irradiation stress, a snapshot of a “first quick

response”. This might explain why relatively few differentially expressed genes were identified,

14 CDS with log2 fold-change values>1 and a probability >0.8. Although functional domains

with diverse biological functions were identified in these hypothetical proteins, none of them

seemed to be associated with any known UV stress-responses Table 3. It is therefore unclear

what the function of several of these proteins might be and how they may contribute to the

UVR stress response. The predicted genes, however, were involved in global responses to

stress, such as transcription regulation and transporters involved in cellular detoxification.

The overexpressed genes support the hypothesis of an organism that turns on its transcrip-

tional machinery, in this case as an immediate response to prepare itself for the recovery of

homeostasis as response to an environmental stressor. The highest log2 fold-change in expres-

sion was registered for a transcription factor belonging to the GntR family, which regulates

several biological processes in diverse bacterial groups, however, details regarding its specific

Table 4. Significant ncRNA candidates reported by Infernal and log2 fold-change values for differential expression analysis.

Category Code E-value Model name4 GC5 Prob Log2FC6

Up1 nc0013 3.3E-05 CsrC 0.67 0.79 1.68

nc0176 0.064 Pxr 0.5 0.45 1.46

nc0001 0.074 ar45 0.47 0.01 1.11

nc0011 0.01 mir-761 0.68 0.39 1.05

Reported2 nc0989 5.9E-05 RsmY 0.7 0.20 0.77

nc1573 0.00092 RsmY 0.68 0.03 0.59

nc0919 0.052 RsmX 0.58 0.08 0.40

nc0644 0.0059 RsmY 0.75 0.33 0.38

nc0774 0.047 RsmY 0.67 0.04 0.27

nc0445 0.018 RsmY 0.71 0.34 0.13

Down3 nc0308 0.031 mir-234 0.52 0.24 -1.03

1 Up: Upregulated ncRNAs, log2 fold-change values are positive.
2 Reported: Significance and expression values for described RsmY family which were not differentially expressed in this study.
3 Down: Downregulated ncRNAs, log2 fold-change values are negative.
4 ModelName: the name of the Rfam family/model of the hit.
5 GC: corresponds to the fraction of G+C of the hit.
6 Log2 fold-change.

https://doi.org/10.1371/journal.pone.0221540.t004
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mechanism of action remain largely uncharacterized [47]. Although this regulator protein has

been associated with a decrease in resistance to stress in D. radiodurans [47] and Bacillus subti-
lis [48], the target genes for this transcriptional regulator remain elusive [49].

Other genes overexpressed under radiation exposure were an ABC transporter-system-

related protein (ATP-binding protein), a Mn+2 transporter that has been shown to be key for

ROS elimination [13, 50], and a hydrolase of the alpha/beta family. These last two genes can be

potentially associated with cellular systems involved in cleaning toxic compounds produced

during DNA repair. The activity of hydrolases modulating cellular redox processes has been

described for many organisms [51] and in D. radiodurans it prevents incorporation of dam-

aged nucleotides into DNA [49, 52]. These differentially expressed features indicate conditions

that trigger the synthesis of genes and recycling of cellular components (such as chemical resi-

dues, oxidized nucleotides, etc.) from damaged biomolecules. Examples of such recycling

mechanisms in Deinococcus come from studies showing that activity of Nudix-like hydrolases

and RNA enzymes are essential for stress resistance [49, 52–54].

In this work we observed differences with respect to previous studies with D. radiodurans
[12] and D. gobiensis [13]. In particular, we did not detect genes previously identified to be

involved in resistance of Deinococcus strains, such as ddrA/ddrB genes for repair proteins,

ddrC/ddrE/ddrP genes for damage response proteins and the fliY transporter. Neither these

genes nor their orthologues were present among the differentially expressed genes. This dis-

crepancy might indicate that different strategies may be involved regarding tolerance to radia-

tion for D. swuensis CG1225 compared to both the widely studied D. radiodurans and D.
gobiensis [55]. It could also reflect differences in experimental conditions, such as exposure to

different levels of radiation [56, 57], the culture growth conditions and the amount of time

allowed for cell recovery after UV exposure (from minutes to hours). In our work, the cells

were exposed to a comparatively low level of radiation (considering the maximum level of

resistance expressed by D. swuensis) and were harvested right after UVR treatment, rather

than allowing longer recovery times [13]. Finally, difference in results could also be due to

genome variability. The high variability in genomic organization (genome size, number of

chromosomes, plasmids, etc.) in Deinococcus sequenced isolates has been proposed as a poten-

tial source of interesting adaptations [44]. A comparison among D. geothermalis, D gobiensis
and D. proteolyticus showed, for example, a core genome of 1369 genes and *600-1700 acces-

sory species-specific genes [44], which could harbor potential functional differences even

among related species.

When analyzing the data obtained from the RNA-seq experiments, several reads could not

be mapped to the reference genome used (D. swuensis DY59). The percentage of unmapped

reads across the samples (*10%) falls within the expected for RNA-seq experiments in which

reads are mapped to a reference genome different from the evaluated isolate [13] [14], and is

also consistent with the reported variability among Deinococcus genomes [44]. However, 30%

of these unmapped reads showed identity values over 85% against the reference genome

through a blast alignment, which reasserts the idea of intraspecific diversity for Deinococcus sp.

Furthermore, an average of *25% of the mapped reads failed to map within annotated fea-

tures. Most of these fell near (50-100pb) to the start/end positions of annotated features, sug-

gesting that they correspond to either transcribed but un-translated regions or miss-annotated

features in the genome, a reasonable explanation due to the draft version of the available refer-

ence sequence.

Given the recent reports regarding the identification of differentially expressed ncRNAs in

Deinococcus strains, we looked for these elements in our RNA-seq data. Even though the

libraries were not experimentally enriched for short ncRNAs, an exploration of reads mapping

to intergenic regions allowed the recovery of some well-represented families, which can be
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potentially involved in the irradiation response and have not been previously reported for the

reference D. swuensis isolate [10]. The mechanism of action for ncRNAs in radiation response

is a topic of current active research, and some recent studies suggest that ncRNAs, due to their

small size, might remain largely undamaged by radiation and hence be the first responders,

inducing and regulating cellular function recovery [14].

Several ncRNAs were identified in this study, some potentially involved in protecting

against irradiation stress. These ncRNAs included members of the RsmY and RsmX families

that bind and regulate molecules, such as translational proteins RsmA/CsrA and the sigma fac-

tor RpoS (a central regulator of the general stress response) [58, 59]. Previous experiments

have shown that KsgA, which belongs to the RsmA family of ncRNAs, participates in the

maintenance of translational fidelity under oxidative stress in Staphylococcus aureus [60].

CsrC, another promising ncRNA identified here, regulates the pleiotropic gene csrA (related

to RsmY and RsmX) and can cause a decrease in oxidative stress resistance in Campylobacter

jejuni when damaged [61]. Other ncRNAs identified corresponded to the Mir-761 Mir-234,

ar45 and Pxr families, the reported functions for these ncRNA families do not have a clear rela-

tionship with radiation resistance; understanding their roles in resistance would require addi-

tional studies.

In summary, high-throughput sequencing of RNA provided a global view of the genomic

responses and shed light on potential biological strategies required for cellular adaptation [62].

Particularly, RNA-seq provides the possibility of uncovering small-scale expression changes,

such as the non-common overexpressed genes and novel ncRNAs families identified for our

D. swuensis strain isolated from the plant phyllosphere. These findings require further valida-

tion but nonetheless offer relevant insight regarding bacterial resistance to radiation stress and

expand our knowledge of bacterial transcriptomic dynamics.

Conclusion

The transcriptional behavior of D. swuensis under the UVR stress condition studied here

revealed differentially expressed genes that differ from mechanisms commonly reported for

related species and expand our understanding of UVR resistance in bacteria. The functions

identified involved cell detoxification, regulation and reduction of stress by oxidation damage

caused by ROS species. We also identified genes with undefined functions and previously

unannotated ncRNAs families by analysis of intergenic reads under covariance models. Fur-

ther studies would be needed to corroborate the observed tendency towards down-regulation

of ncRNAs and the actual role played by these genes in the dynamic response after a radiation

exposure event. This study contributes to the characterization of microbial biodiversity and

describes potentially novel genes and small RNAs that could contribute to understanding cel-

lular adaptations to extreme conditions and lead to potential applications, like preservation of

products.

Supporting information

S1 Fig. Taxonomic assignment of the BLASTn results for unmapped reads agaist nr data-

base. The reads were processed through MEGAN software and corresponds to controls and

irradiated samples.

(TIF)

S2 Fig. Histograms of read counts per sample mapping to intergenic regions. Dotted line

corresponds to the selected cutoff (log10 of 0.86) implying a minimum of 6 reads per region.

(TIF)

Computational search for UV radiation resistance strategies in Deinococcus swuensis

PLOS ONE | https://doi.org/10.1371/journal.pone.0221540 December 2, 2019 13 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0221540.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0221540.s002
https://doi.org/10.1371/journal.pone.0221540


S1 Table. Primers employed for qRT-PCR. Three genes were used for evaluation, and one

for normalization. TM: Melting Temperature. GC%: Percent of G+C content.

(PDF)

S2 Table. Cochran’s C test for variance of groups. C:ratio of the largest variance to the sum

of the variances, n:number of observations (genes) in each group, k:number of groups.

(PDF)
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Project administration: Alejandro Reyes, Marı́a Mercedes Zambrano.

Supervision: Alejandro Reyes, Marı́a Mercedes Zambrano.

Validation: Leonardo Posada.

Writing – original draft: Jorge Dı́az-Riaño, Alejandro Reyes, Marı́a Mercedes Zambrano.

Writing – review & editing: Jorge Dı́az-Riaño, Leonardo Posada, Iván Camilo Acosta, Carlos
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