12,379 research outputs found

    Updates in metabolomics tools and resources: 2014-2015

    Get PDF
    Data processing and interpretation represent the most challenging and time-consuming steps in high-throughput metabolomic experiments, regardless of the analytical platforms (MS or NMR spectroscopy based) used for data acquisition. Improved machinery in metabolomics generates increasingly complex datasets that create the need for more and better processing and analysis software and in silico approaches to understand the resulting data. However, a comprehensive source of information describing the utility of the most recently developed and released metabolomics resources—in the form of tools, software, and databases—is currently lacking. Thus, here we provide an overview of freely-available, and open-source, tools, algorithms, and frameworks to make both upcoming and established metabolomics researchers aware of the recent developments in an attempt to advance and facilitate data processing workflows in their metabolomics research. The major topics include tools and researches for data processing, data annotation, and data visualization in MS and NMR-based metabolomics. Most in this review described tools are dedicated to untargeted metabolomics workflows; however, some more specialist tools are described as well. All tools and resources described including their analytical and computational platform dependencies are summarized in an overview Table

    Pathos: a web facility that uses metabolic maps to display experimental changes in metabolites identified by mass spectrometry

    Get PDF
    This work describes a freely available web-based facility which can be used to analyse raw or processed mass spectrometric data from metabolomics experiments and display the metabolites identified – and changes in their experimental abundance – in the context of the metabolic pathways in which they occur. The facility, Pathos (http://motif.gla.ac.uk/Pathos/), employs Java servlets and is underpinned by a relational database populated from the Kyoto Encyclopaedia of Genes and Genomes (KEGG). Input files can contain either raw m/z values from experiments conducted in different modes, or KEGG or MetaCyc IDs assigned by the user on the basis of the m/z values and other criteria. The textual output lists the KEGG pathways on an XHTML page according to the number of metabolites or potential metabolites that they contain. Filtering by organism is also available. For metabolic pathways of interest, the user is able to retrieve a pathway map with identified metabolites highlighted. A particular feature of Pathos is its ability to process relative quantification data for metabolites identified under different experimental conditions, and to present this in an easily comprehensible manner. Results are colour-coded according to the degree of experimental change, and bar charts of the results can be generated interactively from either the text listings or the pathway maps. The visual presentation of the output from Pathos is designed to allow the rapid identification of metabolic areas of potential interest, after which particular results may be examined in detail

    Mapping an atlas of tissue-specific drosophila melanogaster metabolomes by high resolution mass spectrometry

    Get PDF
    Metabolomics can provide exciting insights into organismal function, but most work on simple models has focussed on the whole organism metabolome, so missing the contributions of individual tissues. Comprehensive metabolite profiles for ten tissues from adult Drosophila melanogaster were obtained here by two chromatographic methods, a hydrophilic interaction (HILIC) method for polar metabolites and a lipid profiling method also based on HILIC, in combination with an Orbitrap Exactive instrument. Two hundred and forty two polar metabolites were putatively identified in the various tissues, and 251 lipids were observed in positive ion mode and 61 in negative ion mode. Although many metabolites were detected in all tissues, every tissue showed characteristically abundant metabolites which could be rationalised against specific tissue functions. For example, the cuticle contained high levels of glutathione, reflecting a role in oxidative defence; the alimentary canal (like vertebrate gut) had high levels of acylcarnitines for fatty acid metabolism, and the head contained high levels of ether lipids. The male accessory gland uniquely contained decarboxylated S-adenosylmethionine. These data thus both provide valuable insights into tissue function, and a reference baseline, compatible with the FlyAtlas.org transcriptomic resource, for further metabolomic analysis of this important model organism, for example in the modelling of human inborn errors of metabolism, aging or metabolic imbalances such as diabetes

    Dynamic range and mass accuracy of wide-scan direct infusion nanoelectrospray fourier transform ion cyclotron resonance mass spectrometry-based metabolomics increased by the spectral stitching method

    Get PDF
    Direct infusion nanoelectrospray Fourier transform ion cyclotron resonance mass spectrometry (DI nESI FT-ICR MS)offers high mass accuracy and resolution for analyzing complex metabolite mixtures. High dynamic range across a wide mass range, however, can only be achieved at the expense of mass accuracy, since the large numbers of ions entering the ICR detector induce adverse spacecharge effects. Here we report an optimized strategy for wide-scan DI nESI FT-ICR MS that increases dynamic range but maintains high mass accuracy. It comprises the collection if multiple adjacent selected ion monitoring (SIM) windows that are stitched together using novel algorithms. The final SIM-stitching method, derived from several optimization experiments, comprises 21 adjoining SIM windows each of width m/z 30 (from m/z 70 to 500; adjacent windows overlap by m/z 10) with an automated gain control (AGC) target of 1 105 charges. SIMstitching and wide-scan range (WSR; Thermo Electron)were compared using a defined standard to assess mass accuracy and a liver extract to assess peak count and dynamic range. SIM-stitching decreased the maximum mass error by 1.3- and 4.3-fold, and increased the peak count by 5.3- and 1.8-fold, versus WSR (AGC targets of 1 x 105 and 5 x 105, respectively). SIM-stitching achieved an rms mass error of 0.18 ppm and detected over 3000 peaks in liver extract. This novel approach increases metabolome coverage, has very high mass accuracy, and at 5.5 min/sample is conducive for high- throughput metabolomics

    Preterm gut microbiota and metabolome following discharge from intensive care

    Get PDF
    The development of the preterm gut microbiome is important for immediate and longer-term health following birth. We aimed to determine if modifications to the preterm gut on the neonatal intensive care unit (NICU) impacted the gut microbiota and metabolome long-term. Stool samples were collected from 29 infants ages 1–3 years post discharge (PD) from a single NICU. Additional NICU samples were included from 14/29 infants. Being diagnosed with disease or receiving increased antibiotics while on the NICU did not significantly impact the microbiome PD. Significant decreases in common NICU organisms including K. oxytoca and E. faecalis and increases in common adult organisms including Akkermansia sp., Blautia sp., and Bacteroides sp. and significantly different Shannon diversity was shown between NICU and PD samples. The metabolome increased in complexity, but while PD samples had unique bacterial profiles we observed comparable metabolomic profiles. The preterm gut microbiome is able to develop complexity comparable to healthy term infants despite limited environmental exposures, high levels of antibiotic administration, and of the presence of serious disease. Further work is needed to establish the direct effect of weaning as a key event in promoting future gut health

    Making open data work for plant scientists

    Get PDF
    Despite the clear demand for open data sharing, its implementation within plant science is still limited. This is, at least in part, because open data-sharing raises several unanswered questions and challenges to current research practices. In this commentary, some of the challenges encountered by plant researchers at the bench when generating, interpreting, and attempting to disseminate their data have been highlighted. The difficulties involved in sharing sequencing, transcriptomics, proteomics, and metabolomics data are reviewed. The benefits and drawbacks of three data-sharing venues currently available to plant scientists are identified and assessed: (i) journal publication; (ii) university repositories; and (iii) community and project-specific databases. It is concluded that community and project-specific databases are the most useful to researchers interested in effective data sharing, since these databases are explicitly created to meet the researchers’ needs, support extensive curation, and embody a heightened awareness of what it takes to make data reuseable by others. Such bottom-up and community-driven approaches need to be valued by the research community, supported by publishers, and provided with long-term sustainable support by funding bodies and government. At the same time, these databases need to be linked to generic databases where possible, in order to be discoverable to the majority of researchers and thus promote effective and efficient data sharing. As we look forward to a future that embraces open access to data and publications, it is essential that data policies, data curation, data integration, data infrastructure, and data funding are linked together so as to foster data access and research productivity

    Non-targeted LC-MS based metabolomics analysis of the urinary steroidal profile

    Get PDF
    The urinary steroidal fraction has been extensively explored as non-invasive alternative to monitor pathological conditions as well as to unveil the illicit intake of pseudo-endogenous anabolic steroids in sport. However, the majority of previous approaches involved the a priori selection of potentially relevant target analytes. Here we describe the non-targeted analysis of the urinary steroidal profiles. The workflow includes minimal sample pretreatment and normalization according to the specific gravity of urine, a 20 min reverse phase ultra-performance liquid chromatographic separation hyphenated to electrospray time-of-flight mass spectrometry. As initial validation, we analyzed a set of quality control urines spiked with glucurono- and sulfo-conjugated steroids at physiological ranges. We then applied the method for the analysis of samples collected after single transdermal administration of testosterone in hypogonadal men. The method allowed profiling of approximately three thousand metabolic features, including steroids of clinical and forensic relevance. It successfully identified metabolic pathways mostly responsible for groups clustering even in the context of high inter-individual variability and allowed the detection of currently unknown metabolic features correlating with testosterone administration. These outcomes set the stage for future studies aimed at implementing currently monitored urinary steroidal markers both in clinical and forensic analysis
    • …
    corecore