4,386 research outputs found

    VOLUME DETERMINATION OF LEG ULCER USING REVERSE ENGINEERING METHOD

    Get PDF
    Reverse Engineering is defined as the process of obtaining a geometric CAD model by digitizing the existing objects. In medical application, it is applied to obtain the CAD model of human skin surface. Chronic leg ulcer refers to the wound which does not heal in the predictable period. Approximately 1% of the world population will develop leg ulcers in their lifespa

    Imparting 3D representations to artificial intelligence for a full assessment of pressure injuries.

    Get PDF
    During recent decades, researches have shown great interest to machine learning techniques in order to extract meaningful information from the large amount of data being collected each day. Especially in the medical field, images play a significant role in the detection of several health issues. Hence, medical image analysis remarkably participates in the diagnosis process and it is considered a suitable environment to interact with the technology of intelligent systems. Deep Learning (DL) has recently captured the interest of researchers as it has proven to be efficient in detecting underlying features in the data and outperformed the classical machine learning methods. The main objective of this dissertation is to prove the efficiency of Deep Learning techniques in tackling one of the important health issues we are facing in our society, through medical imaging. Pressure injuries are a dermatology related health issue associated with increased morbidity and health care costs. Managing pressure injuries appropriately is increasingly important for all the professionals in wound care. Using 2D photographs and 3D meshes of these wounds, collected from collaborating hospitals, our mission is to create intelligent systems for a full non-intrusive assessment of these wounds. Five main tasks have been achieved in this study: a literature review of wound imaging methods using machine learning techniques, the classification and segmentation of the tissue types inside the pressure injury, the segmentation of these wounds and the design of an end-to-end system which measures all the necessary quantitative information from 3D meshes for an efficient assessment of PIs, and the integration of the assessment imaging techniques in a web-based application

    Accurate determination and application of local strain for studying tissues with gradients in mechanical properties

    Get PDF
    Determination of the mechanical behavior of materials requires an understanding of deformation during loading. While this is traditionally accomplished in engineering by examining a force displacement curve for a whole sample, these techniques implicitly ignore local geometric complexities and local material inhomogeneities commonly found in biologic tissues. Techniques such as normalized cross correlation have been classically applied to address this issue and resolve deformation at the local level; however, these techniques have proven unreliable when deformations become large, if the sample undergoes a rotation, and/or if strain fields become incompatible (e.g. at or near failure). Presented here is a toolbox of techniques that addresses the limitations of the prior state-of-the-art for localized strain estimation. The first algorithm, termed 2D direct deformation estimation (2D-DDE), directly incorporates concepts from mechanics into non-rigid registration algorithms from computer vision, eliminating the need to consider displacement fields, as required for all of the prior state-of-the-art techniques. This results in not only an improvement in accuracy and precision of deformation estimation, but also relaxes compatibility of the deformation fields. A second algorithm, 2D Strain Inference with Measures of Probable Local Elevation (2D-SIMPLE), incorporates the results of 2D-DDE with results from algorithms that enforce strain compatibility to develop a robust detector of strain concentrations. While tracking local strain in a vinylidene chloride sheet in tension, 2D-SIMPLE detected strain concentrations which predicted the initiation of a crack in the material and the progression of the crack tip. The third and fourth algorithms generalize the two dimensional algorithms to analyze three dimensional deformations in volumetric images (3D-DDE and 3D-SIMPLE, respectively). Lastly, the 2D-DDE algorithm is modified to estimate two dimensional surface deformation from multi-view imaging systems. The robustness and adaptability of these techniques was then validated and demonstrated on a wide variety of biomedical applications. Using 2D-DDE, a microscale compliant region was discovered at the tendon-to-bone attachment, local heterogeneity of partially mineralized scaffolds was revealed, and gradients in stiffness of partially mineralized nano-fiber scaffolds were demonstrated. Using 2D-SIMPLE, mechanisms of embryonic wound healing and associated strain localizations were elucidated. 3D-DDE confirmed the existence of strain gradients across chordae tendineae in beating murine hearts as well as demonstrated dramatic localized changes in wall deformation before and after myocardial infarction in murine hearts. 2D-DDE was also used to develop a model system to study the effects of applied stress versus the effects of applied strain on cells. The model system was first theorized by considering a system in which gradients of cross sectional area or scaffold shape were composed with gradients in material stiffness. By combining these gradients in novel ways, it was theoretically determined that stress and strain could be locally isolated. A tensile bioreactor was constructed, techniques for fabricating scaffolds with gradients in stiffness and gradients in cross sectional area were developed, and theoretical strain gradients were confirmed experimentally using 2D-DDE. The model system was then validated for in vitro cell studies. Cell adhesion, proliferation, and viability following a seven day loading protocol were explored. Methods for determining single cell responses, which could be correlated back to a specific stress or strain states, were developed using immunocytochemistry and 2D-DDE approaches. Future studies will apply this model system to determine precise mechanotransduction responses of cells. These studies are critical to optimize stem cell tissue engineering strategies as well inform cell mechanobiology mechanisms

    VOLUME DETERMINATION OF LEG ULCER USING REVERSE ENGINEERING METHOD

    Get PDF
    Reverse Engineering is defined as the process of obtaining a geometric CAD model by digitizing the existing objects. In medical application, it is applied to obtain the CAD model of human skin surface. Chronic leg ulcer refers to the wound which does not heal in the predictable period. Approximately 1% of the world population will develop leg ulcers in their lifespa

    Medical Image Segmentation with Deep Learning

    Get PDF
    Medical imaging is the technique and process of creating visual representations of the body of a patient for clinical analysis and medical intervention. Healthcare professionals rely heavily on medical images and image documentation for proper diagnosis and treatment. However, manual interpretation and analysis of medical images is time-consuming, and inaccurate when the interpreter is not well-trained. Fully automatic segmentation of the region of interest from medical images have been researched for years to enhance the efficiency and accuracy of understanding such images. With the advance of deep learning, various neural network models have gained great success in semantic segmentation and spark research interests in medical image segmentation using deep learning. We propose two convolutional frameworks to segment tissues from different types of medical images. Comprehensive experiments and analyses are conducted on various segmentation neural networks to demonstrate the effectiveness of our methods. Furthermore, datasets built for training our networks and full implementations are published

    Monte Carlo Method with Heuristic Adjustment for Irregularly Shaped Food Product Volume Measurement

    Get PDF
    Volume measurement plays an important role in the production and processing of food products. Various methods have been proposed to measure the volume of food products with irregular shapes based on 3D reconstruction. However, 3D reconstruction comes with a high-priced computational cost. Furthermore, some of the volume measurement methods based on 3D reconstruction have a low accuracy. Another method for measuring volume of objects uses Monte Carlo method. Monte Carlo method performs volume measurements using random points. Monte Carlo method only requires information regarding whether random points fall inside or outside an object and does not require a 3D reconstruction. This paper proposes volume measurement using a computer vision system for irregularly shaped food products without 3D reconstruction based on Monte Carlo method with heuristic adjustment. Five images of food product were captured using five cameras and processed to produce binary images. Monte Carlo integration with heuristic adjustment was performed to measure the volume based on the information extracted from binary images. The experimental results show that the proposed method provided high accuracy and precision compared to the water displacement method. In addition, the proposed method is more accurate and faster than the space carving method

    Optical Methods in Sensing and Imaging for Medical and Biological Applications

    Get PDF
    The recent advances in optical sources and detectors have opened up new opportunities for sensing and imaging techniques which can be successfully used in biomedical and healthcare applications. This book, entitled ‘Optical Methods in Sensing and Imaging for Medical and Biological Applications’, focuses on various aspects of the research and development related to these areas. The book will be a valuable source of information presenting the recent advances in optical methods and novel techniques, as well as their applications in the fields of biomedicine and healthcare, to anyone interested in this subject

    Photonics simulation and modelling of skin for design of spectrocutometer

    Get PDF
    fi=vertaisarvioitu|en=peerReviewed
    • …
    corecore