17 research outputs found

    Fault Residual Generation via Nonlinear Analytical Redundancy

    Get PDF
    Fault detection is critical in many applications, and analytical redundancy (AR) has been the key underlying tool for many approaches to fault detection. However, the conventional AR approach is formally limited to linear systems. In this brief, we exploit the structure of nonlinear geometric control theory to derive a new nonlinear analytical redundancy (NLAR) framework. The NLAR technique is applicable to affine systems and is seen to be a natural extension of linear AR. The NLAR structure introduced in this brief is tailored toward practical applications. Via an example of robot fault detection, we show the considerable improvement in performance generated by the approach compared with the traditional linear AR approach

    Formal specification of requirements for analytical redundancy-based fault -tolerant flight control systems

    Get PDF
    Flight control systems are undergoing a rapid process of automation. The use of Fly-By-Wire digital flight control systems in commercial aviation (Airbus 320 and Boeing FBW-B777) is a clear sign of this trend. The increased automation goes in parallel with an increased complexity of flight control systems with obvious consequences on reliability and safety. Flight control systems must meet strict fault-tolerance requirements. The standard solution to achieving fault tolerance capability relies on multi-string architectures. On the other hand, multi-string architectures further increase the complexity of the system inducing a reduction of overall reliability.;In the past two decades a variety of techniques based on analytical redundancy have been suggested for fault diagnosis purposes. While research on analytical redundancy has obtained desirable results, a design methodology involving requirements specification and feasibility analysis of analytical redundancy based fault tolerant flight control systems is missing.;The main objective of this research work is to describe within a formal framework the implications of adopting analytical redundancy as a basis to achieve fault tolerance. The research activity involves analysis of the analytical redundancy approach, analysis of flight control system informal requirements, and re-engineering (modeling and specification) of the fault tolerance requirements. The USAF military specification MIL-F-9490D and supporting documents are adopted as source for the flight control informal requirements. The De Havilland DHC-2 general aviation aircraft equipped with standard autopilot control functions is adopted as pilot application. Relational algebra is adopted as formal framework for the specification of the requirements.;The detailed analysis and formalization of the requirements resulted in a better definition of the fault tolerance problem in the framework of analytical redundancy. Fault tolerance requirements and related certification procedures turned out to be considerably more demanding than those typically adopted in the literature. Furthermore, the research work brought up to light important issues in all fields involved in the specification process, namely flight control system requirements, analytical redundancy, and requirements engineering

    AI-based Diagnostics for Fault Detection and Isolation in Process Equipment Service

    Get PDF
    Recent industry requires efficient fault discovering and isolation solutions in process equipment service. This problem is a real-world problem of typically ill-defined systems, hard to model, with large-scale solution spaces. Design of precise models is impractical, too expensive, or often non-existent. Support service of equipment requires generating models that can analyze the equipment data, interpreting the past behavior and predicting the future one. These problems pose a challenge to traditional modeling techniques and represent a great opportunity for the application of AI-based methodologies, which enable us to deal with imprecise, uncertain data and incomplete domain knowledge typically encountered in real-world applications. In this paper the state of the art, theoretical background of conventional and AI-based techniques in support of service tasks and illustration of some applications to process equipment service on bio-ethanol production process are shortly described

    Real-Time Monitoring and Fault Diagnostics in Roll-To-Roll Manufacturing Systems

    Full text link
    A roll-to-roll (R2R) process is a manufacturing technique involving continuous processing of a flexible substrate as it is transferred between rotating rolls. It integrates many additive and subtractive processing techniques to produce rolls of product in an efficient and cost-effective way due to its high production rate and mass quantity. Therefore, the R2R processes have been increasingly implemented in a wide range of manufacturing industries, including traditional paper/fabric production, plastic and metal foil manufacturing, flexible electronics, thin film batteries, photovoltaics, graphene films production, etc. However, the increasing complexity of R2R processes and high demands on product quality have heightened the needs for effective real-time process monitoring and fault diagnosis in R2R manufacturing systems. This dissertation aims at developing tools to increase system visibility without additional sensors, in order to enhance real-time monitoring, and fault diagnosis capability in R2R manufacturing systems. First, a multistage modeling method is proposed for process monitoring and quality estimation in R2R processes. Product-centric and process-centric variation propagation are introduced to characterize variation propagation throughout the system. The multistage model mainly focuses on the formulation of process-centric variation propagation, which uniquely exists in R2R processes, and the corresponding product quality measurements with both physical knowledge and sensor data analysis. Second, a nonlinear analytical redundancy method is proposed for sensor validation to ensure the accuracy of sensor measurements for process and quality control. Parity relations based on nonlinear observation matrix are formulated to characterize system dynamics and sensor measurements. Robust optimization is designed to identify the coefficient of parity relations that can tolerate a certain level of measurement noise and system disturbances. The effect of the change of operating conditions on the value of the optimal objective function – parity residuals and the optimal design variables – parity coefficients are evaluated with sensitivity analysis. Finally, a multiple model approach for anomaly detection and fault diagnosis is introduced to improve the diagnosability under different operating regimes. The growing structure multiple model system (GSMMS) is employed, which utilizes Voronoi sets to automatically partition the entire operating space into smaller operating regimes. The local model identification problem is revised by formulating it into an optimization problem based on the loss minimization framework and solving with the mini-batch stochastic gradient descent method instead of least squares algorithms. This revision to the GSMMS method expands its capability to handle the local model identification problems that cannot be solved with a closed-form solution. The effectiveness of the models and methods are determined with testbed data from an R2R process. The results show that those proposed models and methods are effective tools to understand variation propagation in R2R processes and improve estimation accuracy of product quality by 70%, identify the health status of sensors promptly to guarantee data accuracy for modeling and decision making, and reduce false alarm rate and increase detection power under different operating conditions. Eventually, those tools developed in this thesis contribute to increase the visibility of R2R manufacturing systems, improve productivity and reduce product rejection rate.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/146114/1/huanyis_1.pd

    An Integrated Approach to Performance Monitoring and Fault Diagnosis of Nuclear Power Systems

    Get PDF
    In this dissertation an integrated framework of process performance monitoring and fault diagnosis was developed for nuclear power systems using robust data driven model based methods, which comprises thermal hydraulic simulation, data driven modeling, identification of model uncertainty, and robust residual generator design for fault detection and isolation. In the applications to nuclear power systems, on the one hand, historical data are often not able to characterize the relationships among process variables because operating setpoints may change and thermal fluid components such as steam generators and heat exchangers may experience degradation. On the other hand, first-principle models always have uncertainty and are often too complicated in terms of model structure to design residual generators for fault diagnosis. Therefore, a realistic fault diagnosis method needs to combine the strength of first principle models in modeling a wide range of anticipated operation conditions and the strength of data driven modeling in feature extraction. In the developed robust data driven model-based approach, the changes in operation conditions are simulated using the first principle models and the model uncertainty is extracted from plant operation data such that the fault effects on process variables can be decoupled from model uncertainty and normal operation changes. It was found that the developed robust fault diagnosis method was able to eliminate false alarms due to model uncertainty and deal with changes in operating conditions throughout the lifetime of nuclear power systems. Multiple methods of robust data driven model based fault diagnosis were developed in this dissertation. A complete procedure based on causal graph theory and data reconciliation method was developed to investigate the causal relationships and the quantitative sensitivities among variables so that sensor placement could be optimized for fault diagnosis in the design phase. Reconstruction based Principal Component Analysis (PCA) approach was applied to deal with both simple faults and complex faults for steady state diagnosis in the context of operation scheduling and maintenance management. A robust PCA model-based method was developed to distinguish the differences between fault effects and model uncertainties. In order to improve the sensitivity of fault detection, a hybrid PCA model based approach was developed to incorporate system knowledge into data driven modeling. Subspace identification was proposed to extract state space models from thermal hydraulic simulations and a robust dynamic residual generator design algorithm was developed for fault diagnosis for the purpose of fault tolerant control and extension to reactor startup and load following operation conditions. The developed robust dynamic residual generator design algorithm is unique in that explicit identification of model uncertainty is not necessary. Finally, it was demonstrated that the developed new methods for the IRIS Helical Coil Steam Generator (HCSG) system. A simulation model was first developed for this system. It was revealed through steady state simulation that the primary coolant temperature profile could be used to indicate the water inventory inside the HCSG tubes. The performance monitoring and fault diagnosis module was then developed to monitor sensor faults, flow distribution abnormality, and heat performance degradation for both steady state and dynamic operation conditions. This dissertation bridges the gap between the theoretical research on computational intelligence and the engineering design in performance monitoring and fault diagnosis for nuclear power systems. The new algorithms have the potential of being integrated into the Generation III and Generation IV nuclear reactor I&C design after they are tested on current nuclear power plants or Generation IV prototype reactors

    Fault tolerant control for nonlinear aircraft based on feedback linearization

    Get PDF
    The thesis concerns the fault tolerant flight control (FTFC) problem for nonlinear aircraft by making use of analytical redundancy. Considering initially fault-free flight, the feedback linearization theory plays an important role to provide a baseline control approach for de-coupling and stabilizing a non-linear statically unstable aircraft system. Then several reconfigurable control strategies are studied to provide further robust control performance:- A neural network (NN)-based adaption mechanism is used to develop reconfigurable FTFC performance through the combination of a concurrent updated learninglaw. - The combined feedback linearization and NN adaptor FTFC system is further improved through the use of a sliding mode control (SMC) strategy to enhance the convergence of the NN learning adaptor. - An approach to simultaneous estimation of both state and fault signals is incorporated within an active FTFC system.The faults acting independently on the three primary actuators of the nonlinear aircraft are compensated in the control system.The theoretical ideas developed in the thesis have been applied to the nonlinear Machan Unmanned Aerial Vehicle (UAV) system. The simulation results obtained from a tracking control system demonstrate the improved fault tolerant performance for all the presented control schemes, validated under various faults and disturbance scenarios.A Boeing 747 nonlinear benchmark model, developed within the framework of the GARTEUR FM-AG 16 project “fault tolerant flight control systems”,is used for the purpose of further simulation study and testing of the FTFC scheme developed by making the combined use of concurrent learning NN and SMC theory. The simulation results under the given fault scenario show a promising reconfiguration performance

    An investigation on automatic systems for fault diagnosis in chemical processes

    Get PDF
    Plant safety is the most important concern of chemical industries. Process faults can cause economic loses as well as human and environmental damages. Most of the operational faults are normally considered in the process design phase by applying methodologies such as Hazard and Operability Analysis (HAZOP). However, it should be expected that failures may occur in an operating plant. For this reason, it is of paramount importance that plant operators can promptly detect and diagnose such faults in order to take the appropriate corrective actions. In addition, preventive maintenance needs to be considered in order to increase plant safety. Fault diagnosis has been faced with both analytic and data-based models and using several techniques and algorithms. However, there is not yet a general fault diagnosis framework that joins detection and diagnosis of faults, either registered or non-registered in records. Even more, less efforts have been focused to automate and implement the reported approaches in real practice. According to this background, this thesis proposes a general framework for data-driven Fault Detection and Diagnosis (FDD), applicable and susceptible to be automated in any industrial scenario in order to hold the plant safety. Thus, the main requirement for constructing this system is the existence of historical process data. In this sense, promising methods imported from the Machine Learning field are introduced as fault diagnosis methods. The learning algorithms, used as diagnosis methods, have proved to be capable to diagnose not only the modeled faults, but also novel faults. Furthermore, Risk-Based Maintenance (RBM) techniques, widely used in petrochemical industry, are proposed to be applied as part of the preventive maintenance in all industry sectors. The proposed FDD system together with an appropriate preventive maintenance program would represent a potential plant safety program to be implemented. Thus, chapter one presents a general introduction to the thesis topic, as well as the motivation and scope. Then, chapter two reviews the state of the art of the related fields. Fault detection and diagnosis methods found in literature are reviewed. In this sense a taxonomy that joins both Artificial Intelligence (AI) and Process Systems Engineering (PSE) classifications is proposed. The fault diagnosis assessment with performance indices is also reviewed. Moreover, it is exposed the state of the art corresponding to Risk Analysis (RA) as a tool for taking corrective actions to faults and the Maintenance Management for the preventive actions. Finally, the benchmark case studies against which FDD research is commonly validated are examined in this chapter. The second part of the thesis, integrated by chapters three to six, addresses the methods applied during the research work. Chapter three deals with the data pre-processing, chapter four with the feature processing stage and chapter five with the diagnosis algorithms. On the other hand, chapter six introduces the Risk-Based Maintenance techniques for addressing the plant preventive maintenance. The third part includes chapter seven, which constitutes the core of the thesis. In this chapter the proposed general FD system is outlined, divided in three steps: diagnosis model construction, model validation and on-line application. This scheme includes a fault detection module and an Anomaly Detection (AD) methodology for the detection of novel faults. Furthermore, several approaches are derived from this general scheme for continuous and batch processes. The fourth part of the thesis presents the validation of the approaches. Specifically, chapter eight presents the validation of the proposed approaches in continuous processes and chapter nine the validation of batch process approaches. Chapter ten raises the AD methodology in real scaled batch processes. First, the methodology is applied to a lab heat exchanger and then it is applied to a Photo-Fenton pilot plant, which corroborates its potential and success in real practice. Finally, the fifth part, including chapter eleven, is dedicated to stress the final conclusions and the main contributions of the thesis. Also, the scientific production achieved during the research period is listed and prospects on further work are envisaged.La seguridad de planta es el problema más inquietante para las industrias químicas. Un fallo en planta puede causar pérdidas económicas y daños humanos y al medio ambiente. La mayoría de los fallos operacionales son previstos en la etapa de diseño de un proceso mediante la aplicación de técnicas de Análisis de Riesgos y de Operabilidad (HAZOP). Sin embargo, existe la probabilidad de que pueda originarse un fallo en una planta en operación. Por esta razón, es de suma importancia que una planta pueda detectar y diagnosticar fallos en el proceso y tomar las medidas correctoras adecuadas para mitigar los efectos del fallo y evitar lamentables consecuencias. Es entonces también importante el mantenimiento preventivo para aumentar la seguridad y prevenir la ocurrencia de fallos. La diagnosis de fallos ha sido abordada tanto con modelos analíticos como con modelos basados en datos y usando varios tipos de técnicas y algoritmos. Sin embargo, hasta ahora no existe la propuesta de un sistema general de seguridad en planta que combine detección y diagnosis de fallos ya sea registrados o no registrados anteriormente. Menos aún se han reportado metodologías que puedan ser automatizadas e implementadas en la práctica real. Con la finalidad de abordar el problema de la seguridad en plantas químicas, esta tesis propone un sistema general para la detección y diagnosis de fallos capaz de implementarse de forma automatizada en cualquier industria. El principal requerimiento para la construcción de este sistema es la existencia de datos históricos de planta sin previo filtrado. En este sentido, diferentes métodos basados en datos son aplicados como métodos de diagnosis de fallos, principalmente aquellos importados del campo de “Aprendizaje Automático”. Estas técnicas de aprendizaje han resultado ser capaces de detectar y diagnosticar no sólo los fallos modelados o “aprendidos”, sino también nuevos fallos no incluidos en los modelos de diagnosis. Aunado a esto, algunas técnicas de mantenimiento basadas en riesgo (RBM) que son ampliamente usadas en la industria petroquímica, son también propuestas para su aplicación en el resto de sectores industriales como parte del mantenimiento preventivo. En conclusión, se propone implementar en un futuro no lejano un programa general de seguridad de planta que incluya el sistema de detección y diagnosis de fallos propuesto junto con un adecuado programa de mantenimiento preventivo. Desglosando el contenido de la tesis, el capítulo uno presenta una introducción general al tema de esta tesis, así como también la motivación generada para su desarrollo y el alcance delimitado. El capítulo dos expone el estado del arte de las áreas relacionadas al tema de tesis. De esta forma, los métodos de detección y diagnosis de fallos encontrados en la literatura son examinados en este capítulo. Asimismo, se propone una taxonomía de los métodos de diagnosis que unifica las clasificaciones propuestas en el área de Inteligencia Artificial y de Ingeniería de procesos. En consecuencia, se examina también la evaluación del performance de los métodos de diagnosis en la literatura. Además, en este capítulo se revisa y reporta el estado del arte correspondiente al “Análisis de Riesgos” y a la “Gestión del Mantenimiento” como técnicas complementarias para la toma de medidas correctoras y preventivas. Por último se abordan los casos de estudio considerados como puntos de referencia en el campo de investigación para la aplicación del sistema propuesto. La tercera parte incluye el capítulo siete, el cual constituye el corazón de la tesis. En este capítulo se presenta el esquema o sistema general de diagnosis de fallos propuesto. El sistema es dividido en tres partes: construcción de los modelos de diagnosis, validación de los modelos y aplicación on-line. Además incluye un modulo de detección de fallos previo a la diagnosis y una metodología de detección de anomalías para la detección de nuevos fallos. Por último, de este sistema se desglosan varias metodologías para procesos continuos y por lote. La cuarta parte de esta tesis presenta la validación de las metodologías propuestas. Específicamente, el capítulo ocho presenta la validación de las metodologías propuestas para su aplicación en procesos continuos y el capítulo nueve presenta la validación de las metodologías correspondientes a los procesos por lote. El capítulo diez valida la metodología de detección de anomalías en procesos por lote reales. Primero es aplicada a un intercambiador de calor escala laboratorio y después su aplicación es escalada a un proceso Foto-Fenton de planta piloto, lo cual corrobora el potencial y éxito de la metodología en la práctica real. Finalmente, la quinta parte de esta tesis, compuesta por el capítulo once, es dedicada a presentar y reafirmar las conclusiones finales y las principales contribuciones de la tesis. Además, se plantean las líneas de investigación futuras y se lista el trabajo desarrollado y presentado durante el periodo de investigación

    Model based fault detection and isolation approach for actuator and sensor faults in a UAV

    Get PDF
    Thesis (MEng)--Stellenbosch University, 2021.ENGLISH ABSTRACT: This thesis presents the design and validation of model-based fault detection and isolation (FDI) approach for unmanned aerial vehicles (UAV). In safety-critical sys- tems such as chemical, nuclear plants and passenger aircraft, FDI is typically founded on hardware redundancy. In hardware redundancy, multiple actuators are spatially distributed to localise faults quickly, and sensor measurements are compared for consistency. The primary drawback with hardware redundancy is the increased installation complexity, weight, and costs. With modern computing technologies, model-based FDI offers a cost-effective, iterative and efficient FDI design process, verifiable with high fidelity computer-aided simulation (CAS). This thesis investigates the application of the Two-Stage Kalman filter (TSKF) to the problem of FDI. The TSKF solves the main deficiencies faced with the aug- mented state Kalman filter (ASKF), namely, numerical instability in ill-conditioned systems, and computational inefficiency where large parameter vectors are aug- mented. The TSKF approach utilises two parallel reduced-order KFs to estimate the system state and the parameter vectors separately. The UAV’s two rudders are not "isolable" because they produce identical moments. A novel active FDI (AFDI) method is proposed to isolate rudder actuator faults. The FDI displays high noise sensitivity under the evere Dryden turbulence model, resulting in high false detection and missed detection rates. A novel adap- tive technique is proposed to improve the robustness and sensitivity of the FDI. Unlike most methods which rely on a single scaling factor, the proposed adaptation technique employs multiple factors to weight the spread of fault parameter covari- ance matrix in the direction of flow of information, resulting in selective adaptation. Fault parameter variations are nonuniform in time and space. A static alarm threshold will induce high false alarms or missed alarms when set to low or too high, respectively. A novel adaptive threshold based on the normalised innovation squared (NIS) is proposed. A Monte Carlo campaign is carried out to validate the FDI while fault-sizes, the aircraft’s physical parameters, and disturbances are scat- tered, each with a distinct mean dispersion. The proposed strategy exhibits high robustness to noise and sensitivity to faults which indicates a reliable FDI.AFRIKAANSE OPSOMMING: Hierdie tesis beskryf die ontwerp en validering van ‘n model-gebaseerde foutop- sporing en isolasie (“fault deteciton and isolation (FDI)”) tegniek vir onbemande lugvoertuie (“unmanned aerial vehicles (UAVs)”). In veiligheidskritieke stelsels soos chemiese aanlegte, kernkragaanlegte, en passasiersvliegtuie, word FDI gewoon- lik gebaseer op hardeware-oortolligheid. Vir hardeware-oortolligheid word verskeie aktueerders ruimtelik versprei om foute vinnig op te spoor, en sensormetings word vergelyk vir ooreenstemming. Die primêre nadeel van hardeware-oortolligheid is die verhoogde installasie-kompleksiteit, gewig en koste. Met moderne rekenaarteg- nologieë bied model-gebaseerde FDI ’n koste-effektiewe, iteratiewe en doeltref-fende FDI-ontwerpproses met ‘n hoë betroubaarheid wat bevestig kan word met rekenaargesteunde simulasie. Hierdie tesis ondersoek die toepassing van die twee-stadium Kalman filter (“two- stage Kalman filter (TSKF)”) op die probleem van FDI. Die TSKF los die belangrik- ste tekortkominge van die uitgebredie-toestand Kalman-filter (“augmented state Kalman filter (ASKF)”) op, naamlik numeriese onstabiliteit in swak gekondisioneerde stelsels, en berekeningsondoeltreffendheid waar groot parametervektore bygevoeg word. Die TSKF-benadering gebruik twee parallelle Kalman filters met vermin- derde orde om die stelseltoestand en die parametervektore afsonderlik af te skat. Die UAV se twee roere (“rudders”) is egter nie “isoleerbaar” nie omdat dit hulle identiese draaimoment veroorsaak. ’n Nuwe aktiewe FDI-metode (AFDI) word voorgestel om die roeraktueerderfoute te isoleer. Die FDI vertoon hoë sensitiwiteit vir geraas vanaf erge turbulensie soos gemod- elleer deur die Dryden-turbulensie-model, wat lei tot ‘n groot aantal vals deteksies en gemiste deteksies. ’n Nuwe aanpassingstegniek word voorgestel om die robu- ustheid en sensitiwiteit van die FDI te verbeter. Anders as die meeste metodes wat op een enkele skaalfaktor staatmaak, gebruik die voorgestelde aanpassingstegniek verskeie faktore om die verspreiding van die foutparameterkovariansiematriks in die rigting van informasievloei te weeg, wat lei tot selektiewe aanpassing. Foutparametervariasies is nie eenvormig in tyd of ruimte nie. ’n Statiese alar- mdrempel sal hoë vals deteksies of gemiste deteksies veroorsaak as dit onderskei-delik óf te laag óf te hoog gestel is. ’n Nuwe aanpassingsdrempel wat gebaseer is op die genormaliseerde innovasie kwadraat (NIS) word voorgestel. ’n Monte Carlo simulasieveldtog is uitgevoer om die FDI te toets met die foutgroottes, die fisiese parameters van die vliegtuig, en die steurings lukraak gevarieer elk met ’n duide- like gemiddelde verspreiding. Die voorgestelde strategie vertoon ’n hoë robuus- theid vir geraas en sensitiwiteit vir foute, wat dui op ’n betroubare FDI
    corecore