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Abstract 
 

In this dissertation an integrated framework of process performance monitoring 

and fault diagnosis was developed for nuclear power systems using robust data driven 

model based methods, which comprises thermal hydraulic simulation, data driven 

modeling, identification of model uncertainty, and robust residual generator design for 

fault detection and isolation.  In the applications to nuclear power systems, on the one 

hand, historical data are often not able to characterize the relationships among process 

variables because operating setpoints may change and thermal fluid components such as 

steam generators and heat exchangers may experience degradation.  On the other hand, 

first-principle models always have uncertainty and are often too complicated in terms of 

model structure to design residual generators for fault diagnosis.  Therefore, a realistic 

fault diagnosis method needs to combine the strength of first principle models in 

modeling a wide range of anticipated operation conditions and the strength of data driven 

modeling in feature extraction.  In the developed robust data driven model-based 

approach, the changes in operation conditions are simulated using the first principle 

models and the model uncertainty is extracted from plant operation data such that the 

fault effects on process variables can be decoupled from model uncertainty and normal 

operation changes.  It was found that the developed robust fault diagnosis method was 

able to eliminate false alarms due to model uncertainty and deal with changes in 

operating conditions throughout the lifetime of nuclear power systems. 

Multiple methods of robust data driven model based fault diagnosis were 

developed in this dissertation.  A complete procedure based on causal graph theory and 

data reconciliation method was developed to investigate the causal relationships and the 

quantitative sensitivities among variables so that sensor placement could be optimized for 

fault diagnosis in the design phase.  Reconstruction based Principal Component Analysis 

(PCA) approach was applied to deal with both simple faults and complex faults for steady 

state diagnosis in the context of operation scheduling and maintenance management.  A 

robust PCA model-based method was developed to distinguish the differences between 

fault effects and model uncertainties.  In order to improve the sensitivity of fault 
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detection, a hybrid PCA model based approach was developed to incorporate system 

knowledge into data driven modeling.  Subspace identification was proposed to extract 

state space models from thermal hydraulic simulations and a robust dynamic residual 

generator design algorithm was developed for fault diagnosis for the purpose of fault 

tolerant control and extension to reactor startup and load following operation conditions.  

The developed robust dynamic residual generator design algorithm is unique in that 

explicit identification of model uncertainty is not necessary. 

Finally, it was demonstrated that the developed new methods for the IRIS Helical 

Coil Steam Generator (HCSG) system.  A simulation model was first developed for this 

system.  It was revealed through steady state simulation that the primary coolant 

temperature profile could be used to indicate the water inventory inside the HCSG tubes.  

The performance monitoring and fault diagnosis module was then developed to monitor 

sensor faults, flow distribution abnormality, and heat performance degradation for both 

steady state and dynamic operation conditions.   

This dissertation bridges the gap between the theoretical research on 

computational intelligence and the engineering design in performance monitoring and 

fault diagnosis for nuclear power systems.  The new algorithms have the potential of 

being integrated into the Generation III and Generation IV nuclear reactor I&C design 

after they are tested on current nuclear power plants or Generation IV prototype reactors. 



 vi

Table of Contents 
 

Chapter 1 

Introduction ................................................................................................1 

 
1.1 Background....................................................................................................... 1 

1.1.1 Lessons Learned from TMI-II Accident ........................................................ 1 

1.1.2 Position of Utilities on Performance Monitoring........................................... 3 

1.1.3 Role of Fault Diagnosis in Generation-IV Nuclear Power Plants ................. 4 

1.2 Overview of Fault Diagnosis Techniques......................................................... 5 

1.2.1 Common Terminology Used in Fault Diagnosis ........................................... 5 

1.2.2 History of Model-Based Fault Diagnosis ...................................................... 6 

1.2.3 Progress of Model-Based Fault Diagnosis in Other Industries...................... 7 

1.2.4 Status of Model Based Fault Diagnosis in Nuclear Industry....................... 11 

1.2.5 Trends in Fault Diagnosis for Industrial Application .................................. 11 

1.3 Objective of the Dissertation: the Integrated Approach to Performance 

Monitoring and Fault Diagnosis ........................................................................... 12 

1.3.1 The Architecture of the Integrated Approach .............................................. 12 

1.3.2 Robust Data Driven Model Based Fault Diagnosis of the Integrated 

Approach............................................................................................................... 15 

1.4 Contributions of the Dissertation .................................................................... 16 

1.5 Outline of the Dissertation .............................................................................. 17 

 
Chapter 2 

Basic Theory of Model Based Fault Diagnosis ......................................19 
 

2.1 Introduction..................................................................................................... 19 

2.2 System Representation.................................................................................... 19 

2.3 Concepts of Residual Generator Design ......................................................... 24 

2.3.1 Residual Generation for Fault Detection ..................................................... 25 



 vii

2.3.2 Residual Generation for Fault Isolation....................................................... 27 

2.4 Residual Generation Techniques .................................................................... 29 

2.4.1 Observer Based Residual Generation .......................................................... 29 

2.4.2 Parity Space Approach................................................................................. 31 

2.4.2.1 Parity Space Approach for Static Systems................................................ 31 

2.4.2.2 Parity Space Approach for Dynamic Systems .......................................... 36 

2.4.3 Parameter Estimation Approach .................................................................. 37 

2.5 Residual Evaluation Techniques..................................................................... 38 

2.6 Robust Data Driven Model Based Fault Diagnosis ........................................ 40 

2.6.1 Motivation.................................................................................................... 40 

2.6.2 Robust Parity Space Approach to Fault Diagnosis ...................................... 43 

2.6.3 Estimation of Model Uncertainty................................................................. 45 

2.6.3.1 Determination of Model Uncertainty Vector............................................ 46 

2.6.3.2 Determination of Model Uncertainty Distribution Matrix........................ 46 

2.7 Summary ......................................................................................................... 48 

 
Chapter 3 

Modeling and Simulation of the IRIS Helical Coil Steam Generator 

System........................................................................................................49 

 
3.1 System Description ......................................................................................... 49 

3.2 Description of HCSG Heat Transfer Mechanism and a Novel Approach to 

Level Measurement............................................................................................... 52 

3.3 Development of HCSG Steady State Model................................................... 54 

3.3.1 Computation Algorithms ............................................................................. 55 

3.3.2 Heat Transfer Correlations........................................................................... 57 

3.3.3 Pressure Drop Correlations .......................................................................... 58 

3.4 Steady State Results........................................................................................ 59 

3.5 Development of HCSG Dynamic Model........................................................ 62 

3.5.1 Model Assumptions ..................................................................................... 63 



 viii

3.5.2 Nodalization................................................................................................. 64 

3.5.3 Primary Side Heat Balance Equations ......................................................... 64 

3.5.4 Tube Metal Heat Balance Equations............................................................ 66 

3.5.5 Secondary Side Balance Equations.............................................................. 67 

3.5.6 HCSG Pressure Controller........................................................................... 73 

3.6 HCSG Transient Results ................................................................................. 75 

3.7 Summary ......................................................................................................... 78 

 
Chapter 4 

Sensor Placement Design .....................................................................80 
 

4.1 Guidelines for Sensor Placement .................................................................... 82 

4.1.1 Sensor Placement for Control ...................................................................... 82 

4.1.2 Sensor Placement for Performance Monitoring and Fault Diagnosis.......... 83 

4.2 Sensor Placement Design for Process Fault Diagnosis................................... 84 

4.2.1 Graph Representation of a Process .............................................................. 85 

4.2.1.1 Sign Directed Graph ................................................................................. 85 

4.2.1.2 Directed Graph.......................................................................................... 89 

4.2.2 Sensor Placement for Process Fault Detection ............................................ 90 

4.2.2 Sensor Placement for Process Fault Isolation.............................................. 93 

4.3 Redundancy and Observability Analysis ........................................................ 94 

4.3.1 Variable Classification for Linear Systems ................................................. 96 

4.3.2 Variable Classification for Bilinear Systems............................................. 100 

4.4 Sensitivity Analysis for Sensor Placement ................................................... 105 

4.4.1 Data Reconciliation.................................................................................... 105 

4.4.2 Basic Algorithm of Data Reconciliation.................................................... 106 

4.4.3 Sensitivity Analysis Procedure .................................................................. 109 

4.5 Gross Error Detection and Identification...................................................... 111 

4.5.1. Gross Error Detection ............................................................................... 111 

4.5.2 Fault Identification..................................................................................... 112 



 ix

4.5.3 Fault Estimation ......................................................................................... 114 

4.6 Application to HCSG system........................................................................ 115 

4.7 Summary ....................................................................................................... 132 

 
Chapter 5 

Fault Diagnosis during Steady State Conditions................................ 133 
 

5.1 Introduction................................................................................................... 133 

5.2 Principal Component Analysis for Fault Diagnosis...................................... 134 

5.2.1 Motivation of Statistical Modeling ............................................................ 135 

5.2.2 PCA Algorithm .......................................................................................... 137 

5.2.3 Selection of the Number of Principal Components ................................... 141 

5.2.4 Fault Detection........................................................................................... 145 

5.2.4.1 2T Statistics ............................................................................................ 145 

5.2.4.2 Q Statistics .............................................................................................. 146 

5.2.4.3 Conditions for Fault Detectability .......................................................... 147 

5.2.5 Fault Isolation ............................................................................................ 149 

5.2.5.1 Classification Based Approach ............................................................... 150 

5.2.5.2 Contribution Based Approach................................................................. 153 

5.2.5.3 Reconstruction Based Approach............................................................. 154 

5.3 Application to the IRIS HCSG Systems ....................................................... 156 

5.3.1 Data Generation and Model Development ................................................ 156 

5.3.2 Results of Single Fault Detection and Isolation......................................... 161 

5.3.3 Results of Dual Fault Detection and Isolation ........................................... 165 

5.4 Hybrid PCA Model Based Fault Diagnosis .................................................. 166 

5.4.1 Motivation.................................................................................................. 166 

5.4.2 Constrained PCA Algorithm...................................................................... 169 

5.4.3 Application to the HCSG System .............................................................. 176 

5.5 Robust PCA Model Based Approach to Fault Diagnosis ............................. 179 

5.5.1 Identification of Model Uncertainty .......................................................... 179 



 x

5.5.2 Robust PCA Based Fault Detection........................................................... 181 

5.5.3 Robust PCA Model Based Fault Isolation................................................. 185 

5.5.4 Identification of Fault Distribution Matrix ................................................ 189 

5.5.5 Application to the HCSG System .............................................................. 191 

5.6 Summary ....................................................................................................... 196 

 
Chapter 6 

Fault Diagnosis during Transient Conditions .................................... 198 
 

6.1 Introduction................................................................................................... 198 

6.2 Theory of Subspace Identification ................................................................ 199 

6.2.1 Block Data Equations ................................................................................ 200 

6.2.2 Recovery of System Matrices from State Sequence .................................. 202 

6.2.3 Extractability of Kalman State Sequence from Input-output Data ............ 203 

6.2.3.1 System Decomposition ........................................................................... 203 

6.2.3.2 Extraction of Kalman State Vector ......................................................... 204 

6.2.3.3 Extraction of Kalman State Sequence..................................................... 209 

6.2.4 Orthogonal Projection Methods................................................................. 210 

6.2.5 Oblique Projection Methods ...................................................................... 212 

6.3 Robust Dynamic Fault Diagnosis Algorithm................................................ 217 

6.3.1 Robust Dynamic Fault Detection Algorithm ............................................. 219 

6.3.2 One-Step Robust Dynamic Residual Generator Design ............................ 222 

6.3.3 Robust Fault Isolation Algorithm .............................................................. 227 

6.4 Application to the HCSG System ................................................................. 229 

6.4.1 Data Generation and Subspace Identification............................................ 229 

6.4.2 Robust Fault Detection Design .................................................................. 232 

6.4.3 Robust Fault Isolation Design.................................................................... 235 

6.5 Summary ....................................................................................................... 239 

 
 
 



 xi

 
Chapter 7 

Summary, Conclusions, and Recommendations for Future Research

................................................................................................................. 240 

 
7.1 Summary and Conclusions ........................................................................... 240 

7.2 Recommendations for Future Research ........................................................ 242 

 
References .............................................................................................. 245 

 
Appendices ............................................................................................. 258 

 
Appendix 1  Matlab Code for HCSG Steady State Simulation .......................... 259 

Appendix 2  Matlab Code for HCSG Transient Simulation ............................... 265 

Appendix 3  Matlab Code for HCSG Bilinear Data Reconcilation .................... 271 

Appendix 4  Matlab Code for HCSG linear Data Reconcilation........................ 283 

Appendix 5  Matlab Code for HCSG Reconstruction PCA based FDI .............. 292 

Appendix 6  Matlab Code for HCSG Hybrid PCA Based FDI .......................... 297 

Appendix 7  Matlab Code for HCSG Robust Data Driven Model based FDI for 

Steady State Operation Conditions ..................................................................... 301 

Appendix 8  Matlab Code for HCSG Robust Data Driven Model based FDI for 

Dynamic Operation Conditions .......................................................................... 306 

 
Vita.......................................................................................................... 311 

 



 xii

List of Tables 
 
Table 2.1.  Incidence matrix design for fault isolation ..................................................... 27 

Table 3.1.  Model parameters and steady state performance of dynamic HCSG modeling.

................................................................................................................................... 75 

Table 4.1.  Fault effect matrix......................................................................................... 120 

Table 4.2.  Bipartite matrix to determine the minimum set of sensors for fault isolation.

................................................................................................................................. 121 

Table 4.3.  G matrix based on bilinear variable classification........................................ 124 

to determine the redundant relationship between the measured variables (Case A) ...... 124 

Table 4.4.  G matrix based on linearized variable classification .................................... 124 

to determine the redundant relationship between the measured variables (Case A) ...... 124 

Table 4.5.  G matrix based on linearized variable classification .................................... 124 

to determine the redundant relationship between the measured variables (Case B)....... 124 

Table 4.6.  Physical redundant sensor placement based on sensitivity study ................. 126 

Table 5.1.  Cross correlation coefficients of the generated data..................................... 158 

Table 5.2.  Determination of the number of Principal Components............................... 160 

Table 5.3.  Minimum detectable fault magnitudes for sensor fault detection................. 162 

Table 5.4.  Cosine of the angle between the fault directions projected onto the residual 

space........................................................................................................................ 164 

Table 5.5.  Reconstruction of simultaneous sensor faults T3 and W7............................ 165 

Table 6.1.  The FDI indices of bias type sensor faults.................................................... 238 

 



 xiii

List of Figures 
 
Figure 1.1.  Classifications of model based fault detection and isolation approaches........ 8 

Figure 1.2.  The performance monitoring and fault diagnosis in the I&C system. .......... 13 

Figure 1.3.  The conceptual architecture of the integrated approach................................ 13 

Figure 1.4.  Robust data driven model based fault diagnosis. .......................................... 15 

Figure 2.1.  Diagram of model based fault diagnosis. ...................................................... 20 

Figure 2.2.  Fault diagnosis for a closed-loop control system. ......................................... 20 

Figure 3.1.  IRIS integral design....................................................................................... 50 

Figure 3.2.  IRIS steam generator layout. ......................................................................... 51 

Figure 3.3.  A schematic of one pair of steam generators................................................. 53 

Figure 3.4.  HCSG design parameters at full power condition......................................... 53 

Figure 3.5.  Fluid temperature versus tube length at 100% full power............................. 60 

Figure 3.6.  Fluid heat transfer coefficients on the primary side and the secondary side at 

100% full power........................................................................................................ 61 

Figure 3.7.  Steam quality versus tube length at 100% full power. .................................. 61 

Figure 3.8.  Pressure drop versus the tube length on the secondary side at 100% power. 62 

Figure 3.9.  Schematic of the nodalization for a helical steam generator. ........................ 65 

Figure 3.10.  Schematic of the helical coil steam generator control system..................... 74 

Figure 3.11 (a).  Steam temperature open-loop responses due to feed water flow and hot 

leg temperature transients. ........................................................................................ 77 

Figure 3.11 (b).  Cold leg temperature open loop responses due to feed water flow and 

hot leg temperature transients. .................................................................................. 77 

Figure 3.12 (a).  Steam temperature closed-loop responses due to feed water flow and hot 

leg temperature transients. ........................................................................................ 79 

Figure 3.12 (b).  Cold leg temperature closed-loop responses due to feed water flow and 

hot leg temperature transients. .................................................................................. 79 

Figure 4.1.  Procedure of sensor placement design for fault diagnosis. ........................... 81 

Figure 4.2.  SDG graph of a simple feedback control loop. ............................................. 86 

Figure 4.3.  UTSG water level control system.................................................................. 87 



 xiv

Figure 4.4.  SDG graph of nuclear UTSG system. ........................................................... 89 

Figure 4.5.  An illustration of the improved Greedy search algorithm............................. 92 

Figure 4.6. Example system for variable classification. ................................................... 98 

Figure 4.7.  Sensitivity analysis using data reconciliation.............................................. 110 

Figure 4.8.  The Directed Graph of one pair of HCSG system....................................... 117 

Figure 4.9.  Bipartite Graph of one pair of HCSG system.............................................. 118 

Figure 4.10.  Determine the minimum set of sensors for fault detection........................ 118 

Figure 4.11 (a).  Fault detection of W2 measurement error with redundant measurement.

................................................................................................................................. 128 

Figure 4.11 (b).  Fault detection of W2 measurement error without redundant 

measurement. .......................................................................................................... 128 

Figure 4.12 (a).  Fault reconstruction of W2 measurement error without redundant 

measurement ........................................................................................................... 129 

Figure 4.12 (b).  Fault reconstruction of W2 measurement error with redundant 

measurement. .......................................................................................................... 130 

Figure 4.13.  Bilinear data reconciliation result of HCSG secondary flow rate. ............ 131 

Figure 4.14.  Bilinear data reconciliation result of heat transfer rate. ............................ 131 

Figure 5.1.  The ratio of the variance of reconstructed error to the variance of the original 

data.......................................................................................................................... 161 

Figure 5.2.  Detection of a fault with the minimum detectable fault magnitude. ........... 162 

Figure 5.3.  Tracking the progression of the uneven flow distribution fault. ................. 163 

Figure 5.4.  Isolation of the uneven flow distribution fault. ........................................... 164 

Figure 5.5.  Identification of simultaneous dual faults (W7 and T3 sensor faults)......... 166 

Figure 5.6.  Comparison of fault detection between traditional PCA and constrained PCA 

using column information. ...................................................................................... 174 

Figure 5.7.  Fault detection and isolation of y1 sensor fault based on constrained PCA 

using column information. ...................................................................................... 174 

Figure 5.8.  Fault diagnosis of y2 sensor fault with a bias of 1.5 based on constrained 

PCA using row information. ................................................................................... 175 



 xv

Figure 5.9.  Component decomposition of constrained PCA analysis using column 

information.............................................................................................................. 177 

Figure 5.10.  Fault diagnosis of a T5 sensor fault with 0.25% bias based on constrained 

PCA using column information. ............................................................................. 177 

Figure 5.11.  Component decomposition of constrained PCA analysis using row 

information.............................................................................................................. 178 

Figure 5.12.  Fault diagnosis of a T3 sensor fault with 0.25% bias using constrained PCA 

with the constraint W7=W12. ................................................................................. 178 

Figure 5.13.  Fault direction of tube blockage fault........................................................ 192 

Figure 5.14. Direction of model uncertainty due to thermal degradation....................... 193 

Figure 5.15.  Comparison of robust detection algorithm with traditional method. ........ 194 

Figure 5.16.  Isolation of HCSG tube blockage process fault ........................................ 195 

Figure 5.17.  Fault reconstruction of a T3 sensor bias fault with a magnitude of 1.7 C. 195 

Figure 6.1.  Robust fault detection for the example case during normal operation 

condition. ................................................................................................................ 226 

Figure 6.2.  The singular values of the projection matrix. .............................................. 231 

Figure 6.3.  Model prediction of cold leg temperature. .................................................. 231 

Figure 6.4.  Robust fault detection for cold leg temperature sensor fault....................... 232 

Figure 6.5.  Fault detection of feed water flow meter sensor fault during a reactor power 

transient................................................................................................................... 233 

Figure 6.6.  Fault detection of steam pressure sensor fault............................................. 234 

Figure 6.7.  Fault isolation of feed water flow meter sensor fault during a reactor power 

transient................................................................................................................... 236 

Figure 6.8.  Fault isolation of steam pressure sensor fault.............................................. 237 

 
 
 



 1

Chapter 1 
 

Introduction 
1.1 Background 

 

Performance monitoring and fault diagnosis has received increased attention in 

nuclear power systems since the 1970s, when economics, reliability and safety, and 

sustainability became increasingly important.  After the Three Mile Island Unit 2 (TMI-

II) accident, the U.S. Nuclear Regulatory Commission (NRC) recognized the importance 

of Fault Detection and Isolation (FDI) to prevent accidents and avoid human errors for 

accident treatment.  As nuclear deregulation becomes inevitable, utilities have to 

reconsider the implication of using condition-based maintenance technologies including 

modern fault diagnosis methods to reduce plant downtime and save maintenance cost.  

Generation IV nuclear power systems are also awaiting emerging technologies for 

operation performance improvement and fault diagnosis for use in their advanced 

Instrumentation and Control (I&C) systems. 

 

1.1.1 Lessons Learned from TMI-II Accident 
 

The importance of fault diagnosis to the safety of nuclear power systems can be 

considered as a lesson learned from TMI-II accident in 1979.   

The TMI-II accident was initiated by the mechanical failure of the main reactor 

feed water pump.  After the reactor was automatically shut down, the pressurizer relief 

valve was triggered to open due to the loss of heat sink.  The accident began when the 

valve failed to close because after the reactor pressure was relieved the operators were 

not able to determine the status of the valve position due to the inadequate parameter 

display in the control room.  In the meantime, the emergency feed water was not opened 

until about eight minutes into the accident because a valve on the line was not reopened 

after a maintenance test.  As voids began to form in the core when the pressure continued 
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to decrease, the pressurizer became full of water.  The operators were confounded again 

by the level indication and stopped the operation of high-pressure safety injection system.  

From this point on, an anticipated operation event evolved into a severe accident resulting 

in the partial core melt and a limited amount of release of radioactivity into the 

environment.   

An immediate lesson learned from the TMI-II accident is that a computer based 

operator support system would play a critical role in maintaining safe operation of 

nuclear power plants.  Not long after the accident, the Nuclear Regulatory Commission 

issued a regulatory guide that a minimum set of parameters defining the safety status 

must be adequately displayed in the control room of nuclear power plants (NUREG-

0585, 1979).  Since then, computer based operator support system has become a basic 

licensing requirement of nuclear power plants and many research tasks have been 

launched to develop automatic systems for alarm processing and for emergency operation 

(Choi, Chung, and Lee, 1998), (Jae and Moon, 2002), (Kim, Kwon., Hwang., Lee, Park, 

Kim, and Lee, 2001), (Park and Seong, 2002). 

Although a computer based operator support system with improved parameter 

display and computerized alarm processing is able to help operators to avoid human 

errors for accident treatment, its efficiency to improve plant safety is still limited without 

a supporting FDI system.  On the one hand, if a fault can be detected and rectified at its 

incipient stage before abrupt failures occur, the possibility of some accidents can actually 

be eliminated.  On the other hand, because optimal alarms and emergency operations are 

a sensitive function of the abnormal events, especially at early stages of transients before 

reactor scram, correct identification of an abnormal transient is of paramount importance 

for computerized emergency operation.  For this reason, many investigations were 

reported on the development of fault diagnosis methods for transient identification 

(Bartlett and Uhrig, 1992), (Ohga and Seki, 1993), (Kim and Bartlett, 1994). 
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1.1.2 Position of Utilities on Performance Monitoring 
 

In the early 1980s, performance monitoring and fault diagnosis was introduced by 

the Electric Power Research Institute (EPRI) in the context of condition-based 

maintenance to improve the operational safety and the economic performance of nuclear 

power plants (EPRI NP-2240, 1982).  Because the functional status of sensors, actuators, 

and field devices are monitored on line, this makes it possible to perform maintenance 

tasks only when it is necessary.  As a result, significant reduction in plant downtime, 

considerable maintenance cost savings, and reduction in maintenance errors can be 

expected.   

Condition based instrument monitoring has been considered as an important 

advancement for safety improvement and higher autonomy in the control function of 

nuclear power plants.  Some sensors are indicators for plant monitoring and others are 

used for closed-loop control.  The sensor faults of the first type may force reactor 

operators to derate the power level and thus degrade the operation performance.  It is 

reported that venturi feed water flow meter fault due to fouling is causing the amount of 

derated power ranging from 1% to 3% full power for Pressurized Water Reactor (PWR) 

plants in the U.S. (Kavaklioglu and Upadhyaya, 1994), (Gribok, Attieh, Hines, and 

Uhrig, 1999).  The sensor faults of the second type may propagate their effects to the 

regulated variables and subsequently disturb other process variables through feedback 

control loops.  The deleterious consequence of such disturbances is that the related 

actuators and plant equipment would not be able to operate at the designed optimal 

conditions and their expected lifetime may be shortened.  In addition, both types of 

sensor faults may mislead operators to take incorrect actions and cause safety problems if 

they occur during abnormal transients.   

On-line equipment performance monitoring was also an initial incentive when 

condition based maintenance was introduced to nuclear power plants.  As early as the 

1980s, neutron noise analysis was successfully performed to measure the vibration of 

reactor internals, which is now able to reach a resolution better than 0.025 mm.  The 

cross-correlation between the neutron flux and the core exit temperature was used to 
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characterize the reactor core flow rate and detect any flow anomaly such as flow 

blockages, flow shifting, and other problems (Hashemian, 1998), (Hashemian, 2002).  

On-line monitoring of the thermal efficiency of nuclear steam generators has now 

become an industrial practice for many nuclear power plants.  Because of fouling, the 

decline of steam generator thermal efficiency may force the reactor to reduce the steam 

generator operating pressure lower than the designed value and cause a lower electric 

output per unit reactor thermal power.  In order to overcome this issue, on-line steam 

generator performance evaluation is used to trend the behavior of the overall heat transfer 

coefficient and predict their future behavior as a function of the secondary water 

chemistry. 

 

1.1.3 Role of Fault Diagnosis in Generation-IV Nuclear Power Plants 
 

After the TMI-2 accident, the design of nuclear power plants experienced two 

major changes.  As compared with Generation-II operating commercial nuclear reactors, 

Generation-III reactors represented by advanced light water reactors — ABWR, System 

80+, AP1000 — are characterized by passive safety design and the use of digital 

technology such as software based controls and computerized operation procedures.  

Generation-III design is evolutionary in the sense that it anticipated only a moderate 

performance improvement over the current design such that the licensing would not incur 

substantial additional effort.  In fact, as far as instrumentation and control (I&C) is 

concerned, software based control is utilized solely for non-safety related systems and 

little effort is invested in making full use of the contemporary digital and computer 

technologies.   

In order to strategically improve the technology in nuclear power system design 

and broaden the opportunity of the peaceful use of nuclear energy, the U.S. Department 

of Energy prompted the development of Generation-IV nuclear reactors, with an 

emphasis on the advances in economics, safety and reliability, and sustainability (Savage, 

2001).  For Generation- IV nuclear power systems, it is expected that the I&C design will 

see a revolutionary innovation.  For the better use of the emerging I&C technologies, 
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such as smart sensing, automated monitoring and diagnosis systems, and computer 

simulations, the technical requirements of Generation- IV I&C design have been defined 

as follows (O’Hara, 2002): 

In order to welcome the challenges arising from deregulation, the plant economic 

parameters will be monitored on-line and optimized with the constraints that the related 

nuclear safety regulations are rigorously satisfied.  On-line monitoring, fault diagnosis, 

and response simulation will be available to support real time operation and maintenance 

decision-making.  A higher autonomy of control will be utilized to maximize the human-

machine efficiency and reliability.  Real time risk monitoring will be improved to 

optimize plant surveillance testing and maintenance such that the risk due to off-normal 

alignments can be minimized.  A more efficient human-machine interface will be 

developed such that the plant personnel in the control room can conveniently obtain 

adequate information in a concise manner for all the related operation tasks. 

As evidenced by the above technical requirements, process performance 

monitoring and fault diagnosis plays a central role in the Generation- IV I&C design.  

The fault diagnosis system needs to provide information about the health status of 

sensors, actuators, and plant equipment to the operator support system or the plant 

surveillance system in the control room, thus assisting operators in making operation and 

maintenance planning.  Under certain circumstances, the fault diagnosis system also 

needs to interface with plant control systems to implement advanced control such as 

adaptive control and fault tolerant control. 

 

1.2 Overview of Fault Diagnosis Techniques 
 
1.2.1 Common Terminology Used in Fault Diagnosis 

 

With the increasing interest in the research and application of fault diagnosis in a 

variety of fields, a technical committee SAFEPROCESS on Fault Detection, Supervision, 

and Safety for Technical Process, was established within IFAC (International Federation 

of Automatic Control) in 1993.  This committee standardized the definitions of the 
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terminology used in fault diagnosis (Simani and Fantuzzi, 2002), which are duplicated for 

use in this dissertation. 

 

Fault 

An unacceptable deviation of at least one characteristic property or parameter of the 
system from the acceptable, usual, or standard condition. 
 
Fault Detection 

Determination of faults present in a system and the time of fault occurrence. 
 
Fault Isolation 

Determination of the kind, location, and time of the occurrence of a fault. 
 
Fault Identification 

Determination of the size and the time-varying behavior of a fault. 
 
Fault Diagnosis 

Determination of the kind, size, location, and the time of the occurrence of a fault.  It 
includes fault detection and identification. 
 
Monitoring 

A continuous real-time task of determining the conditions of a physical system, by 
recording information, recognizing and indicating anomalies in the system behavior. 
 
 
1.2.2 History of Model-Based Fault Diagnosis 

 

The simplest fault diagnosis method is to monitor the magnitude and the trend of 

individual signals.  If the magnitude exceeds the design limit or the trend deviates the 

expected behavior, a fault is then detected.  Although this scheme is simple, it can only 

be applied to simple processes with the aid of experienced operators for fault isolation.  

Hardware redundancy is a traditional fault diagnosis design method that uses 

more than two components such as sensors, actuators, controllers, and computers to 

perform the same function.  If one component does not perform its function as designed, 

a voting logic and a switching mechanism can be employed to detect, identify, and isolate 
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the malfunctioned component.  Hardware redundancy is widely used in safety critical 

systems such as nuclear power plants and aircrafts.  The major problem with the 

hardware redundancy design is the extra equipment and maintenance cost in addition to 

the extra space. 

Modern fault diagnosis is based on analytical redundancy provided by the 

functional relationships governed by physical laws in a process system.  Instead of using 

hardware redundancy, functional relationships are used to cross check process variables.  

The simplest scheme of consistency checking is to compare the measured values with the 

estimated values obtained from redundant relationships.  The difference is called physical 

residual, which can be used as a fault signature for fault detection and isolation.  In the 

context of analytical redundancy, model based fault diagnosis is defined as a systematic 

approach to generate residual quantities and analyze the residual properties such that the 

potential faults can be detected, identified, and isolated.  

A novel advantage of model based fault diagnosis is that no additional hardware 

is needed for fault detection and isolation.  Because the redundancy provided by 

functional relationships has the same reliability as a processing computer, its reliability is 

much higher than traditional hardware redundancy.  The most significant contribution of 

analytical redundancy to fault diagnosis, which many researchers do not stress, is that the 

generated fault signatures are fully decoupled from the operation conditions if the 

developed functional relationships can cover entire operation regime.  Although 

analytical redundancy is nothing but a principle, an overwhelming advancement has been 

seen in the field of fault diagnosis since the original work of Beard at MIT (Beard, 1971) 

along with the increasing power of computer technology. 

 

1.2.3 Progress of Model-Based Fault Diagnosis in Other Industries 
 

Many model based fault diagnosis techniques have been developed in a variety of 

industries  in  the  past  two   decades   under    the   principle   of  analytical   redundancy 
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Figure 1.1.  Classifications of model based fault detection and isolation approaches. 

 

 

(Venkatasubramanian et al., 2003a, 2003b, 2003c).  In a broad sense, these techniques 

can be classified according to what form of models are used.  As shown in Figure 1.1, 

physical model based approaches use quantitative parametric models while data driven 

model based approaches use parametric or nonparametric models extracted from historic 

data.   

The physical model based approaches were mainly investigated by control 

engineers in aircraft industry.  Beard-Jones Fault Detection Filter was developed to 

generate directional residuals for fault diagnosis (Beard, 1971), (Jones, 1973).  The 

innovation sequence generated by Kalman filter was tested on its statistical measures 

including the whiteness, mean and covariance for fault detection (Mehra and Peschon, 

1971).  The Generalized Likelihood Ratio Test (GLRT) on innovation sequence was used 

for fault diagnosis by Willsky and Jones, 1976.  Sequential Probability Ratio Test (SPRT) 

was implemented by Upadhyaya for sensor incipient fault detection (Upadhyaya, 
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Wolvaardt, and Glocker, 1989).  Multiple model adaptive filter approach based on 

multiple-hypothesis testing on the innovations generated by a bank of Kalman filters was 

proposed by Beric, 1998.  Observer based fault diagnosis approach was first introduced 

to sensor fault detection and isolation by Clark, 1978.  Parity space approach was 

proposed for fault diagnosis by Chow and Willsky, 1984.  Parameter estimation approach 

was introduced for process fault diagnosis by Isermann, 1991a, and 1991b.  A detailed 

description of these fault diagnosis methods, their industrial applications, and the 

performance comparison can be found in some recent survey papers by Frank, 2000, 

Isermann, 1997, Patton and Chen, 1997, and Patton and Chen, 1994.  The robust issues of 

model based fault diagnosis were investigated by Chen and Patton via unknown input 

observers, eigen-structure assignment, optimal parity relations, and frequency domain 

design (Chen and Patton, 1999).  The physical models used in model based fault 

diagnosis may take different forms including first-principle models such as macroscopic 

transport phenomena model (Himmelblau, 1978), input-output models (Gertler, 1998), 

and state space models (Chen and Patton, 1999) obtained from system identification 

through well-designed experiments (Ljung, 1999).  Several signal validation methods 

were developed by Upadhyaya and his co-workers at The University of Tennessee (Erbay 

and Upadhyaya, 1997), (Holbert and Upadhyaya, 1990), (Holbert and Upadhyaya, 1994), 

(Upadhyaya, 1985), (Upadhyaya, 1987), (Upadhyaya, 1989), (Upadhyaya and Ferreira, 

1999). 

Data driven model based approaches were mainly developed by process engineers 

in chemical, refinery, and petrochemical industries.  As digital technology becomes 

popular, thousands of measurements with strong spatial and serial correlations are 

routinely available.  The principle of analytical redundancy motivated a better use of the 

redundant information contained in the historical data.  The major data driven modeling 

techniques can be categorized as multivariate statistical modeling and artificial 

intelligence.   

Principal Component Analysis (PCA) originated by Pearson, 1901, and Partial 

Least Squares (PLS) originated by Wold et al., 1984, are two most popular statistical 

modeling methods for process monitoring.  The PCA approach to process monitoring was 
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investigated thoroughly by Qin’s research group (Dunia, Qin, Edgar, and McAvoy, 

1996a, 1996b) and the PLS approach to process monitoring was studied by MacGregor’s 

group (Kresta, Marlin, and MacGregor, 1994).  Qin and MacAvoy, 1992, proposed 

nonlinear PLS algorithms and Dong and MacAvoy, 1996, developed nonlinear PCA 

algorithm for fault diagnosis.  The multiway PCA approach was developed by Nomikos 

and MacGregor, 1994, to monitor batch processes.  In order to deal with a very large 

process, muiltiblock PLS algorithm was proposed by MacGregor et al., 1994.  

Discriminant analysis and PCA were combined by Raichand and Cinar, 1996, for better 

fault isolation.  A survey of statistical model based process monitoring may be found in 

(Kourti and MacGregor, 1995), (Qin, 2002).  The Group Method of Data Handling 

(GMDH) approach was developed for fault diagnosis of sensors and field devices 

(Upadhyaya et al., 1999, 2004). 

Artificial Neural Networks (ANN) and Fuzzy Logic (FL) were studied for fault 

diagnosis in Artificial Intelligence community.  The fault diagnosis was considered in the 

beginning simply as a classification problem using ANN classifiers (Watanabe et al., 

1989).  In order to explicitly reduce the feature space, Neural Networks were investigated 

as both a predictor and a classifier (Venkatasubramanian and Chan, 1989).  Different 

Neural Network architectures were investigated to enhance the performance of modeling 

for fault diagnosis.  Multi-layer feedforward Neural Networks with backpropagation 

training algorithms were used to develop static input-output characterizations 

(Venkatasubramanian et al., 1990).  Recurrent Neural Network with neurons having 

intrinsic dynamic properties was used for dynamic fault diagnosis (Gan and Danai, 1999).  

Radial Basis Neural Network was introduced to fault diagnosis to address the issue of 

novelty identification (Simani and Fantuzzi, 2000).  Self-Organizing Neural Networks 

represented by ART2 network were applied to fault diagnosis by Chen et al, 1998.  A 

comparative study was performed (Ranaweera, 1994) for fault diagnosis with different 

Neural Network Structures.  Physical model based fault diagnosis was compared with 

neural network-based fault diagnosis by Rengaswamy et al., 2001. 
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1.2.4 Status of Model Based Fault Diagnosis in Nuclear Industry 
 

In parallel with other industries, analytical redundancy based FDI methods have 

also been extensively studied for nuclear power systems since three decades ago.  

Multivariate time series analysis, Neural Networks, and PCA were proposed for process 

monitoring and sensor fault diagnosis by Upadhyaya et al., 1980, 1992, 2001.  The 

univariate and multivariate time series approach was successfully used to estimate the 

response time characteristics of thermometers (Hashemian et al., 1988), in-core flow 

dynamics (Sweeney, 1985), BWR stability (Upadhyaya and Kitamura, 1981), moderator 

temperature coefficient (Shieh et al., 1988), and sensor faults of PWR pressurizer 

subsystem (Upadhyaya and Skorska, 1984).  Neural Network was applied to monitor the 

feed water flow rate and component thermal performance (Kavaklioglu and Upadhyaya, 

1994).  PCA was applied to detect and isolate nuclear plant sensors and actuator faults 

(Upadhyaya et al., 2003).  Adaptive Neural Fuzzy Inference System (ANFIS) was 

proposed by Hines for sensor validation (Hines and Wrest, 1997).  Multivariate State 

Estimation Technique was developed at Argonne National Laboratory (ANL) for process 

monitoring (Singer et al., 1996).   

 

1.2.5 Trends in Fault Diagnosis for Industrial Application 
 

Although many different fault diagnosis methods have been developed from 

various industries including nuclear power plants, there is no single method that is 

sophisticated enough to handle all the requirements for an engineering problem.  The 

only pragmatic solution is to have a thorough investigation of the weaknesses of 

individual methods and build an application dependent method to fully utilize their 

strengths (Dash and Venkatasubramanian, 2000).   

Except for a few, most researchers in fault diagnosis are paying more attention to 

the academic value than the engineering value.  A hybrid of model based fault diagnosis 

and neural network was proposed by Hines, 1994.  Bhushan et al., 2000, stressed the 

importance of instrument placement for maximal sensitivity of fault detection and best 
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resolution of fault isolation.  Venkatasubramanian evaluated quantitative model based 

methods, qualitative model based methods, and historical data based methods for fault 

diagnosis with the conclusion that a hybrid approach is needed to overcome the 

limitations of individual methods (Venkatasubramanian et al., 2003a, 2003b, 2003c). 

 

1.3 Objective of the Dissertation: the Integrated Approach to 

Performance Monitoring and Fault Diagnosis 
 

The purpose of this dissertation is to develop appropriate procedures and methods 

of performance monitoring and fault diagnosis to improve the economics and safety of 

Generation-IV nuclear power systems.  The developed performance monitoring and fault 

diagnosis system will be an integral part of the advanced digital I&C system as shown in 

Figure 1.2.   

After digital control systems are used, a large amount of on-line measured data 

will be available on the field buses and the communication highway of nuclear power 

plants.  The role of the developed performance monitoring and fault diagnosis system is 

to utilize the measured data to enhance the economics and safety of nuclear power plants.  

The information that can be obtained from the developed system will include the health 

status of sensors and actuators and the operation performance of critical components such 

as steam generators and reactor main pumps.  On the one hand, this system will enable 

individual control loops to reset the setpoints to improve plant efficiency when operation 

performance degrades and to reconfigure the control actions when controlled variables 

have measurement faults.  On the other hand, the obtained information can provide a 

technical basis for optimal maintenance management and optimal operation scheduling. 

 

1.3.1 The Architecture of the Integrated Approach 
 

An integrated approach to performance monitoring and fault diagnosis was 

developed in this dissertation research.  Figure 1.3 illustrates the overall architecture of 

the integrated approach.   
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Figure 1.2.  The performance monitoring and fault diagnosis in the I&C system. 
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Figure 1.3.  The conceptual architecture of the integrated approach. 
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The developed system consists of two paralleled subsystems shown in Figure 1.3.  

The subsystem based on steady state model such as plant-scale mass balance and heat 

balance equations are used to perform performance monitoring and steady state fault 

diagnosis.  This subsystem provides plant monitoring in the time scale of minutes to days 

and is especially useful for operation scheduling and maintenance scheduling.  For 

instance, the inferred values of measured variables based on balance equations can 

provide a basis for instrument calibration.  The subsystem based on process dynamic 

models of individual components such as reactor core, pressurizer, steam generators, etc. 

is used to perform dynamic fault diagnosis.  This subsystem is able to provide real time 

monitoring information during transient conditions, so it is appropriate for fault tolerant 

control.   

The sensor placement design is emphasized in the developed integrated approach 

shown in Figure 1.3.  In nuclear power systems, the consequence of an incorrect decision 

on fault diagnosis may be so adverse that the public cannot even accept a very low 

probability.  For this reason, a fault diagnosis engineering system must be able to give 

reliable FDI results.  Although the capability of an FDI system is method dependent, it is 

a much more sensitive function of sensor placement.  Therefore, it is necessary to 

incorporate fault diagnosis into the instrumentation design phase.   

Based on the presented architecture, the design of a performance monitoring and 

fault diagnosis system can be achieved by the following tasks: 

1. Develop plant-scale steady state mass balance and heat balance models and dynamic 

simulation models for the control loops of nuclear power plants. 

2. Determine the sensor placement requirements for efficient performance monitoring 

and fault diagnosis. 

3. Develop steady state fault diagnosis algorithms for both sensor and process fault 

diagnosis. 

4. Develop dynamic fault diagnosis algorithms, which are applicable to dynamic 

operation conditions such as reactor startup and load following. 

5. Test the performance on the developed simulation models. 
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Figure 1.4.  Robust data driven model based fault diagnosis. 

 

1.3.2 Robust Data Driven Model Based Fault Diagnosis of the 

Integrated Approach 
 

A robust data driven model based approach was developed in this dissertation to 

implement the presented architecture of performance monitoring and fault diagnosis.  In 

this approach, shown in Figure 1.4, data are generated from the developed simulation 

model with well-designed simulation calculations.  Because the data are generated with 

adequate input excitation, the developed data driven models will be able to cover the 

entire anticipated operation conditions.  However, because the simulation model will 

always contain model uncertainty, robust fault diagnosis techniques must be applied to 

avoid false alarms.  

The advantage of robust data driven model based approach is that the strength of 

historical data based approach and first principle model based approach, which are 

reviewed in Section 1.2, can be combined.  A first principle model is able to represent the 

relationships among variables for all the operation conditions in a compact manner.  

However, the model may be too complicated for robust fault diagnosis design.  On the 

contrary, data driven model based fault diagnosis usually has a relatively simple 

structure, which enables robust fault diagnosis design.  However, the performance of data 

based approach depends strongly on the quality of collected data.  For instance, the 
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degradation of steam generators and heat exchangers and the changes in operation 

setpoints are inevitable throughout the reactor lifetime, the past historical data would 

definitely not be able to characterize the inter-variable relationships for all the power 

levels at the most recent conditions of system configuration and component degradation.  

Therefore, a combination of the two types of approaches will be able to improve the 

performance of fault diagnosis in terms of reducing false alarms and avoiding 

misdiagnosis. 

Linear model structure is pursued throughout the dissertation.  Although nuclear 

power systems indeed have nonlinearity, this nonlinearity can be handled either by 

recursively updating a linear model or by using model uncertainty decoupling techniques 

for fault diagnosis design.  Most importantly, linear state space model is the only class of 

systems tractable with rigorous theory.   

 

1.4 Contributions of the Dissertation 
 

The proposed integrated approach has provided a systematic solution to 

performance monitoring and fault diagnosis for nuclear power systems.  The new 

architecture of fault diagnosis design is the first to emphasize the importance of sensor 

placement design for fault diagnosis and the importance of dynamic fault diagnosis for 

nuclear power systems.  The developed robust data driven model based fault diagnosis 

algorithms for steady state conditions and dynamic conditions are a first effort to 

combine the strength of first principle model based fault diagnosis and the historical data 

based fault diagnosis. 

The following original contributions are made in this dissertation: 

1. The development of a simulation model of IRIS Helical Coil Steam Generator (HCSG) 

systems.  Through the steady state thermal analysis, it is discovered that the primary 

coolant temperature profile can be used to indicate the HCSG tube inside fluid level.   
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2. The development of a new and complete algorithm based on causal graph theory and 

data reconciliation to perform sensor placement design for process and sensor fault 

detection, identification, and reconstruction. 

 
3. The application of reconstruction based PCA approach to steady state fault diagnosis 

of IRIS HCSG system, which was able to deal with joint sensor and process faults 

based on subspace characterization of fault effects and quantify fault detectability and 

fault identifiability. 

 
4. The development of a robust PCA model based approach for steady state fault 

diagnosis, in which PCA models were developed using data generated from simulation 

models while the model uncertainties were identified from plant measurements. 

 
5. The development of a hybrid PCA model based approach for steady state fault 

diagnosis, which allowed the incorporation of partially known system knowledge into 

the PCA based fault diagnosis. 

 
6. The development of a robust subspace model based approach for dynamic fault 

diagnosis.  In this approach, a low order linear state space model was identified based 

on the data generated from well-designed simulation runs using widely available 

nuclear system analysis codes such as RELAP, RETRAN, TRAC, etc.  A robust 

residual generation algorithm was then developed using measured data without directly 

identifying the model uncertainties.   

 
1.5 Outline of the Dissertation 
 

Chapter 2 reviews the state-of-the-art model based fault diagnosis techniques.  

The necessary conditions of fault detectability and isolability are emphasized.  It is shown 

that the performance of fault diagnosis is a strong function of the fidelity of models used 

for residual generation.  The robust issues of fault diagnosis are also discussed.  In order 

to fulfill the requirements of fault diagnosis for an engineering system, the need to 

combine data driven modeling and fault diagnosis theory is motivated. 
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Chapter 3 develops both steady state and dynamic model for the IRIS HCSG 

systems.  The steady state simulation study shows that the primary coolant temperature 

profile can be used to indicate the HCSG tube inside fluid level.  The developed dynamic 

simulation model provides a platform to test the developed robust subspace model based 

dynamic fault diagnosis algorithm.  

Chapter 4 presents a complete procedure and algorithm for sensor placement for 

fault diagnosis.  The minimum sensor requirement is first determined for process fault 

diagnosis based on cause effect analysis.  To ensure reliable process fault diagnosis, the 

minimum sensor requirement is then determined such that the related measured variables 

can still be reconstructed based on plant-scale mass balance and heat balance equations 

even if these sensors fail due to instrument faults.  Finally, data reconciliation is used as a 

generic approach to perform the sensitivity analysis of a plant variable in the balance 

equations. 

Chapter 5 presents PCA approach for steady state fault diagnosis.  Reconstruction 

based PCA is first applied to deal with joint sensor and process fault diagnosis and 

determine the fault detectability and identifiability.  Robust PCA model based algorithm 

is then developed to decouple the fault effects on the measurements from the model 

uncertainties.  In order to improve the sensitivity of fault detection and interpretability of 

fault isolation, hybrid PCA approach is developed to incorporate the available system 

knowledge into PCA modeling.   

Chapter 6 develops a robust subspace model based dynamic fault diagnosis 

algorithm.  The theory of subspace identification is presented to determine a low order 

linear state space model from simulation data.  A robust dynamic residual generator 

design algorithm is developed without directly identifying the model uncertainty.  

Finally, the developed algorithm is demonstrated through the application to IRIS HCSG 

systems for transient fault diagnosis. 

Chapter 7 summarizes the dissertation and draws conclusions, along with 

recommendations for future work. 
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Chapter 2 
 

Basic Theory of Model Based Fault Diagnosis 
 
2.1 Introduction 
 

Model based fault diagnosis is conceptually divided into two stages — residual 

generation and decision-making, as shown in Figure 2.1 (Chen and Patton, 1999).  

Residual generators transform the fault symptoms from measurement space to a lower 

dimensional feature space.  Three major algorithms of residual generation are observer-

based approaches, parity space approaches, and parameter estimation approaches.  

Decision-making performs appropriate statistical testing on the generated residuals to 

make a decision on fault diagnosis.   

In this Chapter, a critical review is performed on the technical elements of model 

based fault diagnosis.  The necessary conditions of fault detectability and isolatability are 

emphasized.  It is shown that the performance of fault diagnosis is a strong function of 

the fidelity of models used for residual generation.  In order to fulfill the requirements of 

fault diagnosis for an engineering system, robust data driven model based fault diagnosis 

approach is motivated to combine data driven modeling and fault diagnosis theory. 

 

2.2 System Representation 
 

In general, most of the components in an engineering process are operating in 

closed control loops.  Figure 2.2 shows a standard closed-loop control system.  In order to 

detect and isolate sensor faults, actuator faults, and process faults, mathematical models 

need to be developed to simulate the behavior of these process components and control 

devices. 
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Figure 2.1.  Diagram of model based fault diagnosis.  

 

 

 
 

Figure 2.2.  Fault diagnosis for a closed-loop control system. 
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As shown in Figure 2.2, a fault diagnosis system is not related to the controller 

design because the fault diagnosis system involves only the actuator input (or controller 

output) and the process output.  If the actuator input is measured, an open loop system 

model is sufficient for fault diagnosis even if the physical system may operate in closed-

loop conditions.  However, if the actuator input is not available, a closed-loop model 

must be used, which involves the reference setpoint to calculate the error signal.  

Fortunately, the controller output is always known for a digital control system.  In fact, 

the use of an open loop model can decouple the fault diagnosis from controller design 

and simplify fault diagnosis significantly (Chen and Patton, 1999).   

For a linear dynamic system, the process dynamics is given by: 

 

)(*)()(*
)(*)()(

tDutCxty
tButAxtx

+=
+=

        (2.1) 

 

where 

)(tx  = the state vector. 

)(* ty  = the true system output. 

)(* tu  = the actuator output. 

DCBA ,,,  = system matrices. 

 

In model based fault diagnosis, the fault effects on the physical system are 

explicitly represented by appropriate fault models.  This explicit representation of fault 

effects facilitates fault diagnosis such that the generated residuals will behave as 

designed.  In fact, this is also the fundamental difference between model based fault 

diagnosis and signal based fault diagnosis such as spectral analysis and pattern 

recognition.  For signal based fault diagnosis, fault signatures need to be extracted from 

representative fault data, which are difficult to obtain in most situations.  

If the sensor dynamic is ignored, the fault model for a sensor fault is given by: 
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)()(*)( tftyty s+=         (2.2) 

 

where  

)(ty  = the measured output. 

)(tf s  = the sensor fault vector. 

 

If the actuator dynamics is ignored and the actuator output )(* tu  is simplified to 

be equal to the actuator input )(tu , the fault model for an actuator fault is given by: 

 

)()()(* tftutu a+=         (2.3) 

 

where 

)(tu  = the actuator input signal generated by controller output. 

)(tfa  = the actuator fault vector. 

 

Obviously, the actual mapping between the actuator input )(tu  and the actuator 

output )(* tu  can be easily represented by changing Equation (2.3) accordingly. 

If a system input )(* tu  is not a manipulated variable for control while it is a 

measured variable, the fault model for the input sensor is given by: 

 

)()(*)( tftutu is+=         (2.4) 

 

where 

)(tu  = the measured value of the system input )(* tu  which is not used for control. 

)(tfis  = the input sensor fault vector. 
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If a process fault results in a change in the system parameters, the model for the 

fault is given by: 

 

)()(*)()( tftButAxtx c++=        (2.5) 

 

where 

)(tfc  = the process fault vector. 

 

Considering all the possible sensor/actuator and process faults, the fault model 

can be given by: 
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where  

)(tu  = the process input variables including both the controller output and the measured 

input not used for control. 

 

In Equation (2.6), the input and output of the dynamic system are all measured 

and the fault effects on the system dynamics are explicitly represented.  

In general, the state space representation with different types of faults is given by: 
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where 1R  and 2R  are known fault entry matrices which represent the fault effects on the 

dynamic system (Chen and Patton, 1999). 

 



 24

2.3 Concepts of Residual Generator Design 
 

Residual generation plays an important role in model based fault diagnosis.  The 

residuals are generated from a model covering the entire operation regime.  Therefore, in 

the absence of faults, the residuals are only due to noise and disturbances and the 

magnitudes are small.  In the presence of faults, the residuals should capture the 

inconsistency between the measured variables and the mathematical model for fault 

detection.  Moreover, the generated residuals should respond to different faults in 

different manners for fault isolation.  In fact, it is through appropriate residual generation 

that model based fault diagnosis is able to eliminate the shortcomings of traditional fault 

diagnosis methods, where operation condition dependent signal characteristics (e.g. 

amplitude, variation rate, and frequency) are used for fault diagnosis.   

The simplest approach to residual generation is the parallel simulation scheme.  

The mathematical model used for residual generation is simply a simulation model of the 

physical system and the generated residual is nothing but the difference between the 

simulation output and the measured output.  Because such a simulation model belongs to 

an open-loop architecture, the simulation output may become unstable if the physical 

system is unstable (Chen and Patton, 1999). 

In general, model based fault diagnosis uses both the system input and the system 

output to generate residuals.  The mathematical representation of residual generation is 

given by (in the Laplace domain): 

 

)()()()()( sysHsusHsr yu +=        (2.8) 

 

where 

)(sHu  = a linear transformation acted on the system input. 

)(sH y  = a linear transformation acted on the system output. 
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If input-output representation is used, the dynamics of the linear system with 

possible faults in Equation (2.7) is given by: 

 

)()()()()( sfsGsusGsy fu +=        (2.9) 

 

where )(sGu  and )(sG f  are the matrix transfer functions between the system output 

and the system input and between the system output and the system fault, respectively.  

The two transfer functions are given by: 

 
DBAsICsGu +−= −1)()(         (2.10a) 

21
1)()( RRAsICsG f +−= −        (2.10b) 

 
Combining Equations (2.8) and (2.9), the evolution of residual dynamics is as 

follows: 

 
)()()()())()()(()( sfsGsHsusGsHsHsr fyuyu ++=     (2.11) 

 
 2.3.1 Residual Generation for Fault Detection 
 

Because residuals are used to check the consistency between the measurements 

and the system model, they must satisfy the following condition: 

 
0)( =tr   if and only if    0)( =tf   (2.12) 

 
To make the generated residuals decoupled from the operation conditions, all the 

residual generators must be able to produce a zero residual vector for fault free 

conditions.  Based on Equation (2.8) and (2.9), a necessary condition of residual 

generation for fault detection can be obtained as follows (Chen and Patton, 1994): 

0)()()( =+ sGsHsH uyu         (2.13) 
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In the meantime, the generated residual vector must be sensitive enough for fault 

detection.  The dynamic response of a residual generator satisfying Equation (2.13) is as 

follows: 

 

)()()()()()( sfsGsfsGsHsr rffy ==       (2.14) 
 
where 

)(sGrf  = the transfer function between the fault and the residual response. 
 

Therefore, the fault detectability condition is that the transfer function between a 

fault and the residual response is not zero.  To avoid the fault effects on the residual 

vector from disappearing when a fault still exists, it is necessary to define a stronger fault 

detectability condition, which is given by (Chen and Patton, 1994):  

 

0)0( ≠rfG           (2.15) 

 

Considering an output sensor fault with Ι=)(sG f , if the residual generator is 

simply designed as Ι=)(sH y , and )()( sGsH uu −= , the steady state gain of the 

transfer function between the residual response and the sensor fault will then be 1.  

Therefore, this simple residual generator design has strong fault detectability for output 

sensor faults. 

Chen also proved that it is not always possible to design a residual generator to 

detect actuator faults (Chen and Patton, 1994).  If an actuator fault has the fault transfer 

matrix )()( sGsG uf = , then the transfer function matrix between the fault and the 

residual response )()()( sGsHsG uyrf =  according to Equation (2.14).  Again, 

according to the condition of residual generator for fault detection given by Equation 

(2.13), we must have )()()( sHsGsH uuy −= .  Therefore, if the transfer matrix 
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)(sHu  is not well designed, there will be no physically realizable solution to )(sH y  

for this residual generator design because the solution might be noncausal. 

 

2.3.2 Residual Generation for Fault Isolation 
 

Multiple residual generators need to be designed for fault isolation.  The designed 

residual generators have the property of fault isolation only if they respond to all the 

considered faults in different characteristic manners. 

Structured residual design is one approach to residual generation for fault 

isolation.  In this approach, each residual generator is designed such that it is sensitive to 

a subset of faults while insensitive to the remaining faults.   

For structured residual design, the first step is to design an incidence matrix for 

fault isolation.  Table 2.1 shows an example of incidence matrix design to isolate three 

faults.  The columns of the incidence matrix correspond to the desired residual patterns 

for individual faults.  The rows of the incidence matrix correspond to the responses of 

each residual generator to the considered faults.  A “1” element of the incidence matrix 

indicates that the residual element of the residual generator is affected by the 

corresponding fault while a “0” indicates that it is not.   

 

Table 2.1.  Incidence matrix design for fault isolation 

101Residual generator  2

0

1

Fault 3

1

1

Fault 2

1

0

Fault 1

Residual generator  1

Residual generator  3

Residual generator

101Residual generator  2

0

1

Fault 3

1

1

Fault 2

1

0

Fault 1

Residual generator  1

Residual generator  3

Residual generator
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The simplest incidence matrix is that both the columns and the rows are 

canonical.  For such an incidence matrix, the rows have equal numbers of zeros with 

different patterns and the columns have equal number of zeros with different patterns, 

too.  The advantage of this canonical structure is that partial firing of one residual 

generator will not result in fault misclassification.  Given that there are µ  outputs of a 

system, ρ  considered faults, a square incidence matrix with ρ  residual generators and 

µ -1 zeros in each column always provides a solution to the canonical structured 

incidence matrix (Gertler, 1998). 

The second step is to design residual generators such that the fault responses 

follow the designed incidence matrix.  In this step, different residual generation 

techniques such as observer based approach and parity space approach may be used. 

Fixed direction residual vector is an alternative approach to residual generation 

for fault isolation.  In this approach, the residual generators are designed such that a 

directional residual vector lies in a fixed fault specific direction.  Fault isolation is 

achieved by comparing the generated residual vector with the prespecified fault direction 

in residual generator design. 

Considering sensor faults only, according to Equation (2.14), the residual 

generator sensitive to all faults but the ith sensor fault can be designed simply by making 

the ith columns of )(sH y  equal to zero. 

If actuator faults are considered, just like in the case of fault detection, because of 

the additional constraint )()()( sGsHsH uyu −= , it is not always possible to find a 

realizable solution to )(sH y  if the ith column of )(sHu  is chosen to be zeros such that 

the residual generator is sensitive to all faults but the ith actuator fault.  Therefore, 

actuator faults are not always isolatable (Chen and Patton, 1994).   
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2.4 Residual Generation Techniques 
 

To generate residuals with the desired properties for fault detection and isolation, 

different residual generation techniques have been developed in the last two decades.  

Although these techniques are related to each other and become equivalent in certain 

cases, they do have very different characteristics in terms of the complexity, flexibility, 

and applicability.  Three most representative residual generation methods, observer based 

approach, parity space approach, and parameter estimation based approach, are 

summarized in this section.  

 

2.4.1 Observer Based Residual Generation 
 

The basic idea behind observer based residual generation is to estimate the system 

output using Luenberger observers in a deterministic setting (Frank, 1990) or Kalman 

filters in a stochastic setting (Basseville, 1988).  The weighted output estimation error is 

then used as residuals for fault detection and isolation (Chen and Patton, 1999).   

For the purpose of fault diagnosis, only the output estimation is required while the 

state estimation is unnecessary.  Therefore, a Lunenburger observer can be used for 

residual generation, which is given by: 

 

)()()()(
)()()()(

321 tuLtyLtzLtr
tJutKytFztz

++=
++=        (2.16) 

 
where )(tz  is the state vector of the observer, and 3,21,,,, LLLJKF  are matrices of 

appropriate dimensions.   

The generated residual vector )(tr  in Equation (2.16) is related to the output 

estimation error.  To be used for fault detection, the residuals must be zero in 

asymptotical sense for any initial states for a fault free system defined in Equation (2.1), 

that is: 
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0)(lim =
∞→

tr
t

          (2.17) 

 

To obtain zero residuals in asymptotical sense with a full order observer, the 

matrices involved in the observer design must satisfy the following conditions (Chen and 

Patton, 1996).  : 

 

DLL
CLL
KDBJ
KCAF
txtz

23

21

)()(

−=
−=

−=
−=

=

          (2.18) 

F  must have stable eigenvalues. 

 

If the residual generator, defined in Equation (2.16), is applied to the fault system 

defined in Equation (2.7), the residual dynamics can be derived as follows: 

 

)()()(
)()()()(

)()()(

222

21

tfRLtCeLtr
tfKRtfRtFete

txtzte

+−=
+−=

−=
       (2.19) 

 

The observer based residual generator exists for any dynamic system although 

stable state observer may not exist (Chen and Patton, 1996).  Through appropriate choice 

of the matrices 2L  and K  in Equation (2.19), the designed full order observers may 

generate residuals with a predetermined fault direction for fault isolation (Park et al., 

1994a), (Park et al., 1994b).  A Dedicated Observer Scheme (DOS) was suggested for 

sensor fault isolation in (Chen and Patton, 1994).  In this scheme, multiple residual 

generators are designed with each observer excited by a single output.  Therefore, each 

residual generator is sensitive to only one sensor fault.  The Generalized Observer 

Scheme (GOS) also uses multiple residual generators for fault isolation.  However, in this 

design scheme, each observer is excited by all the system outputs but one (Wuennengerg, 

1990).  
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2.4.2 Parity Space Approach 
 

The basic idea of parity space approach is to check the consistency of 

measurements for the monitored system in terms of some process constraints.  The 

terminology of parity space was originated in digital data transmission using bits for error 

detection.  If two groups of bits are the same, their sum is zero.  If two groups of bits are 

different, a non-zero sum will be generated, which means that some transmission error 

has happened. 

 

2.4.2.1 Parity Space Approach for Static Systems 
 

The parity space approach to fault diagnosis was first proposed for steady state 

operation conditions, where there are more measurements than the number of state 

variables (Daly et al., 1979).  An algebraic equation can be used to describe a general 

steady state system, which is given by: 

 
)()()()( kwkfkCxky ++=        (2.20) 

 
where 

)(ky  = the system measurements. 

)(kx  = the system states. 

)(kf  = the fault vector. 

)(kw  = the measurement noise. 

 

If the number of measurements m  is greater than the number of independent state 

variables n , there exists a matrix 0V , which satisfies: 

 

00 =CV           (2.21) 
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where TV0  has nm −  columns of vectors that span the null space of TC .  In fact, 

Equation (2.21) consists of nm −  redundant equations relating the m  measured 

variables. 

The redundant equations in Equation (2.21) can be directly used as parity 

relations to generate residual vector )(kr , which is given by: 

 

))()(()()( 00 kwkfVkyVkr +==       (2.22) 
 

The generated residual vector is independent of the system states.  The space 

spanned by the columns of the matrix 0V  is called parity space.  A fault of the ith sensor 

will result in the largest magnitude along the direction of the ith column of the matrix 0V .  

Therefore, the m  columns of the matrix 0V  can be directly used as the directional fault 

signatures of the m  sensor faults for fault isolation. 

 

Example 1.:  Consider a system with four measured variables [ ]Tyyyy 4321  and 

two state variables [ ]Txx 21 , which satisfies the following algebraic measurement 

equation: 
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To design a residual generator for fault detection, the generated residuals must be zero-

valued for any values of state variables if there is no fault occurring in the system.  The 

residual generator can be designed according to Equation (2.21) with a linear 

transformation on the measured vector, which is given as follows: 

⎥⎦
⎤

⎢⎣
⎡

−−
−= 0.00.10.10.1

0.10.00.10.1
0V  
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The two rows of the matrix 0V  are the two left singular vectors corresponding to zero-

valued singular values when singular value decomposition is performed on the original 

system matrix.  In this example, the obtained left singular matrix, U , and the singular 

values matrix, S , are as follows: 

 

⎥
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⎥
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It can be easily verified that the generated residual of the ith sensor fault lies in the 

direction of the ith column of the matrix 0V .  For instance, if the first measurement has a 

bias fault of magnitude fm  and the measurement noise is negligible, then the fault vector 

is as follows: 

[ ]T
fmf 000=  

According to Equation (2.22), the residual vector is given by: 

fmkr ⎥⎦
⎤

⎢⎣
⎡
−
−= 0.1

0.1)(  

Obviously, the generated residual vector is in the direction of the first column of the 

matrix 0V .   

 

Example 2.:  Consider a system with four measured variables [ ]Tyyyy 4321  and 

two state variables [ ]Txx 21 , which satisfies the following algebraic measurement 

equation: 
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In order to design a residual generator for fault detection, the generated residual 

vector must be zero-valued for any values of state variables [ ]Txx 21 if there is no fault 

occurring in the system.  The most obvious nonlinear residual generators can be designed 

by substituting the two unmeasured state variables, 1x  and 2x , with the two measured 

variables, 1y  and 2y  in the third and the fourth measurement equations, which is as 

follows: 
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For normal operation conditions, the two residual generators 1r  and 2r  must 

generate zero residuals.  However, it is very challenging to design nonlinear residual 

generators satisfying this requirement.  If data driven modeling techniques such as neural 

networks and group method of data handling are used, a dataset with a combination of 1y  

and 2y  each of which should cover its operational space must be obtained such that the 

generated data driven models will not produce non-zero residuals in the possible 

operational state space.  It is not arguable that routine operation data do not contain such 

rich information.  If first-principle models are used, the developed models must be 

accurate enough.  If there is significant model uncertainty, the residual generators will 

cause false alarms even if there are no faults occurring in the system. 

Let’s further examine the property of the generated residuals.  If the first 

measurement has a bias fault of magnitude fm  and the measurement noise is negligible, 

then the fault vector is as follows: 
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It can be observed that the generated residual vector does not have fixed fault 

direction.  The fault direction depends on the operation state 1x  and the fault magnitude 
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fm .  Therefore, this residual generator design scheme based on prediction error is not 

appropriate for fault isolation of the considered system. 

In general, residual generator design for fault diagnosis should not be simplified 

as a prediction error problem.  In this example, if perfect modeling is available, the 

following four residual generators based on generalized transformations of the measured 

variables can be designed for fault isolation: 
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The four residual generators 1r , 2r , 3r , and 4r  can now be dedicated to the fault 

isolation of 1y , 2y , 3y , and 4y , respectively, because only the dedicated residual 

generators will generate zero-valued residuals and the other three residual generators will 

generate nonzero residuals if a fault occurs in the system. 

However, the assumption of this residual generator design scheme that perfect 

modeling is achievable may be too much for a real world problem.  We believe this 

design strategy can solve a class of problems for small systems such as heat exchangers, 

but we are not going to perform further study on this method in this dissertation because 

such residual generator design will be very much problem dependent. 

 

Comments on the two examples: Because nonlinear residual generator design for fault 

diagnosis will not always be able to produce directional fault signatures, most of the 

nonlinear fault diagnosis methods do not have solid theoretical basis.  In order to develop 

a fault diagnosis method with more general application perspectives, linear fault 

diagnosis methods will be pursued in this dissertation focusing on robust residual 

generator design to avoid false alarms due to model uncertainty.  It is understandable that 

nonlinear techniques will not be able to deal with model uncertainty. 
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2.4.2.2 Parity Space Approach for Dynamic Systems 
 

If the number of measurements m  is not greater than the number of independent 

state variables n , the left null space of the matrix C  (the null space of TC ) given in 

Equation (2.20) becomes empty.  This means that the measurements do not have 

adequate redundant information for model based fault diagnosis.  Unfortunately, most 

process systems do have more states than the measurements, which constrains the 

application of spatial redundancy based parity space approach to fault diagnosis. 

The other dimension of redundancy in a technical process is temporal redundancy.  

The parity space approach to fault diagnosis can significantly extend its application when 

temporal redundancy is utilized (Patton and Chen, 1991).   

With a time window of length 1+s , the temporal redundancy relationship for a 

linear dynamic system defined in Equation (2.7) is given by: 

 

)()()()( kMfskxkuHky sssss +−Γ=−       (2.23) 
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If the number of stacked rows 1+s  is chosen larger than the number of states n , 

there always exists a matrix 0V  such that,  

 

00 =ΓsV           (2.24) 

 

Therefore, the residual vector can then be calculated as follows: 

 

))()(()( 0 kuHkyVkr sss −=        (2.25) 

 

Correspondingly, the dynamics of the residual vector is given by: 

 

)()( 0 kfMVkr s=          (2.26) 

 

The residuals generated by dynamic parity space approach can further be 

processed to have the properties for fault isolation.  The method to generate structured 

residuals and directional residuals for fault isolation is given in (Gertler, 1997).   

 

2.4.3 Parameter Estimation Approach 
 

The basic idea behind parameter estimation approach is to estimate the model 

parameters on line and relate the model parameters to physical parameters for fault 

detection and isolation. 

If the model structure of a physical system is known, the empirical model of the 

system can be derived in the following form: 
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θTtty )()( Ψ=          (2.27) 

 

where 

θ  = the set of model parameters. 

)](),...,1(),(),....,1([ mtutuntytyT −−−−=Ψ  

 

The least square estimate of θ  can be computed as follows: 

 

yTT ΨΨΨ= −1)(θ          (2.28) 

 

After the model parameters are identified, they may be converted back to the 

physical parameters for fault isolation.  However, because the model parameters are 

generally related to the physical parameters via a complicated function, it may be 

extremely difficult to perform this conversion (Doraiswami and Stevenson, 1996).  A 

very interesting example of parameter estimation based approach to fault diagnosis is to 

identify modal parameters from vibration data for structural damage detection and 

localization using multivariate autoregressive moving average modeling (Bodeux and 

Golinval, 2003). 

 

2.5 Residual Evaluation Techniques 
 

In a real process, the measured signals always contain noise.  In addition, some 

unmeasured disturbance may play a part in the system dynamics.  If the measurement 

noise and the unmeasured disturbance are assumed to be white Gaussian, the generated 

residual consists of two components, which is given by: 

 

)()()()()()()( tqGqHtfqGqHtr yfy νν+=      (2.29) 
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where 

q  = the back shift operator operated on time. 

νG  = the transfer function between the noise/disturbance and the system output. 

)(tν = the noise/disturbance vector. 

 

In Equation (2.29), the first term is time varying and deterministic, which 

represents the fault induced contribution, while the second term is stochastic, which 

represents the noise/disturbance induced contribution.  

If structured residual design is used for fault detection and isolation, the residuals 

generated by each residual generator can be tested against certain threshold.  If the 

threshold is exceeded, the response of this residual generator is determined to be “1” and 

“0” otherwise.  The obtained responses of all the residual generators are then compared 

with the fault patterns defined by the columns of the designed incidence matrix for fault 

isolation.   

The threshold used for statistical testing can be determined based on the selected 

false alarm rate.  Depending on how the residual generators are designed, the statistical 

testing can be performed for vector residual, vector time series, or the window average of 

vector time series (Gertler, 1998). 

The m -dimensional vector residual )(tr  follows a multivariate normal 

distribution with zero mean and covariance matrix rΦ .  The statistics 

)()()( 1 trtrt r
T −Φ=ω  obeys 2χ  distribution with m degrees of freedom.  Therefore, the 

decision rule can be given as follows: 

 

if 2
,αχω m≥  , then the residual generator is fired. 

if 2
,αχω m<  , then the residual generator is not fired. 

 
where α  is the significance level. 
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The m-dimensional vector residual )(tr  can also be stacked into a vector time 

series for statistical testing.  This vector )(tR  is ms  dimensional if s time instants are 

used in the stack.  If the vector time series follow a multivariate normal distribution with 

zero mean and covariance matrix RΦ .  The statistics )()()( 1 tRtRt R
T −Φ=ω  obeys 2χ  

distribution with ms degrees of freedom.  Therefore, the decision rule can be given as 

follows: 

 
if 2

,αχω ms≥  , then the residual generator is fired. 

if 2
,αχω ms<  , then the residual generator is not fired. 

 
where α  is the significance level. 
 
 
2.6 Robust Data Driven Model Based Fault Diagnosis  
 

The success of model based fault diagnosis strongly depends on the fidelity of the 

mathematical models developed for the monitored system.  If the developed 

mathematical models are not accurate enough to represent the fault free system, the 

model uncertainty will induce significant residuals resulting in false alarms and the 

generated residuals may not follow the designed residual patterns resulting in incorrect 

fault isolation.  Evidently, both false alarms and incorrect fault isolation have adverse 

consequences when real-time fault diagnosis is applied to a safety critical system, such as 

a nuclear power system.  Therefore, it is mandatory to address the robust issues such that 

the fault diagnosis algorithms are insensitive to model uncertainties and remain highly 

sensitive to incipient faults. 

 

2.6.1 Motivation 
 

In general, the mathematical models used for model based fault diagnosis can be 

categorized as follows: 

• First-principle models. 
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• Causal data driven models identified from well-designed experiments. 

• Statistical data driven models developed from historical data. 

 

First principle models are usually not appropriate for direct use in model based 

fault diagnosis for a complex system, such as a nuclear power plant.  On the one hand, 

first principle models always have some inevitable uncertainties because of inherent 

assumptions made for model development.  For an engineering process, distributed 

parameterization and empirical relationships used will also contribute to uncertainty.  The 

last but not the least source is the uncertainty of parameters used for modeling.  On the 

other hand, because the developed physical models are usually very complicated, it is 

very difficult to use them directly to design appropriate schemes for fault detection and 

isolation.   

Just like in the case of model based control, data driven models are much more 

popular than first principle models for fault diagnosis.  In practice, there are two 

fundamentally different data driven modeling approaches.  System identification 

approach identifies empirical models using data obtained from well-designed 

experiments.  Historical data driven modeling approach develops a model from routine 

operation data saved in a historical database.  The data driven models developed from 

system identification techniques are usually causal models because of the careful control 

of experiments.  On the contrary, historical data driven models are usually not causal 

models because they can only capture the correlations among the variables contained in 

the historical data. 

The two types of data driven modeling techniques and the corresponding fault 

diagnosis techniques have very different properties. 

Causal data driven models can facilitate fault detection and isolation by testing the 

consistency of measured variables with the input-output causal relationships.  Because 

the fault effects on the system behavior is explicitly formulated in the developed causal 

models, fault isolation can be achieved by structured residual design or fixed fault 

direction residual design.  If appropriate causal models are available for a large system, 

the network structure of cause-effect relationship between the measured variables can 
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even be explicitly searched for fault isolation (Montmain, 1997), (Montmain, 2000), 

(Zhao, 2002). 

Historical data driven models can only characterize the process variations of the 

collected data (Ogunnaike and Ray, 1994).  Historical data driven model based fault 

diagnosis performs fault detection by testing the correlation structure of the measured 

variables against that of the historical data, which are presumed to represent normal 

operation conditions.  In order to avoid false alarms, the historical data must contain all 

sources of normal variations (Russell, Chiang, and Braatz, 2000).  However, this 

requirement is quite stringent for a technical process such as nuclear energy systems.  

One of the reasons is that the normal data variation is not repeatable for the same power 

level because of component degradation and routine operation adjustments.  The second 

reason is that the signal-noise ratio may be low at steady state operation conditions, so the 

data collected at a single power level may not be able to reveal the correlation among the 

plant variables. 

The comparison between causal data driven modeling and historical data driven 

modeling clearly shows that model based fault diagnosis needs to use causal data driven 

models.  Unfortunately, causal data driven model based approach to fault diagnosis is not 

well studied for technical processes because people consider it unrealistic to perform 

experiments designed in such a manner that all the requirements of system identification 

are satisfied.  Nevertheless, they have ignored the fact that it is indeed pragmatic to 

identify a model from large-scale simulation software.  In nuclear system design, 

simulation models are actually indispensable to safety analysis and system design.  With 

simulation models at hand, plant tests necessary for system identification can be replaced 

by simulation runs.   

Robust data driven model based approach is developed in this dissertation for 

fault diagnosis.  In this approach, data are generated from the developed first principle 

models with well-designed simulation calculations.  Because data are generated with 

adequate input-output excitation, the developed data driven models are able to reveal the 

cause-effect relationships between the input-output data.  After the causal models are 

developed, the model uncertainty is identified on-line from plant measurements.  The 
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characteristics of the identified model uncertainty can then be studied to design robust 

fault diagnosis schemes using available techniques, which are described in the remainder 

of the section, to avoid false alarms and incorrect fault diagnosis.   

 

2.6.2 Robust Parity Space Approach to Fault Diagnosis 
 

Many robust fault diagnosis techniques have been developed to deal with model 

uncertainty based on disturbance decoupling.   

Unknown Input Observer (UIO) was systematically studied by Frank’s research 

group (Wuennengerg, 1990).  In this method, an UIO observer is designed through 

appropriately choosing the state feedback gain and the observer matrices such that the 

state estimation error approaches zeros asymptotically regardless of model uncertainty.  

Because the residuals are generated as a linear combination of the state estimation error, 

the residuals are then independent of the disturbances.  A unified design method of UIO 

observers was presented in (Hou and Muller, 1994).   

Eigenstructure assignment provides an alternative approach to the decoupling of 

residuals from model uncertainty (Duan et al., 1998).  In this method, the left or right 

eigenvectors of the observer are assigned to be orthogonal to the directions of model 

uncertainty.  The advantage of this method is that the residuals are decoupled from model 

uncertainty directly although the state estimation error may not.  The disadvantage of the 

method is that the number of sources of model uncertainty must be smaller than the 

number of independent measurements in order to achieve the decoupling (Chen and 

Patton, 1999).   

Robust parity space approach is the most commonly accepted robust residual 

generation technique because of its simplicity in implementation (Chen, 1995).  Without 

loss of generality, the system dynamics with model uncertainty and possible faults are 

given as follows: 
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where 

1E  = the uncertainty distribution matrix related to the state vector. 

2E  = the uncertainty distribution matrix related to the system output. 

d  = the uncertainty vector. 

 

The model given in Equation (2.30) clearly shows that model uncertainty and 

possible faults affect the system dynamics in a similar fashion.  The only difference is 

that the uncertainty distribution matrices 1E  and 2E  are different from the fault 

distribution matrices 1R  and 2R .  If the uncertainty distribution matrices are similar to the 

fault distribution matrices, the distinction between system faults and the disturbances will 

become impossible no matter how large the fault magnitude is.  Therefore, in order to 

have a sensitive fault detection algorithm for all the possible faults, it is necessary to have 

an accurate model. 

The temporal redundancy relationship for a linear dynamic system defined in 

Equation (2.30) is given by: 
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The robust residuals for fault detection can be generated as follows: 
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To decouple the residuals from model uncertainty and initial states, the residual 

generator must satisfy the following two conditions 

 

00 =ZV           (2.33) 

00 ≠MV  

 

where 

[ ]ss GZ Γ=  

 

2.6.3 Estimation of Model Uncertainty 
 

It is necessary to know the uncertainty distribution matrix for robust fault 

diagnosis although the magnitude behavior of model uncertainty may be unknown.  The 

application of robust fault diagnosis methods was very limited until uncertainty 

distribution matrix could be estimated from plant measurements.   

Although it is possible to lump parameter uncertainty, system non-linearity, 

measurement noise, and model reduction together to describe the model uncertainty, this 

kind of explicit formulation of model uncertainty is usually not adequate to deal with a 

real world complex system.  For a real world complex system, the characteristics of 

model uncertainty may be completely unknown due to insufficient knowledge about the 

physical system and the complex interaction between subsystems.  Therefore, it is 

necessary to estimate model uncertainty directly from plant measurements based on a 

reasonably accurate mathematical model. 

The estimation of uncertainty distribution matrix was accomplished by Patton and 

Chen in 1991 (Patton, 1991b).  Their work has received worldwide attention both in the 

field of fault diagnosis and robust control design.  The estimation follows a two-step 

procedure.  The first step is to determine model uncertainty vector and the second step is 

to derive uncertainty distribution matrix using singular value decomposition.   
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2.6.3.1 Determination of Model Uncertainty Vector 
 

The discrete formulation of model uncertainties for a linear dynamic system is 

given as follows: 

)()()(
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kDukCxky
kdkBukAxkx

+=
++=+       (2.34) 

 

where )(1 kd  accounts for all the modeling uncertainties.   

 

The objective is to estimate the uncertainty vector )(1 td  based on the nominal 

system matrices DCBA ,,, , the actual system input )(ku , and the actual system output 

)(ky . 

If we can assume that the uncertainty vector is slowly time varying, the system 

model can be rewritten in the state augmentation form given by: 
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The estimation of the uncertainty vector is then simplified as a deterministic state 

estimation problem given the system matrices and the measurement.  Standard algorithms 

such as Kalman filtering and de-convolution algorithm (Patton, 1991b) are available to 

obtain the sequence of uncertainty vectors. 

 

2.6.3.2 Determination of Model Uncertainty Distribution Matrix 
 

The uncertainty decoupling method for robust fault diagnosis only uses the 

information about uncertainty distribution matrix while the magnitude of model 

uncertainty is irrelevant.  To extract the uncertainty distribution matrix from the 
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uncertainty vector, the estimated uncertainty vector is organized as a matrix given as 

follows: 

 

[ ])(ˆ......)2(ˆ)1(ˆ 111 Mddd=Ω       (2.36) 

where 

M  = the number of identified uncertainty sequences. 

 

If the estimated uncertainty vectors do not change directions, the uncertainty 

distribution matrix is reduced to one column vector, which can be given by: 
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To extract l  most linearly independent directions out of the M  uncertainty 

vectors, singular value decomposition (SVD) can be performed on Ω , which is given by: 

 

TUSV=Ω           (2.38) 

 

If l  most significant singular values are retained, the matrix Ω  can be 

approximated by: 

 

T
l VU

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=Ω

0...000
0............
0.........
0...0......
....0...1

1 σ

σ

       (2.39) 

 

The estimated uncertainty distribution matrix can be constructed by the first l  

columns of the matrix U .   
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Although the above algorithm is developed to extract the uncertainty distribution 

matrix, it can also be used to determine the fault distribution matrix from fault data.  

Because fault distribution matrix is used to characterize the feature of a fault in model 

based fault diagnosis, this algorithm has not only theoretical but also practical 

significance in fault diagnosis.  

 

2.7 Summary 
 

A critical review on model based fault diagnosis is presented in this chapter.  

After the basic theory of observer approach, parity space approach and parameter 

estimation approach was described, it was emphasized that the performance of model 

based fault diagnosis is a strong function of the fidelity of the models used for residual 

generation.  This chapter concluded the review with the motivation of robust data driven 

model based approach to combine the strength of data driven modeling and the 

theoretical sophistication of residual generation and residual analysis derived from linear 

system theory for fault diagnosis.  In the proposed robust data driven model based 

approach, data are generated from first principle models with well-designed simulation 

calculations.  Because the data are generated with adequate input-output excitation, the 

developed data driven models can reveal the cause-effect relationships among variables.  

After causal models are developed, model uncertainty is identified from plant 

measurements.  The characteristics of the identified model uncertainty can then be 

studied to design robust fault diagnosis schemes to avoid false alarms and incorrect fault 

diagnosis.   
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Chapter 3 

 

Modeling and Simulation of the IRIS Helical Coil Steam 

Generator System  
 

In order to demonstrate the performance of the procedures and algorithms to be 

developed, both a steady state model and a dynamic model are developed for the IRIS 

(International Reactor Innovative and Secure) HCSG systems in this chapter.  The steady 

state simulation study shows that the profile of the primary coolant temperature can be 

used to indicate the secondary fluid level inside the HCSG tubes.  The developed 

dynamic simulation model is used to generate data such that a linear state space model 

can be identified using a subspace identification technique and test the robust data driven 

dynamic model based fault diagnosis algorithm developed in Chapter 6.  The developed 

physics model is also used to study optimal sensor placement design. 

 
3.1 System Description 
 

International Reactor Innovative and Secure (IRIS) is one of the next generation 

nuclear reactor designs for near term deployment.  The IRIS reactor is an integral light-

water reactor (LWR), a schematic of which is shown in Figure 3.1 (Carelli et al., 2003).  

The reactor coolant systems including steam generators, pumps, and pressurizer are all 

integrated inside the reactor vessel.  This integral design eliminates the possibility of 

large loss of coolant accidents.  The reactor has eight Helical Coil Steam Generators 

(HCSG) connected to four steam lines and four feed water lines.  The long lifetime core 

is achieved by means of 5 percent enriched uranium for the first reactor core and 9 

percent enriched uranium for successive reactor cores.  The reactor refueling is needed 

only at the end of the first five years, and afterwards once every eight years.  Because of 

the high burnup, less nuclear waste per unit of reactor power is produced than that in 

currently operating reactors.   
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Figure 3.1.  IRIS integral design. 



 51

Steam
 C

onnection 1

Steam
 C

onnection 2

Steam
 C

onnection 3

Steam
 C

onnection 4

Steam
 C

onnection 1

Steam
 C

onnection 2

Steam
 C

onnection 3

Steam
 C

onnection 4  
Figure 3.2.  IRIS steam generator layout. 

 

The HCSG systems are major contributors to the safety and economy of the IRIS 

reactor design.  The size of steam generators can be reduced through the helical coil 

design.  The heat transfer of the coiled configuration is much more efficient than straight 

tubes because of the larger heat transfer area per unit volume and the secondary flow 

induced by the coil geometry.  The probability of steam generator tube rupture can be 

reduced because secondary fluid flows inside SG tubes and thus the tube walls 

experience compression force from the outside, reducing the likelihood of stress 

corrosion cracking.  In addition, these steam generators produce superheated steam, 

which avoids the need to install a steam-water separator in the steam generator  

In the IRIS reactor design, eight steam generators are installed in four pairs in the 

annular space between the core barrel and the reactor vessel (RV) wall, which is shown in 

Figure 3.2 (Carelli et al., 2003).  On the primary side, each Reactor Coolant Pump (RCP) 

is dedicated to discharge primary coolant into one steam generator.  Therefore, each 

RCP+HCSG module constitutes a separate flow path.  On the secondary side, a common 

feed water supply line splits at the vessel and goes to two steam generators.  Similarly, 

the steam discharge lines from two steam generators join to create a common steam line.  
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This pairing of steam generators reduces the number of feed water and steam lines, and 

the number of penetrations into and out of the containment, but it has an unfavorable 

consequence on individual steam generator monitoring in terms of its thermal 

performance and the secondary flow rate.  Figure 3.3 shows a schematic of one pair of 

steam generators. 

In this chapter, the helical coil steam generators are simulated to study the system 

responses for steady state and transient operation conditions.  The simulation model 

provides an application case for the verification of the developed performance monitoring 

and fault diagnosis methods.  In addition, the steady state analysis has demonstrated the 

proposed method to monitor the secondary fluid level inside the HCSG tubes through 

measuring the primary fluid temperature profile.   

 
3.2 Description of HCSG Heat Transfer Mechanism and a Novel 

Approach to Level Measurement 
 

In the HCSG system, the nominal parameters of which are shown in Figure 3.4, 

the primary fluid flows downward from the top to the bottom on the shell side.  The 

primary side heat transfer is sub-cooled forced convection along the entire steam 

generator height and the secondary fluid flows upward inside the coiled tubes from the 

bottom to the top of the steam generator.  The feed water flows into the sub-cooled region 

of the steam generator.  In the sub-cooled region, the heat transfer is mainly due to single-

phase turbulent and molecular momentum transfer and the pressure loss is mainly due to 

wall friction.  The saturated region begins when the bulk temperature becomes saturated.  

The heat transfer in the saturated boiling region is dominated by nucleate boiling, which 

is much more efficient than single-phase liquid or steam heat transfer.  In the saturated 

boiling region, the generated bubbles do not disappear in the liquid core and the pressure 

loss is not only due to the wall friction but also due to the interfacial drag between the 

bubbles and the liquid.  The saturated boiling region ends when critical heat flux is 

reached.  After the steam quality becomes greater than 1.0, the liquid evaporation ceases 

and the steam becomes superheated.   
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Figure 3.3.  A schematic of one pair of steam generators. 

 

 
 

Figure 3.4.  HCSG design parameters at full power condition. 
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The inherent HCSG heat transfer characteristics enable us to use the shell side 

fluid temperature profile to measure the steam generator level inside the tubes.  The 

secondary fluid flows upward inside the tubes experiencing sub-cooled region, saturated 

boiling region, and superheated region.  Because the heat transfer coefficient in the tubes 

decreases significantly from the saturated boiling region to the superheated region, a 

sharp breakpoint of the shell side fluid temperature profile can be observed and used as a 

practical measure of the water level inside the coiled tubes.   

In fact, many types of multiple-point level detectors have been developed based 

on the principle that the heat transfer coefficient in water is much larger than the heat 

transfer coefficient in steam (Wang et al., 1998).  These designs are common in that a 

heating rod is embedded into the center of the level detector and a set of thermocouples 

are installed to measure the temperature profile of the liquid near the inside wall of the 

level detector.  At the level between the steam and the liquid in the measured medium, 

the measured temperature will show a sharp change. 

As is evident, the physical principle of the proposed HCSG level measurement is 

the same as that of the multiple-point level detector.  In the case of HCSG, the heat 

transfer mechanism is inherent in the system, so it provides an efficient solution to 

individual steam generator level monitoring. 

 
3.3 Development of HCSG Steady State Model 
 

A detailed steady state model is developed to investigate the feasibility of the 

proposed tube inside level measurement and prepare the initialization parameters for the 

dynamic model.   

The developed model is based on a straight channel analysis and the helical 

features are represented implicitly by some correction factors with respect to the friction 

factor and the heat transfer coefficient.  Different empirical correlations associated with 

the sub-cooled region, saturated region, and superheated region are used to characterize 

the axially changing pressure losses and heat transfer.  In addition, functional steam and 

water properties are used (Garland and Hoskins, 1988), (Garland and Hoskins, 1989), 

(Garland and Hoskins, 1992). 
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3.3.1 Computation Algorithms 
 

The overall computation starts from the bottom of the steam generator and 

advances upward to the top.  For a given cell, the steady state calculation is achieved 

based on the following iterative algorithm (Lee and Akcasu, 1981): 

 

• Initialize the cell-averaged pressure and enthalpy with the outlet values of the 

previous cell.  

• Iterate over the heat transfer rate and the pressure drop until convergence.  

o Calculate the heat transfer coefficients and the friction factors using the cell 

averaged thermal properties. 

o Calculate the heat transfer rate from the primary side to the secondary side and the 

pressure loss within the cell.  

o Calculate the values of the outlet enthalpy and the outlet pressure. 

o Update the cell averaged pressure and enthalpy of the cell. 

• End the iteration. 

 
The steady heat balance between the primary coolant and the secondary coolant is 

governed by: 
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where  

H  = the specific enthalpy. 

q  = the heat transfer rate. 

W = the mass flow rate. 

s , p  = the subscript or superscript denoting the secondary side and the primary side, 

respectively. 
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If the acceleration pressure drop due to the change of cross section and density is 

ignored, the total pressure drop P∆  at steady state conditions is dominated by the 

frictional pressure drop and gravitational pressure drop, which is given by: 
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where 

ρ  = the density. 

g  = the gravity acceleration. 

A  = the flow cross section. 

f  = the friction factor. 

L∆  = the flow length. 

D  =the hydraulic equivalent diameter. 

 

The heat transfer rate from the primary side to the secondary side with tube length 

L∆  is given by: 
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where the overall heat transfer coefficient U  is given by: 
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T  = the temperature. 

oR  = the tube outside radius. 

iR  = the tube inside radius. 
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h  = the convection heat transfer coefficient. 

MK  = the thermal conductivity of the tube metal. 

 
3.3.2 Heat Transfer Correlations  
 

In the single-phase water and single-phase steam region, the heat transfer 

coefficient can be calculated using Dittus-Boelter correlation (Kuridan and Beynon, 

1997), which is given by: 
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where 

Nu  = the Nusell number. 

Pr  = the Prantl number. 

Re  = the Reynolds number. 

 
In the saturated boiling region, the two-phase convection heat transfer coefficient 

on the secondary side can be calculated using Thom’s correlation (Kuridan and Beynon, 

1997), which is given by: 
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where 

''q  = the heating rate. 

P  = the fluid pressure. 
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3.3.3 Pressure Drop Correlations 
 

Colebrook equation is employed to compute the single-phase friction factor spf , 

which is given by (Smith, 1996): 
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where 

ε  = the average tube roughness. 

sp = the subscript denoting single phase. 

 
In order to take into account the effect of coiled geometry, the same ratio of the 

coil to the straight tube is used for both heat transfer coefficient and friction factor, which 

is given by (Lee, 1978): 
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where  

ccf  =the friction factors for tube coil. 

ssf  = the friction factor for straight tubes. 

CR  = the coil radius. 

 

Modified Chen’s correlation is used to calculate the boiling two-phase flow 

fiction factor in helical coiled tubes given by (Chen 1982): 
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where  
2
10Φ = the two-phase multiplier. 

x = the steam quality. 

crP  = the critical pressure for water. 

lρ  = the liquid phase density. 

gρ  = the vapor phase density. 

 

3.4 Steady State Results 
 

The developed model was tested with the IRIS HCSG design data.  The calculated 

temperature profiles of the primary fluid and the secondary fluid are shown in Figure 3.5.  

The calculated lengths of the sub-cooled region, the saturated boiling region and the 

superheated region are 4.5 m, 21.5 m, and 6.0 m respectively.  The calculated steam 

outlet temperature and the primary inlet fluid temperature are 317.1 C and 327.9 C, 

respectively, which are 317.0 C and 328.4 C obtained by RELAP (Westinghouse, 2002).  

The calculated results are within 0.25% error as compared with the results obtained from 

a more sophisticated code RELAP.  

Figure 3.5 clearly shows the break point of primary fluid temperature when the 

saturated boiling heat transfer transits to the superheated heat transfer at the tube length 

26.0 m.  This break point can be directly used as an indicator to the steam generator water 

inventory. 
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Figure 3.5.  Fluid temperature versus tube length at 100% full power. 

 

Figure 3.6 shows the heat transfer coefficients on the primary side and the 

secondary side.  The heat transfer coefficient on the primary side almost maintains at a 

constant level.  The effective heat transfer is dominated by the boiling heat transfer on the 

secondary side.  The average heat transfer coefficient in the boiling region is about four 

times greater than that in the sub-cooled region and seven times greater than that in the 

superheated region.  The local heat transfer coefficient in the boiling region increases 

linearly with the axial height.  An abrupt increase and an abrupt decrease in heat transfer 

can be observed from the sub-cooled region to the saturated boiling region and from the 

saturated region to the superheated steam region respectively. 

Figure 3.7 shows the steam quality of the secondary fluid.  It is clear that the 

steam quality can be well approximated as a linear function of the axial coordinates along 

the tube.  Based on this observation, a single node with average thermal properties such 

as density can be used to describe the behavior in this region if only quasi-steady state 

transients are to be studied. 

 



 61

 

0 5 10 15 20 25 30 35 0 

1000 

2000 

3000 

4000 

5000 

6000 

7000 

tube length(m) 

he
at

 tr
an

sf
er

 c
oe

ffi
ci

en
t (B

TU
/h

r/f
t*

*2
) 

Primary side
Secondary side

 
Figure 3.6.  Fluid heat transfer coefficients on the primary side and the secondary side at 

100% full power. 

 

 
Figure 3.7.  Steam quality versus tube length at 100% full power. 
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Figure 3.8.  Pressure drop versus the tube length on the secondary side at 100% power. 

 

Figure 3.8 shows the pressure drop on the secondary side.  The major portion of 

the pressure drop occurs in the saturated boiling region.  The total pressure drop is 0.32 

MPa.  This result is within 10% error of the result obtained from a more sophisticated 

code RELAP.  The figure also shows that one pressure can be used to characterize the 

entire superheated region. 

In conclusion, a steady state thermal analysis model of HCSG has been 

successfully developed.  The developed model can be used for fault diagnosis under 

steady state condition and to provide a basis to develop a dynamic process model.  The 

steady state analysis demonstrates that the primary fluid temperature can be used as an 

indicator to the secondary fluid level inside the HCSG tubes. 

 
3.5 Development of HCSG Dynamic Model 
 

A simplified nodal model is developed to simulate the dynamic behavior of 

helical coil steam generators under the environment of MATLAB/Simulink.  In general, a 

dynamic process should be modeled as a distributed parameter system characterized by a 
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set of partial differential equations.  However, it may become too complicated to solve 

such a time dependent system with spatial variations.  To simplify the numeric 

computation, nodal models are sometimes used for an approximate solution.  Each node 

has the same averaged properties, so the spatial dependence can be represented simply by 

the interaction between adjacent nodes.   

 

3.5.1 Model Assumptions 
 

The overall HCSG model is based on conservation laws of mass, momentum, and 

energy.   As a nodal model, the outlet values of the state variables are used as the nodal 

representative values.  Because the designed FDI system is supposed to work under 

quasi-steady state conditions, it is assumed in the developed simulation model that the 

heat transfer coefficients and pressure losses in each heat transfer regime are constant.   

In addition to the assumptions implied in a nodal model, the other major 

assumptions used to build the dynamic model for the helical coil steam generator systems 

are as follows (Chen, 1976): 

 
• Only one pressure is used to characterize the superheated region. 

• The superheated steam satisfies ideal gas law modified by an expansion coefficient. 

• The temperature of the second node in the subcooled region is equal to the saturated 

temperature. 

• The pressure drop between the superheated region and the saturated region is constant 

during any perturbations. 

• The pressure drop between the saturated region and the subcooled region is constant 

during any perturbations. 

• The steam quality in the boiling region can be assumed as a linear function of the 

axial coordinate so the density in the boiling region can be approximated as a function 

of steam pressure. 

• It is assumed that the steam generation rate is equal to the boiling rate. 
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• It is assumed that the heat transfer coefficients are constant for the superheated 

region, the saturated region, and the subcooled region. 

 

3.5.2 Nodalization 
 

Figure 3.9 shows the nodalization scheme to simulate the dynamics of HCSG 

system.  In each of the three heat transfer regimes on the secondary side, two nodes with 

equal length are used to consider the axial temperature changes.  Correspondingly, six 

metal nodes are used to describe the heat transfer from the primary side to the secondary 

side.  For the two nodes of the saturated region on the secondary side, the saturated 

temperature based on the local pressure is superimposed on the fluid.   

 
3.5.3 Primary Side Heat Balance Equations 
 

The primary coolant temperature can be determined based on the heat balance 

equations given by: 
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Figure 3.9.  Schematic of the nodalization for a helical steam generator. 

 

Tp1,Tp2,Tp3,Tp4,Tp5,Tp6 = Temperature of the primary coolant. 
Tw1,Tw2,Tw3,Tw4,Tw5,Tw6 = Temperature of the steam generator tube metal. 
Ts1,Ts2,Tsat,Tsat,Tsc1,Tsc2 = Temperature of the secondary fluid for the superheated 
steam region, the saturated boiling region and the sub-cooled region. 



 66

sL  = the superheated length. 

bL  = the saturated boiling length. 

scL  = the subcooled length. 

pT  = the primary side temperature. 

wT  = the tube metal temperature. 

pW  = the primary coolant flow rate. 

pC  = the specific heat. 

ρ  = the density of the primary coolant. 

xsA  = the flow area. 

h  = the heat transfer coefficient. 

wP  = the perimeter for heating. 

 
In the above equations, subscript p and w  refer to the primary coolant and the 

tube wall respectively. 

 
3.5.4 Tube Metal Heat Balance Equations 
 

A moving boundary model is used to describe the change of energy distribution in 

the tube metal due to the heat transfer regime change on the secondary side during a 

transient.  The energy balance equations for the ith node of the tube metal is given by: 

 

wiibwiwpibwiwpiwiwp QTZACTZACTZAC
dt
d

+−= −−+ 1,11,, )()())(( ρρρ   (3.11) 

where  

iZ  = the length of the ith node of the tube metal. 

wiT  = the temperature of the ith node of the tube metal. 

wpAC )(ρ  = the heat capacity per unit length. 
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wiQ  = the net income of heat due to the effective heat transfer on the primary side and 

the secondary side.  

1, −ibwT , 1, +ibwT = the temperature of the metal node below and above the ith node, 

respectively.  

 

3.5.5 Secondary Side Balance Equations 
 

The state equations of the secondary coolant were derived based on mass and 

energy balance.  Because the pressure waves travel much faster than the fluid velocity, it 

is assumed that a local pressure disturbance will reach anywhere in the system 

simultaneously.  The exit steam pressure is related to the steam temperature through a 

further assumption that the superheated steam satisfies the ideal gas law modified by an 

expansion coefficient.   

The mass balance of the steam in the superheated steam nodes, node 1 and node 

2, are given by: 

 

ss WWM −= 211          (3.12a) 

212 WWM bs −=          (3.12b) 
 
where 

sM = the steam mass in the superheated region. 

sW = the steam flow rate to turbine, which is an external constraint imposed by the 

controller. 

21W = the steam flow rate flowing from the steam node 1 to the steam node 2. 

bW = the steam production rate. 

 
The heat balance equations of the two superheated steam nodes, node 1 and node 

2, are given by: 
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222212222 )( sssgbsssss VPHWHWQVPHM
dt
d

−−+=−   (3.13b) 

 
where 

sM = the steam mass in the superheated region. 

sP = the steam pressure in the superheated region. 

sV = the steam volume in the superheated region. 

sH = the specific enthalpy of the steam. 

gH = the specific enthalpy of the saturated steam. 

21 , ss QQ = the heat transfer rate to the two superheated nodes. 

 
2/)( 111 swswswss TTLPhQ −=        (3.14a) 
2/)( 222 swswswss TTLPhQ −=       (3.14b) 

 
where 

wsP = the heating perimeter in the superheated steam region. 

 
Assuming the pressure loss in the superheated steam region is small, we have: 

 
21 sss PPP ==          (3.15) 

 
Since specific enthalpy is a function of temperature and pressure, then we have: 
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Combining the mass balance equations and the expansion of the specific enthalpy, 

the energy balance equations (Equations (3.13a) and (3.13b)) can be rewritten as follows: 
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The steam pressure in the superheated region can be described by compressibility 

adjusted ideal gas law, which is given by: 
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The time derivative of the steam pressure can then be determined by the following 

equation: 
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where 

stmM = the mole mass of steam. 

*
sZ = the steam expansion coefficient. 

R = the universal gas constant. 

 
Two-phase averaged density is used in the mass and energy balance equations for 

the saturated boiling region.  It is assumed that the steam quality in this region is a linear 

function of the axial coordinate, so the two-phase averaged density bρ  is given by: 
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where 

x  = the steam quality. 
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fv  = the specific capacity of the saturated water. 

gv  = the specific capacity of the saturated steam.   

 

Because both fv  and gv  are dependent only on steam pressure, bρ can then be 

represented as a function of steam pressure. 

The saturated boiling length is determined by the mass balance equations 

involving the boiling rate, the steam flow rate leaving the saturated boiling region into the 

superheated region, which is given by: 
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where 

dbW  = the flow rate leaving the subcooled region for the saturated boiling region. 
 

If we notice 
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In the operation pressure range, we have the following empirical relationship 

between the two-phase average density and the steam pressure (Chen, 1976): 
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Therefore,  
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For not a severe pressure transient, it can be assumed that the boiling rate is equal 

to the steam generation rate bW , which is given by (Chen, 1976): 
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where 

fgh  = the vaporization heat. 
In analogy to the saturated boiling region, the mass balance equation for the 

subcooled region can be given as follows: 
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fwW = the feed water flow rate. 

fwρ = the feed water density. 

fρ = the density of saturated water. 
 

The heat balance equation for the subcooled region 1 is given by: 
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Since the outlet temperature of the subcooled region 1 can be approximated by the 

saturated temperature (Chen, 1976), then 
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where 
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scW  = the flow rate from the subcooled region 2 to the subcooled region 1. 
 

The temperature of the subcooled region 2 can be determined using the heat 

balance equation, which is given by: 
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If we assume 21 scsc MM = , then we have: 
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Substituting the expression of scW  and dbW  into the heat balance equation for the 

subcooled region 1, we have (Chen, 1976): 
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Noticing the pressure relationship between scP , satP  and sP , we have: 
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where 

scP  = the pressure in the subcooled region. 

satP  = the pressure in the saturated region. 

tpbP∆  = the two phase pressure loss in the boiling region. 

spscP∆  = the single phase pressure loss in the subcooled region. 

spssP∆  = the single phase pressure loss in the superheated region. 

 
3.5.6 HCSG Pressure Controller 
 

The overall control objective of the HCSG system is to supply adequate amount 

of steam to meet the demand of turbine system.  As power demand changes, the turbine 

throttle valve changes its position to follow the set point changes of turbine header 

pressure.  In the meantime, in order to prevent the carryover of water to the turbine 

system or dry-out of the steam generator tubes, a feedforward controller is used to 

suppress a possible large mismatch between the feed water flow rate and the steam flow 

rate.  The combination of the steam pressure feedback control and the feed water flow 

rate feedforward control is able to effectively control the steam generator pressure.  

Because the steam pressure is tightly related to the saturated boiling length, the system 

stability can be ensured through the steam pressure control during power transients.  

Figure 3.10 shows a schematic of the steam generator pressure control. 

Since the steam pressure is maintained by regulating the steam flow rate, the 

steam flow rate can be determined by the following equation (Guimaraes, 1992): 
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Figure 3.10.  Schematic of the helical coil steam generator control system. 

 
where 
u  = the controller output. 

sτ  = the time constant. 

0sW  = the initial steam flow rate on the secondary side. 

stC  =  the adjustable parameter. 

 

If a PI controller is used, the controller output has both the proportional part 

)(1 tu and the integral part )(2 tu , which is given by (Guimaraes, 1992): 
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where 

=1k  the proportional gain. 

=2k  the integral gain. 
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Table 3.1.  Model parameters and steady state performance of dynamic HCSG modeling. 

 

Process Variable Heat Balance Model Results 

Saturated boiling length (m) 21.5 22.36 

Sub-cooled length (m) 4.5 4.42 

Cold leg temperature (oC) 292.1 291.98 

Steam temperature (oC)  317.1 316.59 

 

 

tbP = the turbine header pressure. 

setP = the turbine header pressure setpoint. 

0P = the nominal turbine header pressure. 

 

In summary, twenty-one state variables, each of which corresponds to one 

differential equation, are actually used in the developed simulation model.  They include 

the temperatures of the six nodes on the primary side, the temperatures of the six tube 

metal nodes, the temperatures of the two superheated steam nodes, the temperatures of 

the two secondary side sub-cooled nodes, the steam pressure, the saturated boiling length, 

the sub-cooled length, the steam flow rate, and the controller output.  Matlab/Simulink 

built-in algorithms are available for the solution to these coupled differential-algebraic 

equations.   

 

3.6 HCSG Transient Results 
 

A steady state analysis is performed using the developed dynamic model for full 

power operation.  A comparison with the heat balance results is shown in Table 3.1.  The 
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calculated lengths of the sub-cooled region, the saturated boiling region and the 

superheated region are 4.42 m, 22.36 m, and 5.22 m, respectively.  The calculated steam 

outlet temperature is 316.59 oC and the primary outlet fluid temperature is 291.98 oC.  

The calculated results are in good agreement with the heat balance results for all the 

measured variables.   

Figures 3.11 (a) and Figure 3.11 (b) show the open-loop responses of the cold leg 

temperature and the steam outlet temperature due to the hot leg temperature step increase 

of 1oC and the feed water flow rate 1% step increase, respectively.  During the hot leg 

temperature transient, the disturbance moves from the top to the bottom.  The steam 

pressure first increases as the steam temperature increases.  The increased steam pressure 

causes the saturated temperature in the saturated boiling region to increase.  When the 

disturbance of the hot leg temperature moves to the saturated boiling region and the sub-

cooled region, the saturated boiling length and the sub-cooled length will decrease.  As a 

result, the superheated length becomes longer and the steam temperature continues to 

increase.  The entire transient stops when the steam pressure goes back to its initial level 

due to the self-regulation of steam pressure when the steam temperature increases and the 

superheated steam length increases.  In the end, the steam outlet temperature increases, 

the cold leg temperature increases, and the saturated boiling length and the sub-cooled 

length decrease. 

During a feed water flow step increase transient, the disturbance moves from the 

bottom to the top.  When the feed water flow rate increases, the sub-cooled length will 

increase and the superheated steam length will decrease.  This decrease in the 

superheated steam length explains the initial decrease of the steam temperature.  As the 

disturbance moves to the saturated boiling region, the saturated boiling length will also 

increase and result in further decrease in the superheated steam length, which will lead to 

additional decrease in the steam temperature and increase in the steam pressure.  The 

entire transient stops when the steam pressure stabilizes at a higher level to maintain the 

balance between the steam flow rate and the feed water flow rate.  The transient ends up 

with a deceased steam temperature, a decreased cold leg temperature, an increased 

saturated boiling length, and an increased sub-cooled length. 
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Figure 3.11 (a).  Steam temperature open-loop responses due to feed water flow and hot 

leg temperature transients. 
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Figure 3.11 (b).  Cold leg temperature open loop responses due to feed water flow and 

hot leg temperature transients. 
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Figures 3.12 (a) and Figure 3.12 (b) show the closed-loop responses of the cold 

leg temperature and the steam outlet temperature due to the hot leg temperature step 

increase of 1oC and the feed water flow rate 1% step increase, respectively.  As compared 

with the open loop responses, the response time has been significantly reduced after the 

steam pressure has been controlled because the HCSG steam pressure is sensitive to the 

system disturbances. 

 
3.7 Summary 
 

A steady state model has been developed for the IRIS helical coil steam generator 

to prepare the initialization parameters for the dynamic model and investigate the 

proposed method of tube inside level detection based on the shell side fluid temperature 

profile.  This model is based on a straight channel analysis with the helical features 

represented implicitly by some correction factors with respect to friction factors and heat 

transfer coefficients.  Different empirical correlations associated with the sub-cooled 

region, the saturated region and the superheated region are used to characterize the 

axially different pressure loss and heat transfer.  The calculated primary outlet 

temperature and the steam outlet temperature are within 0.5% error of the results obtained 

from a more sophisticated code RELAP.  The calculated primary coolant temperature 

profile has also demonstrated that a clear breakpoint exists when the saturated boiling 

heat transfer transits to the superheated heat transfer.  This breakpoint determined from 

the primary fluid temperature measurements can be used to indicate the steam generator 

tube inside water level.   

A dynamic model has also been developed to study the dynamic responses of the 

IRIS helical coil steam generator systems and generate data to study the subspace 

identification technique in Chapter 6.  The developed dynamic model is a nodal model 

based on conservation laws of mass, momentum, and energy.  The steady state 

performance and the typical results of transient analysis have demonstrated that the 

developed dynamic model is able to characterize the dynamic behavior of the HCSG 

system with reasonably good accuracy.  The developed dynamic model can be used to 

study the control and fault diagnosis of IRIS HCSG system. 
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Figure 3.12 (a).  Steam temperature closed-loop responses due to feed water flow and hot 

leg temperature transients. 
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Figure 3.12 (b).  Cold leg temperature closed-loop responses due to feed water flow and 

hot leg temperature transients. 
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Chapter 4 
 

Sensor Placement Design 
 

In this dissertation, performance monitoring is defined as a task to estimate 

performance related parameters using available measurements with measurement noise 

removed for individual components in nuclear power plants.  Fault diagnosis is defined as 

a task to detect and isolate a fault of sensors, actuators, controllers, and equipment.   

Sensor placement is an important issue for both control and design of a 

performance monitoring and fault diagnosis system for nuclear power plants.  Without 

appropriate sensor placement, process performance monitoring and fault diagnosis would 

become very limited in its correctness and reliability.  In order to detect a process fault 

and locate its root cause, sensors must be placed such that the fault effects can be 

observed and the observed symptoms should exhibit different patterns for different faults.  

When process performance is to be monitored, the performance related parameters must 

be inferable from available measurements.  If analytical redundancy is used to monitor 

critical measurements for better process supervision, sensor placement must ensure that 

these critical measured variables can be determined with adequate precision from 

functional relationships. 

The role of sensor placement in performance monitoring and fault diagnosis has 

not been appreciated in nuclear power plant design.  Part of the reason is attributed to the 

lack of communication between research and engineering design.  The engineers in 

industry did not fully understand what analytical redundancy could do for performance 

monitoring and fault diagnosis.  The researchers did not pay enough attention to the full 

picture of performance monitoring and fault diagnosis to achieve the required 

engineering objectives.  However, to design an efficient performance monitoring and 

fault diagnosis system for nuclear power systems, sensor placement is indeed an issue 

that must be addressed in the design phase. 
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Figure 4.1.  Procedure of sensor placement design for fault diagnosis.  

 

A systematic design approach to sensor placement for fault diagnosis is developed 

in this dissertation.  Figure 4.1 shows the procedure of this approach.  After the objective 

of process performance monitoring and fault diagnosis is defined, the cause-effect 

relationships among the involved variables are first studied using causal graph theory to 

determine the minimum set of sensors such that the considered process faults, which are 

represented by some deviation from certain reference values, can be detected and 

isolated.  The reference values are usually calculated by a reliable simulation model using 

the related reference inputs for a given operation condition.   

To determine the deviation from the reference values for reliable process fault 

diagnosis, it is required that the measured variables should have no instrument faults 

associated with them.  Fortunately, because most process faults do not lead to the 

violation of mass balance and energy balance equations, these balance equations can 

actually be used for instrument monitoring without the interference of process faults.  If 

sensor fault diagnosis is based on mass balance and energy balance equations, which is 

assumed in this dissertation, the second step of sensor placement design is to ensure the 

estimatability of the measured variables by performing redundancy and observability 

analysis.   

However, even if a variable can be estimated using balance equations, it is still 

likely that the estimated value may not have enough precision for reliable instrument 

monitoring as well as performance parameter estimation.  It is observed that a measured 
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variable can be validated efficiently only if the related variable is sensitive in the 

corresponding balance equations.  Therefore, it is necessary to perform a sensitivity study 

for efficient sensor fault diagnosis, which is the last step of sensor placement design 

shown in Figure 4.1.  In this dissertation, data reconciliation is introduced as a 

generalized approach to study the sensitivity of a variable in balance equations for sensor 

placement design.   

 

4.1 Guidelines for Sensor Placement 
 

In instrumentation and control system design, the purpose of sensor placement is 

to select appropriate variables to achieve the defined operation requirements.  

Specifically, sensor placement design needs to consider process control, operation 

performance monitoring, and fault diagnosis.  Among the three objectives, only the 

sensor placement design for control is well studied, and very little research is reported for 

performance monitoring and fault diagnosis. 

 
4.1.1 Sensor Placement for Control 
 

The sensor placement for process control is to determine the controlled variables 

and the manipulated variables to achieve the designed control objectives.  In most control 

practices, it is necessary to place sensors to measure the controlled variables and the 

manipulated variables.  However, in some cases, it is also necessary to measure 

additional process variables for tuning controllers and monitoring control loop 

performance. 

The selection of controlled variables is mainly concerned with the process 

requirements.  The general guideline is that the controlled variables should include: (1) 

not self-regulating variables, (2) environment and equipment safety critical variables, (3) 

process performance critical variables, (4) the variables that have strong interactions with 

other control variables, and (5) the variables with favorable static and dynamic 

characteristics (Bagajewicz, 2001). 
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The selection of manipulated variables should ensure that the controlled variables 

be controlled in a satisfactory manner.  The steady state gain between the manipulated 

variables and the controlled variables should be as large as possible and the dynamic 

response of the controlled variables should be as timely as possible. 

The selection of additional measurements is mainly focused on supervising 

operation conditions.  The plant operation conditions are usually defined by a set of state 

variables.  If possible, a direct measurement of these state variables is desired.  If not 

possible, these states also need to be estimated accurately based on functional 

relationships.  In either case, these measurements must be a sensitive function of the plant 

operation conditions. 

 
4.1.2 Sensor Placement for Performance Monitoring and Fault 

Diagnosis 
 

The sensor placement design for performance monitoring is to select appropriate 

variables such that the operation performance parameters can be determined using 

functional relationships.  If the functional relationships of a system are given, the 

selection of variables is to search the best set of measurements such that the performance 

parameters can be inferred most accurately and precisely.   

To select variables for fault diagnosis, it is necessary to distinguish between 

process faults and sensor faults.  A process fault is defined as a deviation from the 

expected normal operation conditions.  One type of process faults is related to the 

deviation of a single process variable from its reference value, one example of which is 

flow abnormality.  For this kind of process faults where mass balance and thermal 

balance equations will not be violated, the selection of variables to detect and evaluate 

theses faults is to ensure that the related variables can be accurately estimated based on 

the given balance equations.   

The second type of process faults is related to the deviation of multiple process 

variables from some reference values.  Inappropriate setting of some process variables for 

a given operation condition is such an example.  In this case, fault symptoms are 
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manifested by abnormal deviation of multiple process variables from the reference values 

for this operation condition.  The selection of variables to detect and distinguish such 

process faults is to ensure the observability of these process variables through adequate 

sensor placement.   

A sensor fault corresponds to malfunction of an instrument either due to a 

transducer problem or due to an electrical circuit problem.  For sensor faults, mass 

balance and thermal balance equations will be violated due to the incorrect measurements 

if the related variables appear in these equations.  The selection of variables to detect and 

rectify sensor faults depends on the functional redundancy and the sensitivity of the 

measured variables in the balance equations.   

It is common that a technical process involves many degrees of redundancy for 

one variable because process variables are related to each other through balance 

equations due to the network architecture of components in a large thermal-fluid system.  

In order to take advantage of this, sensor fault diagnosis should usually be performed 

using plant-wide balance equations.  After the measured variables are validated, process 

fault diagnosis can then be performed using component based simulation models.  The 

component based simulation models, in general, constrain additional degrees of freedom 

due to the limitation on operation states as compared with the balance equations where 

each component is treated as a unit.  To detect and distinguish process faults, component 

based simulation models should be able to determine the reference values of the selected 

variables for process fault detection and isolation. 

Because simulation models always have uncertainty and process parameters are 

always varying throughout the lifetime of a component, component based simulation 

models must be tuned on a regular basis such that the models used for process fault 

diagnosis and performance evaluation can represent the most current operation 

conditions. 

 
4.2 Sensor Placement Design for Process Fault Diagnosis 
 

Directed Graph (DG) based approach was developed in this dissertation to 

determine the sensor placement requirements for process fault diagnosis.  In this 
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approach, directed graph is used to describe the propagation of fault effects and cause-

effect analysis is performed using graph theory to design sensor placement.    

 
4.2.1 Graph Representation of a Process 
 

Signed Directed Graph (SDG) and Directed graph (DG) are two most popular 

graph methods to represent the cause effect relationships among plant variables (Kramer 

and Palowitch, 1987).   

 

4.2.1.1 Sign Directed Graph 
 

In SDG, process variables are represented by individual nodes and the causal 

relationships between the nodes are represented by signed directed arcs.  The states of 

process variables can take qualitative values such as nominal, high or low.  For a 

measured variable, its values can be determined by a comparison with its reference value 

obtained from a simulation model.  A directed arc can take positive or negative sign, 

which corresponds to positive or negative influence, respectively.  A root node in sign 

directed graph is connected with at least one effect node but is not connected to any 

causal nodes.  The fault symptoms of a process fault are characterized by a set of nodes 

that take abnormal values.   

Causal analysis may be ambiguous for SDG representation in several situations 

(Wang and Song, 2002).  If multiple paths from node A to node B exist, the product of 

the arcs along the paths from node A to node B may give different sign products for 

different paths.  For this reason, the directional effects of a change in node A to node B 

may be ambiguous.  If this happens, additional quantitative information is needed to infer 

the directional effect of a fault at node A on node B.   

Another ambiguity may arise for negative feedback control loops (Bhushan and 

Rengaswamy, 2000).  A simple feedback control loop, which is shown in Figure 4.2, 

consists  of a  node  CV  representing the controlled variable, a node  M  representing  the  
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Figure 4.2.  SDG graph of a simple feedback control loop. 

 

measured variable, a node C representing the controller, a node V representing the 

actuation mechanism, and a node W representing the regulated variable.  When a 

disturbance at node F enters the control loop, the disturbance gets into the control loop 

propagating the disturbance to the node controller (C) via the node M.  The resulting 

change in actuation mechanism (V) regulates the variable W.  The node W will have a 

negative feedback effect on and compensate for the disturbance on the node CV.  After a 

new steady state condition is reached, the node CV and the node M will become normal.  

However, the node C, the node V, and the node W will remain at the values, which are 

different from the normal, that have caused CV back to the normal value.   

This analysis shows that the arc from the node M to the node C is not causal.  In 

other words, even if node C (controller) is abnormal, it does not necessarily indicate that 

its preceding node M (measurement of controlled variable) is abnormal.  Therefore, 

owing to the noncausal connection, an abnormal node M may or may not cause an 

abnormal node C. 

The U Tube Steam Generator (UTSG) water level control system in PWR is 

shown as another example to illustrate the ambiguity caused by a feedback control loop.  

This system has a three-element controller to control the water level in the steam 

generator as is shown in Figure 4.3.  The three elements are steam flow, feed water flow, 

and steam generator water level.     The  reference  water  level  is  a  function  of  turbine  
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Figure 4.3.  UTSG water level control system.  
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load and steam dump rate through steam dump valves.  The SG level error signal is the 

reference level minus the measured level.  The flow mismatch error is the fractional 

steam flow rate minus the fractional feed water flow rate.  The combination of the SG 

level error and the flow mismatch error is used as the input to the controller.  The 

controller output is used to manipulate the feed water control valve position.  Because the 

main control purpose of the SG level control system is to control the SG water level, the 

level error has been multiplied by a gain in order to dominate the flow mismatch error 

signal.   

Figure 4.4 shows the SDG for the steam generator system.  The node F is a sensor 

fault that affects the indicated steam generator water level (L_ind).  When the node F is 

abnormal, the disturbance gets into the control loop transmitting the disturbance to the 

node controller (Ctr).  The resulting change in feed water control valve position (FCV) 

regulates the feed water flow rate Wf.  The feed water flow rate change will have a 

negative feedback effect on the true steam generator water level (L_CV) and will 

compensate for the disturbance on the indicated steam generator level (L_ind).   

Once a new steady state is reached, the steam flow rate and the feed water flow 

rate must be equal and the indicated steam generator level is equal to the reference steam 

generator level.  If we notice that the steam generator pressure will not have a significant 

change for an incipient steam generator level sensor fault, the indicated SG level, the 

controller output Ctr, the feed water control valve position FCV, and the feed water flow 

rate Wf will all go back to their normal values at steady state conditions.  However, the 

fault effects can be seen in the node L_CV.   

From this analysis, it is found that the arc from the node L_CV to the node L_ind 

is not causal.  Although the node L_CV is abnormal, the node L_ind can be normal after 

a sensor fault of the SG level measurement occurs.  In other words, owing to the 

noncausal connection, an abnormal node L_CV may or may not cause an abnormal node 

L_ind. 

In fact, in order to observe a SG level sensor fault, it is mandatory to place an 

additional sensor that can observe the change of the true SG level. 
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Figure 4.4.  SDG graph of nuclear UTSG system. 

 
4.2.1.2 Directed Graph 
 

Although SDG provides more information about the studied process in terms of 

the cause effect relationships among variables than Directed Graph, Directed Graph is 

more convenient for sensor placement design.  In reality, it is sufficient to know which 

variable is associated with a process fault and whether the process variable is high or low 

does not provide significant information for fault diagnosis.  Therefore, DG graph 

approach is investigated in this dissertation for sensor placement design. 

The fundamental difference between a SDG graph and a DG graph is that the 

causal relationships represented by them are different.  The arcs in DG graph represent a 

sufficient cause effect relationship.  An arc from node A to node B in a DG graph means 

that an abnormal node A is a sufficient condition to cause an abnormal node B for all the 

considered operation conditions.  On the other hand, an arc from node A to node B in 

SDG graph only represents that an abnormal node A may or may not cause an abnormal 

node B.  For example, in the SDG given in Figure 4.4, node L_CV may be abnormal but 

node L_ind may still be normal if a sensor fault occurs to the node L_ind.  

DG graph can be obtained by a simple reduction of the corresponding SDG graph.  

The SDG graph may consist of noncausal paths and cycles.  When it is reduced to DG 

graph, the noncausal paths and the cycles must be removed and the directional sign of the 

SDG graph is simply ignored. 
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4.2.2 Sensor Placement for Process Fault Detection 
 

The sensor placement for process fault detection needs to locate the minimum set 

of sensors such that all the considered process faults can be observed.  This is equivalent 

to choosing a minimum set of nodes in DG graph such that all of them have connections 

with the root nodes to represent the process faults.  If cyclic nodes are collapsed into 

supernodes in DG graph, the problem can be simplified as finding the minimum subset of 

sensors such that there is at least one directed path from all the root nodes.   

Although a simple enumeration can be made for a small system, a systematic 

approach needs to be used for a large system.  In this approach, the first step is to build a 

“bipartite” graph, which consists of a causal set including all the root nodes and an 

observability set including all the nodes with only input arcs in the DG.  In fact, it can be 

proved that the observability set obtained in this manner contains the key variables that 

are sufficient to observe all the process faults represented by the root nodes in the 

DG.After a bipartite graph is obtained from the DG, a subset of the key variables can be 

chosen from the observability set as the minimum sensor requirements for process fault 

detection based on the Greedy search algorithm developed by Raghuraj et al., 1999.  This 

algorithm is summarized as follows: 

 

(1) Construct a bipartite graph between the root nodes and the key variables in the 

observability set. 

(2) Select one variable among the unmarked key variables that has the largest number of 

input arcs. 

(3) Mark the selected key variable in step (2) and store it in C. 

(4) Find out all the root nodes covered by C (a root node is covered by C if it has at least 

one arc connections with the elements in C). 

(5) If there exist uncovered root nodes,  

delete all the arcs from the root nodes determined in Step (4), 

go to step (2). 

else 
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output the set C and stop. 

(6) end. 

 

If there are no redundant key variables in the observability set, the basic Greedy 

search algorithm is able to determine the minimum set of sensors for fault detection.  

However, after a variable has been selected, the subsequently selected variables may also 

cover the same root nodes that have already been covered by the previously selected 

variables.  In this case, the selected sensors using the basic Greedy search algorithm will 

contain redundancy for fault observation and thus are not the minimum result.  In order to 

remove the redundant key variables, the location of the minimum set of sensors can be 

performed using the improved algorithm developed by Raghuraj et al., 1999.  The 

improved algorithm is summarized as follows: 

(1) Initiate C and G as empty sets. 

(2) Construct a bipartite graph between the root nodes and the key variables in the fault 

observability set. 

(3) Select a variable among the unmarked key variables based on the largest number of 

incident arcs.   

(4) Mark the selected key variable in step (2) and store it in C. 

(5) Find out all the root nodes covered by C. 

(6) If there exist uncovered root nodes,  

delete all the arcs from the root nodes covered by the selected variable to all the 

previously marked key variables, 

store in a buffer set G all the arcs from the root nodes covered by the selected variable to 

the unmarked key variables . 

go to step (3). 

else 

remove the variables from C that do not have arcs incident on them based on the arcs 

stored in G. 

output the set C and stop. 

(7) end. 
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The number of incident arcs used in Step (3) is defined as the difference between 

the actual number of arcs incident on a key variable and the number of arcs incident on 

the same key variable that have been stored in the buffer set G.  After the algorithm is 

completed, the same set of key variables can be obtained in C as is obtained from the 

Greedy search algorithm.  However, the redundant key variables will be stored by 

tracking the arcs stored in the buffer set G that do not have a connection with the marked 

key variables.  To determine the minimum set of sensors, the redundant key variables 

must be removed from the obtained key variables stored in C. 

 

Example:  Consider a simple example with the bipartite graph shown in Figure 4.5 to 

illustrate the Greedy search algorithm to determine the minimum set of sensors for 

process fault detection (Adapted from Raghuraj et al., 1999).  In this example, there are 

six root nodes, R1, R2, R3, R4, R5, and R6 and there are four variables M1, M2, M3, and 

M4 in the observability set.  

Based on the basic Greedy search algorithm, M1 will be selected as the first 

marked variable for the first iteration because it has the largest number of incident arcs, 

which is three in this case.  For the following three interactions, M2, M3, and M4 will be 

sequentially selected as the marked variables.  In the end, the entire observability set 

including M1, M2, M3, and M4 will be selected to observe the six root nodes.  

Obviously, a simple examination of the bipartite graph shows that the minimum set of 

variables to observe all the root nodes is M2, M3, and M4.  The reason why the basic 

greedy search algorithm fails is that the key variables in the observability set have 

redundant information. 

 

R1 R2 R3 R4 R5

M1 M2 M3

R6

M4

R1 R2 R3 R4 R5

M1 M2 M3

R6

M4
 

 

Figure 4.5.  An illustration of the improved Greedy search algorithm. 
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According to the improved Greedy search algorithm, for the first iteration, M1 

will also be selected as the first marked variable and stored in set C because it has the 

largest number of incident arcs, which is three in this case.  Meanwhile, the arcs from R1 

to M2, R2 to M3, and R3 to M4 will be stored in set G because R1, R2, and R3 are 

covered by the selected variable M1 and the variables M2, M3, and M4 still have not 

been marked yet at this stage.  After the following four iterations, the entire observability 

set, including M1, M2, M3, and M4, will be stored in set C and set G will contain the arcs 

from R1 to M2, R2 to M3, and R3 to M4.  As a result, M1 is a marked variable in set C 

that does not have an arc stored in set G incident on it.  Therefore, M1 should be removed 

from the set G and the minimum set of variables to observe all the root nodes only 

contain M2, M3, and M4.  This result is in agreement with the simple examination of the 

bipartite graph. 

 

4.2.2 Sensor Placement for Process Fault Isolation 
 

The objective of locating sensors for process fault isolation is to determine a set of 

variables in the corresponding DG graph that can distinguish the effects of all the process 

faults.  For a set of root nodes, let iA  denote the set of nodes connected to the ith root 

node.  The optimal set of sensors C  should be a minimum subset of the set ii AO ∪=  

such that the subset iC  of C  that are connected to the ith root node is different from the 

subset jC  of C  that are connected to the jth root node for any one pair of root nodes.  In 

addition, the optimal set should still ensure the fault observability. 

A bipartite graph also needs to be built before a graph theory based algorithm can 

be used for sensor placement design for process fault isolation.  The causal set of this 

bipartite graph includes a set of pseudonodes ijB , each of which denotes a pair of root 

nodes i and j to be distinguished.  The corresponding observability set includes the key 

variables that can distinguish each pair of the process faults represented by the 

pseudonodes. 
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The minimum set of sensors for process fault isolation can also be determined 

using the algorithm developed by Raghuraj et al., 1999.  This algorithm is summarized as 

follows: 

(1) Determine the set of key variables consisting of the different members of iA  and jA  

that covers the pseudonode ijB , which denotes the resolution of the root nodes i and the 

root node j 

(2) Construct a bipartite graph between the set of pseudonodes and their observability set. 

(3) The individual root nodes are added to the causal set of the constructed bipartite 

graph. 

(4) Apply the algorithm in Section 4.2.1 to determine the minimum set of variables that 

can cover all the root nodes and the pseudonodes. 

The selected variables based on this algorithm can ensure that the specified 

process faults can be detected and distinguished. 

 

4.3 Redundancy and Observability Analysis 
 

Process fault diagnosis is reliable only if the related measurements do not have 

instrument faults, so an integrated fault diagnosis system must also address sensor 

placement design for sensor fault diagnosis. 

If sensor faults are diagnosed based on analytical redundancy, no matter what 

specific diagnostic methods are used, a malfunctioning sensor can be detected, identified, 

and rectified only if the related variable can be estimated using functional relationships.  

Therefore, in sensor placement design for sensor fault diagnosis, it is necessary to 

analyze the redundancy and observability of variables in the functional relationships. 

For nuclear power systems, the most commonly used functional relationships are 

steady state conservation equations, which are considered as the basis for sensor 

placement design for sensor fault diagnosis in this dissertation.  The basic steady state 

conservation equations include mass balance, energy balance, and momentum balance, 

which are given as follows: 
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where  

inG  = the inflow mass flow rate. 

outG  = the outflow mass flow rate. 

inh  = the specific enthalpy of the inflow fluid. 

outh  = the the specific enthalpy of the outflow fluid. 

inP  = the inlet pressure. 

outP  = the outlet pressure. 

1∆ , 2∆  = the correction terms for heat loss and additional pressure loss. 

a  = a factor dependent on geometry and fluid condition.   

ρ  = the fluid density. 

g  = the gravity acceleration. 

z  = the vertical difference between the inlet and the outlet. 

 

In the design phase, the correction terms can be ignored.  During plant operation, 

the correction terms and the coefficient terms can be determined using standard 

regression methods based on available operation data. 

For a nuclear power plant, the sensor configuration becomes a sensor network 

with the measured variables coupled by functional relationships given in Equation (4.1).  

Among a given set of sensors, these equations will provide information about whether a 

sensor is deemed redundant from analytical redundancy point of view and whether an 

unmeasured variable is observable from the available sensors. 

In this section, the redundancy and observability analysis for sensor placement 

design is presented as a variable classification problem.  Although sensor placement 
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design is method dependent, variable classification gives a theoretical solution to the 

design.  

 
4.3.1 Variable Classification for Linear Systems 
 

For linear systems, sophisticated methods exist to classify unmeasured variables 

as observable and unobservable, and classify measured variables as redundant and non-

redundant.  An easy implementation algorithm is orthogonal transformation based on Q-

R decomposition (Sanchez and Romagnoli, 1996).  

For steady state conditions, a linear system equation representing functional 

relationships is given as follows: 

 

cBuAx =+           (4.2) 
where 

x  = the set of measured variables. 

u  = the set of unmeasured variables. 

A, B, c= the compatible matrices and vector. 

 

In order to decouple the measured variables x  from the unmeasured variables u  

in Equation (4.2), Q-R decomposition can be performed on the matrix B , which is given 

by: 

 

uuu RQBE =           (4.3) 

 

where 

uE = a column permutation matrix on B  and Ι=T
uu EE . 

 

[ ]21 uuu QQQ =          (4.4) 

⎥⎦
⎤

⎢⎣
⎡= 00

21 uu
u

RRR          (4.5) 
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where 1uR  is a square and non-singular upper triangular matrix of the same dimension as 

the rank of B . 

Because the matrix uQ  is orthonormal, if Equation (4.2) is left multiplied by T
uQ , 

we have: 
 

[ ] cQuERRAxQ T
u

T
uuu

T
u 1211 =+        (4.6) 

cQAxQ T
u

T
u 22 =          (4.7) 

 

Because 1uR  is a nonsingular matrix with its rank ur  equal to the rank of matrix 

B , the first ur  unmeasured variables ruu  with the row permutation T
uE  acted on the 

original column vector can be determined by: 
 

)( 211
1
1 runu

T
u

T
uuru uRAxQcQRu −

− −−=       (4.8) 

 

where  

n  = the number of unmeasured variables.   

 

Equation (4.8) indicates that the set of unmeasured variables in runu −  are 

unobservable.  The unmeasured variables are all observable only if nru =  when the last 

term disappears in the equation.  In addition, if a variable in the set ruu  is observable, the 

corresponding row of matrix 2
1
1 uuIU RRR −=  must be equal to zero. 

Equation (4.7) can be rewritten as follows: 

 

bGx =           (4.9) 

 

where 

AQG T
u 2=           (4.10) 
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cQb T
u 2=           (4.11) 

 

Equation (4.9) implies that a measured variable is not redundant if the 

corresponding columns of the matrix G  are all zeros.  This is because such variables will 

not participate in the derived balance equations.   

A simple example is shown here to illustrate how Q-R decomposition is used for 

variable classification of a linear system.  Given a system, shown in Figure 4.6 (adapted 

from Romagnoli and Sanchez, 2000), three constraint equations of mass balance are 

defined as follows: 

 

G1+G2-G3=0 

G3-G2-G4=0 

G4+G5-G6=0 

 

where  

G1, G4, G5 = measured flow rates. 

G2, G3, G6 = unmeasured mass flow rates. 

 
Step 1: Let us represent the balance equations in two terms corresponding to the 

measured and the unmeasured variables respectively.  For the case problem, the two 

matrices are as follows: 

 

5
1

3 4 6

2

Measured flow rate

Unmeasured flow rate

5
1

3 4 6

2

Measured flow rate

Unmeasured flow rate
 

Figure 4.6. Example system for variable classification. 
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Step 2: Perform a Q-R decomposition, which gives the related matrices as follows: 
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Then the unmeasured variables can be partitioned into the first subset ruu  and the 

second subset runu −  based on the following permutation: 

 

⎟
⎠
⎞⎜

⎝
⎛= 6

2
G
Guru      ( )3Gu run =−  

 

Therefore, G3 is definitely unobservable because it cannot be estimated from the 

available measurements.   

 

Step 3: Determine the redundant relationship among the measured variables, which is as 

follows: 
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Therefore, we can conclude that both the measurements G1 and G4 are redundant 

and G5 is nonredundant based on the coefficient matrix. 

 

Step 4: Determine which unmeasured variables in the subset ruu  are observable based on 

the matrix IUR . 

If we calculate 2
1
1 uuIU RRR −= , the result is as follows: 

⎟
⎠
⎞⎜

⎝
⎛−= 0

1
IUR  

Because the second row of IUR  is zero while the first row is non-zero, we 

conclude that 2G  is unobservable and 6G  is observable. 

In conclusion, the observability analysis shows that G2 and G3 are unobservable 

and G6 is observable and the redundancy analysis shows that G1 and G4 are redundant 

and G5 is non-redundant.  If Figure 4.6 is examined, the results indeed have meaningful 

physical interpretation. 

 

4.3.2 Variable Classification for Bilinear Systems 
 

Although nonlinear balance equations can be linearized around some operation 

points, the variable classification algorithm for linear systems may give incorrect results 

of observability and redundancy analysis.  If we notice that thermal conservation 

equations are essentially bilinear because the temperature variable and the flow variable 

appear in terms of products, it is useful to extend the QR algorithm to deal with bilinear 

systems for variable classification. 

In the bilinear variable classification algorithm developed by Sanchez, 1996, the 

first step is to classify the pair of variables (F, T) into three categories of energy flow 
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based on which component is measured, where F represents flow rate and T represents 

temperature.   

 

Category I: both the temperature and the flow rate are measured.   

Category II: the temperature is measured but the flow rate is not measured.   

Category III: the temperature is not measured.   

 

After the energy flow rate is categorized, the heat balance equations can be 

rewritten as follows: 

 
0321 =++ νBVdBfB         (4.12) 

 

where  

f  = the enthalpy flow rate of category I. 

d  = the specific enthalpy of category II enthalpy flow. 

ν  = the enthalpy flow rate of category III. 

V  = the unmeasured mass flow rate of category II enthalpy flow. 

 

Since the specific enthalpy of category II enthalpy flow can be calculated from 

the measured temperature, it can be decomposed into two components as follows: 

 

ddd ~ˆ +=           (4.13) 

 

where 

d̂  = the specific enthalpy consistent with the measured temperature. 

d~  = the correction term of the specific enthalpy, which is to be determined such that the 

energy balance equations will be satisfied. 
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Let’s introduce a new variable dV~
=θ , which corresponds to the correction term 

of enthalpy flow rate, and then we have: 

 

dVBBVdB ˆ
222 += θ         (4.14) 

 

If we separate the mass flow rate into the measured part MF  and the unmeasured 

part UF , the heat balance equation given by Equation (4.12) can be further rewritten as 

follows: 

[ ] 00 3521 =
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where 

dBB ˆ
25 =  

 

At this step, Equation (4.15a) can now be rewritten through adjusting the related 

matrices to incorporate the mass balance equations and is given by: 

 

[ ] 03521 =
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BBBBO        (4.15b) 

where the matrices O  and 5B  have been adjusted to include mass balance equations and 

the matrices 1B , 2B  and 3B  have been modified accordingly by adding appropriate 

zeros. 
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For a set of mass flow rate and temperature measurements, i.e., MF , f , and d̂  

are known, Equation (4.15b) indicates that the measurements can be adjusted through 

appropriate correction terms 
MFδ , fδ , and θ  such that the specified mass balance and 

heat balance equations are strictly satisfied.  The correction terms satisfy the following 

equation: 
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where  
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The second step of bilinear variable classification is to eliminate the unmeasured 

variables in Equation (4.16).  This can be done by a successive QR decomposition on the 

matrix 5B  and 3B , which results in the following equations: 

 

eQFBQtBQ T
BU

T
B

T
B 2,352,3112,3 =+        (4.17) 

 

where 

032,3 =BQT
B  

 

Let 52,3 BQD T
B= , and a QR decomposition can be further performed for the 

matrix D , which gives the following equation: 
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eQQtBQQ T
B

T
D

T
B

T
D 2,32,112,32, =         (4.18b) 

 

where 

02, =DQT
D  

 

All the unmeasured variables have been eliminated in Equation (4.18b) using two 

successive QR decompositions.  Let 112,32, BQQG T
B

T
D= , the zero columns of G  

correspond to the variables that cannot be estimated from the other measured variables 

and the nonzero columns of G  correspond to the variables that can be estimated from the 

other measured variables.  At this stage, the redundancy analysis of mass flow rate MF  

has been completed. 

It can also be seen from Equation (4.18a) that the set of unmeasured mass flow 

rate 2UF  are not observable and the set of unmeasured mass flow rate 1UF  are observable 

if the corresponding rows of 2,
1
1, DDIF RRR −=  are all zeros. 

The unmeasured mass flow rates UF  have now been partitioned into the 

observable set UoF  and the unobservable set UiF .  Given this knowledge, Equation (4.16) 

can be written as follows: 

 

[ ] eRRQQFBFBtB BB
BBUiUiUoUo =⎥⎦

⎤
⎢⎣
⎡

⎥⎦
⎤

⎢⎣
⎡+++

2

12,31,3
2,31,32211 00 ν

ν
  (4.19) 

 

According to Equation (4.19), it can be stated that the set of unmeasured enthalpy 

flow 2ν  are not observable.  Moreover, the set of unmeasured enthalpy flow 1ν  are 

observable if the corresponding rows of 2,3
1

1,3 BBIV RRR −=  are all zeros and if the 

corresponding rows of Ui
T
BBIF BQRR 21,3

1
1,32

−=  are all zeros. 
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The necessary condition that the temperature variables can be estimated is that the 

corresponding terms of ν  is observable and the corresponding mass flow rates are 

measured or observable.  If a temperature variable can be estimated and is measured, then 

this temperature variable is redundant.  If a temperature variable can be estimated and is 

not measured, then this unmeasured temperature variable is observable. 

 

4.4 Sensitivity Analysis for Sensor Placement 
 

Sensitivity analysis is discussed in this section for sensor placement design in 

terms of efficient sensor fault diagnosis.  In this dissertation, data reconciliation is 

proposed as a generalized approach to study the sensitivity of a variable in balance 

equations.  The presentation of this section includes a background description of data 

reconciliation, a mathematical formulation of data reconciliation, and how data 

reconciliation can be used for sensitivity analysis. 

 

4.4.1 Data Reconciliation 
 

Data reconciliation was originally developed to adjust process data such that the 

adjusted values strictly satisfy constraint equations.  Aside from other techniques such as 

neural networks, principal component analysis, and partial least square methods, data 

reconciliation is one of the major data processing methods for operation monitoring, 

performance analysis, maintenance planning, and fault diagnosis.  This technique was 

first proposed in the early 1960s, and since then has been successfully applied in 

chemical and petroleum industries.  However, it has hardly received any attentions in the 

nuclear industry until the 1990s.  The current research on the application of data 

reconciliation to nuclear power plants is carried out mainly in Europe.  It is reported by 

German researchers that data reconciliation is the best possible quality control 

mechanism for identifying serious measurement errors in nuclear power plants and a 

necessary data-preconditioning step for process monitoring, process optimization, and 

maintenance optimization (Grauf, Jansky, and Langenstein, 2000), (Svein and Øivind, 
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2003).  Two significant applications of data reconciliation to nuclear plant instrument 

monitoring are as follows: 

 

(a) Reactor coolant temperature monitoring 

 

Reactor coolant temperature is an important controlled variable in nuclear power 

systems.  Because reactor coolant temperature must not reach the designed maximum 

value, the incorrect indication of reactor coolant temperature may force the reactor to 

operate at a lower power level.  Therefore, if a reconciled reactor coolant temperature 

instead is used for plant power control, better operation performance may be achieved. 

 

(b) Feed water flow rate measurement 

 

Feed water mass flow rate is used to calculate reactor thermal power.  If the 

measured feed water flow rate suffers from instrument bias fault, the reactor will be 

forced to operate at a derated condition.  Therefore, if the reconciled feed water flow rate 

is used, the reactor thermal power output can be estimated based on the reconciled value 

and significant operation cost due to the feed water flow measurement fault can be saved. 

 

4.4.2 Basic Algorithm of Data Reconciliation 
 

For a given system, the variables involved in the constrained equations can be 

categorized as the measured variables x  with the covariance matrix of presumably 

Gaussian measurement error Ψ  and the unmeasured variables u .  The overall task of 

data reconciliation can be stated as a weighted least-squares estimation problem, which is 

given by: 

 

)()(min 1

),(
xyxy T

ux
−Ψ− −         (4.20) 

 

with the steady state mass balance and heat balance equations as follows: 
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0),( =uxϕ           (4.21) 

 

It is possible to solve the above minimization problem using nonlinear 

programming techniques such as sequential quadratic programming and reduced gradient 

methods.  Although these techniques are more general, they need a large amount of 

computation time and may obscure which variable can be derived from the others.  

Therefore, a successive linearization algorithm is used in this dissertation to solve the 

above problem. 

Successive linearization is based on the idea that the nonlinear constraints defined 

in Equation (4.21) can be successively linearized around their approximate operation 

points until these nonlinear constraints are satisfied with some specified tolerance 

(Romagnoli and Sanchez, 2002), (Pai and Fisher, 1998).  The algorithm can be 

summarized as follows: 
 

Step 1.  Give an initial guess about the estimates ),( 00 ux  based on the measured value 

of y . 

 

Step 2.  Solve for an estimate ),( **
ii ux  by minimizing the objective function defined in 

Equation (4.20) with the constraint equations linearized around the estimates ),( ii ux , 

which is given by: 

 

cBuAx =+           (4.22) 

 

where 

 

),(| ii uxx
A

∂
∂

=
ϕ
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),(| ii uxu
B

∂
∂

=
ϕ

 

),( iiii uxBuAxc ϕ−+=  

 

The solution to the minimization problem with the objective function given in 

Equation (4.20) and the constraint equations given in Equation (4.22) can be obtained by 

performing QR decomposition on the matrix B. 

 

)()( 1* bGxGGGxx i
TT

ii −ΨΨ−= −       (4.23a) 

)( *
11

1
1

*
i

T
u

T
uui AxQcQRu −= −         (4.23b) 

 

where G , b , 1uQ , and 1uR  are the related matrices defined in Equation (4.10), Equation 

(4.11), Equation (4.4), and Equation (4.5), respectively. 

 

Step 3.  Update the estimates ),( 11 ++ ii ux  by minimizing the constraint error.  This can be 

accomplished by searching for a constant t  between 0 and 1 such that  

 

)( *
1 iiii xxtxx −+=+         (4.24) 

and 

),( 11 ++ ii uxϕ  is minimal. 

 

Step 4.  If the estimation is convergent and the nonlinear constraint equations are 

satisfied, then stop.  Otherwise, go to Step 2. 

 

Although the above algorithm is simple, it has provided a general solution to the 

reconciliation of measured data such that the specified constraint equations, in linear or 

nonlinear form, are strictly satisfied. 
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4.4.3 Sensitivity Analysis Procedure 
 

In the design phase, plant-scale balance equations can be developed to reveal the 

functional relationships among variables.  Through investigating the observability and 

redundancy of variables in the balance equations, the variable classification algorithm 

presented in section 4.4.2 provides a theoretical solution to sensor placement design for 

sensor fault diagnosis.   

However, sensitivity analysis must also be studied to ensure the diagnostic 

performance during sensor placement design.  Analytical redundancy based fault 

diagnosis uses equation error for fault detection and isolation.  For a given functional 

relationship, some of the related variables may be more sensitive to generate equation 

errors than the other variables.  An incipient sensor fault can be detected only if the 

related variable is sensitive in the functional relationships (constraint equations). 

In this dissertation, sensitivity analysis is transformed to a precision design 

problem and is solved using data reconciliation.  If a variable is sensitive in the functional 

relationships, it is expected that data reconciliation algorithm will lead to an estimation 

with good precision after data reconciliation is performed.  Figure 4.7 shows a schematic 

of the proposed procedure of sensitivity analysis.  

At steady state conditions, the constraint equations that the measured variables y  

should satisfy may be given by: 

 

0),( =uyϕ           (4.25) 

 

where u  is the unmeasured variables. 

The nominal values of measured variables *y  can be determined easily from 

balance equations.  In order to study the sensitivities of the involved variables, a 

perturbation such as a Gaussian noise vector ε  is artificially added to the nominal values, 

which is given by: 
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Figure 4.7.  Sensitivity analysis using data reconciliation. 

 

ε+= *yy           (4.26a) 

)cov(ε=Ψ           (4.26b) 

 

where y  is a perturbed vector, *y  is the nominal values, and Ψ  is the covariance 

matrix of the additive perturbation. 

 

To evaluate the sensitivity of a variable due to the constraint equations, the 

measured variables are estimated by solving an optimization problem formulated as 

follows: 

 

)ˆ()ˆ(min 1

)ˆ,ˆ(
yyyy T

ux
−Ψ− −         (4.27) 

s.t. 

0)ˆ,ˆ( =uyϕ  

where 

ŷ  = the estimated value. 

The sensitivity of a variable iy  in the constraint equations can be quantified by a 

d-factor defined in this dissertation, which is given by: 

 

)var(
)ˆvar(1 *

*

ii

ii
i yy

yyd
−
−

−=         (4.28) 

Evidently, a large value of the d-factor given in Equation (4.28) means that the 

variable is sensitive in the constraint equations.  In order to detect a slight fault, the d-
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factor must be greater than some critical value.  For instance, the d-factor of a variable 

would become zero if it does not participate in the constraint equations.   

The optimization problem defined above is a standard data reconciliation 

problem.  Successive linearization algorithm or standard nonlinear programming 

techniques may be used to obtain solutions in general cases.   

It should be mentioned that the proposed strategy for sensitivity analysis is not 

dependent on whether the system is linear or nonlinear.  For nonlinear system, the 

calculated d-factor varies at different operation points, a worst case design may be 

necessary after the d-factor is calculated for all the anticipated operation conditions. 

 
4.5 Gross Error Detection and Identification 
 

To determine performance parameters accurately or perform process fault 

diagnosis, the measured variables must have sufficiently high precision.  Data 

reconciliation provides a means to improve the precision of measured variables based on 

analytical redundancy by adjusting the measurements such that the balance equations are 

strictly satisfied.  However, this adjustment is valid only if there is no gross error with 

respect to the balance equations.  If a sensor fault occurs, the faulty sensor must be 

detected, identified, and reconstructed to avoid the estimated process parameters from 

misleading the performance monitoring and avoid misdiagnosis of process faults.   

 
4.5.1. Gross Error Detection 
 

The most popular method of gross error detection is to check the validity of the 

balance equations.  In the absence of gross error, the measurement vector x  can be 

written as follows: 

 

ε+= *xx           (4.26) 

 

where ε  represents a random error vector with zero mean and covariance matrix Ψ . 
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For a linear system, after the unmeasured variables are eliminated through QR 

decomposition, the equation residual r  can be written as follows: 

 

εGbGxr =−=          (4.27) 

 

where G  and b  are defined in Equations (4.10) and (4.11), respectively. 

 

Based on the assumption that the measurement error is random, if there is no 

gross error in the measurements, the residual will satisfy the following properties: 

 

0][ =rE           (4.28a) 
TT GGrrE Ψ==Φ ][          (4.28b) 

 

However, when a gross error occurs in the system, a systematic error will appear 

in the residual.  Therefore, gross error detection can be accomplished by testing the 

following statistics: 

 

rrT 1−Φ=τ           (4.29) 

 

If G  has a full row rank m, the derived statistics τ  in Equation (4.29) will follow 

a 2χ  distribution with m degrees of freedom.  Therefore, a gross error can be detected if 

the calculated statistics τ  is greater than a critical value at the specified error probability. 

 

4.5.2 Fault Identification 
 

For a large-scale system, many sensors may have more than one degree of 

redundancy for estimation.  Even if one sensor is faulty and a gross error has been 

detected, it is still possible to reconstruct the measured value to estimate performance 

parameters or perform process fault diagnosis after the source of gross error is identified 

and eliminated through a systematic procedure.   
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A serial elimination strategy was developed by Romagnoli to identify the 

measurements with gross error (Sanchez and Romagnoli, 1994).  The basic idea of this 

strategy is to compare the effect on data reconciliation when individual measurements are 

eliminated one at a time.  If only single faults are considered, a single measured variable 

is eliminated each time and correspondingly the equation errors are estimated.  The 

variable, whose elimination results in the most significant reduction in the estimate of the 

equation errors, is considered as a faulty sensor. 

If one sensor has gross error, the G matrix in Equation (4.27) can be separated 

into two parts as follows: 

 
[ ]cg GGG =          (4.30) 

 
where gG  and cG  are the columns of G  matrix corresponding to the sensors not 
suspected of gross error and the sensors suspected of gross error, respectively. 
 

Correspondingly, the covariance matrix of the measurement error can be 

partitioned into two parts as follows: 

 

⎥⎦
⎤

⎢⎣
⎡

∆Ψ+Ψ
Ψ

=Ψ
cc

g

0
0

        (4.31) 

where c∆Ψ  corresponds to the increase in the variance of the measurement due to the 

suspected gross error. 

The covariance matrix of the equation error nΦ  after the effect of gross error is 

taken into account can be related to the covariance matrix of the measurement error 

without gross error Φ  as follows (Romagnoli and Sanchez, 2000): 

 
T
cccn GG )(∆Ψ+Φ=Φ         (4.32) 

where Φ  is defined in Equation (4.28b) when there is no gross error in the system. 
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Because both nΦ  and c∆Ψ  are nonsingular, 1−Φ n  can be calculated as 

follows(Romagnoli and Sanchez, 2000): 

 
1111111 ])()[( −−−−−−− Φ∆Ψ+∆ΨΦ−Φ=Φ T

c
T
cccccn GGGG    (4.33) 

 

Now we can compare the contribution of each measured variable to the equation 

error and identify the source of gross error.  The contribution of the ith sensor to the 

equation error can be measured by the objective function given by: 

 

rrJ in
T

i
1

)(
−Φ=          (4.34) 

 

where 1
)(

−Φ in  can be calculated based on Equation (4.33) with the corresponding )(ic∆Ψ  

specified as infinity.  Apparently, if )(ic∆Ψ  corresponding to the ith sensor is specified as 

infinity, it is equivalent to the elimination of the ith sensor from the total contribution of 

the equation error. 

If only single sensor fault is considered, the objective function given in Equation 

(4.34) can be calculated for each measured variable when it is eliminated.  The measured 

variable whose elimination results in the smallest value of the objective function will 

have the largest contribution to the equation error.  Therefore, this measured variable is 

identified as the measurement with a gross error. 

 
4.5.3 Fault Estimation 
 

After a sensor fault is identified based on the algorithm described in section 4.5.2, 

it is desirable to estimate the fault magnitude and reconstruct the incorrect measurements 

for use in process fault diagnosis and performance parameter estimation.  If this fault 

reconstruction is reliable, the reconstructed value can still be used even if a gross error 

has occurred. 

For an identified sensor fault, the fault effects on the measurements are given by: 
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brmExx ++= ε*          (4.35) 
 
where  

rE  = the fault distribution matrix, which is one column of the identity matrix for sensor 

faults. 

bm = the fault magnitude. 

The problem of fault magnitude estimation is stated as follows: 

 
εε

ε

1min −ΨT           (4.36a) 

s.t. 
0)( =−− br mExG ε         (4.36b) 

 
The solution to the minimization problem defined in Equation (4.36) is given as 

follows (Romagnoli and Sanchez, 2000): 

 

GxGGPPGGPm TT
bb

T
bb

111 )(])([ −−− ΨΨ=      (4.37) 
where  

rb GEP =  
Therefore, the reconstructed measurement is given by: 

 

bb
TTTT mPGGGGxGGGxx 11 )()(ˆ −− ΨΨ−ΨΨ−=     (4.38) 

 
Equation (4.38) shows that the reconstructed value of the measurement with a 

gross error consists of three terms.  The first term is the original measured value, the 

second term corresponds to the correction on measurement noise due to the constrained 

minimization, and the third term corresponds to the correction due to the identified gross 

error. 

 

4.6 Application to HCSG system 
 

In the IRIS reactor design described in Chapter 3, eight steam generators are 

installed in four pairs in the annular space between the core barrel and the reactor vessel 



 116

(RV) wall.  A common feed water supply line splits at the vessel and goes to two steam 

generators.  Similarly, the steam discharge lines from two steam generators join to create 

a common steam line.  This pairing of steam generators has reduced the number of feed 

water and steam lines, and thus the number of penetrations into and out of the 

containment, but it has caused an unfavorable consequence on individual steam generator 

monitoring in terms of the thermal performance and the secondary flow rate.  A 

schematic of one pair of IRIS helical coil steam generators is given in Figure 3.3. 

According to an engineering analysis, the HCSG fault diagnosis system needs to 

monitor the following process faults: 

 

(1) Thermal performance degradation of each individual steam generator. 

(2) Secondary flow rate abnormality for the pair of steam generators. 

(3) Reactor pump flow abnormality. 

(4) Feed water temperature abnormality. 

(5) Primary side inlet temperature abnormality. 

(6) Feed water flow rate abnormality. 

 

Figure 4.8 shows the Directed Graph of one pair of the HCSG systems.  In this 

figure, T and W denote temperature and mass flow rate, respectively.  The numeric 

number appended to T or W denotes the location on the HCSG system configuration.  

The yellow colored nodes represent the root nodes of the system, each of which 

corresponds to a process fault.  For example, the yellow nodes denoted by W2 and W4 

represent the faults associated with the two reactor main pumps pumping the flow into 

the primary side of SG-A and SG-B, respectively.  The DG has clearly illustrated the 

cause-effect relationships among the involved variables and the propagation pathways 

from the root node to the other nodes.  For instance, if the thermal performance of SG-A 

has degraded, the node T3 on the primary side and the node T11 on the secondary side 

will be affected.  In other words, SG-A degradation is a sufficient condition to cause 

abnormal symptoms on the nodes T3 and T11. 
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Figure 4.8.  The Directed Graph of one pair of HCSG system. 

 

To locate the minimum set of sensors that can observe the considered process 

faults, the first step is to find out all the nodes that have only input arcs in the DG.  A 

simple examination shows that the nodes having only input arcs are T3, T5, T9, T11, and 

W12, which should be selected as the members of the fault observability set.  Obviously, 

this observability set is able to detect all the considered process faults.   

Figure 4.9 gives the bipartite graph between the root nodes and the observability 

set {T3, T5, T9, T11, and W12}.  The left side of the bipartite graph includes all the 

considered process faults, which are also the root nodes in the DG graph.  The right side 

of the bipartite graph includes all the process variables in the observability set.  The 

directed arcs in the bipartite graph are determined from the DG graph. 

Figure 4.10 (a) shows the bipartite graph when T3 is selected because all the 

members of the fault observability set cover the same number of root nodes.  Figure 4.10 

(b) shows the bipartite graph after the arcs from the root nodes that have already been 

covered by T3 are eliminated.  As can be seen, either T5 or T9 is able to cover the 

remained process faults.   

In conclusion, the set of T3 and T5 or the set of T3 and T9 is a minimum set of 

sensors for process fault detection. 



 118

T1

W2

W4

SG-A

SG-B

Uneven
flow

T3

T5

T9

T11

W7 W12

T1

W2

W4

SG-A

SG-B

Uneven
flow

T3

T5

T9

T11

W7 W12

T7

 
 

Figure 4.9.  Bipartite Graph of one pair of HCSG system. 
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Figure 4.10.  Determine the minimum set of sensors for fault detection. 
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Table 4.1 shows the fault effect matrix for all the root nodes.  To determine the 

minimum set of sensors for fault isolation, it is necessary to determine a subset of the 

affected nodes such that the fault effects can be distinguished from each other.  Table 4-2 

shows the bipartite graph, which is presented in matrix form for convienience, to 

determine the minimum set of sensors for fault isolation.  Using the algorithm presented 

in section 4.2.2, the minimum set of sensors must include T1, T3, T5, T7, T9, T11, W2, 

W4, and W7 such that the selected faults can be fully isolated.   

Efficient process fault diagnosis also depends on a reliable sensor fault diagnosis.  

However, a sensor fault diagnosis system based on functional relationships can be 

achieved only if the measured variables and process parameters of interest can be 

estimated using analytical redundancy through appropriate sensor placement design. 

For one pair of IRIS HCSG system shown in Figure 3.3, the mass balance and 

heat balance equations are given as follows:  

W1=W2+W4 

W2-W3=0  W4-W5=0 

W6-W3-W5=0    W12-W9-W11= 0 

W10-W11 = 0     W8-W9=0 

W7-W8-W10 = 0  

T1=T2=T4 

T7=T8=T10 

W6h6-W3h3-W5h5=0 

W12h12-W9h9-W11h11=0 

W2h2+W10h10-W3h3-W11h11=0 

W4h4+W8h8-W9h9-W5h5 = 0       (4.39) 

In the above equations, the symbols W, h, and T denote mass flow rate, specific 

enthalpy, and temperature, respectively.  It is assumed that the system pressures are 

constant and the specific enthalpy can be approximated as a function of local fluid 

temperature.  It should be mentioned that these balance equations hold for any operation 

conditions unless the system configuration changes while data driven models hold only if 

the collected data are representative enough to cover the entire operation space.   
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Table 4.1.  Fault effect matrix 

 
Process fault Observabiltiy Set 

Primary inlet temperature fault (B1) A1={T1,T2,T3,T4,T5,T9,T11} 

SG-A primary side pump flow fault (B2) A2={W2,T3,T11} 
SG-B primary side pump flow fault (B3) A3={W4,T5,T9} 
SG-A heat transfer degradation fault (B4) A4={T3,T11} 
SG-B heat transfer degradation fault (B5) A5={T5,T9} 
Secondary flow distribution abnormally (B6) A6={T3,T5,T9,T11} 
Feed water temperature fault (B7) A7={T7,T8,T10, T9, T11,T3,T5} 
Feed water flow fault (B8) A8={W7,W8,W10,T3,T5,T9,T11,W12} 
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Table 4.2.  Bipartite matrix to determine the minimum set of sensors for fault isolation. 

 

Pseudonode Sensor Set for Fault 
Resolution 

Pseudonode Sensor Set for Fault Resolution

B12 {T1,T2,W2,T4,T5,T9} B35 {W4} 
B13 {T1,T2,T3,W4,T4,T11} B36 {W4,T3,T11} 
B14 {T1,T2,T4,T5,T9} B37 {W4,T3,T7,T8,T10,T11} 
B15 {T1,T2,T3,T4,T11} B38 {W4,W7,W8,W10,W12,T3,T11}
B16 {T1,T2,T4} B45 {T3,T5,T9,T11} 
B17 {T1,T2,T4,T7,T8,T10} B46 {T5,T9} 
B18 {W7,W8,W10T1,T2,T4,W12} B47 {T5,T7,T8,T9,T10} 
B23 {W2,W4,T3,T5,T9,T11} B48 {W7,W8,W10,W12,T5,T9} 
B24 {W2} B56 {T3,T11} 
B25 {W2,T3,T5,T9,T11} B57 {T3,T7,T8,T10,T11} 
B26 {W2,T5,T9} B58 {W7,W8,W10,W12,T3,T11} 
B27 {W2,T5,T7,T8,T9,T10} B67 {T7,T8,T10} 
B28 {W2,W8,W10,T7,T5,T9,W12} B68 {W7,W12} 
B34 {W4,T3,T5,T9,T11} B78 {W7,W8,W10,W12,T7,T8,T10} 
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To analyze the observability and redundancy of variables in the balance 

equations, the bilinear variable classification algorithm described in section 4.3.2 is used 

to classify the related variables for the following measurement set: 

Case A: {W2, W4, W7, W12, T1, T3, T6, T7, T9, T12} 

After the enthalpy flow of category III described in section 4.3.2 is eliminated 

from the heat balance equations and a Q-R decomposition is performed on the coefficient 

matrix of the unmeasured flow rate vector, which is given in Equation (4.18), the vector 

2UF  is empty and the vector 1UF  includes all the unmeasured mass flow rate variables 

(W1, W6, W8, W9, W10, W11).  Meanwhile, the matrix IFR  is also empty.  Therefore, 

they are all observable.  That W1 and W6 are observable can be easily verified from 

Figure 3.3.  As for W8, W9, W10, W11, they are all observable.  The unmeasured mass 

flow rate W8 and W9 are observable because the heat transferred by each steam 

generator can be determined from the heat balance equations and T9 is measured.  Now 

that W8 and W9 are observable, W10 and W11 can be determined simply by W7 minus 

W8.  

After the unmeasured mass flow rate variables are partitioned according to 

Equation (4.19), Q-R decomposition is then performed on the coefficient matrix of the 

unmeasured enthalpy flow of category III.  The enthalpy flow vector 1ν  in Equation 

(4.19) includes the enthalpy flow variable at location 5 and the enthalpy flow variable at 

location 11 while the enthalpy flow vector 2ν  is empty.  Because the corresponding 

matrices IVR  and 2IFR  in Equation (4.19) are both empty, the enthalpy flow variables at 

location 5 and location 11 are observable. 

On the other hand, since the mass flow rate variables at locations 5 and 11 are 

observable, the temperature measurements at the two locations are then observable. 

The G matrix obtained from the bilinear variable classification algorithm is 

tabulated in a table to show the relationships among variables.  The zero-valued columns 

correspond to the enthalpy flow variables that do not participate in redundant 

relationships.  In addition, the columns proportional to each other indicate that the sensor 

faults of these variables will not be distinguishable in terms of equation residuals.  Table 
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4.3 shows that the temperature sensors T3 and T9 are not redundant.  This result can be 

verified because the heat transferred by SG-A or SG-B could not be determined if either 

T3 or T9 is eliminated from the set of temperature measurments. 

Table 4.4 shows the G matrix obtained from the variable classification algorithm 

for the linearized functional relationship.  From this matrix, we can see that T3 and T9 

will not participate in the reduced redundant relationship.  Therefore, these two sensors 

are not redundant.  This shows that the linearized variable classification algorithm gives 

the same results of variable classification as the bilinear variable classification algorithm 

for the HCSG application. 

In order to make the measurements T3 and T9 redundant, T5 and T11 are 

measured in Case B, which includes the following measurements: 

Case B: {W2, W4, W7, W12, T1, T3, T5, T6, T7, T9, T11, T12} 

Table 4.5 shows the G matrix obtained from the variable classification algorithm 

for linearized functional relationship.  As compared with Case A, T3 and T9 are 

redundant in Case B.  This result can be easily verified because either T3 or T9 can still 

be estimated from the other variables even if it is eliminated.  In fact, all the variables are 

redundant and can be obtained from the other measurements based on mass and energy 

balance equations.  The G matrix given in Table 4.5 also has many columns proportional 

to each other, which means that the sensor faults of these variables will not be 

distinguishable in terms of equation residuals.  These columns correspond to the 

following three groups: 

 

(1) Group I: {W2, W4, T1, T7}; 

(2) Group II: {T3, T5};  

(3) Group III: {T9, T11}. 

 

Therefore, for the sensor placement of Case B, it is not possible to distinguish the sensor 

faults within each group of the variables because they will generate the same residual 

pattern. 
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Table 4.3.  G matrix based on bilinear variable classification 

to determine the redundant relationship between the measured variables (Case A) 

 
W2 W4 W7 W12 f2 f4 f7 f12 θ1 θ3 θ6 θ8 θ9 θ10 
-.56 -.56 0.22 0.22 0.51 0.51 0.01 0.01 -.52 0.0 -.52 -.11 0.0 -.11 
0.11 0.11 -.34 -.34 -.02 -.02 0.19 0.19 -.17 0.0 -.17 -.40 0.0 -.40 
0.60 0.60 -.31 -.31 0.15 0.15 0.05 0.05 -0.2 0.0 -0.2 -.27 0.0 -.27 
0.07 0.07 -.12 -.12 0.38 0.38 -.24 -.24 -.14 0.0 -.14 0.55 0.0 0.55 
0.27 0.27 -.08 -.08 0.14 0.14 -.32 -.32 0.18 0.0 0.18 -.33 0.0 -.33 

 
Table 4.4.  G matrix based on linearized variable classification 

to determine the redundant relationship between the measured variables (Case A) 

 
W2 T1 T3 W4 T6 W7 T7 T9 W12 T12 
0.0075 0.268 0.0 0.0075 -0.22 -0.464 0.0205 0.0 0.394 -0.015 
-0.074 -2.64 0.0 -0.074 2.17 -0.381 -0.202 0.0 1.066 0.147 

 

Table 4.5.  G matrix based on linearized variable classification 

to determine the redundant relationship between the measured variables (Case B) 

 
W2 T1 T3 W4 T6 W7 T7 T9 W12 T12 T11 T5 
0.031 1.104 -0.29 0.031 -0.32 -.007 0.084 0.024 -0.28 -0.11 0.024 -.29 
0.053 1.907 -0.31 0.053 -0.94 -.110 0.145 -.024 -0.38 -0.06 -0.02 -.31 
0.037 1.337 0.69 0.037 -2.47 0.480 0.102 0.004 -0.83 -0.08 0.004 0.69 
0.048 1.709 -1.72 0.048 2.04 0.398 0.130 -.004 -0.84 -0.09 -.004 -1.72 
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Let us examine the above results from the physical point of view.  The energy 

balance equations cannot distinguish a measurement fault in T1 and T7 because they 

always participate in the same set of energy balance equations.  If the measurement T7 is 

eliminated, it will not be possible to estimate T1 from the remaining measured variable.  

The result is the same if T1 is eliminated.  On the other hand, let’s look at the 

measurement T6 and T12.  If T6 is eliminated, the remaining measured variables can still 

be used to estimate the variable T12.  Therefore, the sensor faults of the variables T6 and 

T12 can be distinguished. 

Based on the comparison analysis of the influence of measured variables on the 

equation error, it can be concluded that physical redundancy is needed to distinguish 

some of the sensor faults in Case B.  Three physically redundant sensors are needed to 

distinguish the sensor faults of W2, W4, T1, and T7, one redundant sensor is needed to 

distinguish the sensor faults of T3 and T5, and one redundant sensor is needed to 

distinguish the sensor faults of T9 and T11.  Considering that additional redundant 

relationships exist if the analysis is extended beyond the pair of HCSG systems, T1 and 

T7 can be assumed redundant.  However, hardware redundancy of T3 or T5 and hardware 

redundancy of T9 or T11 are necessary to distinguish the sensor faults associated with 

them.  In the analysis, T5 and T9 are chosen to have physically redundant sensors. 

In the sensor placement design, an additional issue is to ensure that the sensors of 

interest can be estimated with enough precision using functional relationships.  In other 

words, the corresponding sensor faults should be detectable with adequate sensitivity.  

Table 4.6 shows that the d-factors for W2, W4, T7, T9, and T11 are very small after data 

reconciliation.  This indicates that these three variables are not sensitive to the balance 

equations.  Therefore, a sensor fault of these variables may not be detectable if the fault 

magnitude is small and the fault magnitude may not be accurately reconstructed when a 

fault is detected. 

Let us take W2 as an example to show why W2 is not sensitive to the equation 

error.  The mass flow rate W2 satisfies the following energy balance equation at nominal 

condition: 
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Table 4.6.  Physical redundant sensor placement based on sensitivity study 

 
 
 
 
 
 
 
 

 
 
[1]. Standard deviation of the measured values. 
[2] Standard deviation of the reconciled values without physical redundant sensors. 
[3]. d-factor without redundant sensors. 
[4]. d-factor with redundant sensors for T5, T7, T9, T11, W2, W4. 

 

 W2 T1 T3 W4 T6 W7 T7 T9 W12 T12 T11 T5 
Std [1] 1.82 0.27 0.25 1.85 0.28 0.42 0.20 0.31 0.37 0.28 0.27 0.25 
Std [2] 1.82 0.15 0.22 1.85 0.14 0.30 0.20 0.28 0.30 0.16 0.25 0.22 
d [3] 0.01 0.43 0.11 0.01 0.52 0.28 0.02 0.06 0.18 0.41 0.07 0.11 
d [4] 0.38 0.52 0.11 0.38 0.52 0.32 0.29 0.38 0.38 0.59 0.32 0.36 
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W2(h2-h3)=W10*(h11-h10)   h2= 0.0066*T2-0.6519 

h3= 0.0054*T3-0.2826   h11= 0.0034*T11+1.8763 

h10= 0.0047*T10-0.0822   W2_nominal=582.5 kg/s 

W10_nominal=62.85kg/s   h2_nominal=1.5129 E6 J/kg 

h11_nominal=2.9541 E6 J/kg   h10_nominal=0.9706 E6 J/kg 

h3_nominal=1.2942 E6 J/kg        (4.40) 

 

If we linearize Equation (4.40) around the nominal operation point, we have:  

3.8445*dT2-3.1455dT3+0.2187dW2=0.2135dT11-0.2952dT10+1.9835dW10 

Considering that T2 has a measurement error of 1 oC, the corresponding equation 

error is equivalent to about 4% measurement error of W2 and 5% measurement error of 

T10.  This analysis indirectly proves that the d-factor indeed is able to represent the 

sensitivity of the involved variables to the equation error.  Based on the results of 

sensitivity analysis given in Table 4.5, W2, W4, T7, T9, and T11 need to have physically 

redundant measurements such that a sensor fault can be detected with enough sensitivity.   

Combining the sensitivity analysis and fault isolation capability, the sensor 

placement is chosen to be as follows: 

Case C: {W2, W4, W7, W12, T1, T3, T5, T6, T7, T9, T11, W2-2, W-4, T5-2, T7-2, T9-

2, T11-2}. 

where W-2, W-4, T5-2, T7-2, T9-2, T11-2 indicate physical redundant sensors for W2, 

W4, T5, T7, T9, and T11, respectively.   

Figure 4.11 (a) shows the gross error detection statistics defined in Equation 

(4.29) as a comparison with the detection limit based on 2χ  distribution to detect a 

sensor fault of W2 with a bias fault magnitude of 2% nominal value when redundant 

measurement for W2 exists.  It is clear the fault can be detected immediately when the 

fault at the 150th sample.  On the contrary, if there is no physically redundant 

measurement of W2, Figure 4.11 (b) shows that the fault cannot be effectively detected.   
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Figure 4.11 (a).  Fault detection of W2 measurement error with redundant measurement. 
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Figure 4.11 (b).  Fault detection of W2 measurement error without redundant 

measurement. 
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Figure 4.12 (a) and Figure 4.12 (b) show a comparison of fault reconstruction of 

W2 measurement fault without and with the physically redundant measurement of W2.  

Because W2 is not constrained tightly by the energy balance equations as is shown by the 

sensitivity analysis, a measurement fault can be reconstructed only if physical 

redundancy exists.  For the W2 measurement fault, the faulty measurement W2 is 594.6 

kg/s with the true value being 582.52 kg/s.  If there is no physical redundant 

measurement for W2, the reconstructed value is 593.64 kg/s based on the fault 

reconstruction algorithm introduced in section 4.5.3.  It is clear that the fault cannot be 

reconstructed correctly.  However, if a physical redundant measurement for W2 is placed, 

the reconstructed value is 582.50 kg/s.  The fault effects can be identified correctly based 

on the algorithm introduced in section 4.6.2, and completely compensated using the fault 

reconstruction algorithm.   
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Figure 4.12 (a).  Fault reconstruction of W2 measurement error without redundant 

measurement 
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Figure 4.12 (b).  Fault reconstruction of W2 measurement error with redundant 

measurement.  

 

Figure 4.13 shows the secondary side mass flow rate using bilinear data 

reconciliation algorithm for Case A sensor placement.  In the Figure, the secondary mass 

flow rate of SG-A begins to decrease and the secondary mass flow rate of SG-B begins to 

increase at the 100th sample.  The bilinear data reconciliation algorithm is able to track 

the change of secondary mass flow rate with very good precision.  It demonstrates that 

parameter estimation is an efficient approach to monitor process faults when the 

measurements have been reconciled using data reconciliation algorithms. 

Figure 4.14 shows the estimated heat transfer rate using bilinear data 

reconciliation algorithm for Case A sensor placement.  The brute force estimate of the 

heat transfer rate of SG-A is calculated directly from the measured primary flow rate and 

primary side inlet and outlet temperature while the brute force estimate of the heat 

transfer rate of SG-B is calculated by the total heat transfer rate minus the heat transfer 

rate of SG-A.  Because of the mass flow rate has been added with 1% measurement noise 

and the temperature has been added with 0.025% measurement noise, the calculated total 

heat transfer rate has a significant variance for SG-B.  However, if data reconciliation is 

performed on the measured data, the precision of the estimated heat transfer rate can be 

significantly improved.   
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Figure 4.13.  Bilinear data reconciliation result of HCSG secondary flow rate. 
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Figure 4.14.  Bilinear data reconciliation result of heat transfer rate.  
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4.7 Summary 
 

Sensor placement design has been studied for performance monitoring and fault 

diagnosis in this Chapter.  The sensor placement design for process fault diagnosis is 

solved by studying the cause-effect relationships among process variables using causal 

graph theory.  If mass balance and energy balance are used to determine performance 

parameters and for sensor fault diagnosis, then orthogonal projection algorithm would be 

implemented to perform redundancy and observability analysis for sensor placement 

design.  Finally, it is observed that a sensor fault can be detected and reconstructed 

efficiently only if it is sensitive in the corresponding balance equations, and data 

reconciliation provides a generalized approach to sensitivity analysis in sensor placement 

design for efficient sensor fault diagnosis.   
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Chapter 5 
 

Fault Diagnosis during Steady State Conditions 
 
5.1 Introduction 
 

Steady state fault diagnosis is an essential part of the integrated approach to 

performance monitoring and fault diagnosis for condition-based maintanance of nuclear 

power systems.  Although many techniques, mainly data driven model based as reviewed 

in Chapter 1, have been developed, none of them is sophisticated enough for the 

application to nuclear power systems.  To address the stringent requirements in nuclear 

power systems, the most recent progress in data driven model based fault diagnosis with 

an emphasis on how the FDI capability is dependent on data is presented.  Robust PCA 

model based approach and hybrid PCA approach are developed as two new techniques 

with improved performance for steady state fault diagnosis in this chapter. 

Reconstruction PCA model based approach is proposed as the baseline algorithm 

for steady state fault diagnosis because of its explicit representation of fault detectability 

and identifability.  In this approach, the fault effects are characterized by the subspace 

spanned by the fault measurements so that both process faults and sensor faults can be 

dealt with in a unified manner.  The number of principal components is chosen to achieve 

the best reconstruction of all the measured variables.  This method of choosing the 

number of principal components is also unique in that it can determine which measured 

variables have a low correlation with the other variables and thus should be eliminated 

for model development.  The reconstruction PCA model based approach to fault isolation 

is performed by comparing the reconstruction errors when each candidate fault is 

assumed.  The fault along the direction for which the reconstruction error reaches the 

minimum is considered as the true fault.  Because this fault isolation logic follows the 

philosophy of assumption-based methods, it can give more conclusive results of fault 

isolation than other approaches. 
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A hybrid PCA approach is developed in this dissertation for steady state fault 

diagnosis.  In this approach, certain prior knowledge is explicitly incorporated into the 

developed PCA model.  The prior knowledge may include the information about the 

source of major variation contained in the collected data and the partially available 

material and energy balance equations.  The developed hybrid PCA approach is more 

sensitive in detecting minor faults after some large variations are removed through 

appropriate decomposition of the variation contained in the data. 

Robust PCA model based approach is developed for steady state fault diagnosis in 

this dissertation.  In this approach, PCA models are developed from the data generated 

from reliable simulation models, therefore, the assumption that the collected data must 

cover the entire possible operation modes can be easily satisfied with well designed 

simulation calculations.  Meanwhile, model uncertainties are identified from plant 

measurements and explicitly formulated in the fault diagnosis algorithm.  Therefore, false 

alarms and misdiagnosis of traditional model based approach to fault diagnosis due to 

model uncertainty can be avoided. 

 

5.2 Principal Component Analysis for Fault Diagnosis 
 

The basic idea of fault diagnosis using multivariate statistical methods such as 

PCA is to project the collected data onto a low-dimensional space where the regions of 

normal operation and abnormal operation can be characterized by fewer state variables.   

Because PCA model represents the variation of normal operation data in a 

reduced dimensional space, it has better performance of generalization than when the 

entire measurement space is used.  PCA modeling separates the entire measurement 

space into a model subspace capturing the variation of state variables and a residual 

subspace containing random variations.  The separate characterization of the two 

subspaces can provide further insights in terms of the changes in operation conditions.  In 

addition, the linear model extracted by PCA enables us to determine which variables are 

most affected by a fault and which variables are most responsible for the fault. 
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5.2.1 Motivation of Statistical Modeling 
 

A formal analysis was performed by Qin, 2003, to investigate the theorectical 

basis to extract process models from measurement data using statistical methods.  This 

analysis is important to understand the requirement of data quality in developing 

statistical models for fault diagnosis.  

For an engineering process, the steady state constraints imposed by balance 

equations are given by: 

 

0* 21 =+ dBxB          (5.1) 
ε+= *xx           (5.2) 

 
where 

*x  = the true values of the measured vector. 

x  = the m  dimensional measurement vector. 

d  = the unmeasured state vector. 

ε  = the measurement noise vector. 

21 , BB  = the related matrices. 

 

If we premultiply Equation (5.1) by ⊥
2B , the orthogonal complement of 2B , then 

we have: 

 

0**)( 12 ==⊥ CxxBB T         (5.3) 
 

The above equation indicates that *x  must live in the null space of C.  If the rank 

of C  is q, *x  can be represented by a linear combination of qm −  independent factors 

given by: 

 
Gsx =*           (5.4) 
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where the qm −  columns of G  spans the null space of C .   
 

Correspondingly, 

 

ε+= Gsx           (5.5) 
 

Equation (5.5) shows that the measured data can be projected onto a lower 

dimensional space without loss of information.  The variation of the measured data can 

be totally explained by the variation of the independent factors if all of them are 

incorporated.  From the physical point of view, the number of independent factors is 

equal to the number of independent measured disturbances, independent unmeasured 

disturbances, and the setpoint changes, which exist in a system.  In order to have an 

efficient model capable of characterizing all the possible normal operation conditions, it 

is necessary to fully excite the process system with all the modes of independent factors 

being excited.  If the collected normal data do not contain all the modes, the developed 

model will not be able to distinguish the difference between a new operation mode and an 

actual fault in the system. 

The above formal analysis has motivated the development of statistical methods 

to extract process models from measurement data and pinpointed the requirement of data 

quality for model development.  

 

Example:  For the system given in Figure 4.5, the matrices 1B  and 2B , related to the 

mass balance equations, are given as follows: 
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The orthogonal complement of 2B  and the C  matrix are as follows: 

 

⎟
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0
7071.0
7071.0

2B     ( )07071.07071.0 −=C  

 

where the rank of C  is 1.  If we choose the matrix G  such that each column of G  is the 

basis of the null space of C , then matrix G  has the form: 
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Therefore, it can be concluded from Equation (5.5) that there are only two independent 

factors in the system and any measurement vector can be represented by a linear 

combination of these two independent factors, which is given by: 
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Obviously, this result can be verified by examining the flowchart given in Figure 4.5. 

 

5.2.2 PCA Algorithm 
 

Principal Component Analysis (PCA) was originally developed by Pearson, 1901, 

as a statistical method of dimensional reduction while preserving the variation of data.  

The PCA algorithm will be derived in the context of process monitoring in this section. 

For a measurement vector mRx ∈ , in general, it can be represented in m 

dimensional space as follows: 
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∑
=

=
m
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ii ptx

1
          (5.6) 

where 
ip  = the basis vectors of the m dimensional space, which are orthonormal. 

it  = the component of the vector x  when projected onto the basis vector ip . 
 

Apparently, since the basis vectors are orthonormal, it  can be given by: 

 

i
T

i pxt =           (5.7) 
 

If the true dimensionality of the measurement vector is l , where ml < , then the 

projection can be separated into two parts, which is given by: 

 

∑ ∑
= +=

+=
l

i

m

lj
iiii ptptx

1 1

~~         (5.8) 

where the second term represents the random vectors obtained by projecting the vector x  

onto the remaining ( lm − ) dimensional space. 

 

The objective of PCA algorithm is then to determine the true number of 

components directly from the measured data such that the second part of Equation (5.8) 

behaves purely random.  This is equivalent to determining l  principal components such 

that the mean squared error of the approximation, given by Equation (5.9) is minimized. 

][2 εεε TE=           (5.9) 
 

The PCA algorithms can be developed either by the NIPALS procedure (Wold, 

Esbebsen, and Geladi, 1987) or by eigenvalue decomposition procedure (Russell, Chiang, 

and Braatz, 2000).  The eigenvalue decomposition procedure is presented here for its 

simplicity. 

Given a data matrix X associated with n observations and m measured variables 

when the mean values are removed, the first principal component is obtained by finding 

out a basis vector 1p  such that the score vector 1t  of the original data along this direction 

has maximized variance, which is given by: 
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pp
pptE

T

T

pp

Σ
=        (5.10) 

with the constraints 

Ι=11 ppT  

where 

XX T=Σ  

 
The solution of Equation (5.10) is actually the eigenvector of Σ  corresponding to 

its maximum eigenvalue, that is: 

 
111 )( pp λ=Σ          (5.11) 

where 

1λ  = the largest eigenvalue of the covariance matrix. 

 
Correspondingly, the variance of the original data along the first principal 

component is then given by: 

 

11 )][var( λ=tE          (5.12) 
 

In order to obtain the thj principal component, the following constraints must be 

satisfied (Jackson, 1991): 
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pkp pp
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Σ
= max]}[{max        (5.13) 

such that  

Ι=k
T
k pp  

kp  is orthogonal to jp  for 1....2,1 −= kj  

and 

the score vector of kt  is orthogonal to the score vector of jt  for 1....2,1 −= kj  
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The solution of Equation (5.13) can also be obtained by solving the eigenvalue 

problem of the scatter matrix Σ , which is given by: 

 
kkk pp λ=Σ )(          (5.14a) 

kktE λ=)}{var(          (5.14b) 
 

Obviously, the above PCA algorithm has chosen the eigenvectors of the 

covariance matrix of the measured data as the basis vectors for projection.  The far-

reaching implication of the projection in this manner is that the variation of the measured 

data can be separated into the variation in the principal component subspace and the 

variation remained in the residual space.  The PCA decomposition of the original 

measurement data is given by: 

 
TT PTTPX ~~+=          (5.15) 

 
where 

P  = the loading matrix whose columns span the principal component space (PCS) and 

consist of the eigenvectors corresponding to the largest l eigenvalues of the matrix Σ . 

P~  = the loading matrix whose columns spans the residual space (RS) and consist of the 

eigenvectors corresponding to the smallest lm −  igenvalues of the matrix Σ . 

 

For a measurement vector x , the PCA algorithm estimates the true value by a 

projection onto the PCS and filter out the random component, which is given by: 

 

xPPx T=ˆ           (5.16) 
 

The estimation error of the approximation is given by: 

 

xPPxx T~~ˆ =−=ε          (5.17) 
 

The expectation of the mean squared error is given by: 
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The above equation shows that the mean squared error is equal to the sum of the 

least significant eigenvalues of the covariance matrix.  This also indicates that the choice 

of the number of principal components is to abandon the eigenvectors as the basis vectors 

for expansion that correspond to the least significant eigenvalues of the covariance matrix 

of the original measured data. 

 
5.2.3 Selection of the Number of Principal Components 
 

Many approaches have been proposed to determine the number of principal 

components for different applications.  An excellent survey paper by Valle, Li, and Qin, 

1999, summarized these methods and proposed the variance of reconstruction error 

criterion for process monitoring. 

Information criteria such as Akaike Information Criterion (AIC) (Akaike, 1974), 

Minimum Description Length (MDL) (Rissanen, 1978), and Imbedded Error Function 

(IEF) (Malinowski, 1977) were used in signal processing literature to determine the 

number of independent sources by selecting the number of principal components.  These 

criteria have solid statistical foundation with the assumption that the independent 

measurement noise components have equal variance corresponding to the smallest lm −  

eigenvalues of the covariance matrix of the original signal.  This assumption is valid for 

covariance matrix based PCA when all the signals have equal variance of measurement 

errors.  However, for correlation matrix based PCA, which is most commonly used in 

process monitoring, the measurement errors usually do not have the same variance and 

the eigenvalues corresponding to the smallest lm −  eigenvalues are usually quite 

different. 

In the field of chemometrics, the most commonly used criteria are Cumulative 

Percent Variance, Scree Plot, Average Eigenvalue, and Cross Validation.  Cumulative 

percent variance method selects the number of principal components by setting a 

subjective threshold of cumulative percent variance.  Scree plot method is based on the 
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plot of the fraction of variance explained by each principal component.  The plot orders 

the principal components from the one that explains the largest amount of variation to the 

one that explains the least amount of variation.  This method considers the beginning 

point of the Scree as the most reasonable number of principal components.  Average 

eigenvalue method assumes that all the components whose corresponding eigenvalues are 

less than the average value should be discarded.  When cross validation method is used to 

determine the number of principal components, the original data are randomly divided 

into N blocks, the cross validation error is computed as the residual sum of squares (RSS) 

for one block of data with the PCA model built using the other blocks of data.  The 

number of principal components is chosen to be the one beyond which the RSS begins to 

increase (Wold, 1978).   

The cross validation method is the best available method to determine the number 

of principal components when large amount of data are available and when the objective 

of modeling is for prediction. 

Qin and Dunia originally developed an algorithm to determine the number of 

principal components specifically for process monitoring (Qin and Dunia, 1998).  This 

algorithm determines the number of principal components such that the best 

reconstruction of measurement error can be achieved. 

Considering that the measured data are corrupted with additive sensor faults, the 

measurement vectors are given by: 

 
ifxx ξ+= *           (5.19) 

 
where 

iξ  = the fault direction of the ith sensor fault. 

*x  = the noise containing measurement vector at normal operation condition. 

 
The reconstructed value ix  of a given measured vector x  , which is an estimate 

of *x , along the fault direction iξ  is given by: 
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iii fxx ξ−=           (5.20) 
 

The best reconstruction needs to find the fault magnitude if  such that the 

reconstruction error is minimized.  The reconstruction error is defined as the distance 

between ix  and the projection onto the model space, which is given by (Dunia and Qin, 

1998): 

 
222 ||~~||||~||||*|| iiiii fxxxxSPE ξ−==−=       (5.21) 

 
where the symbol ~ represents a projection onto the residual space which is induced by 

the pre-multiplication operator of TPP ~~
. 

 

To minimize the reconstruction error, the derivative of iSPE  with respect to if  

should be zero.  That is: 
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Therefore, the fault magnitude can be determined as follows: 
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The reconstructed value of the measurements along the fault direction iξ  can now 

be obtained by: 
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Because the measured data contain noise, there always exists a portion of 

unreconstructable error.  The variance of the unreconstructed variation along the fault 

direction iξ  is then given by: 
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Equation (5.25) is obtained by noticing that the fault magnitude f  in Equation (5.19) is 

zero for normal operation data and thus *xx =  in Equation (5.24). 

The optimal number of principal components needs to ensure that a reliable 

reconstruction can be achieved for normal operation data independent of the direction 

chosen for fault reconstruction.  In other words, the criterion to determine the number of 

principal components can be formulated to minimize the normalized variance of 

reconstruction error (VRE) in terms of the number of principal components k , which is 

given by: 
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Dunia and Qin proved that the normalized VRE could always achieve a minimum 

(Dunia and Qin, 1998b).  Intuitively, the VRE in the residual space will monotonically 

decrease with respect to k  because the eigenvalues of the covariance matrix decreases.  

Meanwhile, the variance of the reconstruction error in model space will go to infinity 

when k  approaches m, because iξ~  in the denominator of Equation (5.25) tends to be 

zero.  In combination, the VRE can reach a global minimum. 

Dunia and Qin have also revealed the relationship between the method of the 

VRE approach and the cross validation approach to determine the number of principal 

components (Valle, Li, and Qin, 1999).  The VRE approach is equivalent to cross 
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validation approach when the noise variances are not too much different and the variance 

of the signal is larger than the variance of the noise. 

One of the uniqueness of VRE approach is that it is able to optimally choose the 

number of principal components in order to have the best fault reconstruction.  In 

addition, this approach can determine which measured variables have a low correlation 

with the other variables.  If the VRE is greater than the variance of the original data, the 

model prediction will be worse than the simple average of the raw measured data.  

Therefore, these variables should not be included in the PCA model for process 

monitoring. 

 

5.2.4 Fault Detection 
 

Fault detection can be performed by monitoring the change of the correlation 

structure of the measured data.  Because the variation of data is separated in the principal 

component space and the residual space, two statistics, 2T  statistics and Q statistic are 

defined to measure the variation in the two spaces, respectively.  If a new observation 

exceeds the effective region in the PC space defined by the normal operation data, a 

change in operation regime can be detected.  If a significant residual is observed in the 

residual space, a special event, either due to disturbance changes or due to changes in the 

relationship between variables, can be detected. 

 

5.2.4.1 2T Statistics 
 

The 2T  statistics measures the variation in the PC space, which is given by: 

 
ttT T 12 −Σ=           (5.27) 

where 

Σ  =  the sample variance matrix of the training data. 

t  =  the score vector. 

 



 146

If the measured data at normal operation conditions follow a multivariate normal 

distribution, 2T  statistics is related to an F distribution, which is given by: 

 

αα ;,
2 )1(

mNmF
mN

NmT −−
−

=         (5.28) 

where 

m  = the number of  variables. 

N  = the number of observations. 

α  = the significance level. 

 
During normal operation conditions, the 2T  criterion is given as follows: 

 
22

αTT <           (5.29) 

 

T2 statistics may be oversensitive when some of the eigenvalues of the correlation 

matrix are close to zeros.   

Another limitation of T2 statistics arises from the assumption that the raw data 

follows multivariate normal distribution.  The assumption is true only when the normal 

operation data are collected at one operation condition.  However, the normal operation 

data are usually collected under different operation conditions for an engineering process 

where many operation modes are possible.  Therefore, it should be cautious when T2 

statistics is used for process monitoring. 

 

5.2.4.2 Q Statistics 
 

The Q statistics measures the variation in the residual space, which is defined as 

the sum squared error (SSE) given by: 

 
εε TQ =           (5.30) 

 
where  
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xPP T~~=ε  
 

A fault is detected if the Q statistics exceeds a threshold given by: 

 

αQQ ≥           (5.31) 
 

If the residual vector follows multivariate normal distribution, the threshold of Q 

statistics is given by (Jackson and Mudholkar, 1979): 

 
dcbaQ )( αα +=          (5.32) 

 
where 

α  = the critical value for standard normal distribution at a given significance level. 
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Because the assumption that the residual vector follows multivariate normal 

distribution is much more relaxed than multivariate normal distribution of the original 

measured data, Q statistic is more appropriate than 2T  statistics for process monitoring. 

 

5.2.4.3 Conditions for Fault Detectability 
 

In general, the fault effects on measurements are multi-dimensional.  One-

dimensional fault is a simple fault whose effect shows only in one measured variable 
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while a multi-dimensional fault shows its effects in multiple measurements.  A sensor 

fault outside any control loops is one-dimensional.  Most process faults such as fouling of 

heat exchangers and pipe leakage are multi-dimensional.  In the presence of feedback and 

feedforward control, even a sensor fault may become multi-dimensional because the fault 

effects may be propagated to many other variables (Yoon and MacGregor, 2001). 

The fault effects of a multi-dimensional fault can be uniformly represented as 

follows: 

 

Efxx += *           (5.33) 
where 

E  = the fault distribution matrix. 

f  = the fault magnitude vector. 

 
If a fault occurs, the SSE will be as follows: 
 

2||~*~|| fExSSE +=          (5.34) 
 
where 

EPPE T~~~ =  

 

The necessary condition for fault detectability is that 0~ ≠fE .  In other words, a 

fault can be detected only if the projection of fault distribution matrix onto the residual 

space, E~ , is not empty, and the fault magnitude vector f  is not orthogonal to the space 

spanned by E~ .  This result is understandable because a detectable fault must have 

significant effects on residuals that are used as fault signatures for fault detection. 

The sufficient condition for fault detection has also been derived by Dunia and 

Qin, 1998b, which is written as follows: 

 

αδ2||~|| >fE           (5.35) 
where 
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ααδ Q=  
 

The above condition cannot be used directly in real practice.  We are here to 

derive a more specific condition for practical use. 

Since ||||)~(||~|| min fEfE σ≥ , a more restrictive condition for fault detectability 

can then be given by: 
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σ
δα>          (5.36) 

where minσ  denotes the minimum singular value. 
 

The above derivation assumes that the measured data have been standardized with 

zero mean and unit variance.  In order to guarantee the detectability of a sensor fault, the 

minimum fault magnitude of the measured value is given by: 
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≥          (5.37) 

 
where mσ  is the standard deviation of the normal operation data and |||| mf  is the 

minimum fault magnitude. 

 
Three implications can be drawn from Equation (5.37).  The first implication is 

that it is more difficult to detect a fault whose normal operation data has a larger 

variation.  The second implication is that the minimal detectable fault magnitude 

increases when the dimension of the residual space increases.  The third implication is 

that the minimal detectable fault magnitude increases when the signal-to-noise ratio 

decreases since the Q  statistic limit is a sensitive function of the signal-to-noise ratio. 

 
5.2.5 Fault Isolation 
 

Fault isolation is important to locate the root causes after a fault is detected.  If 

there is a large amount of historical data, fault isolation can be simplified as a 
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classification problem (Russell, Chiang, and Braatz, 2000).  However, because the same 

fault may have different fault magnitudes and the fault effects on the measured variables 

may vary with the operation conditions, the classification method may become unrealistic 

although it is easy for implementation.  The most popular approach to fault isolation is to 

investigate the contribution of individual measurements to the model residuals.  As 

compared with the classification approach, the advantage is that there is no need to 

prepare fault data.  However, contribution based approach may give inconclusive results 

for fault isolation if two faults are quite similar.  If fault effects are known in terms of 

fault distribution matrix, reconstruction based approach is able to lead to conclusive 

results for fault isolation. 

 

5.2.5.1 Classification Based Approach 
 

The fundamental assumption of pattern classification is that the objects from the 

same class share some common statistical relationship and this commonality can be 

quantitatively measured.  In the context of fault isolation, distance and direction can both 

be candidates to measure the commonality.  However, because possible fault magnitude 

is unpredictable before fault diagnosis is performed, fault direction should be a better 

measure to characterize different faults. 

Standard pattern classification involves two steps.  The first step is feature 

extraction, which transforms measured variables from a high dimensional space to a 

lower dimensional space such that the objects in the same class will cluster and the 

objects in different classes will have separation.  PCA itself is a commonly used method 

for feature extraction.  The second step is to develop a classifier that is able to assign an 

object in the feature space to a specific class such that the total classification error is 

minimum. 

One of the popular algorithms of distance-based classification is the Bayesian 

classifier.  In this classifier, an object is assigned to the ith class if the ith discriminant 

function reaches the maximum value, which is given by: 
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)()( xgxg ji >  for ij ≠        (5.38) 
where  

)|()( xPxg ii ω=  

)|( xP iω  = a posteriori probability, which is the probability that a sample vector x  is 

assigned to class iω . 

If the objects follow multivariate normal distribution with mean vector iµ  and 

covariance matrix iΣ  for the ith class, the discriminant function for the ith class is given 

by (Russell, Chiang, and Braatz, 2000): 

 

)(ln)ln(det(
2
1)()(

2
1)( 1

iiii
T

ii Pxxxg ωµµ +Σ−−Σ−−= −    (5.39) 

where 

)( iP ω  = the prior probability for class iω . 

 

The Bayesian classifier can be performed either for the score vectors or for the 

residual vectors depending on which space contains the vital discriminant information 

(Raich and Cinar, 1997). 

Direction-based classifier compares the similarity of principal components 

between different classes.  Considering two classes of data, the two classes of data will 

produce two PCA models, 1P  and 2P .  The angles kα  between the two sets of PCA 

model directions can be related to the eigenvalues of ks , and is given by: 

 
SLLPPPP TTT =1221         (5.40a) 

2/1)cos( kk s=α          (5.40b) 
 

where L  consists of the consensus coordinates and ks  is the kth largest eigenvalues of 

S , which corresponds to the smallest angle between the kth dimensional coordinate 

subspaces (Krzanowski, 1979). 
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A generalized similarity measure in terms of the PCA model directions can be 

defined as the sum of the cosines of angles between PCA model axes as follows (Raich 

and Cinar, 1995): 
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where 

p  = the dimensionality in the consensus coordinate systems. 

f  = the similarity factor. 

 
The directional-based classification is most useful to analyze the residual structure 

for fault isolation.  If there is a process fault such as heat exchanger fouling, the generated 

residuals will have certain directional features, the direction-based classification can be 

used to compare the similarity between the new residuals and the predefined residual 

structure. 

A sensitive fault detection algorithm has also been developed by monitoring the 

differences between the reference principal components and the principal components 

representing the current operation conditions.  If the correlation structure is changed, the 

cosine angle between the first reference PC and the first PC at the current condition can 

be directly used for fault detection.  However, if the variances of the first few major 

principal components are similar, the directions of principal components may change 

drastically although the correlation structure indeed does not change.  In this case, it is 

better to monitor the changes of subspace spanned by the principal components with 

similar variance for robust fault detection.  The dissimilarity of the subspace 1P  defined 

by the reference PCA model to the subspace 2P  defined by the current PCA model can 

be measured by the following index mA (Kano, Hasebe, Hashimoto, and Ohno, 2001): 

 

||1 mmA λ−=          (5.42) 
 
where  



 153

mλ  = the smallest eigenvalue of the matrix 2112 PPPP TT . 
 
 
5.2.5.2 Contribution Based Approach 
 

The contribution-based approach quantifies the contribution of each process 

variable to 2T  statistics and Q  statistic to determine the root causes after a fault 

happens.   

The Q  statistic-based contribution approach decomposes the SSE into individual 

components contributed by each measured variable as follows: 
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where 

2)ˆ( iii xxSSE −=  

ix̂  = the ith component of the matrix xPPT . 

 

The contribution of the ith process variable to the Q  statistic is then given by: 

 

SSE
SSECONT i

i =          (5.43) 

 

The 2T  statistics based contribution approach first determines which score 

components are out of control.  A score component jt  is considered as abnormal if the 

standardized score is greater than the average 2
αT  assigned to each degree of freedom, 

that is: 
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where  

pm  = the number of principal components. 

The contribution of each variable ix  to the out-of-control score jt , denoted by 

ijCONT ← , is then given by: 

 

)ˆ( iiijij xxPCONT −=←  

 

where ijP  is the ith row of the jth principal component vector. 

The total contribution of the process variable ix  to the out-of-control 2T  

statistics is given by (Kourti and MacGregor, 1996): 
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       (5.45) 

 

where in  is the number of score components out of control.   

 

Contribution based approach does not give immediate results of fault isolation 

because these contributions are derived from correlation based models (Yoon and 

MacGregor, 2000).  However, contribution plots do indicate which group of variables are 

highly correlated with a detected fault.  Fortunately, contribution plots work quite well 

for sensor and actuator fault isolation in real practice. 

 

5.2.5.3 Reconstruction Based Approach 
 

Reconstruction based approach to fault isolation belongs to the philosophy of 

assumption based fault diagnosis (Kavuri and Venkatasubramanian, 1992).  A set of 

candidate fault directions are chosen based on prior knowledge or inferred from historical 

data.  Fault identification is performed by comparing the reconstruction error when each 
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candidate fault is assumed.  The fault along whose direction the reconstruction error 

reaches the minimum is considered as the true fault.  

Given an abnormal measurement vector x  with the true fault magnitude if  along 

the fault direction iE , if the candidate fault direction is assumed to be jE , in analogy to 

Equation (5.24), the reconstruction error along this direction is given by (Qin, 2003): 

 

iijjjjjjjjj fEEExEExEEfExx ~)~~(*~)~~(~)~~(~~~ +++ −Ι+−Ι=−Ι=−=   (5.46) 
 

where +
jE~  denotes the pseudoinverse of jE  which satisfies that jjjj EEEE ~~~~ =+ . 

 

If the assumed fault is the true fault, i.e. ij EE = , using Equation (5.46), the SSE 

is then given by: 

 
2||*~)~~(|| xEEISSE iii

+−=         (5.47) 
 

It is easy to show that the sum square of the reconstructed error is minimal only if 

the assumed fault is the true fault.  This provides the technical basis to determine the true 

fault out of candidate faults with a conclusive result.  Moreover, the sum square of the 

reconstructed error along the true fault direction can always be brought back within the 

Q  statistic limit.   

However, it is also possible that the sum square of the reconstructed error will be 

smaller than the Q  statistic limit even if the reconstruction is not performed along the 

true fault direction.  A sufficient condition to avoid this from happening is as follows 

(Qin, 2003): 
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where 
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ijα  = the angle between iE~  and jE~ . 

iδ  = the confidence limit of the Q  statistic of the reconstruction error along the ith fault 

direction. 

Equation (5.48) is a very conservative condition for fault identification.  For this 

reason, we do not suggest to relate fault isolation to the Q  statistics.  Instead, fault 

isolation is only based on comparing the reconstruction error.   

In addition, Equation (5.48) holds only when the fault is one-dimensional.  In 

general, in order to ensure that αQSSE j >2||||  if ij ≠ , a sufficient condition is given 

by: 
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       (5.49) 

 
 
5.3 Application to the IRIS HCSG Systems 
 

The application of reconstruction based PCA approach to IRIS HCSG systems is 

presented in this section.   

 

5.3.1 Data Generation and Model Development 
 

The data were generated for one pair of the steam generators, SG-A and SG-B, to 

simulate the measurements in actual nuclear power plants, where most measurements are 

highly correlated with other measurements.  For this pair of steam generators, it is 

assumed that the available measured variables include: 

• W1: the flow rate into the primary side of SG-A and SG-B. 

• T1: the primary side inlet temperature. 

• T3: the primary side outlet temperature of SG-A. 

• T5: the primary side outlet temperature of SG-B. 
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• T6: the primary side outlet temperature of SG-A and SG-B 

• W6: the flow rate leaving the primary side of SG-A and SG-B. 

• W7: the feed water flow rate into the secondary side of SG-A and SG-B. 

• T7: the feed water temperature. 

• W12: the steam flow rate leaving the secondary side of SG-A and SG-B. 

• T12: the steam temperature leaving the secondary side of SG-A and SG-B. 

• T9: the steam temperature leaving the secondary side of SG-A. 

• T11: the steam temperature leaving the secondary side of SG-B. 

 

The normal operation data was generated by perturbing the feed water flow rate 

W7 ranging from 80% nominal value to 100% nominal value to simulate reactor power 

change using the simulation model developed in Chapter 3.  In the simulation, it is also 

assumed that the two steam generators are at operation in perfect symmetry and the 

primary flow rate and the primary inlet temperature are constant.   

Because the secondary fluid flows inside the helical coil tubes, it is unrealistic to 

install instruments to directly measure the mass flow rate of each steam generator.  

However, it is a realistic postulation that the mass flow rate into the secondary side of the 

steam generator pair may be uneven due to flow path blockage.  This anticipated 

operation condition is selected as a process fault in the analysis.  The fault data were 

generated by linearly increasing the secondary mass flow rate into SG-A from 100% 

nominal value to 120% nominal value while reducing the secondary mass flow rate into 

SG-B from 100% nominal value to 80% nominal value.   

After the data were generated, the temperature data were added with white 

Gaussian noise with three standard deviation of 0.25% nominal value and the mass flow 

rate data was added with white Gaussian noise with three standard deviation of 1% 

nominal value. 

Table 5.1 summarizes the cross correlation coefficients of the simulated measured 

data.  As is expected, the variables W1, W6, T1, and T7 do not have meaningful 

correlations with the other variables.  
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Table 5.1.  Cross correlation coefficients of the generated data 

 

Variables W1 T1 T3 T5 W6 T6 W7 T7 W12 T12 T11 T9 

W1 1.0000 -0.0059 0.0320 0.0382 -0.0162 0.0242 -0.0299 0.0448 -0.0280 0.0220 0.0217 0.0231 

T1 -0.0059 1.0000 0.0206 0.0164 -0.0032 0.0139 -0.0177 0.0334 -0.0177 0.0095 0.0096 0.0084 

T3 0.0320 0.0206 1.0000 0.9836 -0.0068 0.9834 -0.9895 -0.0232 -0.9897 0.9505 0.9500 0.9498 

T5 0.0382 0.0164 0.9836 1.0000 -0.0064 0.9838 -0.9900 -0.0234 -0.9901 0.9519 0.9528 0.9521 

W6 0.0162 -0.0032 -0.0068 -0.0064 1.0000 -0.0075 0.0083 0.0023 0.0065 -0.0052 -0.0077 -0.0126 

T6 0.0242 0.0139 0.9834 0.9838 -0.0075 1.0000 -0.9900 -0.0285 -0.9904 0.9522 0.9520 0.9522 

W7 -0.0299 -0.0177 -0.9895 -0.9900 0.0083 -0.9900 1.0000 0.0227 0.9967 -0.9629 -0.9630 -0.9623 

T7 0.0448 0.0334 -0.0232 -0.0234 0.0023 -0.0285 0.0227 1.0000 0.0280 -0.0239 -0.0249 -0.0270 

W12 -0.0280 -0.0177 -0.9897 -0.9901 0.0065 -0.9904 0.9967 0.0280 1.0000 -0.9633 -0.9633 -0.9627 

T12 0.0220 0.0095 0.9505 0.9519 -0.0052 0.9522 -0.9629 -0.0239 -0.9633 1.0000 0.9871 0.9875 

T11 0.0217 0.0096 0.9500 0.9528 -0.0077 0.9520 -0.9630 -0.0249 -0.9633 0.9871 1.0000 0.9877 

T9 0.0231 0.0084 0.9498 0.9521 -0.0126 0.9522 -0.9623 -0.0270 -0.9627 0.987 0.9877 1.0000 
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In order to give all the measurements the same weights, a PCA model is 

developed using the correlation matrix.  Table 5.2 tabulates the AIC criteria, the variance 

of reconstruction error, and the eigenvalues of the correlation matrix as a function of the 

number of principal components.  The AIC criteria do not give a solution to the number 

of principal components.  This is not because the selected penalty factor in the formula of 

AIC criterion is not appropriate.  Instead, none of information criteria based methods can 

ensure the calculated number of principal components is appropriate because the 

assumption made to derive the likelihood function for use in AIC does not hold.   

When PCA is performed for correlation matrix, the eigenvalues corresponding to 

the several small eigenvalues of the correlation matrix are usually quite different.  This 

contradicts the assumption made to determine the likelihood of the unknown parameters 

for PCA model development.  The variance of reconstruction error has a global minimum 

when the number of principal components is chosen to be three.  Therefore, according to 

the minimum VRE, three principal components should be chosen for PCA modeling.   

According to the eigenvalues of the correlation matrix given in Table 5.2, the 

number of principal components is estimated as seven.  However, it can be seen from 

Table 5.1 that four independent variables have very low correlation coefficients with the 

other variables and thus they should be discarded.  This indirectly shows that the number 

of principal components determined based on the minimum VRE is correct. 

Figure 5.1 shows the ratio of the VRE to the variance of the raw data.  The ratios 

are greater than 1.0 for W1, T1, W6, and T7.  This indicates that the developed model 

cannot give model predictions better than simple averages of the raw data for these 

variables.  If the cross correlation coefficients are examined, they indeed do not have 

physically meaningful correlation with the other variables.  Therefore, it is demonstrated 

that VRE method is able to automatically exclude variables that do not consist of 

significant information for use in the model development.   
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Table 5.2.  Determination of the number of Principal Components 

 

 

 

 

 

 

 

 
 

Number of 
PCs 1 2 3 4 5 6 7 8 9 10 11 12 

AIC(1.0E5) 1.08 0.98 0.85 0.63 0.20 0.041 0.036 0.029 0.024 0.014 0.0022 0.0012 

VRE(1.0E4) 1.0 0.0003 0.0002 0.0003 0.077 0.031 0.033 0.034 0.053 0.098 0.53 ∞  

Eigenvalues 35.9 13.3 12.9 12.7 12.3 4.7 1.7 1.73 1.3 1.4 1.1 0.7 
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Figure 5.1.  The ratio of the variance of reconstructed error to the variance of the original 

data. 

 
 
5.3.2 Results of Single Fault Detection and Isolation 
 

Table 5.3 shows the minimum fault magnitudes that can be detected for the eight 

sensor faults.  The minimum fault magnitudes are 1.7 oC for the primary outlet 

temperature sensors, 5.7 kg/s for the secondary flow meters, and 2.2 oC for the secondary 

steam temperature sensors.  Figure 5.2 plots the comparison between the sum prediction 

error and its threshold for T3 sensor fault with the minimum detectable fault magnitude.   

Figure 5.3 shows that the Q statistic can be used to track the progression of the 

uneven secondary flow distribution of the HCSG pair.  The fault can be detected at the 

10th sample when the secondary flow rate of one steam generator has 102% nominal 

value and the secondary flow rate of the other steam generator is 98% nominal flow rate.   
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Table 5.3.  Minimum detectable fault magnitudes for sensor fault detection. 

 

 
[1] Detection Limit=Minimum detectable fault magnitude. 
[2] Percent=Percent of nominal value of the minimum detectable fault magnitude. 
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Figure 5.2.  Detection of a fault with the minimum detectable fault magnitude. 

Variable T3  
(C) 

T5 
(C) 

T6 
(C) 

W7 
(kg/s) 

W12 
(kg/s) 

T12 
(C) 

T11 
(C) 

T9 
(C) 

Detection 
Limit[1] 1.7 1.7 1.7 5.7 5.7 2.2 2.2 2.2 

Percent [2] 0.6 0.6 0.6 4.5 4.5 0.7 0.7 0.7 
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Figure 5.3.  Tracking the progression of the uneven flow distribution fault. 

 
Figure 5.4 shows the results of isolating the uneven HCSG flow distribution fault.  

The upper subplot gives the fault direction characterizing the fault effects on the eight 

measured variables.  In this case, the fault effects can be characterized as a one-

dimensional vector.  After the fault occurs, the most significant symptom is that one of 

the steam generator will have a primary side outlet temperature lower than the nominal 

value and the other steam generator will have a primary side outlet temperature higher 

than the nominal value.  The lower subplot shows the ratios of the reconstruction errors to 

the thresholds for six snapshots with different severity of uneven flow distribution.  All 

the six snapshots have exactly the same signatures, which is necessary for robust fault 

isolation.  If the reconstruction is performed along the other candidate faults (eight sensor 

faults) except the uneven flow distribution fault, the reconstruction errors are all much 

greater than 1.0.  Only when the reconstruction is performed along the direction of 

uneven flow distribution fault can it be brought back within the predetermined threshold.  

Therefore, the uneven flow distribution fault can be correctly isolated.   

Table 5.4 tabulates the cosine angle between a pair of fault directions projected 

onto the residual space for all the faults.  If two fault directions projected onto the 

residual space are very similar, it will be unrealistic to distinguish their fault effects.  In 

this example, the uneven flow distribution fault is more similar to a T3 sensor fault and a 

T5 sensor fault than the other sensor faults because of a larger value of cosine.   
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Figure 5.4.  Isolation of the uneven flow distribution fault. 

 

 

Table 5.4.  Cosine of the angle between the fault directions projected onto the residual 

space 

 

Variable T3 T5 T6 W7 W12 T12 T11 T9 Process 
Fault 

T3 1.0 -0.28 -0.28 0.24 0.24 0.02 0.02 0.02 -0.79 
T5 -0.28 1.0 -0.27 0.24 0.24 0.02 0.02 0.02 0.81 
T6 -0.28 -0.27 1.0 0.24 0.24 0.02 0.01 0.01 -0.01 
W7 0.24 0.24 0.24 1.0 -0.22 0.03 0.03 0.03 0.01 
W12 0.24 0.24 0.24 -0.22 1.0 0.03 0.03 0.03 0.01 
T12 0.02 0.02 0.02 0.03 0.03 1.0 -0.49 -0.50 -0.01 
T11 0.02 0.01 0.01 0.03 0.03 -0.49 1.0 -0.49 -0.01 
T9 0.02 0.01 0.01 0.02 0.03 -0.50 -0.49 1.0 -0.01 

Process 
Fault -0.79 0.81 -0.01 0.01 0.01 -0.01 -0.01 -0.01 1.0 
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5.3.3 Results of Dual Fault Detection and Isolation 
 

The reconstruction error based approach can be easily extended to detect and 

isolate multi-dimensional faults such as simultaneous multiple faults because of the 

unified representation of the fault effects.  The application to one pair of HCSG systems 

is presented in this section.  For simplicity without loss of the generality, it is assumed 

here that the possible simultaneous faults are limited to dual faults for all the sensors in 

the system. 

Table 5.5 lists the reconstruction results of simultaneous T3 sensor fault with a 

1% bias and W7 sensor fault with a 3% bias.  The true values of the T3 and W7 are 

299.41 oC and 100.56 kg/s, respectively.  The measured values with sensor faults are 

302.33 oC and 104.33 kg/s, respectively.  The rectified values using reconstruction-based 

approach are 299.32 oC and 100.96 kg/s.  The rectified values using traditional PCA 

approach are 299.78 oC and 99.58 kg/s.  The reconstruction-based PCA approach does 

give better fault reconstruction than traditional PCA approach.   

 

Table 5.5.  Reconstruction of simultaneous sensor faults T3 and W7 

 

Variable T3 
(C) 

T5 
(C) 

T6 
(C) 

W7 
(kg/s) 

W12 
(kg/s) 

T12 
(C) 

T11 
(C) 

T9 
(C) 

True value 299.41 299.41 299.41 100.56 100.56 325.27 325.27 325.27

Measured 
Value 302.33 299.23 299.29 104.33 100.50 325.30 325.13 325.41

 Reconstruction 
PCA 299.32 299.23 299.29 100.96 100.50 325.30 325.13 325.41

Traditional 
PCA 299.78 299.75 299.81 99.58 99.55 325.24 325.19 325.19
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Figure 5.5.  Identification of simultaneous dual faults (W7 and T3 sensor faults). 

 

Figure 5.5 shows the ratio of the reconstruction error to the threshold of the sum 

prediction error.  It can be seen that the ratio is greater than 1.0 when the reconstruction is 

performed using any candidate fault distribution matrices other than a dual fault of T3 

sensor fault and W7 sensor fault.  In other words, neither a single T3 sensor fault nor a 

single W7 sensor fault nor the other dual faults are able to fully explain the fault effects.  

The true fault can be correctly identified by the fact that the reconstruction is able to 

bring the reconstruction error back to below the threshold only if the fault distribution 

matrix corresponds to simultaneous T3 sensor fault and W7 sensor fault.  

 

5.4 Hybrid PCA Model Based Fault Diagnosis 
 

5.4.1 Motivation 
 

Historical PCA model based fault diagnosis depends on how data are collected.  

There are two options to collect data and build correlation-based PCA models for nuclear 

power systems.  One option is to collect data around certain operation points and the 

other option is to collect data during operation condition changes such as reactor startup.  

Because signal-to-noise ratio may be too small, the former approach may fail to capture 
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the correlations between measured variables.  In practice, the latter approach is more 

realistic in building statistical models.   

When operation condition changes, many measured variables will have significant 

amount of variation due to the manipulation of a few variables for operation condition 

changes.  However, the large variation due to operation condition changes may conceal 

the correlations between some variables.  The immediate consequence is that the 

developed statistical model will not be sensitive to detect a fault for such variables. 

A simple example is designed to illustrate this problem encountered for fault 

diagnosis.  In this example, two independent white Gaussian signals, u1 and u2, are used 

to excite a hypothetical system consisting of two signals, y1 and y2. 

For Case A, the four signals were generated as follows: 

 

)1,0(1 Nu =  

)1,0(2 Nu =  

22151 uuy +=  

23142 uuy +=  

 

The correlation coefficient of the generated data matrix [u1, u2, y1, y2] for Case 

A is given as follows: 

 

    1.0000   -0.0157    0.9181    0.7753 
   -0.0157    1.0000    0.3819    0.6193 
    0.9181    0.3819    1.0000    0.9622 
    0.7753    0.6193    0.9622    1.0000 
 

For Case B, the data were generated with a larger variation of 2u  in the 

following manner: 

 

)1,0(1 Nu =  

)1,0(*102 Nu =  
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22151 uuy +=  

23142 uuy +=  

 

The correlation matrix of the generated data [u1, u2, y1, y2] for Case B is given 

as follows: 

 

    1.0000    0.0083    0.2556    0.1434 

    0.0083    1.0000    0.9689    0.9908 

    0.2556    0.9689    1.0000    0.9934 

    0.1434    0.9908    0.9934    1.0000 

 

If we compare the correlation matrices for Case A and Case B, it is clear that a 

large variation of the signal u2 has annihilated the correlation between the signal u1 and 

y1 and y2.   

Assuming all the data were added with 0.1% random Gaussian noise, based on the 

algorithm presented in section 5.2, the minimum detectable fault magnitudes were 

calculated for u1, u2, y1, and y2 sensor faults, respectively, which are given as follows: 

 

0.006986, 0.011685, 0.033654, and 0.031368 for Case A. 

0.029867, 0.064126, 0.129584, and 0.191066 for case B. 

 

This result illustrates that a PCA model built from data with a large amount of 

variation for Case B will lead to a worse fault detection capability of the signal u1.  If we 

examine Equation (5.36) carefully, the minimum detectable fault magnitude is 

proportional to the inverse of the minimum singular value of E~ .  However, if a variable 

has very low correlation with the other variables, the resulting residual component 

vectors will have small loadings on this variable and lead to a small minimum singular 

value of E~ .  Therefore, the corresponding minimum detectable fault magnitude would 

then be large. 
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To avoid the difficulties in detecting a slight fault using data collected during 

operation condition changes, one possible solution is to decompose the variation 

contained in the collected data into different components and to perform an individual 

analysis for each components.  For instance, for the above example, if the variation of u2 

is totally removed, the resulting PCA model is able to detect u1, y1, y2 sensor faults with 

a fault magnitude of 0.006242, 0.031206, and 0.024967, respectively, which are much 

smaller than those for Case B. 

A hybrid PCA model based approach is proposed for fault detection and isolation 

with better performance in this dissertation.  The hybrid PCA modeling integrates the 

available knowledge about the system into the developed PCA models.  When data are 

collected during operation condition changes, some of the variation caused by 

independent manipulated variables, or caused by mass balance and energy balance are 

usually known.  Therefore, it is desired to decompose the variation according to their 

sources and remove the variation caused by the known sources.   

 

5.4.2 Constrained PCA Algorithm 
 

Constrained PCA (CPCA) algorithm (Takane and Hunter, 2001) provides the 

mathematical basis to implement hybrid PCA modeling for fault diagnosis.  In CPCA, the 

prior system knowledge is explicitly formulated in the PCA analysis.  CPCA first 

decomposes the data matrix according to the given external information, and then applies 

the traditional PCA algorithm to the decomposed matrices.   

The first step of CPCA involves projecting the original data matrix onto the 

spaces spanned by the matrices of the external information. 

In general, two types of external information exist.  The first one is that some 

constraints are imposed on the columns of the data matrix and the second one is that 

some external information is provided for the rows of the data matrix.  When CPCA is 

applied to fault diagnosis, the row constraints may be the known redundant 

measurements, or mass balance and energy balance equations.  The column constraints 
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may be related to the variables contributing to the large variation that may affect the 

sensitivity of fault detection.   

The potential advantages of incorporating the external information for fault 

diagnosis include: 

(a) Decompose the variation of measured variables so that the fault detection algorithm is 

more sensitive;  

(b) Provide an integrated approach to combining correlation based statistical modeling 

and first-principle based modeling. 

 

Given a data matrix X , the row constraint matrix G , the column constraint 

matrix H , the decomposition of the matrix X  takes the following form (Takane and 

Hunter, 2001): 

 

EGCBHGMHX +++= ''        (5.50) 
 
where the first term is related to the information that can be explained by both G  and 

H , the second term is related to the information that can be explained by H  but not by 

G , the third term is related to the information that can be explained by G  but not by H , 

and the last term is the residual corresponding to what cannot be explained either by G  

or by H . 

The decomposition of matrix X  defined in Equation (5.50) does not have unique 

solution unless the following orthogonal conditions are satisfied: 

 
0' =BG           (5.51a) 
0' =CH           (5.51b) 

 
The least square estimates of M , B , and C  are given by: 

 
11 )'(')'(ˆ −−= HHXHGGGM        (5.52a) 

 
11 )'()(ˆ −−−Ι= HHXHPB G        (5.52b) 
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)'(')'(ˆ 1
HPXGGGC −Ι= −         (5.52c) 

 
where GP  and HP  are orthogonal projection operators onto the space spanned by the 

column vectors of G  and H , respectively.  These two projection matrices are defined as 

follows: 

 
')'( 1GGGGPG

−=          (5.53a) 
 

')'( 1 HHHHPH
−=         (5.53b) 

 
The matrix GP  is the projector onto the column space of G  along the null space 

of 'G  and the matrix GQ  is the projector onto the null space of 'G  along the column 

space of G .  The matrices GP  and GQ  have the following properties (Takane and 

Hunter, 2001): 

 

GG PP =2  and GG QQ =2         (5.54a) 

GGG PPP ='  and GGG QQQ ='        (5.54b) 
0== GGGG PQQP          (5.54c) 

GGPG =  and '' GPG G =         (5.54d) 
0' =GQG           (5.54e) 

 
Similarly, the matrices HP  and HQ  have the same properties. 
 

If we substitute the least square estimates of M , B , and C  into Equation (5.50), 

the following decomposition can be obtained: 

 

'''' HGHGHGHG XQQXQPXPQXPPX +++=      (5.55) 
 

Because the column spaces of the four terms are mutually orthogonal, the trace of 

the original data matrix can be uniquely decomposed into the sum of the traces of the four 

individual components. 
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Prior Knowledge in Terms of Columns 

 
The G  matrix is known in this case.  If Ι=H , then Ι=HP  and 0=HQ .  

Therefore, we have: 

 

XQXPX GG +=          (5.56) 
 

In order to show the incorporation of column information into PCA modeling, an 

illustrating example is designed using the following Matlab code: 

 

x1=randn(2000,1); 

x2= randn(2000,1); 

u1=x1; 

u2=20*x1+2*x2; 

ndata=length(u1); 

y1=5*u1+2*u2; 

y2=4*u1+3*u2; 

Data0=[u1,u2,y1,y2]; 

[ndata,m]=size(Data0); 

Data=[]; 

noi=[0.1,0.1,0.1,0.1]; 

for idata=1:1:ndata 

temp=Data0(idata,:)+noi.* Data0(idata,:).*ndn(1,4); 

Data=[Data;temp]; 

end; 

The minimum detectable fault magnitudes are 0.519547, 10.392210, 23.356498, 

and 33.239751, for u1, u2, y1, and y2, respectively, based on the developed PCA model. 

If it is known that most of the variation of the collected data set arises from the 

variation of x1, we can choose G consisting of a column vector of u1.  Based on the 

algorithm defined in Equation (5.56), the original data matrix can be decomposed into 
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two components.  The first component explains the variation caused by x1 and the second 

components explains the remaining variation.   

After the decomposition, the mean value of the first component is -0.0313, -

0.6212, -1.3976, and -1.9876, and the standard deviation is 0.9828, 19.5311, 43.9392, and 

62.4907, for u1, u2, y1, and y2, respectively.  On the other hand, the mean value of the 

second component is -0.0056, 0.0012, -0.0118, and -0.6212, and the standard deviation is 

2.8624, 6.0906, and 8.8678, for u2, y1, and y2, respectively.  It is clear that the first 

component has contributed to significant portion of the total variation for u2, y1, and y2. 

Figure 5.6 shows a comparison of fault detection between traditional PCA and 

CPCA using column information for a sensor fault of u2 with a bias of 0.75 injected at 

the 1200th sample.  The upper subplot shows the results for CPCA and the lower subplot 

shows the results for traditional PCA.  It is clear that the fault of the given fault 

magnitude can be detected using CPCA while it cannot be detected using traditional 

PCA. 

Figure 5.7 shows the FDI results of a sensor fault of y1 with a bias of 1.5 injected 

at the 1200th sample based on the constrained PCA using column information.  The upper 

subplot shows that the fault can be detected immediately and the lower subplot shows 

that the prediction error can still be used for correct fault isolation. 

 

Prior Knowledge in Terms of Rows 
 

The column constraint matrix H  is known in this case.  If Ι=G , then Ι=GP  

and 0=GQ .  Therefore, we have: 

 

HH XQXPX +=          (5.57) 
 

For the same example as used when prior knowledge is known in terms of 

columns, if the constraint equation is known for the signal y2, the constraint equation can 

be embedded into the developed constrained PCA model with the matrix H  given as 

[ ]1034 −=H  
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Figure 5.6.  Comparison of fault detection between traditional PCA and constrained PCA 

using column information. 
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Figure 5.7.  Fault detection and isolation of y1 sensor fault based on constrained PCA 

using column information. 
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Figure 5.8.  Fault diagnosis of y2 sensor fault with a bias of 1.5 based on constrained 

PCA using row information. 

 

Let’s define 'XHG = , the data matrix can then be decomposed into two 

components.  The first component explains the variation defined by the constrained 

equation given by H and the second component explains the remaining variation.  If the 

second component is examined, we can find that most of the variation contained in the 

original data has been removed by the first decomposed component.  Therefore, we can 

expect that a fault of smaller magnitude can be detected by performing a standard PCA 

on the second decomposed component. 

Figure 5.8 shows a comparison of the fault diagnosis with constrained PCA using 

row information for y1 sensor fault with a bias of 1.5.  The upper subplot shows that the 

fault can be successfully detected.  If we recall that the minimum detectable fault 

magnitudes are 0.519547, 10.392210, 23.356498, and 33.239751, for u1, u2, y1, and y2, 

respectively, for traditional PCA approach, the detectable fault magnitude based on the 

constrained PCA approach is indeed much smaller.  The lower subplot shows the 

prediction error based on the PCA analysis on the second decomposed component.  It is 

clear that the sensor fault can be correctly identified. 
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5.4.3 Application to the HCSG System 
 

The hybrid PCA model based fault diagnosis algorithm is applied to the same data 

set generated for HCSG system and compared with the results presented in section 5.3.   

According to a simple analysis, most of the variation contained in the operation 

data is caused by the variation of the feed water flow rate.  Therefore, a constrained PCA 

model can be developed with the G matrix defined by the column of feed water flow rate.   

A standard PCA is performed for the second component of the decomposed data 

matrix.  Figure 5.9 plots the original data and the first decomposed component for T3 and 

T6 as a function of W7.  As we can see, the decomposed first component is indeed able to 

explain the variation caused by the feed water flow rate.  Figure 5.10 shows the results of 

fault diagnosis of a T5 sensor fault with 0.25% bias based on the constrained PCA 

algorithm using the prior information that feed water flow rate is predominant on the 

variation of the collected data.  Compared with the minimum detectable fault magnitude 

given in Table 5.3, the sensitivity of the fault detection has improved significantly 

through incorporating prior knowledge into the constrained PCA algorithm.  

By imposing a constraint on the feed water flow rate and the steam flow rate, a 

constrained PCA was performed with the following constraints: 

 

[ ]00011000 −=H  

 

A standard PCA is performed over the second component of the decomposed data 

matrix.  Figure 5.11 plots the original data and the first decomposed component for W12 

as a function of W7.  As we can see, the decomposed first component satisfied the 

specified constraint equation that the steam flow rate is equal to the feed water flow rate.  

Figure 5.12 shows the results of fault diagnosis of a T3 sensor fault with 0.25% bias 

based on CPCA using the constraints W7=W12.  Compared with the minimum detectable 

fault magnitude given in Table 5.3, the sensitivity of the fault detection can also be 

improved significantly through incorporating prior knowledge into the constrained PCA 

algorithm. 
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Figure 5.9.  Component decomposition of constrained PCA analysis using column 

information. 
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Figure 5.10.  Fault diagnosis of a T5 sensor fault with 0.25% bias based on constrained 
PCA using column information. 
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Figure 5.11.  Component decomposition of constrained PCA analysis using row 

information. 
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Figure 5.12.  Fault diagnosis of a T3 sensor fault with 0.25% bias using constrained PCA 

with the constraint W7=W12. 
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5.5 Robust PCA Model Based Approach to Fault Diagnosis 
 

Robust PCA model based approach to steady state fault diagnosis is developed in 

this dissertation.  In this approach, a PCA model is built using data generated from a 

simulation model.  After the uncertainty of the developed PCA model is identified, robust 

residual generators are then designed such that the model mismatch can be decoupled.  In 

this section, the algorithm of robust PCA model based steady state fault diagnosis is 

derived first and then applied to a pair of IRIS helical coil steam generators.  The robust 

PCA model based fault diagnosis approach can relax the stringent requirements of data 

collection for traditional historical data based fault diagnosis methods and will increase 

the potential of using model based approach to fault diagnosis to solve engineering 

problems.  The developed algorithm can be applied to any subsystems in nuclear power 

plants. 

 

5.5.1 Identification of Model Uncertainty  
 

The developed PCA model from simulation data always has a certain degree of 

uncertainty when used to describe the relationships among measured variables in a real 

process.  The model uncertainty can be ascribed to the simplification used in the 

simulation model, the parameter uncertainty for simulation, and the model reduction 

error.  For a complex system such as a nuclear power plant, it might be too difficult to 

know the characteristics of model uncertainty due to incomplete understanding about the 

physical system.  For this reason, the model uncertainty needs to be estimated from plant 

measurements. 

If model uncertainty is considered as an additive unknown disturbance term, the 

system model can be described as follows (Chen and Patton, 1999): 

 

ε++= dEyy d*          (5.58) 
 

where 
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y  = the plant measured values. 

*y  = the estimated value from the developed PCA model. 
ε  = the measurement noise. 

d  = the magnitude of model uncertainty vector. 

dE  = the distribution matrix of model uncertainty. 

 

The estimated value from the PCA model, *y , can be calculated as follows: 

 

MM tPy =*           (5.59) 
 

where MP  is the loading matrix of the developed PCA model and Mt  is the 

corresponding score matrix. 

The uncertainty distribution matrix dE  can be estimated by studying the 

structured properties of the difference between the measured values and the predicted 

values.  Given that the plant measurement data matrix is Y , the difference between the 

plant measurements and the model predictions, 1Ω , is as follows: 

 

YPPY T
MM−=Ω1          (5.60) 

 

If the columns of 1Ω  change only due to the measurement noise, it is safe to state 

that the uncertainty distribution matrix dE  is a vector and the magnitude of model 

uncertainty is a scalar function.  In this case, the matrix dE  can be approximated as a 

simple average of the columns of 1Ω .  

In general, the columns of 1Ω  have varying directions and the model uncertainty 

vector lives in a multi-dimensional space.  To extract the dominant directions, the 
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singular value decomposition (SVD) procedure can be performed on 1Ω .  This is given 

by: 

 
TVSU 1111 =Ω           (5.61) 

 

If the diagonal matrix 1S  has dn  dominant singular values, the number of 

dominant directions is then dn  and the matrix 1Ω  can be approximated by: 

 
TVUΛ≈Ω1           (5.62) 

 

where Λ  is a diagonal matrix whose diagonal elements are the dn  most dominant 

singular values, U  contains the corresponding dn  left singular vectors and V  contains 

the corresponding dn  right singular vectors.   

The orthonormal matrix U  obtained from the SVD procedure can be directly 

used as the estimated uncertainty distribution matrix dE .  If the developed PCA model is 

able to characterize the major relationships, the column dimension of dE  should be much 

smaller than the number of the measurements. 

 
5.5.2 Robust PCA Based Fault Detection 
 

Different process faults and sensor faults have different effects on the plant 

measurements.  For a simple sensor fault, only one measurement is affected and the fault 

effects can be characterized by a one-dimensional vector.  However, a process fault 

usually affects multiple measurements.  In the presence of feedback, a sensor fault may 

also affect multiple measurements because of fault propagation within and across control 

loops.   

In general, in order to deal with process faults and sensor faults in a consistent 

manner, a multi-dimensional fault distribution matrix should be used to characterize the 
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fault effects on measurements (Dunia and Qin, 1998a).  The measurement vector y  with 

both model uncertainty and fault effects can be described as follows: 

 

ε+++= fEdEtPy fdMM        (5.63) 
 

where fE  is the fault distribution matrix and f  is the fault magnitude vector. 

To design a residual generator for fault detection, 0r , for the system given in 

Equation (5.63), a linear transformation B  needs to be performed on the measured 

variables, which is written as follows: 

 

Byr =0           (5.64) 
 

Because the generated residuals for fault detection should be decoupled from both 

model uncertainty and operation states, the transformation matrix B  must satisfy the 

following condition: 

 

[ ] 0=dM EPB          (5.65) 
 

Therefore, the residual 0r  generated by the transformation matrix B  given in 

Equation (5.65) will be dependent only on the fault magnitude, which is given as follows: 

 

εBfBEr f +=0          (5.66) 
 

If the measurement noise ε  follows certain distribution with covariance matrix 

Ψ , the residual vector 0r  for fault free conditions will follow the same distribution with 

zero-valued expected value and covariance matrix Φ , which is given by: 

 
TBBr Ψ==Φ )cov( 0         (5.67) 



 183

 

If the covariance matrix of measurement noise Ψ  is unknown, the covariance 

matrix Φ  can be learned directly from fault free data. 

Because the components of 0r  are usually correlated, it is not convenient to define 

a statistical test on the generated residual for change detection.  For this reason, the SVD 

procedure can be performed on Φ , which is given by: 

 
TUUΛ≈Φ           (5.68) 

 

where U  contains 0n  left singular vectors and Λ  consists of 0n  non-zero singular 

values. 

The SVD of the covariance matrix Φ  allows us to construct a linear 

transformation 2/1
0

−Λ= UW  such that a new residual vector 0R  will become 

uncorrelated, which is given by: 

 
ByWrWR TT

0000 ==          (5.69) 
 

If the measurement noise ε  follows normal distribution, the transformed residual 

vector 0R  for fault free conditions follows 0n  dimensional multivariate normal 

distribution with zero mean and unit variance (Romagnoli and Sanchez, 2000).  

Correspondingly, the 2-norm of this residual, 2
20 |||| R , follows a 2χ  distribution with 0n  

degrees of freedom.  Therefore, for a specified critical value α , a threshold 2
0δ  can be 

determined for fault detection in terms of 2
20 |||| R , which is given by: 

 
2

,
2
0

2
20 0

|||| αχδ nR =≤          (5.70) 
 

Based on the transformed 2-norm residual 2
20 |||| R  and its threshold 2

0δ , a robust 

fault detection index 0ϖ  can be calculated for fault detection, which is given as follows: 
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2
0

2
20

0

||||
δ

ϖ R
=           (5.71) 

 

If the robust fault detection index 0ϖ  is smaller than 1.0, the system is considered 

as operating at normal operation conditions.  Otherwise, a fault will be detected.   

The robust fault detection index can ensure that no false alarms will be caused by 

model uncertainty if it can be characterized by the specified uncertainty distribution 

matrix dE .  However, in order to detect a fault, the fault direction and the fault 

magnitude must satisfy the following condition: 
2
0

2
20

2
20 ||)(|||||| δε ≥+= BfBEWR f

T       (5.72) 
 

It can be observed from Equation (5.72) that a fault is not detectable if the column 

space of the fault distribution matrix fE  lives in the null space of the matrix BW T
0 .  A 

trivial case is that a fault will not be detectable if fE  lives in the joint column space of 

MP  and dE  because the fault effects are the same as the effects resulted from the model 

uncertainty and the normal operation changes. 

Even if a fault is detectable, the fault magnitude must be large enough to 

distinguish the fault effects from measurement noise.  A sufficient condition for absolute 

fault detectability is given by: 

 

020 2|||| δ≥fBEW f
T          (5.73) 

 

If the measurement data were standardized with a standard deviation of mσ , this 

sufficient condition can be further simplified as follows: 

 
1

0min02 ))((2|||| −≥ f
T BEWf σδ        (5.74) 

 

where minσ  denotes the minimum singular value. 
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5.5.3 Robust PCA Model Based Fault Isolation 
 

Reconstruction PCA model based approach developed by Dunia and Qin, 1998b, 

is extended for robust fault isolation in this dissertation.  In reconstruction PCA approach, 

a multi-dimensional fault is described by a subspace in which the fault effects are 

characterized.  Fault isolation is achieved by reconstructing the fault measurements in 

different candidate fault subspaces until the fault effects can be fully explained.  For a 

given set of candidate faults, if the reconstruction error can be brought back to the normal 

region for one candidate fault, a decision can then be made that this candidate fault is the 

true fault of the system.  Because this method is assumption based, the fault isolation 

result is more conclusive than contribution-based approach and classification based 

approach (Russell, Chiang, and Braatz, 2000).  In this dissertation, the fault 

reconstruction algorithm will be extended to when there is model uncertainty.   

For a system with the true fault characterized by the fault distribution matrix iE , 

the fault measurement y  can be described as follows: 

 

ε+++= fEdEyy id*         (5.75) 
 

Considering a candidate fault jE , the reconstructed value of the measurement 

vector, jy , in the fault subspace jE  is given by: 

 

jjj fEyy −=          (5.76) 
 

Because jy  is the expected value after the fault effects are eliminated, the best 

estimate of the fault magnitude vector jf  can be determined by minimizing the distance 

between jy  and the joint column space of MP  and dE  (Qin, 2003).  The minimization 

problem is mathematically written as follows: 
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2
2

2
2 ||||min||||min jjfjf

fBEByBy
jj

−=       (5.77) 

 

If the matrix jBE  has full column rank of en , the SVD on the matrix jBE  will 

not have zero singular values, which takes the following form: 

 
T
jjjj VEBE Λ= 0          (5.78) 

where 0
jE  and jV  are the left and right singular vectors corresponding to the en  nonzero 

singular values. 

 

After the SVD procedure is performed, the minimum 2-norm solution to Equation 

(5.77) is given by: 

 

)()( 01 ByEVf T
jjjj

−Λ=         (5.79) 
 

According to Equation (5.79), the fault can be completely reconstructed along all 

the en  directions if the matrix jBE  has full column rank.  However, if the matrix jBE  

does not have full column rank, en , the SVD on the matrix jBE  will result in only pn  

nonzero singular values, where ep nn < .  In this case, the fault can still be reconstructed 

according to Equation (5.79), but the fault can only be partially reconstructed along pn  

fault directions that correspond to the non-vanishing left singular vectors (Dunia and Qin, 

1998b). 

The reconstructed error of the measured vector in the candidate fault subspace 
0
jE , jir | , can now be calculated as follows: 

 

 )~)()(())(( 00000
| fBEBEEByEEByr i

T
jj

T
jjjji +−Ι=−Ι== ε    (5.80a) 

 

where 



 187

fVf T
iiΛ=

~
          (5.80b) 

 

If the fault measurement is reconstructed in the true fault subspace, the 

substitution of ij =  into Equation (5.80a) shows that the reconstructed error jir |  will be 

independent of fault magnitude vector f .  Therefore, the reconstructed error jir |  will be 

reduced to within the normal region when there is no fault, which is given by: 

 

 ))(( 00
| εBEEr T

iiii −Ι=         (5.81) 
 

In order to define a convenient statistics, similar to robust fault detection, a linear 

transformation iW  can be performed on the reconstruction error jir |  to generate the 

transformed residual  | jiR , which is given by: 

 

 ))(( 00
| ByEEWR T

jj
T

iji −Ι=        (5.82) 
 

The transformed residual  |iiR when the fault measurement is reconstructed in the 

fault subspace iE  can be computed as follows: 

 

 ))(( 00
| εBEEWR T

ii
T

iii −Ι=        (5.83) 
 

Given that in  singular values are retained to calculate the transformation iW , the 

transformed residual vector iiR |  follows a multi-dimensional normal distribution with 

zero mean and unit variance if the measurement noise has normal distribution.  

Correspondingly, the norm of the transformed residual 2
2| |||| iiR  will follow a 2

,αχ ni  

distribution with in  degrees of freedom.  Therefore, a threshold of 2
2| |||| iiR  can be 

derived to determine whether the fault measurement is reconstructed in the true fault 

subspace iE , which is given as follows: 
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2

,
22

2| |||| αχδ niiiiR =≤          (5.84) 
 

A robust fault isolation index can also be derived for fault isolation, which is 

given as follows: 

 

2
,

2
2| ||||

αχ
ϖ

ni

ji
i

R
=           (5.85) 

 

If the fault isolation index iϖ  is less than 1.0, the fault measurement can then be 

fully reconstructed in the assumed fault subspace.  Otherwise, the assumed fault jE  is 

not the true fault iE  that has occurred in the system.  Based on this logic, the fault 

isolation can be successfully achieved if the set of candidate faults is complete.  Once a 

fault is isolated, the fault magnitude vector can be estimated using Equation (5.79). 

However, in order to avoid that a fault jE  would not be isolated as a fault iE , the 

following condition must be satisfied: 

 
22

2
0002

2| ||)~)()((|||||| ii
T

jj
T

iji fBEBEEWR δε >+−Ι=  for all ij ≠    (5.86) 
 

Because the matrix T
jj EE )( 00−Ι  has eigenvalues of either zero or one, the 

following inequality holds (Dunia and Qin, 1997): 

 

||||||))((|| 00 εε BWBEEW T
i

T
jj

T
i ≤−Ι       (5.87) 

 

For the same reason, if we denote the statistical threshold of |||| εBW T
i  as 0iδ , 

we have ii δδ ≥0 .  Therefore, one sufficient condition to avoid a fault iE  from being 

identified as fault jE  can be given as follows: 
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0
000 2||)~))((|| ii

T
jj

T
i fBEEEW δ>−Ι  for all ij ≠      (5.88) 

 

This sufficient condition can be further simplified as follows: 

 
1000

min0 )]}]())(([[{2||~|| −−Ι> i
T

jj
T

ii BEEEWf σδ      (5.89) 
 

5.5.4 Identification of Fault Distribution Matrix 
 

The robust fault detection and isolation algorithm presented here involves the 

determination of fault distribution matrix fE .  For a simple fault such as sensor faults 

affecting only one variable that is not used for control, the fault distribution matrix fE  is 

nothing but the corresponding column vector of the identity matrix.  However, for a 

complex fault, the fault distribution matrix fE  must be identified either from simulation 

data or from plant measurements. 

If fault data is generated from simulation, the fault distribution matrix fE  can be 

identified directly from simulation data using the same methods as used to identify the 

model uncertainty distribution matrix dE .  

If fault data is obtained from plant measurements, the fault distribution matrix fE  

cannot be identified directly by performing SVD on the difference between the fault data 

and the predicted data because the fault data has included the effects of model 

uncertainty.  Fortunately, as can be seen from Equation (5.82), it is not necessary to know 

fE  if the matrix 0
fE  can be determined as far as fault isolation is concerned.   

If we combine Equation (5.65) and Equation (5.75), the fault measurements that 

contain model uncertainty satisfy the following equation: 

 

fBEBBy f+= ε          (5.90) 
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Given that the matrix Y  is constructed by N  observations of fault measurements, 

where N  is much larger than the number of measurements, and if the noise effects are 

ignorable, Equation (5.90) can be written in matrix form as follows: 

 

FEFBEBYZ ff

~0===         (5.91) 
where 

[ ])(...)2()1( NfffF =  

[ ])(~...)2(~)1(~~ NfffF =  

 

Because the column rank of fE  and the row rank of F  are assumed equal, the 

matrix F~  should have a row rank that is equal to the column rank of 0
fE .  Therefore, the 

column space of 0
fE  can be extracted by performing the SVD procedure on the matrix 

Z , which is given as follows: 

 
TVSUZ 111=           (5.92) 

 

where the matrix 1S  is diagonal with only non-zero singular values retained, 1U  is the 

corresponding left singular matrix, and 1V  is the corresponding right singular matrix.   

If the noise effects are considered, the insignificant singular values should be 

discarded in Equation (5.92) although they are not exactly zeros.  

Because the fault distribution matrix 0
fE  and the matrix 1U  contain the basis 

vectors of the same column space, 0
fE  and 1U  are equivalent within a similarity 

transformation.  This implies that we can simply choose 0
fE  to be 1U , which will not 

affect the results of fault isolation based on Equation (5.82). 
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5.5.5 Application to the HCSG System 
 

In order to have a realistic simulation with most measurements correlated with 

each other, one pair of steam generators is analyzed here.  It is presumed that the 

available measurements include: (1) T3: the primary side outlet temperature of SG-A; (2) 

T5: the primary side outlet temperature of SG-B; (3) T6: the primary side outlet 

temperature of SG-A and SG-B; (4) W7: the feed water flow rate into the secondary side 

of SG-A and SG-B; (5) W12: the steam flow rate leaving the secondary side of SG-A and 

SG-B; (6) T9: the steam temperature leaving the secondary side of SG-A; and (7) T11: 

the steam temperature leaving the secondary side of SG-B. 

Both sensor faults and process faults were considered in the HCSG fault 

diagnosis.  The seven considered sensor faults were of the bias type.  Because the 

generated residuals in the developed robust fault diagnosis algorithm were dependent 

only on fault magnitude, the same algorithm can be used to detect a fault of sensor drift.  

The secondary side tube blockage is a process fault considered for the HCSG system.  

When this process fault occurs, the flow rate into the secondary side of each steam 

generator will be different.  However, because the secondary fluid flows inside the helical 

coil tubes, it is unrealistic to directly measure the flow rate into each steam generator and 

the fault effects cannot be directly observed based on the flow rates.  For this reason, the 

fault needs to be monitored from the other measured variables such as the primary outlet 

temperature and the steam outlet temperature. 

The fault distribution matrix is identified from the simulation data for the tube 

blockage fault in the system.  The fault data is generated by linearly increasing the feed 

water flow rate into SG-A from 100% nominal value to 110% nominal value while 

reducing the feed water flow rate into SG-B from 100% nominal value to 90% nominal 

value.  The SVD procedure is performed on the difference between the simulated fault 

data and the PCA model prediction to extract the fault distribution matrix.  One left 

singular vector is retained to characterize the fault direction, which is shown in Figure 

5.13.  As can be seen, T3 and T11 have negative components while T5 and T9 have 

positive components.  The extracted fault direction has clear physical explanation.    



 192

T3 T5 T6 W7 W12 T9 T11
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

variable

co
m

po
ne

nt
 o

f f
au

lt 
di

re
ct

io
n

 
Figure 5.13.  Fault direction of tube blockage fault.  

 

The thermal degradations of SG-A and SG-B are considered to simulate model 

uncertainty.  During nuclear power plant operations, the gradual thermal degradation of 

steam generators is inevitable.  Any engineering applicable fault diagnosis algorithm 

must be able to distinguish such inevitable disturbances from sensor and process faults.  

In this demonstration study, the steam generator degradation was simulated by reducing 

the effective heat transfer coefficient from the primary side to the secondary side such 

that the steam temperature will decrease by 5 oC during 1000 samples at 100% nominal 

value of the feed water flow rate.  After the data were generated, the temperature data 

were mixed with white Gaussian noise with three standard deviations of 0.25% nominal 

value and the flow rate data were mixed with white Gaussian noise with three standard 

deviations of 1% nominal value.  Figure 5.14 shows the direction of the model 

uncertainty when the thermal degradation was considered as a disturbance.  As can be 

seen, the model uncertainty is characterized by the increase of primary outlet temperature 

T3, T5, and T6, and the decrease of steam outlet temperature T9 and T11, which is in 

agreement with the physical effects of steam generator thermal degradation. 
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Figure 5.14. Direction of model uncertainty due to thermal degradation. 

 

In order to test the developed robust PCA model based fault diagnosis algorithm, 

the tube blockage fault data and the thermal degradation data to simulate model 

uncertainty were generated at 90% nominal value of the feed water flow rate.  Figure 

5.15 shows a comparison of the fault detection with and without model uncertainty 

decoupling.  The upper subplot shows the calculated fault detection index without model 

uncertainty decoupling as the thermal degradation progresses and the lower subplot 

shows the calculated results with model uncertainty decoupling.  If the model uncertainty 

is not decoupled, the fault detection index will be greater than the detection limit, 1.0, as 

the severity of thermal degradation increases.  This means that the model uncertainty due 

to HCSG thermal degradation will cause false alarms.  However, if the model uncertainty 

is decoupled, the robust fault detection index is consistently smaller than the detection 

limit, 1.0, even if the thermal degradation becomes significant.  It is also interesting to 

notice that the robust fault detection algorithm is robust to the changes in operation 

conditions.   Although the model uncertainty distribution matrix is identified at 100% 

nominal value of the feed water flow rate, the robust fault detection algorithm will still 

not cause false alarms when the tube blockage occurs at 90% nominal value of the feed 

water flow rate. 
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Figure 5.15.  Comparison of robust detection algorithm with traditional method. 

 

Figure 5.16 shows the fault isolation index for HCSG tube blockage fault after the 

fault effects are reconstructed in the eight candidate fault subspaces corresponding to 

seven sensor faults and one process fault.  In the Figure, the tube blockage process fault is 

injected after the 200th sample.  It can be seen that the fault isolation index can be 

reduced to be less than 1.0 only if the fault reconstruction is performed in the subspace of 

the tube blockage fault.  Therefore, this fault can be correctly isolated as a tube blockage 

fault.   

Figure 5.17 shows the results of fault estimation for a T3 sensor fault with a bias 

of 1.7 oC when the fault is injected after the 200th sample.  Before the fault is injected, the 

HCSG system is operating at 90% nominal value of the feed water flow rate, so the initial 

temperature of T3 is 295.5 oC instead of 292.0 oC at 100% full opera operation condition.  

The HCSG has the thermal degradation progressing for the plotted 1000 samples to 

simulate model uncertainty.  It can be seen that the fault estimation algorithm described 

in section 5.5.3 is still able to reconstruct the injected sensor faults successfully although 

there is model uncertainty.  In addition, it can be observed that the variance of the 

measured value can also be reduced through the fault reconstruction algorithm before the 

fault is injected. 
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Figure 5.16.  Isolation of HCSG tube blockage process fault 
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Figure 5.17.  Fault reconstruction of a T3 sensor bias fault with a magnitude of 1.7 C. 
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An integrated framework of robust PCA model based fault diagnosis is developed 

developed in this section.  The identification of model uncertainty is achieved by 

performing SVD on the difference between plant measurements and model prediction.  

Robust fault detection algorithm calculates a fault detection index that is larger than 1.0 

only if a fault occurs even if the PCA model has model uncertainty.  Robust fault 

isolation is based on determining a fault isolation index that measures how well the fault 

measurements can be reconstructed when reconstructed in different candidate fault 

subspaces.  Because the fault isolation algorithm is assumption based, a candidate fault is 

confirmed to be the true fault only if the fault effects can be fully explained by the fault 

assumption.  The developed robust fault isolation algorithm is unique in that the fault 

reconstruction will not be affected by model uncertainty.  In addition, two situations are 

separated for identifying the fault distribution matrix.  It is pointed out that it is not 

possible to identify the fault distribution matrix directly from fault measurements if there 

is model uncertainty.  However, it is realistic and sufficient to identify the components of 

the fault distribution matrix living in the null space of model uncertainty for the 

developed FDI method. 

The developed robust PCA model based fault diagnosis algorithm has been 

demonstrated through the application to the IRIS HCSG system.  The steam generator 

thermal degradation is considered as model uncertainty.  Both sensor faults of the 

involved seven variables and the process fault of tube blockage can be correctly detected 

and isolated based on the calculated fault detection index and fault isolation index when 

model uncertainty is considered.  The FDI results also demonstrate that the developed 

methods are robust to operation changes and model uncertainty. 

 

5.6 Summary 
 

Fault diagnosis techniques during steady state conditions are studied in this 

chapter.  Reconstruction based PCA was proposed as a baseline approach for steady state 

fault diagnosis of nuclear power systems.  This approach is appropriate when significant 

amount of historical data is available to cover the entire space of anticipated operation 
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conditions.  Because reconstruction model based PCA is an assumption-based approach, 

it can provide more conclusive results of fault isolation than other approaches.  Hybrid 

PCA approach was developed to incorporate prior knowledge into PCA modeling for 

steady state fault diagnosis.  In some cases, it can detect small faults after large variations 

are removed from raw data.  Robust data driven model based approach was derived for 

steady state fault diagnosis.  In this approach, data driven models are developed from 

simulation data and model uncertainties are identified from plant measurements and 

explicitly represented in the robust fault diagnosis algorithm.  This approach is able to 

avoid false alarms caused by the model uncertainty when physical model based methods 

are used or caused by inadequate amount of data when historical data based methods are 

used. 
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Chapter 6 
 

Fault Diagnosis during Transient Conditions 
 

6.1 Introduction 
 

Dynamic model based fault diagnosis is expected to have better robustness than 

steady state fault diagnosis.  For Generation-IV nuclear power plants with load following 

capability, it becomes mandatory to utilize dynamic models for fault diagnosis.  Besides, 

for the purpose of fault tolerant control, reliable and immediate diagnostic information 

during dynamic conditions can only be provided by dynamic model based fault diagnosis.  

As will be explained later, dynamic model-based fault diagnosis also utilizes temporal 

redundancy in addition to spatial redundancy and thus requires fewer sensors for fault 

isolation than steady state fault diagnosis.  

Traditional approach to robust dynamic fault diagnosis consists of three steps.  

The first step is to develop a dynamic model from experimental data or system physics.  

The second step is to identify model uncertainty from real time plant measured data.  The 

last step is to apply robust parity space theory to design dynamic residual generators that 

are robust to model uncertainty for fault detection and isolation. 

Robust data driven dynamic fault diagnosis approach is proposed in this 

dissertation.  In this approach, a low order state-space model was developed using 

subspace identification method from simulation tools used in nuclear system design.  A 

new robust dynamic residual generator design algorithm was developed to combine the 

identification of model uncertainty with robust residual generation into one step.  The 

robust residual generator design was implemented by solving a generalized eigenvalue 

problem. 

The theory of subspace identification is presented first in this chapter.  The one-

step robust dynamic residual generator design algorithm is then described.  Finally, the 



 199

developed algorithm is demonstrated through the application to IRIS HCSG system for 

dynamic fault diagnosis. 

 
6.2 Theory of Subspace Identification 

 

Subspace identification is the most important contribution in the field of system 

identification in the 1990s. The initial concepts and ideas of subspace identification were 

originated by De Moor, 1988, and the theory and implementation became mature in 1995 

(Van Overschee and De Moor, 1995).  

Subspace identification combines the theory in linear system, statistics, 

optimization, and numerical linear algebra for dynamic system identification.  Subspace 

identification extracts model information from the column space of certain matrices 

obtained from input-output data and Kalman state information from the row space of 

these matrices without knowing the system matrices (Van Overschee and De Moor, 

1995).  The major advantage of subspace identification is that no explicit model 

parameterization is needed and only numerical linear algebra such as singular value 

decomposition and QR decomposition is needed for implementation.  Therefore, 

subspace identification can provide a numerically stable algorithm to develop dynamic 

models from input-output data. 

A linear state space model structure is assumed in subspace identification.  

Although many industrial processes have nonlinearity, this nonlinearity can be handled 

either by recursive updating of a linear model or by using model uncertainty decoupling 

techniques for robust control and fault diagnosis design.  Most importantly, linear state 

space model is the only class of systems tractable with rigorous theory.  The 

mathematical representation of a linear state space model is as follows: 
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where ku  is the input vector, ky  is the output vector, kx  is the state vector, and kw  and 

kv  are zero mean white Gaussian noise vectors with the following constant covariance 

structure: 
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On the condition that the input and output data are available, subspace 

identification aims at determining (Van Overschee and De Moor, 1995): 

(1) The order of the unknown system. 

(2) The system matrices A , B ,C , D  within a similarity transformation. 

(3) The noise characteristic matrices wΣ , vΣ , and vwΣ . 

 

6.2.1 Block Data Equations 
 

In subspace identification, block Hankel data matrices are used to extract the 

model information and the Kalman state information from data using geometric 

projection.  A block Hankel matrix of a signal has its column vector stacked in rows and 

the stacked column vectors in time sequences arranged in columns.  For instance, the 

block Hankel matrix of the input signal is constructed as follows: 
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where k  denotes the discretized time instant of the first row and first column element, s  

denotes the number of row blocks and N  denotes the number of columns used to 

construct the block Hankel matrix.  The block Hankel matrix s
kY , s

kW , s
kV  can be 

constructed similarly for the signal y , w , and v , respectively. 
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The extended observability matrix sΓ  relating the state vector to the stacked 

output vector is defined as follows: 
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The Toeplitz block matrices sH  and sG  are further defined as follows: 
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The concept of Kalman state sequences in system dynamics is emphasized in 

subspace identification.  The key of subspace identification is to identify the Kalman state 

sequences directly from the input-output data without knowing the system matrices.  A 

Kalman state sequence involved in block data equation is defined as follows: 

 

[ ]11 −++= Nkkkk xxxX        (6.7) 

 

Based on the above matrices, the block data equation can be obtained as follows: 
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In order to identify the Kalman state sequences from the input-output data using 

geometric projection, it is also necessary to build block Hankel matrix of the input and 

output signals for the past block data and the future block data separately.   

Given that the past block matrix and the future block matrix have the same 

number of row blocks 1+s , the past block matrix and the future block matrix of the 

input signal are defined as follows: 

 
s
kp UU =           (6.9a) 

s
skf UU 1++=           (6.9b) 

The past block matrix and the future block matrix of the output signal can be 

defined similarly. 

 

6.2.2 Recovery of System Matrices from State Sequence  
 

Subspace identification technique is deeply rooted in the fact that the Kalman 

state sequence can be identified from input-output data.  If the state sequence has been 

determined from the input-output data without knowing the system matrices, the 

identification problem can be transformed to a least squares estimation problem with 

respect to the system matrices and the process and measurement noise covariance 

matrices.   

Given that two adjacent state sequences 1
ˆ

+kX  and kX̂  have been determined, 

they are related to the system matrices A , B , C , and D  in the following manner 

(Gauss-Markov model): 
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The system matrices can then be recovered by solving a least-squares problem 

such that the Frobenius norm of the difference of two sides of Equation (6.10), which is 
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defined as the square root of the sum of the absolute squares of the matrix elements, is 

minimized (Van Overschee and De Moor, 1995). 

Three major subspace identification algorithms N4SID (Numerical algorithms for 

Subspace State Space System Identification), MOESP (Multiple Output-Error State 

Space), and CVA (Canonical Variate Analysis) exist.  These algorithms differ only in 

how the Kalman state sequences are extracted from input-output data and how the system 

matrices are recovered.  Because N4SID has been implemented in the Matlab system 

identification toolbox, the following discussion is based on N4SID algorithm. 

 
6.2.3 Extractability of Kalman State Sequence from Input-output Data 

 

It will be proved that Kalman state sequence can indeed be extracted from input-

output data in this section.  In the next two sections, two techniques are described 

showing how to obtain Kalman state sequence from input-output data. 

 

6.2.3.1 System Decomposition 
 

For an operating system, the state variables and the system output variables are 

excited both by deterministic inputs and by stochastic noises.  In other words, the state 

vector and the measurement vector can be decomposed into two components as follows: 
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where the superscripts d and s correspond to the deterministic component and the 

stochastic component, respectively. 

Because the involved system is linear, the system defined in Equation (6.1) is 

equivalent to the supposition of one deterministic system and one stochastic system.  The 

deterministic subsystem is given by: 
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The stochastic subsystem is given by: 
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To show the equivalency between the original system and the decomposed two 

subsystems, we can prove that for a given deterministic input )(su  and stochastic input 

)(sw , the responses of the dynamic system Equation (6.1) and the dynamic system 

Equation (6.11) are the same.  This is given in the Laplace domain as: 

 

)()()()()()()( 11 svswAsCsDusBuAsCsy +−Ι++−Ι= −−   (6.14) 

 

6.2.3.2 Extraction of Kalman State Vector  
 

Kalman filter theory invented by R. Kalman in 1960 enables us to estimate the 

state vector sequences kx  for the dynamic system given by Equation (6.1) from the 

input-output data (Kalman, 1960).  In subspace identification, we need to design a bank 

of Kalman filters to estimate a Kalman state sequence simply by working on the block 

Hankel matrix of past inputs and past outputs.  In other words, the state estimate of 

Kalman state vector, 1ˆ +kx , needs to be derived from the information up to time instant 

k only.  Because this is the theoretical foundation of subspace identification, we have 

proved that this is indeed true in this dissertation following the procedure to prove the 

Kalman filter equation presented by Becerra, 2004. 
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It is obvious from Equation (6.1) that the estimated mean of the state vector kx  

propagates in the following manner: 
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where 

0x  = the initial state estimate of the process. 

 

Apparently, the estimated mean of the state vector kx  follows exactly the 

deterministic part of the dynamics defined in Equation (6.1).  However, kx  is different 

from d
kx  since the initial state estimate is still a random variable. 

The covariance matrix of the estimation error of the state vector xP  propagates as 

follows: 
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since 

kkkk wBuAxx ++=+1  
 

The estimated mean value of the output vector ky  is as follows: 

 

kkk DuxCy +=          (6.17) 

 

The covariance matrix of the estimation error of the output vector yP  propagates 

as follows: 
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since 

kkkk vDuCxy ++=  
 

The covariance matrix between the state estimate and the output is given by: 
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In subspace identification, the state estimate of Kalman state vector 1ˆ +kx  is 

determined using only the information up to the time instant k .  This is a one-step 

predictor and is different from the classical Kalman filtering setting where the full input-

output information including the current information is used.  In classical Kalman 

filtering, the information up to the time instant 1+k  is used to estimate the state 1ˆ +kx . 

For this reason, it is assumed that the estimate of the state vector 1ˆ +kx  is a linear 

function of the available system output ky , which is given by: 
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where K  is a matrix and g  is a vector to be determined. 

 

The optimal state estimate can be obtained by minimizing the objective function 

given by: 
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The above minimization problem is equivalent to minimizing the following 

objective function: 
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If we notice kk BuxAkkx +=+ )|1(ˆ  and substitute kkkk yyyy +−=  into 

Equation (6.22a), the objective function can be further simplified as follows (Becerra, 

2004): 
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where 
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If we recall the following two formula of matrix derivatives: 
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the minimal value is reached when the following conditions are satisfied: 
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The solution is then given by: 
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After cumbersome algebra, the non-steady state Kalman state estimate 1ˆ +kx  can 

be obtained by the following recursive formula: 
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The covariance of the state estimation error is given by: 
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The results obtained here are the same as the results of the combined non-steady 

state Kalman filter given in Van Overschee and De Moor, 1996. 

If the recursive form of Kalman state estimate given in Equation (6.25) is written 

explicitly, the non-steady state Kalman state estimate is as follows: 
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where 1L , 2L , and 3L  are three linear operators acting on the initial state, the past input 

vectors, and the past output vectors, respectively.  

 

Although the derivation of the Kalman state estimate is a natural extension of the 

classical Kalman filter, the theoretical foundation of subspace identification has been 

established, which ensures that the Kalman state estimate kx̂  can be obtained by 

expressing itself as a linear function of the past 1−k  inputs and outputs as well as the 

initial state estimate. 

 

6.2.3.3 Extraction of Kalman State Sequence  
 

Based on Equation (6.27), the kth block row of the process state, which is kX  

based on the notation of Equation (6.7), can be written in matrix form as follows: 
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where  

0X̂  = the estimate of the initial state sequence.   
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Equation (6.28) indicates that the Kalman state sequence can be generated by a 

bank of non-steady state Kalman filters working in parallel on each of the columns of the 

block Hankel data matrix of the past inputs and past outputs.  If the estimate of the initial 

state vector 0x̂  and the covariance matrix of the initial state estimate error 0,xP  are 

known, the estimate of the state vector kx̂  can be obtained by an iteration of a Kalman 

filter over k time steps.  The Kalman state sequence kX̂  can be obtained by running N  

parallel non-steady state Kalman filters simultaneously in the same manner if the estimate 

of the initial state sequence 0X̂  is known. 

The last but not the least point of subspace identification is that the estimated 

Kalman state sequence is not unique, which depends on the choice of the initial state 

estimate and the covariance matrix of initial state estimation error.  In other words, the 

recovered system matrices based on subspace identification may not be able to reproduce 

the true system states.  However, through appropriate choice of the initial state sequence, 

the input-output responses of the identified system will be the same as the real system.   

 

6.2.4 Orthogonal Projection Methods 
 

The objective of subspace identification is to recover Kalman states from input-

output data without the knowledge of system matrices.  Subspace identification technique 

achieves Kalman state estimate by exploring the relationship among the spaces of the 

input, output, and state sequences through geometric projection.  In orthogonal projection 

methods, we constrain the row space of the identified Kalman state sequence to be in the 

combined row space of PW  and fU . 

Starting from Equation (6.28), it can be easily proved that an estimate of the 

future output block matrix fY , denoted by fZ , is a linear combination of the past 

information block matrix pW  and the future input block matrix fU , which is given by 

(Van Overschee and De Moor, 1996): 



 211

 

⎟
⎠
⎞⎜

⎝

⎛=
f
p

upf U
W

LLZ ),(         (6.29) 

where  
pL  = a linear operator acting on pW . 

uL  = a linear operator acting on fU . 

 
The prediction error of future output can be represented by the Frobenius norm 

given by: 
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To make the prediction error minimized with the constraint that the rows of fZ  

lie in the joint row space of PW  and fU , it can be proved that the optimal solution to the 

minimization problem with the specified constraint is to perform an orthogonal projection 

of the row space of the matrix fY  onto the joint row space of matrix pW  and fU  

(Favoreel, De Moor, and Van Overschee, 1998).   

The orthogonal projection of the row space of matrix A  onto the row space of 

matrix B  is computed in the following manner: 

 

BBBABBAC TT 1)(/ −==  

Theorem 6.1: If the deterministic input ku  is uncorrelated with the process noise kw  

and the measurement noise kv ; the input ku  is persistently excited of order 2k; the 

number of measurements goes to infinity ∞→N ; and the process noise kw  and the 

measurement noise kv  are not identically zero, then we have (Van Overschee and De 

Moor, 1996): 
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Theorem 6.1 shows one way to predict the future output based on the past inputs 

and outputs as well as the current inputs without the information about the system 

matrices.  More importantly, Theorem 6.1 gives the relationship between the Kalman 

state estimate and the input and output in a direct manner assuming that the row space of 

kX̂  lies in the joint row space of matrix pW  and fU . 

 

6.2.5 Oblique Projection Methods 
 

Although Theorem 6.1 gives the relationship between the Kalman state estimate 

and the optimal prediction of the future output through an orthogonal projection, it is not 

convenient in implementation to recover the Kalman state directly because the future 

input term fU  is involved.  To overcome this difficulty arising from the term fU , an 

oblique projection method can be used to relate the Kalman state estimate to the oblique 

projection matrix with the constraint that the row space of Kalman state sequence lies in 

the row space of matrix pW  such that the future block Hankel matrix fU  will have no 

effects on the obtained projection matrix. 

Starting from the orthogonal projection theory, it is quite intuitive to obtain the 

oblique projection, which is as follows: 
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where kX~  is the initial Kalman filter state estimate involved in the oblique projection. 

 

The oblique projection of the row space of matrix A  along the row space of 

matrix B  onto the row space of matrix C  is computed in the following manner: 
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where ⊥BA /  represents the orthogonal projection of the row space of A  onto the 

orthogonal complement of the row space of B .  Obviously, 0/ =CB B .   

 

Theorem 6.2: If the deterministic input ku  is uncorrelated with the process noise kw  

and the measurement noise kv ; the input ku  is persistently excited of order 2k; the 

number of measurements goes to infinity ∞→N ; and the process noise kw  and the 

measurement noise kv  are not identically zero.   

Let kO  be defined as the oblique projection as follows: 
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If singular value decomposition is performed on the oblique projection matrix, 

then we have 
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The following claims can be stated (Van Overschee and De Moor, 1996): 

(1) The matrix kO  is equal to the product of the extended observability matrix SΓ  and 

the estimated Kalman filter state sequence kX̂ , that is: 
 

kSk XO ˆΓ=           (6.34) 
 
(2) The order of the system is equal to the number of singular values of kO  that are not 
zero. 
 

(3) The extended observability matrix SΓ  can be obtained as follows: 

TSUS
2/1

11=Γ           (6.35) 

where T  is a similarity transformation matrix. 
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(4) The part of the state sequences kX̂  can be computed as follows: 
 

T
k VSTX 1
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(5) The state sequences kX̂  is related to the matrix kO  as follows: 
 

kSk OX +Γ=ˆ           (6.36) 

 
Theorem 6.2 provides an optimal solution to the linear combination of the past 

inputs and outputs, that is, ppk WLO = , so that the prediction error of the future output is 

minimized with respect to the Frobenius norm.  The row space of this optimal solution 

kO  is the projection of the row space of fY  along the row space of fU  onto the row 

space of pW .   

For a system with l  outputs and n  true states, the oblique projection matrix kO  

has lk ⋅  rows and N  columns, whose rows span a subspace of lk ⋅  dimensional row 

space in the N  dimensional ambient space.  However, only n  states are sufficient to 

predict the future output from the past information.  Therefore, it is necessary for 

subspace identification to determine the true number of states from the oblique projection 

matrix.  In mathematics, this problem can be formulated as follows (Favoreel, De Moor, 

and Van Overschee, 1998): 
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with the constraint that the rank of R  is n. 

 

The best solution to the minimization problem given in Equation (6.37) is as 

follows: 
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The columns of kΓ  spans n-dimensional space because the original system is 

observable and the rows of kX̂  are n-dimensional since the system has n states.  Because 

the oblique projection matrix kO  is a product of kX̂  and kΓ , the rank of kO  is indeed 

equal to n 

Moreover, the column space of kO  is the same as the column space of kΓ  since 

each column of kO  is nothing but a linear combination of the columns of kΓ  as is shown 

in Equation (6.38).  For the same reason, the row space of kO  is the same as the row 

space of kX̂  since each row of kO  is nothing but a linear combination of the rows of 

kX̂  as is also shown in Equation (6.38). Therefore, after a singular decomposition of kO , 

there are theoretically only n nonzero singular values.  However, for a real world problem 

where N  is not infinite and there may be nonlinearity, the singular value decomposition 

of kO  does not produce zero singular values.  In this situation, the predominant singular 

values are used to determine the order of system dynamics. 

Because the column space of kO  is the same as the column space of kΓ  and the 

row space of kO  is the same as the row space of kX̂ , Equation (6.38) can then be split 

into two parts as follows: 
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Therefore, we have the results (6.35) and (6.36), which can be used to estimate 

the extended observability matrix kΓ  and the Kalman state sequence kX̂  directly from 

the input and output data without the knowledge of system matrices. 
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At this point, Kalman state sequence has been identified from the input-output 

data without the knowledge of system matrices, the dynamic system identification is then 

transformed to a least squares estimation problem, which is described in section 6.2.2.   

 

Example 1:  An illustrating example is designed here to help understand why the 

extended observability matrix and the Kalman state sequence can be extracted from 

projection matrix based on singular value decomposition, as shown in Equation (6.39).   

Given two matrices A  and B  and a matrix ABC =  as follows: 
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The matrix A  has 2-dimensional column space and the matrix B  has 2-

dimenisonal row space.  It can be verified that the rank of C  is also 2.  If a singular value 

decomposition is performed on C , we have: 

 

⎥⎦
⎤

⎢⎣
⎡

−−
−−−•

⎥⎦
⎤

⎢⎣
⎡•

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−
−−

−
−−

==

9247.01448.03521.0
1448.06234.07582.0

7688.100
07163.22

7554.03405.0
2280.03986.0
3896.00277.0

4611.08275.0
114.01993.0

111
TVSUC

 

 
Obviously, the matrix C  has two non-zero singular values.  Because 1U  is 

orthonormal, it is always possible to find a transformation matrix AUST T
1

5.0
1
−=  such 

that TSUA 5.0
11=  and TVSTB 1

5.0
1

1−= .  The matrix T  is a full rank square matrix and 

thus invertible because the matrix A  has full column rank, the same as the rank of 1S .  

For the example problem, the transformation matrix T  is given by: 
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⎥⎦
⎤

⎢⎣
⎡
−

−−= 9287.07019.0
4186.17764.0T  

 
This simple example clearly shows the reasoning behind Equation (6.39).  It 

should be emphasized that subspace identification is based on the major result of 

Equation (6.34) with three significant implications:  

 

(1) The projection matrix can be obtained directly from input-output data;  

(2) The column space of kΓ  has the same dimension as the number of states. 

(3) The row space of kX̂  has the same dimension as the number of states. 

 

In fact, subspace identification theory is established by revealing the equivalence 

between the column space of a projection matrix and the column space of the extended 

observability matrix and the equivalence between the row space of the projection matrix 

and the row space of the Kalman state sequence.  It is because of the importance of 

subspace that this identification technique was given the name of subspace identification.   

 

6.3 Robust Dynamic Fault Diagnosis Algorithm 
 

After system dynamics is identified either from data generated by simulation 

calculations or from on-line experimental data using subspace identification technique, 

the developed model will always have certain degrees of uncertainty either because the 

simulation model does not truly represent the physical system or because a model 

reduction is implicitly performed in subspace identification.   

In general, the uncertainty of a dynamic model can be represented as follows 

(Chen and Patton, 1999): 

 

)()()(*
)()()()()1(

*

*

kDukCxky
kdkwkBukAxkx

+=
+++=+      (6.40) 
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where )(kd  is a vector representing the deterministic model uncertainty, )(kw  is a 

vector representing stochastic process noise, )(* ku  is the true input vector, and )(* ky  is 

the true output vector.   

In Equation (6.40), the model uncertainty term plays the same role on the system 

dynamics as the process disturbance defined in Equation (6.1) except that model 

uncertainty is deterministic.  In fact, the model uncertainty term is an extension of 

process disturbance from modeling point of view, which may arise from unmeasured 

inputs, non-linear terms in system dynamics, terms related to time-varying dynamics, 

linearization and model reduction, parameter variation, and simulation model uncertainty, 

etc. 

Given that the measured inputs and outputs are corrupted with some measurement 

noise uv  and yv , respectively, and some additive sensor faults, the observed input vector 

)(ku  and the observed output vector )(ky are then as follows (Li and Shah, 2002): 

 
)()()()( * kfEkvkuku uuu ++=        (6.41a) 

)()()()( * kfEkvkyky yyy ++=        (6.41b) 
 

where )(kfu  and )(kf y  are the fault magnitude vectors and uE  and yE  are the fault 

distribution matrices for the inputs and the outputs, respectively.  

 

The objective of robust fault detection is to generate a residual that is statistically 

significant if and only if the fault magnitude vectors are not zero, i.e., the residual )(tr  

satisfies the following property: 

 
0)( ≠tr    iff   0)( ≠tfu  or 0)( ≠tf y       (6.42) 

 
If different residual patterns are predefined to signify different faults, the task of 

fault isolation is then to design some residual generators such that each fault must 

generate the predefined residual pattern regardless of its fault magnitude.  Such a 

formulation of fault isolation problem can avoid the use of fault information for fault 



 219

isolation, which may depend on fault magnitude and is difficult to obtain in nuclear 

power systems. 

 

6.3.1 Robust Dynamic Fault Detection Algorithm 
 

Considering a time window of length s , the dynamic redundancy relation in 

stacked vector form can be derived for the given system defined in Equation (6.40) as 

follows: 

 
)()()()()( ** kwGkdGkuHskxky ssssssss +++−Γ=     (6.43) 

 

where )(* kys , )(* kus , )(kws , and )(kds  are the stacked column vectors of )(* ky , 

)(* ku , )(kw , and )(kd  at a sequence of s  time instants, respectively.  The matrices 

sH  and sG  are Toeplitz block matrices that relate the system inputs and the model 

uncertainty to the system outputs, respectively.   

 

The stacked output error vector within the given time window can be written as 

follows: 

 
)(~~)()()( kzHkuHkyke ssssss =−=       (6.44) 

 
where  

( )ss HH −Ι=~
  

( )TT
s

T
ss kukykz )()()(~ =  

 
From Equation (6.43) and Equation (6.44), the stacked output error vector can be 

rewritten in its physical form as follows (Li and Shah, 2002): 

 

)(~
)(
)(~)()()()( kfEHkv

kvHkwGkdGskxke szzs
us

ys
sssssss +⎟

⎠
⎞

⎜
⎝
⎛+++−Γ=   

           (6.45) 
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where  

⎟
⎠
⎞

⎜
⎝
⎛

⊗Ι
⊗Ι

=
+

+

us

ys
z E

EE
1

1

0
0

 

and 1+Ι s  is a s  dimensional identity matrix, ⊗  represents the Kronecker product, and 

)(kf sz  is the stacked fault magnitude vector combining both the output faults and the 

input faults. 

 

Equation (6.44) and Equation (6.45) represent the computational form of the 

output error and its internal form from system physics, respectively.  In order to construct 

a residual signal insensitive to the initial states and the model uncertainty, a linear 

transformation is performed on the original stacked output error vector.  That is, a 

residual vector, )(krs , can be designed for robust fault detection through a transformation 

matrix 0V  with the following constraints: 

 
))()(()( 0 kuHkyVkr ssss −=        (6.46a) 

0)(0 =−Γ skxV s          (6.46b) 
0)(

0
=kdGV ss          (6.46c) 

 
Accordingly, the internal form of the residual vector takes the following 

simplified form: 

 

)(~)()(
)(~)( 000 kfEHVkwGVkv

kvHVkr szzsss
us

ys
ss ++⎟

⎠
⎞

⎜
⎝
⎛=     (6.47) 

 
If there is no measurement and process noise, the internal form of the residual 

vector defined in Equation (6.47) is only a function of the fault magnitude.  Therefore, 

such a residual generator has the desired property for robust fault detection.   

The residual vector generated from Equation (6.47) follows a multi-dimensional 

Gaussian distribution that is zero-mean with a covariance matrix that can be determined 

from the data obtained for fault free conditions.  If a sensor fault occurs in the system, 

Equation (6.47) indicates that the fault condition residual vector will also follow a multi-
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dimensional Gaussian distribution with the same covariance matrix but with a non-zero 

mean value.  Therefore, fault detection can be achieved by detecting the change of the 

mean value of the generated residual vectors.  In order to avoid false alarms and missing 

detection rates due to noise, an Exponentially Weighted Moving Average (EWMA) filter 

(Lowry et al., 1992) can be applied to the residual vector (Qin and Li, 2001), which is 

given by: 

 

)()1()1()( krkrkr sss γγ −+−⋅=       (6.48) 
 

where )(krs  is the EWMA filtered residual vector and γ  is the forgetting factor for 

filtering.  The filtered residual vector for fault free condition also follows zero mean 

Gaussian distribution with the covariance matrix )(0 kRs  given by (Del Castillo, 2002), 

(Qin and Li, 2001): 

 

∑
=

−+
+
−

=
s

j

T
ss

j
ss jkrkrEkRkR

1
00 }))()({2)((

1
1)( γ

γ
γ

    (6.49a) 

 

where )(0 kRs  is the covariance matrix of the unfiltered residual vector.   

To simplify the computation, asymptotic covariance matrix can be used, which is 

given by (Rigdon, 1995): 

 

)(
2

)(lim 00 kRkR sss γ
γ
−

=
∞→

        (6.49b) 

 
The filtered square weighted residual can be used as a fault signal for fault 

detection with better performance than a simple weighted residual, which is given by: 

 
)())(()( 1

0 krRkrk ss
T

ss
−=β        (6.50) 

During fault free condition, the filtered square weighted residual )(ksβ  follows a 

central 2χ  distribution.  If )(ksβ  does not follow a central 2χ  distribution at a specified 
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significance level α , the decision can then be made that a fault has occurred to the 

system at this significance level.  That is, a fault is detected if the fault detection index 

)(ksω  is greater than 1.0, which is defined as follows: 

 

2

)()(
αχ

βϖ kk s
s =          (6.51) 

 
6.3.2 One-Step Robust Dynamic Residual Generator Design 
 

As described in section 6.3.1, the key of robust fault detection is to design a linear 

transformation matrix such that the generated residuals are independent of the initial 

states and insensitive to the model uncertainties, which is written in Equation (6.46).  The 

traditional method of dealing with model uncertainty in robust residual generator design 

has two steps.  The first step is to determine the model uncertainty vector using Kalman 

filter technique and the second step is to determine the uncertainty distribution matrix 

using SVD algorithm.  This approach is presented in Chapter 2.   

A new approach was been developed for robust dynamic residual generator 

design in this dissertation.  Inspired by subspace identification algorithm, this approach 

utilizes block data matrix equation to determine the relationship between the subspace 

spanned by the projection matrix of measured data and the subspace spanned by the 

projection matrix of model uncertainty.  The advantage of this approach is that robust 

residual generator design does not need to identify the model uncertainty vector and the 

distribution matrix.   

Let’s recall the block data matrix kY , kU , kP , kW , kuV , , kyV , and kZ  defined for 

the output, input, model uncertainty, process disturbance, input noise, output noise, and 

past information, which are written as follows: 

 
[ ])1()1()( −++= NkykykyY sssk      (6.52a) 

[ ])1()1()( −++= NkukukuU sssk      (6.52b) 

[ ])1()1()( −++= NkdkdkdP sssk      (6.52c) 
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[ ])1()1()( −++= NkwkwkwW sssk     (6.52d) 

[ ])1()1()(, −++= NkvkvkvV usususku     (6.52e) 

[ ])1()1()(, −++= NkvkvkvV ysysysky     (6.52f) 

⎟
⎠
⎞

⎜
⎝
⎛=

k

k
k U

YZ           (6.52g) 

 
The block data matrix equation can be derived as follows: 

 

1,111,111 +++++++ +++−+Γ= kykskskusksksk VWGPGVHUHXY    (6.53) 
 

If we postmultiply the Equation (6.53) by T
kZ , then we have: 

 
T
kky

T
kks

T
kks

T
kkus

T
kks

T
kks

T
kk ZVZWGZPGZVHZUHZXZY 1,111,111 +++++++ +++−+Γ=  

           (6.54) 
 

Considering that the model uncertainty is a deterministic variable, and the input 

measurement noise, the output noise, and the process noise are all uncorrelated white 

Gaussian, if the size of data is sufficiently big, then we have: 

 

PZsUZsXZsYZ GH Ω+Ω+ΩΓ=Ω        (6.55) 
 
where Ω  denotes the corresponding product term in Equation (6.54).   

 

If Equation (6.55) is then premultiplied by the complement matrix of sΓ , denoted 

by ⊥Γs , then we have: 

 

PZssUZsYZs GH ΩΓ=Ω−ΩΓ ⊥⊥ )(        (6.56) 
 

The left hand side of Equation (6.67) can be determined from the measured data 

and the right hand side of the equation is related to the space spanned by the model 

uncertainty vectors.  Therefore, a singular value decomposition can be performed on the 
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related matrix on the left hand side of the equation to determine the null space spanned by 

the model uncertainty vectors. 

Redefine the matrix on the left hand side of Equation (6.56) as Θ , that is: 

 

)( UZsYZs H Ω−ΩΓ=Θ ⊥         (6.57) 
 

If a singular value decomposition is performed on Θ , we have: 

 

[ ] ⎥⎦
⎤

⎢⎣
⎡

⎥⎦
⎤

⎢⎣
⎡=Θ ⊥

Θ

ΘΘ⊥
ΘΘ V

VSUU 00
0

       (6.58) 

 
Obviously, the obtained matrix ΘU  satisfies the following equation: 

 

0)()( 1 =Γ +
⊥⊥

Θ
T
kkss

T ZPGU         (6.59) 
 

If there is at least one columns of T
kZ  which do not lie in the null space of 

)()( 1+
⊥⊥

Θ Γ kss
T PGU , then we have: 

 
0)()( 1 =Γ +

⊥⊥
Θ kss

T PGU         (6.60) 
If it is further assumed that the model uncertainty is piecewise constant, a linear 

transformation matrix 0V  satisfying the desired property of robust residual generator 

defined in Equation (6.46), can be chosen as follows: 

 
)()(0

⊥⊥
Θ Γ= s

TUV          (6.61) 
 

Based on the above algorithm, robust residual generator can be designed without 

knowing the model uncertainty vector.  Compared with the classical approach developed 

by Chen and Patton, 1999, this algorithm is much easier for implementation. 
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Example 2.:  An illustrating example is designed here to demonstrate that the developed 

one-step algorithm is able to design dynamic residual generators for robust fault detection 

without the need to identify model uncertainty explicitly.  

Considering a linear dynamic system with four inputs and four outputs, the 

system matrices are identified as follows: 

 

⎥⎦
⎤

⎢⎣
⎡
−= 5.05.0

5.05.0A      ⎥⎦
⎤

⎢⎣
⎡

−
−−= 1.02.13.07.1

2.11.11.04.0B  

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−
=

2.07.0
2.02.0

2.22.0
6.03.0

C      

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

0000
0000
0000
0000

D   

 
The normal operation data are generated with measurement noise of 1% signal-to-

noise ratio for all the four input signals and the four output signals, and process noise of 

3% signal-to-noise ratio, and model uncertainty of constant direction.  The distribution 

matrix and the magnitude vector of model uncertainty are given as follows: 

 

⎥⎦
⎤

⎢⎣
⎡= 25.05.0

5.025.0
dE      ⎥⎦

⎤
⎢⎣
⎡= 0.10

0.10d  

 

Because the number of state variables is 2 in this example, the block data matrix 

of kY , kU , and kZ  can be constructed with s  equal to 2 and N  equal to 2000 

according to Equation (6.52), where the system is excited with input signal 

∑
=

=
10

1
)cos(

i
tiu π  and the initial state vector [ ]Tx 00)0( = .   

After the extended observability matrix sΓ  is constructed from the system 

matrices, the dimension of the matrix is 12 by 2.  If a singular value decomposition is 

performed on Θ  defined in Equation (6.57), which has a dimension of 10 by 24, we have 
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the following singular values from large to small in order, 3.2281e+006, 4.5777e+003, 

121.3397, 59.2458, 1.5377, 0.9983, 0.1805, 0.0910, 0.0230, and 0.0164.  Because a sharp 

drop occurs at the second singular value, the last nine left singular vectors can be retained 

to design robust residual generator for fault detection.  In fact, if we remove the 

measurement noise and process noise, the last 9 singular values of Θ  would be exactly 

zeros. 

Figure 6.1 shows a comparison between the residual norms without the model 

uncertainty decoupled and with the model uncertainty decoupled.  The new test data of 

2000 samples are generated by exciting the system with input signal ∑
=

=
10

1
)sin(

i
tiu π  

with the initial state vector [ ]Tx 0.10.1)0( =  and introducing the model uncertainty at 

the 1000th sample.  The upper subplot shows the results when the model uncertainty is 

not decoupled.  As can be seen, the residuals are small before the 1000th sample although 

the system is excited by a different input signal at a different initial state vector.  

However, false alarms will be produced after the 1000th sample.  The lower subplot 

shows the results when the model uncertainty is decoupled using the developed algorithm 

in this section.  It can be seen that the generated robust residuals will not produce false 

alarms after the 1000th sample when model uncertainty was introduced.   
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Figure 6.1.  Robust fault detection for the example case during normal operation 

condition. 
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The simple example has demonstrated that the newly developed robust residual 

generation algorithm is able to decouple model uncertainty without the need to identify 

model uncertainty vector explicitly. 

 
6.3.3 Robust Fault Isolation Algorithm 
 

Structured residuals generated by multiple residual generators provide a simple 

and systematic approach to fault isolation.  If residual generators are designed such that 

each one is only sensitive to a subset of the considered faults, a fault isolation scheme can 

then be achieved since each fault corresponds to a different residual pattern.   

Although it is possible to design numerous residual structures for fault isolation 

with different isolation capability, a generalized residual set is a simple design scheme for 

single fault isolation (Qin and Li, 2001).  In this scheme, each residual set is sensitive to 

all faults but one.  In particular, the residual structure dedicated to the isolation of the thi  

fault is given as follows: 

 

0)( =tri  for the thi fault.       (6.62a) 
0)( ≠tri  for other faults.       (6.62b) 

 
The fault direction matrix uE  and yE  are decomposed into the first part 1,uiE  and 

1,yiE  corresponding to the faults to be desensitized, and the second part 2,uiE  and 2,yiE  

corresponding to the faults to be sensitized, that is: 

 

( )2,1, uiuiui EEE =           (6.63a) 

( )2,1, yiyiyi EEE =          (6.63b) 
 

The primary residual vector for robust fault detection defined in Equation (6.47) 

can then be rewritten as follows: 
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⎠
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⎝
⎛=   

           (6.64) 
 

where 1zE  and 2zE  are constructed from 1,uiE , 1,yiE  and 2,uiE , 2,yiE , respectively, in the 

same manner as zE  is constructed from uE  and yE . 

 

The residual generator iV  dedicated to the isolation of the thi  fault is designed as 

follows: 

 

0~
10 =⋅ zsi EHVV          (6.65) 

 
In order to make the residual generator given in Equation (6.65) still sensitive to 

the other faults, the transformation matrix iV  can be obtained by solving an optimization 

problem such that its row vectors v  can minimize the objective function J  defined as 

follows: 

 

T

T

vMvM
vMvMJ

))((
))((

22

11=          (6.66) 

where  
 

101

~
zs EHVM =   

202

~
zs EHVM =  

 

A complicated algorithm based on Cholesky decomposition and standard 

eigenproblem was developed to solve the above optimization problem in (Li and Shah, 

2002).  In this dissertation, the optimization is formulated as a generalized eigenproblem 

defined as follows: 

 
TTTT vMMvMM 2211 λ=         (6.67) 
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Similarly, in order to remove the noise effects on decision-making, an EWMA 

filter can also be applied to each of the generated residual vectors and an FDI index is 

used to check its significance of change.  The FDI index is defined as follows: 

 

2

)()(
αχ

βϖ kk s=          (6.68) 

 
6.4 Application to the HCSG System 
 

The developed algorithm was applied to the sensor fault diagnosis using the 

dynamic model identified from the data generated by the HCSG simulation model in 

Chapter 3.  The considered sensor faults include both the input and the output faults 

related to the system model.   

In the HCSG system, the steam pressure is controlled and the steam pressure 

sensor fault will propagate within the control loop.  The feed water flow rate is regulated 

when reactor power changes, so it is important to have a correct indication of the feed 

water flow rate for this power transient.  The detailed results are therefore presented for 

these two sensor faults.  To demonstrate the systematic solution to sensor FDI of the 

developed approach, the FDI results of all the other sensor faults are also summarized. 

 
6.4.1 Data Generation and Subspace Identification 
 

A linear state space model is identified for the HCSG system at full power 

operation condition using subspace identification technique.  The data characterizing the 

system dynamics are generated by exciting the developed simulation model in Chapter 3 

with white Gaussian noise inputs of standard deviation 1% power.  The perturbed inputs 

include the hot leg temperature, the primary flow rate, the feed water flow rate, the feed 

water temperature, and the steam flow rate.  The appropriate choice of the excitation 

inputs plays a significant role in the quality of the identified model.  If too much power is 

included in the input signals, some nonlinear modes of the system will be excited.  On the 
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contrary, if the included power is too small, the identified model cannot capture enough 

system dynamics.   

Figure 6.2 shows the singular values of the oblique projection matrix for different 

number of state variables ranging from 1 to 50.  The number of states is chosen as five 

since a significant breakpoint can be observed at this point.  If too many state variables 

are chosen, the resulting model will lose the capability of generalization because some of 

the degrees of freedom will be used to model the system noise.  If too few state variables 

are used, the resulting model may not be able to explain some significant dynamics of the 

system.  In general, the number of state variables should be chosen such that no 

significant information can be included if it is further increased.  As can be seen from the 

figure, a reduced order model can indeed be developed through a systematic approach of 

subspace identification.  The original 19th order physical model has been reduced to a 5th 

order empirical model that can still capture the dominant dynamics of the system. 

In order to test the generalization capability of the identified model, a test data set 

is generated with the reactor power at 90% full power and the input excitation power 

corresponding to a standard deviation of 0.5% nominal values.  Figure 6.3 shows the 

comparison of results between the cold leg temperature obtained from the simulation 

model and the corresponding predicted values based on the identified model.  The 

prediction errors are indeed very small.   

The prediction error index γ  can be used to quantify the prediction performance 

of the identified model, which is given by (Favoreel, De Moor, and Van Overschee, 

1998): 

 

∑ ∑
= =

−=
N

k

N

k
kkk yyy

N 1 1

22 /)ˆ(1γ        (6.69) 

 

where N  is the number of test data points, ky  is the actual value of the kth data point, 

and kŷ is the predicted value of the kth data point. 
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Figure 6.2.  The singular values of the projection matrix. 
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Figure 6.3.  Model prediction of cold leg temperature. 
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Figure 6.4.  Robust fault detection for cold leg temperature sensor fault. 

 

The prediction error indices are 11.2%, 8.3%, 8.8%, 10.6%, 10.2% and 8.3% for 

the cold leg temperature, the steam pressure, the steam outlet temperature, the sub-cooled 

length and the saturated boiling length, respectively.  These small indices show that the 

identified model is able to give a good prediction for all the outputs even if the reactor is 

operating at a different power level with different magnitude of perturbations. 

 

6.4.2 Robust Fault Detection Design 
 

To show the performance of the developed robust fault detection algorithm, the 

identified linear state space model was used to generate data with model uncertainty.  The 

model uncertainty was introduced by adding an additive term to the state vector after the 

300th sample.  The model uncertainty term has a fixed direction but the magnitude of the 

model uncertainty varies linearly with time.   

Figure 6.4 shows the performance of the developed robust fault detection 

algorithm to sensor faults.  Model uncertainty is introduced after the 300th sample and a 

cold leg temperature sensor fault with a bias of 1 oC is injected after the 500th sample.  

The upper plot shows that if model uncertainty is not decoupled the fault detection index 

will not be able to distinguish a sensor fault and model uncertainty.  However, the lower 
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plot shows that the developed robust fault detection algorithm results in a fault detection 

index greater than 1.0 only after a fault has occurred in the system.  Therefore, it can be 

concluded that the developed robust fault diagnosis algorithm is able to decouple model 

uncertainty without loss of the capability of fault detection. 

Figure 6.5 shows the performance of the fault detection index for a feed water 

flow meter bias fault with a magnitude of 2% at 1500 second during the transient when 

the reactor power is reduced from 100% to 95% at a rate of 0.0012 Full Power/min.  The 

fault detection residual generator responds to the fault with no time delay and generates a 

significant fault signal as significant as 10.0 compared with the fault detection index of 

less than 1.0 for fault free condition.  It can also be seen that the generated fault detection 

index has the desirable property that it returns to an insignificant level when the fault is 

recovered during the transient at 2500 seconds.   

After the reactor reaches 95% power level, the fault detection index remains less 

than 1.0, which can demonstrate that the identified model has learned the system 

dynamics appropriately because the model still retains its good prediction capability at 

95% power level, an unknown operation condition, although the model is built from the 

data collected at 100% power level.   
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Figure 6.5.  Fault detection of feed water flow meter sensor fault during a reactor power 

transient. 
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Figure 6.6.  Fault detection of steam pressure sensor fault. 

 

From the viewpoint of FDI robustness, it can be concluded that a dynamic model 

is superior to a static model in which case model prediction is simply an interpolation 

among the data used to train it without revealing the causal relationship among the 

measured variables and thus without the capability of generalization outside the training 

space.   

Figure 6.6 shows the performance of fault detection for a steam pressure sensor 

bias fault of 2% magnitude at the 800th sample when the reactor is initially operating at 

90% full power.  Because the steam pressure is controlled in the HCSG system, the steam 

pressure will experience a fault-induced transient.  The fault detection index responds 

immediately when the sensor fault occurs at the 800th sample.  It is interesting to notice 

that the fault detection index is almost constant after the fault occurs.  On the one hand, 

this indicates that the identified model is able to represent the system dynamics initiated 

by the fault.  On the other hand, the fault detection index does not return to an 

insignificant level even though the measured steam pressure has been brought back to the 

original level.  This is because some other process variables such as the saturated boiling 

length and the sub-cooled length cannot be brought back to their original values due to 

the sensor fault.   
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6.4.3 Robust Fault Isolation Design 
 

Ten residual generators were designed for fault isolation.  Each of the ten residual 

generators corresponds to ten linear transformations on the original estimation error 

vector such that it is sensitive to all faults but the one to which the residual generator is 

dedicated for fault isolation.  The ten residual generators are dedicated to the isolation of 

the following sensor faults: 

 

Variable 1: the cold leg temperature. 

Variable 2: the steam pressure. 

Variable 3: the steam temperature. 

Variable 4: the saturated boiling length. 

Variable 5: the sub-cooled length. 

Variable 6: the hot leg temperature. 

Variable 7: the steam flow rate. 

Variable 8: the feed water temperature. 

Variable 9: the feed water flow rate. 

Variable 10: the primary flow rate. 

 

Figure 6.7 shows the FDI indices of the ten residual generators responding to the 

feed water flow meter bias fault with a magnitude of 2% at 1500 second during the 

transient when the reactor power is reduced from 100% to 95% at a rate of 0.0012 Full 

Power/min.  As can be seen, the residual generator dedicated to the isolation of the ninth 

variable produces an insignificant FDI index of less than 1.0 while all the other residual 

generators do not.  Therefore, the feed water flow meter sensor fault can be correctly 

isolated when the fault is detected between 1500 second and 2500 second (See Figure 

6.5) during the reactor power transient.   
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Figure 6.7.  Fault isolation of feed water flow meter sensor fault during a reactor power 

transient. 

 

The FDI indices for the fifth variable and the seventh variable are approximately 

1.2 and 2.0, respectively, while the FDI indices for the other variables are significantly 

greater than 1.0.  It can be seen from this that the fault isolation of feed water flow meter 

fault has less confidence level when it is to be isolated from a sub-cooled length 

measurement fault or a steam flow meter fault than the other faults.  This result is also in 

agreement with the statement obtained in Chapter 2 that an input fault may be not 

isolatable.  In addition, an insight we can obtain here is that FDI performance testing at 

design phase with a reliable simulation model should still be emphasized.   

Figure 6.7 has also demonstrated the success of the developed FDI method in that 

a predetermined logic of fault isolation is achieved through studying the identified model.  

This is a significant difference from many recently published literatures where FDI is 

inappropriately paraphrased as a pattern recognition problem.  Pattern recognition needs 

to determine the fault features through the collection of faulty data, which is unrealistic in 

process engineering application.   
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The fault isolation residual generators have shown the robustness of the 

developed method to measurement noises.  Although all the measured variables are 

added with 0.2% white Gaussian noise, the residual generators can successfully eliminate 

their effects on the residuals after EWMA filters are applied to the residuals. 

Figure 6.8 shows the FDI indices of the designed ten residual generators for the 

fault isolation of a steam pressure sensor fault.  In the figure, the FDI indices of all the 

variables, except the second variable, are greater than 1.0; therefore, the steam pressure 

sensor fault can be isolated correctly throughout the fault induced transient.  As compared 

with static model based FDI approaches, the developed approach is able to isolate a 

controlled variable related sensor fault at the initial stage when it occurs.  In the 

meantime, fault misdiagnosis can be avoided during the fault-induced transient.  

Moreover, fault isolation is based on the identified model rather than fault information 

through appropriate design of residual generators such that the generated residuals follow 

the predetermined logic.   

Table 6.1 summarizes the FDI results for the five other sensor faults of the HCSG 

system that occur at 95% full power.  The five faults are listed as follows: 
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Figure 6.8.  Fault isolation of steam pressure sensor fault. 
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Table 6.1.  The FDI indices of bias type sensor faults 

 

                     Faults 
FDI index 

Fault 
free 

Fault 1 
 

Fault 2 
 

Fault 3 
 

Fault 4 
 

Fault 5 
 

Fault detection 0.22 40.3 18.3 9.42 5.04 25.7 

Cold leg temperature 0.15 0.22 1.7 2.25 3.45 6.3 
Steam pressure 0.16 1.47 2.4 2.10 2.39 1.2 
Steam temperature 0.16 2.43 0.23 0.45 4.31 22.0 
Saturated boiling length 0.18 6.99 2.59 2.65 1.43 15.7 
Sub-cooled length 0.18 12.7 9.2 6.30 2.06 1.3 
Hot leg temperature 0.19 14.7 3.33 0.31 4.94 24.9 
Steam flow rate 0.20 29.9 14.94 8.18 0.22 14.9 
Feed water temperature 0.20 38.3 18.75 8.72 3.74 0.24 
Feed water flow rate 0.19 28.8 14.64 7.31 4.55 7.43 
Primary flow rate 0.16 16.1 4.51 1.65 5.76 23.7 
 

 

Fault 1: cold leg temperature sensor fault with a bias of 1.0 oC, 

Fault 2: steam temperature sensor fault with a bias of 1.0 oC, 

Fault 3: hot leg temperature sensor fault with a bias of 1.0 oC, 

Fault 4: steam flow meter fault with a bias of 1% nominal flow rate, 

Fault 5: feed water temperature sensor fault with a bias of 1.0 oC. 

 

During fault free conditions, the fault detection index is 0.22, which is less than 

1.0 and will not trigger a false alarm.  The FDI indices produced from all the designed 

residual generators for fault isolation are also less than 1.0 for fault free condition.  This 

indirectly proves that the EWMA filtered residual vector does indeed follow a multi-

dimensional Gaussian distribution with zero mean and a constant covariance matrix.   

The fault detection indices are all significantly greater than 1.0 after the five faults 

occur.  When the FDI indices of the ten residual generators designed for fault isolation 

are examined, they follow the predetermined logic of fault isolation for all the faults but 

hot leg temperature sensor fault.  For the hot leg temperature sensor fault, both the 
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residual generator dedicated to the isolation of the steam temperature sensor fault and the 

residual generator dedicated to the isolation of the hot leg temperature sensor fault 

generate an insignificant residual, which indicates an unknown fault according to the 

residual design scheme for isolation.   

The reason why the hot leg temperature sensor fault was diagnosed as an unkown 

fault is that there is a maximum sensitivity of the designed residual generator to an input 

fault, which is determined by the system model itself.  However, because the designed 

residual generator can maintain the capability of being insensitive to the fault that it is 

designed to isolate regardless of the fault magnitude, the predetermined logic for fault 

isolation can always be followed if the fault magnitude is big enough.  It is found that the 

hot leg temperature sensor fault can be unambiguously isolated if its fault magnitude is 

increased to 3 oC.  This example also demonstrates the importance of FDI design in 

reactor design phase and the necessity of testing its performance based on a realistic 

simulation. 

 

6.5 Summary 
 

A robust dynamic fault diagnosis algorithm is presented in this chapter for 

dynamic fault diagnosis of nuclear power systems.  The theory of subspace identification 

was first described to extract low order state-space model from data generated by 

simulation calculations.  Robust parity space approach was then combined with subspace 

identification to design residual generators.  A new one-step algorithm was derived 

without the need of explicitly identifying model uncertainty for uncertainty decoupling.  

The implementation of robust residual generator design was formulated as a generalized 

eigenvalue problem.  Finally, the developed robust dynamic fault diagnosis algorithm 

was applied to the IRIS HCSG systems for transient fault detection and isolation.  It was 

shown that the developed algorithm was able to deal with model uncertainty for dynamic 

fault diagnosis without causing false alarms and can be used for fault tolerant control. 
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Chapter 7 
 

Summary, Conclusions, and Recommendations  

for Future Research 
 
7.1 Summary and Conclusions 
 

The preceding chapters have presented an integrated approach to the performance 

monitoring and fault diagnosis of nuclear power systems using robust data driven model 

based methods for both steady state and dynamic operation conditions.  The developed 

methods were demonstrated through the application to IRIS helical coil steam generator 

systems. 

A steady state model was developed for the IRIS helical coil steam generator to 

prepare for the initialization parameters of dynamic simulation and find out a unique 

method to monitor the tube inside water inventory.  The calculated primary outlet 

temperature and the steam outlet temperature based on the developed model are within 

0.5% error of the results obtained from a more sophisticated simulation.  The calculated 

primary coolant temperature profile also demonstrated that a clear breakpoint exists when 

the saturated boiling heat transfer transits to the superheated heat transfer.  It was 

proposed that the breakpoint determined from the primary fluid temperature 

measurements could be used to indicate the HCSG tube inside water inventory.   

A dynamic model was also developed to study the dynamic responses of the IRIS 

helical coil steam generator systems for control and fault diagnosis design.  The 

developed dynamic model is a nodal model, which has two nodes each, to represent the 

axial changes in the superheated, saturated, and sub-cooled region of the primary side and 

the secondary side.  The steady state results and the typical transient results showed that 

the developed dynamic model was able to characterize the HCSG behavior with 

reasonably good accuracy to study the control and fault diagnosis of IRIS HCSG system. 

Sensor placement was considered as a crucial design element of performance 

monitoring and fault diagnosis of nuclear power systems.  A systematic approach was 
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developed in this dissertation to accomplish sensor placement design in reactor design 

phase.  In this approach, the minimum set of sensors for process diagnosis was 

determined based on cause effect analysis using graph theory.  If steady state balance 

equations were used for sensor fault diagnosis, the minimum set of sensors were 

determined based on observability and redundancy analysis using orthogonal projection 

algorithm.  Finally, to ensure reliable sensor fault diagnosis and accurate performance 

parameter estimation, data reconciliation was used to study the sensitivities.   

Steady state fault diagnosis is useful for condition-based maintenance in nuclear 

power plants.  Reconstruction based PCA was proposed as a baseline approach, which is 

able to deal with both sensor faults and process faults through characterizing the fault 

effects in a unified manner.  When reconstruction based PCA approach was used, the 

conditions of fault detectablity and fault identifiablity could be quantitatively evaluated, 

which is very important for applications to nuclear power systems.  In addition, 

reconstruction based PCA approach can usually give more conclusive results in terms of 

fault isolation since a decision is made only if the fault effects can be fully explained 

through the reconstruction procedure. 

Hybrid PCA model based approach was developed in this dissertation to improve 

the performance of steady state fault diagnosis through incorporating prior knowledge.  

When historical data were collected during reactor power changes, many measured 

variables would have significant amount of variation due to the manipulation of a few 

variables.  Hybrid PCA model based approach allowed us to decompose the variation of 

the collected data based on this prior knowledge.  The demonstration example showed 

that the developed algorithm could lead to more sensitive fault diagnosis after some large 

variations were removed. 

An integrated framework of robust PCA model based fault diagnosis was 

developed to deal with the situation when no qualified historical data were available for 

fault diagnosis.  In this approach, PCA models were developed from data generated by 

well-designed simulation calculations.  Robust fault detection was achieved by 

calculating a fault detection index, which was robust to model uncertainty, that was larger 

than 1.0 only if a fault occurred.  Robust fault isolation was based on determining a fault 
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isolation index, which was also robust to model uncertainty, that measured how well the 

fault measurements could be reconstructed in different candidate fault subspaces with 

model uncertainty.  The developed algorithm was demonstrated through applying to the 

IRIS HCSG system with the thermal degradation considered as model uncertainty.  Both 

sensor faults and process faults could be correctly detected and isolated based on the 

calculated fault detection index and fault isolation index when model uncertainty was 

considered.   

The importance of dynamic fault diagnosis to nuclear power systems was 

emphasized in order to enhance the robustness to plant disturbance and meet the needs of 

fault tolerant control and transient fault diagnosis.  The goal of dynamic fault diagnosis 

algorithm, which was proposed in this dissertation, was to use subspace identification 

technique to identify a low order state-space model from plant data and then apply parity 

space approach for model based fault diagnosis.  Because data with persistent excitation 

were usually not available in nuclear power systems, robust subspace model based 

dynamic fault diagnosis algorithm was developed in this dissertation, and was able to 

deal with dynamic model uncertainty.  The uniqueness of the developed algorithm was 

that a separate procedure of identifying model uncertainty was not necessary.  Instead, 

after a subspace model was identified from simulation data, the robust residual generator 

design for fault diagnosis was achieved by combining the identification of model 

uncertainty and the robust residual generator design into one step.  The demonstration 

example through applying to the IRIS HCSG systems showed that the developed 

algorithm could avoid false alarms due to dynamic model uncertainty for transient fault 

diagnosis. 

 
7.2 Recommendations for Future Research 
 

To the author’s knowledge, this dissertation is the only work focused on 

developing fault diagnosis methods including sensor placement design, steady state fault 

diagnosis, and dynamic fault diagnosis for application to nuclear power systems.  

Although the proof-of-principle was demonstrated for the developed algorithms using 

IRIS HCSG systems, these algorithms still need to be implemented on a laboratory 
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system and tested using real nuclear power plant data before they can be integrated into 

the Generation-IV I&C systems.   

Sensor placement design based on graph theory was presented to determine the 

minimum set of sensors for process fault detection and isolation and was applied to IRIS 

Helical Coil Steam Generator systems.  In this application, the DG graph was developed 

by hand from engineering models.  To facilitate computer aided design, this process can 

be automated by developing a general purpose software, which allows an automatic 

transformation of engineering models into DG and the determination of minimum 

requirements of sensor placement for a specified objective of fault diagnosis. 

The developed robust data driven model based fault diagnosis methods in this 

dissertation were based on linear data driven models in order to deal with model 

uncertainty.  Further study need to be performed to deal with the nonlinearity inherent in 

nuclear power systems.  One foreseeable solution is to use multiple locally linear models 

built from data generated by a high fidelity nonlinear simulation model through 

perturbing the system inputs at different operating conditions.  For a known operation 

condition, the measured data would be compared with the available model prediction 

using classification algorithms to determine which linear model would be able to best fit 

the current data sequence.  It is this best linear data driven model that would be used for 

robust fault diagnosis.   

Although this dissertation has only dealt with process performance monitoring 

and fault diagnosis, equipment diagnostics is also very important in the integrated fault 

diagnosis system to improve the operational safety and economics of nuclear power 

systems.  In fact, the developed fault diagnosis algorithms are also relevant to equipment 

diagnostics.  For instance, the proposed steady state fault diagnosis algorithm can be 

directly used to diagnose the malfunctioning of steam turbines using the measurements of 

temperature, steam pressure, and steam flow rate at inlet and outlet points.  The proposed 

subspace identification algorithm can be combined with first principle-based models to 

detect and localize structural damages.  Some initial efforts on on-board vibration 

monitoring using subspace based covariance driven modal identification for 

nonstationary excitation have been made by Basseville, Abdelghani, and Benveniste, 
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1999.  It is worthwhile to demonstrate its performance for structural monitoring of major 

components in nuclear power plants. 
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Appendix 1  Matlab Code for HCSG Steady State Simulation 
clear all; 
close all; 
Tmax = 300; 
%Number of tubes=655; 
N =655; N0=8; 
% Tube inner diameter=13.24mm 
Ri_thermal=13.24/2*1.0E-3; 
% Tube outside diameter=17.46mm 
Ro_thermal=17.46/2*1.0E-3; 
%Tube inside flow area; 
Ri_hydraulic=Ri_thermal; 
%Internal shell external diameter Di=0.61 m; 
Di=0.61; 
%External shell internal diameter Dt=1.62m 
Do=1.62; 
%Radial pitch=25mm; 
t=25*1.0E-3; 
%Total shell side projected area 
shadow=1.0;  
Ap_total=1/4*pi*(Do^2-Di^2)*(1-Ro_thermal*2/t)*shadow; 
Ap=Ap_total/N; 
%Shell side hydraulic radius=2*flow area/wetting perimeter 
%Wetting area 
Peri_wet=N*2*pi*Ro_thermal; 
Ro_hydraulic=2*Ap_total/Peri_wet; 
%Tube side hydraulic dimater 
Ri_hydraulic=Ri_thermal; 
%Flow area on the secondary side; 
As=pi*(Ri_hydraulic^2);   
%Cross section for the tube; 
Aw=pi*(Ro_thermal^2-Ri_thermal^2); 
%Tube length 
Lt=32; 
%Flow rate on the primary side=4707/8kg/s; 
Wp=4707/N/N0; 
%Flow rate on the secondary side=502.8kg/s; 
Ws=502.8/N/N0*1.00; 
% Inlet temperature on the primary side 
Tpin=328.4+273; 
%Primary system outlet temperature 
Tpout=292+273; 
%Feed water temperature; 
Tfw=224+273;  
%Steam outlet temperature; 
Tsout=317+273;  
%Geometric tube radius  
Ri=Ri_thermal; 
Ro=Ro_thermal;  
T100=[]; 
T200=[]; 
P100=[]; 
P200=[]; 
H100=[]; 
H200=[]; 
Hall=[]; 
Ltube=[]; 
XX=[]; 
Kw=16.0;  %W/m/K 
%Pressure on the secondary side 
Ps0=5.8*1.01325; 
%Ps0=6.0*1.01325; 
deltaPs=0.296; 
Ps=Ps0+deltaPs; 
%Pressure on the primary side 
Pa0=15.52; 
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deltaPa=0.072; 
Pa=Pa0+deltaPa; 
scwater(Pa,Ps); 
load data1; 
HH1=dxxx(:,1); 
TT1=dxxx(:,2); 
load data2; 
HH2=dyyy(:,1); 
TT2=dyyy(:,2); 
%%%%%%%%%%%%%%%%%%%To determine the subcooled boiling length%%%%%%%%%%%%%%%%%%%%%%% 
P1in=Pa; 
P2in=Ps; 
T2in=Tfw; 
T1in=Tpout; 
[P1sat,H1in,Cp1in,rho1in]=hsub(P1in,T1in); 
[P2sat,H2in,Cp2in,rho2in]=hsub(P2in,T2in); 
%%%%%%%%%iterate till saturated temperature is reached%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
i=1; 
deltaz=0.03; 
Lsub=0.0; 
T1sub(1)=T1in; 
T2sub(1)=T2in; 
P1sub(1)=P1in; 
P2sub(1)=P2in; 
Xsub(1)=0.0; 
[Tsat,dum1,dum2,dum3,dum4,dum5,dum6,dum7,dum8]=hsat(P2in); 
while abs(T2sub(i)-Tsat)/Tsat >0.001  
[T1out,T2out,T1avg,T2avg,P1out,P2out,P1avg,P2avg,h1,h2,Unew,H1out,H2out]=itersub0_new(T1in,T2in,H1in,H2in,P1in,P2in,Wp,
Ws,deltaz,... 
Kw,Ri_thermal,Ro_thermal,Ri_hydraulic,Ro_hydraulic,Ap,As); 
T1sub(i+1)=T1out; 
T2sub(i+1)=T2out; 
P1sub(i+1)=P1out; 
P2sub(i+1)=P2out; 
P1asub(i+1)=P1avg; 
P2asub(i+1)=P2avg; 
h1sub(i+1)=h1; 
h2sub(i+1)=h2; 
Usub(i+1)=Unew; 
Xsub(i+1)=0.0; 
LLsub(i+1)=Lsub; 
T1in=T1out; 
T2in=T2out; 
P1in=P1out; 
P2in=P2out; 
H1in=H1out; 
H2in=H2out; 
i=i+1; 
Lsub=deltaz+Lsub; 
end; 
fprintf('Subcooled heat transfer coefficient on the primary side===%f(BTU/hr/ft**2)\n',h1*0.1761); 
fprintf('Subcooled heat transfer coefficient on the seconday side===%f(BTU/hr/ft**2)\n',h2*0.1761); 
fprintf('Temperature on the primary side===%f(C)\n',T1out-273); 
fprintf('Temperature on the secondary side===%f(C)\n',T2out-273); 
fprintf('Subcooled boiling length===%f(m)\n',Lsub); 
Ltube=[Ltube,LLsub(2:end)]; 
T100=[T100,T1sub(2:end)]; 
T200=[T200,T2sub(2:end)]; 
P100=[P100,P1sub(2:end)]; 
P200=[P200,P2sub(2:end)]; 
H100=[H100,h1sub(2:end)]; 
H200=[H200,h2sub(2:end)]; 
Hall=[Hall,Usub(2:end)]; 
XX=[XX,Xsub(2:end)]; 
 
%%%%%%%%%%%%%%%%%Prepare initial data for satuarated region calculation%%%%%%%%%%%% 
[Tsat,h2f,h2g,k2f,k2g,mu2f,mu2g,Prf,Prg]=hsat(P2in); 
Tp0=T1sub(end); 
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Ts0=Tsat; 
hp0=h1sub(end); 
Usub_end=Usub(end); 
%%%%%%%%%%%%%%%%%%%To determine the saturated boiling length%%%%%%%%%%%%%%%%%%%%%%% 
hp=hp0; 
Tpsat=Tp0; 
hsold=h2sub(end); 
U0old=8888; 
U0new=9999; 
hsnew=hsold*1.25; 
while abs((U0new-U0old)/U0old > 0.01) | abs((hsnew-hsold)/hsold > 0.01) 
a=Ro/Kw*log(Ro/Ri)+1/hp0; 
b=Ro/Ri; 
A=(exp(Ps*1.0E6/8.69E6)/0.02253); 
c=-(A^2)*Ro/Ri*(Tpsat-Tsat); 
hsold=(-b+(b^2-4*a*c)^0.5)/(2*a); 
a1=Ro/(Ri*hsold); 
b1=Ro/Kw*log(Ro/Ri); 
c1=1/hp; 
U0old=1/(a1+b1+c1); 
%Compute Hfg 
[dum,Hsf,Hsg]=hsat(Ps); 
Hfg=Hsg-Hsf; 
[dum1,dum2,Cpp,rhop]=hsub(Pa,Tpsat); 
B=Ws*Hfg/(Wp*Cpp); 
deltaT=Tpsat-Tsat; 
G=Ws/(As); 
De=2*Ri; 
R=0.15*Hfg*(De^(-0.1))*G^0.51; 
CHF=(Ro/Ri*U0old*(deltaT+B))/(1+Ro*B/(Ri*R)*U0old); 
xi=1-CHF/R; 
Tpdryout=Tpsat+Ws/(Wp*Cpp)*xi*Hfg; 
a=Ro/Kw*log(Ro/Ri)+1/hp0; 
b=Ro/Ri; 
A=(exp(Ps*1.0E6/8.69E6)/0.02253); 
c=-(A^2)*Ro/Ri*(Tpsat-Tsat); 
hsnew=(-b+(b^2-4*a*c)^0.5)/(2*a); 
a1=Ro/(Ri*hsnew); 
b1=Ro/Kw*log(Ro/Ri); 
c1=1/hp; 
U0new=1/(a1+b1+c1); 
end; 
fprintf('Saturated heat transfer coefficient on the seconday side===%f(BTU/hr/ft**2)\n'... 
,hsnew*0.1761); 
fprintf('Dryout temperature on the primary side===%f(C)\n', Tpdryout-273); 
fprintf('Dryout quality on the secondary side===%f\n', xi); 
U0avg=(U0new+Usub_end)/2; 
Lbavg=Wp*Cpp/(2*pi*Ro*U0avg)*log((Tpdryout-Tsat)/(Tp0-Tsat)); 
fprintf('Average boiling length===%f(m)\n', Lbavg); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 
P1in=P100(end); 
P2in=P200(end); 
T2in=T200(end); 
T1in=T100(end); 
[P1sat,H1in,Cp1in,rho1in]=hsub(P1in,T1in); 
[Tsat,h2f,h2g,k2f,k2g,mu2f,mu2g,Prf,Prg]=hsat(P2in); 
H2in=h2f; 
HH1(1)=H1in; 
HH2(1)=H2in; 
 
%%%%%%%%%%%%%%%%%%%To determine the saturated boiling length%%%%%%%%%%%%%%%%%%%%%%%%% 
i=1; 
deltaz=0.03; 
Lsat=0.0; 
T1sat(1)=T1in; 
T2sat(1)=T2in; 
P1sat(1)=P1in; 
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P2sat(1)=P2in; 
h1sat(1)=H100(end); 
h2sat(2)=H200(end); 
Xsat(1)=0.0; 
X(1)=0.0; 
Xin=0.0; 
while (X(i) < xi)  
 
[T1out,X2out,T1avg,T2avg,P1out,P2out,P1avg,P2avg,h1,h2,Unew,H1out,H2out]=... 
itersat0_new(T1in,H1in,H2in,Xin,P1in,P2in,Wp,Ws,deltaz,Kw,Ri_thermal,Ro_thermal,Ri_hydraulic,Ro_hydraulic,Ap,As); 
 
T1sat(i+1)=T1out; 
T2sat(i+1)=Tsat; 
Xsat(i+1)=X2out; 
X(i+1)=X2out; 
Xin=X2out; 
P11sat(i+1)=P1out; 
P22sat(i+1)=P2out; 
h1sat(i+1)=h1; 
h2sat(i+1)=h2; 
Usat(i+1)=Unew; 
LLsat(i+1)=Lsat; 
HH1(i+1)=H1out; 
HH2(i+1)=H2out; 
T1in=T1out; 
T2in=T2out; 
P1in=P1out; 
P2in=P2out; 
H1in=H1out; 
H2in=H2out; 
i=i+1; 
Lsat=deltaz+Lsat; 
end; 
fprintf('X2out==%f,Lsat==%f T1out=%f h2=%f P2out=%f\n',X2out,Lsat,T1out,h2,P2out); 
Ltube1=Ltube(end); 
Ltube2=LLsat+Ltube1; 
Ltube=[Ltube,Ltube2]; 
T100=[T100,T1sat]; 
T200=[T200,T2sat]; 
P200=[P200,P22sat]; 
H100=[H100,h1sat]; 
H200=[H200,h2sat]; 
Hall=[Hall,Usat]; 
XX=[XX,Xsat]; 
%%%%%%%%%%%%%%%To compute the temperature profile in the superheated region%%%%%%%%%%%%% 
P1in=Pa; 
P2in=P22sat(end); 
T1in=T100(end); 
T2in=T200(end); 
nss=50; 
Lss=Lt-Ltube(end); 
deltaz=Lss/nss; 
%%%%%%%%%iterate till saturated temperature is reached%%%%%%%%% 
i=1; 
T1ss(1)=T1in; 
T2ss(1)=T2in; 
P1ss(1)=P1in; 
P2ss(1)=P2in; 
H11sg(1)=H100(end); 
H22sg(1)=H200(end); 
Xss=1.0; 
Length=0.0; 
[P1sat,H1in,Cp1in,rho1in]=hsub(P1in,T1in); 
[dum,H2in,Cp2in,vsin]=hsh(P2in,T2in); 
%H1in=HH1(end); 
%H2in=HH2(end); 
while Length<Lss   
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[T1out,T2out,T1avg,T2avg,P1out,P2out,P1avg,P2avg,h1,h2,Unew,H1out,H2out]=iterss0_new(T1in,T2in,H1in,H2in,P1in,P2in,Wp,W
s,deltaz,... 
Kw,Ri_thermal,Ro_thermal,Ri_hydraulic,Ro_hydraulic,Ap,As); 
T1ss(i+1)=T1out; 
T2ss(i+1)=T2out; 
P1ss(i+1)=P1out; 
P2ss(i+1)=P2out; 
Xss(i+1)=1.0; 
H1in=H1out; 
H2in=H2out; 
P1ssavg(i+1)=P1avg; 
P2ssavg(i+1)=P2avg; 
T1in=T1out; 
T2in=T2out; 
P1in=P1out; 
P2in=P2out; 
Lssg(i+1)=deltaz; 
H11sg(i+1)=h1; 
H22sg(i+1)=h2; 
Uass(i+1)=Unew; 
i=i+1; 
Length=deltaz+Length; 
end; 
fprintf('Length==%f T1out=%f T2out=%f P2out=%f\n',Length,T1out,T2out,P2out); 
Ltube1=Ltube(end); 
Ltube2=cumsum(Lssg)+Ltube1; 
Ltube=[Ltube,Ltube2]; 
T100=[T100,T1ss]; 
T200=[T200,T2ss]; 
P200=[P200,P2ss]; 
H100=[H100,H11sg]; 
H200=[H200,H22sg]; 
Hall=[Hall,Uass]; 
XX=[XX,Xss]; 
fprintf('Superheated heat transfer coefficient on the primary side===%f(BTU/hr/ft**2)\n',H11sg(i)*0.1761); 
fprintf('Superheated heat transfer coefficient on the seconday side===%f(BTU/hr/ft**2)\n',H22sg(i)*0.1761); 
fprintf('Temperature on the primary side===%f(C)\n',T1ss(i)-273); 
fprintf('Temperature on the secondary side===%f(C)\n',T2ss(i)-273); 
fprintf('Superheated boiling length===%f(m)\n',Lss); 
 
figure; 
T11=T100-273; 
T22=T200-273; 
x1=plot(Ltube(1:10:end),T11(1:10:end),'marker','s','markersize',4,... 
                 'markeredgecolor','b','markerfacecolor',[.6 0 .6],... 
                 'linestyle','--','color','r','linewidth',2);  
hold on; 
x2=plot(Ltube(1:10:end),T22(1:10:end),'marker','v','markersize',4,... 
                 'markeredgecolor','b','markerfacecolor',[.6 0 .6],... 
                 'linestyle','-.','color','r','linewidth',2);  
xlabel('Tube length(m)'); 
ylabel('Temperature(C)'); 
grid on; 
title('Fluid temperature versus tube length');  
hold off; 
legend([x1,x2],'Primary tempearture','Secondary tempearture'); 
figure(2); 
x1=plot(Ltube(1:10:end),H100(1:10:end)*0.1761,'marker','s','markersize',4,... 
                 'markeredgecolor','b','markerfacecolor',[.6 0 .6],... 
                 'linestyle','--','color','r','linewidth',2);  
hold on; 
x2=plot(Ltube(1:10:end),H200(1:10:end)*0.1761,'marker','v','markersize',4,... 
                 'markeredgecolor','b','markerfacecolor',[.6 0 .6],... 
                 'linestyle','-.','color','r','linewidth',2);  
xlabel('Tube length(m)'); 
ylabel('Heat Transfer Coefficient(BTU/Hr/ft**2)'); 
grid on; 
title('Heat transfer coefficient versus tube length');  
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hold off; 
legend([x1,x2],'Primary side','Secondary side'); 
grid on; 
 
figure(3); 
x1=plot(Ltube(1:10:end),P200(1:10:end)-P200(end),'marker','s','markersize',4,... 
                 'markeredgecolor','b','markerfacecolor',[.6 0 .6],... 
                 'linestyle','--','color','r','linewidth',2);  
xlabel('Tube length(m)'); 
ylabel('Pressure Drop(Mpa)'); 
grid on; 
title('Pressure drop versus tube length on the seconsary side');  
grid on; 
 
figure(4); 
x1=plot(Ltube(1:10:end),XX(1:10:end),'marker','s','markersize',4,... 
                 'markeredgecolor','b','markerfacecolor',[.6 0 .6],... 
                 'linestyle','--','color','r','linewidth',2);  
xlabel('Tube length(m)'); 
ylabel('Steam Quality'); 
grid on; 
title('Steam quality versus tube length');  
grid on; 
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Appendix 2  Matlab Code for HCSG Transient Simulation 
 
close all; 
clear all; 
Tmax = 300; 
JJ=778.16; %BTU/ft/lbf; 
Fudge1=1.0; 
Fudge2=1.0; 
%from mm to ft; 
c1=0.1*0.3937/12;  
%conversion from kg to lbm; 
c2=1/0.4536;  
%Number of tubes=820; 
N =655;  
% Tube inner diameter=13.24mm 
Ri_thermal=13.24/2*c1; 
% Tube outside diameter=17.46mm 
Ro_thermal=17.46/2*c1; 
% Inlet temperature on the primary side 
Tpin=1.8*328.4+32; 
 
%Tube inside flow area; 
Ri_hydraulic=Ri_thermal; 
As=pi*Ri_hydraulic^2; 
 
%Internal shell external diameter Di=0.61 m; 
Di=0.61*1000*c1; 
%External shell internal diameter Dt=1.62m 
Do=1.62*1000*c1; 
%Radial pitch=25mm; 
t=25*c1; 
%Total shell side projected area 
Ap_total=1/4*pi*(Do^2-Di^2)*(1-Ro_thermal*2/t); 
%Shell side hydraulic radius=2*flow area/wetting perimeter 
%Wetting area 
Peri_wet=N*2*pi*Ro_thermal; 
Ro_hydraulic=2*Ap_total/Peri_wet; 
Ap=pi*Ro_hydraulic^2;   
 
%Tube side hydraulic dimater 
Ri_hydraulic=Ri_thermal; 
%Flow area on the secondary side; 
As=pi*(Ri_hydraulic^2);   
%Cross section for the tube; 
Aw=pi*(Ro_thermal^2-Ri_thermal^2); 
 
%Specific heat capacity; 
Cpp=1.3355; 
Cpw=0.109; 
%Cps=1.0185; 
Cpfw=1.122; 
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Cpsc=1.122; 
 
%Density lbm/ft**3 
rhop=44.75; 
rhow=526.0; 
%rhos=1.876; 
rhoavg=8.86; %for entire boiling region; 
rhofw=51.71; 
rhof=46.91; %for boiling water 
rhosc=(rhofw+rhof)/2; 
 
 
Ps=5.8; 
Ps=Ps; Ts=(280+318)/2+273;  
[dum,dum,Cps,vss]=hsh(Ps,Ts); 
Cps=Cps*9.4783E-4/(2.2046*1.8); 
rhos=1/vss*0.06243; 
 
%Initial heat transfer coefficient 
 
Rii=Ri_thermal; 
Roo=Ro_thermal; 
ccc=0.1761; 
 
Kw=(10.1924/3600)*1.0; 
hp=21000*ccc/3600.0; 
hs=8500*ccc/3600.0; 
hsc=16000*ccc/3600.0; 
hb=55000*ccc/3600.0; 
 
hpw=Kw*hp/(Kw+hp*Roo*(0.5+log(Roo/Rii)/(1-(Roo/Rii)^2))); 
hws=Kw*hs/(Kw+hs*Rii*(log(Rii/Roo)/(((Rii/Roo)^2)-1)-0.5)); 
hwsc=Kw*hsc/(Kw+hsc*Rii*(log(Rii/Roo)/(((Rii/Roo)^2)-1)-0.5)); 
hwb=Kw*hb/(Kw+hb*Rii*(log(Rii/Roo)/(((Rii/Roo)^2)-1)-0.5)); 
 
 
%Feed water temperature=224C; 
Tfw=1.8*224+32;  
 
%Tube length 
Lt=32*3.2808; %total bundle length 
Lb=21.5*3.2808;  %this value is fixed to determine accurate heat transfer coefficient in this region. 
Lsc=4.5*3.2808; %this value is malipulated given that hwsc is known. 
Ls=Lt-Lb-Lsc; 
%%%%%Heating circumference%%%%% 
Ri=Ri_thermal; 
Ro=Ro_thermal; 
Uwb=2*pi*Ri; 
Uws=2*pi*Ri; 
Uwsc=2*pi*Ri; 
 
Ptable=5.0:0.1:6.0; 
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Tsavg=(280+318)/2+273; 
Ttable=[]; 
HfgTable=[]; 
hsTable=[]; 
for PPP=5.0:0.1:6.0 
[Tsat,hf,hg,kf,kg,muf,mug,Prf,Prg]=hsat(PPP); 
[dum,hss,dum,dum]=hsh(PPP,Tsavg); 
Ttable=[Ttable,Tsat]; 
hsTable=[hsTable,hss]; 
HfgTable=[HfgTable,hg-hf]; 
end; 
c3=1000/6.895; 
Ptable=Ptable*c3; %Pressure; 
Ttable=(Ttable-273)*1.8+32; %Saturated temperature; 
cc1=9.4783E-4/2.2046; 
HfgTable=HfgTable*cc1; 
hsTable=hsTable*cc1; 
a=POLYFIT(Ptable,Ttable,1); 
X5=a(2);K5=a(1); 
b=POLYFIT(Ptable,HfgTable,1); 
X4=b(2); K4=b(1); 
c=POLYFIT(Ptable,hsTable,1); 
dHsdPs=c(1); 
 
N0=8; 
%Flow rate on the primary side=560.46kg/s; 
Wp=4707*c2/N/N0*Fudge1; 
Wp0=Wp; 
Wp1=Wp; 
Wp2=Wp; 
Wp3=Wp; 
Wp4=Wp; 
Wp5=Wp; 
 
Fraction=1.0; 
%Flow rate on the secondary side=62.85kg/s; 
AdjustFactor=1.0; 
Wsec=502.8*c2/N0/N*Fraction*AdjustFactor; 
Ws=Wsec; 
Wb=Wsec; 
Wfw=Wsec; 
Wsg=Wsec; 
Ws0=Wsec; 
Ri=Ri_thermal; 
Ro=Ro_thermal;  
 
 
%Preparing data matrix; 
a1=Ap*Cpp*rhop/2;   %primary side; 
a2=Aw*Cpw*rhow/2;   %metal; 
a3=As*Cps*rhos/2;   %secondary side; 
a4=hpw*pi*Ro/a1; 
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a51=Cpp*Wp0/a1; 
a52=Cpp*Wp1/a1; 
a53=Cpp*Wp2/a1; 
a54=Cpp*Wp3/a1; 
a55=Cpp*Wp4/a1; 
a56=Cpp*Wp5/a1; 
 
a6=hpw*pi*Ro/a2; 
a7=hwb*pi*Ri/a2; 
a8=hws*pi*Ri/a2; 
a9=hws*pi*Ri/a3;     
 
a11=As*Cpsc*rhosc/2; %  
a12=hwsc*pi*Ri/a2; %  
a13=hwsc*pi*Ri/a11; %  
a14=144/(JJ*Cpp*rhop); 
%dHsdPs=(1245.9-1251.8)/50.0; 
a15=144/(JJ*Cps*rhos)-dHsdPs/Cps; 
dHscdPsc=(430.47-430.19)/500; 
a16=144/(JJ*Cpsc*rhosc)-dHscdPsc/rhosc; 
 
%Saturated temperature for 7Mpa 
c3=1000/6.895; 
Ps=5.8*c3; 
deltaP=0.2; 
Psat=(5.8+deltaP)*c3; 
%X5=402.94; K5=0.14;  %Tsat~Psat 
Tsat=X5+K5*Psat; 
%Tsat=546.6;  %Exit temperature=317C and Degree of superheat is 43.4; 
Hfg=X4+K4*Psat; 
sim('htsgss'); 
 
a99=hws*pi*Ri/Cps;   
a88=2*Wfw/As/rhosc; 
a77=2/As/rhosc; 
Ksc=(1/0.02152-1/0.02145)/20;        
Kb=0.00552445; 
dTsatdP=K5; 
 
Z=0.76634; % 570K, 60atm; 
R=4.55465*3.5314455E-5*14.696006/(5/9*2.2046223E-3); %cm^3atm/deg*g 
Ct=Ws/Ps; 
Ktb=1.5428e-004; 
 
Pset=5.8*c3; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%Generate Fault Free Data%  %%%%%%%%%%%%%%%%%%%% 
NormData=[]; 
PsBias=0.0; 
WsBias=0.0; 
WfwBias=0.0; 
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TclBiasPer=0.0; 
Cs0=Ws/Ps; 
CsInc=1.0; 
Pcor=1.0; 
tout=[]; 
htsgdata=[]; 
TpinInc=1.0; 
TfwInc=0.0; 
WfwInc=0.0; 
WsInc=0.0; 
WsPer=0.0; 
 
sim('HCSG_Transient'); 
NormData=htsgdata; 
figure(1); 
mg=20; 
mmm1=find(tout>500); 
mmm=mmm1(1); 
aaa.time=tout(mmm+1:mg:end)-tout(mmm); 
aaa.Tstm=(NormData(mmm+1:mg:end,6)-32)/1.8; 
aaa.Tcold=(NormData(mmm+1:mg:end,3)-32)/1.8; 
aaa.Prs=NormData(mmm+1:mg:end,4)/145.038; 
aaa.Lb=NormData(mmm+1:mg:end,7)*0.3048; 
aaa.Lsc=NormData(mmm+1:mg:end,12)*0.3048; 
 
NormData=[]; 
PsBias=0.0; 
WsBias=0.0; 
WfwBias=0.0; 
TclBiasPer=0.0; 
Pcor=1.0; 
tout=[]; 
htsgdata=[]; 
TpinInc=0.0; 
TfwInc=0.0; 
WfwPer=0.01; 
WfwInc=WfwPer*Wfw; 
Cs0=Ws/Ps; 
CsInc=1.0; 
WsPer=0.0; 
sim('HCSG_Transient'); 
NormData=htsgdata; 
mmm1=find(tout>500); 
mmm=mmm1(1); 
bbb.time=tout(mmm+1:mg:end)-tout(mmm); 
bbb.Tstm=(NormData(mmm+1:mg:end,6)-32)/1.8; 
bbb.Tcold=(NormData(mmm+1:mg:end,3)-32)/1.8; 
bbb.Prs=NormData(mmm+1:mg:end,4)/145.038; 
bbb.Lb=NormData(mmm+1:mg:end,7)*0.3048; 
bbb.Lsc=NormData(mmm+1:mg:end,12)*0.3048; 
 
figure(1); 
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x1=plot(aaa.time,aaa.Tcold,'marker','s','markersize',3,... 
                 'markeredgecolor','b','markerfacecolor',[.6 0 .6],... 
                 'linestyle','--','color','r','linewidth',2);  
hold on; 
x2=plot(bbb.time,bbb.Tcold,'marker','v','markersize',3,... 
                 'markeredgecolor','b','markerfacecolor',[.6 0 .6],... 
                 'linestyle','-.','color','r','linewidth',2);  
xlabel('time(sec)'); 
ylabel('cold leg temperature (C)'); 
grid on; 
hold off; 
legend([x1,x2],'hot leg temperature transient','feed water flow transient'); 
 
figure(2); 
x1=plot(aaa.time,aaa.Tstm,'marker','s','markersize',3,... 
                 'markeredgecolor','b','markerfacecolor',[.6 0 .6],... 
                 'linestyle','--','color','r','linewidth',2);  
hold on; 
x2=plot(bbb.time,bbb.Tstm,'marker','v','markersize',3,... 
                 'markeredgecolor','b','markerfacecolor',[.6 0 .6],... 
                 'linestyle','-.','color','r','linewidth',2);  
xlabel('time(sec)'); 
ylabel('steam outlet temperature (C)'); 
grid on; 
hold off; 
legend([x1,x2],'hot leg temperature transient','feed water flow transient'); 
 
 
 
figure(3); 
x1=plot(aaa.time,aaa.Prs,'marker','s','markersize',3,... 
                 'markeredgecolor','b','markerfacecolor',[.6 0 .6],... 
                 'linestyle','--','color','r','linewidth',2);  
hold on; 
x2=plot(bbb.time,bbb.Prs,'marker','v','markersize',3,... 
                 'markeredgecolor','b','markerfacecolor',[.6 0 .6],... 
                 'linestyle','-.','color','r','linewidth',2);  
xlabel('time(sec)'); 
ylabel('steam pressure (Mpa)'); 
grid on; 
hold off; 
legend([x1,x2],'hot leg temperature transient','feed water flow transient'); 
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Appendix 3  Matlab Code for HCSG Bilinear Data Reconcilation 
 
close all; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%                IRIS Data Reconciliation Problem                                                                        %%%%%%%% 
%%%%%%%%%                           Bilinear Case                                                                                              %%%%%%%%   
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
close all; 
clear all; 
 
warning off; 
W1_nominal=563.0*2; 
T1_nominal=328.5; 
T3_nominal=292.0; 
T5_nominal=292.0; 
W6_nominal=563.0*2; 
T6_nominal=292.0; 
W7_nominal=62.85*2.0; 
T7_nominal=224.0; 
W12_nominal=62.85*2.0; 
T12_nominal=317.2; 
P1_nominal=15.5; 
P6_nominal=15.5+0.072; 
P7_nominal=5.8+0.296; 
P12_nominal=5.8; 
 
%%%%%%%%%%%%%%% Adjust the data based on the given water/steam table %%%%%%%%%%%%   
[mid,H120,mid,mid]=hsh(P12_nominal,T12_nominal); 
[mid,H70,mid,mid]=Hsub(P7_nominal,T7_nominal); 
[mid,H10,Cpp,mid]=Hsub(P1_nominal,T1_nominal); 
[mid,H60,Cpp,mid]=Hsub(P6_nominal,T6_nominal); 
 
H120=H120/1.0E6; 
H70=H70/1.0E6; 
H10=H10/1.0E6; 
H60=H60/1.0E6; 
 
W1_nominal=W12_nominal*(H120-H70)/(H10-H60); 
W6_nominal=W1_nominal; 
 
%%%%%%%%%%%%%%     Compute the parameters needed for linearization        %%%%%%% 
HHH12=[]; 
TTT12=[]; 
for Ttemp=T12_nominal-35:0.1:T12_nominal+35 
  [mid,Htemp,mid,mid]=hsh(P12_nominal,Ttemp); 
  HHH12=[HHH12,Htemp/1.0E6]; 
  TTT12=[TTT12,Ttemp]; 
end; 
[Ch12,mid] = POLYFIT(TTT12,HHH12,1); 
 
HHH7=[]; 
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TTT7=[]; 
for Ttemp=T7_nominal-10:1:T7_nominal+10 
  [mid,Htemp,mid,mid]=hsub(P7_nominal,Ttemp); 
  HHH7=[HHH7,Htemp/1.0E6]; 
  TTT7=[TTT7,Ttemp]; 
end; 
[Ch7,mid] = POLYFIT(TTT7,HHH7,1); 
 
HHH1=[]; 
TTT1=[]; 
for Ttemp=T1_nominal-10:1:T1_nominal+10 
  [mid,Htemp,mid,mid]=hsub(P1_nominal,Ttemp); 
  HHH1=[HHH1,Htemp/1.0E6]; 
  TTT1=[TTT1,Ttemp]; 
end; 
[Ch1,mid] = POLYFIT(TTT1,HHH1,1); 
 
HHH6=[]; 
TTT6=[]; 
for Ttemp=T6_nominal-30:0.1:T6_nominal+30 
  [mid,Htemp,mid,mid]=hsub(P1_nominal,Ttemp); 
  HHH6=[HHH6,Htemp/1.0E6]; 
  TTT6=[TTT6,Ttemp]; 
end; 
[Ch6,mid] = POLYFIT(TTT6,HHH6,1); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%                         Categorization of energy flow                                                                                                                        %%% 
%%%  No.    Flow             Temperature                                                                                                                                            %%% 
%%%   1     Yes               Yes                                                                                                                                                            %%% 
%%%   2     No                Yes                                                                                                                                                            %%% 
%%%   3     Yes/No            No                                                                                                                                                          %%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%  f: enthalpy flow of category 1. 
%%%  d: specific enthalpy of category 2. 
%%%  v: enthalpy flow rates of category 3. 
%%%  V: unmeasured flow rates for the enthaly flow of category 2. 
%%%  B1*f+B2(V*d)+B3*v=0 
%%%  d=d0+delta_d 
%%%  Theta=V*delta_d 
%%%  B2(V*d)=B2*Theta+B2*V*d0   
%%%  B4*Fu2=B2*V*d0  
%%%    where Each column of B4 = the sum of the columns of B2 for the considered stream  
%%%    multiplied by the corresponding consistent specific enthalpy. 
%%%    where Fu2 is the corresponding mass unmeasured flow rate. 
%%%  Reorganize such that B5*Fu=B2*V*d0. 
%%%    where Fu groups all the unmeasured flow rate.  
%%%  Therefore, we have 
%%%    [O B1 B2 B5 B3][FM f Theta Fu v]'=0. 
 
%FM={W2,W4,W7,W12}  measured flow 
%f={7,12}    enthalpy flow with both temperature and flow measured 
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%theta={1,3,9} 
%FU={W1,W3,W5,W6,W8,W10,W9,W11} Unmeasured flow 
%V={2,4,5,6,8,10,11} enthalpy flow with temperature unmeasured  
 
 
%Index    1   2   3   4   
     xFM=[2   4   7  12];  
     nFM=length(xFM); 
%Index    1   2   
     xf= [7  12]; 
     nxf=length(xf); 
%Index    1   2   3 
 xTheta= [1   3   9]; 
     nxTheta=length(xTheta); 
%Index    1   2   3   4   5   6    7    8 
    xFu= [1   3   5   6   8   9   10   11]; 
    nxFu=length(xFu); 
%Index    1   2   3   4   5  6   7  
     xv= [2   4   5   6   8  10  11]; 
    nxv=length(xv); 
%%%neq1=number of enthaply balance equations 
neq1=6; 
O1=zeros(neq1,nFM); 
B1=zeros(neq1,nxf); 
B2=zeros(neq1,nxTheta); 
B5=zeros(neq1,nxFu); 
B3=zeros(neq1,nxv); 
%%%neq2=number of mass balance equations 
neq2=8; 
E4=zeros(neq2,nFM); 
E1=zeros(neq2,nxf); 
E2=zeros(neq2,nxTheta); 
E8=zeros(neq2,nxFu); 
E3=zeros(neq2,nxv); 
 
 
%Index    1   2   3   4   
%     xFM=[2   4   7  12];  
%     nFM=length(xFM); 
%Index    1   2   
%     xf= [7  12]; 
%     nxf=length(xf); 
 
 
W11_Pred=[]; 
W9_Pred=[]; 
W11_brute=[]; 
W9_brute=[]; 
Q1_brute=[]; 
Q2_brute=[]; 
Q11=[]; 
Q22=[]; 
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Est_Flow=[]; 
Est_Temp=[]; 
noise_Flow=0.01/3; 
noise_temp=0.0025/3; 
load iris_ss XmNormal XmFault X_nominal WsecInd1 WsecInd2; 
ndata=150; 
NormData=[]; 
for i=1:1:ndata 
    temp=XmNormal(i,:); 
    NormData=[NormData;temp]; 
end; 
XmData=[NormData;XmFault]; 
Wsec1Data=[NormData(:,7)/2;WsecInd1]; 
Wsec2Data=[NormData(:,7)/2;WsecInd2]; 
 
 
%Index     1   2   3   4   5   6   7   8    9   10   11  12   13  14  15  16   17    18 
%XmFault=[W1  T1  T3  T5  W6  T6  W7  T7  W12  T12  T11  T9  tT3 tT9 tT1  tT7 tT11 tT12]; 
 
%XmFault=XmData; 
[ndata,mdata]=size(XmData); 
ndata_n=ndata-50; 
mmp=1; 
XmData(ndata_n+1:ndata,mmp)=XmData(ndata_n+1:ndata,mmp)+ones(ndata-ndata_n,1).*X_nominal(mmp).*0.01; 
 
 
DataRecon=[]; 
DataRecon1=[]; 
 
DataRaw=[]; 
%Index    1   2   3   4   
%     xFM=[2   4   7  12];  
%     nFM=length(xFM); 
 
 
for itt=1:1:ndata 
FlowData = XmData(itt,[1 5 7 9])'; 
FlowData([1,2])=FlowData([1,2])/2; 
FlowData0= X_nominal([1 5 7 9])'; 
FlowData0([1,2])=FlowData0([1,2])/2; 
FM=FlowData+noise_Flow*randn(4,1).*FlowData0; 
TempData0=X_nominal([2,6,8,10]); 
 
T1=XmData(itt,2)+noise_temp*randn(1).*TempData0(1); 
T6=XmData(itt,6)+noise_temp*randn(1).*TempData0(2); 
T7=XmData(itt,8)+noise_temp*randn(1).*TempData0(3); 
T12=XmData(itt,10)+noise_temp*randn(1).*TempData0(4); 
 
[mid,H10,Cpp,mid]=Hsub(P6_nominal,T1); 
[mid,H60,Cpp,mid]=Hsub(P6_nominal,T6); 
[mid,H70,Cpp,mid]=Hsub(P7_nominal,T7); 
[mid,H120,mid,mid]=hsh(P12_nominal,T12); 
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H10=H10/1.0E6; 
H60=H60/1.0E6; 
H70=H70/1.0E6; 
H120=H120/1.0E6; 
 
%Index    1   2   
%     xf= [7  12]; 
%     nxf=length(xf); 
 
aa=  FM([3,4])'.*[H70 H120]; 
f=aa'; 
 
 
TempData0=X_nominal([3,12]) 
TT3=XmData(itt,3)+noise_temp*randn(1).*TempData0(1); 
TT9=XmData(itt,12)+noise_temp*randn(1).*TempData0(2);; 
[mid,H30,Cpp,mid]=Hsub(P6_nominal,TT3); 
[mid,H90,mid,mid]=hsh(P12_nominal,TT9); 
H30=H30/1.0E6; 
H90=H90/1.0E6; 
 
 
Qptot=aa(2)-aa(1); 
Qp1=FM(1)*(H10-H30); 
Qp2=Qptot-Qp1; 
Flow9=Qp2/(H90-H70); 
Flow11=FM(4)-Flow9; 
W11_brute=[W11_brute;Flow11]; 
W9_brute=[W9_brute;Flow9]; 
Q1_brute=[Q1_brute;Qp1]; 
Q2_brute=[Q2_brute;Qp2]; 
 
H20=H10; H40=H10; H80=H70; H100=H70;  H50=H60;  H110=H120;     
 
 
%Index    1   2   3   4   
%     xFM=[2   4   7  12];  
%Index    1   2   
%     xf= [7  12]; 
%xTheta= [1   3   9]; 
%Index    1   2   3   4   5   6    7    8 
    %Fu= [1   3   5   6   8   9   10   11]; 
%Index    1   2   3   4   5  6   7  
    %xv= [2   4   5   6   8  10  11]; 
%%%neq1=number of enthaply balance equations 
 
 
Hd=[H10 H30 H90]; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Energy Balance Equations%%%%%%%%%%%%%%%%%%%%%%     
%%%    [O B1 B2 B5 B3][FM f Theta Fu v]'=0. 
%%   Constraint 1: W1dh1+h10*W1-v2-v4=0 
             B2(1,1)=1;     B5(1,1)=H10;       B3(1,1)=-1; B3(1,2)=-1; 
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%%   Constraint 2: W3dh3+h30W3+v5-v6=0 
             B2(2,2)=1;     B5(2,2)=H30;       B3(2,3)=1; B3(2,4)=-1; 
%%   Constraint 3: f7- v8-v10=0 
B1(3,1)=1;                                     B3(3,5)=-1;B3(3,6)=-1; 
%%   Constraint 4: f12-W9dh9-h90W9- v11=0 
B1(4,2)=1;   B2(4,3)=-1;     B5(4,6)=-H90;     B3(4,7)=-1; 
%%   Constraint 5: -W3dh3 -h30W3  +v2+v10-v11=0 
             B2(5,2)=-1;      B5(5,2)=-H30;     B3(5,1)=1;B3(5,6)=1;B3(5,7)=-1; 
%%   Constraint 6: -W9dh9 -h90W9  +v4+v8-v5=0 
             B2(6,3)=-1;      B5(6,6)=-H90;     B3(6,2)=1;B3(6,5)=1;B3(6,3)=-1; 
 
%%%%%%%%%%%%%%%%%%%%Mass Balance Equations%%%%%%%%%%%%%%%%%%%%%%     
%%%    [E4 E1 E2 E8 E3][FM f Theta Fu v]'=0. 
%Index    1   2   3   4   
%     xFM=[2   4   7  12];  
%Index    1   2   3   4   5   6    7    8 
    %Fu= [1   3   5   6   8   9   10   11]; 
 
%%   Constraint 1: W1-W2-W4=0; 
E4(1,1)=-1;  E4(1,2)=-1; E8(1,1)=1;  
%%   Constraint 2: W2-W3=0; 
E4(2,1)=1;               E8(2,2)=-1; 
%%   Constraint 3: W4-W5=0; 
E4(3,2)=1;               E8(3,3)=-1; 
 
%%   Constraint 4: W6-W3-W5=0; 
                         E8(4,4)=1;  E8(4,2)=-1;  E8(4,3)=-1; 
 
%%   Constraint 5: W12-W9-W11=0; 
E4(5,4)=1;               E8(5,6)=-1; E8(5,8)=-1; 
%%   Constraint 6: W10-W11=0; 
                         E8(6,7)=1;  E8(6,8)=-1; 
%%   Constraint 7: W8-W9=0; 
                         E8(7,5)=1;  E8(7,6)=-1; 
%%   Constraint 8: W7-W8-W10=0; 
E4(8,3)=1;               E8(8,5)=-1;  E8(8,7)=-1; 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%                  Elimination of unmeasured variables                      %%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
B11=[O1 B1 B2; E4 E1 E2]; 
B22=[B5;E8]; 
B33=[B3;E3]; 
bx=[FM;f]; 
e=-[O1,B1;E4,E1]*bx; 
 
%%%  QR decomposition of matrix B33 
rv=rank(B33,1.0E-10); 
[n,m]=size(B33); 
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[QB,RB,Ev]=qr(B33); 
QB1=QB(:,1:rv); 
RB1=RB(1:rv,1:rv); 
RB2=RB(1:rv,rv+1:end); 
QB2=QB(:,rv+1:end); 
%%%  Define a new matrix D 
D=QB2'*B22; 
%%% QR decomposition of matrix D 
rf=rank(D,1.0E-10); 
[n,m]=size(D); 
[QD,RD,EFu]=qr(D); 
QD1=QD(:,1:rf); 
RD1=RD(1:rf,1:rf); 
RD2=RD(1:rf,rf+1:end); 
QD2=QD(:,rf+1:end); 
%%%  The process constraint equation is reduced to be as follows: 
%%%  QD2'*QB2'*B11*t=QD2'*QB2'*e; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%       Estimation of measured variables and unmeasured mass flow      %% %%%%% %%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%%%  Initial Guess V=Diagonal matrix of unmeasured mass flow for enthalpy flow  
%%%  of category 2. 
noise_Flow=0.01/3; 
noise_temp=0.0025/3; 
 
phi_FM=(FM*noise_Flow).^2; 
phi_f= (f*noise_Flow).^2; 
%xTheta= [1   3   9]; 
 
dHV= ([H10 H30 H90].*1.0E-3).^2; 
phid=diag(dHV); 
%%%Index  W1           W3          W9 
init_V=[W1_nominal   0.5*W1_nominal   0.5*W7_nominal]; 
FLowE_old=0; 
 
%%%   Updating the value of the determinable mass flow rate untill it is convergent 
while  1 
V=diag(init_V); 
%%%  phid=covariance matrix of the measured speicific enthalpy d. 
phi_Theta=diag(V*phid*V'); 
phet=[phi_FM;phi_f;phi_Theta]; 
phit=diag(phet); 
 
%%%Step 1:  Find estimate t=[delta_FM,delta_f,Theta]'; 
Gt=QD2'*QB2'*B11; 
b=QD2'*QB2'*e; 
t_estimate=phit*Gt'*inv(Gt*phit*Gt')*b; 
%%%Step 2:  Estimation of unmeasured mass flow 
uuu=EFu'*xFu'; 
%%%uuu2 is indeterminable  
uuu2=uuu(rf+1:end); 
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fprintf('The unmeasured flow is unobservable\n'); 
disp(uuu2); 
RIF=inv(RD1)*RD2; 
GGRIF=(abs(RIF)>1.0E-10); 
ccc=any(GGRIF,2); 
ind_obs=find(ccc==0); 
ind_unobs=find(ccc~=0); 
 
%%% fe=the number of determinable unmeasured flow rates. 
fe=length(ind_obs); 
 
fprintf('The observable umeasured flow is as follows\n'); 
uuu1=uuu(1:rf); 
disp(uuu1(ind_obs)); 
 
if ~isempty(ind_obs); 
FLow_Estimate=inv(RD1)*QD1'*QB2'*e-inv(RD1)*QD1'*QB2'*B11*t_estimate; 
if norm(FLow_Estimate(ind_obs)-FLowE_old)<1.0E-10*norm(FLow_Estimate(ind_obs)) break; end; 
 
  for i=1:1:length(xTheta) 
    for j=1:1:length(ind_obs) 
        if  xTheta(i)==uuu1(ind_obs(j))   
       init_V(i)=FLow_Estimate(ind_obs(j)); 
        end; 
    end; 
  end; 
 FLowE_old=FLow_Estimate(ind_obs); 
else 
break; 
end; 
 
end; 
 
 
 
%      xFM=[2   4   7  12];  
%xTheta= [1   3   9]; 
 
fprintf('The reconciled measured flow is\n'); 
FM_pred=FM+t_estimate(1:nFM); 
f_pred=f+t_estimate(nFM+1:nxf+nFM); 
Theta_pred=t_estimate(nFM+nxf+1:end); 
Ind_Theta=uuu1(ind_obs); 
 
ijk=0; 
for inum=1:1:nxTheta 
    icol=find(xTheta(inum)==Ind_Theta); 
    if ~isempty(icol) 
    ijk=ijk+1; 
    Flow_Theta(ijk)=FLow_Estimate(icol); 
    end; 
end; 
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for iii=1:1:nFM 
fprintf('iii=%d FM=%f\n',[xFM(iii),FM_pred(iii)]); 
end; 
fprintf('\n'); 
 
 
 
T_pred(1)= interp1(HHH7,TTT7,f_pred(1)/FM_pred(1)); 
T_pred(2)= interp1(HHH12,TTT12,f_pred(2)/FM_pred(2)); 
 
for jjj=1:1:nxf 
fprintf('jjj=%d enthalpy=%f  temperature=%f\n',[xf(jjj),f_pred(jjj),T_pred(jjj)]); 
end; 
 
fprintf('The estimated flow is\n'); 
for iii=1:1:fe 
fprintf('iii=%d flow=%f\n',[uuu1(ind_obs(iii)),FLow_Estimate(iii)]); 
end; 
 
fprintf('The reconciled temperature is as follows\n'); 
delta_d=Theta_pred./Flow_Theta'; 
Hd_pred=Hd'+delta_d; 
Fd_pred=Flow_Theta'; 
 
%xTheta= [1   3   9]; 
 
Te_pred(1)=interp1(HHH1,TTT1,Hd_pred(1)); 
Te_pred(2)=interp1(HHH6,TTT6,Hd_pred(2)); 
Te_pred(3)=interp1(HHH12,TTT12,Hd_pred(3)); 
for iii=1:1:nxTheta 
fprintf('iii=%d specific enthalpy=%f  temperature=%f\n',[xTheta(iii),Hd_pred(iii),Te_pred(iii)]); 
end; 
 
%%% Estimation of vector v. 
%%%Reordering the observable and the unobservable mass flow rates. 
Fud=FLow_Estimate; 
xFud=uuu1(ind_obs); 
xFui=[uuu1(ind_unobs);uuu2]; 
fe1=length(xFud); 
fe2=length(xFui); 
for inum=1:1:fe1 
    icol=find(xFud(inum)==xFu); 
    B2d(:,inum)=B22(:,icol); 
end; 
 
B2i=[]; 
for inum=1:1:fe2 
    icol=find(xFui(inum)==xFu); 
    B2i(:,inum)=B22(:,icol); 
end; 
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vvv=Ev'*xv'; 
vvv1=vvv(1:1:rv); 
vvv2=vvv(rv+1:end); 
 
fprintf(' The undeterminable variables v include\n'); 
disp(vvv2); 
 
RIV=inv(RB1)*RB2; 
RIFi=inv(RB1)*QB1'*B2i; 
vf=inv(RB1)*QB1'*e-inv(RB1)*QB1'*B11*t_estimate-inv(RB1)*QB1'*B2d*Fud; 
 
if isempty(RIV)  
    ccc1=zeros(length(vvv1),1); 
else 
GGRIV=(abs(RIV)>1.0E-10); 
ccc1=any(GGRIV,2); 
end; 
if isempty(RIFi) 
    ccc2=zeros(length(vvv1),1); 
else 
GGRIFi=(abs(RIFi)>1.0E-10); 
ccc2=any(GGRIFi,2); 
end; 
 
indv_obs=find(ccc1==0 & ccc2==0 ); 
indv_unobs=find(ccc1~=0 | ccc2~=0); 
fprintf(' The determinable variables v are as follows\n'); 
 
 
Hv_pred(1)=vf(1)/FLow_Estimate(7); 
Hv_pred(2)=vf(2)/FLow_Estimate(6); 
Fv_pred=[FLow_Estimate(7);FLow_Estimate(6)]; 
 
Tv_pred(1)=interp1(HHH6,TTT6,Hv_pred(1)); 
Tv_pred(2)=interp1(HHH12,TTT12,Hv_pred(2)); 
 
 
% xTheta= [2   3   4   8   9  10]; 
 
%aaa=(Hd_pred(1)*Fd_pred(1)-Hd_pred(2)*Fd_pred(2))/(Hv_pred(2)*Fv_pred(2)-Hd_pred(6)*Fd_pred(6)); 
%bbb=(Hd_pred(3)*Fd_pred(3)-Hv_pred(1)*Fv_pred(1))/(Hd_pred(5)*Fd_pred(5)-Hd_pred(4)*Fd_pred(4)); 
aaa=(Hd_pred(1)*Fd_pred(1)-Hd_pred(2)*Fd_pred(2)); 
bbb=(Hd_pred(3)*Fd_pred(3)-Hv_pred(1)*Fv_pred(1)); 
 
Q11=[Q11,aaa]; 
Q22=[Q22,bbb]; 
 
 
for ill=1:1:length(indv_obs) 
fprintf(' inum=%d enthalpy=%f specific enthalpy=%f temperature=%f\n',[vvv1(ill),vf(ill),Hv_pred(ill),Tv_pred(ill)]); 
end; 
fprintf(' The undeterminable variables v include\n'); 
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disp(vvv1(indv_unobs)); 
 
rr(1)=f(1)-Hd_pred(1)*Fd_pred(1)-Hd_pred(3)*Fd_pred(3); 
rr(2)=f(2)-Hd_pred(2)*Fd_pred(2)-vf(1); 
rr(3)=f(4)-Hd_pred(5)*Fd_pred(5)-vf(2); 
rr(4)=f(3)-Hd_pred(4)*Fd_pred(4)-Hd_pred(6)*Fd_pred(6); 
rr(5)=(Hd_pred(1)*Fd_pred(1)-Hd_pred(2)*Fd_pred(2))-(Hv_pred(2)*Fv_pred(2)-Hd_pred(6)*Fd_pred(6)); 
rr(6)=(Hd_pred(3)*Fd_pred(3)-Hv_pred(1)*Fv_pred(1))-(Hd_pred(5)*Fd_pred(5)-Hd_pred(4)*Fd_pred(4)); 
fprintf(' The constrained residual for the energy equations\n'); 
fprintf(' %f  %f  %f  %f  %f  %f\n',rr); 
 
 
%%%  Unmeasured tempeartures are determinable only if the mass flow is  
%%%  measured or determinable and the enthalpy is determinable. 
aaaa=FLow_Estimate(6); 
bbbb=FLow_Estimate(1); 
W11_Pred=[W11_Pred;aaaa]; 
W9_Pred=[W9_Pred;bbbb]; 
afl=[FM_pred',FLow_Estimate'] 
atemp=[T_pred,Te_pred,Tv_pred]; 
Est_Flow=[Est_Flow;afl]; 
Est_Temp=[Est_Temp;atemp]; 
 
 
tempd=[FM_pred',T_pred,Te_pred([2,5])]; 
DataRecon=[DataRecon;tempd]; 
tempd=[FM_pred',T_pred,Te_pred,aaa,bbb]; 
DataRecon1=[DataRecon1;tempd]; 
 
DataRaw=[DataRaw;[FM',T1,T6,T7,T12,TT3,TT9]]; 
end; 
 
 
figure (1); 
plot(W11_Pred(1:2:end),'r-'); 
hold on; 
plot(W9_Pred(1:2:end),'b-'); 
hold on; 
plot(W11_brute(1:2:end),'ro'); 
hold on; 
plot(W9_brute(1:2:end),'bo'); 
 
figure (2); 
plot(Q11,'r-') 
hold on; 
plot(Q1_brute,'ro') 
 
hold on; 
plot(Q22,'b-') 
hold on; 
plot(Q2_brute,'bo') 
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fprintf(' %d  %d  %d   %d   %d  %d  %d   %d  %d  %d  %d   %d\n',[xFM,uuu1(ind_obs)']); 
for i=1:1:ndata 
    fprintf(' %f  %f  %f   %f   %f  %f  %f   %f  %f  %f  %f   %f\n',Est_Flow(i,:)); 
end; 
 
fprintf(' %d  %d  %d   %d   %d  %d  %d   %d  %d  %d  %d   %d\n',[xf,xTheta,vvv1']); 
 
for i=1:1:ndata 
    fprintf(' %f  %f  %f   %f   %f  %f  %f   %f  %f  %f  %f   %f\n',Est_Temp(i,:)); 
end; 
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Appendix 4  Matlab Code for HCSG linear Data Reconcilation 
close all; 
%%%%%%%%%                Data Generation for Simulation             %%%%% 
%%Primary inlet pressure: 15.5Mpa 
%%Primary inlet temperature:  328.5 C 
%%Primary inlet flow rate:  563.0 kg/s 
%%Primary outlet pressure: 15.5+0.072 Mpa 
%%Primary outlet temperature:  292.2 C 
%%Primary outlet flow rate: 563.0 kg/s 
%%Secondary inlet feed water pressure: 5.8+0.296 Mpa  
%%Secondary inlet feed water temperature: 224.0 C 
%%Secondary inlet feed water flow rate: 62.85 kg/s 
%%Secondary outlet steam pressure:  5.8Mpa 
%%Secondary outlet steam temperature:  317.2C 
%%Secondary outlet steam flow rate:  62.85 kg/s                                  
 
W2_nominal=563.0; 
T1_nominal=328.5; 
T3_nominal=292.0; 
T5_nominal=292.0; 
W4_nominal=563.0; 
T6_nominal=292.0; 
W7_nominal=62.85*2.0; 
T7_nominal=224.0; 
W12_nominal=62.85*2.0; 
T12_nominal=317.2; 
P1_nominal=15.5; 
P6_nominal=15.5+0.072; 
P7_nominal=5.8+0.296; 
P12_nominal=5.8; 
 
%%%%%%%%%%%%%%% Adjust the data based on the given water/steam table %%%%%%%%%%%%   
[mid,H12,mid,mid]=hsh(P12_nominal,T12_nominal); 
[mid,H7,mid,mid]=Hsub(P7_nominal,T7_nominal); 
[mid,H1,Cpp,mid]=Hsub(P1_nominal,T1_nominal); 
[mid,H6,Cpp,mid]=Hsub(P6_nominal,T6_nominal); 
H12=H12/1.0E6; 
H7=H7/1.0E6; 
H1=H1/1.0E6; 
H6=H6/1.0E6; 
 
W2_nominal=0.5*W12_nominal*(H12-H7)/(H1-H6); 
W4_nominal=W2_nominal; 
W1_nominal=2*W2_nominal; 
W6_nominal=2*W2_nominal; 
%%%%%%%%%%%%%%     Compute the parameters needed for linearization        %%%%%%% 
HH=[]; 
TT=[]; 
for Ttemp=T12_nominal-10:1:T12_nominal+10 
  [mid,Htemp,mid,mid]=hsh(P12_nominal,Ttemp); 
  HH=[HH,Htemp/1.0E6]; 
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  TT=[TT,Ttemp]; 
end; 
[Ch12,mid] = POLYFIT(TT,HH,1); 
 
HH=[]; 
TT=[]; 
for Ttemp=T7_nominal-10:1:T7_nominal+10 
  [mid,Htemp,mid,mid]=hsub(P7_nominal,Ttemp); 
  HH=[HH,Htemp/1.0E6]; 
  TT=[TT,Ttemp]; 
end; 
[Ch7,mid] = POLYFIT(TT,HH,1); 
 
HH=[]; 
TT=[]; 
for Ttemp=T1_nominal-10:1:T1_nominal+10 
  [mid,Htemp,mid,mid]=hsub(P1_nominal,Ttemp); 
  HH=[HH,Htemp/1.0E6]; 
  TT=[TT,Ttemp]; 
end; 
[Ch1,mid] = POLYFIT(TT,HH,1); 
 
HH=[]; 
TT=[]; 
for Ttemp=T6_nominal-10:1:T6_nominal+10 
  [mid,Htemp,mid,mid]=hsub(P1_nominal,Ttemp); 
  HH=[HH,Htemp/1.0E6]; 
  TT=[TT,Ttemp]; 
end; 
[Ch6,mid] = POLYFIT(TT,HH,1); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%% 
%%%%%              Obtain the linearized Contraint Equations                                                                   %%%%%%%%%%%%%%% 
%%%%%                              A1*x+A2*u=0                                                                                              %%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%VarName  W1 T1 W2 T2 W3 T3 W4  T4  W5  T5  W6  T6  W7  T7  W8  T8  W9  T9  W10  T10  W11  T11  W12  T12  W7-2 T1-2 
%T7-2 T12-2  
VarNam{1}='W1';   VarNam{2}='T1';  VarNam{3}='W2';  VarNam{4}='T2';  VarNam{5}='W3';  VarNam{6}='T3'; 
VarNam{7}='W4';   VarNam{8}='T4';  VarNam{9}='W5';  VarNam{10}='T5'; VarNam{11}='W6'; VarNam{12}='T6'; 
VarNam{13}='W7';  VarNam{14}='T7'; VarNam{15}='W8'; VarNam{16}='T8'; VarNam{17}='W9'; VarNam{18}='T9'; 
VarNam{19}='W10'; VarNam{20}='T10';VarNam{21}='W11';VarNam{22}='T11';VarNam{23}='W12'; VarNam{24}='T12'; 
VarNam{25}='2T3'; VarNam{26}='2T9';VarNam{27}='2T1';VarNam{28}='2T7';VarNam{29}='2W7';VarNam{30}='2T12'; 
%VarName  W1 T1 W2 T2 W3 T3 W4  T4  W5  T5  W6  T6  W7  T7  W8  T8  W9  T9  W10  T10  W11  T11  W12  T12  2T3 2T9  
2T1  2T7 2W7 2T12 
xid=     [1  2  3  4  5  6  7   8   9   10  11  12  13  14  15  16  17  18  19   20   21   22   23   24    25  26  27   28   29   30]; 
 
%Measured variables: W2  T1  T3  W4  T6  W7  T7  T9  W12  T12 
%No.                  1  2   3   4   5   6   7   8    9    10 
xm=                  [3  2   6   7  12   13  14  18  23   24]; 
n_xm=length(xm); 
%Unmeasured variables: all the else 
%VarName  W1 W3  T2  W6  T4  W5  W8   T8   W9   W10  T10  W11  T11 T5 
%         1  2   3   4   5   6   7    8    9    10   11   12   13  14 
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xu=      [1  5   4   11  8   9   15   16   17   19   20   21   22  10]; 
n_xu=length(xu); 
 
%%neq=number of equations. 
neq=16; 
b=zeros(neq,1); 
 
%%initialization 
A1=zeros(neq,n_xm); 
A2=zeros(neq,n_xu); 
%%%Constraint Equation 1:  W1=W2+W4  
A1(1,1)=-1; A1(1,4)=-1;  
A2(1,1)=1; 
%%%Constraint Equation 2:  W2=W3 
A1(2,1)=1; A2(2,2)=-1; 
%%%Constraint Equation 3:  W4=W5 
A1(3,4)=1; A2(3,6)=-1; 
%%%Constraint Equation 4:  W6=W3+W5; 
A2(4,4)=1;  
A2(4,2)=-1; A2(4,6)=-1; 
%%%Constraint Equation 5:  W7=W8+W10; 
A1(5,6)=1;  
A2(5,7)=-1; A2(5,10)=-1; 
%%%Constraint Equation 6:  W8=W9; 
A2(6,7)=1; 
A2(6,9)=-1; 
%%%Constraint Equation 7:  W10=W11; 
A2(7,10)=1;  
A2(7,12)=-1; 
%%%Constraint Equation 8:  W12=W9+W11; 
A1(8,9)=1;  
A2(8,9)=-1; A2(8,12)=-1; 
%%%Constraint Equation 9:  T1=T2; 
A1(9,2)=1;  
A2(9,3)=-1; 
%%%Constraint Equation 10:  T1=T4; 
A1(10,2)=1;  
A2(10,5)=-1; 
%%%Constraint Equation 11:  T7=T10; 
A1(11,7)=1;  
A2(11,11)=-1; 
%%%Constraint Equation 12:  T7=T8; 
A1(12,7)=1;  
A2(12,8)=-1; 
%Measured variables: W2  T1  T3  W4  T6  W7  T7  T9  W12  T12 
%No.                  1  2   3   4   5   6   7   8    9    10 
 
%VarName  W1 W3  T2  W6  T4  W5  W8   T8   W9   W10  T10  W11  T11 T5 
%         1  2   3   4   5   6   7    8    9    10   11   12   13  14 
 
%%%Constraint Equation 13:  W2*h2-W3*h3=W11*h11-W10*h10 
A1(13,3)=-W2_nominal*Ch6(1); A2(13,2)=-H6;  %-W3*dT3-T3*dW3 
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A2(13,3)=W2_nominal*Ch1(1); A1(13,1)=H1;   %W2*dT2+T2*dW2 
A2(13,13)=-0.5*W12_nominal*Ch12(1); A2(13,12)=-H12; %W11*dT11+T11*dW11 
A2(13,11)=0.5*W7_nominal*Ch7(1); A2(13,10)=H7;%W10*dT10+T10*dW10 
b(13)=0.5*W7_nominal*Ch7(1)*T7_nominal-0.5*W12_nominal*Ch12(1)*T12_nominal... 
    +0.5*W1_nominal*Ch1(1)*T1_nominal-0.5*W6_nominal*Ch6(1)*T6_nominal; 
 
%%%Constraint Equation 14:  W4*h4-W5*h5=W9*h9-W8*h8 
A2(14,14)=-W4_nominal*Ch6(1); A2(14,6)=-H6; 
A2(14,5)=W4_nominal*Ch1(1); A1(14,4)=H1; 
A1(14,8)=-0.5*W12_nominal*Ch12(1); A2(14,9)=-H12; 
A2(14,8)=0.5*W7_nominal*Ch7(1);A2(14,7)=H7; 
b(14)=0.5*W7_nominal*Ch7(1)*T7_nominal-0.5*W12_nominal*Ch12(1)*T12_nominal... 
    +0.5*W1_nominal*Ch1(1)*T1_nominal-0.5*W6_nominal*Ch6(1)*T6_nominal; 
 
 
%%Constraint Equation 15:  W1*h1-W6*h6=W12*h12-W7*h7 
 
A1(15,5)=-W6_nominal*Ch6(1); A2(15,4)=-H6; 
A1(15,2)=W1_nominal*Ch1(1); A2(15,1)=H1; 
A1(15,10)=-W12_nominal*Ch12(1); A1(15,9)=-H12; 
A1(15,7)=W7_nominal*Ch7(1);A1(15,6)=H7; 
b(15)=W7_nominal*Ch7(1)*T7_nominal-W12_nominal*Ch12(1)*T12_nominal... 
    +W1_nominal*Ch1(1)*T1_nominal-W6_nominal*Ch6(1)*T6_nominal; 
 
%Measured variables: W2  T1  T3  W4  T6  W7  T7  T9  W12  T12 
%No.                  1  2   3   4   5   6   7   8    9    10 
%VarName  W1 W3  T2  W6  T4  W5  W8   T8   W9   W10  T10  W11  T11 T5 
%         1  2   3   4   5   6   7    8    9    10   11   12   13  14 
%%%Constraint Equation 15:  W1*h1-W3*h3-W5*h5=W12*h12-W7*h7 
 
A1(16,3)=-0.5*W6_nominal*Ch6(1); A2(16,2)=-H6; 
A2(16,14)=-0.5*W6_nominal*Ch6(1); A2(16,6)=-H6; 
A1(16,2)=W1_nominal*Ch1(1); A2(16,1)=H1; 
A1(16,10)=-W12_nominal*Ch12(1); A1(16,9)=-H12; 
A1(16,7)=W7_nominal*Ch7(1);A1(16,6)=H7; 
b(16)=W7_nominal*Ch7(1)*T7_nominal-W12_nominal*Ch12(1)*T12_nominal... 
    +W1_nominal*Ch1(1)*T1_nominal-W6_nominal*Ch6(1)*T6_nominal; 
 
 
%Measured variables: W2  T1  T3  W4  T6  W7  T7  T9  W12  T12 
%VarName  W1 W3  T2  W6  T4  W5  W8   T8   W9   W10  T10  W11  T11 T5 
XX=[W2_nominal, T1_nominal, T3_nominal, W4_nominal,T6_nominal, W7_nominal, T7_nominal, T12_nominal, W12_nominal, 
T12_nominal]; 
UU=[W1_nominal, W2_nominal, T1_nominal, 
W6_nominal,T1_nominal,W4_nominal,W7_nominal/2,T7_nominal,W7_nominal/2,W7_nominal/2,... 
    T7_nominal,W12_nominal/2,T12_nominal,T5_nominal]; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%                                 Variable classification algorithm                             %%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
x=xm'; 
u=xu'; 
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ru=rank(A2,1.0E-8); 
[n,m]=size(A2); 
[Q,R,E]=qr(A2); 
ux=E'*u; 
Qu1=Q(:,1:ru); 
Ru1=R(1:ru,1:ru); 
Ru2=R(1:ru,ru+1:end); 
Qu2=Q(:,ru+1:end); 
Gx=Qu2'*A1; 
 
%the zero columns of Gx corresond to the variables that do not participate in the reconciliation, they are nonredundant. 
%the remaining columns correspond to redundant measurements 
 
u1=ux(1:ru);   
u2=ux(ru+1:end); %unestimatable 
%u1 satisfy u1=-inv(Ru1)*Qu1'*A1*x-inv(Ru1)*Ru2*u2 
RIU=inv(Ru1)*Ru2; 
%A variable in subset u1 is estimatable if the corresponding row in the RIU matrix is zero 
%Otherwise, the variable in the subset is not estimable; 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%                    Generate Mesured Data                                                       %%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Measured variables: W1  T1  T3  T5  W6  T6  W7  T7  W12  T12  T11  T9  2T3 2T9 2T1  2T7 2T11 2T12 
%No.                  1  2   3   4   5   6   7   8   9    10   11   12  13  14  15   16  17   18 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%                                 Variable classification algorithm                             %%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
x=xm'; 
u=xu'; 
ru=rank(A2,1.0E-5); 
[n,m]=size(A2); 
[Q,R,E]=qr(A2); 
ux=E'*u; 
Qu1=Q(:,1:ru); 
Ru1=R(1:ru,1:ru); 
Ru2=R(1:ru,ru+1:end); 
Qu2=Q(:,ru+1:end); 
Gx=Qu2'*A1; 
bx=Qu2'*b; 
%the zero columns of Gx corresond to the variables  
%that do not participate in the reconciliation, they are nonredundant. 
%the remaining columns correspond to redundant measurements 
 
u1=ux(1:ru);   
u2=ux(ru+1:end); %unestimatable 
%u1 satisfy u1=-inv(Ru1)*Qu1'*A1*x-inv(Ru1)*Ru2*u2 
RIU=inv(Ru1)*Ru2; 
%A variable in subset u1 is estimatable if the corresponding row in the RIU matrix is zero 
%Otherwise, the variable in the subset is not estimable; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%                         Data Reconciliation Algorithm                                   %%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
load iris_ss XmNormal XmFault X_nominal WsecInd1 WsecInd2; 
 
index=[1 2 3 1 6 7 8 12 9 10]; 
 
 
noi_X=[0.01,0.0025,0.0025,0.01,0.0025,0.01,0.0025,0.0025,0.01,0.0025]/3; 
X_nominal=[X_nominal(:,[1 2 3 1 6 7 8 12 9 10])]; 
X_nominal([1,4])=X_nominal([1,4])/2; 
ndata=200; 
m=length(X_nominal); 
Data=[]; 
for i=1:1:ndata 
    temp=X_nominal; 
    Data=[Data;temp]; 
end; 
XmNormal=Data; 
     
[ndata,m]=size(Data); 
ndata_Train=ndata-50; 
X_measure=[]; 
for ii=1:1:m 
    aaa=randn(ndata,1)*noi_X(ii)*X_nominal(ii); 
    X_measure(:,ii)=Data(:,ii)+aaa; 
end; 
phi_X=diag((X_nominal.*noi_X).^2); 
 
XXdata=Data(1:ndata,:); 
idf=2; 
X_measure(ndata_Train+1:ndata,idf)=X_measure(ndata_Train+1:ndata,idf)+ones(ndata-ndata_Train,1)*X_nominal(1,idf)*0.005; 
 
 
bbb=diag(phi_X); 
phim=diag(bbb); 
Xm=X_measure; 
Gxm=Gx; 
XmData=[]; 
XuData=[]; 
for i=1:1:ndata 
bbb=Xm(i,:)'; 
bbb=bbb-phim*Gxm'*inv(Gxm*phim*Gxm')*(Gxm*bbb-bx); 
Xe=bbb'; 
fprintf('\n'); 
fprintf('Xnominal     %f  %f  %f  %f  %f  %f  %f   %f   %f   %f\n', XmNormal(i,:)); 
fprintf('Xmesured     %f  %f  %f  %f  %f  %f  %f   %f   %f   %f\n', Xm(i,:)); 
fprintf('Xrecon       %f  %f  %f  %f  %f  %f  %f   %f   %f   %f\n', Xe); 
XmData=[XmData;Xe]; 
Xu=inv(Ru1)*Qu1'*b-inv(Ru1)*Qu1'*A1*Xe'; 
XuData=[XuData;Xu']; 
end; 
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Gx0=Gx; 
bx0=bx; 
 
 
x=xm'; 
u=xu'; 
fprintf('Measured variables\n'); 
mm=length(x); 
for i=1:1:mm 
    fprintf('     %s    ',VarNam{x(i)});  
end 
fprintf('\n'); 
for jj=1:1:ndata 
    for ii=1:1:mm 
    fprintf(' %f',XmData(jj,ii));  
    end 
    fprintf('\n'); 
end 
     
fprintf('Unmeasured variables\n'); 
nn=length(u1); 
for i=1:1:nn 
    fprintf('    %s     ',VarNam{u1(i)});  
end 
fprintf('\n'); 
for jj=1:1:ndata 
    for ii=1:1:nn 
    fprintf(' %f',XuData(jj,ii));  
    end 
    fprintf('\n'); 
end 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%                     Gross Error Detection based on PCA Algorithms                                                                                          %%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
aaa_rec=XmData(1:ndata_Train,:); 
bbb_mes=X_measure(1:ndata_Train,:); 
Rdif=X_measure-XmData; 
[zr0,mr0,stdr0]=zscore1(Rdif(1:ndata_Train,:)); 
     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%                  Fault Isolation by Serial Elimination                              %%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%   Loop over the eliminated variable  %% 
Xgdata=X_measure(end,:); 
JJJ=[]; 
for i=1:1:m 
    Au=[Gx0(:,1:i-1),Gx0(:,i+1:m)]; 
    Ac=[Gx0(:,i)]; 
    b111=diag(phi_X); 
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    b222=[b111(1:i-1);b111(i+1:m)]; 
    phiu=diag(b222); 
    phic=phim(i,i); 
    phi=Au*phiu*Au'+Ac*phic*Ac'; 
    III=eye(length(Ac)); 
    phi_n_inv=inv(phi)*(III-Ac*inv(Ac'*inv(phi)*Ac)*Ac'*inv(phi)); 
    r=Gx0*Xgdata'-bx0; 
    temp=r'*phi_n_inv*r; 
    JJJ=[JJJ,temp]; 
end; 
%%  End the serial elimination %% 
 
fprintf('Measured variables\n'); 
mm=length(x); 
for i=1:1:mm 
    fprintf('     %s    ',VarNam{x(i)});  
end 
fprintf('\n'); 
    for ii=1:1:mm 
    fprintf(' %f ',JJJ(ii));  
    end 
    fprintf('\n'); 
 
 KKK=JJJ./max(JJJ);    
     
 figure; 
 bar(KKK); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%                   Fault Magnitide Estimation                                     %%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
nm=length(Xgdata); 
Brm=zeros(nm,1); 
Faultind=find(JJJ==min(JJJ)); 
idk=Faultind(1); 
Brm(idk)=1; 
Pb=Gx0*Brm; 
temp1=Pb'*inv(Gx0*phim*Gx0')*Pb; 
temp2=Pb'*inv(Gx0*phim*Gx0'); 
mb=inv(temp1)*temp2*(Gx0*Xgdata'-bx0); 
xb=-phim*Gx0'*inv(Gx0*phim*Gx0')*Pb*mb; 
x0=Xgdata'; 
xc=-phim*Gx0'*inv(Gx0*phim*Gx0')*(Gx0*Xgdata'-bx0); 
%% The reconstructed value is consists of (1)the original solution of the problem;  
%% (2)Correction term due to the constraints; (3) The correction terms due to the failure term. 
X_recon=x0+xc+xb; 
X_reconstruct=X_recon'; 
 
 
fprintf('\n'); 
fprintf('Xnnoise      %f  %f  %f  %f  %f  %f  %f   %f   %f   %f \n', XXdata(end,1:end)); 
fprintf('XFdata       %f  %f  %f  %f  %f  %f  %f   %f   %f   %f \n', Xgdata); 
fprintf('Xrcnstrt     %f  %f  %f  %f  %f  %f  %f   %f   %f   %f \n', X_reconstruct); 
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%% To determine the precision of the estimation  %% 
Sigma0=phim; 
Sigmac=-phim*Gx0'*inv(Gx0*phim*Gx0')*Gx0*phim; 
Sigma_mb=inv(Pb'*inv(Gx0*phim*Gx0')*Pb); 
Sigmab=-phim*Gx0'*inv(Gx0*phim*Gx0')*Pb*Sigma_mb*Pb'*inv(Gx0*phim*Gx0')*Gx0*phim; 
Sigma=Sigma0+Sigmac+Sigmab; 
fprintf('Precision     %f  %f  %f  %f  %f  %f  %f   %f   %f   %f\n', diag(Sigma)); 
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Appendix 5  Matlab Code for HCSG Reconstruction PCA based FDI 
close all; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%                IRIS PCA FDI Algorithm based on Qin's Algorithm for multiple faults                       %%%%% 
%%%%%%%%% With the new algorithm, the fault reconstruction gives much better results                                  %%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
close all; 
clear all; 
warning off; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%                          Load Normal Operation Data PCA  Variables                              %%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Measured variables: XmNormal=[W1  T1  T3  T5  W6  T6  W7  T7  W12  T12  T11  T9  tT3 tT9 tT7 tT12; 
%Index                         1    2   3   4   5   6   7   8    9   10   11  12   13  14  15   16 
%No.                           1    2   6  10  11  12  13  14   23   24   21  18   25  26  28   30 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%  The following variables are chosen beacause the other variables are simply constant with noise      %%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
idd=[3 4 6 7 9 10 11 12]; 
load iris_ss XmNormal XmFault X_nominal WsecInd1 WsecInd2; 
Data=XmNormal(:,idd); 
X_nominal=X_nominal(:,idd); 
[ndata,m]=size(Data); 
XmData=[]; 
noi_X=[0.0025,0.0025,0.0025,0.01,0.01,0.0025,0.0025,0.0025]/3; 
for ii=1:1:m 
    aaa=randn(ndata,1)*noi_X(ii).*Data(:,ii); 
    XmData(1:ndata,ii)=Data(1:ndata,ii)+aaa; 
end; 
 
TrainData=XmData; 
ndata_Train=ndata-100; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%                                         Standard PCA are implemented                                                                                                         %%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
[zr0,mr0,stdr0]=zscore1(TrainData); 
covR=cov(zr0); 
[PC, LATENT, EXPLAINED] = pcacov(zr0); 
sumExp=cumsum(EXPLAINED); 
fprintf('Explained fraction of differet PC for reconciled data\n'); 
fprintf('%f \n',sumExp); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%        Choose the number of Principal Components based on the un reconstructed variance                                              %%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for np=1:1:m-1 
sum=0.0; 
bvec=zeros(m,1); 
for ni=1:1:m 
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        bvec(ni)=1; 
        RPC=PC(:,np+1:m);  
        aa=RPC*RPC'*bvec; 
        aaa=aa'*covR*aa; 
        bbb=(aa'*aa)^2; 
        ccc=aaa/bbb; 
        dd=PC(:,1:np)*PC(:,1:np)'*bvec;  
        ddd=dd'*covR*dd; 
        sum=sum+ccc/ddd; 
bvec=zeros(m,1); 
end; 
 
FaultVar(np)=sum; 
end; 
%figure; 
%plot(FaultVar); 
%input('Number of PC for best fault reconstruction=%d'); 
nPC=find(FaultVar==min(FaultVar));  
PCC=PC(:,1:nPC); 
RPC=PC(:,nPC+1:m); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%               Check the quality of the measured data                                                                                                                    %%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
ncc=nPC; 
bvec=zeros(m,1); 
fprintf(' No        ui       comparison\n');    
for ni=1:1:m 
        bvec(ni)=1; 
        aa=RPC*RPC'*bvec; 
        aaa=aa'*covR*aa; 
        bbb=(aa'*aa)^2; 
        ccc=aaa/bbb; 
        gg=PCC*PCC'*bvec; 
        ddd=gg'*covR*gg; 
bvec=zeros(m,1); 
 
fprintf(' %d         %f          %f\n',[ni ccc  ddd]);         
end; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%                 Performance of Model Prediction                                                                                                                              %%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
qlimit=qlim(zr0,nPC); 
tlimit=tlim(ndata_Train,nPC); 
zzrr=zr0*PCC*PCC'; 
resTrain=zr0-zzrr; 
TrainData_pred=unscore(zzrr,mr0,stdr0); 
figure (1); 
plot(TrainData_pred(:,1),'ro'); 
hold on; 
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plot(TrainData(:,1),'b+'); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%                                             Define the library of fault directions                                                                                               %%% 
%%                                          Determine the threshold based on fault free data                                                                              %%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
bbb=eye(m); 
for ni=1:1:m 
    for nj=1:1:m 
    if ni~=nj 
    Fchar{ni,nj}.bvec=[bbb(:,ni),bbb(:,nj)]; 
    else 
    Fchar{ni,nj}.bvec=bbb(:,ni); 
    end; 
    Fchar{ni,nj}.RPC=RPC*RPC'*Fchar{ni,nj}.bvec; 
    [Svec,D,V]=svd(Fchar{ni,nj}.RPC); 
    md=find(abs(diag(D))>=1.0E-3); 
    D=D(1:md,1:md); 
% Fault direction projected onto the residual space. 
    Fchar{ni,nj}.Svec=Svec(:,1:md);     
    Fchar{ni,nj}.D=D; 
    Fchar{ni,nj}.V=V(:,1:md); 
% Learning the confidence limit for the fault free case along the the predefined fault direction  
    dxyz=[]; 
    for jj=1:1:ndata_Train 
    xres=(eye(m)-Fchar{ni,nj}.Svec*Fchar{ni,nj}.Svec')*resTrain(jj,:)'; 
    xxx=norm(xres).^2; 
    dxyz=[dxyz;xxx]; 
    end; 
    mxx=mean(dxyz); 
    stdxx=std(dxyz); 
    Fchar{ni,nj}.SPElimit=mxx+2*stdxx; 
end; 
end; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%                                              Generate Fault Data                                                                                                                   %%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
TestData=XmData; 
idd=[1,4]; 
Magnitude=[0.01,0.03]; 
ndd=length(idd); 
for mi=1:1:ndd 
mmp=idd(mi); 
TestData(ndata_Train+1:ndata,mmp)=Data(ndata_Train+1:ndata,mmp)+ones(ndata-
ndata_Train,1).*X_nominal(mmp).*Magnitude(mi); 
end; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%                                                T2 and Q Statistics                                                                                                                  %%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
zr=zscore1(TestData,mr0,stdr0); 
[t2]=tstat(zr,PC,LATENT,nPC); 
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figure(2); 
plot(t2); 
hold on; 
line([0 ndata],[tlimit,tlimit]); 
hold off; 
[q]=qstat(zr,PC,nPC); 
figure(3); 
plot(q); 
hold on; 
line([0 ndata],[qlimit,qlimit]); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%                                          Plot Residual Plot (same as Contribution Plot)                                                                             %%% 
%%%                                         The Residual Pattern are not stable                                                                                                 %%% 
%%%                                 Especially if the Number of PC is not appropriately chosen                                                                  %%% 
%%%    When some variables which are not correlated with the other variables exist, Scree plot is not correct                             %%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
zrpd=zr*PCC*PCC'; 
resz=(zr-zrpd); 
resz2=resz.^2; 
SPE=resz(end,:)*resz(end,:)'; 
figure(4); 
%plot(resz2(ndata_Train+1:ndata,:)'); 
plot(resz2(end,:)'); 
grid on; 
 
 
xtest=zr(end,:); 
Xbrute=unscore(zrpd(end,:),mr0,stdr0); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%                                Fault Identification                                                                                                                                    %%% 
%%%Notice: If the fault reconstruction of a fault (ni,ni) is able to bring SPE back to normal, then the fault                                 %%%  
%%% is considered as a single fault instead of a dual fault                                                                                                               %%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
IdentIndex=[]; 
IdentRatio=[]; 
for ni=1:1:m 
    for nj=1:1:m 
    ztilt=resz(end,:); 
    [mmm1,mmm2]=size(Fchar{ni,nj}.RPC); 
    if rank(Fchar{ni,nj}.RPC)==mmm2 
    Freal=inv(Fchar{ni,nj}.RPC'*Fchar{ni,nj}.RPC)*Fchar{ni,nj}.RPC'*ztilt'; 
    else 
    Ftilt=(Fchar{ni,nj}.Svec)'*xtest'; 
    Freal=(Fchar{ni,nj}.V)*inv(Fchar{ni,nj}.D)*Ftilt; 
    end 
    xtilt=ztilt'-Fchar{ni,nj}.RPC*Freal; 
    SPEindex(ni,nj)=xtilt'*xtilt; 
    IdentRatio(ni,nj)=SPEindex(ni,nj)/Fchar{ni,nj}.SPElimit; 
    if IdentRatio(ni,nj)>=3.0 IdentRatio(ni,nj)=3.0; end; 
     
    if SPEindex(ni,nj)<=Fchar{ni,nj}.SPElimit  
    IdentIndex=[IdentIndex;ni,nj]; 
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    IdentFreal{ni,nj}.Freal=Freal; 
    fprintf ('%d %d\n',[ni,nj]); 
    end;   
end; 
end; 
 
fprintf('Dual fault isolation index\n'); 
for ni=1:1:m  
    fprintf('%d  %f %f %f %f %f %f %f %f \n',[ni,SPEindex(ni,:)]); 
end; 
 
fprintf('Dual fault isolation index\n'); 
for ni=1:1:m  
    fprintf('%d  %f %f %f %f %f %f %f %f \n',[ni,IdentRatio(ni,:)]); 
end; 
figure; 
bar3(IdentRatio); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%                                Fault Reconstruction                                                                                                                               %%% 
%%%                                                                                                                                                                                             %%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
[nn,mm]=size(IdentIndex); 
for jj=1:1:nn 
Indint=IdentIndex(jj,:); 
a=Indint(1); b=Indint(2); 
bbb=xtest'-Fchar{a,b}.bvec*IdentFreal{a,b}.Freal; 
Xrecon=unscore(bbb',mr0,stdr0); 
fprintf('\n\n\n'); 
fprintf('True value    = %f %f %f %f %f %f %f %f\n',Data(end,:)); 
fprintf('Measured value= %f %f %f %f %f %f %f %f\n',TestData(end,:)); 
fprintf('Qin Recon     = %f %f %f %f %f %f %f %f\n',Xrecon); 
fprintf('Conventional  = %f %f %f %f %f %f %f %f\n',Xbrute); 
end; 
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Appendix 6  Matlab Code for HCSG Hybrid PCA Based FDI 
close all; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
%%%%%%%%%                IRIS PCA FDI Algorithm based on Constrained PCA Modeling                                                %%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 
 
close all; 
clear all; 
warning off; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%                          Load Normal Operation Data PCA  Variables                                                                      %%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Measured variables: XmNormal=[W1  T1  T3  T5  W6  T6  W7  T7  W12  T12  T11  T9  tT3 tT9 tT7 tT12; 
%Index                         1    2   3   4   5   6   7   8    9   10   11  12   13  14  15   16 
%No.                           1    2   6  10  11  12  13  14   23   24   21  18   25  26  28   30 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%  The following variables are chosen beacause the other variables are simply constant with noise                   %%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
idd=[3  4   6   7   9  10  11  12]; 
load iris_ss XmNormal XmFault X_nominal WsecInd1 WsecInd2; 
Data=XmNormal(1:500,idd); 
X_nominal=X_nominal(:,idd); 
[ndata,m]=size(Data); 
XmData=[]; 
noi_X=[0.0025,0.0025,0.0025,0.01,0.01,0.0025,0.0025,0.0025]/3; 
for ii=1:1:m 
    aaa=randn(ndata,1)*noi_X(ii).*Data(:,ii); 
    XmData(1:ndata,ii)=Data(1:ndata,ii)+aaa; 
end; 
 
TrainData=XmData; 
[ndata,mdata]=size(TrainData); 
 
ndata_Train=ndata-50; 
[zr0,mr0,stdr0]=zscore1(TrainData(1:ndata_Train,:)); 
 
G=zr0(:,[4]); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%              Decomposition of the data matrix into four components                                                                                               %%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
X=zr0; 
PG=G*pinv(G'*G)*G'; 
QG=eye(ndata_Train)-PG; 
 
X1=PG*X; 
X2=QG*X; 
dzx1=X1; 
[PC,Latent,Explain]=pcacov(dzx1); 
ns=1; 
model1_PC=PC(:,1:ns); 
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dzx2=X2; 
 
idm=[1:3,5:8]; 
dzx2=dzx2(:,idm); 
%dmx2=dmx2(idm); 
%dstdx2=dstdx2(idm); 
[PC,Latent,Explain]=pcacov(dzx2); 
ns=1; 
model2_PC=PC(:,1:ns); 
qlx2=qlim(dzx2,ns); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Measured variables: XmNormal=[W1  T1  T3  T5  W6  T6  W7  T7  W12  T12  T11  T9  tT3 tT9 tT7 tT12; 
%Index                         1    2   3   4   5   6   7   8    9   10   11  12   13  14  15   16 
%No.                           1    2   6  10  11  12  13  14   23   24   21  18   25  26  28   30 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
idf=2; 
TestData=XmData; 
NTestData=TestData; 
TestData(ndata_Train+1:ndata,idf)=Data(ndata_Train+1:ndata,idf)+ones(ndata-ndata_Train,1).*X_nominal(idf).*0.0040; 
 
zv0=zscore1(TestData,mr0,stdr0); 
%zv0=TestData; 
figure (1) 
plot(TestData(:,idf),'b'); 
hold on; 
plot(NTestData(:,idf),'r'); 
 
ndata=ndata; 
zv0=zv0(1:ndata,:); 
G=zv0(1:ndata,[4]); 
 
%H=H; 
Y=zv0; 
PG=G*pinv(G'*G)*G'; 
%PH=H*pinv(H'*H)*H'; 
QG=eye(ndata)-PG; 
%QH=eye(mdata)-PH; 
 
Y1=PG*Y; 
Y2=QG*Y; 
%Y3=Y*PH; 
%Y4=Y*QH; 
 
%Y1_data=unscore(Y1,dmx1,dstdx1); 
Y2=Y2(:,idm); 
%Y2_data=unscore(Y2,dmx2,dstdx2); 
%Y3_data=unscore(Y3,mr0,stdr0); 
%Y4_data=unscore(Y4,mr0,stdr0); 
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%dzy1=zscore1(Y1,dmx1,dstdx1); 
dzy1=Y1; 
 
zy1=dzy1*model1_PC*model1_PC'; 
%Y1_pred=unscore(zy1,dmx1,dstdx1); 
%figure (2); 
%plot(Y1_pred(:,idf),'ro'); 
%hold on; 
%plot(Y1_data(:,idf),'b+'); 
 
%dzy2=zscore1(Y2,dmx2,dstdx2); 
dzy2=Y2; 
zy2=dzy2*model2_PC*model2_PC'; 
 
idf1=find(idm==idf); 
 
%Y2_pred=unscore(zy2,dmx2,dstdx2); 
%figure (3); 
%plot(Y2_pred(:,idf1),'r-'); 
%hold on; 
%plot(Y2_data(:,idf1),'b-'); 
 
figure (1); 
subplot(2,1,1); 
plot(X1(:,4),X1(:,1),'r'); 
hold on;  
plot(zr0(1:2:end,4),zr0(1:2:end,1),'b*'); 
xlabel('Feed water flow rate (scaled)'); 
ylabel('SG primary outlet temperature (scaled)'); 
 
subplot(2,1,2); 
plot(X1(:,4),X1(:,6),'r'); 
hold on;  
plot(zr0(1:2:end,4),zr0(1:2:end,6),'b*'); 
xlabel('Feed water flow rate (scaled)'); 
ylabel('SG steam outlet temperature (scaled)'); 
 
figure (2); 
resz=(zy1-dzy1); 
SPE=[]; 
for idk=1:ndata 
ttt=resz(idk,:)*resz(idk,:)'; 
SPE=[SPE;ttt]; 
end; 
subplot(2,1,1); 
plot(SPE); 
resz=(zy1-dzy1); 
reszw=resz.^2; 
subplot(2,1,2); 
bar(reszw(ndata,:)'); 
figure (3); 
resz=(zy2-dzy2); 
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SPE=[]; 
for idk=1:ndata 
ttt=resz(idk,:)*resz(idk,:)'; 
SPE=[SPE;ttt]; 
end; 
subplot(2,1,1); 
plot(SPE); 
hold on; 
line([0 ndata],[qlx2,qlx2]); 
hold off; 
 
 
reszw=resz.^2; 
subplot(2,1,2); 
bar(reszw(ndata,:)'); 
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Appendix 7  Matlab Code for HCSG Robust Data Driven Model based 

FDI for Steady State Operation Conditions 
close all; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%                Load Simulation Data and Build a PLS Models                                                             %%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
close all; 
clear all; 
warning off; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%                          Load Normal Operation Data PCA  Variables                                                          %%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Measured variables: XmNormal=[W1  T1  T3  T5  W6  T6  W7  T7  W12  T12  T11  T9  tT3 tT9 tT7 tT12; 
%Index                         1    2   3   4   5   6   7   8    9   10   11  12   13  14  15   16 
%No.                           1    2   6  10  11  12  13  14   23   24   21  18   25  26  28   30 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%  The following variables are chosen beacause the other variables are simply constant with noise      %%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%   T3 T5 T6  W7  W12 T12 T11 T9  
idd=[3  4   6   7   9  10  11  12]; 
load iris_ss XmNormal XmFault X_nominal WsecInd1 WsecInd2; 
Data=XmNormal(1:500,idd); 
X_nominal=X_nominal(:,idd); 
[ndata,m]=size(Data); 
XmData=[]; 
noi_X=[0.0025,0.0025,0.0025,0.01,0.01,0.0025,0.0025,0.0025]/3; 
for ii=1:1:m 
    aaa=randn(ndata,1)*noi_X(ii).*Data(:,ii); 
    XmData(1:ndata,ii)=Data(1:ndata,ii)+aaa; 
end; 
 
TrainData=XmData; 
[ndata,m]=size(TrainData); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%                                         Standard PLS are implemented                                                                                                         %%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
[zr0,mr0,stdr0]=zscore1(TrainData); 
xzr1=zr0(:,4); 
yzr1=zr0(:,3); 
b1=regress(yzr1,xzr1); 
[zr0,mr0,stdr0]=zscore1(TrainData); 
xzr2=zr0(:,4); 
yzr2=zr0(:,6); 
b2=regress(yzr2,xzr2); 
 
msm_input=1; 
msm_output=8; 
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BB=zeros(msm_output,msm_input); 
BB(1,1)=b1'; 
BB(2,1)=b1'; 
BB(3,1)=b1'; 
BB(4,1)=1.0; 
BB(5,1)=1.0; 
BB(6,1)=b2'; 
BB(7,1)=b2'; 
BB(8,1)=b2'; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%                                              Generate Fault Data                                                                                                                   %%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
Data=XmFault(1:100,idd); 
[ndata,m]=size(Data); 
XProcess=[]; 
noi_X=[0.0025,0.0025,0.0025,0.01,0.01,0.0025,0.0025,0.0025]/5; 
for ii=1:1:m 
    aaa=randn(ndata,1)*noi_X(ii).*Data(:,ii); 
    XProcess(1:ndata,ii)=Data(1:ndata,ii)+aaa; 
end; 
zd=zscore1(XProcess(1:1:100,:),mr0,stdr0); 
temp=BB*zd(:,[4])'; 
zd_pred=temp'; 
 
resdDisturbance=zd-zd_pred; 
[uu,ss,vv]=svd(resdDisturbance'); 
Dbvec=uu(:,[1 2]); 
 
%%% Load plant measurements here 
%MeasureData=TrainData(:,:); 
MeasureData=XProcess; 
NTestData=MeasureData(1:end,:); 
TestData=NTestData; 
ntest=size(NTestData,1); 
idf=6;  
 
TestData(ntest-50:1:ntest,idf)=NTestData(ntest-50:1:ntest,idf)+2.5; 
mSensor=m; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
zv0=zscore1(TestData,mr0,stdr0); 
 
 
Ef=eye(mSensor); 
Wt=BB; 
Mt=Ef; 
%Rsv=kron(eye(s+1),Rv); 
%Rsd=kron(eye(s+1),Rd); 
%Rso=kron(eye(s+1),Ro); 
%Rphi=H*Rsv*H'+G*Rsd*G'+Rso; 
WWt=[Wt]; 
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AAA=WWt*WWt'; 
BBB=Mt*Mt'; 
 
 [VE,DE]=eig(AAA,BBB,'qz'); 
ccc=abs(diag(DE)); 
ddd=sort(ccc); 
idhg=find(abs(diag(DE))<1.0E-10); 
mmk=length(idhg); 
 
Omega=[]; 
for ijj=1:1:mmk 
npp=find(ccc==ddd(ijj)); 
if(ccc(npp)>1.0E-10) fprintf('warning\n'); end; 
bbb=VE(:,npp); 
bbb=bbb/norm(bbb); 
Omega=[Omega,bbb]; 
end; 
BBB=orth(Omega); 
 
err=[]; 
for jjk=1:1:ntest 
xtest=zv0(jjk,:); 
eee=BBB'*zv0(jjk,:)'; 
spde=eee'*eee; 
err=[err;spde]; 
end; 
figure; 
plot(err); 
title('Fault Detection without disturbance decoupling'); 
 
Ef=eye(mSensor); 
Wt=BB; 
Mt=Ef; 
%Rsv=kron(eye(s+1),Rv); 
%Rsd=kron(eye(s+1),Rd); 
%Rso=kron(eye(s+1),Ro); 
%Rphi=H*Rsv*H'+G*Rsd*G'+Rso; 
WWt=[Wt Dbvec]; 
AAA=WWt*WWt'; 
BBB=Mt*Mt'; 
 
[VE,DE]=eig(AAA,BBB,'qz'); 
ccc=abs(diag(DE)); 
ddd=sort(ccc); 
idhg=find(abs(diag(DE))<1.0E-10); 
mmk=length(idhg); 
Omega=[]; 
for ijj=1:1:mmk 
npp=find(ccc==ddd(ijj)); 
if(ccc(npp)>1.0E-10) fprintf('warning\n'); end; 
bbb=VE(:,npp); 
bbb=bbb/norm(bbb); 
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Omega=[Omega,bbb]; 
end; 
BBB=orth(Omega); 
 
err=[]; 
for jjk=1:1:ntest 
xtest=zv0(jjk,:); 
eee=BBB'*zv0(jjk,:)'; 
spde=eee'*eee; 
err=[err;spde]; 
end; 
figure; 
plot(err); 
title('Fault Detection with disturbance decoupling'); 
 
Ef=eye(mSensor); 
mhk=1:1:mSensor; 
ErrPlot=[]; 
for ikk=1:1:mSensor 
Wt=BB; 
Vt=Ef(:,ikk); 
isk=find(mhk~=ikk); 
Mt=Ef(:,isk); 
%Rsv=kron(eye(s+1),Rv); 
%Rsd=kron(eye(s+1),Rd); 
%Rso=kron(eye(s+1),Ro); 
%Rphi=H*Rsv*H'+G*Rsd*G'+Rso; 
WWt=[Wt Vt Dbvec]; 
AAA=WWt*WWt'; 
BBB=Mt*Mt'; 
 
 [VE,DE]=eig(AAA,BBB,'qz'); 
ccc=abs(diag(DE)); 
ddd=sort(ccc); 
idhg=find(abs(diag(DE))<1.0E-10); 
mmk=length(idhg); 
 
Omega=[]; 
for ijj=1:1:mmk 
npp=find(ccc==ddd(ijj)); 
if(ccc(npp)>1.0E-10) fprintf('warning\n'); end; 
bbb=VE(:,npp); 
bbb=bbb/norm(bbb); 
Omega=[Omega,bbb]; 
end; 
BBB=orth(Omega); 
 
err1=[]; 
for jjk=1:1:ntest 
xtest=zv0(jjk,:); 
eee=BBB'*zv0(jjk,:)'; 
spde=eee'*eee; 
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err1=[err1;spde]; 
end; 
ErrPlot=[ErrPlot,err1]; 
end; 
 
figure; 
for ilk=1:1:mSensor 
subplot(4,2,1); 
plot(ErrPlot(:,1)); 
ylabel('Res. Gen.dedicated to Signal 1');   
subplot(4,2,2); 
plot(ErrPlot(:,2)); 
ylabel('Res. Gen.dedicated to Signal 2');   
 
subplot(4,2,3); 
plot(ErrPlot(:,3)); 
ylabel('Res. Gen.dedicated to Signal 3');   
xlabel ('sample'); 
 
subplot(4,2,4); 
plot(ErrPlot(:,4)); 
ylabel('Res. Gen.dedicated to Signal 4');   
xlabel ('sample'); 
 
subplot(4,2,5); 
plot(ErrPlot(:,5)); 
ylabel('Res. Gen.dedicated to Signal 5');   
xlabel ('sample'); 
 
subplot(4,2,6); 
plot(ErrPlot(:,6)); 
ylabel('Res. Gen.dedicated to Signal 5');   
xlabel ('sample'); 
 
 
subplot(4,2,7); 
plot(ErrPlot(:,7)); 
ylabel('Res. Gen.dedicated to Signal 5');   
xlabel ('sample'); 
 
subplot(4,2,8); 
plot(ErrPlot(:,8)); 
ylabel('Res. Gen.dedicated to Signal 5');   
xlabel ('sample'); 
end; 
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Appendix 8  Matlab Code for HCSG Robust Data Driven Model based 

FDI for Dynamic Operation Conditions 
close all; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%                            Robust Data Driven Model Based FDI Algorithm for Dynamic Operation Conditions         %%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%WpinDisturb=[ThotMx,TcoldMx,PsteamMx,WsteamMx,TsteamMx,TfwMx,WfwMx,LboilingMx,LscboilingMx,WpinMx]; 
warning off; 
clear all; 
close all; 
%index=[2,3,5,8,9,1,4,6,7,10];   
index=[2,3,5,8,9,1,4,6,7,10];   
indexout=[2,3,5,8,9]; 
indexinp=[1,4,6,7,10]; 
 
load Hcsgmodel; 
meanx=meanx; 
stdx=stdx; 
A=A; 
B=B; 
C=C; 
D=D; 
nd=0; 
[ny,my]=size(C); 
[nx,mx]=size(A); 
K=zeros(nx,5);  
nbb=11; 
Nc=5; 
Nb=5; 
resd=[]; 
V1=[]; 
JJ=[]; 
iii=2; 
 
load MVarNormalData_detPs_100; 
%load MVarNormalData_100test_openloop; 
%load MVarNormalData_sim 
NormalData0=NormalData(1:end,:); 
NormalData=NormalData(1:end,:); 
[n,m]=size(NormalData); 
noi=[0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001]; 
 
%noi=[0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001,0.001]; 
noise=[]; 
for i=1:1:m 
noise=[noise,randn(n,1).*noi(i)]; 
end; 
for i=1:1:m 
NormalData(:,i)=NormalData(:,i)+noise(:,i).*mean(NormalData(:,i)); 
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end; 
 
%NormalData=dlmread('MVarNormalData_simm.txt',' '); 
[nlen,m]=size(NormalData); 
nstart=600; 
nlen=2000; 
%rawDataP=NormalData(n-1000:1:n,index); 
rawDataP=NormalData(1:1:end,[indexout indexinp]); 
[n,m]=size(rawDataP); 
%rawDataP(nstart:nlen,iii)=rawDataP(nstart:nlen,iii)+mean(rawDataP(:,iii))*0.01; 
rawDataP(nstart:nlen,iii)=rawDataP(nstart:nlen,iii); 
%[1,2,3,9,6]; 
GGG1=eye(Nc); 
GGG2=zeros(Nc,Nc); 
%Thy=[GGG1(:,[1,2,3]),GGG2(:,[4,5])]; 
Thy=GGG1; 
WWW1=eye(Nb); 
WWW2=zeros(Nb,Nb); 
%Thu=[WWW1(:,[1,2,3]),WWW2(:,[4,5])]; 
Thu=WWW1; 
 
fff=[]; 
ggg=[]; 
for k=nbb+1:1:nlen 
    V1=[]; 
    JJ=[]; 
    zv=zscore1(rawDataP(k-nbb:1:k,:),meanx,stdx); 
    [V1,JJ,eee,Ps]=resgen_noi_mod1(A,B,C,D,zv,Nc,Nb,nbb,V1,JJ,Thu,Thy); 
    fff=[fff,eee]; 
    ggg=[ggg,norm(eee)]; 
end; 
gama=0.90; 
ntrain=400; 
Rse=1/ntrain*fff(:,1:ntrain)*fff(:,1:ntrain)'; 
eta=emwa(fff,gama,Rse,nbb,nx,ny,ntrain,nlen); 
figure(1) 
subplot(2,1,1); 
plot(rawDataP(nbb+1:nlen,2)); 
ylabel('steam pressure (Mpa)'); 
subplot(2,1,2); 
plot(eta); 
ylabel('fault detection index'); 
xlabel('sample'); 
 
figure(2); 
for iii=1:1:Nc+Nb; 
GGG1=eye(Nc); 
GGG2=zeros(Nc,Nc); 
%Thy=[GGG1(:,[1,2,3]),GGG2(:,[4,5])]; 
WWW1=eye(Nb); 
WWW2=zeros(Nb,Nb); 
if iii<=Nc 
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%Thu=[WWW1(:,[1,2,3]),WWW2(:,[4,5])]; 
Thy1=[GGG1(:,1:1:iii-1),GGG2(:,iii),GGG1(:,iii+1:1:end)]; 
Thu1=WWW1; 
Thy2=[GGG2(:,1:1:iii-1),GGG1(:,iii),GGG2(:,iii+1:1:end)]; 
Thu2=WWW2; 
else 
iis=iii-Nc; 
Thy1=GGG1; 
Thu1=[WWW1(:,1:1:iis-1),WWW2(:,iis),WWW1(:,iis+1:1:end)]; 
Thy2=GGG2; 
Thu2=[WWW2(:,1:1:iis-1),WWW1(:,iis),WWW2(:,iis+1:1:end)]; 
end; 
     
fff=[]; 
ggg=[]; 
for k=nbb+1:1:nlen 
    V1=[]; 
    JJ=[]; 
    zv=zscore1(rawDataP(k-nbb:1:k,:),meanx,stdx); 
    [V1,JJ,eee,Ps]=resgen_noi_mod3(A,B,C,D,zv,Nc,Nb,nbb,V1,JJ,Thu1,Thy1,Thu2,Thy2); 
    fff=[fff,eee]; 
    ggg=[ggg,norm(eee)]; 
end; 
gama=0.90; 
ntrain=400; 
Rse=1/ntrain*fff(:,1:ntrain)*fff(:,1:ntrain)'; 
eta=emwa(fff,gama,Rse,nbb,nx,ny,ntrain,nlen); 
subplot(5,2,iii); 
plot(eta); 
ylabel(['variable ', int2str(iii)]); 
if iii==9 | iii==10 xlabel('sample'); end; 
end; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%                                                                       Robust Residual Generator Design Algorithm                                       %%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [V1,JJ,optresd,Ps]=resgen_noi_mod3(A,B,C,D,data,Nc,Nb,nbb,V1,JJ,Thu1,Thy1,Thu2,Thy2); 
%data=[output,input] 
if V1==[]  
    iv=1; 
end; 
s=nbb; 
[nx,mx]=size(A); 
[nd,md]=size(D); 
Dp=zeros(nd,nx); 
Bp=eye(nx); 
[ncc,mcc]=size(C); 
outputy=data(:,1:Nc);   %Nc=number of outputs; 
inputx=data(:,Nc+1:Nc+Nb); %Nb=number of inputs; 
resd=[]; 
    y=[]; 
    u=[]; 
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    Ht=[]; 
    Wt=[]; 
    Lt=[]; 
    Mt=[]; 
    Gt=[]; 
    for ii=s:-1:0   %loop over stack 
    y=[y;outputy(s-ii+1,:)'];  %stacked output vector with dimension=number of outputs*(stack number+1)  
    u=[u;inputx(s-ii+1,:)'];   %stacked input vector with dimension=number of inputs*(stack number+1)  
    Wt=[Wt;C*A^(s-ii)];   %extended observability matrix with dimension=number of outputs*(stack number+1) by number of states 
    Lrow=[]; 
    Mrow=[]; 
    Hrow=[]; 
    Grow=[]; 
    irow=s-ii+1; 
    for jcol=1:1:s+1 
        if irow>jcol 
            irow1=irow-2; 
        Hrow=[Hrow,(C*A^(irow1-jcol+1))*B];  
        Grow=[Grow,(C*A^(irow1-jcol+1))*Bp];  
  %      Lrow=[Lrow,(C*A^(irow1-jcol+1))*E1];   
  %      Mrow=[Mrow,(C*A^(irow1-jcol+1))*R1];   
         
        elseif irow<jcol 
        Hrow=[Hrow,zeros(nd,md)]; 
        Grow=[Grow,zeros(nd,nx)]; 
  %      Lrow=[Lrow,zeros(ncc,me)]; 
  %      Mrow=[Mrow,zeros(ncc,mf)]; 
       
        elseif irow==jcol 
        Hrow=[Hrow,D]; 
        Grow=[Grow,Dp]; 
  %      Lrow=[Lrow,E2]; 
  %      Mrow=[Mrow,R2]; 
        end; 
    end; 
    Ht=[Ht;Hrow];   %Extended Hankel matrix with dimension= number of outputs*(stack number+1) by number of inputs*(stack 
number+1)  
    Gt=[Gt;Grow]; 
 %   Lt=[Lt;Lrow]; 
 %   Mt=[Mt;Mrow]; 
end; 
H=Ht; 
G=Gt; 
Hbar=[eye(Nc*(s+1)),-H]; 
Th11=kron(eye(s+1),Thy1); 
Th12=zeros(Nc*(s+1),(s+1)*Nb); 
Th21=zeros(Nb*(s+1),(s+1)*Nc); 
Th22=kron(eye(s+1),Thu1); 
ThetaP1=[Th11,Th12;Th21,Th22]; 
Mt=Hbar*ThetaP1; 
Th11=kron(eye(s+1),Thy2); 
Th12=zeros(Nc*(s+1),(s+1)*Nb); 
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Th21=zeros(Nb*(s+1),(s+1)*Nc); 
Th22=kron(eye(s+1),Thu2); 
ThetaP2=[Th11,Th12;Th21,Th22]; 
Vt=Hbar*ThetaP2; 
 
%Rsv=kron(eye(s+1),Rv); 
%Rsd=kron(eye(s+1),Rd); 
%Rso=kron(eye(s+1),Ro); 
%Rphi=H*Rsv*H'+G*Rsd*G'+Rso; 
WWt=[Wt Vt]; 
Rphi=eye(Nc*(s+1)); 
Rphio=chol(Rphi); 
AAA=WWt*WWt'; 
BBB=Mt*Mt'; 
[VE,DE]=eig(AAA,BBB,'qz'); 
ccc=abs(diag(DE)); 
ddd=sort(ccc); 
Omega=[]; 
for ijj=1:1:(Nc-1)*(s+1)-nx 
npp=find(ccc==ddd(ijj)); 
if(ccc(npp)>1.0E-10) printf('warning\n'); end; 
bbb=VE(:,npp); 
bbb=bbb/norm(bbb); 
Omega=[Omega,bbb]; 
end; 
BBB=orth(Omega); 
WWW=BBB'*inv(Rphio'); 
eee=WWW*Hbar*[y;u]; 
Ps=WWW*Hbar; 
%Rse=WWW*Rphi*WWW'; 
%optresd=eee'*inv(Rse)*eee; 
optresd=eee; 
return; 
 



 311

Vita 
 

Ke Zhao was born in Sichuan, China on May 3,1969.  He received the Bachelor 

of Science degree in Physics at Sichuan University, China, in July 1989, and the Master 

of Science degree in Nuclear Engineering at the University of Tennessee, Knoxville, 

USA, in November 2002. 

In July 1989, Ke Zhao was employed by Nuclear Power Institute of China.  He 

became an engineer in radiation safety and environmental influence assessment in 1994.  

He was promoted to be a senior engineer in reactor safety analysis and probabilistic risk 

assessment in 1998.  He did research on failed fuel behavior analysis in Atomic Energy 

Commission, Cadarache, France, from July 1998 to February 1999.   

Ke Zhao came to the United States and entered The University of Tennessee as a 

graduate student in Nuclear Engineering Department in August 2000.  He is advised by 

Dr. B.R. Upadhyaya in the field of reactor simulation, control, and fault diagnosis.   

During the graduate study, K. Zhao completed the following publications: 

[1] K. Zhao and B. R. Upadhyaya, “Robust Subspace Based Dynamic Fault Diagnosis of 

IRIS Helical Coil Steam Generator Systems,” Nuclear Technology (submitted), 2004. 

[2] K. Zhao and B. R. Upadhyaya, “Adaptive Fuzzy Inference Causal Graph Approach to 

Fault Diagnosis of Nuclear Power Plants,” Progress in Nuclear Energy, 2005.  

[3] A. Sawyer, M. Williamson, K. Zhao, and A. Ruggles, “RELAP5-3D Validation Study 

using MB-2 Prototypical Steam Generator Steady State Data,” Nuclear Technology 

(Accepted), 2004.  

[4] B.R. Upadhyaya and K. Zhao, “Thermal-Hydraulic Analysis of a Helical Coil Steam 

Generator for Level Monitoring,” ANS Transaction, 2003: 

[5] M.G. Na, Y.R. Sim, K.H. Park, B.R. Upadhyaya, K.Zhao, and B.Lu, “Sensor 

Monitoring using a Fuzzy Neural Network with an Automatic Structure Constructor,” 

IEEE Transactions on Nuclear Science, 50, 241-250, 2003. 

[6] B.R. Upadhyaya, K. Zhao, and B. Lu, “Fault Monitoring of Nuclear Power Plant 

Sensors and Field Devices,” Progress in Nuclear Energy, Vol. 43, pp. 337-342, 2003. 



 312

[7] M.G. Na, Y.R. Sim, K.H. Park, B.R. Upadhyaya, B. Lu, and K. Zhao, “Failure 

Detection using a Fuzzy Neural Network with an Automatic Input Selection 

Algorithm,” Power Plant Surveillance and Diagnotics, (ed) D. Ruan and P.F. Fantoni, 

Springer, 221-242, 2002. 

[8] K. Zhao and B.R. Upadhyaya, “Design of a Fault Diagnosis System for Next 

Generation Nuclear Power Systems,” Proceeding of ICAAP Conference, Pittsburgh, 

2004. 

[9] K. Zhao and B.R. Upadhyaya, “A Hybrid PCA Approach to Joint Sensor and Process 

Fault Diagnosis,” Proceeding of NPIC Conference, Columbus, 2004. 

[10] K. Zhao, B.R. Upadhyaya, and R. T. Wood, “Data reconciliation and Gross Error 

Detection for IRIS Helical Coil Steam Generators,” Transactions of the American 

Nuclear Society, 2004. 

[11] K. Zhao, B.R. Upadhyaya, and R. T. Wood, “Modeling and Fault Detection and 

Isolation of IRIS Helical Coil Steam Generators,” Proceedings of Global 2003, pp. 

2059-2068, New Orleans, November 2003. 

[12] B.R. Upadhyaya and K. Zhao, “Robust Techniques for Monitoring and Fault 

Diagnosis of IRIS Helical Coil Steam Generators,” GENES4/ANP2003, Kyoto, 

Japan, September 2003, 

[13] B.R. Upadhyaya, K. Zhao, B. Lu, J.M. Doster, M.G. Na, Y.R. Sim, and K.H. 

Park, “Nuclear Plant System Monitoring Under Process Transients and Multiple Fault 

Conditions,” Transactions of the American Nuclear Society, Vol. 86, pp. 482-484, 

June 2002. 

[14] B.R. Upadhyaya, K. Zhao, B. Lu, and M. Doster, “Fault Detection and Isolation 

of Sensors and Actuators in a Nuclear Plant Steam Generator,” Transactions of the 

American Nuclear Society, Vol. 85, pp. 350-351, November 2001. 

 

 


	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	5-2005

	An Integrated Approach to Performance Monitoring and Fault Diagnosis of Nuclear Power Systems
	Ke Zhao
	Recommended Citation


	Microsoft Word - ZhaoDissertation_sumit_ver01.doc

