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Abstract

Formal Specification of Requirements
for Analytical Redundancy based

Fault Tolerant Flight Control Systems

By Diego Del Gobbo

Flight control systems are undergoing a rapid process of automation. The use

of Fly-By-Wire digital flight control systems in commercial aviation (Airbus 320 and

Boeing FBW-B777) is a clear sign of this trend. The increased automation goes in par-

allel with an increased complexity of flight control systems with obvious consequences

on reliability and safety. Flight control systems must meet strict fault-tolerance re-

quirements. The standard solution to achieving fault tolerance capability relies on

multi-string architectures. On the other hand, multi-string architectures further in-

crease the complexity of the system inducing a reduction of overall reliability.

In the past two decades a variety of techniques based on analytical redundancy

have been suggested for fault diagnosis purposes. While research on analytical redun-

dancy has obtained desirable results, a design methodology involving requirements

specification and feasibility analysis of analytical redundancy based fault tolerant

flight control systems is missing.

The main objective of this research work is to describe within a formal frame-

work the implications of adopting analytical redundancy as a basis to achieve fault

tolerance. The research activity involves analysis of the analytical redundancy ap-

proach, analysis of flight control system informal requirements, and re-engineering

(modeling and specification) of the fault tolerance requirements. The USAF mili-

tary specification MIL-F-9490D and supporting documents are adopted as source for

the flight control informal requirements. The De Havilland DHC-2 general aviation

aircraft equipped with standard autopilot control functions is adopted as pilot appli-

cation. Relational algebra is adopted as formal framework for the specification of the

requirements.

The detailed analysis and formalization of the requirements resulted in a better

definition of the fault tolerance problem in the framework of analytical redundancy.

Fault tolerance requirements and related certification procedures turned out to be

considerably more demanding than those typically adopted in the literature. Fur-

thermore, the research work brought up to light important issues in all fields involved

in the specification process, namely flight control system requirements, analytical

redundancy, and requirements engineering.
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Chapter 1

Introduction

The use of Fly-By-Wire (FBW) digital flight control systems is playing a more and

more prominent role in commercial aviation. Airbus and Boeing FBW-airliners pro-

vide a clear sign of this trend. In FBW technology electronic devices coupled to

a digital computer replace conventional mechanical controls. The net result is a

more efficient, easier to control aircraft. However, this increased automation goes in

parallel with an increased complexity of flight control systems with obvious conse-

quences on reliability and safety. A FBW flight control system is made up of several

subsystems including mechanical, electronic, and software components. Each of these

subsystems may fail during flight, with disastrous consequences. For this reason flight

control systems must meet strict fault-tolerance requirements. The standard solution

to achieving fault tolerance capability is the adoption of a multi-string architecture.

This architecture is based on redundant units working in parallel and a voting scheme

that disengages a unit when faulty. Triple and quadruple string architectures are cur-

rent practice in flight control systems of both military and commercial aviation [62],

[21]. On the other hand, multi-string architectures further increase the complexity

of the system, induce a reduction of overall reliability, bind to closer maintenance
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schedule, and require larger budgets. These factors have induced in recent years an

increased interest toward alternative approaches to achieving fault tolerance in flight

control systems.

Similar interest comes from fields related to satellite and Unmanned Aerial Ve-

hicle (UAV) applications. Under the ongoing process of globalization the telecom-

munication industry is growing without rest and commercial satellites are playing

an important role in this growth. Weight and size largely affect launching costs of

satellites. Weight and size also affect UAV applications. Starting in the late ’80s a

variety of UAVs have been built for either military or scientific purposes. They vary

significantly in size, mission profile, and payload weight carrying capability. With

some of them having a payload weight below 20 lbs and dimensions below 15 feet it is

clear how weight and room requirements are a major issue. Despite costs, complexity,

and weight drawbacks physical redundancy is adopted to achieve fault tolerance.

Redundancy is a must in achieving fault tolerance; the question is whether re-

dundancy other than physical can be adopted. In the past two decades a variety of

techniques based on analytical redundancy have been suggested for fault diagnosis

purposes. Analytical redundancy identifies with the functional redundancy of the sys-

tem. No extra hardware is required; fault tolerance is achieved by means of software

routines that process sensor outputs and actuator inputs to check for consistency

with respect to the analytical model of the system. If an inconsistency is detected,

the faulty component is isolated and the control law is reconfigured accordingly. The

first analytical redundancy scheme implemented within a flight control systems dates
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back to the 70’s, when the same aircraft used to conduct research on fly-by-wire tech-

nology was also used as testbed for an analytical redundancy management algorithm

[56]. The algorithm showed desirable performance during flight test; however, poor

robustness to modeling errors and the degree of modeling necessary retrained further

development. Since then, a number of results have been obtained in the area of robust

fault diagnosis [47]. While research on analytical redundancy has been obtaining de-

sirable results, a design methodology involving requirements specification, feasibility

analysis, and certification of analytical redundancy based fault tolerant flight control

systems is still missing. Exploring strengths, weaknesses, related degree of reduction

of physical redundancy, and overall reliability is a fundamental step in the engineering

of such systems.

The main objective of this research is to describe within a formal framework the

relevant aspects of Analytical Redundancy based Fault Tolerant Flight Control Sys-

tems (AR-FTFCS) to allow the analysis of the implications of adopting the analytical

redundancy approach to achieve fault tolerance. The outcome of the research identi-

fies with the requirements specification for an AR-FTFCS.

The De Havilland DHC-2 general aviation airplane equipped with standard au-

topilot control functions is adopted as pilot application. The steps of the research

work are those typical of requirements engineering: analysis of the problem and elic-

itation of the requirements, requirements modeling, and requirements specification.

The USAF military specification MIL-F-9490D [2] and supporting documents are

adopted as source for the autopilot performance and fault tolerance requirements.
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[37] and [53] are adopted to produce the detail-specification of the DHC-2. The im-

plications of adopting the analytical redundancy approach are analyzed in detail to

modify the fault tolerance requirements accordingly. Relational algebra is adopted as

formal framework for the specification of the requirements.

Given the multidisciplinary nature of the research work some background infor-

mation is provided. Analytical redundancy is introduced in Chapter 2; the focus is

on the implications of adopting the analytical redundancy approach in flight control

systems. The flaws of the fault-diagnosis design approach and of the evaluation pro-

cedures for AR-FTFCS are highlighted. The second part of the chapter introduces

the main concepts of requirements engineering and briefly discusses the advantages of

adopting a formal specification language. Appendix A provides a description of pred-

icate logic and relational algebra. The FCS fault tolerance requirements as specified

in [2] are illustrated in Chapter 3. In the same chapter the target of the requirements

specification is defined and an introductory analysis of the implication of adopting

analytical redundancy is performed. Chapter 4 provides a detailed description of the

re-engineering and formalization process of the requirements. The composition of the

AFCS performance specification and of the DHC-2 detail-specification is illustrated.

In Chapter 5 the analysis of the fault tolerance requirements is carried out one step

further and the formal specification of the system providing fault tolerance is devel-

oped. Appendix B contains the bulk of the specification, while appendix C contains

the related supporting tables.

4



Chapter 2

Background information

This chapter provides some introductory information about two concepts that play

a central role in this research work: analytical redundancy and requirements engi-

neering. The first section provides a definition of analytical redundancy and briefly

illustrates the most relevant techniques adopting analytical redundancy as a basis

for fault tolerance. The focus is mainly on closed loop systems. A discussion about

the implications of adopting analytical redundancy to achieve fault tolerance in flight

control systems follows. The second section provides an introduction to the require-

ments engineering discipline. It illustrates the role of requirements specification in

the system life-cycle, the main phases of requirements engineering, and the agents

involved in the requirements specification process. The chapter closes with a brief

discussion about the advantages of adopting a formal specification language.
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2.1 Issues on the analytical redundancy approach

in fault tolerant flight control systems

2.1.1 Analytical redundancy

Fault tolerance requires some form of redundancy within the system; redundancy pro-

vides alternative means to perform a specific task, thus making the system capable of

continuing operation despite of localized malfunctions, i.e. of tolerating faults. Two

different redundancy approaches are adopted in closed loop system: physical redun-

dancy and analytical redundancy. Physical redundancy is based on a multichannel

architecture consisting of three or more intercommunicating systems that are able to

work independently. A voting mechanism checks for consistency among the redundant

components of each channel. Analytical redundancy identifies with the functional re-

dundancy in the system dynamics. It does not require additional hardware; fault

tolerance is achieved by means of software routines that process sensor outputs and

actuator inputs to check for consistency with respect to the analytical model of the

system. If an inconsistency is detected, the faulty component is isolated and the

control law is reconfigured accordingly. Preserved observability allows estimating the

measurement of an isolated (allegedly faulty) sensor, while preserved controllability

allows controlling the system with an isolated (allegedly faulty) actuator. Numerous

survey papers and books [52], [11], and [51] discuss theoretical and practical aspects

of adopting the analytical redundancy approach to achieve fault tolerance.

The conceptual structure of an analytical redundancy based fault detection and

identification systems consists of two stages: the residual generation stage and the

6



decision making stage [14]. The residuals provide a measure of the inconsistency

between the actual behaviour of the system and the system analytical model. Residual

values close to zero imply a fault free system; on the other hand, residual values

different from zero reveal a fault within the system, and the particular combination

of residual values provides means for isolating the faulty component. Processing of the

residuals to perform fault detection and isolation is the main task of the decision stage.

Decision algorithms range from simple threshold testing on the instantaneous values

or on the moving average of the residuals, to more sophisticated statistical testing

based on the Generalized Likelihood Ratio test [60], or on the Sequential Probability

Ratio test [8]. To achieve fault tolerance an additional recovery stage needs to be

added. This stage consists of an adaptive or multi-model control law that processes

information provided by the decision making stage to produce a suitable control

law. All of the three stages play an equally important role toward the successful

fault tolerant control system; however, most of the research focuses on the residual

generation problem.

Since the early 70’s a variety of residual generation techniques have been sug-

gested in the technical literature. The first techniques adopted a geometric approach

that resulted in what is known as the Beard-Jones Fault Detection Filter [60]. The

detection filters are designed to generate a residual vector with a different direction

for each faulty component, thus allowing both detection and isolation. Design issues

for such filters are addressed in [46] and [45]. Another approach based on the de-

terministic description of the system is the dedicated observer approach [16]. This

7



scheme can be adopted for achieving fault tolerance with respect to sensor failures.

It is based on a bank of observers each processing a subset of the sensor readings and

producing an estimate of the system state vector. Detection and isolation are per-

formed by comparing the state vector estimates produced by the different observers.

In its first applications this scheme was implemented by using Luenberger observers;

then the scheme was extended to non-linear observers [22], Kalman filters [61], and

neural-network based estimators [41]. The parity relation approach is based on the

design of invariant relations among system inputs and outputs on the basis of the

matrices of the system state space model ([15], [12], and [25]). All of the mentioned

approaches focus on the system inputs, outputs, or state variables to produce the

residual vector. A different approach based on parameter estimation focuses on es-

timating unmeasureable system parameters that are directly related to the source of

the fault [33]. The differences among the above techniques are mostly of conceptual

nature; studies have shown the practical equivalence of parity relation and observer

based approaches [48], and of parity relation and parameter estimation approaches

[27].

The weakness of early analytical redundancy based residual generators is in the

sensitivity to process disturbances, and in the low performance for non-linear sys-

tem applications. The unknown input observer approach [23] is the first attempt to

produce a robust fault detection scheme; it focuses on generating a residual vector

that is de-coupled from disturbance inputs. Later on robustness was introduced in

the design of parity relation based schemes leading to the orthogonal parity relation
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concept [28]. Robustness needs lead to a shift of the design into the frequency do-

main to adopt optimal and robust design techniques like H∞ [18] and µ synthesis [7].

To address the non-linearity issue researchers extended linear design techniques or

adopted approaches based on fuzzy logic [50] and neural networks [57] and [39].

2.1.2 Analytical redundancy in flight control systems

Analytical redundancy approach to fault detection has been adopted in a variety of

different fields ranging from automotive engines [26] to electromechanical actuators,

induction motor drives, electrical pumps, pipelines [34], chemical processes, heat ex-

changers [30], gas turbine engines, aircraft jet engine sensors [49], etc. Analytical

redundancy has also been used in flight control systems; the very same aircraft used

to conduct research on fly-by-wire technology was also used as testbed for an analyti-

cal redundancy based fault detection algorithm ([17] and [56]). Since then, a number

of results have been published on the suitability of analytical redundancy approach for

reconfiguration of flight control systems ([59] and [10]), and for diagnosis of aircraft

actuator and sensor failures ([54] and [40]). Nevertheless, doubts remain on the pos-

sibility that analytical redundancy based solutions can meet the strict fault tolerance

requirements of flight control systems [44]. Section 3.1.2 illustrates such requirements

as formulated in the active military specification for piloted flight control systems [2].

There is a considerable difference between the fault tolerance requirements of flight

control systems and those of of the other applications mentioned above. Fault toler-

ance in the terms typical to fault detection and identification literature [11] aims at

enhancing system reliability and availability by monitoring unreliable components of

9



the system under the assumption that the other components are working properly. A

similar perspective has been erroneously adopted in designing analytical redundancy

based fault tolerant in flight control systems. Reliability enhancement and dedicated

monitoring of unreliable components are not the key issues in fault tolerant flight

control systems. In such systems fault tolerance requires the capability of continued

operation after failure of any of the system components (section 6.6 of [3]). Fault-free

assumption on any of the system components is not allowed unless failure of these

components is proven to be extremely remote [2]. Civil and military aircraft equipped

with fly-by-wire flight control systems adopt physical redundancy to achieve fault tol-

erance. Triple and quadruple redundancy is adopted in the Airbus 320 [21] and in the

Boeing FBW-B777 [62] to meet fault tolerance requirements. Increased complexity

of physical redundant systems brings a degradation of overall system reliability; but

the focus is on safety, not on reliability.

Another problem with analytical redundancy is related to the process of per-

formance evaluation of fault tolerant systems adopting such approach. Since these

systems exploit the functional redundancy of the plant, when applied in the field of

flight control systems they need to be validated over the entire aircraft operational

envelope. Instead, most of these solutions are evaluated using a simplified model

of the aircraft dynamics, within a limited region of the flight envelope, and with a

limited set of maneuvers and fault-modes. Furthermore, evaluation criteria are quite

heuristic. A tentative list of criteria for assessing the performance of fault detection

and identification systems can be found in [52], and is summarized below:
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• promptness of detection

• sensitivity to incipient failure

• false alarm rate

• missed fault detection

• incorrect fault identification

A typical testing procedure for fault detection and identification systems involves

injection of a set of failures within a simulation environment and computation of

the above indexes. While obtained values can be effectively used to compare the

performance of two different solutions, they have no absolute interpretation. The

testing environment has a considerable impact on the evaluation of these indexes.

Missed detection and false alarm rate do not provide any valuable information if

they are not determined within the operational envelope of the system. These figures

are highly dependent on the disturbances acting on the system, on the type of fault

injected, and – for non linear systems – on the state of the system. Furthermore, the

fault could be not detectable at all, thus leading to a missed rate of 100%. But this

value is not an index of poor performance of the fault detection system; rather, it

indicates a lack of functional redundancy within the system.

In order to provide an objective basis for the evaluation of analytical redundancy

based fault tolerant flight control systems it is mandatory to develop the requirements

specification for such systems. Validation of a system can be performed only against

its specification.
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2.2 Formal specification of system requirements

2.2.1 Requirements engineering

A successful system is a system that fully addresses the needs for which it was built.

Requirements engineering is the process that discovers those needs, and documents

them in a form that is suitable for analysis, communication, and subsequent imple-

mentation [42]. For a comprehensive evaluation of the role of the requirements in

the development of a system it is important to have a clear understanding of the

system life-cycle. The system life-cycle consists of three cycles: the concept cycle, the

development cycle, and the operation cycle [35]. The first cycle involves outlining the

main functions of the system and investigating its feasibility. The development cycle

involves requirements specification, design, implementation, and testing (or certifi-

cation). The operation cycle spans the time from system certification to retirement

from service. The requirements specification phase takes place between the concept

phase and the design phase. It transforms the informal, incomplete, and ambiguous

needs, as expressed in the concept phase, into a set of requirements that serve as

the supporting document for the subsequent phases of design, testing, and operation.

The design phase transforms required functions into algorithms and physical pro-

cesses that are transformed within the implementation phase into software code and

hardware components. The testing phase aims at determining whether the system

meets all requirements; successful certification implies that the system will meet its

operational phase commitments.

Though requirements specification and design play different roles within the de-
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velopment cycle they are not separated in time. The system is decomposed into a

hierarchy of elements on a functional basis according to the principle of architectural

design [19] . Requirements engineering concerns with all elements at all levels. Steps

of requirements analysis and design alternate throughout the hierarchical structure

of the system to produce a sequence of requirements specifications corresponding

to different levels in the decomposition. The prominent role of the requirements

specification throughout the development cycle and the consequences of inadequate

specification has been widely documented in the literature: ”... No other part of the

work so cripples the resulting system if done wrong. No other part is as difficult to

rectify later.” [20] ”requirements inadequacies play a major and expensive role in a

project failure” [19].

The main activities of requirements engineering are [19]:

• elicitation

• analysis and modeling

• specification

• validation

• management

Elicitation consists in identifying what problems the system needs to address and

in outlining the boundaries between the system and its environment. The modeling

activity consists in the development of an abstract description of the system and its
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environment. The system environment is the part of the world with which the system

will interact and in which the effect of the system are evaluated; its description plays

a fundamental role in the requirements specification. System requirements are condi-

tions over phenomena of the environment [36]; shared phenomena are the phenomena

that belong to both entities while private phenomena belong exclusively to the envi-

ronment. Requirements are conditions over both shared and private quantities. The

system can assure satisfaction of requirements involving private quantities thanks to

environment properties that relate private phenomena to shared phenomena. These

properties are called the indicative properties of the environment and they are true

irrespective of the presence of the system, as opposed to the optative properties that

need to be guaranteed by the system and that are captured by the requirements. Only

by describing the environment it is possible to describe the purpose of the system and

provide the information required to its design.

The specification activity involves the formulation of the requirements by means

of a specification language. There is a variety of formal and informal languages

adopted in requirements engineering; the advantages of adopting a formal specifica-

tion language are discussed in the next section. The validation activity consists in

establishing whether the requirements specification is complete, correct, unambigu-

ous, consistent, testable, and feasible [9]. Completeness and correctness provide that

the requirements specification captures the purpose of the system within its envi-

ronment. Evaluation of completeness is problematic because it involves a subjective

judgment of how well a system that meets the requirement addresses the real-world
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need. Absence of ambiguity, consistency, and testability can be obtained by adopting

a formal specification language. Requirements feasibility needs to be evaluated by

the domain experts. To save efforts and resources it is important to determine ahead

of time whether a system can be built that meets the requirements. The last activity

of requirements engineering is requirements management. In practice it is impossible

to develop a specification that remains stable throughout the life-cycle of the system.

Efficient management of requirements plays a crucial role in managing requirements

evolution in time and in providing traceability. The IEEE Guide for Developing Sys-

tem Requirements specifications [6] provides guidelines to proper structuring of the

specification document to facilitate modifications. However, given the considerable

dimension that specification documents usually reach, management of specification

without well engineered tools is not feasible.

A peculiar feature of requirements engineering is its multidisciplinary nature.

Three different agents are typically involved in the requirements engineering process:

the customers, the domain experts, and the requirements engineers. The customers

are those interested in addressing the real-world problem; they provide a raw defini-

tion of the requirements that typically is the result of the concept phase of the system

life-cycle. The domain experts are those involved in the activity of design, implemen-

tation, integration, and testing. Their contribution in the requirements specification

process is essential since they provide the technical know-how to decompose the sys-

tem into a suitable hierarchical structure, to analyze and model the requirements, and

to assess feasibility of the requirements. The requirements engineers work in strict
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collaboration with the customers to elicit the requirements and collaborate with the

domain experts to perform analysis and modeling of the requirements. Specification,

validation, and management are in prevalence tasks of the requirements engineers

though some validation tasks involve all three agents. The requirements specification

document is the official means of communication between the three agents. It collects

all the information required to design the system along with the acceptance criteria

that will be used to verify whether the system addresses the real-world need.

2.2.2 Advantages of adopting a formal specification language

The requirements specification involves a considerable amount of engineering analysis

and judgement, it is the result of a long sequence of refinements, it is produced with

the collaboration of personnel in different area of expertise, and typically results in

a voluminous document with a complex set of dependencies. These factors make it

difficult to produce a consistent and unambiguous requirements specification. Despite

the considerable expressive power of plain-English, its use as specification language

introduces an additional source of ambiguity and inconsistency. Considerable leverage

can be obtained by adopting a formal specification language. A formal language is

a language with a mathematically defined syntax and semantics. The mathematical

definition of the language potentially eliminates the ambiguity problem, allows for

checking the consistency of the specification, and leads to a specification amenable to

automated analysis. Furthermore, the rigid structure of the formal specification serves

as a guide in formulating the requirements resulting in a homogeneous document

throughout the refinement iterations.
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Improvements obtained by adopting a formal language do not come without a

cost. Formal specification of a requirement must be explicit in all its parts and this

usually results in an even more bulky document. Furthermore, interpretation of a

formal specification is not straightforward resulting in a diminished effectiveness of

the communication capability of the document.

A suitable specification language should be expressive, that is it should be possi-

ble to formalize plain-English requirements without introducing artifacts. It should

not introduce modeling constraints that could bias the specification structure. It

should be monotonic so that the specification can be obtained by composition of sub-

specifications; this feature guarantees ease of update during the development cycle.

It should be supported by well engineered tools for automatic checking of consistency

and for management.

The specification language adopted in this research work is based on predicate

logic and relational algebra and is defined in Appendix A
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Chapter 3

Research framework

In Chapter 1 it was stated that the target of this research work is the development

of a formal requirements specification for a FTFCS where fault tolerance is achieved

by exploiting analytical redundancy; in these terms, the target is quite vague and

imprecise. In this chapter the target is refined by introducing the environment of

the system the author has developed the specification for, and most of all, by elab-

orating on the function of the system within its environment. In this chapter the

author also introduces the aircraft that will serve as pilot application in developing

the specification, and the military specification that will serve as main source for

AFCS performance and fault tolerance requirements.

3.1 FTC: the system to be specified

In order to specify the requirements for any system it is critical to describe the system

environment, mark the boundaries of the system within the environment, and describe

the main functions of the system within the environment. The system under analysis

is the aggregate of hardware and software components that is added to the AFCS to

provide Fault Tolerance Capability (FTC). From now on the acronym FTC is used
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Figure 3.1: Environment of the FTC system.

to identify such system.

3.1.1 FTC environment

The environment of the FTC is the AFCS along with the whole aircraft dynamics.

Figure 3.1 shows a functional block diagram of an aircraft equipped with an AFCS.

The arrows in the diagram represent data streams like forces and moments, electrical

signals, software data, etc; the blocks represent processing units. Square-corner blocks

represent hardware units, while round-corner blocks represent software units. Blocks
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are grouped by means of dash-lines to form subsystems or systems.

The aircraft system represents the aggregate of airframe, control surfaces, and

engines. The control surfaces are typically included in the airframe; here they are

separated since different fault hypotheses are introduced for the two units. The air-

frame block also includes the contribution of gravitational field and air turbulence

to the aircraft dynamics. The group of blocks marked AFCS represents the auto-

matic flight control system. It is composed of the flight control computer (FCC),

the subsystem processing computer-output (Cout), and the subsystem generating

computer-input (Cin). The FCC is composed of the Flight Control Software (FCSw)

and of the DAC and ADC blocks. The last two blocks represent the transformation

from electrical signals to software data and viceversa. The FCSw is composed of three

units: IN, OUT and FCL (Flight Control Law). IN and OUT serve as pre-processing

and post-processing units to the flight control law, while FCL is the block that pro-

cesses software representation of pilot inputs and sensor outputs to produce a software

representation of the input to the actuators, the engines, and the display panel. The

Cin and Cout subsystems contain blocks whose names are self-explanatory. The set of

sensors is separated in primary and secondary sensors. The primary sensors are those

that produce measurements used within the FCL. Measurements from secondary sen-

sors, instead, are used for other purposes, eventually from another control law not

shown in the diagram.

The block diagram of Figure 3.1 does not represent the physical units of the AFCS

and the related interconnections. Rather, it represents the functions needed within

20



the AFCS. For example, the FCC block may represent three physical computers whose

collective behaviour and interface is that of the FCC block.

3.1.2 Main functions of the FTC system

The failure of any component within the FCS can compromise the safety of the

aircraft. For this reason FCS’s must provide some degree of fault tolerance with

respect to failure of their own components. The military specification for FCS’s [2]

defines three different degrees of fault tolerance that correspond to different degrees of

criticality of the FCS function. In turn, the criticality of a FCS function is defined in

terms of the operational state of the aircraft in the post-failure scenario. The relevant

operational state – as far as fault tolerance is concerned – is state III, defined as

follows:

Operational State III is the state of degraded flight control system per-

formance, safety or reliability which permits safe termination of precision

tracking or maneuvering tasks, and safe cruise, descent and landing at

the destination of original intent or alternate but where pilot workload is

excessive or mission effectiveness is inadequate.

Hence, a FCS function is declared:

Essential if loss of the function results in an unsafe condition or inability to maintain

FCS Operational State III

Flight phase essential if loss of the function results in an unsafe condition or in-

ability to maintain FCS Operational State III only during specific flight phases

Non-critical if loss of the function does not affect flight safety or result in control

capability below that required for FCS Operational State III
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The degrees of fault tolerance for FCS functions are defined as follows:

Fail operational The capability of the FCS for continued operation without degra-

dation following a single failure, and to fail passive in the event of a related

subsequent failure.

Fail passive The capability of the FCS to automatically disconnect and to revert to

a passive state following a failure.

Fail safe The capability of the FCS in a single channel mode of operation to revert

to a safe state following an automatic disconnect in the event of a failure or

pilot initiated disconnect.

Each FCS function is required to provide a certain degree of fault tolerance ac-

cording to its criticality. More specifically, essential FCS functions are required to be

fail operational, flight-phase-essential FCS functions are required to be fail passive,

and non-critical FCS functions are required to be fail safe. In practice these fault

tolerance levels are exceeded for flight-phase-essential and essential controls due to

reliability or flight safety requirements. Here the focus is on fault tolerance only and

neither reliability nor safety requirements are considered .

The FCS functions under anlysis are typical autopilot functions, such as Pitch

Attitude Hold, Roll Attitude Hold, etc. Autopilot FCS’s are non-critical functions;

as such, they are required to be fail safe. Typically, fault tolerance requirements

for autopilot functions are met by monitoring values of sensor readings and of con-

trol inputs to actuators; if these values are over predetermined ranges the autopilot

automatically disengages returning control to the pilot. In this research work autopi-

lot fault tolerance requirements are extended to fail operational capability, with the
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constraint of adopting the analytical redundancy approach.

Analytical redundancy based fault tolerance is achieved at the software level; soft-

ware routines process control law inputs and outputs to check their consistency against

an analytical model of the controlled system (in this case the aircraft). Analytical

redundancy, however, cannot be used to provide fault tolerance with respect to failure

of all the FCS components. Any component of the FCS, either hardware or software,

can fail. Analytical redundancy cannot help with software failures; nor it can help if

in a single-channel FCS the FCC fails, since the FCC hosts the software that provides

fault tolerance. Failure of either the control or the display panel cannot be accommo-

dated at the software level; hence, analytical redundancy is – under these conditions

– useless. The remaining components of the FCS are the actuators and the sensors.

Analytical redundancy based solutions presented in the literature typically separate

the problems of actuator and sensor failure. The rationale behind this choice is sim-

ple: fault tolerance with respect to sensor failures is mostly an observation problem,

while fault tolerance with respect to actuator failures is mostly a control problem;

different expertise and techniques are required for designing the two different FTC

systems. The author adopts this modular approach and chooses to focus on sensor

failures only. Hence, the FTC system is required to provide fault tolerance with re-

spect to failure of any of the primary sensors. Fault tolerance with respect to failure

of the secondary sensors is not required since secondary sensor outputs are not used

by the FCL.
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Focusing on sensor failures does not imply that all remaining components of the

FTC environment are not subject to failure. Whether components are subject to

failure or not cannot be arbitrarily established; this is a constraint that is dictated

by the nature of the component. Under the realistic assumption that each FCS

component is subject to failure the question is which redundancy approach should be

adopted to provide fault tolerance. For some of the FCS components fault tolerance

cannot be achieved at the software level; these components are the FCSw, the FCC,

the CP, and the DP. The author assumes that fault tolerance with respect to failure of

these components is achieved by means of physical redundancy, and that performance

requirements are still satisfied following a single failure. On the other hand, the author

assumes that fault tolerance with respect to actuator and sensor failures is achieved

at the software level.

Since analytical redundancy is provided by the functional redundancy within the

aircraft dynamics the impact of failure of the aircraft subsystem components must be

taken into account as well. Control surfaces and engines are assumed to be fallible,

while different hypotheses are made for the airframe. In military aviation partial

separation of wing or tail surfaces is possible in a combat scenario; while in commercial

aviation this is quite an extraordinary event. For this reason the airframe is assumed

infallible. Fallible components whose fault tolerance is not guaranteed by means of

physical redundancy are marked by means of oblique lines in figure 3.1 .

In the scenario described above, different modules are used to achieve fault toler-

ance. These modules adopt either physical or analytical redundancy to provide fault
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tolerance with respect to failure of a subset of components of the FCS. It is important

to outline to what extent these modules interact with each other. In fact, fault tol-

erance achieved by means of analytical redundancy is inherently non-modular. The

detection, identification, and accommodation tasks are performed by exploiting the

correlation among different quantities of the system. This implies that the system

relies on the output of other fallible components – eventually monitored by a different

FTC module – to achieve fault tolerance with respect to failure of one component .

Physical redundancy instead is highly modular. Fault tolerance of each component

is achieved by means of similar components that provide means for both fault detec-

tion and accommodation. All adopted information is local to the set of redundant

components. The dependencies that arise with analytical redundancy make void the

modular approach unless the modules are organized in a stratified structure. Within

this structure each module builds a new layer of fault tolerant system components.

Within the framework of this research one module represents the FTC adopting the

physical redundancy approach, while two other modules represent the FTC adopting

the analytical redundancy approach to provide fault tolerance with respect to sensor

and actuator failures respectively. Physical redundancy is assumed to be exploited

first to guarantee correct operation of the hardware hosting and interconnecting to

the FCSw. The physical redundancy based FTC module is at the higher level in

the FTC stratified structure. Hence, physical redundancy is transparent to the FTC

modules that exploit analytical redundancy. The FTC module that provides fault

tolerance with respect to sensor failures forms the second layer. This layer produces
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validated readings for the monitored sensors. This is the first layer adopting the ana-

lytical redundancy approach. For the sake of modularity it must filter out the effects

of failures of components that are neither among the monitored sensors, nor among

the components whose fault tolerance is provided by the first FTC layer. The last

layer is the one providing fault tolerance with respect to actuator failures. This layer

can rely on fault tolerant readings from the monitored sensors. However, it must filter

out the effects of components that are neither among the actuators, nor among the

components whose fault tolerance is provided by the first two FTC layers.

Before illustrating the interface between the FTC and its environment the main

functions of the FTC system are summarized as follows:

The FTC system must provide fault tolerance, at the fail-operational

degree, with respect to failure of the primary sensors. Fault tolerance

must be achieved at the software level, without use of redundant sensors

(i.e. exploiting analytical redundancy of the FTC environment). Fault

tolerance capability must be achieved regardless of failure of components

that are neither among the monitored sensors, nor among those whose

fault tolerance is provided by means of physical redundancy. If the FTC

is not engaged, the original (without FTC) operation of the AFCS must

be guaranteed.

3.1.3 FTC interface with its environment

Figure 3.2 shows how the FTC system fits within its environment. To contain the

dimensions of the drawing either acronyms or short-names are used in place of some
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of the labels used in figure 3.1. More specifically ACT denotes the actuators, DP

and CP denote the display panel and the control panel respectively, and Sp and Ss

denote the primary and secondary sensors respectively. The FTC system is com-

posed of the blocks marked with a thicker outline. CPFTC and DPFTC represent the

control and display panel of the FTC. They represent the interface with the pilot,

and provide means to activate/deactivate the FTC and to signal the operating sta-

tus (nominal/faulty) of the monitored sensors. ADCFTC and DACFTC represent the

interface between the electrical signals from the FTC control and display panels and

the related software variables. INFTC and OUTFTC represent the software modules

that serve as interface between the ADCFTC and DACFTC blocks, and the FTC-AR

block. FTC-AR is the core of the FTC; it represents the software routines that pro-

cess sensor readings (from the IN block) and control inputs (from the OUT block) to

check whether the correlation among them is consistent with the analytical model of

the environment. This is the system that exploits analytical redundancy to provide

fault tolerance.

With the introduction of the FTC system within the FCS fault tolerance with

respect to failure of the FTC components must be guaranteed. These components

are of the same kind of those for which physical redundancy was adopted to achieve

fault tolerance. Hence, fault tolerance with respect to failure of the FTC components

is assumed to be achieved likewise.
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3.2 DHC-2 aircraft

In order to develop the requirements specification of a FTC system all relevant details

of its environment must be specified. Hence, a pilot application is needed, an aircraft

equipped with a FCS that can be adopted as environment for the FTC. The aircraft

selected is the De Havilland DHC-2, also known as Beaver. This is a general aviation,

single engine, high-wing aircraft with a wing span of about 15 meters, fuselage length

of about 9 meters, and a maximum take-off weight of about 2300 Kg. Its analytical

model, along with its FCS are provided in the Flight Dynamics and Control (FDC)

Toolbox for Matlab [38], [37]. Information in [38], [37], and [53] was adopted to

provide a description of the blocks of the FTC environment in figure 3.1. The cited

documentation provides the analytical model of the DHC-2 aircraft, of the actuator-

control-surface chain, the engine, and the continuous-time flight control laws. This

information covers the description of the aircraft subsystem, the actuators block, and

the FCL block. The description of the environment was completed by developing

suitable analytical models for the remaining blocks.

Aerodynamic derivatives and moments of inertia from [37] were adopted for the

analytical model of the aircraft; uncertainty bands about nominal values were intro-

duced according to [31]. Actuator-control-surface models include elevators, ailerons,

and rudder dynamics; the analytical model of the flaps is not included since the flaps

are not used by the autopilot functions. The cited documentation does not con-

tain any sensor model; hence, analytical models were developed from the technical

specification of the following sensors:
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Table 3.1: DHC-2 autopilot functions and related controls

Autopilot function Controls

Pitch Attitude Hold (PAH) SWPAH , θr

Altitude Hold (ALH) SWALH

Roll Attitude Hold (RAH) SWRAH , φr

Heading Hold (HH) SWHH

Heading Select (HS) SWHS, ψr

Rate gyros and accelerometers MotionPakTM Multi-Axis Inertial Sensing Sys-

tem, by BEI, Systron Donner Inertial Division

Angle of attack FAA-authorized commercial airliner angle of attack transducer Se-

ries 2568A, by Gulton Statham

Dynamic pressure sensor differential pressure sensor series 142PC05D by Honey-

well - Microswitch

Static pressure sensor absolute pressure sensor series 142PC15A, by Honeywell -

Microswitch

Attitude and heading sensors FAA authorized Advanced 4MCU IRU, by Hon-

eywell.

The control panel consists of the autopilot control switches and knobs listed in

Table 3.1. The Manual Flight Control System (MFCS) controls are omitted since

they are not relevant to this study. A generic 16-bit data acquisition card with a

±10 Volt input and output range was adopted for the ADC and DAC components.

Input data to the ADC and output data from the DAC are electrical signals within

the ±10 Volt range. Output data from the ADC and input data to the DAC are the

software variables containing the 16-bit counterpart of the related electrical signals.

These quantities are named raw software variables, as opposed to the refined soft-
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ware variables representing the value of the measured quantities as used by the flight

control laws. The IN and OUT blocks transform raw software variables into refined

software variables. Furthermore, the IN block processes pressure and temperature

readings to produce air-data (air density, airspeed, barometric altitude) according to

the ICAO Standard Atmosphere model. The flight control laws (FCL block) are those

implemented within the Flight Dynamics and Control Toolbox for Matlab [37]. The

original control laws have been discretized using the forward Euler approximation

with a sampling rate Ts = 1/50s. The AFCS functions provided with the FDC Mat-

lab Toolbox are listed in Table 3.1. The description of the Flight Control Computer

is not provided, it is assumed that the computer provides a suitable environment for

hosting the FCSw. Figure 3.3 represents the block diagram of the DHC-2 aircraft

and its AFCS. Each component is represented by an identifier composed of the letter

’C’ and a subscript that identifies the component.

3.3 Military specification for AFCS

To specify the requirements of the FTC system the military specification MIL-F-

9490D [2] is adopted as main source for fault tolerance and performance specification

for AFCS. MIL-F-9490D ”Flight Control Systems - Design, Installation and Test of

Piloted Aircraft, General Specification for” [2] is the active specification for FCS for

US Air Force manned piloted aircraft. It is supported by other military specifica-

tions, standards, handbooks, and non-military publications such as FAA Advisory

Circulars, National Aircraft Standards, Technical Reports, etc. The most relevant
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supporting documents with respect to this research is the military specification MIL-

F-8785C ”Flying Qualities of Piloted Airplanes” [4], the supplement ”Appendix to

Background Information and User Guide for MIL-F-9490D” [3], and the Technical

Reports ”Background Information and User guide for MIL-F-9490D” [1] and ”Back-

ground Information and User guide for MIL-F-8785C” [5].

MIL-F-9490D contains FCS requirements specification (Section 3) along with clas-

sification of FCS operational states and of FCS criticality (Section 1), and quality

assurance procedures (Section 4). In fact, the document is structured to serve as a

guide for all aspects of design, analysis, and test of FCS. The requirements specifi-

cation spans over the whole system hierarchy, from high-level system requirements

(Section 3.1) to subsystem and components requirements (Section 3.2). It covers a

wide typology of requirements such as performance requirements for autopilot func-

tions, automatic navigation, ride smoothing, etc.; functional requirements for failure

immunity, system test and monitoring, AFCS override, warning and status annun-

ciations, etc.; structural requirements; maintenance requirements; implementation

requirements related to technical details such as wiring, shielding, assembling, etc.

For the purpose of developing the requirements specification for the FTC system a

narrow subset of requirements has been selected. Appendix B.1 contains the referred

military specifications. Selected specifications are reported as they are, with modi-

fications and cuts according to the scope indicated in the sequel. The performance

requirements for the following autopilot functions are considered: Pitch Attitude

Hold (PAH), Altitude Hold, (ALH), Roll Attitude Hold (RAH), Heading Hold (HH),
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and Heading Select (HS). Coordination requirements for lateral-directional control

functions, both in steady banked turns and in level flight are considered. Among

the functional requirements the focus is on fault-tolerance requirement, limited to

those relevant to fail-operational functions. Failure transient requirements are not

considered since the focus is on fail-operational capability only.

Specifications contained in [2] do not constitute the whole set of specification for

an aircraft; rather, they represent the aircraft-independent specifications. Aircraft-

dependent specifications are collected within the documentation provided by the air-

craft manufacturer and are referred to as detail-specifications. They specify the op-

erational envelope of the aircraft, the aircraft normal and fault states, the maneuver

limits, AFCS functions and their operation such as engagement and disengagement

procedures, selection logic, functional safety criteria and limits, and all relevant in-

formation related to the specific aircraft. To develop the DHC-2 detail-specification

the documentation discussed in the previous section is adopted.
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Chapter 4

Formal specification of the FTC
environment

The FTC specification is developed on top of the performance specification derived

from MIL-F-9490D and of the DHC-2 detail-specification. Since the objective is

to develop a formal requirements specification for the FTC, performance and detail

specification needs to be formalized first. Relational algebra is adopted as the formal

specification framework. It is introduced in Section 4.1; for a more detailed descrip-

tion of relational algebra refer to Appendix A and therein referenced bibliography.

To develop the performance and detail formal specification the relevant requirements

are decomposed on a functional basis into elementary requirements. Each elementary

requirement is formalized separately to produce an elementary specification. Then,

composition operators of relational algebra are used to build up higher level require-

ments to develop the whole specification. In this chapter the approach toward formal-

izing the elementary requirements is described in detail. The formalization process is

illustrated on one of the elementary requirements from the performance specification.

Then, the composition of the elementary specifications is shown using an example.

Finally, the requirement structure of the performance and detail specification are
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illustrated.

4.1 Relational specification of elementary require-

ments

Equation 4.1 represents the prototype of a relational specification.

R =
{
( A, B )

∣∣∣ predicate(A,B)
}

(4.1)

This relation represents a set of elements from the space obtained from the cartesian

product of the domain space A and the image space B. The space A×B is denoted

the signature of the relation, and ( A, B ) represents the generic element of this space.

Boldface font is adopted for the spaces to distinguish them from their respective

elements. Each element of a space represents a structure of variables. A and B

denote the domain and image elements respectively, and their variables the domain

and image variables. predicate(A,B) is a predicate in terms of the domain and image

variables, of constants, and – eventually – of quantified variables introduced within

the predicate itself. The predicate evaluates either true or false depending on the

value of the domain and image variables. The relation represents the set of couple of

elements ( A, B ) that cause the predicate to evaluate true.

A requirement can be interpreted as a relationship among some relevant quantities.

Consider the space whose coordinates identify with the quantities adopted in the

requirement. Each point of this space represents a particular choice of values for

those quantities. The required relationship identifies with a region in the space of

requirement’s quantities, much like a function y = f(x) identifies with a curve in
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the space X × Y . This region contains all the elements whose quantities’ values

satisfy the required relationship. A relation of the type described in equation 4.1

can identify that region – hence specify the related requirement – provided that the

adopted constants and variables represent the relevant quantities, and the predicate

captures the required relationship among those quantities.

In the requirement formalization process the quantities that are explicitly or im-

plicitly used to formulate the requirement are identified first. Hence, constants and

variables to represent those quantities are introduced. Constants are used to rep-

resent fixed quantities; image variables are used to represent quantities whose value

is somehow constrained by the requirement; domain variables are used to represent

quantities whose value delimits the scope of the requirement; quantified variables are

used to represent quantities that play a role in the formulation of the requirement

but that are neither constrained, nor used to specify the requirements scope. For

the purpose of making the relation more readable and the whole specification less

repetitive and cumbersome auxiliary terms are introduced. These terms represent

expressions and functions that are repetitively used within the specification. Finally,

a predicate that captures the semantics of the requirement is formulated. This re-

quires the predicate to evaluate true if and only if the required relationship among

the requirement quantities holds.

Typically, variables used in relations represent the instantaneous value of the

related quantities. This approach allows for specifying requirements in terms of in-

stantaneous input/output relationships, but it is not suitable for specifying AFCS
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requirements. Most of AFCS performance requirements are formulated as a con-

straint over a quantity’s time evolution within a certain time interval, rather than

over the quantity’s instantaneous values. Damping requirements, and RMS-deviation

requirements are among two examples. The damping requirement is typically ex-

pressed in terms of the damping factor of the equivalent second order system. To

verify this requirement an identification procedure is used to process system input

and output over the relevant time interval and to produce the equivalent system. It

is not possible to formulate the damping requirement on the basis of instantaneous

input/output values. The RMS-deviation requirement is by definition a constraint

over the integral of the output within the relevant time interval. Once again, this

requirement cannot be formulated as a constraint over instantaneous values of system

output.

To solve this problem the author adopts variables that represent the whole time

evolution of the related quantity, rather than its instantaneous values. For example,

the variable φ() is used to represent the time evolution of the bank angle within the

time interval [0,∞). The empty brackets () are adopted to indicate that the variable

represents the whole time evolution of a quantity rather than the value of the quantity

at a specific time instant.

To illustrate the requirements formalization process and provide a guide to inter-

preting the relational specification the formalization of the Heading Hold (HH) control

function requirement is commented. This requirement is fairly simple, yet provides a

number of meaningful points for discussion. The plain-English specification from [2]
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is reported below; to facilitate the analysis each section of the requirement has been

labeled with a letter.

3.1.2.2 Heading Hold

a) In smooth air, heading shall be maintained within a static accuracy of ±0.5

degree with respect to the reference.

b) In turbulence, RMS deviations shall not exceed 5 degrees in heading at the

intensities specified in 3.1.3.7.

c) When heading hold is engaged, the aircraft shall roll towards wings level.

d) The reference heading shall be that heading that exists when the aircraft passes

through a roll attitude that is wings level plus or minus a tolerance.

As first step the plain-English requirement is analyzed to identify the quantities

that are used either explicitly or implicitly within the specification. During this

analysis the author introduces – sometimes between brackets – the identifiers that

will represent those quantities within the relation. The HH requirement specifies

accuracy requirements for the heading angle (ψ()) for operation in both smooth air

and turbulence when the HH function is engaged. Hence, the two operation cases must

be separated. To this purpose the auxiliary function turb(ta, tb)is introduced. This

predicate is expressed in terms of the random and discrete turbulence components

of the wind velocity vector uwt(), vwt(), wwt(), uwg(), vwg(), wwg(), and of the time

instants ta and tb. It returns false if and only if the airplane is operating in smooth air

within the time interval [ta, tb]. Accuracy requirement for operation in turbulence are

expressed in terms of the RMS deviation from the reference heading. The auxiliary
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function RMS(dev(), ta, tb) is introduced; it returns the RMS value of the variable

dev() within the specified time interval [ta, tb]. The relevant time instants of the

specification are three. The first one (t1) is the HH function engagement instant. The

second one (t2) is the time instant when the reference heading (ψr) is determined.

In fact, the specification requires the airplane to roll (φ()) towards wings level, and

fixes the reference heading as ”that heading that exists when the aircraft passes trough

a roll attitude that is wings level plus or minus a tolerance” (φacc). The third time

instant (t3) can be any time instant preceding HH function disengagement. Other

quantities that need to be represented are the required accuracy levels in both smooth

air (ψacc) and turbulence (ψRMS) operation, and the HH control switch (SWHH()).

Another auxiliary function is introduced: engaged(SW (), ta, tb); it returns true if

control SW () is engaged at t = ta and stays engaged within the whole time interval

[ta, tb].

After identifying the relevant quantities the related identifiers are separated into

classes of constants, domain, image, and quantified variables, and auxiliary functions.

Tables 4.1 trough 4.4 list all identifiers used within the HH relational specification.

The signature and the predicate of the HH relational requirement are given by

the following two equations:

HHsign =
(
( SWHH(), uwt(), vwt(), wwt() ), ( ψ(), φ() )

)
(4.2)
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Table 4.1: Constants used within the specification of the HH function.

ID and value Type Definition

ψacc = 0.5 · degree2SI angle-T heading accuracy in smooth air
ψRMS = 5 · degree2SI angle-T RMS heading accuracy in turbulence
φacc = 1.0 · degree2SI angle-T roll accuracy in smooth air

Table 4.2: Domain and image variables used within the specification of the HH func-
tion.
ID Type Definition

SWHH() time-T → switch-T HH autopilot on/off switch
uwt(), vwt(), wwt() time-T → velocity-T wind-turbulence components of wind

velocity along body-axes
uwg(), vwg(), wwg() time-T → velocity-T wind-gust components of wind veloc-

ity along body-axes
ψ() time-T → angle-T heading angle
φ() time-T → angle-T bank angle

Table 4.3: Quantified variables used within the specification of the HH function.

ID Type Definition

t time-T generic time instant
t1 time-T HH function engagement time instant
t2 time-T time instant when the reference heading is determined
t3 time-T time instant delimiting the scope of the requirement
ψr angle-T reference heading

Table 4.4: Predicates and functions used within the specification of the HH function.

ID Description

engaged(SW (), ta, tb) predicate that evaluates true only if the switch SW () is
engaged at t = ta and stays engaged throughout the time
interval [ta, tb]

RMS(f(), ta, tb) Root Mean Square value of the function f() over the time
interval [ta, tb]

turb(ta, tb) predicate that evaluates true if random and discrete turbu-
lence wind components are not zero
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HHpred = (4.3)

∀ t1 ∀ t3
(

0 ≤ t1 < t3 < ∞ ∧
engaged(SWHH(), t1, t3) ⇒
∃ t2 ∃ψr

(
t1 ≤ t2 < t3 ∧
∀ t

(
t2 ≤ t ≤ t3 ⇒ |φ(t)| < φacc

)
∧

ψr = ψ(t2) ∧
¬ turb(t1, t3) ⇒ ∀ t

(
t2 ≤ t ≤ t3 ⇒ |ψ(t) − ψr| < ψacc

)
∧

turb(t1, t3) ⇒ RMS(ψ() − ψr, t2, t3) < ψRMS)
)

Hence, the relational requirement for the HH control function is:

RHH =
{

HHsign

∣∣∣ HHpred

}
(4.4)

The HH predicate 4.3 can be read as follows:

FOR EVERY couple of time instants t1, t3

IF

[t1, t3] is a time interval within [0,∞) AND

the HH control function is engaged at t = t1 and stays engaged

throughout the interval [t1, t3]

THEN

there must EXIST a time instant t2 and a reference heading ψr such

that
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c1) t2 is within the interval [t1, t3) AND

c2) the bank angle is approximately zero within the time interval

[t2, t3) AND

d) the reference heading ψr is the heading angle at t = t2 AND

a) IF there is no turbulence within the time interval [t1, t3] THEN

the deviation of the heading angle ψ from the referenced heading

ψr shall not be larger than ψacc at all time instants within the time

interval [t2, t3] AND

b) IF there is turbulence within the time interval [t1, t3] THEN the

RMS value of the deviation of the heading angle ψ from the refer-

enced heading ψr over the time interval [t2, t3] shall not be larger

than ψRMS

The labels in the THEN section recall the labels inserted in the plain-English

specification.Sections a) and b) refer to the accuracy requirement in smooth and

turbulence operation respectively. Both sections c1) and c2) refer to section c) of the

plain-English specification. This section reads ”When heading hold is engaged the

aircraft shall roll towards wings level”. This section has been formalized by requiring

the airplane to reach – at a certain time instant t2 – a state with a bank angle close to

zero. To quantify how close, the author adopted the accuracy threshold φacc used in

the Roll Attitude Hold (RAH) specification ( Section 3.1.2.1 of [2], see also Appendix

B.1). This solution is the author’s best guess to make up for the lack of a threshold

in the plain-English specification. The same solution was adopted to make up for

the lack of indications on how to determine the reference heading. In fact, section d)

43



of the original specification reads ”The reference heading shall be that heading that

exists when the aircraft passes through a roll attitude that is wings level plus or minus

a tolerance”. The tolerance is left unspecified. Another problem within the plain-

English specification is the lack of a settling-time requirement for the airplane to reach

wings level. Unfortunately, the settling-time requirement cannot be extracted from

the RAH specification since in that specification the settling-time is specified only for

the case of a 5 degree attitude disturbance.

While analyzing the AFCS requirements from [2] the author found out that most

of them are incomplete and not properly specified. The qualitative nature of the

AFCS specification is explicitly stated in Section 3.1.11 of [4]. The qualitative na-

ture of some requirements like ”Entry and exit from the turn shall be smooth and

rapid” (Section 3.1.2.3 in [2]), ”For engagement at rates above 2000 fpm the AFCS

shall not cause any unsafe maneuvers” (Section 3.1.2.5 in [2]), or ”No out of trim

condition shall exist at disengagement which cannot be easily controlled by the pi-

lot” (Section 3.1.3.3.2 in [2]) did not allow to develop a formal specification for the

whole plain-English requirement. However, this does not represent a problem for

the development of the FTC formal specification. Because of the monotonic nature

of relational requirements, the FTC specification can be developed on top of tem-

porary FCS specification, postponing completion of the FCS specification to a later

refinement step.
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4.2 Composition of elementary requirements

In order to describe the composition of the elementary specifications the composi-

tion operators of relational algebra are now introduced along with the concept of

refinement ordering between requirements and of system correctness. Relation R1

refines relation R2, denoted by R1 w R2, if R1 specifies a stronger requirement

than R2, in the sense that it imposes a constraint over a wider domain and/or it is

more specific. System correctness is defined as a refinement constraint between the

relation P representing the system implementation and the relation R representing

the system requirements: P is correct with respect to R if P w R. The adopted

composition operators are the join ( t ) and the product (◦) operators. The join of

two relations represents the sum of the requirements. A system P that meets the

requirement specified by R1 t R2 also meets the requirements specified by R1 and

R2 separately. This is formally stated by the following formula:

P w R1 t R2 ⇒ P w R1 ∧ P w R2 (4.5)

The join operator is adopted to compose relations that capture parallel requirements

within the specification structure. The product of two relations R1 and R2 represents

the requirement of the sequence of two systems P1 and P2 whose requirements are

specified by R1 and R2 respectively. If P12 denotes the series of systems P1 and P2

the main property of the product operator is defined by the following formula:

P1 w R1 ∧ P2 w R2 ⇔ P12 w R1 ◦ R2 (4.6)
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Figure 4.1: Sample requirements specification structure.

The product operator is adopted to compose relations that capture sequential re-

quirements within the specification structure.

Figure 4.1 represents a sample specification structure. R1, R2, and R3 are

the relations that specify the elementary requirements. The decomposition of the

whole system into subsystems and components according to a convenient partition-

ing criterion is what drives the decomposition of the specification into elementary

requirements. The same partitioning criterion also determines the nature of the re-

lationship among the specification components. In figure 4.1 relations R2 and R3

represent sequential requirements; this is graphically denoted by the arrow that di-

rectly connects the two relations. R1 and the sequence of R2 and R3 represent

parallel requirements. The join of these relations forms a higher level requirement

named RTOT ; this is denoted by the dash-line box that groups the three relations.

The other two arrows represent the signature of RTOT . More precisely, A represents

the domain space, while B represents the image space. Hence, the whole specification
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can be formulated as follows:

R1 ⊆ A × B (4.7)

R2 ⊆ A × C (4.8)

R3 ⊆ C × B (4.9)

RTOT = R1 t R2 ◦ R3 (4.10)

Composition operators cannot be applied to any couple of relations. The join

operator can be applied only to relations with the same signature. On the other

hand, the product operator can be applied only if the image space of the left re-

lational operand coincides with the domain space of the right relational operand.

Hence, before composing the relations to form higher level requirements the domain

and/or the image spaces of the relations used in the composition might need to be

expanded. Since, the expansion operation preserves the property that is captured

by the relation, the expanded relation specifies the same requirement as the original

relation. A possible approach is to expand the spaces of all relations to the space of

all variables that appear in the specification. The expanded relations would form a

set of homogeneous relations and both join and product operators could be applied

to any couple of expanded relations. However, this approach would lead to a flat set

of relations, where the structure of the system is lost.

The adopted expansion approach preserves the structure of the system, with the

result of a more informative specification that potentially leads to a more effective

validation. To illustrate the expansion process the composition of the Heading Hold (

Section 3.1.2.2 in [2]) and the Heading Select (HS) ( Section 3.1.2.3 in [2]) requirements
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is illustrated. For the expansion operation only the two relation signatures are needed.

The signature of the HH relation is given in equation 4.2. The signature of the HS

relation from the plain-English requirement is now determined.

3.1.2.3 Heading Select

a) The aircraft shall automatically turn through the smallest angle

b) to any heading selected or preselected by the pilot and

c) maintain that heading to the tolerances specified for heading hold.

d) The contractor shall determine a bank angle limit which provides a satisfactory

turn rate and precludes impending stall.

e) The aircraft shall not overshoot the selected heading by more than 1.5 degrees.

f) Entry into and exit from the turn shall be smooth and rapid.

g) The roll rate shall not exceed 10 deg/sec and

h) roll acceleration shall not exceed 5 deg/sec/sec.

The requirement imposes a constrain over the roll angle φ() (section a), over the

heading angle psi() (sections c and e), and over the roll rate p()(sections g and h). The

scope of the requirement is determined by the HS engagement control switch SWHS()

(implicitly assumed activated), by the selected reference heading ψr() (section b), and

by the wind velocity components uwt(), vwt(), wwt() (section c) through the reference

to the HH requirement. Hence, the signature for the HS relational requirement is:

HSsign =
(
( SWHS(), ψr(), uwt(), vwt(), wwt() ), ( ψ(), φ(), p() )

)
(4.11)
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The signature of the HH relational requirement is reported below:

HHsign =
(
( SWHH(), uwt(), vwt(), wwt() ), ( ψ(), φ() )

)
(4.12)

The HH and HS control function requirements are very close in the AFCS per-

formance specification structure (see Section 4.3.1). The join of the two relational

requirements form the Heading Control Function requirement. Nevertheless, the two

signatures 4.12 and 4.11 are different. In order to expand the domain and image

space of the HH and HS relations while preserving the structure of the specification

the author proceeds with two expansion operations. The first expansion is based

on partitioning the set of all variables used in the specification into disjoint subsets.

This partitioning is performed on the basis of the functional equivalence criterion that

drove the decomposition of the systems into subsystems and components. Hence, each

occurrence of equivalent variables in the signature is substituted with the correspond-

ing class of equivalence. The classes of equivalence adopted in the specification are

listed in Table C.5 along with their respective variables. Among these classes there

is the class of pilot input variables Up, the class of aircraft state variables X , and

the class of the components of the wind velocity vector Uw. With the three equiva-

lent classes just introduced the HH and HS relation signatures can be formulated as

follows:

HHsign2 =
(
( Uw,Up ),X

)
(4.13)

HSsign2 =
(
( Uw,Up ),X

)
(4.14)
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The two signatures 4.13 and 4.14 are now the same and the two relations can be

joined.

For some relations a second expansion operation is needed. This is the case of the

sensor requirement RSp and of the control panel requirement RCP in the DHC-2

detail-specification. The two requirements need to be joined as part of the computer

input requirement RCIN. However, they have the following different signatures after

the first expansion:

RSsign2 =
(
X , X̃

)
(4.15)

RCP sign2 =
(
Up, Ũp

)
(4.16)

X̃ and Ũp represent the class of electrical signals correlated to aircraft states and

pilot inputs respectively. The problem arises because the equivalence partitioning

introduced in the first expansion is based on the first subsystem composition of the

FTC environment components. The RCIN relation is one level above, since it sums

the subsystem requirements RSp and RCP . To solve this problem equivalent classes

that are at the same hierarchical level in one of the successive compositions of the

system components are merged together. Hence, X and Up, and X̃ and Ũp are

combined to form the following common signature for RSp and RCP :

RSsign2 =
(
( X ,Up ), ( X̃ , Ũp )

)
(4.17)

Table C.1 collects the original signature and the expanded signatures for each rela-

tional term used in the specification.
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4.3 Formal specification of the FTC environment

Appendix B collects the elementary relational specifications of the FTC environment.

More specifically, Section B.1 collects the elementary requirements of the AFCS per-

formance specification, Section B.2 collects the elementary requirements of the DHC-2

detail-specification, Section B.3 collects the fault modes for each fallible component

of the FTC environment, and Section B.4 collects the restriction sets used to delimit

the scope of the AFCS specification when applied to the DHC-2 airplane.

Each relational requirement is denoted by the letter R and a subscript that iden-

tifies the specific requirement (e.g. RPAH identifies the relational requirement for

the PAH control function). Each requirement is formalized as illustrated in Section

4.1. The signature reported within the definition of the relation is the signature ob-

tained after the first expansion discussed in the previous section. Table C.1 collects

all elementary requirements along with a short explanation of the property captured

by the relation, domain and image variables, and the signatures obtained after each

expansion. The composition of the elementary specifications to form the performance

and detail specification are discussed in the sections 4.3.1 and 4.3.2.

Airplane failure states are part of the DHC-2 detail-specification. Each airplane

failure state consists of the airplane normal state modified by one or more malfunc-

tions in airplane components or systems. Each mode of failure that is not extremely

remote should be considered (see Section 3.1.6.2 of [4]). The specification of the

detailed set of airplane failure states is out of the scope of this research. Hence,

only one fault-mode for each fallible component is specified. Relations are used to
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describe classes of fault-modes for a specific component. For example, the relation

specifying the partial loss of rudder control surface models any partial loss up to total

loss of the surface. The identifier of a fault-mode relation is the same as that used

for the relation describing the required behaviour of the corresponding component,

with a number added to the subscript to identify the fault mode (e.g. Rp,1 is the

relation describing fault mode number 1 for the roll rate gyro). The signature of a

fault-mode relation is the same used in the relation specifying the requirements for

the corresponding component, while the related predicate captures the specific faulty

behaviour. The considered faults are very simple: these are partial loss of rudder con-

trol surface, engine loss, bad connection of sensor output, and stuck actuators. Sensor

fault modes are an extrapolation of results from fault-mode-tests performed on rate

gyros similar to the gyros adopted in this specification. For lack of aerodynamic data

failure of a single aileron or a of single elevator are not modeled. Section B.3 collects

all fault-mode relations, while Table C.3 lists them along with a brief description.

The restriction-sets are used to delimit the scope of the performance specifi-

cation. There are three restriction-sets: Sao, Sat, and SCtr . Sao specifies the

control-function selection logic; this information constitutes part of the airplane

detail-specification as required in Section 3.1.2 of [2]. Sat specifies the turbulence

model to be adopted for verifying performance requirements with the airplane oper-

ating in turbulence. Only random turbulence is considered, while discrete turbulence

(e.g. wind-gusts) and mean wind are not modeled. Effects of wind-shear are omit-

ted since they become dominant in terminal flight-phases, while here the focus is on
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autopilot functions that are engaged in non-terminal flight-phases only. The model

adopted for random turbulence is the Dryden model with length and intensities scales

as specified in Section 3.7 of [4]. SCtr represents the constraint over trim condition

to guarantee a valid set of values. Each of these sets contains only a subset of the

variables used within the performance specification. To make these sets homogeneous

with the spaces of the relations they are going to be used with they are expanded

as illustrated in Section 4.2. Table B.4 lists the restriction-sets along with a short

description, the relevant variables, and the expanded spaces.

Appendix C collects all supporting tables for the FTC environment specification.

Some of these tables have been already introduced, such as Table C.1 listing the

elementary requirements of the FTC environment, Table C.3 listing the fault-mode

relations, and Table C.4 listing the restriction sets used within the AFCS performance

specification. Table C.2 lists the composed relations used within the performance

and the detail specification along with domain and image spaces. Table C.5 lists

all the classes of equivalent variables obtained with the first expansion discussed in

Section 4.2 along with the set of variables belonging to each class. Table C.6 lists all

domain and image variables used within the relational specification along with their

data-type and a brief description of the represented quantities. Table C.7 defines

the type and value of all the constants used within the specification. Table C.8

lists all quantified variables used within the specification along with their data-type.

Table C.9 defines all the auxiliary terms, functions, and predicates. Finally, Table

C.10 defines all the data-types. SI unit and range of allowed values is specified for
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each data-type; this information can be used within the validation process to check

requirement consistency. Value range is used to capture indicative constraint over

requirement variables. For example, ranges for airspeed, altitude, and angle of attack

are specified to capture the envelope of validity of the aerodynamic model of the

airplane. Analogously, the rudderDeflection-T type specifies minimum and maximum

deflection of the rudder; bankReference-T and pitchReference-T types specify the

minimum and maximum values of bank and pitch reference angles as specified by the

AFCS designer. Whenever strong typing of variables or constants would result in an

excess of notation or in a cumbersome representation of data we omitted specification

of type or the a looser form of typing was adopted where ranges and units are not

specified. This is for example the case of the matrices of the actuator models in Table

C.7 and of the stabilityDerivative-T and controlDerivative-T types in Table C.10.

4.3.1 Performance requirement composition

Section B.1 collects the elementary requirements for the AFCS performance speci-

fication. Of the performance specification for AFCS the author selected only those

related to static accuracy for operation in smooth air and in turbulence that apply to

the DHC-2 autopilot functions. These are the performance requirements for the PAH,

ALH, RAH, HH, and HS autopilot functions, and the coordination requirements for

lateral-directional control functions, both in Steady Banked Turn (SBT) and in Level

Flight (LF). The original text of the requirements from [2] is reported along with the

relational specification. An intermediate formulation of the requirement bridges the

gap between the two specifications as illustrated in Section 4.1 for the HH function
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Figure 4.2: Structure of the AFCS performance requirements specification.

requirement. Requirements are numbered as in the original document; the ellipsis ’...’

is used to indicate the omission of a substantial part of the original text. The plain-

English specification is divided into subsections marked with letters. These letters

are used within the intermediate specification to point out corresponding subsections

of the two formulations of the requirement; ambiguous subsections of the original text

have been omitted from the formal specification.

Figure 4.2 represents the structure of the performance requirements. This struc-

ture is very simple; all requirements are combined by the join operator to form the

Performance Specification RPS. The blocks with dash outline group the relations

that specify the requirements for the Symmetric Control Functions RSCF , the rela-

tions that specify the Coordination Constraint RCC, the relations that specify the

Heading Control Functions RHCF , and the relations that specify requirements for
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the Asymmetric Control Functions RACF . The performance specification RPS is a

relation over the domain space Ctr+Upa+X+Uw and the image space X . These are

the expanded spaces that represent the class of trim-variables Ctr, the class of AFCS

input variables Upa , the class of air-turbulence variables Uw, and the class of airplane

state variables X . Each requirement is expressed as a constraint over the evolution

of the airplane state under specified turbulence conditions, for a specific AFCS input

and trim condition.

The composition of the relations specifying the elementary performance require-

ments is straightforward; all requirements are combined through the join operator

to form the performance specification. The resulting requirement is restricted to the

admissible combination of AFCS inputs, to a valid set of trim-conditions, and to the

required model of wind turbulence by means of the pre-restriction sets introduced in

the previous section. The composition is expressed by the following equations:

SPS = SCtr

⋂ Sao

⋂ Sat (4.18)

RPS = SPS\
(

RPAH t RALH t (4.19)

RRAH t RHH t RHS t RSBT t RLF

)
4.3.2 DHC-2 detail-specification

Section B.2 collects the elementary requirements for the DHC-2 detail-specification.

These relations specify the required behaviour of each component of the DHC-2 air-

plane and its AFCS. Since most of this information is in terms of analytical equations

describing the operation of the corresponding component there is no plain-English
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specification counterpart.

Elementary specifications are grouped into different subsections according to their

role within the specification structure. Section B.2.1 collects relations that specify

the airplane dynamics through force RFeq, moment RMeq, kinematic RKeq, and

navigation RNeq equations. The forcing terms for these equations are aerodynamics

forces Raef and moments Raem exerted by the airframe, forces Rcsf and moments

Rcsm exerted by the control surfaces, forces Rpf and moments Rpm exerted by

the engine, and gravity Rgrf and wind Rwf forces. This section also includes the

relations that specify air-data quantities Rad and kinematic acceleration at crew

station Rka. Section B.2.2 collects relations that specify the requirements for the

hardware components of the DHC-2 AFCS. These include actuator specifications

Rrud, Rail, and Relv, all sensor specifications Rp, Rq, Rr, etc. control panel

specification RCP , and FCC interface card specifications RADC, and RDAC. Section

B.2.3 collects relations that specify the requirements for the components of the FCSw.

These are the interface modules Rin and Rout and all the modules related to the

FCL: R
P̂AH

, R
ÂLH

, R
R̂AH

, R
ĤS

, and R
ĤH

.

Figure 4.3 illustrates the structure of the detail-specification. This structure is

similar to the block diagram in figure 3.3. The main difference consists in the ex-

pansion of the airplane system into the relations that describe its dynamics. The

display panel has been removed from the AFCS since it is not used within the speci-

fication. The diagram also displays the classes of variables over which these relations

are defined. Some of these classes have been already introduced; some other classes

57



RADCRDAC

RinUpa + XUc

RCP

Upa + X

Uc X

 C
m Cf + X

~ ~

^ ^ ^

RFCSw

RFCC

RAFCS

RDHC-2

RCin

Rout

Uc Upa + X
- --

Uc

~

��
Rcsm

��
Rpm

Raem
Rm

Raef

��
Rcsf

��
Rpf

Rf

��
��

RAIL

��
RELV

����RRUD

RACT

RFCL

RALH

RPAH

RRAH

RHH

�
�

Rp
��
��

Rq
��
��

Rr

����Rqdyn��
Rθ

����Rps ����RT�
Rψ

��
Rφ

RSp�
�

RAx

��
��
RAy

�
RAz

��
Rα

RSs

Uw + U pm + X

Upa

RHS

Ctr

X

R
Feq

R
grf

R
wf

R
Meq

R
Neq

RKeq

R
ka

Rad

RADC

Rin

RDAC

Figure 4.3: Structure of the DHC-2 detail-specification.
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are introduced here for the first time. This is the case of the class of the MFCS

control inputs Upm, the class of force and moment aerodynamic coefficients Cf and

Cm, and the class of control surface deflection variables Uc. Identifiers provided of a

mathematical accent (hat, tilde, bar) represent quantities correlated to the quantity

represented by the identifier without accent. The tilde accent is adopted for variables

representing electrical signals, the bar accent is adopted for variables representing the

ADC or DAC software representation of the quantity, and the hat accent is adopted

for software variables. Hence, X̃ is the class of variables representing electrical sig-

nals correlated to the airplane states, X̄ is the class of variables representing ADC

software representation of the airplane states, and X̂ is the class of software variables

representing the airplane states. Similar interpretations hold for the other accented

classes and variables.

With the support of the specification structure in figure 4.3 the elementary re-

quirements of Section B.2 can be composed to form the DHC-2 detail-specification.

This specification is divided into the description of the DHC-2 airplane dynamics

RDHC2 and the DHC-2 AFCS RAFCS. Some relations are introduced to collect

functionally related specifications. These are the relations Rf and Rm that collect

respectively force and moment components involved in the flight dynamics equations,

the relations RSp and RSs that represent the subsystem of primary and secondary

sensors respectively, the relation RFCL that collects the flight control laws, the re-

lation RACT that collects the actuators, the relation RFCSw that represents the

flight control software, and the RFCC that represents the flight control computer.
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The formal composition of the elementary requirements is expressed by the following

equations

Rf = Raef t Rgrf t Rcsf t Rpf t Rwf (4.20)

Rm = Raem t Rcsm t Rpm (4.21)

RDHC2 = Rf ◦ RFeq t Rm◦ RMeq t RKeq (4.22)

t RNeq t Rad t Rka

RSp = Rp t Rq t Rr t Rψ t Rθ t Rφ (4.23)

t Rps t Rqdyn
t RT

RSs = RAx t RAy t RAz t Rα (4.24)

RFCL = R
P̂AH

t R
ÂLH

t R
R̂AH

t R
ĤH

t R
ĤS

(4.25)

RACT = Rail t Relv t Rrud (4.26)

RFCSw = Rin◦ RFCL◦ Rout (4.27)

RFCC = RADC ◦ RFCSw◦ RDAC (4.28)

RAFCS =
(

RSp t RSs t RCP

)
◦RFCC ◦ RACT (4.29)

4.3.3 Correctness of AFCS design

The AFCS performance specification RPS represents the system requirements for

an AFCS in terms of required behaviour of the airplane when equipped with the

AFCS. The DHC-2 detail-specification and the AFCS performance specification can

be composed as follows to form the specification of the airplane equipped with the

AFCS:
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RDHC2 ⊗ RAFCS = (4.30){(
( Ctr,Uw,Upm,Upa,X ),X ′

)∣∣∣ ∃Uc

(
(
( Ctr,Upa,X ),Uc

)
∈ RAFCS ∧(

( Uc,Uw,Upm,X ),X ′
)
∈ RDHC2

)}

The design specification of the AFCS is correct with respect to RPS if

RDHC2 ⊗ RAFCS w RPS (4.31)
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Chapter 5

Formal requirements specification
of the FTC

This chapter contains the formal specification of the FTC system. In the first section

fault tolerance requirements are divided into functional and non-functional require-

ments and formulated in a form that facilitates their formalization. The relational

specification is developed on top of the structured plain-English requirements. In

the second section the focus is on the core of the FTC system, that is the FTC-AR

module. The other FTC modules serve as interface and their formal specifications

are collected in section B.5. The last section illustrates some concepts related to the

feasibility analysis of the fault tolerance requirements.

5.1 FTC requirements

5.1.1 FTC functional requirements

The relation RPS captures the performance specification of the AFCS. If each compo-

nent of the DHC-2 airplane equipped with AFCS satisfies the corresponding require-

ments then the correctness of the design, as formulated by equation 4.31, guarantees

that the actual behaviour of the system satisifies the performance requirements. Fault
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tolerance requirements aim to guarantee that performance specification are met also

in case one or more of the system components fail to meet the corresponding speci-

fication. The main concepts related to fault tolerance for flight control systems were

introduced in Section 3.1.2. The definition of fail operational and fail passive are

reviewed here in support of the analysis that will lead to the formulation of the fault

tolerance requirements for the AFCS of the DHC-2 airplane:

Fail operational The capability of the FCS for continued operation without degra-

dation following a single failure, and to fail passive in the event of a related

subsequent failure.

Fail passive The capability of the FCS to automatically disconnect and to revert to

a passive state following a failure.

In the definition of fail operational capability the term related subsequent failure

is ambiguous. In the first instance the requirement aims to capture the desired be-

haviour of the fault tolerant system under the condition of single and double failure.

Hence, the temporal sequence in which the failures occur is not relevant. In the second

instance, it is not clear under what conditions two failures are related. In the frame-

work of physical redundancy the failure of two out of three redundant units might

be considered as a case of related failures. However, this definition depends on the

specific approach to achieving fault tolerance and looses its validity in the framework

of analytical redundancy. The author adopts a definition that has a functional basis.

Fallible components are partitioned into the following classes of equivalence: class of

measurement units M, class of actuation units A, class of processing units P , and

class of interface units I . Failures of components that belong to the same class are
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considered related. This definition captures the author’s best approach-independent

interpretation of the term related failures in the original requirement. The rationale

behind this interpretation is the implicit assumption in the definition of fail opera-

tional capability that the occurrence of two related failures is more critical than the

occurrence of two unrelated failures. In fact, for related failures the fault tolerant

system is required to be fail passive, while for unrelated failures it is required to con-

tinue operation. Failure of components serving the same function is potentially more

critical than failure of components serving different functions. Hence, the component

function is a suitable basis for defining related failures.

Proper formulation of the automatic disengagement requirement as it appears in

the fail passive definition would require the formal description of the MFCS. The

details of the transition from AFCS to MFCS following automatic disengagement are

not considered; the FTC is simply required to signal this transition.

Another requirement for fault tolerant flight control systems is the ”FCS warning

and status annunciation” requirement (section 3.2.1.4.2 of [2]). The FTC is required

to signal a warning in correspondence of a fault and of automatic disengagement.

Hence, the FTC shall have a display panel with a warning light for each monitored

component and an additional light for automatic disengagement. Furthermore, the

FTC control panel shall have a switch to control the ON/OFF status of the FTC

system.

The fail operational capability definition and the warning and status annunciation

requirement represent the core of the fault tolerance requirements specification. To
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formulate the fault tolerance requirements in a format more suitable to formalization

the following fault hypotheses are introduced:

H0 Fault free hypothesis; all of the components used by the FTFCS are working

according to the corresponding specifications.

H1 Single failure hypothesis; at least one component among those used by the FTFCS

is working according to one of its fault modes, and there are no related faults;

H2 Multiple failure hypothesis; at least two related components used by the FTFCS

are working according to one of the corresponding fault modes.

In the definition of fault hypotheses H1 and H2 the fault modes have been adopted

to specify the behaviour of a component that is not working according to its spec-

ification. The rationale behind this choice is that required behaviour and faulty

behaviours do not necessarily cover all the possible modes of operation of a compo-

nent. Hence, both the required behaviour and the set of fault modes are adopted

as basis for the certification, as opposed to adopting the required behaviour and any

possible behaviour that does not refine the component specification.

The fault tolerance requirements are formulated as follows:

- if the FTC is not engaged then the FTFCS shall operate like the original AFCS

and all FTC warning lights shall be off;

- if the FTC is engaged then

- under conditions captured by the fault hypothesis H0 the DHC-2 airplane

equipped with the FTFCS shall meet the performance specification RPS

and all FTC warning lights shall be off;
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- under conditions captured by the fault hypothesis H1 the DHC-2 airplane

equipped with the FTFCS shall meet the performance specification RPS

and only the warning lights corresponding to the faulty components shall

be on;

- under conditions captured by the fault hypothesis H2 the FTC automatic-

disengagement warning light shall be on.

5.1.2 FTC non-functional requirements

In Section 3.1.2 two non-functional requirements for the FTC system were introduced.

These requirements were in the form of constraint over the modular architecture of

the solution and over the redundancy approach to be adopted for each component.

According to this last requirement fault tolerance must be achieved by means of

physical or analytical redundancy depending on the nature of the component. Fault

tolerance with respect to failure of components that belongs either to class P or

to class I must be achieved adopting the physical redundancy approach, while fault

tolerance with respect to failure of components of classes M and A must be achieved

adopting the analytical redundancy approach. Furthermore, the solution must be

modular, with the following assigned priority among modules: fault tolerance with

respect to failure of components of class P and I is achieved first, then fault tolerance

with respect to failure of components of class M, and finally fault tolerance with

respect to failure of components of class A. This priority ordering implies that the

failure of components of class P and I is transparent to the module that is required

to provide fault tolerance with respect to failure of components of class M, while the

failure of components of class A is not. For this research the focus is on the FTC
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module that provides fault tolerance with respect to sensor failures.

The above non-functional contraints have an impact on the specification of the

FTC requirements. The analytical redundancy approach constraint affects the fault

hypothesis definitions. Since analytical redundancy maps into the correlation of sen-

sor outputs and actuator inputs at software level, each failure that might affect such

correlation must be considered; that is, fault hypotheses must be total with respect to

operation of fallible components. The module priority constraint also has an impact

on the definition of the fault hypotheses, since it determines whether a failure should

be considered transparent to the FTC module or not. Furthermore, the modular ap-

proach translates into a shift in the target of the FTC requirements from preserving

AFCS performance specification in case of single failure to preserving functionality of

the set of sensors. The specification of the set of sensors is:

RXX̂ =( RSp t RSs ) ◦RADC ◦ Rin (5.1)

5.1.3 FTC-AR requirements

Figure 5.1 represents the specification structure of the DHC-2 airplane equipped with

the FTFCS. Blocks with a thicker outline represent the components of the FTC

system. The core of the FTC is the FTC-AR module. This is the component required

to exploit analytical redundancy of the DHC-2 system to provide fault tolerance with

respect to sensor failures. The other components of the FTC system are the control

(CP) and display (DP) panels, that serve as interface between the FTC and the pilot,

the hardware (ADC, DAC) and software blocks (IN, OUT) that link the FTC external

interface to the core module FTC-AR, and the FTC-SW block that serves as a switch
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between the original AFCS and the FTFCS. The FTC-SW fulfills a safety function;

if the FTC is disengaged the FTC-SW block isolates the FTC-AR module so that its

output does not affect the input to the FCL. Introduction of the FTC system into

the AFCS leads to the introduction of new quantities used in the formulation of the

requirements. These quantities are represented by the class of FTC input variables

Uf , the class of FTC warning variables Yf , and the class of validated airplane states

X̌ .

With the decomposition of the FTC system into its elementary components the

FTC-AR module has been isolated. This is the FTC module the inherits the fault

tolerance requirements. The FTC-AR requirements are derived from the fault toler-

ance requirements after integrating them with the non-functional constraints and by

projecting them onto its interface. This process leads to the following fault hypothe-

ses:

HM0 Fault free hypothesis;

- all of the sensors used by the FTFCS are working according to the corre-

sponding specifications and

- all of the processing and interface units used by the FTFCS are working

according to the corresponding specifications and

- no more than two actuation units used by the FTFCS are working ac-

cording to one of the corresponding fault modes, while all the others are

working according to the corresponding specification, and

- all fallible components not used by the FTFCS are either working according

to the corresponding specification or according to one of the corresponding

fault modes.
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HM1,m Single failure hypothesis;

- the sensor used by the FTFCS and identified by subscript m is working ac-

cording to one of its fault modes while all the others are working according

to the corresponding specifications and

- hypothesis among remaining fallible components: same as for HM0

HM2 Multiple failure hypothesis;

- at least two sensors used by the FTFCS are working according to one of

the corresponding fault modes while all the others are working according

to the corresponding specifications and

- hypothesis among remaining fallible components: same as for HM0

The fault tolerance requirements translate into:

a) if ŜW FTC is OFF then all warning variables shall be OFF;

b) if ŜW FTC is ON then

b1) if the correlation between Ûc and X̂ corresponds to the status described

by fault hypothesis HM0 then all FTC warning variables shall be OFF;

b2) if the correlation between Ûc and X̂ corresponds to the status described by

fault hypothesis HM1,m then Ŵm shall be ON, and all other FTC warning

variables shall be OFF;

b3) if the correlation between Ûc and X̂ corresponds to the status described

by fault hypothesis HM2 then Ŵdis shall be ON.

b4) if the correlation between Ûc and X̂ corresponds to the status described

by fault hypothesis HM0 or by any of the fault hypotheses HM1,m then the

set of sensors equipped with the FTC shall meet the specification RXX̂
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Fault tolerance requirements are decomposed into fault-free requirement (item

a), detection and identification requirements (items b1, b2, and b3), and recovery

requirement (item b4). The rationale behind this choice is the difference in the

requirements signatures. Detection and identification requirements are expressed in

terms of FTC-AR inputs and outputs, while the recovery requirement is expressed in

terms of the actual airplane states and their corresponding software variables.

5.2 Formal specification of FTC-AR

Section B.5 collects the relations that specify the requirements of the FTC-AR in-

terface blocks. Interpretation of these relations is straightforward; these blocks are

similar to the corresponding interface blocks of the AFCS relational specification.

The relational specification for the FTC-AR represents the formalization of the

fault-tolerance requirements developed in the previous section. The relational specifi-

cation is structured like the plain-English specification, with fault hypotheses serving

as support to the actual requirements specification.

Before developing the relational specification of the FTC-AR requirements the

partitioning among the set of components must be made explicit and the fault hy-

potheses must be formalized.

5.2.1 Components partitioning

The DHC-2 airplane equipped with the FTFCS has been decomposed in components,

and each component has been assigned a relational specification as shown in figure 5.1.

The components themselves are identified by the letter C with a subscript identical
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to that of the corresponding relation. The set of all components is C, the set of

components used by the FTFCS is U , the set of components that can fail is F . The

latter set is partitioned into the subset of measurement components M, the subset

of actuation components A, the subset of processing components P , and the subset

of interface components I .

Set of components

C =
{

CFeq, CMeq, CKeq, CNeq, (5.2)

Caef , Caem, Cgrf , Cwf , Cka, Cad, Ccsf , Ccsm, Cpf , Cpm,

Crud, Cail, Celv,

Cp, Cq, Cr, Cθ, Cφ, Cψ, Cqdyn
, Cps , CT ,

CAx , CAy , CAz , Cα,

CCP , CDAC , CADC ,

Cin, Cout, C
P̂AH

, C
ÂLH

, C
R̂AH

, C
ĤH

, C
ĤS

,

CFTC−CP , CFTC−DP , CFTC−ADC , CFTC−DAC ,

CFTC−IN , CFTC−OUT , CFTC−SW , CFTC−AR

}
Set of components used within the FTFCS

U =
{

Ccsf , Ccsm, Cpf , Cpm,

Crud, Cail, Celv,

Cp, Cq, Cr, Cθ, Cφ, Cψ, Cqdyn
, Cps , CT ,

CCP , CDAC , CADC ,

Cin, Cout, C
P̂AH

, C
ÂLH

, C
R̂AH

, C
ĤH

, C
ĤS

,

CFTC−CP , CFTC−DP , CFTC−ADC , CFTC−DAC ,

CFTC−IN , CFTC−OUT , CFTC−SW , CFTC−AR

}
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Set of fallible components

F =
{

Ccsf , Ccsm, Cpf , Cpm, (5.3)

Crud, Cail, Celv,

Cp, Cq, Cr, Cθ, Cφ, Cψ, Cqdyn
, Cps , CT ,

CAx , CAy , CAz , Cα,

CCP , CDAC , CADC ,

Cin, Cout, C
P̂AH

, C
ÂLH

, C
R̂AH

, C
ĤH

, C
ĤS

,

CFTC−CP , CFTC−DP , CFTC−ADC , CFTC−DAC ,

CFTC−IN , CFTC−OUT , CFTC−SW , CFTC−AR

}
Set of Measurement components

M =
{

Cp, Cq, Cr, Cθ, Cφ, Cψ, Cqdyn
, Cps , CT , (5.4)

CAx , CAy , CAz , Cα

}
Set of Actuation components

A =
{

Ccsf , Ccsm, Cpf , Cpm, Crud, Cail, Celv

}
(5.5)

Set of Processing components

P =
{

C
ÂLH

, C
R̂AH

, C
ĤH

, C
ĤS

, (5.6)

CFTC−IN , CFTC−OUT , CFTC−SW , CFTC−AR

}
Set of Interface components

I =
{

CCP , CDAC , CADC , (5.7)

CFTC−CP , CFTC−DP , CFTC−ADC , CFTC−DAC

}
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5.2.2 Formal specification of fault hypotheses

A fault hypothesis consists in the assignment to each fallible component of a mode

of operation that is either described by the component specification or by one of

the component fault-modes. For each component Cc, Rc denotes the relation that

specifies its requirement, Fc denotes the set of its fault-mode relations, and Rc,n

denotes the relation that specifies its fault-mode number n. Rc(H) denotes the

behaviour of component Cc under fault hypothesis H and the term H∗ denotes any

of the fault hypotheses. For the sake of space the definition of fault hypothesis HM0

is explicit, while the other fault hypothesis definitions refer to this one.

Fault hypothesis HM0

Measurement components used by the FTFCS

∀m
(
Cm ∈ M ⋂ U ⇒ Rm(HM0) = Rm

)
(5.8)

Processing components used by the FTFCS

∀ c
(
Cc ∈ P ⋂ U ⇒ Rc(H∗) = Rc

)
(5.9)

Interface components used by the FTFCS

∀ c
(
Cc ∈ I ⋂ U ⇒ Rc(H∗) = Rc

)
(5.10)

Actuation components used by the FTFCS

∃ a ∃ f ∃ b ∃ g
(
Ca ∈ A ⋂ U ∧ Ra,f ∈ Fa ∧ (5.11)

Cb ∈ A ⋂ U ∧ Rb,g ∈ Fb ⇒
( Ra(H∗) = Ra,f ∨ Ra(H∗) = Ra ) ∧
( Rb(H∗) = Rb,g ∨ Rb(H∗) = Rb ) ∧
∀ c

(
c 6= a ∧ c 6= b ∧ Cc ∈ A ⋂ U ⇒ Rc(H∗) = Rc

))
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Components not used by the FTFCS

∀ c
(
Cc ∈ F \ U ⇒ Rc(H∗) = Rc ∨ (5.12)

∃ f
(

Rc,f ∈ Fc ⇒ Rc(H∗) = Rc,f

))

Fault hypothesis HM1,m

Measurement components used by the FTFCS

∃ f
(
Cm ∈ M ⋂ U ∧ Rm,f ∈ Fm ⇒ (5.13)

Rm(HM1) = Rm,f

)
∧

∀n
(

n 6= m ∧ Cn ∈ M ⋂ U ⇒ Rn(HM1) = Rn

)

All other fallible components: same as for fault hypothesis HM0

Fault hypothesis HM2

Measurement components used by the FTFCS

∃m ∃ f ∃n ∃ g
(
Cm ∈ M ⋂ U ∧ Rm,f ∈ Fm ∧ (5.14)

Cn ∈ M ⋂ U ∧ Rn,g ∈ Fn ⇒
Rm(HM2) = Rm,f ∧ Rn(HM2) = Rn,g ∧
∀ c

(
c 6= m ∧ c 6= n ∧ Cc ∈ M ⋂ U ⇒

Rc(HM2) = Rc ∨
∃h

(
Rc,h ∈ Fc ⇒ Rc(HM2) = Rc,h

)))

All other fallible components: same as for fault hypothesis HM0

5.2.3 Relational specification of the FTC-AR requirements

The relations of this section specify the fault tolerance requirements of section 5.1.3.

RENV (H) describes the environment of the FTC-AR block under fault hypothesis
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H; this relation capture the actual correlation between software variables representing

airplane state and actuator inputs. RFTC−OFF specifies the requirements for FTC

disengaged, RFTC−DI specifies the detection and identification requirements under

all fault hypotheses, and RFTC−R specifies the recovery requirements.

RENV (H) = (5.15){(
Ûc, X̂

)∣∣∣ ∃U ′
w ∃U ′

pm ∃U ′
c ∃ Ũ ′

c ∃U ′
pa ∃X ′

(
(
Ûc, Ũ ′

c

)
∈ Rout(H) ◦ RDAC(H) ∧(

( Ũ ′
c,X ′ ), U ′

c

)
∈ Rail(H) t Relv(H) t Rrud(H) ∧(

( Û ′
c,U ′

pm,U ′
w,X ′ ), X ′

)
∈

RKeq t RNeq t Rad t Rka t(
Raef t Rgrf t Rcsf(H) t Rpf(H) t Rwf

)
◦RFeq t(

Raem t Rcsm(H) t Rpm(H)
)
◦RMeq ∧(

( U ′
pa,X ′ ), X̂

)
∈

(
Rp(H) t Rq(H) t Rr(H) t

Rψ(H) t Rθ(H) t Rφ(H) t Rps(H) t Rqdyn
(H) t RT (H) t

RAx(H) t RAy (H) t RAz (H) t Rα(H) t RCP (H)
)
◦

RADC(H) ◦ Rin(H)
)}

RFTC−OFF = (5.16){(
Ûf , Ŷf

)∣∣∣
∀ k1 ∀ k2

(
0 ≤ k1 < k2 < ∞ ⇒

∀ k
(

k1 < k < k2 ∧ ŜW FTC(k) = OFF ⇒

∀m
(
Cm ∈ M ⋂ U ⇒ Ŵm(k) = OFF

)
∧ Ŵdis(k) = OFF

))}
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RFTC−DI = (5.17){(
( Ûf , Ûc, X̂ )( Ŷf )

)∣∣∣
∀ k1 ∀ k2

(
0 ≤ k1 < k2 < ∞ ⇒

∀ k
(

k1 < k < k2 ∧ ŜW FTC(k) = ON ⇒(
( Ûc, X̂ )∈ RENV (HM0) ∧
∀m

(
Cm ∈ M ⋂ U ⇒ Ŵm(k) = OFF

)
∧

Ŵdis(k) = OFF
)

∨
∃ c

(
( Ûc, X̂ )∈ RENV (HM1,c) ∧

∀m
(
Cm ∈ M ⋂ U ∧ m 6= c ⇒ Ŵm(k) = OFF

)
∧

Ŵdis(k) = OFF ∧ Ŵc(k) = ON
)

∨(
( Ûc, X̂ )∈ RENV (HM2) ∧ Ŵdis(k) = ON

)))}

RFTC−R = (5.18){(
( X , X̂ , Ûc ), X̌

)∣∣∣ ∀m
(
Cm ∈ M ⋂ U ∧

(
Ûc, X̂

)
∈ RENV (HM0)

⋃ RENV (HM1,m) ⇒
(
X , X̌

)
∈ RXX̂

)}

5.3 Feasibility analysis

The relations of the previous section along with the elementary specification and

tables collected in the appendices B and C represent the baseline of the requirements

specification for the FTC system. This marks the end of the specification phase

of the requirements engineering process; the next phase is related to the validation

of the requirements. This phase requires the support of automatic tools to check for

consistency of the specification, and a team of domain experts to evaluate specification
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completeness and correctness. This is beyond the scope of this research; however,

the feasibility aspect of the validation phase is discussed in some detail. Feasibility

of the fault tolerance requirements is related to detectability of a fault condition,

identifiability of the faulty component, and recoverability of the function provided

by the faulty component. The focus is on detectability and identifiability. Before

analyzing these two items on the basis of the formal specification their interpretation

in the technical literature is illustrated.

5.3.1 Traditional interpretation of detectability and identifi-
ability

Fault detectability and identifialbility (or isolability) are relatively new concepts in

the field of fault diagnosis. Only a few papers in the technical literature focus on

these concepts, and present slightly different interpretations. Frank at al. [24] define

a system to be unknown-input fault detectable if for ”almost all faults, an arbitrary

small time interval allows a unique decision for the fault only on considering the

known input and the available output data in this time interval”. According to this

definition fault detectability is a system property that holds for almost all faults.

However, in a system there can be both detectable and undetectable faults at the

same time; an example is provided in [29]. Hence, the above definition leads to too

restrictive detectability conditions. In [32] Horak states that a fault is detectable

if its effects on system outputs overtake the effects of model uncertainties. Using

an optimization procedure based on the Maximum Principle, the maximum possible

deviation between nominal output values and actual output values (reachable mea-
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surements interval) is derived at each time step. A fault is declared detectable if it

causes the system output to assume values outside the reachable measurement inter-

val. This definition of fault detectability highlights the concept of detection feasibility

in spite of disturbances; however, it differentiates detectable from undetectable faults

in terms of fault effects in time domain only. Faults that add to system output a

low-amplitude, high-frequency component could be detected by analyzing the fre-

quency content of the measurements. Nevertheless, they are undetectable, according

to the definition in [32], if fault effects fall within the reachable measurement interval.

In other definitions fault detectability is either intended as detection capability of a

specific fault detection system [13], or as the best detection capability achievable by

adopting a particular residual generation approach ([23] and [43]). In [11] (sections

2.6 and 2.7) fault detectability and isolability are defined in terms of the fault trans-

fer matrix obtained from the adopted residual generator: a fault is detectable if the

transfer function between the fault input and the residual vector is non-zero; a fault

is identifiable if the residual vector allows distinguishing it from the other faults.

None of the above interpretations provide a definition that is independent of the

specific residual generator adopted and that captures all relevant elements of the de-

tectability and isolability problems. An attempt to provide a definition of detectabil-

ity as a system property (i.e. independent of the adopted residual generator) and

to point out the elements that play a role in the detectability problem can be found

in [29]. In this article fault detectability is defined as follows: ”A fault on a compo-

nent of the system is said to be detectable if knowledge of system inputs and outputs
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over a finite time interval following the occurrence of the fault allows the detection in

spite of disturbances”. Fault dynamics, disturbance action, and system dynamics are

pointed out as the only elements that play a role in assessing fault detectability. A

detectability analytical criterion is derived from the above definition and formulated

in the frequency domain.

5.3.2 Formal definition of detectability and identifiability

The definition of detectability and identifiability can be formulated on the basis of

the fault detection and identification requirements specified in section 5.1.3:

Detectability condition

- the correlation between Ûc and X̂ allows distinguishing between conditions cap-

tured by fault hypothesis HM0 and conditions captured by any of the fault

hypotheses HM1,m and

- the correlation between Ûc and X̂ allows distinguishing between conditions cap-

tured by fault hypothesis HM0 and conditions captured by fault hypothesis HM2

and

- the correlation between Ûc and X̂ allows distinguishing between conditions cap-

tured by any of the fault hypotheses HM1,m and conditions captured by fault

hypothesis HM2;

Identifiability

- The correlation between Ûc and X̂ allows distinguishing between conditions

captured by any couple of fault hypotheses HM1,m and HM1,n

The above definition can be formalized as follows:
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∀m
(
Cm ∈ M ⋂ U ⇒ (5.19)

RENV (HM0)
⋂ RENV (HM1,m) = Ø ∧

RENV (HM2)
⋂ RENV (HM1,m) = Ø

)
∧

RENV (HM2)
⋂ RENV (HM0) = Ø

∀m ∀n
(

m 6= n ∧ Cm ∈ M ⋂ U ∧ Cn ∈ M ⋂ U ⇒ (5.20)

RENV (HM1,m)
⋂ RENV (HM1,n) = Ø

)

The interpretation of the detectability condition 5.19 is straightforward when an-

alyzed along with the detection requirement 5.17; it simply states that under no

conditions two out of the three OR operands in the relation RFTC−DI are simulta-

neously true. It is worth noting that all elements pointed out in [29] are present in

the above detectability definition: the fault dynamics is captured by the fault mode

specified within the fault hypothesis, while the system dynamics and the disturbances

are modeled within RENV ().
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Chapter 6

Conclusions

The outcome of this research work is the formal specification of the requirements

for the FTC system. This system interfaces with the AFCS to provide fault toler-

ance capability with respect to sensor failures. The developed specification represents

the baseline specification for the FTC system, the starting point for the refinement

iteration that takes place within the system life-cycle. The FTC specification was

formulated on top of the AFCS performance specification and of the DHC-2 detail

specification. The fault tolerance requirements were extracted from the active military

specification MIL-F-9490D and translated in the context of analytical redundancy af-

ter a detailed analysis of the implications of adopting this redundancy approach. The

long process of analysis, modeling, and specification of the FTC requirements resulted

in a clear definition of the fault tolerance problem in the framework of analytical re-

dundancy. Furthermore, it brought up to light important issues in all fields involved

in the process, namely FTFCS specification, analytical redundancy, and requirements

engineering. These issues and the lessons learned are summarized below.

The re-engineering process of the active FCS specification uncovered the ambi-

guity and incompleteness of the FCS performance and fault tolerance requirements.
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These potentially dangerous characteristics of the FCS specification might not repre-

sent a treat since in practice the objectives of FCS certification go way beyond the

fulfillment of the written requirements; however, they do highlight the immaturity

of the specification. Mature and formally specified requirements would result in a

more effective design and a more efficient certification process eventually supported

by automated tools.

A first observation about the analytical redundancy approach is that it can only

be used to provide fault tolerance with respect to failure of components that are

functionally redundant within the system. This implies that some degree of physical

redundancy is required within the FTFCS.

Two important characteristics of analytical redundancy based solutions originate

from these systems being subordinated to the operation of a considerable number of

components of their environment. This dependence has an impact on the modularity

and certifiability of the FTC system. If different FTC modules are to be adopted for

different classes of components a priority ordering must be specified. This ordering

determines a stratified architecture of the FTC system where for each FTC module,

faults of components monitored at the lower layers are transparent, while faults of

components monitored at the upper layers are not. Despite the modularity of the

FTC architecture fault tolerance requirements for each FTC module must be total

with respect to operation of all fallible components. The priority ordering and the

totality characteristic of fault tolerance requirements diminish the typical advantages

of the modular approach.
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The FTC intrinsic dependence on the dynamics of the aircraft also raises a signif-

icant issue in the certification of such systems: they potentially require a certification

process comparable to that adopted in the certification of AFCS’s, with all related

consequences in terms of costs, time, and employed resources. Furthermore, the fault

modes of the aircraft and FTFCS components form the basis of the certification. This

implies that the FTC must be certified against each combination of faulty compo-

nents and fault-modes as captured by the fault hypotheses. The fault modes of all

components whose failures are not transparent to the FTC module come to play a

crucial role in the feasibility of the solution.

The above observations point out some significant implications of adopting the

analytical redundancy approach as a basis for fault tolerance. The core message of

these observations is that the FTC fault tolerance requirements and related certifica-

tion procedures are considerably more demanding than those typically adopted in the

literature. The more stringent requirements should not discourage the FTC designer,

rather they should be regarded as the basis for a more rationale and effective design.

Functional redundancy is a form of redundancy, it provides – to some degree – the

means to achieve fault tolerance. The question is not whether analytical redundancy

can be used, but how to integrate it with physical redundancy to effectively achieve

fault tolerance. Adopting analytical redundancy to reduce the level of physical re-

dundancy in multistring architecture from triple or quadruple to dual would bring

considerable benefits already.

The observations related to requirements engineering converge upon the specifi-
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cation methodology and the suitability of relational algebra as formal specification

language. A number of issues related to the hierarchical decomposition of the specifi-

cation, to the modeling of the specification, and to the dependencies among variables

that are not part of the system input/output interface caused non-trivial problems.

The lack of a mature methodology for developing the specification of a fairly complex

system as the one under analysis in this research work considerably slowed down the

specification process. Another important issue related to the specification process

is the need of automatic tools to facilitate development and documentation. The

complexity of the specification, the intrinsic interdependence among its parts, and

the continuous need of modifications require a well engineered development environ-

ment. Without automatic development and management tools the use of a formal

specification does not deliver all the benefits it could.

Among the most desirable characteristics of a formal specification language the

author lists monotonicity. Monotonicity is a fundamental feature, it allows modifying

and updating the specification over time, thus providing continuity and consistency

during the development of the specification. If it is true – and it is – that the formaliza-

tion process of requirements leads to a better understanding of the problem to address,

then the requirements are continuously updated during this process. This explains

why monotonicity is so important. The author’s experience with non-monotonic spec-

ification languages ended up with useless specifications. Monotonicity of relational

algebra was one of the features that pointed toward its choice, to damage of other

languages that come with support tools. Another advantage of relational algebra

85



is that predicate logic specifications are readable and do not require any unnatural

translation into a rigid specification model.

The development of a formal specification requires a considerable amount of re-

sources. On the other hand, the efforts employed at producing a formal specification

pay off with a remarkable understanding of the problem under analysis and an un-

ambiguous and upgradable formulation of the requirements. Formal specification is

advisable whenever the system under development raises safety issues.
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Appendix A

Predicate Logic and Relational
Algebra

This appendix provides a formal definition of syntax and semantics of predicate logic

and relational algebra. Predicate logic is the formal language adopted in relational

specifications. Relational algebra is the mathematical framework that allows operat-

ing with relational specifications. The content of this appendix serves as support to

chapters 4 and 5, and to appendix B. The presented information is largely based on

references [55] and [58].

A.1 Logic

Logic can be used as a formal specification language. Examples of logic include

propositional logic and first-order predicate logic. The information presented in this

section provides a brief description of the language aspects of logic.

A.1.1 Propositional logic

A proposition is a statement that is either True (T ) or False (F ). Propositional logic

consists of sentences constructed from atomic formulas and the logical connectives
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Table A.1: Syntax of propositional logic

terminals = {P, Q, R, . . . , ¬ , ∧ , ∨ , ⇒ , ⇔ , (, ); }
nonterminals = {atomic formula, sentence};
atomic formula = P | Q | R | . . . ;
sentence = atomic formula | (, sentence, ) | ¬ , sentence |

sentence, ∧ , sentence |
sentence, ∨ , sentence |
sentence, ⇒ , sentence |
sentence, ⇔ , sentence;

∧ (and), ∨ (or), ¬ (not), ⇒ (if ... then), ⇔ (if and only if ). Atomic formulas

are the simplest form of propositions. Examples of atomic formulas are:

3 > 2
a > 5
a > b

Examples of sentences are:

3 > 2 ∧ 2 > 1
a > 2 ⇒ b > 1
a > b ∧ b > 2 ⇒ c > 2

Table A.1 defines the syntax of the language by means of the Backus Naur for-

malism, while table A.2 defines its semantics. The logic operators are subject to the

following precedence ordering: ¬ , ∧ , ∨ , ⇒ , ⇔ ; ¬ being the operator with

highest precedence. The semantics of a sentence is obtained by assigning truth values

(T or F ) to atomic formulas and evaluating the sentences according to the semantics

of the language.

A.1.2 Predicate logic

Table A.3 defines the syntax of predicate logic. Constants and connectives are in-

terpreted as in propositional logic. Predicates are functions that evaluate either true
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Table A.2: Semantics of propositional logic

P Q ¬ P P ∨ Q P ∧ Q P ⇒ Q P ⇔ Q

T T F T T T T
T F F T F F F
F T T T F T F
F F T F F T T

Table A.3: Syntax of predicate logic

formula = proposition | predicate | ¬ formula |
quantified formula |
(, formula, op, formula, );

proposition = P | Q | R . . . ;
predicate = predicate name, (, term list, );
predicate name = IDENTIFIER
term list = term | term, ”, ”, term list;
term = CONSTANT | variable |

function, (, term list, );
variable = V ARNAME;
function = IDENTIFIER;
quantified formula = quantifier, formula;
quantifier = ∃ , variable | ∀ , variable;
op = ∧ , ∨ , ⇒ , ⇔ ;

or false. Variables are either quantified or free. Formulas in which every variable is

quantified are called closed formulas. Closed formulas can be interpreted and evalu-

ate either true or false. The meaning of a formula F is function of the free variables.

Each assignment to the free variables within a specified domain D leads to an inter-

pretation of the formula. The meaning of the formula is an assignment of a truth

value for each possible interpretation. After the assignment of values to free variables

the interpretation of a formula involves the following operations:

• evaluation of functions and predicates according to their semantics
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• evaluation of propositions and non-quantified sub-formulas according to the

semantics of propositional logic

• evaluation of quantified formulas according to the following semantics:

– a quantified formula of the type ∀x F evaluates true if F is true for every

value of x in the domain of interpretation; otherwise it evaluates false

– a quantified formula of the type ∃x F evaluates true if there exists at least

one value of x within the domain of interpretation for which F is true;

otherwise it evaluates false

Each operation is carried out to reduce the arguments of the formula until the truth

value of the formula can be determined.

A.2 Relational algebra and requirements specifi-

cation

Predicate logic provides means to formally specify requirements. Relational algebra

provides the formal framework for reasoning with requirement specifications. The

following section introduces the main concepts of relational algebra, while the last

section illustrates the main concepts of relational specification.

A.2.1 Basics of relational algebra

Given two spaces (or sets) A and B, a relation R over A × B is a subset of A × B

and is specified as follows:

R = {(A,B) | F (A,B)} (A.1)
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The above expression reads: relation R is the set of couples of elements (A,B) ∈

A × B such that F (A,B) evaluates true. F is a predicate logic formula and is speci-

fied according to syntax and semantics rules presented in section A.1.2. In the follow-

ing each relation is assumed to be over the space A × B unless otherwise specified.

Definitions

Relation domain and range If (A,B) is an element of relation R, then A is called

an antecedent of R and B an image of R. The set of images of A by relation R

is denoted by A • R, and the set of antecedents of element A by relation R is

denoted by R •A. The set of all antecedents of R is the domain of relation R

and is denoted dom(R). The set of all images of R is the range (or codomain)

of relation R and is denoted rng(R).

Universal relation The universal (or total) relation over the set A is defined by

A × A and is denoted LA.

Identity relation The identity relation over the set A is defined by {(A,A′) | A =

A′} and is denoted by IA. Given a set S ⊆ A we define IA(S) = {(A,A′) |

A ∈ S ∧ A = A′}.

Operations on relations

Since relations are sets, they inherit set operators: P(S) (power set), S̄ (comple-

ment), × (cartesian product),
⋂

(intersection), \ (difference),
⋃

(union), and

the inclusion ordering ⊇ . The precedence ordering of the set operators is the one

adopted in introducing them; the power set operator being the one with highest
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priority. Other operators more specific to relations are defined in the following.

Inverse The inverse of relation R is the relation over ⊆ B × A denoted R̂ and

defined by:

R̂ = {(B,A) | (A,B) ∈ R} (A.2)

Restriction The prerestriction of relation R to subset S of A is the relation denoted

by S\R and defined by:

S\R = IA(S) ◦ R (A.3)

The postrestriction of relation R to subset S of B is the relation denoted by

R/S and defined by:

R/S = R ◦ IB(S) (A.4)

A.2.2 Relational specifications

In terms of requirements specification expression A.1 is interpreted as follows: ob-

jects adopted in formulating the requirement are represented by domain and image

variables; A and B are structures whose elements are the domain and image variables

respectively; F (A,B) is a predicate logic formula that specifies the requirement in

terms of domain and image variables, ad hoc introduced quantified variables, func-

tions of such variables and constant values.

Relational algebra provides the formal framework for reasoning with predicate

logic specifications. This framework is based on composition operators and a re-

finement ordering among requirement specifications. Composition operators allow
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specification by parts. This specification method consists in breaking the required

behaviour of the system into parts. Each part is specified by means of a relation.

Then, these relations are composed together to form the whole requirements speci-

fication. The refinement ordering captures the idea of relative strength between two

requirements. Also, it allows defining the correctness of a system implementation

with respect to its requirements.

Definitions

Refinement ordering Relation R is said to refine (or be a refinement of ) relation

R′ (denoted by R w R′) if and only if

RL ⊆ R′L ∧ R′L ⋂ R ⊆ R′ (A.5)

R w R′ implies

• dom(R) ⊇ R′, that is the requirement specified by R extends over a

larger (or equal) number of input scenarios, or

• ∀A(A ∈ dom(R′) ⇒ A•R ⊆ A•R), that is relation R is more specific

in its assignment of outputs to inputs.

The defined ordering among specifications reflects the strength of the related

requirements. Relation R refines relation R′ if it defines a stronger (harder to

satisfy) requirement. If R w R′, then any system that satisfies R satisfies

R′.

If R w R′, then any system that satisfies R satisfies R′.
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Correctness A system implementation P is said to be correct with respect to its

specification R if and only if

P w R (A.6)

Product The product of relation R1 ⊆ A × K by relation R2 ⊆ K × B is the

relation over A × B denoted by R1 ◦ R2 (or R1R2) and defined by:

R1 ◦ R2 = {(A,B) | ∃K ((A,K) ∈ R1 ∧ (K,B) ∈ R2)} (A.7)

Join The sum of the requirement information of two relations R1 ⊆ A × B and

R2 ⊆ A × B is called the join of R1 and R2 and is denoted by R1 t R2.

The join of two relations is defined as follows:

R1 t R2 = R1

⋂ R2L
⋃ R2

⋂ R1L
⋃ R1

⋂ R2 (A.8)

The following implication holds:

R w R1 t R2 ⇔ R w R1 ∧ R w R2 (A.9)

The join exists if and only if R1 and R2 do not contradict each other. The

consistency condition to check whether the join of relations R1 and R2 exists

is the following:

R1L
⋂ R2L =( R1

⋂ R2 ) L (A.10)
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Meet The common requirement information of two relations R1 ⊆ A × B and

R2 ⊆ A × B is called the meet of R1 and R2 and is denoted by R1 u R2.

The meet of two relations is defined as follows:

R1 u R2 = R1L
⋂ R2L

⋂
( R1

⋃ R2 ) (A.11)

The following implication holds:

R = R1 u R2 ⇒ R1 w R ∧ R2 w R (A.12)

Expansion operation If R is a relation over the space S = A × B, its expansion

over the space S′ = (A, A′) × (B, B′) is defined as follows:

σS′
S ◦ R ◦ σ̂S′

S (A.13)

where the operator σS′
S is defined by:

σS′
S =

{
(S,S ′) | A(S) = A(S ′) ∧ B(S) = B(S ′)

}
(A.14)

The expansion operation is used to expand the spaces over which the relation

is defined in order to apply the composition operators.

In a relational specification operators from relational algebra, set theory, and

logic may be found in the same expression (see eq. A.5). The precedence between

this class of operators is the following: relational operators are evaluated first, then

set operators, then logic operators. The precedence ordering between operators of

the same class has been defined in section A.1.1 for the logic operators, and in section
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A.2.1 for the set operators. The precedence ordering among relational operators is

the following: restriction, inverse, complement, product, meet, join; restriction being

the operator with higher priority.
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Appendix B

Elementary specifications of the
AR-FTC environment

This appendix collects the elementary specifications of the AR-FTC environment.

Requirements are specified by means of relations according to the syntax and se-

mantics introduced in appendix A. Elementary specifications are separated into five

different sections. Section B.1 collects relations used in the AFCS performance spec-

ification, section B.2 collects relations used in the DHC-2 detail-specification, section

B.3 collects relations describing fault-modes, section B.4 collects the restriction sets,

and section B.5 collects relations describing the interface blocks of the FTC system

to the AR-FTC module.
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B.1 Elementary requirements of AFCS performance

specification

3.1.2 AFCS performance requirements ... Unless otherwise specified, these
requirements apply in smooth air and include sensor error. ...

3.1.2.1 Attitude Hold (pitch and roll)

a) Attitudes (θ(), φ() ∈ I) shall be maintained in smooth air (turb() ∈ A) with a
static accuracy of ±0.5 degree in pitch attitude (θacc ∈ C)

b) (with wings level) (phi() ∈ D; φacc ∈ C)

c) and ±1.0 degree in roll attitude (φacc ∈ C) with respect to the reference
(θr(), φr() ∈ D; constRef() ∈ A).

d) RMS (RMS() ∈ A) attitude deviations shall not exceed 5 degrees in pitch
(θRMS ∈ C)

e) or 10 degrees in roll attitude (φRMS ∈ C) in turbulence (turb() ∈ A) at the
intensities specified in 3.1.3.7 (uwt(), vwt(), wwt(), uwg(), vwg(), wwg() ∈ D).

f) Accuracy requirements shall be achieved and maintained within 5 seconds (Tθ, Tφ ∈
C) of mode engagement (SWPAH(), SWRAH() ∈ D; engaged() ∈ A)

g) for a 5 degree attitude disturbance (∆θ∗, ∆φ∗ ∈ C).

Intermediate specification (PAH)

FOR EVERY couple of time instants t1, t2

IF

- [t1, t2] is a time interval within [0,∞) AND

f) the length of the time interval [t1, t2] is larger than Tθ AND

b) the aircraft is wings level throughout the interval [t1, t2] AND

- the PAH control function is engaged at t = t1 and stays engaged
throughout the interval [t1, t2] AND

- the reference pitch is constant throughout the interval [t1, t2] AND

g) the pitch deviation from the reference at engagement is ∆θ∗

THEN

a) IF there is no turbulence within the time interval [t1, t2] THEN the
deviation of the pitch angle from the reference shall not be larger than
θacc at all time instants within the time interval [t1 + Tθ, t2] AND
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d) IF there is turbulence within the time interval [t1, t2] THEN the RMS
value of the deviation of the pitch angle from the reference over the
time interval [t1 + Tθ, t2] shall not be larger than θRMS

Relational specification (PAH)

RPAH = (B.1){(
( Uw,Up,X ),X ′

)∣∣∣ ∀ t1 ∀ t2
(

0 ≤ t1 < t2 < ∞ ∧ t2 > t1 + Tθ ∧

∀ t
(

t1 ≤ t ≤ t2 ⇒ |φ(t)| < φacc

)
∧

engaged(SWPAH(), t1, t2) ∧
constRef(θr(), t1, t2) ∧
|θ(t1) − θr(t1)| = ∆θ∗ ⇒(

¬ turb(t1, t2) ⇒ ∀ t
(

t1 + Tθ ≤ t ≤ t2 ⇒ |θ(t) − θr(t1)| < θacc

))
∧(

turb(t1, t2) ⇒ RMS(θ() − θr(t1), t1 + Tθ, t2) < θRMS

)
)}

Intermediate specification (RAH)

FOR EVERY couple of time instants t1, t2

IF

- [t1, t2] is a time interval within [0,∞) AND

f) the length of the time interval [t1, t2] is larger than Tθ AND

- the RAH control function is engaged at t = t1 and stays engaged
throughout the interval [t1, t2] AND

- the reference bank is constant throughout the interval [t1, t2] AND

g) the roll deviation from the reference at engagement is ∆φ∗

THEN

c) IF there is no turbulence within the time interval [t1, t2] THEN the
deviation of the bank angle from the reference shall not be larger than
φacc at all time instants within the time interval [t1 + Tφ, t2] AND

e) IF there is turbulence within the time interval [t1, t2] THEN the RMS
value of the deviation of the bank angle from the reference over the
time interval [t1 + Tφ, t2] shall not be larger than φRMS

104



Relational specification (RAH)

RRAH = (B.2){(
( Uw,Up,X ),X ′

)∣∣∣ ∀ t1 ∀ t2
(

0 ≤ t1 < t2 < ∞ ∧ t2 > t1 + Tφ ∧
engaged(SWRAH(), t1, t2) ∧
constRef(φr(), t1, t2) ∧
|φ(t1) − φr(t1)| = ∆φ∗ ⇒(

¬ turb(t1, t2) ⇒ ∀ t
(

t1 + Tφ ≤ t ≤ t2 ⇒ |φ(t) − φr(t1)| < φacc

))
∧(

turb(t1, t2) ⇒ RMS(φ() − φr(t1), t1 + Tφ, t2) < φRMS

)
)}

3.1.2.2 Heading Hold

a) In smooth air (turb() ∈ A), heading (ψ() ∈ I) shall be maintained within a static
accuracy of ±0.5 degree (ψacc ∈ C) with respect to the reference (ψr ∈ Q).

b) In turbulence, RMS deviations (RMS() ∈ A; uwt(), vwt(), wwt(), uwg(), vwg(), wwg() ∈
D) shall not exceed 5 degrees (ψRMS ∈ C) in heading at the intensities specified
in 3.1.3.7.

c) When heading hold is engaged (SWHH() ∈ D), the aircraft shall roll (φ() ∈ I)
towards wings level.

d) The reference heading shall be that heading that exists when the aircraft passes
through a roll attitude that is wings level plus or minus a tolerance (φacc ∈ C).

Intermediate specification

FOR EVERY couple of time instants t1, t3

IF

[t1, t3] is a time interval within [0,∞) AND

the HH control function is engaged at t = t1 and stays engaged
throughout the interval [t1, t3]

THEN

there must EXIST a time instant t2 and a reference heading ψr such
that

c1) t2 is within the interval [t1, t3) AND

c2) the bank angle is approximately zero within the time interval
[t2, t3) AND
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d) the reference heading ψr is the heading angle at t = t2 AND

a) IF there is no turbulence within the time interval [t1, t3] THEN
the deviation of the heading angle ψ from the referenced heading
ψr shall not be larger than ψacc at all time instants within the time
interval [t2, t3] AND

b) IF there is turbulence within the time interval [t1, t3] THEN the
RMS value of the deviation of the heading angle ψ from the refer-
enced heading ψr over the time interval [t2, t3] shall not be larger
than ψRMS

Relational specification

RHH = (B.3){(
( Uw,Up ),X

)∣∣∣ ∀ t1 ∀ t3
(

0 ≤ t1 < t3 < ∞ ∧
engaged(SWHH(), t1, t3) ⇒
∃ t2 ∃ψr

(
t1 ≤ t2 < t3 ∧
∀ t

(
t2 ≤ t ≤ t3 ⇒ |φ(t)| < φacc

)
∧

ψr = ψ(t2) ∧
¬ turb(t1, t3) ⇒ ∀ t

(
t2 ≤ t ≤ t3 ⇒ |ψ(t) − ψr| < ψacc

)
∧

turb(t1, t3) ⇒ RMS(ψ() − ψr, t2, t3) < ψRMS

)
)}

3.1.2.3 Heading Select

a) The aircraft shall automatically turn (φ() ∈ I) through the smallest angle

b) to any heading (ψr() ∈ D; constRef() ∈ A) selected or preselected by the pilot
and

c) maintain that heading (ψ() ∈ I) to the tolerances (ψacc, ψRMS ∈ C; turb(), RMS() ∈
A; uwt(), vwt(), wwt(), uwg(), vwg(), wwg() ∈ D) specified for heading hold.

d) The contractor shall determine a bank angle limit (φ−, φ+ ∈ C) which provides
a satisfactory turn rate and precludes impending stall.

e) The aircraft shall not overshoot the selected heading by more than 1.5 degrees
(ψos ∈ C).
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f) Entry into and exit from the turn shall be smooth and rapid.

g) The roll rate (p() ∈ I) shall not exceed 10 deg/sec (p+ ∈ C) and

h) roll acceleration shall not exceed 5 deg/sec/sec (ṗ+ ∈ C).

Intermediate specification

FOR EVERY couple of time instants t1, t4

IF

[t1, t4] is a time interval within [0,∞) AND

the HS control function is engaged at t = t1 and stays engaged through-
out the interval [t1, t4] AND

the reference heading is constant throughout the interval [t1, t4]

THEN

a) the heading deviation from the reference shall never exceed 180 degrees
throughout the interval [t1, t4] AND

g) The roll rate shall not exceed p+ throughout the interval [t1, t4] AND

h) roll acceleration shall not exceed ṗ+ throughout the interval [t1, t4]
AND

d) bank angle shall be in the interval [φ−, φ+] throughout the interval
[t1, t4] AND

e) there EXIST a time instant t2 ∈ [t1, t4] when the heading is close to
the reference and it was not close at all time instants within the time
interval [t1, t2] and it will never get further than ψos at all time instants
within the time interval [t2, t4]

b), c) there EXIST a time instant t3 ∈ [t2, t4] such that IF there is no tur-
bulence within the time interval [t1, t4] THEN the deviation of the
heading angle from the referenced heading shall not be larger than
ψacc at all time instants within the time interval [t3, t4] AND IF there
is turbulence within the time interval [t1, t4] THEN the RMS value of
the deviation of the heading angle from the referenced heading over
the time interval [t3, t4] shall not be larger than ψRMS

Relational specification

RHS = (B.4){(
( Uw,Up ),X

)∣∣∣ ∀ t1 ∀ t4
(

0 ≤ t1 < t4 < ∞ ∧
engaged(SWHS(), t1, t4) ∧ constRef(ψr(), t1, t4) ⇒
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∀ t
(

t1 ≤ t ≤ t4 ⇒
|ψ(t) − ψr(t1)| ≤ π ∧ φ− < φ(t) < φ+ ∧
p(t) < p+ ∧ ṗ(t) < ṗ+

)
∧

∃ t2
(

t1 ≤ t2 ≤ t4 ∧ |ψ(t2) − ψr(t1)| < ψacc ∧
∀ t

(
t1 ≤ t ≤ t2 ⇒ |ψ(t) − ψr(t1)| > ψacc

)
∧

∀ t
(

t2 ≤ t ≤ t4 ⇒ |ψ(t) − ψr(t1)| < ψos

))
∃ t3

(
t2 ≤ t3 ≤ t4 ∧

¬ turb(t1, t4) ⇒ ∀ t
(

t3 ≤ t ≤ t4 ⇒ |ψ(t) − ψr(t1)| < ψacc

)
∧

turb(t1, t4) ⇒ RMS(ψ() − ψr(t1)r, t3, t4) < ψRMS

)
)}

3.1.2.4 Lateral acceleration and sideslip limits ... the following performance
shall be provided whenever any lateral-directional AFCS function is engaged. Lat-
eral acceleration refers to apparent (measured, sensed) body axis acceleration at the
aircraft center of gravity.

3.1.2.4.1 Coordination in steady banked turns

a) The incremental sideslip angle (β() ∈ I) shall not exceed 2 degrees (∆β+
/SBT ∈

C) from the trimmed value (βtr ∈ D),

b) and lateral acceleration (Aycg() ∈ I) shall not exceed 0.03g (A+
ycg/SBT ∈ C),

c) while at steady bank angle (φss ∈ Q, φacc ∈ C; φ() ∈ D) up to the maneuver
bank angle limit (φ−, φ+ ∈ C) reached during normal maneuvers

d) with the AFCS engaged (SWRAH(), SWHH(), SWHS() ∈ D; whileEngaged() ∈
A).

Intermediate specification

FOR EVERY couple of time instants t1, t2

IF

- [t1, t2] is a time interval within [0,∞) AND

d) either RAH, HH, or HS control function is in engaged status through-
out the interval [t1, t2] AND

c) the airplane is in a steady bank turn throughout the interval [t1, t2]
and the steady bank angle is within allowed limits AND
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- there is no turbulence throughout the interval [t1, t2]

THEN

a) the sideslip angle deviation from trim value shall not exceed ∆β+
/SBT

throughout the interval [t1, t2] AND

b) The lateral acceleration shall not exceed A+
ycg/SBT throughout the in-

terval [t1, t2]

Relational specification

RSBT = (B.5){(
( Uw,Up,X , Ctr ),X ′

)∣∣∣ ∀ t1 ∀ t2
(

0 ≤ t1 < t2 < ∞ ∧(
whileEngaged(SWRAH(), t1, t2) ∨

whileEngaged(SWHH(), t1, t2) ∨
whileEngaged(SWHS(), t1, t2)

)
∧

∃φss

(
∀ t

(
t1 ≤ t ≤ t2 ⇒ |φ(t) − φss| < φacc

)
∧ |φss| > φacc

)
∧

¬ turb(t1, t2) ⇒
∀ t

(
t1 ≤ t ≤ t2 ⇒ |β(t) − βtr| < ∆β+

/SBT ∧ |Aycg(t)| < A+
ycg/SBT

)
)}

3.1.2.4.3 Coordination in straight and level flight

a) The accuracy while the aircraft is in straight and level flight (φ() ∈ D)

b) shall be maintained with an incremental sideslip angle (β() ∈ I) of ±1 de-
gree (∆β+

/LF ∈ C) from the trimmed value (βtr ∈ D) or a lateral acceleration

(Aycg() ∈ I) of ±0.02 g (A+
ycg/LF ∈ C) at the cg,

c) whichever is lower.

Intermediate specification

FOR EVERY couple of time instants t1, t2

IF

- [t1, t2] is a time interval within [0,∞) AND

d) either RAH, HH, or HS control function is in engaged status through-
out the interval [t1, t2] AND

c) the airplane is wings level throughout the interval [t1, t2] AND
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- there is no turbulence throughout the interval [t1, t2]

THEN

a) the sideslip angle deviation from trim value shall not exceed ∆β+
/LF

throughout the interval [t1, t2] AND

b) The lateral acceleration shall not exceed A+
ycg/LF throughout the in-

terval [t1, t2]

Relational specification

RLF = (B.6){(
( Uw,Up,X , Ctr ),X ′

)∣∣∣ ∀ t1 ∀ t2
(

0 ≤ t1 < t2 < ∞ ∧(
whileEngaged(SWRAH(), t1, t2) ∨

whileEngaged(SWHH(), t1, t2) ∨
whileEngaged(SWHS(), t1, t2)

)
∧

∀ t
(

t1 ≤ t ≤ t2 ⇒ |φ(t)| < φacc

)
∧

¬ turb(t1, t2) ⇒
∀ t

(
t1 ≤ t ≤ t2 ⇒ |β(t) − β(0)| < ∆β+

/LF ∧ |Aycg(t)| < A+
ycg/LF

)
)}

3.1.2.5 Altitude hold

a) Engagement (t1 ∈ Q) of the altitude hold function (SWALH() ∈ D, engaged() ∈
A) at rates of climb or descent (Ḣ(t1) ∈ D) less than 2000 fpm (Ḣ/ALH ∈ C)

b) shall select the existing indicated barometric altitude (H(t1) ∈ D) and control
(H() ∈ I) the aircraft to this altitude as a reference.

c) The resulting normal acceleration (An() ∈ I) shall not exceed 0.2g (∆A+
n/LF ∈

C) incremental (An(0) ∈ D).

d) For engagement at rates above 2000 feet per minute the AFCS shall not cause
any unsafe maneuvers.

e) Within the aircraft thrust-drag capability and

f) at steady bank angles (φ() ∈ D; φacc ∈ C; φss ∈ Q), the mode shall provide
control accuracies (Hacc1, Hacc2, Hacc3, Hacc2%, Hacc3% ∈ C) shown in Table B.1
(φ1/ALH , φ2/ALH , φ3/ALH ∈ C) .

g) These accuracy requirements apply for airspeeds (Va() ∈ D) up to Mach 1.0
(V +

a/LF ).
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h) Following engagement or perturbation of this mode at 2000 feet per minute or
less, the specified accuracy shall be achieved within 30 seconds (TH ∈ C).

Table B.1: Minimum acceptable control accuracy for ALH function

Bank angle (deg.) 0 - 1 1 - 30 30 - 60

Alt. (ft.) 0 to 30000 ±30ft. ±60 ft or ±0.3%
whichever is
larger

±90 ft or ±0.4%
whichever is
larger

Intermediate specification

FOR EVERY couple of time instants t1, t2

IF

- [t1, t2] is a time interval within [0,∞) AND

- the length of the time interval [t1, t2] is larger than TH AND

a) the ALH control function is engaged at t = t1 and stays engaged
throughout the interval [t1, t2] AND

a) the rate of climb or descent at t = t1 is less than Ḣ/ALH AND

- the airplane is at a steady bank angle throughout the interval [t1, t2]
AND

g) the airspeed is below V +
a/LF AND

- there is no turbulence throughout the interval [t1, t2]

THEN

c) the normal acceleration deviation from trim value shall not exceed
∆A+

n/LF throughout the interval [t1, t2] AND

b) f) h) throughout the interval [t1 + TH , t2] the airplane steady state bank
angle is either less than φ1/ALH – in which case altitude deviation
from H(t1) shall be less than Hacc1– OR the airplane steady state bank
angle is within the interval [φ1/ALH , φ2/ALH ] – in which case altitude
deviation from H(t1) shall be less than the maximum between Hacc2

and Hacc2% ·H(t1) – OR the airplane steady state bank angle is within
the interval [φ2/ALH , φ3/ALH ] – in which case altitude deviation from
H(t1) shall be less than the maximum between Hacc3 and Hacc3% ·H(t1)
–.

111



Relational specification

RALH = (B.7){(
( Uw,Up,X ),X ′

)∣∣∣ ∀ t1 ∀ t2 ∃φss

(
0 ≤ t1 < t2 < ∞ ∧ t2 > t1 + TH ∧

engaged(SWALH(), t1, t2) ∧
|Ḣ(t1)| < Ḣ+

/ALH ∧
∀ t

(
t1 ≤ t ≤ t2 ⇒ |φ(t) − φss| < φacc ∧

Va(t) < V +
a/LF

)
∧

¬ turb(t1, t2) ⇒
∀ t

(
t1 ≤ t ≤ t2 ⇒ An(t) < ∆A+

n/LF

)
∧

∀ t
(

t1 + TH ≤ t ≤ t2 ⇒
( |φss| < φ1/ALH ∧ |H(t) − H(t1)| < Hacc1 ) ∨
( φ1/ALH ≤ |φss| < φ2/ALH ∧
|H(t) − H(t1)| < max(Hacc2, Hacc2% · H(t1)) ) ∨
( φ2/ALH ≤ |φss| < φ3/ALH ∧
|H(t) − H(t1)| < max(Hacc3, Hacc3% · H(t1)) )

)
)}
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B.2 Elementary requirements of DHC-2

detail-specification

B.2.1 DHC-2 airplane dynamics

Force equation requirement

RFeq = (B.8){(
( Cf ,X ),X ′

)∣∣∣ ∀ t ∃m()
(

0 ≤ t < ∞ ∧ m− ≤ m(t) ≤ m+ ⇒
V̇a(t) =

1

m(t)
( Fx(t) cos α(t) cos β(t) + Fy(t) sin β(t) +

+ Fz(t) sin α(t) sin β(t) ) ∧
α̇(t) =

1

m(t)Va(t) cos β(t)
( −Fx(t) sin α(t) + Fz(t) cos(t)α(t) ) +

+ q(t) − (p(t) cos α(t) + r(t) sin α(t)) tan β(t) ∧
β̇(t) =

1

m(t)Va(t)
( −Fx(t) cos α(t) sin β(t) + Fy(t) cos β(t) −

− Fz(t) sin α(t) sin β(t) ) +p(t) sin α(t) − r(t) cos α(t)
)}

Airframe-exerted aerodynamic force requirement

Raef = (B.9){(
X , Cf

)∣∣∣ ∀ t ∃m() ∃CX0() ∃CXα() ∃CXα2 () ∃CXα3 ()

∃CXq() ∃CY0() ∃CYβ
() ∃CYp() ∃CYr() ∃CYβ̇

()

∃CZ0() ∃CZα() ∃CZα3 () ∃CZq()
(

0 ≤ t < ∞ ∧
CX0(1 − ∆CX0%) ≤ CX0(t) ≤ CX0(1 + ∆CX0%) ∧
CXα(1 − ∆CXα%) ≤ CXα(t) ≤ CXα(1 + ∆CXα%) ∧
CXα2 (1 − ∆CXα2%) ≤ CXα2 (t) ≤ CXα2 (1 + ∆CXα2%) ∧
CXα3 (1 − ∆CXα3%) ≤ CXα3 (t) ≤ CXα3 (1 + ∆CXα3%) ∧
CXq(1 − ∆CXq%) ≤ CXq(t) ≤ CXq(1 + ∆CXq%) ∧
CY0(1 − ∆CY0%) ≤ CY0(t) ≤ CY0(1 + ∆CY0%) ∧
CYβ

(1 − ∆CYβ%) ≤ CYβ
(t) ≤ CYβ

(1 + ∆CYβ%) ∧
CYp(1 − ∆CYp%) ≤ CYp(t) ≤ CYp(1 + ∆CYp%) ∧
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CYr(1 − ∆CYr%) ≤ CYr(t) ≤ CYr(1 + ∆CYr%) ∧
CYβ̇

(1 − ∆CYβ̇%) ≤ CYβ̇
(t) ≤ CYβ̇

(1 + ∆CYβ̇%) ∧
CZ0(1 − ∆CZ0%) ≤ CZ0(t) ≤ CZ0(1 + ∆CZ0%) ∧
CZα(1 − ∆CZα%) ≤ CZα(t) ≤ CZα(1 + ∆CZα%) ∧
CZα3 (1 − ∆CZα3%) ≤ CZα3 (t) ≤ CZα3 (1 + ∆CZα3%) ∧
CZq(1 − ∆CZq%) ≤ CZq(t) ≤ CZq(1 + ∆CZq%) ⇒
Xasd

(t) = qdyn(t)S
(

CX0(t) + CXα(t)α(t) + CXα2 (t)α
2(t) +

+ CXα3 (t)α
3(t) + CXq(t)

c̄ q(t)

Va(t)

)
∧

Yasd
(t) = qdyn(t)S

(
CY0(t) + CYβ

(t)β(t) + CYp(t)
b p(t)

2Va(t)
+

+ CYr(t)
b r(t)

2Va(t)
+ CYβ̇

(t)
bβ̇(t)

2Va(t)

)
∧

Zasd
(t) = qdyn(t)S

(
CZ0(t) + CZα(t)α(t) + CZα3 (t)α

3(t) +

+ CZq(t)
c̄ q(t)

Va(t)

) )}

Moment equation requirement

RMeq = (B.10){(
Cm,X

)∣∣∣ ∀ t ∃ Ix() ∃ Iy() ∃ Iz() ∃ Jxy() ∃ Jxz() ∃ Jyz()
(

0 ≤ t < ∞ ∧
Ix(1 − ∆Ix%) ≤ Ix(t) ≤ Ix ∧
Iy(1 − ∆Iy%) ≤ Iy(t) ≤ Iy ∧
Iz(1 − ∆Iz%) ≤ Iz(t) ≤ Iz ∧
Jxy(1 − ∆Jxy%) ≤ Jxy(t) ≤ Jxy ∧
Jxz(1 − ∆Jxz%) ≤ Jxz(t) ≤ Jxz ∧
Jyz(1 − ∆Jyz%) ≤ Jyz(t) ≤ Jyz ⇒
ṗ(t) = Ppp(t)p

2(t) + Ppq(t)p(t)q(t) + Ppr(t)p(t)r(t) + Pqq(t)q
2(t) +

+ Pqr(t)q(t)r(t) + Prr(t)r
2(t) + Pl(t)L(t) + Pm(t)M(t) + Pn(t)N(t) ∧

q̇(t) = Qpp(t)p
2(t) + Qpq(t)p(t)q(t) + Qpr(t)p(t)r(t) + Qqq(t)q

2(t) +

+ Qqr(t)q(t)r(t) + Qrr(t)r
2(t) + Ql(t)L(t) + Qm(t)M(t) + Qn(t)N(t) ∧

ṙ(t) = Rpp(t)p
2(t) + Rpq(t)p(t)q(t) + Rpr(t)p(t)r(t) + Rqq(t)q

2(t) +

+ Rqr(t)q(t)r(t) + Rrr(t)r
2(t) + Rl(t)L(t) + Rm(t)M(t) + Rn(t)N(t)

)}
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Airframe-exerted aerodynamic moment requirement

Raem = (B.11){(
X , Cm

)∣∣∣ ∀ t ∃m() ∃Cl0() ∃Clβ() ∃Clp() ∃Clr() ∃Cmα() ∃Cmα2 () ∃Cmq()

∃Cmβ2 () ∃Cmr() ∃Cn0() ∃Cnβ3 () ∃Cnβ
() ∃Cnp() ∃Cnr() ∃Cnq()

(
0 ≤ t < ∞ ∧
Cl0(1 − ∆Cl0%) ≤ Cl0(t) ≤ Cl0(1 + ∆Cl0%) ∧
Clβ(1 − ∆Clβ%) ≤ Clβ(t) ≤ Clβ(1 + ∆Clβ%) ∧
Clp(1 − ∆Clp%) ≤ Clp(t) ≤ Clp(1 + ∆Clp%) ∧
Clr(1 − ∆Clr%) ≤ Clr(t) ≤ Clr(1 + ∆Clr%) ∧
Cm0(1 − ∆Cm0%) ≤ Cm0(t) ≤ Cm0(1 + ∆Cm0%) ∧
Cm−

α
≤ Cmα(t) ≤ Cm+

α
∧

Cmα2 (1 − ∆Cmα2%) ≤ Cmα2 (t) ≤ Cmα2 (1 + ∆Cmα2%) ∧
Cmq(1 − ∆Cmq%) ≤ Cmq(t) ≤ Cmq(1 + ∆Cmq%) ∧
Cmβ2 (1 − ∆Cmβ2%) ≤ Cmβ2 (t) ≤ Cmβ2 (1 + ∆Cmβ2%) ∧
Cmr(1 − ∆Cmr%) ≤ Cmr(t) ≤ Cmr(1 + ∆Cmr%) ∧
Cn0(1 − ∆Cn0%) ≤ Cn0(t) ≤ Cn0(1 + ∆Cn0%) ∧
Cnβ

(1 − ∆Cnβ%) ≤ Cnβ
(t) ≤ Cnβ

(1 + ∆Cnβ%) ∧
Cnp(1 − ∆Cnp%) ≤ Cnp(t) ≤ Cnp(1 + ∆Cnp%) ∧
Cnr(1 − ∆Cnr%) ≤ Cnr(t) ≤ Cnr(1 + ∆Cnr%) ∧
Cnq(1 − ∆Cnq%) ≤ Cnq(t) ≤ Cnq(1 + ∆Cnq%) ∧
Cnβ3 (1 − ∆Cnβ3%) ≤ Cnβ3 (t) ≤ Cnβ3 (1 + ∆Cnβ3%) ⇒

Lasd
(t) = qdyn(t)S

b

2

(
Cl0(t) + Clβ(t)β(t) + Clp(t)

b p(t)

2Va(t)
+

+ Clr(t)
b r(t)

2Va(t)

)
∧

Masd
(t) = qdyn(t)Sc̄

(
Cm0(t) + Cmα(t)α(t) + Cmα2 (t)α

2(t) +

+ Cmq(t)
c̄ q(t)

Va(t)
+ Cmβ2 (t)β

2(t) + Cmr(t)
b r(t)

2Va(t)

)
∧

Nasd
(t) = qdyn(t)S

b

2

(
Cn0(t) + Cnβ

(t)β(t) + Cnp(t)
b p(t)

2Va(t)
+

+ Cnr(t)
b r(t)

2Va(t)
+ Cnq(t)

c̄ q(t)

V (t)
+ Cnβ3 (t)β

3(t)
) )}
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Kinematic equation requirement

RKeq = (B.12){(
X ,X ′

)∣∣∣ ∀ t
(

0 ≤ t < ∞ ⇒

ψ̇(t) =
q(t) sin φ(t) + r(t) cos φ(t)

cosθ(t)
∧

θ̇(t) = q(t) cos φ(t) − r(t) sin φ(t) ∧
φ̇(t) = p(t) + (q(t) sin φ(t) + r(t) cos φ(t)) tan θ(t)

)}

Navigation equation requirement

RNeq = (B.13){(
( Uw,X ),X

)∣∣∣ ∀ t
(

0 ≤ t < ∞ ⇒

Ḣ(t) = ue(t) sin θ(t)+ ( ve(t) sin φ(t) + we(t) cos φ(t) ) cos θ(t)
)}

Gravity force requirement

Rgrf = (B.14){(
X , Cf

)∣∣∣ ∀ t ∃m()
(

0 ≤ t < ∞ ∧ m− ≤ m(t) ≤ m+ ⇒
Xgr(t) = −m(t)g0 sin θ(t) ∧
Ygr(t) = m(t)g0 cos θ(t) sin φ(t) ∧
Zgr(t) = m(t)g0 cos θ(t) cos φ(t)

)}

Wind Force requirement

Rwf = (B.15){(
( Uw,X ), Cf

)∣∣∣ ∀ t ∃m()
(

0 ≤ t < ∞ ∧ m− ≤ m(t) ≤ m+ ⇒
Xw(t) = −m(t)(u̇w(t) + q(t)ww(t) − r(t)vw(t)) ∧
Yw(t) = −m(t)(v̇w(t) − p(t)ww(t) + r(t)uw(t)) ∧
Zw(t) = −m(t)(ẇw(t) + p(t)vw(t) − q(t)uw(t))

)}
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Control-surface-exerted aerodynamic force requirement

Rcsf = (B.16){(
( Uc,X ), Cf

)∣∣∣ ∀ t ∃CXδr
() ∃CXδf

() ∃CXαδf
() ∃CYδa

() ∃CYδr
() ∃CYαδr

()

∃CZδe
() ∃CZβ2δe

() ∃CZδf
() ∃CZαδf

()
(

0 ≤ t < ∞ ∧
CXδr

(1 − ∆CXδr%) ≤ CXδr
(t) ≤ CXδr

(1 + ∆CXδr%) ∧
CXδf

(1 − ∆CXδf%) ≤ CXδf
(t) ≤ CXδf

(1 + ∆CXδf%) ∧
CXαδf

(1 − ∆CXαδf%) ≤ CXαδf
(t) ≤ CXαδf

(1 + ∆CXαδf%) ∧
CYδa

(1 − ∆CYδa%) ≤ CYδa
(t) ≤ CYδa

(1 + ∆CYδa%) ∧
CYδr

(1 − ∆CYδr%) ≤ CYδr
(t) ≤ CYδr

(1 + ∆CYδr%) ∧
CYαδr

(1 − ∆CYαδr%) ≤ CYαδr
(t) ≤ CYαδr

(1 + ∆CYαδr%) ∧
CZδe

(1 − ∆CZδe%) ≤ CZδe
(t) ≤ CZδe

(1 + ∆CZδe%) ∧
CZβ2δe

(1 − ∆CZβ2δe%
) ≤ CZβ2δe

(t) ≤ CZβ2δe
(1 + ∆CZβ2δe%

) ∧
CZδf

(1 − ∆CZδf%) ≤ CZδf
(t) ≤ CZδf

(1 + ∆CZδf%) ∧
CZαδf

(1 − ∆CZαδf%) ≤ CZαδf
(t) ≤ CZαδf

(1 + ∆CZαδf%) ⇒
Xacd

(t) = qdyn(t)S ( CXδr
(t)δr(t) + CXδf

(t)δf (t) + CXαδf
(t)α(t)δf (t) ) ∧

Yacd
(t) = qdyn(t)S ( CYδa

(t)δa(t) + CYδr
(t)δr(t) + CYαδr

(t)α(t)δr(t) ) ∧
Zacd

(t) = qdyn(t)S ( CZδe
(t)δe(t) + CZβ2δe

(t)β2(t)δe(t) + CZδf (t)δf (t) )
)}

Control-surface-exerted aerodynamic moment requirement

Rcsm = (B.17){(
( Uc,X ), Cm

)∣∣∣ ∀ t ∃Clδa
() ∃Clδr

() ∃Clαδa
() ∃Cmδe

() Cmδf
()

∃Cnδa
() ∃Cnδr

()
(

0 ≤ t < ∞ ∧
Clδa

(1 − ∆Clδa%) ≤ Clδa
(t) ≤ Clδa

(1 + ∆Clδa%) ∧
Clδr

(1 − ∆Clδr%) ≤ Clδr
(t) ≤ Clδr

(1 + ∆Clδr%) ∧
Clαδa

(1 − ∆Clαδa%) ≤ Clαδa
(t) ≤ Clαδa

(1 + ∆Clαδa
) ∧

Cmδe
(1 − ∆Cmδe%) ≤ Cmδe

(t) ≤ Cmδe
(1 + ∆Cmδe%) ∧

Cmδf
(1 − ∆Cmδf%) ≤ Cmδf

(t) ≤ Cmδf
(1 + ∆Cmδf%) ∧

Cnδa
(1 − ∆Cnδa%) ≤ Cnδa

(t) ≤ Cnδa
(1 + ∆Cnδa%) ∧

Cnδr
(1 − ∆Cnδr%) ≤ Cnδr

(t) ≤ Cnδr
(1 + ∆Cnδr%) ⇒

Lacd
(t) = qdyn(t)S

b

2
( Clδa

(t)δa(t) + Clδr
(t)δr(t) + Clαδa(t)α(t)δa(t) ) ∧
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Macd
(t) = qdyn(t)Sc̄ ( Cmδe

(t)δe(t) + Cmδf
(t)δf (t) ) ∧

Nacd
(t) = qdyn(t)S

b

2
( Cnδa

(t)δa(t) + Cnδr
(t)δr(t) )

)}

Propulsive force requirement

Rpf = (B.18){(
( Uc,X ), Cf

)∣∣∣ ∀ t ∃P () ∃ dpt()
(

0 ≤ t < ∞ ∧

P (t) = Ce3 [ Ce4+
(

Ce5(pz(t) + Ce6)(n(t) + Ce7) +

+ (Ce8 + Ce9n(t))
(

1 − ρ(t)

ρ0

))]
∧

P (t) < P+ ∧ n− < n(t) < n+ ∧ p−z < pz(t) < p+
z ∧

dpt(t) = Ce1 + Ce2

(
P (t)

0.5ρ(t)V 3
a (t)

)
⇒

Xp(t) = qdyn(t)S [ CXdpt
dpt(t) + CXαdpt2

α(t)dpt2(t) ] ∧
Yp(t) = 0 ∧
Zp(t) = qdyn(t)SCZdpt

dpt(t)
)}

Propulsive moment requirement

Rpm = (B.19){(
( Uc,X ), Cm

)∣∣∣ ∀ t ∃P () ∃ dpt()
(

0 ≤ t < ∞ ∧

P (t) = Ce3 [ Ce4+
(

Ce5(pz(t) + Ce6)(n(t) + Ce7) +

+ (Ce8 + Ce9n(t))
(

1 − ρ(t)

ρ0

))]
∧

P (t) < P+ ∧ n− < n(t) < n+ ∧ p−z < pz(t) < p+
z ∧

dpt(t) = Ce1 + Ce2

(
P (t)

0.5ρ(t)V 3
a (t)

)
⇒

Lp(t) = qdyn(t)S
b

2
Clα2dpt

α2(t)dpt(t) ∧
Mp(t) = qdyn(t)Sc̄ Cmdpt

dpt(t) ∧

Np(t) = qdyn(t)S
b

2
Cndpt3

dpt3(t)
)}
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Kinematic acceleration at crew station requirement

Rka = (B.20){(
( Uw,X ),X ′

)∣∣∣ ∀ t
(

0 ≤ t < ∞ ⇒
Ax(t) = u̇e(t) + q(t)we(t) − r(t)ve(t) + q̇(t)rz − ṙ(t)ry +

+ p(t)q(t)ry + p(t)r(t)rz − q2(t)rx − r2(t)rx ∧
Ay(t) = v̇e(t) + r(t)ue(t) − p(t)we(t) + ṙ(t)rx − ṗ(t)rz +

+ p(t)q(t)rx + q(t)r(t)rz − p2(t)ry − r2(t)ry ∧
Az(t) = ẇe(t) + p(t)ve(t) − q(t)ue(t) + ṗ(t)ry − q̇(t)rx +

+ p(t)r(t)rx + q(t)r(t)ry − p2(t)rz − q2(t)rz

)}

Air data requirement

Rad = (B.21){(
X ,X ′

)∣∣∣ ∀ t
(

0 ≤ t < ∞ ⇒
T (t) = T0 + λH(t) ∧

ps(t) = p0

(
T0

T (t)

) g0
λR

∧

ρ(t) =
ps(t)

RT (t)
∧

qdyn(t) = 0.5ρ(t)V 2
a (t)

)}

B.2.2 DHC-2 Flight Control System Hardware

Rudder actuator

Rrud = (B.22){(
( X , Ũc ),Uc

)∣∣∣ ∀ t ∃xr()
(

0 ≤ t < ∞ ∧

xr(0) = −A−1
r Brũr(0) ∧

ẋr(t) = Arxr(t) + Brũr(t) ⇒
δr(t) = Crxr(t) + Drũr(t)

)}
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Aileron actuator

Rail = (B.23){(
( X , Ũc ),Uc

)∣∣∣ ∀ t ∃xa()
(

0 ≤ t < ∞ ∧

xa(0) = −A−1
a Baũa(0) ∧

ẋa(t) = Aaxa(t) + Baũa(t) ⇒
δa(t) = 2Caxa(t) + Daũa(t)

)}

Elevator actuator

Relv = (B.24){(
( X , Ũc ),Uc

)∣∣∣ ∀ t ∃xe()
(

0 ≤ t < ∞ ∧

xe(0) = −A−1
e Beũe(0) ∧

ẋe(t) = Aexe(t) + Beũe(t) ⇒
δe(t) = Cexe(t) + Deũe(t)

)}

Roll rate gyro requirement

Rp = (B.25){(
X , X̃

)∣∣∣ ∀ t ∃Sp ∃ biasp ∃ νp()
(

0 ≤ t < ∞ ∧
S−

g ≤ Sp ≤ S+
g ∧

BIAS−
g ≤ biasp ≤ BIAS+

g ∧
whiteNoise(νp(), Npsdg) ⇒
p̃(t) '

[
Sp [ p(t) ]

IR+
g

IR−
g

+biasp + νp(t)
]OR+

g

OR−
g

)}

Pitch rate gyro requirement

Rq = (B.26){(
X , X̃

)∣∣∣ ∀ t ∃Sq ∃ biasq ∃ νq()
(

0 ≤ t < ∞ ∧
S−

g ≤ Sq ≤ S+
g ∧

BIAS−
g ≤ biasq ≤ BIAS+

g ∧
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whiteNoise(νq(), Npsdg) ⇒
q̃(t) '

[
Sq [ q(t) ]

IR+
g

IR−
g

+biasq + νq(t)
]OR+

g

OR−
g

)}

Yaw rate gyro requirement

Rr = (B.27){(
X , X̃

)∣∣∣ ∀ t ∃Sr ∃ biasr ∃ νr()
(

0 ≤ t < ∞ ∧
S−

g ≤ Sr ≤ S+
g ∧

BIAS−
g ≤ biasr ≤ BIAS+

g ∧
whiteNoise(νr(), Npsdg) ⇒
r̃(t) '

[
Sr [ r(t) ]

IR+
g

IR−
g

+biasr + νr(t)
]OR+

g

OR−
g

)}

Angle of attack sensor requirement

Rα = (B.28){(
X , X̃

)∣∣∣ ∀ t ∃Sα ∃ biasα ∃ να()
(

0 ≤ t < ∞ ∧
S−

α ≤ Sα ≤ S+
α ∧

BIAS−
α ≤ biasα ≤ BIAS+

α ∧
whiteNoise(να(), Npsdα) ⇒
α̃(t) '

[
Sα [ α(t) ]IR+

α

IR−
α

+biasα + να(t)
]OR+

α

OR−
α

)}

Ax accelerometer requirement

RAx = (B.29){(
X , X̃

)∣∣∣ ∀ t ∃SAx ∃ biasAx ∃ νAx()
(

0 ≤ t < ∞ ∧
S−

A ≤ SAx ≤ S+
A ∧

BIAS−
A ≤ biasAx ≤ BIAS+

A ∧
whiteNoise(νAx(), NpsdA) ⇒
Ãx(t) '

[
SAx [ Ax(t) + sin θ(t) ]

IR+
A

IR−
A

+biasAx + νAx(t)
]OR+

A

OR−
A

)}
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Ay accelerometer requirement

RAy = (B.30){(
X , X̃

)∣∣∣ ∀ t ∃SAy ∃ biasAy ∃ νAy()
(

0 ≤ t < ∞ ∧
S−

A ≤ SAy ≤ S+
A ∧

BIAS−
A ≤ biasAy ≤ BIAS+

A ∧
whiteNoise(νAy(), NpsdA) ⇒
Ãy(t) '

[
SAy [ Ay(t) − cos θ(t) sin φ(t) ]

IR+
A

IR−
A

+biasAy + νAy(t)
]OR+

A

OR−
A

)}

Az accelerometer requirement

RAz = (B.31){(
X , X̃

)∣∣∣ ∀ t ∃SAz ∃ biasAz ∃ νAz()
(

0 ≤ t < ∞ ∧
S−

A ≤ SAz ≤ S+
A ∧

BIAS−
A ≤ biasAz ≤ BIAS+

A ∧
whiteNoise(νAz(), NpsdA) ⇒
Ãz(t) '

[
SAz [ Az(t) + cos θ(t) sin φ(t) ]

IR+
A

IR−
A

+biasAz + νAz(t)
]OR+

A

OR−
A

)}

Dynamic pressure sensor requirement

Rqdyn
= (B.32){(
X , X̃

)∣∣∣ ∀ t ∃Sqdyn
∃ biasqdyn

∃ νqdyn
()

(
0 ≤ t < ∞ ∧

S−
qdyn

≤ Sqdyn
≤ S+

qdyn
∧

BIAS−
qdyn

≤ biasqdyn
≤ BIAS+

qdyn
∧

whiteNoise(νqdyn
(), Npsdqdyn

) ⇒

q̃dyn(t) '
[

Sqdyn
[ qdyn(t) ]

IR+
qdyn

IR−
qdyn

+biasqdyn
+ νqdyn

(t)
]OR+

qdyn

OR−
qdyn

)}

Static pressure sensor requirement

Rps = (B.33){(
X , X̃

)∣∣∣ ∀ t ∃Sps ∃ biasps ∃ νps()
(

0 ≤ t < ∞ ∧
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S−
ps

≤ Sps ≤ S+
ps

∧
BIAS−

ps
≤ biasps ≤ BIAS+

ps
∧

whiteNoise(νps(), Npsdps) ⇒
p̃s(t) '

[
Sps [ ps(t) ]

IR+
ps

IR−
ps

+biasps + νps(t)
]OR+

ps

OR−
ps

)}

Temperature sensor requirement

RT = (B.34){(
X , X̃

)∣∣∣ ∀ t ∃ST ∃ biasT ∃ νT ()
(

0 ≤ t < ∞ ∧
S−

T ≤ ST ≤ S+
T ∧

BIAS−
T ≤ biasT ≤ BIAS+

T ∧
whiteNoise(νT (), NpsdT ) ⇒
T̃ (t) '

[
ST [ T (t) ]

IR+
T

IR−
T

+biasT + νT (t)
]OR+

T

OR−
T

)}

Pitch attitude sensor requirement

Rθ = (B.35){(
X , X̃

)∣∣∣ ∀ t ∃Sθ ∃ biasθ ∃ νθ()
(

0 ≤ t < ∞ ∧
S−

φ/θ ≤ Sθ ≤ S+
φ/θ ∧

BIAS−
φ/θ ≤ biasθ ≤ BIAS+

φ/θ ∧
whiteNoise(νθ(), Npsdφ/θ) ⇒
θ̃(t) '

[
Sθ [ θ(t) ]

IR+
φ/θ

IR−
φ/θ

+biasθ + νθ(t)
]OR+

φ/θ

OR−
φ/θ

)}

Roll attitude sensor requirement

Rφ = (B.36){(
X , X̃

)∣∣∣ ∀ t ∃Sφ ∃ biasφ ∃ νφ()
(

0 ≤ t < ∞ ∧
S−

φ/θ ≤ Sφ ≤ S+
φ/θ ∧

BIAS−
φ/θ ≤ biasφ ≤ BIAS+

φ/θ ∧
whiteNoise(νφ(), Npsdφ/θ) ⇒
φ̃(t) '

[
Sφ [ φ(t) ]

IR+
φ/θ

IR−
φ/θ

+biasφ + νφ(t)
]OR+

φ/θ

OR−
φ/θ

)}
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Heading sensor requirement

Rψ = (B.37){(
X , X̃

)∣∣∣ ∀ t ∃Sψ ∃ biasψ ∃ νψ()
(

0 ≤ t < ∞ ∧
S−

ψ ≤ Sψ ≤ S+
ψ ∧

BIAS−
ψ ≤ biasψ ≤ BIAS+

ψ ∧
whiteNoise(νψ(), Npsdψ) ⇒
ψ̃(t) '

[
Sψ [ ψ(t) ]

IR+
ψ

IR−
ψ

+biasψ + νψ(t)
]OR+

ψ

OR−
ψ

)}

DAC card requirement

RDAC = (B.38){(
Ūc, Ũc

)∣∣∣ ∀ k ∀ t
(

0 ≤ k < ∞ ∧ kTs ≤ t < (k + 1)Ts ⇒
δ̃e(t) = (δ̄e(k) − OFFDAC)S−1

DAC ∧
δ̃a(t) = (δ̄a(k) − OFFDAC)S−1

DAC ∧
δ̃r(t) = (δ̄r(k) − OFFDAC)S−1

DAC

)}

ADC card requirement

RADC = (B.39){(
( Ũp, X̃ ), ( Ūp, X̄ )

)∣∣∣ ∀ k
(

0 ≤ k < ∞ ⇒

p̄(k) =
⌊

SADC [ p̃(k Ts) ]
ADCV +

ADCV − +OFFADC

⌋
∧

q̄(k) =
⌊

SADC [ q̃(k Ts) ]
ADCV +

ADCV − +OFFADC

⌋
∧

r̄(k) =
⌊

SADC [ r̃(k Ts) ]
ADCV +

ADCV − +OFFADC

⌋
∧

ᾱ(k) =
⌊

SADC [ α̃(k Ts) ]
ADCV +

ADCV − +OFFADC

⌋
∧

Āx(k) =
⌊

SADC [ Ãx(k Ts) ]
ADCV +

ADCV − +OFFADC

⌋
∧

Āy(k) =
⌊

SADC [ Ãy(k Ts) ]
ADCV +

ADCV − +OFFADC

⌋
∧

Āz(k) =
⌊

SADC [ Ãz(k Ts) ]
ADCV +

ADCV − +OFFADC

⌋
∧

ψ̄(k) =
⌊

SADC [ ψ̃(k Ts) ]
ADCV +

ADCV − +OFFADC

⌋
∧

θ̄(k) =
⌊

SADC [ θ̃(k Ts) ]
ADCV +

ADCV − +OFFADC

⌋
∧
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φ̄(k) =
⌊

SADC [ φ̃(k Ts) ]
ADCV +

ADCV − +OFFADC

⌋
∧

q̄dyn(k) =
⌊

SADC [ q̃dyn(k Ts) ]
ADCV +

ADCV − +OFFADC

⌋
∧

p̄s(k) =
⌊

SADC [ p̃s(k Ts) ]
ADCV +

ADCV − +OFFADC

⌋
∧

T̄ (k) =
⌊

SADC [ T̃ (k Ts) ]
ADCV +

ADCV − +OFFADC

⌋
∧

φ̄r(k) =
⌊

SADC [ φ̃r(k Ts) ]
ADCV +

ADCV − +OFFADC

⌋
∧

ψ̄r(k) =
⌊

SADC [ ψ̃r(k Ts) ]
ADCV +

ADCV − +OFFADC

⌋
∧

θ̄r(k) =
⌊

SADC [ θ̃r(k Ts) ]
ADCV +

ADCV − +OFFADC

⌋
∧

¯SW PAH(k) =
⌊

SADC [ S̃W PAH(k Ts) ]
ADCV +

ADCV − +OFFADC

⌋
∧

¯SWALH(k) =
⌊

SADC [ S̃WALH(k Ts) ]
ADCV +

ADCV − +OFFADC

⌋
∧

¯SWRAH(k) =
⌊

SADC [ S̃WRAH(k Ts) ]
ADCV +

ADCV − +OFFADC

⌋
∧

¯SWHH(k) =
⌊

SADC [ S̃WHH(k Ts) ]
ADCV +

ADCV − +OFFADC

⌋
∧

¯SWHS(k) =
⌊

SADC [ S̃WHS(k Ts) ]
ADCV +

ADCV − +OFFADC

⌋)}

Control panel requirement

RCP = (B.40){(
Up, Ũp

)∣∣∣ ∀ t
(

0 ≤ t < ∞ ⇒

(S̃W PAH(t) > Vth ⇔ SWPAH(t) = ON) ∧
(S̃WALH(t) > Vth ⇔ SWALH(t) = ON) ∧
(S̃WRAH(t) > Vth ⇔ SWRAH(t) = ON) ∧
(S̃WHH(t) > Vth ⇔ SWHH(t) = ON) ∧
(S̃WHS(t) > Vth ⇔ SWHS(t) = ON) ∧
θ̃r(t) = Sθrθr(t) + BIASθr ∧
φ̃r(t) = Sφrφr(t) + BIASφr ∧
ψ̃r(t) = Sψrψr(t) + BIASψr

)}
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B.2.3 DHC-2 Flight Control System Software

Input interface requirement

Rin = (B.41){(
( Ūp, X̄ ), ( Ûp, X̂ )

)∣∣∣ ∀ k
(

0 ≤ k < ∞ ⇒

p̂(k) = S−1
p

(
(p̄(k) − OFFADC)S−1

ADC − BIASp

)
∧

q̂(k) = S−1
q

(
(q̄(k) − OFFADC)S−1

ADC − BIASq

)
∧

r̂(k) = S−1
r

(
(r̄(k) − OFFADC)S−1

ADC − BIASr

)
∧

α̂(k) = S−1
α

(
(ᾱ(k) − OFFADC)S−1

ADC − BIASα

)
∧

Âx(k) = S−1
Ax

(
(Āx(k) − OFFADC)S−1

ADC − BIASAx

)
∧

Ây(k) = S−1
Ay

(
(Āy(k) − OFFADC)S−1

ADC − BIASAy

)
∧

Âz(k) = S−1
Az

(
(Āz(k) − OFFADC)S−1

ADC − BIASAz

)
∧

ψ̂(k) = S−1
ψ

(
(ψ̄(k) − OFFADC)S−1

ADC − BIASψ

)
∧

θ̂(k) = S−1
θ

(
(θ̄(k) − OFFADC)S−1

ADC − BIASθ

)
∧

φ̂(k) = S−1
φ

(
(φ̄(k) − OFFADC)S−1

ADC − BIASφ

)
∧

q̂dyn(k) = S−1
qdyn

(
(q̄dyn(k) − OFFADC)S−1

ADC − BIASqdyn

)
∧

p̂s(k) = S−1
ps

(
(p̄s(k) − OFFADC)S−1

ADC − BIASps

)
∧

T̂ (k) = S−1
T

(
(T̄ (k) − OFFADC)S−1

ADC − BIAST

)
∧

φ̂r(k) = S−1
φr

(
(φ̄r(k) − OFFADC)S−1

ADC − BIASφr

)
∧

ψ̂r(k) = S−1
ψr

(
(ψ̄r(k) − OFFADC)S−1

ADC − BIASψr

)
∧

θ̂r(k) = S−1
θr

(
(θ̄r(k) − OFFADC)S−1

ADC − BIASθr

)
∧

(ŜW PAH(k) = ON ⇔ ( ¯SW PAH(k) − OFFADC)S−1
ADC > Vth) ∧

(ŜWALH(k) = ON ⇔ ( ¯SWALH(k) − OFFADC)S−1
ADC > Vth) ∧

(ŜWRAH(k) = ON ⇔ ( ¯SWRAH(k) − OFFADC)S−1
ADC > Vth) ∧

(ŜWHH(k) = ON ⇔ ( ¯SWHH(k) − OFFADC)S−1
ADC > Vth) ∧

(ŜWHS(k) = ON ⇔ ( ¯SWHS(k) − OFFADC)S−1
ADC > Vth) ∧

V̂a(k) =

√√√√2q̂dyn(k)
RT̂ (k)

p̂s(k)
∧

Ĥ(k) = psToHtable(p̂s(k))
)}
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Output interface requirement

Rout = (B.42){(
Ûc, Ūc

)∣∣∣ ∀ k
(

0 ≤ k < ∞ ⇒

δ̄e(k) =
⌊

SDAC

[
δ̂e(k)

]DACV +

DACV −
+OFFDAC

⌋
∧

δ̄a(k) =
⌊

SDAC

[
δ̂a(k)

]DACV +

DACV −
+OFFDAC

⌋
∧

δ̄r(k) =
⌊

SDAC

[
δ̂r(k)

]DACV +

DACV −
+OFFDAC

⌋)}

Pitch Attitude Hold FCL requirement

R
P̂AH

= (B.43){(
( Ûp, X̂ ), Ûc

)∣∣∣ ∀ k
(

1 ≤ k < ∞ ∧ ŜW PAH(k) = ON ⇒

∆̂δe(k) =
[(

[ ∆̂θr(k) ]∆θ+
r

∆θ−r
−∆̂θ(k)

)
Kθ(V̂a)

]∆θ+
V

∆θ−V
−

−
(

q̂(k) − r̂(k) tan φ̂(k) − Ktc(V̂a)(sec(φ̂(k) + ∆φPAH) − 1)
)

Kq(V̂a) +

+
[[(

[ ∆̂θr(k) ]∆θ+
r

∆θ−r
−∆̂θ(k)

)
Kθ(V̂a)

]∆θ+
V

∆θ−V
Ks i

Ts

z − 1

]l+s1

l−s1

)}

Altitude Hold FCL requirement

R
ÂLH

= (B.44){(
( Ûp, X̂ ), Ûc

)∣∣∣ ∀ k1 ∀ k2

(
1 ≤ k1 < k2 < ∞ ∧

engaged(ŜWALH(), k1, k2) ⇒
∀ k

(
1 ≤ k < ∞ ∧ ŜWALH(k) = ON ⇒

∆̂δe(k) =
[(

[( ∆̂H(k1) − ∆̂H(k) ) KH(V̂a)K̄
−1
θ (V̂a) ]∆θ+

r

∆θ−r
+

−
(
[

Kd(V̂a)Ts

z − 1 + Kd(V̂a)Ts

∆̂θ(k) ]
l+s1
l−s1

+∆̂θ(k)
))

K̄θ(V̂a)
]∆θ+

V

∆θ−V

−
(

q̂(k) − r̂(k) tan φ̂(k) − K̄tc(V̂a)(sec(φ̂(k) + ∆φAL) − 1)
)

Kq(V̂a)

+
[[(

[( ∆̂H(k1) − ∆̂H(k) ) KH(V̂a)K̄
−1
θ (V̂a) ]∆θ+

r

∆θ−r

−
(
[

Kd(V̂a)Ts

z − 1 + Kd(V̂a)Ts

∆̂θ(k) ]
l+s2
l−s2

+∆̂θ(k)
))

K̄θ(V̂a)
]∆θ+

V

∆θ−V
·
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·Ks i
Ts

z − 1

]l+s1

l−s1

)}

Roll Attitude Hold FCL requirement

R
R̂AH

= (B.45){(
( Ûp, X̂ ), Ûc

)∣∣∣ ∀ k
(

1 ≤ k < ∞ ∧ ŜWRAH(k) = ON ⇒

∆̂δa(k) =
[(

[ ∆̂φr(k) ]∆φ+
r

∆φ−
r
−∆̂φ(k)

)
Kφ(V̂a)

]∆φ+
V

∆φ−
V

+dar · r̂(k) +

+
[[(

[ ∆̂φr(k) ]∆φ+
r

∆φ−
r
−∆̂φ(k)

)
Kφ(V̂a)

]∆φ+
V

∆φ−
V

Ka i
Ts

z − 1

]l+a

l−a
∧

∆̂δr̂(k) = Kr
g0

V̂a(k)
sin φ̂(k) + (drr(V̂a) − Kr)r̂(k)

)}

Heading Select FCL requirement

R
ĤS

= (B.46){(
( Ûp, X̂ ), Ûc

)∣∣∣ ∀ k
(

1 ≤ k < ∞ ∧ ŜWHS(k) = ON ⇒

∆̂δa(k) =
[(

[( ∆̂ψr(k) − ∆̂ψ(k) ) Kψ(V̂a) ]∆φ+
r

∆φ−
r
−

− ∆̂φ(k)
)

Kφ(V̂a)
]∆φ+

V

∆φ−
V

+dar · r̂(k) +

+
[[(

[( ∆̂ψr(k) − ∆̂ψ(k) ) Kψ(V̂a) ]∆φ+
r

∆φ−
r
−∆̂φ(k)

)
Kφ(V̂a)

]∆φ+
V

∆φ−
V

·

·Ka i
Ts

z − 1

]l+a

l−a
∧

∆̂δr̂(k) = Kr
g0

V̂a(k)
sin φ̂(k) + (drr(V̂a) − Kr)r̂(k)

)}

Heading Hold FCL requirement

R
ĤH

= (B.47){(
( Ûp, X̂ ), Ûc

)∣∣∣ ∀ k1 ∀ k2

(
1 ≤ k1 < k2 < ∞ ∧

engaged(ŜWHH(), k1, k2) ⇒
∀ k

(
∆̂δa(k) =

[(
[( ∆̂ψ(k1) − ∆̂ψ(k) ) Kψ(V̂a) ]∆φ+

r

∆φ−
r
−

− ∆̂φ(k)
)

Kφ(V̂a)
]∆φ+

V

∆φ−
V

+dar · r̂(k) +
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+
[[(

[( ∆̂ψ(k1) − ∆̂ψ(k) ) Kψ(V̂a) ]∆φ+
r

∆φ−
r
−∆̂φ(k)

)
Kφ(V̂a)

]∆φ+
V

∆φ−
V

·

·Ka i
Ts

z − 1

]l+a

l−a
∧

∆̂δr̂(k) = Kr
g0

V̂a(k)
sin φ̂(k) + (drr(V̂a) − Kr)r̂(k)

))}

129



B.3 Fault modes

B.3.1 Control-surface fault modes

Partial loss of rudder surface

Rcsf,1 = (B.48){(
( Uc,X ), Cf

)∣∣∣ ∀ t ∃CXδr
() ∃CXδf

() ∃CXαδf
() ∃CYδa

() ∃CYδr
() ∃CYαδr

()

∃CZδe
() ∃CZβ2δe

() ∃CZδf
() ∃CZαδf

() ∃ loss
(

0 ≤ t < ∞ ∧ 0 < loss ≤ 1 ∧
CXδr

(1 − ∆CXδr%) ≤ CXδr
(t) ≤ CXδr

(1 + ∆CXδr%) ∧
CXδf

(1 − ∆CXδf%) ≤ CXδf
(t) ≤ CXδf

(1 + ∆CXδf%) ∧
CXαδf

(1 − ∆CXαδf%) ≤ CXαδf
(t) ≤ CXαδf

(1 + ∆CXαδf%) ∧
CYδa

(1 − ∆CYδa%) ≤ CYδa
(t) ≤ CYδa

(1 + ∆CYδa%) ∧
CYδr

(1 − ∆CYδr%) ≤ CYδr
(t) ≤ CYδr

(1 + ∆CYδr%) ∧
CYαδr

(1 − ∆CYαδr%) ≤ CYαδr
(t) ≤ CYαδr

(1 + ∆CYαδr%) ∧
CZδe

(1 − ∆CZδe%) ≤ CZδe
(t) ≤ CZδe

(1 + ∆CZδe%) ∧
CZβ2δe

(1 − ∆CZβ2δe%
) ≤ CZβ2δe

(t) ≤ CZβ2δe
(1 + ∆CZβ2δe%

) ∧
CZδf

(1 − ∆CZδf%) ≤ CZδf
(t) ≤ CZδf

(1 + ∆CZδf%) ∧
CZαδf

(1 − ∆CZαδf%) ≤ CZαδf
(t) ≤ CZαδf

(1 + ∆CZαδf%) ⇒
Xacd

(t) = qdyn(t)S ( loss · CXδr
(t)δr(t) + CXδf

(t)δf (t) + CXαδf
(t)α(t)δf (t) ) ∧

Yacd
(t) = qdyn(t)S ( CYδa

(t)δa(t) + loss · CYδr
(t)δr(t) + CYαδr

(t)α(t)δr(t) ) ∧
Zacd

(t) = qdyn(t)S ( CZδe
(t)δe(t) + CZβ2δe

(t)β2(t)δe(t) + CZδf (t)δf (t) )
)}

Rcsm,1 = (B.49){(
( Uc,X ), Cm

)∣∣∣ ∀ t ∃Clδa
() ∃Clδr

() ∃Clαδa
() ∃Cmδe

() Cmδf
()

∃Cnδa
() ∃Cnδr

() ∃ loss
(

0 ≤ t < ∞ ∧ 0 < loss ≤ 1 ∧
Clδa

(1 − ∆Clδa%) ≤ Clδa
(t) ≤ Clδa

(1 + ∆Clδa%) ∧
Clδr

(1 − ∆Clδr%) ≤ Clδr
(t) ≤ Clδr

(1 + ∆Clδr%) ∧
Clαδa

(1 − ∆Clαδa%) ≤ Clαδa
(t) ≤ Clαδa

(1 + ∆Clαδa
) ∧

Cmδe
(1 − ∆Cmδe%) ≤ Cmδe

(t) ≤ Cmδe
(1 + ∆Cmδe%) ∧

Cmδf
(1 − ∆Cmδf%) ≤ Cmδf

(t) ≤ Cmδf
(1 + ∆Cmδf%) ∧

Cnδa
(1 − ∆Cnδa%) ≤ Cnδa

(t) ≤ Cnδa
(1 + ∆Cnδa%) ∧

Cnδr
(1 − ∆Cnδr%) ≤ Cnδr

(t) ≤ Cnδr
(1 + ∆Cnδr%) ⇒
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Lacd
(t) = qdyn(t)S

b

2
( Clδa

(t)δa(t) + loss · Clδr
(t)δr(t) + Clαδa(t)α(t)δa(t) ) ∧

Macd
(t) = qdyn(t)Sc̄ ( Cmδe

(t)δe(t) + Cmδf
(t)δf (t) ) ∧

Nacd
(t) = qdyn(t)S

b

2
( Cnδa

(t)δa(t) + loss · Cnδr
(t)δr(t) )

)}

B.3.2 Engine fault modes

Engine loss

Rpf,1 = (B.50){(
( Uc,X ), Cf

)∣∣∣ ∀ t
(

0 ≤ t < ∞ ⇒

Xp(t) = 0 ∧ Yp(t) = 0 ∧ Zp(t) = 0
)}

Rpm,1 = (B.51){(
( Uc,X ), Cm

)∣∣∣ ∀ t
(

0 ≤ t < ∞ ⇒

Lp(t) = 0 ∧ Mp(t) = 0 ∧ Np(t) = 0
)}

B.3.3 Actuator fault modes

Stuck rudder actuator

Rrud,1 = (B.52){(
( X , Ũc ),Uc

)∣∣∣ ∃ δr ∀ t
(

δ−r ≤ δr ≤ δ+
r ∧ 0 ≤ t < ∞ ⇒

δr(t) = δr

)}

Stuck aileron actuators

Rail,1 = (B.53){(
( X , Ũc ),Uc

)∣∣∣ ∃ δa ∀ t
(

δ−a ≤ δa ≤ δ+
a ∧ 0 ≤ t < ∞ ⇒

δa(t) = δa

)}
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Stuck elevator actuators

Relv,1 = (B.54){(
( X , Ũc ),Uc

)∣∣∣ ∃ δe∀ t
(

δ−e ≤ δe ≤ δ+
e ∧ 0 ≤ t < ∞ ⇒

δe(t) = δe

)}

Stuck flap actuators

Rflp,1 = (B.55){(
( X , Ũc ),Uc

)∣∣∣ ∃ δf∀ t
(

δ−f ≤ δf ≤ δ+
f ∧ 0 ≤ t < ∞ ⇒

δf (t) = δf

)}

B.3.4 Rate gyro fault modes

Bad connection at roll rate gyro output

Rp,1 = (B.56){(
X , X̃

)∣∣∣ ∀ t
(

0 ≤ t < ∞ ⇒

p̃(t) = OR−
g ∨ p̃(t) = OR+

g

)}

Bad connection at pitch rate gyro output

Rq,1 = (B.57){(
X , X̃

)∣∣∣ ∀ t
(

0 ≤ t < ∞ ⇒

q̃(t) = OR−
g ∨ q̃(t) = OR+

g

)}

Bad connection at yaw rate gyro output

Rr,1 = (B.58){(
X , X̃

)∣∣∣ ∀ t
(

0 ≤ t < ∞ ⇒

r̃(t) = OR−
g ∨ r̃(t) = OR+

g

)}
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B.3.5 Accelerometer fault modes

Bad connection at Ax accelerometer output

RAx,1 = (B.59){(
X , X̃

)∣∣∣ ∀ t
(

0 ≤ t < ∞ ⇒

Ãx(t) = OR−
A ∨ Ãx(t) = OR+

A

)}

Bad connection at Ay accelerometer output

RAy,1 = (B.60){(
X , X̃

)∣∣∣ ∀ t
(

0 ≤ t < ∞ ⇒

Ãy(t) = OR−
A ∨ Ãy(t) = OR+

A

)}

Bad connection at Az accelerometer output

RAz,1 = (B.61){(
X , X̃

)∣∣∣ ∀ t
(

0 ≤ t < ∞ ⇒

Ãz(t) = OR−
A ∨ Ãz(t) = OR+

A

)}

B.3.6 Air data sensor fault modes

Bad connection at dynamic pressure sensor output

Rqdyn,1 = (B.62){(
X , X̃

)∣∣∣ ∀ t
(

0 ≤ t < ∞ ⇒

q̃dyn(t) = OR−
qdyn

∨ q̃dyn(t) = OR+
qdyn

)}
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Bad connection at static pressure sensor output

Rps,1 = (B.63){(
X , X̃

)∣∣∣ ∀ t
(

0 ≤ t < ∞ ⇒

p̃s(t) = OR−
ps

∨ p̃s(t) = OR+
ps

)}

Bad connection at temperature sensor output

RT,1 = (B.64){(
X , X̃

)∣∣∣ ∀ t
(

0 ≤ t < ∞ ⇒

T̃ (t) = OR−
T ∨ T̃ (t) = OR+

T

)}

B.3.7 Angle of attack sensor fault modes

Bad connection at angle of attack sensor output

Rα,1 = (B.65){(
X , X̃

)∣∣∣ ∀ t
(

0 ≤ t < ∞ ⇒

α̃(t) = OR−
α ∨ α̃(t) = OR+

α

)}

B.3.8 Attitude and heading sensor fault modes

Bad connection at pitch attitude sensor output

Rθ,1 = (B.66){(
X , X̃

)∣∣∣ ∀ t
(

0 ≤ t < ∞ ⇒

θ̃(t) = OR−
φ/θ ∨ θ̃(t) = OR+

φ/θ

)}
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Bad connection at roll attitude sensor output

Rφ,1 = (B.67){(
X , X̃

)∣∣∣ ∀ t
(

0 ≤ t < ∞ ⇒

φ̃(t) = OR−
φ/θ ∨ φ̃(t) = OR+

φ/θ

)}

Bad connection at heading sensor output

Rψ,1 = (B.68){(
X , X̃

)∣∣∣ ∀ t
(

0 ≤ t < ∞ ⇒

ψ̃(t) = OR−
ψ ∨ ψ̃(t) = OR+

φ

)}
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B.4 DHC-2 requirement space restriction sets

Trim-condition restriction

SCtr = (B.69){
Ctr

∣∣∣ ∃ a, ∃ b
(

a = cos(αtr) cos(βtr) ∧
b = sin(φtr) sin(βtr) + cos(φtr) sin(αtr) cos(βtr) ⇒

tan(θtr) =
a · b + sin(γtr)

√
a2 − sin2(γtr) + b2

a2 − sin2(γtr)

)
∧

trimCostFunction(Ctr) < J+
tc

}

Autopilot operation restriction

Sao = (B.70){
Up

∣∣∣ ∀ t
(

0 < t < ∞ ⇒(
SWPAH(t) = ON ∨ SWALH(t) = ON ∨

SWRAH(t) = ON ∨ SWHH(t) = ON
)

∧
¬

(
SWPAH(t) ∧ SWALH(t)

)
∧

¬
(

SWRAH(t) = ON ∧ SWHH(t) = ON
)

∧
¬

(
SWRAH(t) = ON ∧ SWHS(t) = ON

)
∧

¬
(

SWHH(t) = ON ∧ SWHS(t) = ON
))}

Atmospheric turbulence restriction

Sat = (B.71){(
Uw,X

)∣∣∣ ∀ t
(

0 < t < ∞ ⇒
H(t) > Hat ∧((

uwt(t) = 0 ∧ wwt(t) = 0 ∧ wwt(t) = 0
)

∨
∃ νuwt() ∃ νvwt() ∃ νwwt()

(
whiteNoise(νuwt(), Npsduwt) ∧
whiteNoise(νvwt(), Npsdvwt) ∧
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whiteNoise(νwwt(), Npsdwwt) ⇒
uwt(t) ' huwt(t, Va(t)) ⊗ νuwt(t) ∧
vwt(t) ' hvwt(t, Va(t)) ⊗ νvwt(t) ∧
wwt(t) ' hwwt(t, Va(t)) ⊗ νwwt(t)

))
∧

uw̄(t) = 0 ∧ vw̄(t) = 0 ∧ ww̄(t) = 0 ∧
uwg(t) = 0 ∧ vwg(t) = 0 ∧ wwg(t) = 0

)}
(B.72)
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B.5 Elementary requirements of interface blocks

to AR-FTC system

FTC control panel requirement

RFTC−CP = (B.73){(
Uf , Ũf

)∣∣∣ ∀ t
(

0 ≤ t < ∞ ⇒

(S̃W FTC(t) > Vth ⇔ SWFTC(t) = ON)
)}

FTC-ADC card requirement

RFTC−ADC = (B.74){(
Ũf , Ūf

)∣∣∣ ∀ k
(

0 ≤ k < ∞ ⇒

¯SW FTC(k) =
⌊

SADC [ S̃W FTC(k Ts) ]
ADCV +

ADCV − +OFFADC

⌋)}

FTC input interface requirement

RFTC−in = (B.75){(
Ūf , Ûf

)∣∣∣ ∀ k
(

0 ≤ k < ∞ ⇒

(ŜW FTC(k) = ON ⇔ ( ¯SW FTC(k) − OFFADC)S−1
ADC > Vth)

)}

FTC safety switch requirement

RFTC−SW = (B.76){(
( Ûf , X̂ , X̌ ), X̂ ′

)∣∣∣ ∀ k
(

0 ≤ k < ∞ ⇒

( ŜW FTC(k) = OFF ∧ X̂ ′ = X̂ ) ∨
( ŜW FTC(k) = ON ∧ X̂ ′ = X̌ )

)}
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FTC output interface requirement

RFTC−out = (B.77){(
Ŷf , Ȳf

)∣∣∣ ∀ k
(

0 ≤ k < ∞ ⇒
(

W̄p(k) >
⌊

SDAC

[
Vth

]DACV +

DACV −
+OFFDAC

⌋
⇔ Ŵp(k) = ON

)
∧(

W̄q(k) >
⌊

SDAC

[
Vth

]DACV +

DACV −
+OFFDAC

⌋
⇔ Ŵq(k) = ON

)
∧(

W̄r(k) >
⌊

SDAC

[
Vth

]DACV +

DACV −
+OFFDAC

⌋
⇔ Ŵr(k) = ON

)
∧(

W̄ps(k) >
⌊

SDAC

[
Vth

]DACV +

DACV −
+OFFDAC

⌋
⇔ Ŵps(k) = ON

)
∧(

W̄qdyn
(k) >

⌊
SDAC

[
Vth

]DACV +

DACV −
+OFFDAC

⌋
⇔ Ŵqdyn

(k) = ON
)

∧(
W̄T (k) >

⌊
SDAC

[
Vth

]DACV +

DACV −
+OFFDAC

⌋
⇔ ŴT (k) = ON

)
∧(

W̄φ(k) >
⌊

SDAC

[
Vth

]DACV +

DACV −
+OFFDAC

⌋
⇔ Ŵφ(k) = ON

)
∧(

W̄θ(k) >
⌊

SDAC

[
Vth

]DACV +

DACV −
+OFFDAC

⌋
⇔ Ŵθ(k) = ON

)
∧

(
W̄ψ(k) >

⌊
SDAC

[
Vth

]DACV +

DACV −
+OFFDAC

⌋
⇔ Ŵψ(k) = ON

))}

FTC-DAC card requirement

RFTC−DAC = (B.78){(
Ȳf , Ỹf

)∣∣∣ ∀ k ∀ t
(

0 ≤ k < ∞ ∧ kTs ≤ t < (k + 1)Ts ⇒
W̃p(t) = (W̄p(k) − OFFDAC)S−1

DAC ∧
W̃q(t) = (W̄q(k) − OFFDAC)S−1

DAC ∧
W̃r(t) = (W̄r(k) − OFFDAC)S−1

DAC ∧
W̃ps(t) = (W̄ps(k) − OFFDAC)S−1

DAC ∧
W̃qdyn

(t) = (W̄qdyn
(k) − OFFDAC)S−1

DAC ∧
W̃T (t) = (W̄T (k) − OFFDAC)S−1

DAC ∧
W̃φ(t) = (W̄φ(k) − OFFDAC)S−1

DAC ∧
W̃θ(t) = (W̄θ(k) − OFFDAC)S−1

DAC ∧
W̃ψ(t) = (W̄ψ(k) − OFFDAC)S−1

DAC

)}
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FTC display panel requirement

RFTC−DP = (B.79){(
Ỹf ,Yf

)∣∣∣ ∀ k
(

0 ≤ k < ∞ ⇒

W̃p(t) = ON ⇔ Wp(t) > Vth ∧
W̃q(t) = ON ⇔ Wq(t) > Vth ∧
W̃r(t) = ON ⇔ Wr(t) > Vth ∧
W̃ps(t) = ON ⇔ Wps(t) > Vth ∧
W̃qdyn

(t) = ON ⇔ Wqdyn
(t) > Vth ∧

W̃T (t) = ON ⇔ WT (t) > Vth ∧
W̃φ(t) = ON ⇔ Wφ(t) > Vth ∧
W̃ψ(t) = ON ⇔ Wψ(t) > Vth ∧
W̃θ(t) = ON ⇔ Wθ(t) > Vth

)}
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Appendix C

Support tables of the specification

This appendix collects all tables supporting the relational specification of appendix

B. The following list briefly describes the role and content of each table.

Table C.1 lists all elementary requirements, of the FTC environment, along with

related domain and image variables, and expanded domain and image spaces.

The table is divided in sub-tables according to the requirements partitioning

performed in appendix B.

Table C.2 lists all requirements obtained by composition of elementary requirements

of the FTC environment.

Table C.3 lists all fault-mode relations.

Table C.4 lists all pre-restriction sets.

Table C.5 lists all equivalent variables and the related equivalence classes that result

from the first expansion over the domain and image spaces of the elementary

specifications.

Table C.6 lists all domain and image variables used within the specification.

141



Table C.7 lists all constants along with their value, type, and description.

Table C.8 lists the quantified variables introduced in the relational specifications

along with their type and description.

Table C.9 defines all auxiliary terms. The table is divided in sub-tables to distin-

guish between auxiliary terms, functions, and predicates.

Table C.10 defines all types used within the specification.
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Table C.1: Elementary requirements

ID Name Domain variables Image variables Domain and image
spaces

Extended domain
and image spaces

AFCS performance requirements
RALH altitude hold SWALH(), φ(), Va(),

uwt(), vwt(), wwt(),
uwg(), vwg(), wwg()

An(), H() Uw+Upa +X × X Uw+Upa+X+Ctr×X

RHH heading hold SWHH(),
uwt(), vwt(), wwt(),
uwg(), vwg(), wwg()

φ(), ψ() Uw+Upa × X Uw+Upa+X+Ctr×X

RHS heading select SWHS(), ψr(),
uwt(), vwt(), wwt(),
uwg(), vwg(), wwg()

φ(), ψ(), p() Uw+Upa × X Uw+Upa+X+Ctr×X

RPAH pitch attitude
hold

SWPAH(), θr(), φ(),
uwt(), vwt(), wwt(),
uwg(), vwg(), wwg()

θ() Uw+Upa +X × X Uw+Upa+X+Ctr×X

RRAH roll attitude
hold

SWRAH(), φr(),
uwt(), vwt(), wwt(),
uwg(), vwg(), wwg()

φ() Uw+Upa +X × X Uw+Upa+X+Ctr×X

DHC-2 dynamics requirements
RFeq force equations

of aircraft dy-
namics

Xasd
(), Xacd

(),
Xp(), Xgr(), Xw(),
Yasd

(), Yacd
(),

Yp(), Ygr(), Yw(),
Zasd

(), Zacd
(),

Zp(), Zgr(), Zw(),
p(), q(), r()

Va(), α(), β() Cf+X × X Cf+X × X

RKeq kinematic
equations

p(), q(), r() ψ(), θ(), φ() X × X Uc+Uw+Upm+X ×X



Table C.1: Elementary requirements (continued)

ID Name Domain variables Image variables Domain and image
spaces

Extended domain
and image spaces

RMeq moment equa-
tions of aircraft
dynamics

Lasd
(), Lacd

(), Lp(),
Masd

(), Macd
(), Mp(),

Nasd
(), Nacd

(), Np()

p(), q(), r() Cm × X Cm × X

RNeq navigation
equations

Va(), α(), β(),
θ(), φ(),
uw̄(), vw̄(), ww̄(),
uwg(), vwg(), wwg(),
uwt(), vwt(), wwt()

H() Uw+X × X Uc+Uw+Upm+X ×X

Rad air data H(), Va() T (), ρ(), ps(), qdyn() X × X Uc+Uw+Upm+X ×X
Raef aerodynamic

forces (air-
frame)

Va(), α(), β(),
p(), q(), r(), qdyn()

Xasd
(), Yasd

(), Zasd
() X × Cf Uc+Upm +Uw+X ×

Cf+X

Raem aerodynamic
moments
(airframe)

Va(), α(), β(),
p(), q(), r(), qdyn()

Lasd
(), Masd

(), Nasd
() X × Cm Uc+Upm+Uw+X×Cm

Rcsf aerodynamic
force (control
surface)

α(), β(), qdyn(),
δa(), δe(), δr(), δf ()

Xacd
(), Yacd

(), Zacd
() Uc+X × Cf Uc+Upm +Uw+X ×

Cf+X

Rcsm aerodynamic
moment (con-
trol surface)

α(), qdyn(),
δa(), δe(), δr(), δf ()

Lacd
(), Macd

(), Nacd
() Uc+X × Cm Uc+Upm+Uw+X×Cm

Rgrf gravity force θ(), φ() Xgr(), Ygr(), Zgr() X × Cf Uc+Upm +Uw+X ×
Cf+X



Table C.1: Elementary requirements (continued)

ID Name Domain variables Image variables Domain and image
spaces

Extended domain
and image spaces

Rka kinematic ac-
celeration (at
crew station)

Va(), α(), β(),
uw̄(), vw̄(), ww̄(),
uwt(), vwt(), wwt(),
uwg(), vwg(), wwg(),
p(), q(), r()

Ax(), Ay(), Az() Uw+X × X Uc+Uw+Upm+X ×X

Rpf propulsive
force

qdyn(), ρ(), Va(), α(),
n(), pz()

Xp(), Yp(), Zp() Upm +X × Cf Uc+Upm +Uw+X ×
Cf+X

Rpm propulsive mo-
ment

qdyn(), ρ(), Va(), α(),
n(), pz()

Lp(), Mp(), Np() Upm +X × Cm Uc+Upm+Uw+X×Cm

Rwf wind force uw̄(), vw̄(), ww̄(),
uwt(), vwt(), wwt(),
uwg(), vwg(), wwg(),
p(), q(), r()

Xw(), Yw(), Zw() X+Uw × Cf Uc+Upm +Uw+X ×
Cf+X

DHC-2 AFCS hardware requirements

RADC A/D interface p̃(), q̃(), r̃(),
Ãx(), Ãy(), Ãz(),
p̃s(), q̃dyn(), α̃(),
ψ̃(), θ̃(), φ̃(),
ψ̃r(), φ̃r(), θ̃r(),
S̃WPAH(), S̃WALH(),
S̃WRAH(),
S̃WHH(), S̃WHS()

p̄(), q̄(), r̄(),
Āx(), Āy(), Āz(),
p̄s(), q̄dyn(), ᾱ(),
ψ̄(), θ̄(), φ̄(),
ψ̄r(), φ̄r(), θ̄r(),
¯SWPAH(), ¯SWALH(),
¯SWRAH(),
¯SWHH(), ¯SWHS()

X̃+Ũpa × X̄+Ūpa X̃+Ũpa × X̄+Ūpa

RAx Ax accelerome-
ter

Ax(), θ() Ãx() X × X̃ Upa +X × Ũpa +X̃

RAy Ay accelerome-
ter

Ay(), θ(), φ() Ãy() X × X̃ Upa +X × Ũpa +X̃



Table C.1: Elementary requirements (continued)

ID Name Domain variables Image variables Domain and image
spaces

Extended domain
and image spaces

RAz Az accelerome-
ter

Az(), θ(), φ() Ãz() X × X̃ Upa +X × Ũpa +X̃

RCP control panel ψr(), θr(), φr(), Ḣr(),
SWPAH(), SWALH(),
SWRAH(),
SWHH(), SWHS()

ψ̃r(), θ̃r(), φ̃r(),
˜̇Hr()

S̃WPAH(), S̃WALH(),
S̃WRAH(),
S̃WHH(), S̃WHS()

Upa × Ũpa Upa +X × Ũpa +X̃

RDAC D/A interface δ̄e(), δ̄a(), δ̄r() δ̃e(), δ̃a(), δ̃r() Ūc × Ũc Ūc × X+Ũc

RT temperature
sensor

T () T̃ () X × X̃ Upa +X × Ũpa +X̃

Rα angle of attack
sensor

α() α̃() X × X̃ Upa +X × Ũpa +X̃

Rφ roll attitude
sensor

φ() φ̃() X × X̃ Upa +X × Ũpa +X̃

Rψ heading sensor ψ() ψ̃() X × X̃ Upa +X × Ũpa +X̃
Rθ pitch attitude

sensor
θ() θ̃() X × X̃ Upa +X × Ũpa +X̃

Rail aileron actua-
tor

δ̃a(), Va(), p() δa() X+Ũc × Uc Ũc+X × Uc

Relv elevator actua-
tor

δ̃e(), Va(), q() δe() X+Ũc × Uc Ũc+X × Uc

Rps static pressure
sensor

ps() p̃s() X × X̃ Upa +X × Ũpa +X̃

Rp roll rate gyro p() p̃() X × X̃ Upa +X × Ũpa +X̃
Rqdyn dynamic pres-

sure sensor
qdyn() q̃dyn() X × X̃ Upa +X × Ũpa +X̃

Rq pitch rate gyro q() q̃() X × X̃ Upa +X × Ũpa +X̃



Table C.1: Elementary requirements (continued)

ID Name Domain variables Image variables Domain and image
spaces

Extended domain
and image spaces

Rrud rudder actua-
tor

δ̃r(), Va(), r() δr() X+Ũc × Uc Ũc+X × Uc

Rr yaw rate gyro r() r̃() X × X̃ Upa +X × Ũpa +X̃
DHC-2 AFCS software requirements

Rin Software input
interface

p̄(), q̄(), r̄(),
Āx(), Āy(), Āz(),
p̄s(), q̄dyn(), ᾱ(),
ψ̄(), θ̄(), φ̄(),
ψ̄r(), φ̄r(), θ̄r(),
¯SWPAH(), ¯SWALH(),
¯SWRAH(),
¯SWHH(), ¯SWHS()

p̂(), q̂(), r̂(),
Âx(), Ây(), Âz(),
p̂s(), q̂dyn(), α̂(),
ψ̂(), θ̂(), φ̂(),
ψ̂r(), φ̂r(), θ̂r(),
ŜWPAH(), ŜWALH(),
ŜWRAH(),
ŜWHH(), ŜWHS()

X̄+Ūpa × X̂+Ûpa X̄+Ūpa × X̂+Ûpa

Rout Software out-
put interface

δ̂e(), δ̂a(), δ̂r() δ̄e(), δ̄a(), δ̄r() Ûc × Ūc Ûc × Ūc

R
ÂLH

altitude hold
autopilot

V̂a(), q̂(), r̂(), φ̂(), θ̂(),
Ĥ(), Ĥr(), ŜWALH()

δ̂e() Ûpa +X̂ × Ûc Ûpa +X̂ × Ûc

R
ĤH

heading hold
autopilot

V̂a(), r̂(), φ̂(), ψ̂(),
ŜWHH()

δ̂a(), δ̂r() Ûpa +X̂ × Ûc Ûpa +X̂ × Ûc

R
ĤS

heading select
autopilot

V̂a(), r̂(), φ̂(), ψ̂(),
ψ̂r(), ŜWHS()

δ̂a(), δ̂r() Ûpa +X̂ × Ûc Ûpa +X̂ × Ûc

R
P̂AH

pitch attitude
hold autopilot

V̂a(), q̂(), r̂(), φ̂(), θ̂(),
θ̂r(), ŜWPAH()

δ̂e() Ûpa +X̂ × Ûc Ûpa +X̂ × Ûc

R
R̂AH

roll attitude
hold autopilot

V̂a(), r̂(), φ̂(),
φ̂r(), ŜWRAH()

δ̂a(), δ̂r() Ûpa +X̂ × Ûc Ûpa +X̂ × Ûc

FTC interface requirements (the FTC acronym has been omitted from the identifier for the sake of space)

R−ADC FTC A/D card S̃WFTC() ¯SWFTC() Ũf × Ūf not used



Table C.1: Elementary requirements (continued)

ID Name Domain variables Image variables Domain and image
spaces

Extended domain
and image spaces

R−CP FTC control
panel

SWFTC() S̃WFTC() Uf × Ũf not used

R−DAC FTC D/A card W̄p(), W̄q, W̄r,
W̄ps , W̄qdyn

, W̄T ,
W̄φ, W̄ψ, W̄θ

W̃p(), W̃q, W̃r,
W̃ps , W̃qdyn

, W̃T ,

W̃φ, W̃ψ, W̃θ

Ȳf × Ỹf not used

R−DP FTC display
panel

W̃p(), W̃q, W̃r,
W̃ps , W̃qdyn

, W̃T ,

W̃φ, W̃ψ, W̃θ

Wp(), Wq, Wr,
Wps , Wqdyn

, WT ,
Wφ, Wψ, Wθ

Ỹf × Yf not used

R−in FTC input in-
terface

¯SWFTC() ŜWFTC() Ūf × Ûf not used

R−out FTC output
interface

Ŵp(), Ŵq, Ŵr,
Ŵps , Ŵqdyn

, ŴT ,

Ŵφ, Ŵψ, Ŵθ

W̄p(), W̄q, W̄r,
W̄ps , W̄qdyn

, W̄T ,
W̄φ, W̄ψ, W̄θ

Ŷf × Ȳf not used



Table C.2: Composed requirements

ID Description Extended domain and image spaces

AFCS performance specification
RPS performance specification Ctr+Upa +X+Uw × X

DHC-2 detail specification

RACT control surface actuators Ũc+X × Uc

RAFCS automatic flight control system Upa +X × Uc

RCin computer input Upa +X × Ũpa +X̃
RDHC2 DHC-2 airplane dynamics Uc+Uw+Upm +X × X
RFCC flight control computer Ũpa +X̃ × Ũc+X
RFCL flight control laws Ûpa +X̂ × Ûc

RFCSw flight control software Ūpa +X̄ × Ūc

RSp primary sensors Upa +X × Ũpa +X̃
RSs secondary sensors Upa +X × Ũpa +X̃
Rf forces exerted upon the airplane Uc+Upm +Uw+X × Cf+X
Rm moments exerted upon the airplane Uc+Upm +Uw+X × Cm



Table C.3: Fault modes

ID Description Domain and image spaces and variables
Rcsf,1 partial loss of rudder surface same as Rcsf

Rcsm,1 partial loss of rudder surface same as Rcsm

Rpf,1 engine loss same as Rpf

Rpm,1 engine loss same as Rpm

RAx,1 Bad connection at Ax accelerometer output same as RAx

RAy,1 Bad connection at Ay accelerometer output same as RAy

RAz,1 Bad connection at Az accelerometer output same as RAz

RT,1 Bad connection at temperature sensor output same as RT

Rα,1 Bad connection at angle of attack sensor output same as Rα

Rφ,1 Bad connection at roll attitude sensor output same as Rφ

Rψ,1 Bad connection at heading sensor output same as Rψ

Rθ,1 Bad connection at pitch attitude sensor output same as Rθ

Rail,1 Stuck aileron actuator same as Rail

Relv,1 Stuck elevator actuator same as Relv

Rps,1 Bad connection at static pressure sensor output same as Rps

Rp,1 Bad connection at roll rate gyro output same as Rp

Rqdyn Bad connection at dynamic pressure sensor output same as Rqdyn

Rq,1 Bad connection at pitch rate gyro output same as Rq

Rrud,1 Stuck rudder actuator same as Rrud

Rr,1 Bad connection at yaw rate gyro output same as Rr



Table C.4: Restriction sets

ID Description Variables Space Extended space
SCtr Trim-condition Vatr, αtr, βtr, ptr, qtr, rtr, ψtr, θtr, φtr, Htr,

γtr, δatr, δetr, δrtr, δftr, ntr, pztr

Ctr Ctr+Upa +X+Uw

Sao Autopilot opera-
tion

SWPAH(), SWALH(),
SWRAH(), SWHH(), SWHS()

Upa Ctr+Upa +X+Uw

Sat Atmospheric tur-
bulence

uw̄(), vw̄(), ww̄(), uwt(), vwt(), wwt(),
uwg(), vwg(), wwg(), H()

Uw+X Ctr+Upa +X+Uw



Table C.5: Spaces used within the requirements specification

Space
identifier

Space
element
identifier

Space element variables

Spaces introduced for the requirements specification of the FTC environment
Cf Cf Xasd

(), Yasd
(), Zasd

(), Xgr(), Ygr(), Zgr(), Xw(), Yw(), Zw(), Xacd
(), Yacd

(), Zacd
(), Xp(), Yp(), Zp()

Cm Cm Lasd
(), Masd

(), Nasd
(), Lacd

(), Macd
(), Nacd

(), Lp(), Mp(), Np()
Ctr Ctr Vatr, αtr, βtr, ptr, qtr, rtr, ψtr, θtr, φtr, Htr, γtr, δatr, δetr, δrtr, δftr, ntr, pztr

Uc Uc δa(), δe(), δr()
Upa Upa SWPAH(), SWALH(), SWRAH(), SWHH(), SWHS(), φr(), ψr(), θr()
Upm Upm δf (), n(), pz()
Uw Uw uw̄(), vw̄(), ww̄(), uwt(), vwt(), wwt(), uwg(), vwg(), wwg()
X X Va(), α(), β(), p(), q(), r(), ψ(), θ(), φ(), H(), Ax(), Ay(), Az(), ps(), qdyn(), T (), ρ()
Ūc Ūc δ̄a(), δ̄e(), δ̄r()
Ūpa Ūpa

¯SWPAH(), ¯SWALH(), ¯SWRAH(), ¯SWHH(), ¯SWHS(), φ̄r(), ψ̄r(), θ̄r()
X̄ X̄ ᾱ(), β̄(), p̄(), q̄(), r̄(), ψ̄(), φ̄(), θ̄(), Āx(), Āy(), Āz(), p̄s(), q̄dyn(), T̄ ()
Ûc Ûc δ̂a(), δ̂e(), δ̂r()
Ûpa Ûpa ŜWPAH(), ŜWALH(), ŜWRAH(), ŜWHH(), ŜWHS(), φ̂r(), ψ̂r(), θ̂r()
X̂ X̂ V̂a(), α̂(), β̂(), p̂(), q̂(), r̂(), ψ̂(), θ̂(), φ̂(), Ĥ(), Âx(), Ây(), Âz(), p̂s(), q̂dyn(), T̂ ()
Ũc Ũc δ̃a(), δ̃e(), δ̃r()
Ũpa Ũpa S̃WPAH(), S̃WALH(), S̃WRAH(), S̃WHH(), S̃WHS(), φ̃r(), ψ̃r(), θ̃r()
X̃ X̃ α̃(), β̃(), p̃(), q̃(), r̃(), ψ̃(), θ̃(), φ̃(), Ãx(), Ãy(), Ãz(), p̃s(), q̃dyn(), T̃ ()

Spaces introduced for the requirements specification of the FTC system
Uf Uf SWFTC()
Yf Yf Wp(), Wq(), Wr(), Wps(), Wqdyn

(), WT (), Wφ(), Wθ(), Wψ()
Ūf Ūf

¯SWFTC()
Ȳf Ȳf W̄p(), W̄q(), W̄r(), W̄ps(), W̄qdyn

(), W̄T (), W̄φ(), W̄θ(), W̄ψ()
Ûf Ûf

ˆSWFTC()
Ŷf Ŷf Ŵp(), Ŵq(), Ŵr(), Ŵps(), Ŵqdyn

(), ŴT (), Ŵφ(), Ŵθ(), Ŵψ()



Table C.5: Spaces used within the requirements specification (continued)

Space
identifier

Space
element
identifier

Space element variables

Ũf Ũf
˜SWFTC()

Ỹf Ỹf W̃p(), W̃q(), W̃r(), W̃ps(), W̃qdyn
(), W̃T (), W̃φ(), W̃θ(), W̃ψ()



Table C.6: Domain and image variables

ID Type Description

Actual-quantity variables
Ax() time-T → acceleration-T component along XB-axis of kinematic acceleration at crew station
Ay() time-T → acceleration-T component along YB-axis of kinematic acceleration at crew station
Az() time-T → acceleration-T component along ZB-axis of kinematic acceleration at crew station
H() time-T → altitude-T height above sea level
Lp() time-T → moment-T propulsive moment about XB-axis
Lacd

() time-T → moment-T control-surface-exerted aerodynamic moment about XB-axis
Lasd

() time-T → moment-T airframe-exerted aerodynamic moment about XB-axis
Mp() time-T → moment-T propulsive moment about YB-axis
Macd

() time-T → moment-T control-surface-exerted aerodynamic moment about YB-axis
Masd

() time-T → moment-T airframe-exerted aerodynamic moment about YB-axis
Np() time-T → moment-T propulsive moment about ZB-axis
Nacd

() time-T → moment-T control-surface-exerted aerodynamic moment about ZB-axis
Nasd

() time-T → moment-T airframe-exerted aerodynamic moment about ZB-axis
SWALH() time-T → switch-T ALH on/off switch
SWHH() time-T → switch-T HH on/off switch
SWHS() time-T → switch-T HS on/off switch
SWPAH() time-T → switch-T PAH on/off switch
SWRAH() time-T → switch-T RAH on/off switch
T () time-T → temperature-T air temperature
Va() time-T → airspeed-T airspeed
Xp() time-T → force-T propulsive force along XB-axis
Xw() time-T → force-T wind force along XB-axis
Xacd

() time-T → force-T control-surface-exerted aerodynamic force along XB-axis
Xasd

() time-T → force-T airframe-exerted aerodynamic force along XB-axis
Xgr() time-T → force-T gravity force along XB-axis
Yp() time-T → force-T propulsive force along YB-axis
Yw() time-T → force-T wind force along YB-axis



Table C.6: Domain and image variables (continued)

ID Type Description
Yacd

() time-T → force-T control-surface-exerted aerodynamic force along YB-axis
Yasd

() time-T → force-T airframe-exerted aerodynamic force along YB-axis
Ygr() time-T → force-T gravity force along YB-axis
Zp() time-T → force-T propulsive force along ZB-axis
Zw() time-T → force-T wind force along ZB-axis
Zacd

() time-T → force-T control-surface-exerted aerodynamic force along ZB-axis
Zasd

() time-T → force-T airframe-exerted aerodynamic force along ZB-axis
Zgr() time-T → force-T gravity force along ZB-axis
α() time-T → AOT-T angle of attack
β() time-T → angle-T sideslip angle
δa() time-T → aileronDeflection-T aileron deflection (δa = δaright

− δaleft
)

δe() time-T → elevatorDeflection-T elevator deflection
δf () time-T → flapDeflection-T flap deflection
δr() time-T → rudderDeflection-T rudder deflection
φ() time-T → angle-T roll angle
φr() time-T → bankReference-T reference roll angle
ψ() time-T → angle-T heading angle
ψr() time-T → headingReference-T reference heading angle
ρ() time-T → density-T air density
θ() time-T → angle-T pitch angle
θr() time-T → pitchReference-T reference pitch angle
n() time-T → engineSpeed-T engine speed
p() time-T → angularVelocity-T roll angular rate
ps() time-T → pressure-T static pressure
pz() time-T → pressure-T engine manifold pressure
q() time-T → angularVelocity-T pitch angular rate
qdyn() time-T → pressure-T dynamic pressure
r() time-T → angularVelocity-T yaw angular rate



Table C.6: Domain and image variables (continued)

ID Type Description
uw̄() time-T → velocity-T mean wind velocity component along XB-axis
uwg() time-T → velocity-T wind-gust velocity component along XB-axis
uwt() time-T → velocity-T wind-turbulence velocity component along XB-axis
vw̄() time-T → velocity-T mean wind velocity component along YB-axis
vwg() time-T → velocity-T wind-gust velocity component along YB-axis
vwt() time-T → velocity-T wind-turbulence velocity component along YB-axis
ww̄() time-T → velocity-T mean wind velocity component along ZB-axis
wwg() time-T → velocity-T wind-gust velocity component along ZB-axis
wwt() time-T → velocity-T wind-turbulence velocity component along ZB-axis

Software-quantity variables

Āx() natural-T → ADCoutput-T ADC software representation of Ãx()
Āy() natural-T → ADCoutput-T ADC software representation of Ãy()
Āz() natural-T → ADCoutput-T ADC software representation of Ãz()
¯SWALH() natural-T → ADCoutput-T ADC software representation of S̃WALH()
¯SWHH() natural-T → ADCoutput-T ADC software representation of S̃WHH()
¯SWHS() natural-T → ADCoutput-T ADC software representation of S̃WHS()
¯SWPAH() natural-T → ADCoutput-T ADC software representation of S̃WPAH()
¯SWRAH() natural-T → ADCoutput-T ADC software representation of S̃WRAH()

T̄ () natural-T → ADCoutput-T ADC software representation of T̃ ()
ᾱ() natural-T → ADCoutput-T ADC software representation of α̃()
δ̄a() natural-T → DACinput-T DAC software representation of δ̃a()
δ̄e() natural-T → DACinput-T DAC software representation of δ̃e()
δ̄r() natural-T → DACinput-T DAC software representation of δ̃r()
φ̄() natural-T → ADCoutput-T ADC software representation of φ̃()
φ̄r() natural-T → ADCoutput-T ADC software representation of p̃hir()
ψ̄() natural-T → ADCoutput-T ADC software representation of ψ̃()
ψ̄r() natural-T → ADCoutput-T ADC software representation of ψ̃r()



Table C.6: Domain and image variables (continued)

ID Type Description

θ̄() natural-T → ADCoutput-T ADC software representation of θ̃()
θ̄r() natural-T → ADCoutput-T ADC software representation of θ̃r()
p̄() natural-T → ADCoutput-T ADC software representation of p̃()
p̄s() natural-T → ADCoutput-T ADC software representation of p̃s()
q̄() natural-T → ADCoutput-T ADC software representation of q̃()
q̄dyn() natural-T → ADCoutput-T ADC software representation of q̃dyn()
r̄() natural-T → ADCoutput-T ADC software representation of r̃()
Âx() natural-T → acceleration-T software variable representing Ax()
Ây() natural-T → acceleration-T software variable representing Ay()
Âz() natural-T → acceleration-T software variable representing Az()
Ĥ() natural-T → altitude-T software variable representing H()
ŜWALH() natural-T → switch-T software variable representing SWALH()
ŜWHH() natural-T → switch-T software variable representing SWHH()
ŜWHS() natural-T → switch-T software variable representing SWHS()
ŜWPAH() natural-T → switch-T software variable representing SWPAH()
ŜWRAH() natural-T → switch-T software variable representing SWRAH()
V̂a() natural-T → airspeed-T software variable representing Va()
α̂() natural-T → angle-T software variable representing α()
δ̂a() natural-T → aileronDeflection-T software variable representing δa()
δ̂e() natural-T → elevatorDeflection-T software variable representing δe()
δ̂r() natural-T → rudderDeflection-T software variable representing δr()
φ̂() natural-T → angle-T software variable representing φ()
φ̂r() natural-T → bankReference-T software variable representing φr()
ψ̂() natural-T → angle-T software variable representing ψ()
ψ̂r() natural-T → headingReference-T software variable representing ψr()
θ̂() natural-T → angle-T software variable representing θ()
p̂() natural-T → angularVelocity-T software variable representing p()



Table C.6: Domain and image variables (continued)

ID Type Description
p̂s() natural-T → pressure-T software variable representing ps()
q̂() natural-T → angularVelocity-T software variable representing q()
q̂dyn() natural-T → pressure-T software variable representing qdyn()
r̂() natural-T → angularVelocity-T software variable representing r()

Electrical-quantity variables

Ãx() time-T → accelerometerOutput-T output of accelerometer along XB-axis
Ãy() time-T → accelerometerOutput-T output of accelerometer along YB-axis
Ãz() time-T → accelerometerOutput-T output of accelerometer along ZB-axis
S̃WALH() time-T → CPOutput-T output of ALH control switch
S̃WHH() time-T → CPOutput-T output of HH control switch
S̃WHS() time-T → CPOutput-T output of HS control switch
S̃WPAH() time-T → CPOutput-T output of PAH control switch
S̃WRAH() time-T → CPOutput-T output of RAH control switch
T̃ () time-T → TSensorOutput-T output of temperature sensor
α̃() time-T → AOTSensorOutput-T output of angle of attack sensor
δ̃a() time-T → PCUInput-T input to aileron PCU (+0.5α̃() to right aileron PCU and (−0.5α̃()

to left aileron PCU
δ̃e() time-T → PCUInput-T input to elevator PCU
δ̃f () time-T → PCUInput-T input to flap PCU
δ̃r() time-T → PCUInput-T input to rudder PCU
φ̃() time-T → attitudeSensorOuput-T output of roll attitude sensor
φ̃r() time-T → CPOutput-T output of reference roll control knob
ψ̃() time-T → headingSensorOutput-T output of heading sensor
ψ̃r() time-T → CPOutput-T output of reference heading control knob
θ̃() time-T → attitudeSensorOuput-T output of pitch attitude sensor
θ̃r() time-T → attitudeSensorOuput-T output of reference pitch control knob
p̃() time-T → gyroOutput-T output of roll rate gyro



Table C.6: Domain and image variables (continued)

ID Type Description
p̃s() time-T → psSensorOutput-T output of static pressure sensor
q̃() time-T → gyroOutput-T output of pitch rate gyro
q̃dyn() time-T → qdynSensorOutput-T output of dynamic pressure sensor
r̃() time-T → gyroOutput-T output of yaw rate gyro

Actual-quantity variables (FTC system)
SWFTC() time-T → switch-T FTC on/off switch
WT () time-T → warningLight-T temperature sensor warning light
Wφ() time-T → warningLight-T roll attitude sensor warning light
Wψ() time-T → warningLight-T heading sensor warning light
Wθ() time-T → warningLight-T pitch attitude sensor warning light
Wp() time-T → warningLight-T roll rate gyro warning light
Wq() time-T → warningLight-T pitch rate gyro warning light
Wr() time-T → warningLight-T yaw rate gyro warning light
Wps() time-T → warningLight-T static pressure sensor warning light
Wqdyn

() time-T → warningLight-T dynamic pressure sensor warning light
Software-quantity variables (FTC system)

¯SWFTC() natural-T → DACinput-T DAC software representation of SWFTC()
W̄T () natural-T → DACinput-T DAC software representation of T ()
W̄φ() natural-T → DACinput-T DAC software representation of φ()
W̄ψ() natural-T → DACinput-T DAC software representation of ψ()
W̄θ() natural-T → DACinput-T DAC software representation of θ()
W̄p() natural-T → DACinput-T DAC software representation of p()
W̄q() natural-T → DACinput-T DAC software representation of q()
W̄r() natural-T → DACinput-T DAC software representation of r()
W̄ps() natural-T → DACinput-T DAC software representation of ps()
W̄qdyn

() natural-T → DACinput-T DAC software representation of qdyn()
ŜWFTC() natural-T → switch-T software variable representing SWFTC()



Table C.6: Domain and image variables (continued)

ID Type Description

ŴT () natural-T → warningLight-T software variable representing WT ()
Ŵφ() natural-T → warningLight-T software variable representing Wφ()
Ŵψ() natural-T → warningLight-T software variable representing Wψ()
Ŵθ() natural-T → warningLight-T software variable representing Wθ()
Ŵp() natural-T → warningLight-T software variable representing Wp()
Ŵq() natural-T → warningLight-T software variable representing Wq()
Ŵr() natural-T → warningLight-T software variable representing Wr()
Ŵps() natural-T → warningLight-T software variable representing Wps()
Ŵqdyn

() natural-T → warningLight-T software variable representing Wqdyn
()

Electrical-quantity variables (FTC system)

S̃WFTC() time-T → CPOutput-T output of FTC control switch
W̃p() time-T → warningLightInput-T input to roll rate gyro warning light
W̃q() time-T → warningLightInput-T input to pitch rate gyro warning light
W̃r() time-T → warningLightInput-T input to yaw rate gyro warning light
W̃ps() time-T → warningLightInput-T input to static pressure sensor warning light
W̃qdyn

() time-T → warningLightInput-T input to dynamic pressure sensor warning light
W̃T () time-T → warningLightInput-T input to temperature sensor warning light
W̃φ() time-T → warningLightInput-T input to roll attitude sensor warning light
W̃θ() time-T → warningLightInput-T input to pitch attitude sensor warning light
W̃ψ() time-T → warningLightInput-T input to heading sensor warning light



Table C.7: Constants

Symbol and Value Type Description

Generic constants
R = 287.05 gasConstant-T specific gas constant of the air
T0 = 288.15 temperature-T air temperature at sea level
λ = −0.0065 temperatureGradient-T temperature gradient in troposphere
g0 = 9.80665 acceleration-T gravity acceleration at sea level
p0 = 101325 pressure-T air pressure at sea level

DHC-2 dynamics constants
CVa = 1 TCWeight-T weight coefficient for Va term in trim-condition cost function
CX0 = −0.03554 stabilityDerivative-T stability derivative of force along XB-axis
CXα = 0.00292 stabilityDerivative-T stability derivative of force along XB-axis
CXq = −0.6748 stabilityDerivative-T stability derivative of force along XB-axis
CXαδf

= 1.106 controlDerivative-T control derivative of force along XB-axis
CXαdpt2

= 0.1453 controlDerivative-T control derivative of force along YB-axis
CXα2 = 5.459 stabilityDerivative-T stability derivative of force along XB-axis
CXα3 = −5.162 stabilityDerivative-T stability derivative of force along XB-axis
CXδf

= −0.09447 controlDerivative-T control derivative of force along XB-axis
CXδr

= 0.03412 controlDerivative-T control derivative of force along XB-axis
CXdpt

= 0.1161 controlDerivative-T control derivative of force along XB-axis
CY0 = −0.002226 stabilityDerivative-T stability derivative of force along YB-axis
CYβ

= −0.7678 stabilityDerivative-T stability derivative of force along YB-axis
CYp = −0.124 stabilityDerivative-T stability derivative of force along YB-axis
CYr = 0.3666 stabilityDerivative-T stability derivative of force along YB-axis
CYαδr

= 0.5238 controlDerivative-T control derivative of force along YB-axis
CYδa

= −0.02956 controlDerivative-T control derivative of force along YB-axis
CYδr

= 0.1158 controlDerivative-T control derivative of force along YB-axis
CYβ̇

= −0.16 stabilityDerivative-T stability derivative of force along YB-axis
CZ0 = −0.05504 stabilityDerivative-T stability derivative of force along ZB-axis



Table C.7: Constants (continued)

Symbol and Value Type Description
CZα = −5.578 stabilityDerivative-T stability derivative of force along ZB-axis
CZq = −2.998 stabilityDerivative-T stability derivative of force along ZB-axis
CZαδf

= −1.261 controlDerivative-T control derivative of force along ZB-axis
CZα3 = 3.442 stabilityDerivative-T stability derivative of force along ZB-axis
CZβ2δe

= −15.93 controlDerivative-T control derivative of force along ZB-axis
CZδe

= −0.398 controlDerivative-T control derivative of force along ZB-axis
CZδf

= −1.377 controlDerivative-T control derivative of force along ZB-axis
CZdpt

= −0.1563 controlDerivative-T control derivative of force along ZB-axis
Cαβ = 2 TCWeight-T weight coefficient for α and β terms in trim-condition cost function
Cl0 = 0.000591 stabilityDerivative-T stability derivative of moment about XB-axis
Clβ = −0.0618 stabilityDerivative-T stability derivative of moment about XB-axis
Clp = −0.5045 stabilityDerivative-T stability derivative of moment about XB-axis
Clr = 0.1695 stabilityDerivative-T stability derivative of moment about XB-axis
Clαδa

= −0.08269 controlDerivative-T control derivative of moment about XB-axis
Clα2dpt

= −0.01406 controlDerivative-T control derivative of moment about XB-axis
Clδa

= −0.09917 controlDerivative-T control derivative of moment about XB-axis
Clδr

= 0.006934 controlDerivative-T control derivative of moment about XB-axis
Cm0 = 0.09448 stabilityDerivative-T stability derivative of moment about YB-axis
Cm∗

α
= −0.6028 stabilityDerivative-T nominal value of stability derivative of moment about YB-axis

Cm+
α

= −0.428 stabilityDerivative-T maximum value of stability derivative of moment about YB-axis
Cm−

α
= −1.8 stabilityDerivative-T minimum value of stability derivative of moment about YB-axis

Cmq = −15.56 stabilityDerivative-T stability derivative of moment about YB-axis
Cmr = −0.3118 stabilityDerivative-T stability derivative of moment about YB-axis
Cmα2 = −2.14 stabilityDerivative-T stability derivative of moment about YB-axis
Cmβ2 = 0.6921 stabilityDerivative-T stability derivative of moment about YB-axis
Cmδe

= −1.921 controlDerivative-T control derivative of moment about YB-axis
Cmδf

= 0.4072 controlDerivative-T control derivative of moment about YB-axis
Cmdpt

= −0.07895 controlDerivative-T control derivative of moment about YB-axis



Table C.7: Constants (continued)

Symbol and Value Type Description
Cn0 = −0.003117 stabilityDerivative-T stability derivative of moment about ZB-axis
Cnβ

= 0.006719 stabilityDerivative-T stability derivative of moment about ZB-axis
Cnp = −0.1585 stabilityDerivative-T stability derivative of moment about ZB-axis
Cnq = 0.1595 stabilityDerivative-T stability derivative of moment about ZB-axis
Cnr = −0.1112 stabilityDerivative-T stability derivative of moment about ZB-axis
Cnβ3 = 0.1373 stabilityDerivative-T stability derivative of moment about ZB-axis
Cnδa

= −0.003872 controlDerivative-T control derivative of moment about ZB-axis
Cnδr

= −0.08265 controlDerivative-T control derivative of moment about ZB-axis
Cndpt3

= −0.003026 controlDerivative-T control derivative of moment about ZB-axis
Cpqr = 5 TCWeight-T weight coefficient for p, q, r terms in trim-condition cost function
∆CX0% = 8% percentage-T uncertainty of stability derivative of force along XB-axis
∆CXα% = 8% percentage-T uncertainty of stability derivative of force along XB-axis
∆CXq% = 16% percentage-T uncertainty of stability derivative of force along XB-axis
∆CXαδf% = 8% percentage-T uncertainty of control derivative of force along XB-axis
∆CXα2% = 16% percentage-T uncertainty of stability derivative of force along XB-axis
∆CXα3% = 16% percentage-T uncertainty of stability derivative of force along XB-axis
∆CXδf% = 8% percentage-T uncertainty of control derivative of force along XB-axis
∆CXδr%

= 16% percentage-T uncertainty of control derivative of force along XB-axis
∆CY0% = 4% percentage-T uncertainty of stability derivative of force along YB-axis
∆CYβ% = 8% percentage-T uncertainty of stability derivative of force along YB-axis
∆CYp% = 8% percentage-T uncertainty of stability derivative of force along YB-axis
∆CYr% = 8% percentage-T uncertainty of stability derivative of force along YB-axis
∆CYαδr% = 16% percentage-T uncertainty of control derivative of force along YB-axis
∆CYδa% = 8% percentage-T uncertainty of control derivative of force along YB-axis
∆CYδr% = 8% percentage-T uncertainty of control derivative of force along YB-axis
∆CYβ̇% = 16% percentage-T uncertainty of stability derivative of force along YB-axis
∆CZ0% = 8% percentage-T uncertainty of stability derivative of force along ZB-axis
∆CZα% = 4% percentage-T uncertainty of stability derivative of force along ZB-axis



Table C.7: Constants (continued)

Symbol and Value Type Description
∆CZq% = 25% percentage-T uncertainty of stability derivative of force along ZB-axis
∆CZαδf% = 8% percentage-T uncertainty of control derivative of force along ZB-axis
∆CZα3% = 16% percentage-T uncertainty of stability derivative of force along ZB-axis
∆CZβ2δe%

= 25% percentage-T uncertainty of control derivative of force along ZB-axis
∆CZδe% = 4% percentage-T uncertainty of control derivative of force along ZB-axis
∆CZδf% = 8% percentage-T uncertainty of control derivative of force along ZB-axis
∆Cl0% = 8% percentage-T uncertainty of stability derivative of moment about XB-axis
∆Clβ% = 16% percentage-T uncertainty of stability derivative of moment about XB-axis
∆Clp% = 16% percentage-T uncertainty of stability derivative of moment about XB-axis
∆Clr% = 16% percentage-T uncertainty of stability derivative of moment about XB-axis
∆Clαδa% = 16% percentage-T uncertainty of control derivative of moment about XB-axis
∆Clδa% = 8% percentage-T uncertainty of control derivative of moment about XB-axis
∆Clδr% = 8% percentage-T uncertainty of control derivative of moment about XB-axis
∆Cm0% = 8% percentage-T uncertainty of stability derivative of moment about YB-axis
∆Cmq% = 25% percentage-T uncertainty of stability derivative of moment about YB-axis
∆Cmr% = 25% percentage-T uncertainty of stability derivative of moment about YB-axis
∆Cmα2% = 16% percentage-T uncertainty of stability derivative of moment about YB-axis
∆Cmβ2%

= 16% percentage-T uncertainty of stability derivative of moment about YB-axis
∆Cmδe% = 8% percentage-T uncertainty of control derivative of moment about YB-axis
∆Cmδf% = 8% percentage-T uncertainty of control derivative of moment about YB-axis
∆Cn0% = 8% percentage-T uncertainty of stability derivative of moment about ZB-axis
∆Cnβ% = 8% percentage-T uncertainty of stability derivative of moment about ZB-axis
∆Cnp% = 16% percentage-T uncertainty of stability derivative of moment about ZB-axis
∆Cnq% = 25% percentage-T uncertainty of stability derivative of moment about ZB-axis
∆Cnr% = 16% percentage-T uncertainty of stability derivative of moment about ZB-axis
∆Cnβ3% = 25% percentage-T uncertainty of stability derivative of moment about ZB-axis
∆Cnδa% = 16% percentage-T uncertainty of control derivative of moment about ZB-axis



Table C.7: Constants (continued)

Symbol and Value Type Description
∆Cnδr% = 16% percentage-T uncertainty of control derivative of moment about ZB-axis
Ix = 5368.39 momentOfInertia-T moment of inertia about XB-axis
Iy = 6928.93 momentOfInertia-T moment of inertia about YB-axis
Iz = 11158.75 momentOfInertia-T moment of inertia about ZB-axis
Jxy = 0 productOfInertia-T product of inertia in XBYB-plane
Jxz = 117.64 productOfInertia-T product of inertia in XBZB-plane
Jyz = 0 productOfInertia-T product of inertia in YBZB-plane
Hat = 2000 · foot2SI altitude-T minimum altitude value for atmospheric turbulence model to be

valid
∆Ix% = 8% percentage-T uncertainty of moment of inertia about XB-axis
∆Iy% = 8% percentage-T uncertainty of moment of inertia about YB-axis
∆Iz% = 8% percentage-T uncertainty of moment of inertia about ZB-axis
∆Jxy% = 0% percentage-T uncertainty of product of inertia in XBYB-plane
∆Jxz% = 8% percentage-T uncertainty of product of inertia in XBZB-plane
∆Jyz% = 0% percentage-T uncertainty of product of inertia in YBZB-plane
S = 23.23 area-T wing area
c̄ = 1.5875 length-T mean aerodynamic chord
b = 14.63 length-T wing span
m− = 14970 force-T empty weight
m+ = 22800 force-T max-take-off weight
rx = 0.6, ry = 0, rz = 0 length-T component of IMU position along XB, YB, ZB axes

FCS hardware constants
ADCV − = −10 ADCinput-T minimum value of ADC input
ADCV + = 10 ADCinput-T maximum value of ADC input
ADCnb = 16 integer ADC number of bits
BIAS−

A = −0.019 accelerometerBias-T minimum value of accelerometer bias
BIAS+

A = +0.019 accelerometerBias-T maximum value of accelerometer bias
BIAS−

α = −0.04 AOTSensorBias-T minimum value of angle of attack sensor bias



Table C.7: Constants (continued)

Symbol and Value Type Description
BIAS+

α = +0.04 AOTSensorBias-T maximum value of angle of attack sensor bias
BIAS−

φ/θ = −0.01 attitudeSensorBias-T minimum value of attitude sensor bias
BIAS+

φ/θ = 0.01 attitudeSensorBias-T maximum value of attitude sensor bias
BIAS−

ψ = −0.04 headingSensorBias-T minimum value of heading sensor bias
BIAS+

ψ = 0.04 headingSensorBias-T maximum value of heading sensor bias
BIAS−

g = −0.05 gyroBias-T minimum value of rate gyro output bias
BIAS+

g = +0.05 gyroBias-T maximum value of rate gyro output bias
BIAS−

ps
= 0.95 psSensorBias-T minimum value of static pressure sensor bias

BIAS+
ps

= 1.05 psSensorBias-T maximum value of static pressure sensor bias
BIAS−

qdyn
= 0.95 qdynSensorBias-T minimum value of dynamic pressure sensor bias

BIAS+
qdyn

= 1.05 qdynSensorBias-T maximum value of dynamic pressure sensor bias
BIAS−

T = −0.05 TSensorBias-T minimum value of rate temperature sensor bias
BIAS+

T = +0.05 TSensorBias-T maximum value of rate temperature sensor bias
BIASφr = 0 electricPotentialDifference-T bias of attitude control output
BIASψr = 0 electricPotentialDifference-T bias of heading control output
BIASθr = 0 electricPotentialDifference-T bias of pitch control output
DACV − = −10 DACoutput-T minimum value of DAC output
DACV + = 10 DACoutput-T maximum value of DAC output
DACnb = 16 integer DAC number of bits
IR−

A = −5 · g2SI acceleration-T minimum value of accelerometer input
IR+

A = 15 · g2SI acceleration-T maximum value of accelerometer input
IR−

α = −30 · deg2SI angle-T minimum value of angle of attack sensor input
IR+

α = 30 · deg2SI angle-T maximum value of angle of attack sensor input
IR−

φ/θ = −50 · deg2SI angle-T minimum value of attitude sensor input
IR+

φ/θ = 50 · deg2SI angle-T maximum value of attitude sensor input
IR−

ψ = −50 · deg2SI angle-T minimum value of heading sensor input
IR+

ψ = 50 · deg2SI angle-T maximum value of heading sensor input



Table C.7: Constants (continued)

Symbol and Value Type Description
IR−

g = −100 · deg2SI angularVelocity-T minimum value of rate gyros input
IR+

g = 100 · deg2SI angularVelocity-T maximum value of rate gyros input
IR−

ps
= 0 pressure-T minimum value of static pressure sensor input

IR+
ps

= 15 · psi2SI pressure-T maximum value of static pressure sensor input
IR−

qdyn
= 0 pressure-T minimum value of dynamic pressure sensor input

IR+
qdyn

= 5 · psi2SI pressure-T maximum value of dynamic pressure sensor input
IR−

T = −40 temperature-T minimum value of temperature sensor input
IR+

T = 80 temperature-T maximum value of temperature sensor input
J+

tc = 10−4 float maximum allowed value of trim-condition cost function
NpsdA = 0.000049 sensorOutputPSD-T noise power spectral density of accelerometer output
NpsdT = 0.000001 sensorOutputPSD-T noise power spectral density of temperature sensor output
Npsdα = 0.000001 sensorOutputPSD-T noise power spectral density of angle of attack sensor output
Npsdφ/θ = 0.000001 sensorOutputPSD-T noise power spectral density of attitude sensor output
Npsdψ = 0.000001 sensorOutputPSD-T noise power spectral density of heading sensor output
Npsdg = 0.0000000625 sensorOutputPSD-T noise power spectral density of rate gyro outputs
Npsdps = 0.000001 sensorOutputPSD-T noise power spectral density of static pressure sensor output
Npsdqdyn

= 0.000001 sensorOutputPSD-T noise power spectral density of dynamic pressure sensor output
Npsduwt = 1 randomTurbulencePSD-T power spectral density of noise driving Dryden turbulence model
Npsdvwt = 1 randomTurbulencePSD-T power spectral density of noise driving Dryden turbulence model
Npsdwwt = 1 randomTurbulencePSD-T power spectral density of noise driving Dryden turbulence model
OR−

A = −7.5 electricPotentialDifference-T minimum value of accelerometer output
OR+

A = 7.5 electricPotentialDifference-T maximum value of accelerometer output
OR−

α = −5 electricPotentialDifference-T minimum value of angle of attack sensor output
OR+

α = 5 electricPotentialDifference-T maximum value of angle of attack sensor output
OR−

φ/θ = −5 electricPotentialDifference-T minimum value of attitude sensor output
OR+

φ/θ = 5 electricPotentialDifference-T maximum value of attitude sensor output
OR−

ψ = −5 electricPotentialDifference-T minimum value of heading sensor output
OR+

ψ = 5 electricPotentialDifference-T maximum value of heading sensor output



Table C.7: Constants (continued)

Symbol and Value Type Description
OR−

g = −2.5 electricPotentialDifference-T minimum value of rate gyro outputs
OR+

g = 2.5 electricPotentialDifference-T maximum value of rate gyro outputs
OR−

ps
= 0 electricPotentialDifference-T minimum value of static pressure sensor output

OR+
ps

= 8 electricPotentialDifference-T maximum value of static pressure sensor output
OR−

qdyn
= 0 electricPotentialDifference-T minimum value of dynamic pressure sensor output

OR+
qdyn

= 8 electricPotentialDifference-T maximum value of dynamic pressure sensor output
OR−

T = −10 electricPotentialDifference-T minimum value of temperature sensor output
OR+

T = 10 electricPotentialDifference-T maximum value of temperature sensor output
S−

A = 1.485/g2SI acceleromterGain-T minimum value of accelerometer gain
S+

A = 1.515/g2SI acceleromterGain-T maximum value of accelerometer gain
S−

T = 0.16 TSensorGain-T minimum value of temperature sensor gain
S+

T = 0.17 TSensorGain-T maximum value of temperature sensor gain
S−

α = 0.165/deg2SI AOTsensorGain-T minimum value of angle of attack sensor gain
S+

α = 0.168/deg2SI AOTsensorGain-T maximum value of angle of attack sensor gain
S−

φ/θ = 0.101/deg2SI attitudeSensorGain-T minimum value of attitude sensor gain
S+

φ/θ = 0.099/deg2SI attitudeSensorGain-T maximum value of attitude sensor gain
S−

ψ = 0.101/deg2SI attitudeSensorGain-T minimum value of heading sensor gain
S+

ψ = 0.099/deg2SI attitudeSensorGain-T maximum value of heading sensor gain
S−

g = 0.02475/deg2SI gyroGain-T minimum value of rate gyro gains
S+

g = 0.02525/deg2SI gyroGain-T maximum value of rate gyro gains
S−

ps
= 0.330/psi2SI pressureSensorGain-T minimum value of static pressure sensor gain

S+
ps

= 0.337/psi2SI pressureSensorGain-T maximum value of static pressure sensor gain
S−

qdyn
= 0.99/psi2SI pressureSensorGain-T minimum value of dynamic pressure sensor gain

S+
qdyn

= 1.01/psi2SI pressureSensorGain-T maximum value of dynamic pressure sensor gain
Sφr = 3/deg2SI CPGain-T gain of reference bank control
Sψr = 18/deg2SI CPGain-T gain of reference heading control
Sθr = 6.5/deg2SI CPGain-T gain of reference pitching control



Table C.7: Constants (continued)

Symbol and Value Type Description
Ts = 1/50 time-T sampling time
Vth = 0 CPOutput-T threshold value of control switches
φ−

r = −30 · deg2SI angle-T minimum value of roll angle reference
φ+

r = 30 · deg2SI angle-T maximum value of roll angle reference
ψ−

r = 0 · deg2SI angle-T minimum value of heading reference
ψ+

r = 360 · deg2SI angle-T maximum value of heading reference
θ−r = −8 · deg2SI angle-T minimum value of pitch angle reference
θ+
r = 18 · deg2SI angle-T maximum value of pitch angle reference

n+ = 2300 · RPM2SI engineSpeed-T maximum value of engine speed
p+

z = 26 · inHg2SI pressure-T maximum value of engine manifold pressure
P+ = 450 · hp2SI power-T maximum value of engine power

Ar =

 −9.2131 4.8550 14.0889
0 0 1.0000

0.6720 −809.2957 −50.3478

 state matrix for small perturbation model of rudder actuator

Br =

 24.5709 0.0042
0 0

7.5436 −0.7416

 control matrix for small perturbation model of rudder actuator

Cr =
[

0 57.2958 0
]
, Dr =

[
0 0

]
output matrices for small perturbation model of rudder actuator

Aa =

 −10.5970 −3.2326 −9.2515
0 0 1.0000

1.0877 −684.8274 −19.6229

 state matrix for small perturbation model of aileron actuator

Ba =

 27.4630 −0.0054
0 0

3.0187 −1.1144

 control matrix for small perturbation model of aileron actuator

Ca =
[

0 83.8753 0
]
, Da =

[
0 0

]
output matrices for small perturbation model of aileron actuator



Table C.7: Constants (continued)

Symbol and Value Type Description

Ae =

 −10.9510 8.8068 25.1856
0 0 1.0000

7.3446 −809.7962 −20.1972

 state matrix for small perturbation model of elevator actuator

Be =

 25.1568 0.0005
0 0

5.8694 −0.0516

 control matrix for small perturbation model of elevator actuator

Ce =
[

0 67.1621 0
]
, De =

[
0 0

]
output matrices for small perturbation model of elevator actuator

Ce1 = 0.08696, Ce2 = 191.18, Ce3 = 0.7355,
Ce4 = −326.5, Ce5 = 0.00412, Ce6 = 7.4, engine model coefficients
Ce7 = 2010, Ce8 = 408.0, Ce9 = −0.0965

FCS software constants
Kr = −4 float constant of asymmetric autopilot
Ka i = 0.25 frequency-T integration gain of asymmetric autopilot
Ks i = 0.5 frequency-T integration gain of symmetric autopilot
∆φAL = 0.03491 angle-T correction term in ALH autopilot
∆φPAH = 0 angle-T correction term in PAH autopilot
∆φ+

V = 3.75 · deg2SI angle-T max allowed value for ∆φ
∆φ−

V = −3.75 · deg2SI angle-T min allowed value for ∆φ
∆φ+

r = 30 · deg2SI angle-T ∆φr minimum value
∆φ−

r = −30 · deg2SI angle-T ∆φr minimum value
∆θ+

V = 2 · deg2SI angle-T max allowed value for ∆θ
∆θ−V = −2 · deg2SI angle-T min allowed value for ∆θ
∆θ+

r = 18 · deg2SI angle-T ∆θr minimum value
∆θ−r = −8 · deg2SI angle-T ∆θr minimum value
dar = −0.165 float turn-coordination loop constant of asymmetric autopilot
l−a = −1 · deg2SI angle-T inferior limit of asymmetric autopilot integrator
l+a = 1 · deg2SI angle-T superior limit of asymmetric autopilot integrator



Table C.7: Constants (continued)

Symbol and Value Type Description
l−s1 = −10 · deg2SI angle-T inferior limit of symmetric autopilot integrator
l+s1 = 10 · deg2SI angle-T superior limit of symmetric autopilot integrator
l−s2 = −20 · deg2SI angle-T inferior limit of ALH autopilot
l+s2 = 20 · deg2SI angle-T superior limit of ALH autopilot

Conversion factors
psi2SI = 6894.757 float conversion factor from psi to Pa
foot2SI = 0.3048 float conversion factor from foot to m
deg2SI = π/180 float conversion factor from degree to rad
g2SI = 9.80665 float conversion factor from g to m · s−2

RPM2SI = 0.1047198 float conversion factor from RPM to rad · s−1

inHg2SI = 3386.389 float conversion factor from inHg to Pa
hp2SI = 745.6999 float conversion factor from hp to J · s−1



Table C.8: Quantified variables

Symbol Type Description
CX0() time-T → stabilityDerivative-T actual value of stability derivative of force along XB-axis
CXα() time-T → stabilityDerivative-T actual value of stability derivative of force along XB-axis
CXq() time-T → stabilityDerivative-T actual value of stability derivative of force along XB-axis
CXαδf

() time-T → controlDerivative-T actual value of control derivative of force along XB-axis
CXα2 () time-T → stabilityDerivative-T actual value of stability derivative of force along XB-axis
CXα3 () time-T → stabilityDerivative-T actual value of stability derivative of force along XB-axis
CXδf

() time-T → controlDerivative-T actual value of control derivative of force along XB-axis
CXδr

() time-T → controlDerivative-T actual value of control derivative of force along XB-axis
CY0() time-T → stabilityDerivative-T actual value of stability derivative of force along YB-axis
CYβ

() time-T → stabilityDerivative-T actual value of stability derivative of force along YB-axis
CYp() time-T → stabilityDerivative-T actual value of stability derivative of force along YB-axis
CYr() time-T → stabilityDerivative-T actual value of stability derivative of force along YB-axis
CYαδr

() time-T → controlDerivative-T actual value of control derivative of force along YB-axis
CYδa

() time-T → controlDerivative-T actual value of control derivative of force along YB-axis
CYδr

() time-T → controlDerivative-T actual value of control derivative of force along YB-axis
CYβ̇

() time-T → stabilityDerivative-T actual value of stability derivative of force along YB-axis
CZ0() time-T → stabilityDerivative-T actual value of stability derivative of force along ZB-axis
CZα() time-T → stabilityDerivative-T actual value of stability derivative of force along ZB-axis
CZq() time-T → stabilityDerivative-T actual value of stability derivative of force along ZB-axis
CZαδf

() time-T → controlDerivative-T actual value of control derivative of force along ZB-axis
CZα3 () time-T → stabilityDerivative-T actual value of stability derivative of force along ZB-axis
CZβ2δe

() time-T → controlDerivative-T actual value of control derivative of force along ZB-axis
CZδe

() time-T → controlDerivative-T actual value of control derivative of force along ZB-axis
CZδf

() time-T → controlDerivative-T actual value of control derivative of force along ZB-axis
Cl0() time-T → stabilityDerivative-T actual value of stability derivative of moment about XB-axis
Clβ () time-T → stabilityDerivative-T actual value of stability derivative of moment about XB-axis
Clp() time-T → stabilityDerivative-T actual value of stability derivative of moment about XB-axis
Clr() time-T → stabilityDerivative-T actual value of stability derivative of moment about XB-axis



Table C.8: Quantified variables (continued)

Symbol Type Description
Clαδa

() time-T → controlDerivative-T actual value of control derivative of moment about XB-axis
Clδa

() time-T → controlDerivative-T actual value of control derivative of moment about XB-axis
Clδr

() time-T → controlDerivative-T actual value of control derivative of moment about XB-axis
Cm0() time-T → stabilityDerivative-T actual value of stability derivative of moment about YB-axis
Cmα() time-T → stabilityDerivative-T actual value of stability derivative of moment about YB-axis
Cmq() time-T → stabilityDerivative-T actual value of stability derivative of moment about YB-axis
Cmr() time-T → stabilityDerivative-T actual value of stability derivative of moment about YB-axis
Cmα2 () time-T → stabilityDerivative-T actual value of stability derivative of moment about YB-axis
Cmβ2 () time-T → stabilityDerivative-T actual value of stability derivative of moment about YB-axis
Cmδe

() time-T → controlDerivative-T actual value of control derivative of moment about YB-axis
Cmδf

() time-T → controlDerivative-T actual value of control derivative of moment about YB-axis
Cn0() time-T → stabilityDerivative-T actual value of stability derivative of moment about ZB-axis
Cnβ

() time-T → stabilityDerivative-T actual value of stability derivative of moment about ZB-axis
Cnp() time-T → stabilityDerivative-T actual value of stability derivative of moment about ZB-axis
Cnq() time-T → stabilityDerivative-T actual value of stability derivative of moment about ZB-axis
Cnr() time-T → stabilityDerivative-T actual value of stability derivative of moment about ZB-axis
Cnβ3 () time-T → stabilityDerivative-T actual value of stability derivative of moment about ZB-axis
Cnδa

() time-T → controlDerivative-T actual value of control derivative of moment about ZB-axis
Cnδr

() time-T → controlDerivative-T actual value of control derivative of moment about ZB-axis
Ix() time-T → momentOfInertia-T actual value of moment of inertia along XB-axis
Iy() time-T → momentOfInertia-T actual value of moment of inertia along YB-axis
Iz() time-T → momentOfInertia-T actual value of moment of inertia along ZB-axis
Jxy() time-T → productOfInertia-T actual value of product of inertia in XBYB-plane
Jxz() time-T → productOfInertia-T actual value of product of inertia in XBZB-plane
Jyz() time-T → productOfInertia-T actual value of product of inertia in YBZB-plane
P () time-T → power-T engine power
SAx accelerometerGain-T actual value of Ax accelerometer gain
SAy accelerometerGain-T actual value of Ay accelerometer gain



Table C.8: Quantified variables (continued)

Symbol Type Description
SAz accelerometerGain-T actual value of Az accelerometer gain
ST TSensorGain-T actual value of temperature sensor gain
Sα AOTSensorGain-T actual value of angle of attack sensor gain
Sφ attitudeSensorGain-T actual value of roll attitude sensor gain
Sψ attitudeSensorGain-T actual value of heading sensor gain
Sθ attitudeSensorGain-T actual value of pitch attitude sensor gain
Sps pressureSensorGain-T actual value of static pressure sensor gain
Sp gyroGain-T actual value of roll rate gyro gain
Sqdyn

pressureSensorGain-T actual value of dynamic pressure sensor gain
Sq gyroGain-T actual value of pitch rate gyro gain
Sr gyroGain-T actual value of yaw rate gyro gain
xa() array of float state vector of small perturbation aileron model
xe() array of float state vector of small perturbation elevator model
xr() array of float state vector of small perturbation rudder model
νAx() time-T → accelerometerOutput-T instance of Ax accelerometer output noise
νAy() time-T → accelerometerOutput-T instance of Ayaccelerometer output noise
νAz() time-T → accelerometerOutput-T instance of Azaccelerometer output noise
νT () time-T → TSensorOutput-T instance of temperature sensor output noise
να() time-T → AOTSensorOutput-T instance of angle of attack sensor output noise
νφ() time-T → attitudeSensorOutput-T instance of roll attitude sensor output noise
νψ() time-T → headingSensorOutput-T instance of heading sensor output noise
νθ() time-T → attitudeSensorOutput-T instance of pitch attitude sensor output noise
νps() time-T → pressureSensorOutput-T instance of static pressure sensor output noise
νp() time-T → gyroOutput-T instance of roll rate gyro output noise
νqdyn

() time-T → pressureSensorOutput-T instance of dynamic pressure sensor output noise
νq() time-T → gyroOutput-T instance of pitch rate gyro output noise
νr() time-T → gyroOutput-T instance of yaw rate gyro output noise
νuwt() time-T → float instance of noise driving Dryden turbulence model



Table C.8: Quantified variables (continued)

Symbol Type Description
νvwt() time-T → float instance of noise driving Dryden turbulence model
νwwt() time-T → float instance of noise driving Dryden turbulence model
a, b float coefficients used within the trim-condition requirement
biasAx accelerometerBias-T actual value of Ax accelerometer bias
biasAy accelerometerBias-T actual value of Ay accelerometer bias
biasAz accelerometerBias-T actual value of Az accelerometer bias
biasT TSensorBias-T actual value of temperature sensor bias
biasα AOTSensorBias-T actual value of angle of attack sensor bias
biasφ attitudeSensorBias-T actual value of roll attitude sensor bias
biasψ headingSensorBias-T actual value of heading sensor bias
biasθ attitudeSensorBias-T actual value of pitch attitude sensor bias
biasps psSensorBias-T actual value of static pressure sensor bias
biasp gyroBias-T actual value of roll rate gyro bias
biasqdyn

qdynSensorBias-T actual value of dynamic pressure sensor bias
biasq gyroBias-T actual value of pitch rate gyro bias
biasr gyroBias-T actual value of yaw rate gyro bias
dpt() time-T → float non-dimensional pressure increase in propeller slipstream
k integer counter
m() time-T → force-T actual airplane weight
t, t1, t2, t3, t4 time-T continuous time instant



Table C.9: Auxiliary terms

Symbol and expression in terms of base
quantities

Type Description

Auxiliary terms
Fx() = Xasd

()+Xacd
()+Xp()+Xgr()+Xw() time-T → force-T total force along XB-axis

Fy() = Yasd
() + Yacd

() + Yp() + Ygr() + Yw() time-T → force-T total force along YB-axis
Fz() = Zasd

() + Zacd
() + Zp() + Zgr() + Zw() time-T → force-T total force along ZB-axis

I1() = Iy()Iz() − J2
yz() time-T → inertiaParam-T inertia parameter for moment equations

I2() = Jxy()Iz() + Jyz()Jxz() time-T → inertiaParam-T inertia parameter for moment equations
I3() = Jxy()Jyz() + Iy()Jxz() time-T → inertiaParam-T inertia parameter for moment equations
I4() = Ix()Iz() − J2

xz() time-T → inertiaParam-T inertia parameter for moment equations
I5() = Ix()Jyz() + Jxy()Jxz() time-T → inertiaParam-T inertia parameter for moment equations
I6() = Ix()Iy() − J2

xy() time-T → inertiaParam-T inertia parameter for moment equations
|I()| = Ix()Iy()Iz() − 2Jxy()Jxz()Jyz() −
Ix()J2

yz() − Iy()J2
xz() − Iz()J2

xy()
time-T → inertiaParam-T inertia parameter for moment equations

Jtc(( V̇a(0), α̇(0), β̇(0), ṗ(0), q̇(0), ṙ(0) )=
CVa V̇ 2

a (0) + Cαβ ( α̇2(0) + β̇2(0) ) +Cpqr (
ṗ2(0) + q̇2(0) + ṙ2(0) )

(acceleration-T,
angularVelocity-T,
angularVelocity-T,
angularAcceleration-T,
angularAcceleration-T,
angularAcceleration-T) →
float

cost function for trim-condition

KH(V̂a) = (−1 · 10−4V 2
a + 0.015V̂a −

0.5975)π/180
airspeed-T → float proportional gain of ALH autopilot

Kφ(V̂a) = 9.75 · 10−4V̂ 2
a − 0.108V̂a + 2.335625 airspeed-T → float proportional gain of asymmetric autopilot

Kψ(V̂a) = 0.05V̂a − 1.1 airspeed-T → float proportional gain of HH/HS autopilot
Kθ(V̂a) = 1.375 · 10−3V̂ 2

a + 0.1575V̂a − 4.8031 airspeed-T → float proportional gain of PAH autopilot
K̄θ(V̂a) = 1.375 · 10−3V̂ 2

a + 0.1575V̂a − 4.8031 airspeed-T → float proportional gain of ALH and ALS autopilot
Kd(V̂a) = −2.5 · 10−3V̂a + 0.2875 airspeed-T → float proportional gain of ALH and ALS autopilot



Table C.9: Auxiliary terms (continued)

Symbol and expression in terms of base
quantities

Type Description

Kq(V̂a) = −4.75 · 10−4V̂ 2
a + 0.0540V̂a − 1.593 airspeed-T → float proportional gain of symmetric autopilot

KḢ(V̂a) = (−3.875 · 10−4V̂ 2
a + 0.04025V̂a −

1.1041)π/180
airspeed-T → float proportional gain of ALS autopilot

Ktc(V̂a) = 5 · 10−4V̂ 2
a − 0.03V̂a + 0.9375 airspeed-T → float proportional gain of PAH autopilot

K̄tc(V̂a) = 0.03V̂a + 0.25 airspeed-T → float proportional gain of ALH and ALS autopilot
L() = Lasd

() + Lacd
() + Lp() time-T → moment-T total rolling moment

M() = Masd
() + Macd

() + Mp() time-T → moment-T total pitching moment
N() = Nasd

() + Nacd
() + Np() time-T → moment-T total yawing moment

OFFADC = 2ADCnb−1 integer ADC internal representation of ADC zero input
OFFDAC = 2DACnb−1 integer DAC internal representation of DAC zero out-

put
Pl() = I1()/|I()| time-T → inertiaParam-T inertia parameter for moment equations
Pm() = I2()/|I()| time-T → inertiaParam-T inertia parameter for moment equations
Pn() = I3()/|I()| time-T → inertiaParam-T inertia parameter for moment equations
Ppp() = −(Jxz()I2() − Jxy()I3())/|I()| time-T → inertiaParam-T inertia parameter for moment equations
Ppq() = (Jxz()I1() − Jyz()I2() − (Iy() −
Ix())I3())/|I()|

time-T → inertiaParam-T inertia parameter for moment equations

Ppr() = −(Jxy()I1() + (Ix() − Iz())I2() −
Jyz()I3())/|I()|

time-T → inertiaParam-T inertia parameter for moment equations

Pqq() = (Jyz()I1() − Jxy()I3())/|I()| time-T → inertiaParam-T inertia parameter for moment equations
Pqr() = −((Iz() − Iy())I1() − Jxy()I2() +
Jxz()I3())/|I()|

time-T → inertiaParam-T inertia parameter for moment equations

Prr() = −(Jyz()I1() − Jxz()I2())/|I()| time-T → inertiaParam-T inertia parameter for moment equations
Ql() = I2()/|I()| time-T → inertiaParam-T inertia parameter for moment equations
Qm() = I4()/|I()| time-T → inertiaParam-T inertia parameter for moment equations
Qn() = I5()/|I()| time-T → inertiaParam-T inertia parameter for moment equations
Qpp() = −(Jxz()I4() − Jxy()I5())/|I()| time-T → inertiaParam-T inertia parameter for moment equations



Table C.9: Auxiliary terms (continued)

Symbol and expression in terms of base
quantities

Type Description

Qpq() = (Jxz()I2() − JyzI4() − (Iy() −
Ix())I5())/|I()|

time-T → inertiaParam-T inertia parameter for moment equations

Qpr() = −(Jxy()I2() + (Ix() − Iz())I4() −
Jyz()I5())/|I()|

time-T → inertiaParam-T inertia parameter for moment equations

Qqq() = (Jyz()I2() − Jxy()I5())/|I()| time-T → inertiaParam-T inertia parameter for moment equations
Qqr() = −((Iz() − Iy())I2() − Jxy()I4() +
Jxz()I5())/|I()|

time-T → inertiaParam-T inertia parameter for moment equations

Qrr() = −(Jyz()I2() − Jxz()I4())/|I()| time-T → inertiaParam-T inertia parameter for moment equations
Rl() = I3()/|I()| time-T → inertiaParam-T inertia parameter for moment equations
Rm() = I5()/|I()| time-T → inertiaParam-T inertia parameter for moment equations
Rn() = I6()/|I()| time-T → inertiaParam-T inertia parameter for moment equations
Rpp() = −(Jxz()I5() − Jxy()I6())/|I()| time-T → inertiaParam-T inertia parameter for moment equations
Rpq() = (Jxz()I3() − Jyz()I5() − (Iy() −
Ix())I6())/|I()|

time-T → inertiaParam-T inertia parameter for moment equations

Rpr() = −(Jxy()I3() + (Ix() − Iz())I5() −
Jyz()I6())/|I()|

time-T → inertiaParam-T inertia parameter for moment equations

Rqq() = (Jyz()I3() − Jxy()I6())/|I()| time-T → inertiaParam-T inertia parameter for moment equations
Rqr() = −((Iz() − Iy())I3() − Jxy()I5() +
Jxz()I6())/|I()|

time-T → inertiaParam-T inertia parameter for moment equations

Rrr() = −(Jyz()I3() − Jxz()I5())/|I()| time-T → inertiaParam-T inertia parameter for moment equations
SADC = 2ADCnb−1

DACV +−DACV − float ADC resolution

SDAC = 2DACnb−1
DACV +−DACV − float DAC resolution

huwt() = F−1

{
σu

√
2Lu
Va(t)

1(
1+ Lu

Va(t)
jω

) }
time-T → turbulence-T filter implementing Dryden turbulence model

hvwt() = F−1

{
σv

√
Lv

Va(t)

1+
√

3 Lv
Va(t)

jω(
1+ Lv

Va(t)
jω

)2

}
time-T → turbulence-T filter implementing Dryden turbulence model



Table C.9: Auxiliary terms (continued)

Symbol and expression in terms of base
quantities

Type Description

hwwt() = F−1

{
σw

√
Lw

Va(t)

1+
√

3 Lw
Va(t)

jω(
1+ Lw

Va(t)
jω

)2

}
time-T → turbulence-T filter implementing Dryden turbulence model

ũa() =
[
δ̃a()

b p()
2Va()

]T
array of float input vector to aileron model

ũe() =
[
δ̃e()

c̄ q()
Va()

]T
array of float input vector to elevator model

ũr() =
[
δ̃r()

b r()
2Va()

]T
array of float input vector to rudder model

ûa() =
[
δ̂a()

b p()
2Va()

]T
array of float input vector to aileron model

ûe() =
[
δ̂e()

c̄ q()
Va()

]T
array of float input vector to elevator model

ûr() =
[
δ̂r()

b r()
2Va()

]T
array of float input vector to rudder model

drr(V̂a) = −7.5 · 10−5V̂ 2
a − 0.0095V̂a − 0.4606 airspeed-T → float turn-coordination loop gain of asymmetric au-

topilot
ua() = Va() cos α() cos β() time-T → velocity-T airspeed component along XB-axis
ue() = ua() + uw() time-T → velocity-T component along XB-axis of velocity wrt earth

frame
va() = Va sinβ() time-T → velocity-T airspeed component along YB-axis
ve() = va() + vw() time-T → velocity-T component along YB-axis of velocity wrt earth

frame
wa() = Va() sin α() cos β() time-T → velocity-T airspeed component along ZB-axis
we() = wa() + ww() time-T → velocity-T component along ZB-axis of velocity wrt earth

frame
uw() = uw̄() + uwt() + uwg() time-T → velocity-T wind velocity component along XB-axis
vw() = vw̄() + vwt() + vwg() time-T → velocity-T wind velocity component along YB-axis
ww() = ww̄() + wwt() + wwg() time-T → velocity-T wind velocity component along ZB-axis
∆̂H() = Ĥ() − H0 natural-T → altitude-T altitude variation with respect to trim value



Table C.9: Auxiliary terms (continued)

Symbol and expression in terms of base
quantities

Type Description

∆̂δa() = δ̂a() − δa0 natural-T →
aileronDeflection-T

aileron defliection variation with respect to trim
value

∆̂δe() = δ̂e() − δe0 natural-T →
elevatorDeflection-T

elevator defliection variation with respect to
trim value

∆̂δr() = δ̂r() − δr0 natural-T →
rudderDeflection-T

rudder defliection variation with respect to trim
value

∆̂φ() = φ̂() − φ0 natural-T → angle-T bank angle variation with respect to trim value
∆̂φr() = φ̂r() − φr0 natural-T → bankReference-

T
bank reference variation with respect to trim
value

∆̂ψ() = ψ̂() − ψ0 natural-T → angle-T heading variation with respect to trim value
∆̂ψr() = ψ̂r() − ψr0 natural-T →

headingReference-T
heading reference variation with respect to trim
value

∆̂θ() = θ̂() − θ0 natural-T → angle-T pitch angle variation with respect to trim value
∆̂θr() = θ̂r() − θr0 natural-T → pitchReference-

T
pitch reference variation with respect to trim
value

Auxiliary functions, operators, and predicates

constRef(f(), t1, t2) = ∃ k ∀ t
(

t1 ≤ t ≤
t2 ⇒ f(t) = k

) not specified predicate that evaluates true if f() is constant
throughout the time interval [t1, t2]

engaged(SW (), t1, t2) = ∃Tε

(
0 < Tε < ∞ ∧

∀ t
(

t1 − Tε < t < t1 ⇒ SW (t) = OFF
)

∧ ∀ t
(

t1 ≤ t < t2 ⇒ SW (t) = ON
))

(switch-T, time-T, time-T)
→ boolean

predicate that evaluates true only if the switch
SW () is engaged at t = t1 and stays engaged
throughout the time interval [t1, t2]

turb(t1, t2) = ¬ ∀ t
(

t1 ≤ t ≤ t2 ⇒ uwt(t) =
0 ∧ wwt(t) = 0 ∧ wwt(t) = 0 ∧ uwg(t) =
0 ∧ wwg(t) = 0 ∧ wwg(t) = 0 ∧

)
(time-T, time-T) → boolean predicate that evaluates true if random and dis-

crete turbulence wind components are not zero



Table C.9: Auxiliary terms (continued)

Symbol and expression in terms of base
quantities

Type Description

whileEngaged(SW (), t1, t2) = ∀ t
(

t1 ≤ t <

t2 ⇒ SW (t) = ON
) (switch-T, time-T, time-T)

→ boolean
predicate that evaluates true only if the switch
SW () is engaged throughout the time interval
[t1, t2]

whiteNoise(ν(), Npsd) not specified predicate that evaluates true if ν() is white
noise with Power Spectral Density Npsd

p1() ' p2() ⇔ E{a(t)a(t+τ)} = E{b(t)b(t+
τ)}

not specified equivalence operator between stochastic pro-
cesses

z(f(k)) = f(k + 1) not specified one step forward operator[
x

]b

a
=


x : a < x < b
a : a ≤ x
b : x ≤ b

not specified crop operator

RMS(f(), t1, t2) =
√

1
t2−t1

∫ t2
t1

f2(t)dt not specified Root Mean Square value of a function over the
interval [t1, t2]⌊

x
⌋
= y ⇔ y ∈ N ∧ y < x ∧ ∀n

(
n ∈

N ∧ n > y ⇒ n > x
) not specified quantization to closest integer



Table C.10: Data-types

Type ID Base type Range SI symbol Description
ADCinput-T electricPotentialDifference-T [ADCV − , ADCV + ] inherited input to A/D card
ADCoutput-T integer [0, 2ADCnb) inherited output from A/D card
AOT-T angle-T [−10, 30] · deg2SI inherited angle of attack
AOTSensorBias-T electricPotentialDifference-T [BIAS−

α , BIAS+
α ] inherited angle of attack sensor output

AOTSensorGain-T angularSensorGain-T [S−
α , S+

α ] inherited gain of angle of attack sensor
AOTSensorOutput-T electricPotentialDifference-T [OR−

α , OR+
α ] inherited angle of attack sensor output

CPGain-T float (−∞, +∞) V · rad−1 gain of knob controls from con-
trol panel

CPOutput-T electricPotentialDifference-T [CP−, CP+] inherited output of controls from control
panel

DACinput-T integer [0, 2DACnb) inherited input to D/A card
DACoutput-T electricPotentialDifference-T [DACV − , DACV + ] inherited output from D/A card
PCUInput-T electricPotentialDifference-T [PCU−, PCU+] inherited power control unit input
TCWeight-T float-T (−∞, +∞) notspecified trim condition weight
TSensorBias-T electricPotentialDifference-T [BIAS−

T , BIAS+
T ] inherited temperature sensor output

bias
TSensorGain-T temperatureSensorGain-T [S−

T , S+
T ] inherited temperature sensor gain

TSensorOutput-T electricPotentialDifference-T [OR−
T , OR+

T ] inherited temperature sensor output
accelerationSensorGain-T float (−∞, +∞) V · s · m−1 acceleration sensor gain
acceleration-T float (−∞, +∞) m · s−1 linear acceleration
accelerometerBias-T electricPotentialDifference-T [BIAS−

A , BIAS+
A ] inherited accelerometer output bias

accelerometerGain-T accelerationSensorGain-T [S−
A , S+

A ] inherited accelerometer gain
accelerometerOutput-T electricPotentialDifference-T [OR−

A, OR+
A] inherited accelerometer output

aileronDeflection-T angle-T [δ−a , δ+
a ] inherited aileron deflection

airspeed-T velocity [35, 65] inherited air velocity
altitude-T length-T [2000, 10000] ·

foot2SI
inherited barometric altitude

angle-T float (−∞, +∞) rad angle



Table C.10: Data-types (continued)

Type ID Base type Range SI symbol Description
angularAcceleration-T float (−∞, +∞) rad · s−2 angular acceleration
angularSensorGain-T float (−∞, +∞) V · rad−1 angular sensor gain
angularVelocitySensorGain-T float (−∞, +∞) V ·s · rad−1 angular velocity sensor gain
angularVelocity-T float (−∞, +∞) rad · s−1 angular velocity
area-T float (−∞, +∞) m2 area
attitudeSensorBias-T electricPotentialDifference-T [BIAS−

φ/θ, BIAS+
φ/θ] inherited attitude sensor output bias

attitudeSensorGain-T angularSensorGain-T [S−
φ/θ, S

+
φ/θ] inherited attitude sensor gain

attitudeSensorOuput-T electricPotentialDifference-T [OR−
φ/θ, OR+

φ/θ] inherited attitude sensor output
bankReference-T angle-T [φ−, φ+] inherited bank reference control
controlDerivative-T float (−∞, +∞) notspecified control derivative
density-T float [0, +∞) kg · m−3 mass density
electricPotentialDifference-T float (−∞, +∞) V electric potential difference
elevatorDeflection-T angle-T [δ−e , δ+

e ] inherited elevator deflection
engineSpeed-T revolutionPerMinute-T [n−, n+] inherited engine RPM
flapDeflection-T angle-T [δ−f , δ+

f ] inherited flap deflection
force-T float (−∞, +∞) N force
frequency-T float [0, +∞) s−1 force
gasConstant-T float 287.05 J ·K · kg−1 gas constant
gyroBias-T electricPotentialDifference-T [BIAS−

g , BIAS+
g ] inherited rate gyro output bias

gyroGain-T angularVelocitySensorGain-T [S−
g , S+

g ] inherited rate gyro gain
gyroOutput-T electricPotentialDifference-T [OR−

g , OR+
g ] inherited rate gyro output

headingReference-T angle-T [ψ−
r , ψ+

r ] inherited heading reference control
headingSensorBias-T electricPotentialDifference-T [BIAS−

ψ , BIAS+
ψ ] inherited heading sensor output bias

headingSensorGain-T angularSensorGain-T [S−
ψ , S+

ψ ] inherited heading sensor gain
headingSensorOutput-T electricPotentialDifference-T [OR−

ψ , OR+
ψ ] inherited heading sensor output

inertiaParam-T float (−∞, +∞ notspecified inertia parameter
length-T float (−∞, +∞) m length
moment-T float (−∞, +∞) N · m angular moment



Table C.10: Data-types (continued)

Type ID Base type Range SI symbol Description
momentOfInertia-T float [0,∞) kg · m2 moment of inertia
natural-T integer [0, +∞) notspecified natural number
percentage-T float [0, 1] notspecified percentage
pitchReference-T angle-T [θ−, θ+] inherited pitch reference control
pressureSensorGain-T float (−∞, +∞) V ·N−1 ·m2 pressure sensor gain
power-T float (−∞, +∞) J · s−1 pressure
pressure-T float (−∞, +∞) N · m−2 pressure
productOfInertia-T float [0,∞) kg · m2 product of inertia
psSensorBias-T electricPotentialDifference-T [BIAS−

ps
, BIAS+

ps
] inherited static pressure sensor output

bias
psSensorGain-T pressureSensorGain-T [S−

ps
, S+

ps
] inherited static pressure sensor gain

psSensorOutput-T electricPotentialDifference-T [OR−
ps

, OR+
ps

] inherited static pressure sensor output
qdynSensorBias-T electricPotentialDifference-T [BIAS−

qdyn
, BIAS+

qdyn
] inherited dynamic pressure sensor out-

put bias
qdynSensorGain-T pressureSensorGain-T [S−

qdyn
, S+

qdyn
] inherited dynamic pressure sensor gain

qdynSensorOutput-T electricPotentialDifference-T [OR−
qdyn

, OR+
qdyn

] inherited dynamic pressure sensor out-
put

randomTurbulencePSD-T float [0, +∞) notspecified random turbulence power
spectral density

revolutionPerMinute-T angularVelocity-T [0, +∞) inherited revolution per minute
rudderDeflection-T angle-T [δ−r , δ+

r ] inherited rudder deflection
sensorOutputPSD-T float [0, +∞) V 2 · Hz−1 power spectral density of sen-

sor output
stabilityDerivative-T float (−∞, +∞) notspecified stability derivative
switch-T boolean {ON, OFF} notspecified switch control
temperatureGradient-T float (−∞, +∞) K · m−1 temperature gradient in tropo-

sphere
temperatureSensorGain-T float (−∞, +∞) V · K−1 temperature sensor gain



Table C.10: Data-types (continued)

Type ID Base type Range SI symbol Description
temperature-T float (−∞, +∞) K temperature
time-T float (−∞, +∞) s time
velocity-T float (−∞, +∞) m · s−1 linear velocity
warningLight-T boolean {ON, OFF} notspecified warning light
warningLightInput-T electricPotentialDifference-T [WL−, WL+] inherited input to warning light
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