13,415 research outputs found

    Adaptation of NEMO-LIM3 model for multigrid high resolution Arctic simulation

    Full text link
    High-resolution regional hindcasting of ocean and sea ice plays an important role in the assessment of shipping and operational risks in the Arctic Ocean. The ice-ocean model NEMO-LIM3 was modified to improve its simulation quality for appropriate spatio-temporal resolutions. A multigrid model setup with connected coarse- (14 km) and fine-resolution (5 km) model configurations was devised. These two configurations were implemented and run separately. The resulting computational cost was lower when compared to that of the built-in AGRIF nesting system. Ice and tracer boundary-condition schemes were modified to achieve the correct interaction between coarse- and fine grids through a long ice-covered open boundary. An ice-restoring scheme was implemented to reduce spin-up time. The NEMO-LIM3 configuration described in this article provides more flexible and customisable tools for high-resolution regional Arctic simulations

    A relocatable ocean model in support of environmental emergencies

    Get PDF
    During the Costa Concordia emergency case, regional, subregional, and relocatable ocean models have been used together with the oil spill model, MEDSLIK-II, to provide ocean currents forecasts, possible oil spill scenarios, and drifters trajectories simulations. The models results together with the evaluation of their performances are presented in this paper. In particular, we focused this work on the implementation of the Interactive Relocatable Nested Ocean Model (IRENOM), based on the Harvard Ocean Prediction System (HOPS), for the Costa Concordia emergency and on its validation using drifters released in the area of the accident. It is shown that thanks to the capability of improving easily and quickly its configuration, the IRENOM results are of greater accuracy than the results achieved using regional or subregional model products. The model topography, and to the initialization procedures, and the horizontal resolution are the key model settings to be configured. Furthermore, the IRENOM currents and the MEDSLIK-II simulated trajectories showed to be sensitive to the spatial resolution of the meteorological fields used, providing higher prediction skills with higher resolution wind forcing.MEDESS4MS Project; TESSA Project; MyOcean2 Projectinfo:eu-repo/semantics/publishedVersio

    Minimizing Vessel Strikes to Endangered Whales: A Crash Course in Conservation Science and Policy

    Get PDF
    The North Atlantic right whale is one of the most endangered of all large whales: about 350-400 individuals remain. Species recovery is, in part, contingent on reducing vessel-strike mortality. Our science-based conservation program resulted in three efforts specifically designed to minimize the risk of lethal vessel-strikes of endangered baleen whales without compromising vessel navigation and safety. In Atlantic Canada, the Bay of Fundy Traffic Separation Scheme (TSS) was relocated to reduce the risk of lethal vessel strikes by 90% where the original outbound lane of the TSS intersected the Right Whale Conservation Area, and an Area To Be Avoided (ATBA) adopted for Roseway Basin has demonstrated an 82% reduction in the risk of lethal vessel-strikes. In the Gulf of Maine, the Boston TSS through the Stellwagen Bank National Marine Sanctuary was relocated to reduce the overlap between vessels and endangered baleen whales by ~81% and by ~58% for right whales alone. This rerouting of vessels for whale conservation, as sanctioned by the International Maritime Organization, sets a precedent for national and international marine conservation policy by providing vessels with direct actions they can take to protect endangered whales – both regulated (TSS) and voluntary (ATBA). This demonstrate that despite contentious conditions, effective science-driven policy tools for conservation can be identified, made available, and implemented. The science also provides the quantitative means to measure policy efficacy through monitoring of vessel compliance and, in some cases, can increase compliance through improved real-time communications regarding whale locations in high-risk areas

    A global map to aid the identification and screening of critical habitat for marine industries

    Get PDF
    Marine industries face a number of risks that necessitate careful analysis prior to making decisions on the siting of operations and facilities. An important emerging regulatory framework on environmental sustainability for business operations is the International Finance Corporation’s Performance Standard 6 (IFC PS6). Within PS6, identification of biodiversity significance is articulated through the concept of “Critical Habitat”, a definition developed by the IFC and detailed through criteria aligned with those that support internationally accepted biodiversity designations. No publicly available tools have been developed in either the marine or terrestrial realm to assess the likelihood of sites or operations being located within PS6-defined Critical Habitat. This paper presents a starting point towards filling this gap in the form of a preliminary global map that classifies more than 13 million km2 of marine and coastal areas of importance for biodiversity (protected areas, Key Biodiversity Areas [KBA], sea turtle nesting sites, cold- and warm-water corals, seamounts, seagrass beds, mangroves, saltmarshes, hydrothermal vents and cold seeps) based on their overlap with Critical Habitat criteria, as defined by IFC. In total, 5798×103 km2 (1.6%) of the analysis area (global ocean plus coastal land strip) were classed as Likely Critical Habitat, and 7526×103 km2 (2.1%) as Potential Critical Habitat; the remainder (96.3%) were Unclassified. The latter was primarily due to the paucity of biodiversity data in marine areas beyond national jurisdiction and/or in deep waters, and the comparatively fewer protected areas and KBAs in these regions. Globally, protected areas constituted 65.9% of the combined Likely and Potential Critical Habitat extent, and KBAs 29.3%, not accounting for the overlap between these two features. Relative Critical Habitat extent in Exclusive Economic Zones varied dramatically between countries. This work is likely to be of particular use for industries operating in the marine and coastal realms as an early screening aid prior to in situ Critical Habitat assessment; to financial institutions making investment decisions; and to those wishing to implement good practice policies relevant to biodiversity management. Supplementary material (available online) includes other global datasets considered, documentation and justification of biodiversity feature classification, detail of IFC PS6 criteria/scenarios, and coverage calculations

    Comparison between nested grids and unstructured grids for a high-resolution wave forecasting system in the western Mediterranean sea

    Get PDF
    This is an Accepted Manuscript of an article published by Taylor & Francis Group in Journal of Operational Oceanography on 2017, available online at: http://www.tandfonline.com/10.1080/1755876X.2016.1260389Traditionally wave modelling uses a downscaling process by means of successive nested grids to obtain high-resolution wave fields near the coast. This supposes an uncertain error due to internal boundary conditions and a long computational time. Unstructured grids avoid multiple meshes and thus the problem of internal boundary conditions. In the present study high resolution wave simulations are analysed for a full year where high-resolution meteorological models were available in the Catalan coast. This coastal case presents sharp gradients in bathymetry and orography and therefore correspondingly sharp variations in the wind and wave fields. Simulations with SWAN v.4091A using a traditional nested sequence and a regional unstructured grid have been compared. Also a local unstructured grid nested in an operational forecast system is included in the analysis. The obtained simulations are compared to wave observations from buoys near the coast; almost no differences are found between the unstructured grids and the regular grids. Simultaneously, tests have been carried out in order to analyse the computational time required for each of the alternatives, showing a decrease to less than half the time when working with regional unstructured grids and maintaining the forecast accuracy and coastal resolution with respect to the downscaling system.Peer ReviewedPostprint (author's final draft

    Proceedings for the ICASE Workshop on Heterogeneous Boundary Conditions

    Get PDF
    Domain Decomposition is a complex problem with many interesting aspects. The choice of decomposition can be made based on many different criteria, and the choice of interface of internal boundary conditions are numerous. The various regions under study may have different dynamical balances, indicating that different physical processes are dominating the flow in these regions. This conference was called in recognition of the need to more clearly define the nature of these complex problems. This proceedings is a collection of the presentations and the discussion groups

    Distributional Impacts of a U.S. Greenhouse Gas Policy: A General Equilibrium Analysis of Carbon Pricing

    Get PDF
    Abstract and PDF report are also available on the MIT Joint Program on the Science and Policy of Global Change website (http://globalchange.mit.edu/).We develop a new model of the U.S., the U.S. Regional Energy Policy (USREP) model that is resolved for large states and regions of the U.S. and by income class and apply the model to investigate a $15 per ton CO2 equivalent price on greenhouse gas emissions. Previous estimates of distributional impacts of carbon pricing have been done outside of the model simulation and have been based on energy expenditure patterns of households in different regions and of different income levels. By estimating distributional effects within the economic model, we include the effects of changes in capital returns and wages on distribution and find that the effects are significant and work against the expenditure effects. We find the following: First, while results based only on energy expenditure have shown carbon pricing to be regressive we find the full distributional effect to be neutral or slightly progressive. This demonstrates the importance of tracing through all economic impacts and not just focusing on spending side impacts. Second, the ultimate impact of such a policy on households depends on how allowances, or the revenue raised from auctioning them, is used. Free distribution to firms would be highly regressive, benefiting higher income households and forcing lower income households to bear the full cost of the policy and what amounts to a transfer of wealth to higher income households. Lump sum distribution through equal-sized household rebates would make lower income households absolutely better off while shifting the costs to higher income households. Schemes that would cut taxes are generally slightly regressive but improve somewhat the overall efficiency of the program. Third, proposed legislation would distribute allowances to local distribution companies (electricity and natural gas distributors) and public utility commissions would then determine how the value of those allowances was used. A significant risk in such a plan is that distribution to households might be perceived as lowering utility rates That reduced the efficiency of the policy we examined by 40 percent. Finally, the states on the coasts bear little cost or can benefit because of the distribution of allowance revenue while mid-America and southern states bear the highest costs. This regional pattern reflects energy consumption and energy production difference among states. Use of allowance revenue to cut taxes generally exacerbates these regional differences because coastal states are also generally higher income states, and those with higher incomes benefit more from tax cuts.MIT Joint Program on the Science and Policy of Global Change through a combination of government, industry, and foundation funding, the MIT Energy Initiative, and additional support for this work from a coalition of industrial sponsors

    Block-structured, equal-workload, multi-grid-nesting interface for the Boussinesq wave model FUNWAVE-TVD (Total Variation Diminishing)

    Get PDF
    We describe the development of a block-structured, equal-CPU-load (central processing unit), multi-grid-nesting interface for the Boussinesq wave model FUNWAVE-TVD (Fully Nonlinear Boussinesq Wave Model with Total Variation Diminishing Solver). The new model framework does not interfere with the core solver, and thus the core program, FUNWAVE-TVD, is still a standalone model used for a single grid. The nesting interface manages the time sequencing and two-way nesting processes between the parent grid and child grid with grid refinement in a hierarchical manner. Workload balance in the MPI-based (message passing interface) parallelization is handled by an equal-load scheme. A strategy of shared array allocation is applied for data management that allows for a large number of nested grids without creating additional memory allocations. Four model tests are conducted to verify the nesting algorithm with assessments of model accuracy and the robustness in the application in modeling transoceanic tsunamis and coastal effects
    corecore