32 research outputs found

    A 0.1 THD, 1 M ohm to 1 G Ohm Tunable, Temperature Compensated Transimpedance Amplifier Using a Multi Element Pseudo Resistor

    Get PDF
    In this paper, a transimpedance amplifier TIA is presented that utilizes a modified pseudo resistor PR with improved robustness against temperature and process variations, enhanced linearity, and reduced parasitics. Using a biasing scheme named pseudo current mirror, the conventional dependence on absolute process parameters is reduced to a dependence on matching of alike devices. The linearity and noise performance as well as the immunity against process variations of the presented TIA are improved by the series connection of multiple PR elements. Moreover, it is shown how implementing the design in a silicon on insulator SOI technology reduces critical parasitics, which in turn enables the use of the multi element PR in highspeed, high gain, and low distortion TIAs. A prototype realization in a 180 nm CMOS SOI technology achieves a tunability in transimpedance of three orders of magnitude from 1 G down to 1 M with corresponding bandwidths from 8 kHz to 2 MHz. By design, the contribution of shot noise is rendered negligible and the white noise floor of the prototype realization approaches the theoretical thermal noise limit, e.g., 5.5 fA Hz for a transimpedance of 1 G and 140 fA Hz for 1 M . Total harmonic distortion values of less than 0.1 are achieved for an input amplitude of 300 pAp p for 1 G , 4.0 nAp p for 100 M , and 40 nAp p for 10 M , and less than 1 is achieved for an input amplitude of 550 nAp p for 1 M . The presented TIA consumes an area of 0.07 mm2 and dissipates a power of 9.3 mW for the opamp and a maximum power of 0.2 mW for the PR from a 1.8 V suppl

    Design of CMOS transimpedance amplifiers for remote antenna units in fiber-wireless systems.

    Get PDF
    La memoria de la tesis doctoral: Diseño de Amplificadores de Transimpedancia para Unidades de Antena Remota en Sistemas Fibra-Inalámbrico, se presenta en la modalidad de compendio de Publicaciones. A continuación, se expone un resumen del contexto, motivation y objetivos de la tesis.A lo largo de las últimas décadas, los avances tecnológicos y el esfuerzo por desarrollar nuevos sistemas de comunicaciones han crecido al ritmo que la demanda de información aumentaba a nivel mundial. Desde la aparición de Internet, el tráfico global de datos ha incrementado de forma exponencial y se han creado infinidad de aplicaciones y contenidos desde entonces.Con la llegada de la fibra óptica se produjo un avance muy significativo en el campo de las comunicaciones, ya que la fibra de vidrio y sus características fueron la clave para crear redes de largo alcance y alta velocidad. Por otro lado, los avances en las tecnologías de fabricación de circuitos integrados y de dispositivos fotónicos de alta velocidad han encabezado el desarrollo de los sistemas de comunicaciones ópticos, logrando incrementar la tasa de transmisión de datos hasta prácticamente alcanzar el ancho de banda de la fibra óptica.Para conseguir una mayor eficiencia en las comunicaciones y aumentar la tasa de transferencia, se necesitan métodos de modulación complejos que aprovechen mejor el ancho de banda disponible. No obstante, esta mayor complejidad de la modulación de los datos requiere sistemas con mejores prestaciones en cuanto a rango dinámico y linealidad. Estos esquemas de modulación se emplean desde hace tiempo en los sistemas de comunicaciones inalámbricos, donde el ancho de banda del canal, el aire, es extremadamente limitado y codiciado.Actualmente, los sistemas inalámbricos se enfrentan a una saturación del espectro que supone un límite a la tasa de transmisión de datos. Pese a los esfuerzos por extender el rango frecuencial a bandas superiores para aumentar el ancho de banda disponible, se espera un enorme aumento tanto en el número de dispositivos, como en la cantidad de datos demandados por usuario.Ante esta situación se han planteado distintas soluciones para superar estas limitaciones y mejorar las prestaciones de los sistemas actuales. Entre estas alternativas están los sistemas mixtos fibra-inalámbrico utilizando sistemas de antenas distribuidas (DAS). Estos sistemas prometen ser una solución económica y muy efectiva para mejorar la accesibilidad de los dispositivos inalámbricos, aumentando la cobertura y la tasa de transferencia de las redes a la vez que disminuyen las interferencias. El despliegue de los DAS tendrá un gran efecto en escenarios tales como edificios densamente poblados, hospitales, aeropuertos o edificios de oficinas, así como en áreas residenciales, donde un gran número de dispositivos requieren una cada vez mayor interconectividad.Dependiendo del modo de transmisión de los datos a través de la fibra, los sistemas mixtos fibra-inalámbrico se pueden categorizar de tres formas distintas: Banda base sobre fibra (BBoF), radiofrecuencia sobre fibra (RFoF) y frecuencia intermedia sobre fibra (IFoF). Actualmente, el esquema BBoF es el más utilizado para transmisiones de larga y media distancia. No obstante, utilizar este esquema en un DAS requiere unidades de antena remota (RAU) complejas y costosas, por lo que no está claro que esta configuración pueda ser viable en aplicaciones de bajo coste que requieran de un gran número de RAUs. Los sistemas RFoF e IFoF presentan esquemas más simples, sin necesidad de integrar un modulador/demodulador, puesto que la señal se procesa en una estación base y no en las propias RAUs.El desarrollo de esta tesis se enmarca en el estudio de los distintos esquemas de DAS. A lo largo de esta tesis se presentan varias propuestas de amplificadores de transimpedancia (TIA) adecuadas para su implementación en cada uno de los tres tipos de RAU existentes. La versatilidad y el amplio campo de aplicación de este circuito integrado, tanto en comunicaciones como en otros ámbitos, han motivado el estudio de la implementación de este bloque específico en las diferentes arquitecturas de RAU y en otros sistemas, tales como un receptor de televisión por cable (CATV) o una interfaz de un microsensor inercial capacitivo.La memoria de tesis se ha dividido en tres capítulos. El Capítulo 1 se ha empleado para introducir el concepto de los DAS, proporcionando el contexto y la motivación del diseño de las RAU, partiendo desde los principios básicos de operación de los dispositivos fotónicos y electrónicos y presentando las distintas arquitecturas de RAU. El Capítulo 2 supone el núcleo principal de la tesis. En este capítulo se presenta el estudio y diseño de los diferentes TIAs, que han sido optimizados respectivamente para cada una de las configuraciones de RAU, así como para otras aplicaciones. En un tercer capítulo se recogen los resultados más relevantes y se exponen las conclusiones de este trabajo.Tras llevar a cabo la descripción y comparación de las topologías existentes de TIA, se ha llegado a las siguientes conclusiones, las cuales nos llevan a elegir la topología shunt-feedback como la más adecuada para el diseño: - El compromiso entre ancho de banda, transimpedancia, consumo de potencia y ruido es menos restrictivo en los TIAs de lazo cerrado. - Los TIAs de lazo cerrado tienen un mayor número de grados de libertad para acometer su diseño. - Esta topología presenta una mejor linealidad gracias al lazo de realimentación. Si la respuesta frecuencial del núcleo del amplificador se ajusta de manera adecuada, el TIA shunt-feedback puede presentar una respuesta frecuencial plana y estable.En esta tesis, se ha propuesto una nueva técnica de reducción de ruido, aplicable en receptores ópticos con fotodiodos con un área activa grande (~1mm2). Esta estrategia, que se ha llamado la técnica del fotodiodo troceado, consiste en la fabricación del fotodiodo, no como una estructura única, sino como un array de N sub-fotodiodos, que ocuparían la misma área activa que el original. Las principales conclusiones tras hacer un estudio teórico y realizar un estudio de su aplicación en una de las topologías de TIA propuestas son: - El ruido equivalente a la entrada es menor cuanto mayor es el número de sub-fotodiodos, dado que la contribución al ruido que depende con el cuadrado de la frecuencia (f^2) decrece con una dependencia proporcional a N. - Con una aplicación simple de la técnica, replicando el amplificador de tensión del TIA N veces y utilizando N resistencias de realimentación, cada una con un valor N veces el original, la sensibilidad del receptor aumenta aproximadamente en un factor √N y la estabilidad del sistema no se ve afectada. - Al dividir el fotodiodo en N sub-fotodiodos, la capacidad parásita de cada uno de ellos es N veces menor a la original. Con esta nueva capacidad parásita, el diseño del TIA se puede optimizar, consiguiendo una sensibilidad mucho mejor que con un único fotodiodo para el mismo valor de consumo de potencia.Las principales conclusiones respecto a los diseños de los distintos TIAs para comunicaciones son las siguientes: TIA para BBoF: - El TIA propuesto, alcanza, con un consumo de tan solo 2.9 mW, un ancho de banda de 1 GHz y una sensibilidad de -11 dBm, superando las características de trabajos anteriores en condiciones similares (capacidad del fotodiodo, tecnología y tasa de transmisión). - La técnica del fotodiodo troceado se ha aplicado a este circuito, consiguiendo una mejora de hasta 7.9 dBm en la sensibilidad para un diseño optimizado de 16 sub-fotodiodos, demostrando, en una simulación a nivel de transistor, que la técnica propuesta funciona correctamente. TIA para RFoF: - El diseño propuesto logra una figura de mérito superior a la de trabajos previos, gracias a la combinación de su bajo consumo de potencia y su mayor transimpedancia. - Además, mientras que en la mayoría de trabajos previos no se integra un control de ganancia en el TIA, esta propuesta presenta una transimpedancia controlable desde 45 hasta 65 dBΩ. A través de un sistema de control simultáneo de la transimpedancia y de la ganancia en lazo abierto del amplificador de voltaje, se consigue garantizar una respuesta frecuencial plana y estable en todos los estados de transimpedancia, que le otorga al diseño una superior versatilidad y flexibilidad. TIA para CATV: - Se ha adaptado una versión del TIA para RFoF para demostrar la capacidad de adaptación de esta estructura en una implementación en un receptor CATV con un rango de control de transimpedancia de 18 dB. - Con la implementación del control de ganancia en el TIA, no es necesario el uso de un atenuador variable en el receptor, simplificando así el número de etapas del mismo. - Gracias al control de transimpedancia, el TIA logra rangos de entrada similares a los publicados en trabajos anteriores basados en una tecnología mucho menos accesible como GaAs PHEMT. TIA para IFoF Se ha fabricado un chip en una tecnología CMOS de 65 nm que opera a 1.2 V de tensión de alimentación y se ha realizado su caracterización eléctrica y óptica. - El TIA presenta una programabilidad de su transimpedancia con un control lineal en dB entre 60 y 76 dBΩ mediante un código termómetro de 4 bits. - El ancho de banda se mantiene casi constante en todo el rango de transimpedancia, entre 500 y 600 MHz.Como conclusión general tras comparar el funcionamiento de los TIAs para las distintas configuraciones de RAU, vale la pena mencionar que el TIA para IFoF consigue una figura de mérito muy superior a la de otros trabajos previos diseñados para RFoF. Esto se debe principalmente a la mayor transimpedancia y al muy bajo consumo de potencia del TIA para IFoF propuesto. Además, se consigue una mejor linealidad, ya que, para una transmisión de 54 Mb/s con el estándar 802.11a, se consigue un EVM menor de 2 % en un rango de entrada de 10 dB, comparado con los entre 3 y 5 dB reportados en trabajos previos. El esquema IFoF presenta un gran potencial y ventajas frente al RFoF, lo que lo coloca como una buena alternativa para disminuir los costes y mejorar el rendimiento de los sistemas de antenas distribuidas.Por último, cabe destacar que el diseño de TIA propuesto y fabricado para IFoF contribuye en gran medida al desarrollo y validación de una RAU completa. Se ha demostrado la capacidad de la estructura propuesta para alcanzar un bajo ruido, alta linealidad, simplicidad en la programabilidad de la transimpedancia y adaptabilidad de la topología para diferentes requisitos, lo cual es de un gran interés en el diseño de receptores ópticos.Por otra parte, una versión del TIA para su uso en una interfaz de sensores MEMS capacitivos se ha propuesto y estudiado. Consiste en un convertidor capacidad-voltaje basado en una versión del TIA para RFoF, con el objetivo de conseguir un menor ruido y proveer de una adaptabilidad para diferentes sensores capacitivos. Los resultados más significativos y las conclusiones de este diseño se resumen a continuación: - El TIA presenta un control de transimpedancia con un rango de 34 dB manteniendo el ancho de banda constante en 1.2 MHz. También presenta un control independiente del ancho de banda, desde 75 kHz hasta 1.2 MHz, manteniendo la transimpedancia fija en un valor máximo. - Con un consumo de potencia de tan solo 54 μW, el TIA alcanza una sensibilidad máxima de 1 mV/fF, que corresponde a una sensibilidad de 4.2 mV/g y presenta un ruido de entrada de tan solo 100 µg/√("Hz" ) a 50 kHz en la configuración de máxima transimpedancia.La principal conclusión que destaca de este diseño es su versatilidad y flexibilidad. El diseño propuesto permite adaptar fácilmente la respuesta de la interfaz a una amplia gama de dispositivos sensores, ya que se puede ajustar el ancho de banda para ajustarse a distintas frecuencias de operación, así como la transimpedancia puede ser modificada para conseguir distintas sensibilidades. Este doble control independiente de ancho de banda y transimpedancia le proporcionan una adaptabilidad completa al TIA.<br /

    Ultra-low power mixed-signal frontend for wearable EEGs

    Get PDF
    Electronics circuits are ubiquitous in daily life, aided by advancements in the chip design industry, leading to miniaturised solutions for typical day to day problems. One of the critical healthcare areas helped by this advancement in technology is electroencephalography (EEG). EEG is a non-invasive method of tracking a person's brain waves, and a crucial tool in several healthcare contexts, including epilepsy and sleep disorders. Current ambulatory EEG systems still suffer from limitations that affect their usability. Furthermore, many patients admitted to emergency departments (ED) for a neurological disorder like altered mental status or seizures, would remain undiagnosed hours to days after admission, which leads to an elevated rate of death compared to other conditions. Conducting a thorough EEG monitoring in early-stage could prevent further damage to the brain and avoid high mortality. But lack of portability and ease of access results in a long wait time for the prescribed patients. All real signals are analogue in nature, including brainwaves sensed by EEG systems. For converting the EEG signal into digital for further processing, a truly wearable EEG has to have an analogue mixed-signal front-end (AFE). This research aims to define the specifications for building a custom AFE for the EEG recording and use that to review the suitability of the architectures available in the literature. Another critical task is to provide new architectures that can meet the developed specifications for EEG monitoring and can be used in epilepsy diagnosis, sleep monitoring, drowsiness detection and depression study. The thesis starts with a preview on EEG technology and available methods of brainwaves recording. It further expands to design requirements for the AFE, with a discussion about critical issues that need resolving. Three new continuous-time capacitive feedback chopped amplifier designs are proposed. A novel calibration loop for setting the accurate value for a pseudo-resistor, which is a crucial block in the proposed topology, is also discussed. This pseudoresistor calibration loop achieved the resistor variation of under 8.25%. The thesis also presents a new design of a curvature corrected bandgap, as well as a novel DDA based fourth-order Sallen-Key filter. A modified sensor frontend architecture is then proposed, along with a detailed analysis of its implementation. Measurement results of the AFE are finally presented. The AFE consumed a total power of 3.2A (including ADC, amplifier, filter, and current generation circuitry) with the overall integrated input-referred noise of 0.87V-rms in the frequency band of 0.5-50Hz. Measurement results confirmed that only the proposed AFE achieved all defined specifications for the wearable EEG system with the smallest power consumption than state-of-art architectures that meet few but not all specifications. The AFE also achieved a CMRR of 131.62dB, which is higher than any studied architectures.Open Acces

    Design of event-driven automatic gain control and high-speed data path for multichannel optical receiver arrays

    Get PDF
    The internet has become the ubiquitous tool that has transformed the lives of all of us. New broadband applications in the field of entertainment, commerce, industry, healthcare and social interactions demand increasingly higher data rates and quality of the networks and ICT infrastructure. In addition, high definition video streaming and cloud services will continue to push the demand for bandwidth. These applications are reshaping the internet into a content-centric network. The challenge is to transform the telecom optical networks and data centers such that they can be scaled efficiently, at low cost. Furthermore, from both an environmental and economic perspective, this scaling should go hand in hand with reduced power consumption. This stems from the desire to reduce CO2 emission and to reduce network operating costs while offering the same service level as today. In the current architecture of the internet, end-users connect to the public network using the access network of an internet service provider (ISP). Today, this access network either reuses the legacy copper or coaxial network or uses passive optical network (PON) technologies, among which the PON is the most energy efficient and provides the highest data rates. Traffic from the access network is aggregated with Ethernet switches and routed to the core network through the provider edge routers, with broadband network gateways (BNGs) to regulate access and usage. These regional links are collectively called the metro network. Data centers connect to the core network using their own dedicated gateway router. The problem of increasing data rates, while reducing the economic and environmental impact, has attracted considerable attention. The research described in this work has been performed in the context of two projects part of the European Union Seventh Framework Programme (FP7), which both aim for higher data rates and tight integration while keeping power consumption low. Mirage targets data center applications while C3PO focuses on medium-reach networks, such as the metro network. Specifically, this research considers two aspects of the high-speed optical receivers used in the communication networks: increasing dynamic range of a linear receiver for multilevel modulation through automatic gain control (AGC) and integration of multiple channels on a single chip with a small area footprint. The data centers of today are high-density computing facilities that provide storage, processing and software as a service to the end-user. They are comprised of gateway routers, a local area network, servers and storage. All of this is organized in racks. The largest units contain over 100 000 servers. The major challenges regarding data centers are scalability and keeping up with increasing amounts of traffic while reducing power consumption (of the devices as well as the associated cooling) and keeping cost minimal. Presently, racks are primarily interconnected with active optical cables (AOCs) which employ signal rates up to 25 Gb/s per lane with non-return-to-zero (NRZ) modulation. A number of technological developments can be employed in AOCs of the future to provide terabit-capacity optical interconnects over longer distances. One such innovation is the use of multilevel modulation formats, which are more bandwidth-efficient than traditional NRZ modulation. Multilevel modulation requires a linear amplifier as front-end of the optical receiver. The greater part of this dissertation discusses the design and implementation of an AGC system for the data path of a linear transimpedance amplifier (TIA). The metro network is the intermediate regional network between the access and core network of the internet architecture, with link lengths up to 500 km. It is estimated that in the near future metro-traffic will increase massively. This growth is attributed mainly to increasing traffic from content delivery networks (CDNs) and data centers, which bypass the core network and directly connect to the metro network. Internet video growth is the major reason for traffic increase. This evolution demands increasingly higher data rates. Today, dense wavelength division multiplexing (DWDM) is widely recognized as being necessary to provide data capacity scalability for future optical networks, as it allows for much higher combined data rates over a single fiber. At the receiver, each wavelength of the demultiplexed incoming light is coupled to a photo diode in a photo diode array which is connected to a dedicated lane of a multichannel receiver. The high number of channels requires small physical channel spacing and tight integration of the diode array with the receiver. In addition, active cooling should be avoided, such that power consumption per receiver lane must be kept low in order not to exceed thermal operation limits. The second component of this work presents the development of an integrated four-channel receiver, targeting 4 × 25 Gb/s data rate, with low power consumption and small footprint to support tight integration with a p-i-n photo diode array with a 250 μm channel pitch. Chapter 1 discusses the impact of increasing data rates and the desire to reduce power consumption on the design of the optical receiver component, in wide metropolitan area networks as well as in short-reach point-to-point links in data centers. In addition, some aspects of integrated analog circuit design are highlighted: the design flow, transistor hand models, a software design tool. Also, an overview of the process technology is given. Chapter 2 provides essential optical receiver concepts, which are required to understand the remainder of the work. Fundamentals of feedback AGC systems are discussed in the first part of Chapter 3. A basic system model is presented in the continuous-time domain, in which the variable gain amplifier (VGA) constitutes the multistage datapath of a linear optical receiver. To enable reliable reception of multilevel modulation formats, the VGA requires controlled frequency response and in particular limited time-domain overshoot across the gain range. It is argued that this control is hard to achieve with fully analog building blocks. Therefore, an event-driven approach is proposed as an extension of the continuous-time system. Both the structural and behavioral aspects are discussed. The result is a system model of a quantized AGC loop, upon which the system-level design, presented in Chapter 4, is based. In turn, Chapter 5 discusses the detailed implementation of the various building blocks on the circuit level and presents experimental results that confirm the feasibility of the proposed approach. Chapter 6 discusses the design and implementation of a 4 × 25 Gb/s optical receiver array for NRZ modulation with a small area footprint. The focus lies on the input stages and techniques to extend bandwidth and dynamic range are presented. Measurement results for NRZ and optical duobinary (ODB) modulation are presented, as well as the influence of crosstalk on the performance. Finally, Chapter 7 provides an overview of the foremost conclusions of the presented research and includes suggestions for future research. Two appendices are included. Appendix A gives an overview of the general network theorem (GNT), which is used throughout this work and which has been implemented numerically. The results from Appendix B, the analysis of a two-stage opamp compensated with capacitance multipliers, were used to design a building block for the AGC system
    corecore