2,629 research outputs found

    Rock fractures analysis using Structure from Motion technology: new insight from Digital Outcrop Models

    Get PDF
    Fractures are one of the most important features of the rocks of the upper crust since they strongly influence their physical and chemical behavior and reflect their tectonic history. For this reason, fracture study plays a key role in different branches of the geosciences. Notwithstanding, the quantification of the features and parameters describing fractures could be unsatisfactory using the standard field techniques because they are mainly based on direct-contact methodologies that are affected by errors, as orientation bias and trace censoring, and scarce representativeness, due to the limited possibility of acquiring information of outcrops partially or totally inaccessible. Recently new remote sensing technologies, such as Terrestrial Laser Scanner (TLS) and Digital Photogrammetry (DP), can help to overcome these limitations. Whereas TLS could be very expensive and difficult to use in geological study, DP permits to obtain similar results in an easier way due to cheaper and lighter equipment and more straightforward procedures. Moreover, DP becomes even more useful when combined with Unmanned Aerial Vehicle (UAV) because permits to acquire digital images from positions inaccessible to humans, allowing to analyze geological objects from points of view previously unimaginable. The images acquired from the ground and/or by the UAV can be then processed using different digital algorithms, such as Structure from Motion (SfM), that permit to create 3D model of the studied outcrop. In geosciences, the 3D model representing the surface of the outcrop is often called Digital Outcrop Model (DOM). Despite DOMs can be really useful in different branches of geosciences, their applications are quite well limited because the procedures of their development and sampling/analysis are scarcely analyzed in literature. It is important to highlight that whereas the UAV-based SfM approach is fairly discussed in literature for simple flat areas, is scarcely treated for application to near vertical and not-planar slopes. Moreover, the validity of some procedures of fracture sampling on 3D model, with special regards to the automatic ones, that have been recently presented in literature, is not well treated for real cases of study. The scarce knowledge about these approaches could cause different troubles to the scientific-users: from the application of avoidable time-consuming routine, to the acquisition and interpretation of erroneous data. This research aims to contribute to the scientific knowledge of the use of digital photogrammetry for fractured rock mass analysis, creating and defining new approaches and procedures for the development, analysis and application of DOMs. Here, a workflow for the fracture analysis of steep rocky outcrops and slopes using the 3D DOM is presented. In particular, the following steps are discussed: (i) image acquisition; (ii) development of 3D model; (iii) sampling of DOM; (iv) quantification and parametrization of the 3D measures; (v) application of the 3D quantitative data and parameters to different case of study. Four different cases of study were selected to validate the proposed method: the upper Staffora Valley and Ponte Organasco (Northern Apennines, Italy), Ormea (Ligurian Alps, Italy), and Gallivaggio (Western Alps, Italy) cases of study. However, this methodology could not completely replace the 'direct-contact' field activity, because some information as roughness, infilling and aperture of fractures cannot be measured satisfactory, and because, where possible, field control measures to validate the 3D data are necessary. However, this methodology could be considered as a new necessary procedure for rock-fracture studies because it allows to overcome the inevitable errors of the ground-based traditional methodology and because the DOMs are always available for the analysis, promoting data sharing and comparison, two fundamental principles on which science have and will have to be basedFractures are one of the most important features of the rocks of the upper crust since they strongly influence their physical and chemical behavior and reflect their tectonic history. For this reason, fracture study plays a key role in different branches of the geosciences. Notwithstanding, the quantification of the features and parameters describing fractures could be unsatisfactory using the standard field techniques because they are mainly based on direct-contact methodologies that are affected by errors, as orientation bias and trace censoring, and scarce representativeness, due to the limited possibility of acquiring information of outcrops partially or totally inaccessible. Recently new remote sensing technologies, such as Terrestrial Laser Scanner (TLS) and Digital Photogrammetry (DP), can help to overcome these limitations. Whereas TLS could be very expensive and difficult to use in geological study, DP permits to obtain similar results in an easier way due to cheaper and lighter equipment and more straightforward procedures. Moreover, DP becomes even more useful when combined with Unmanned Aerial Vehicle (UAV) because permits to acquire digital images from positions inaccessible to humans, allowing to analyze geological objects from points of view previously unimaginable. The images acquired from the ground and/or by the UAV can be then processed using different digital algorithms, such as Structure from Motion (SfM), that permit to create 3D model of the studied outcrop. In geosciences, the 3D model representing the surface of the outcrop is often called Digital Outcrop Model (DOM). Despite DOMs can be really useful in different branches of geosciences, their applications are quite well limited because the procedures of their development and sampling/analysis are scarcely analyzed in literature. It is important to highlight that whereas the UAV-based SfM approach is fairly discussed in literature for simple flat areas, is scarcely treated for application to near vertical and not-planar slopes. Moreover, the validity of some procedures of fracture sampling on 3D model, with special regards to the automatic ones, that have been recently presented in literature, is not well treated for real cases of study. The scarce knowledge about these approaches could cause different troubles to the scientific-users: from the application of avoidable time-consuming routine, to the acquisition and interpretation of erroneous data. This research aims to contribute to the scientific knowledge of the use of digital photogrammetry for fractured rock mass analysis, creating and defining new approaches and procedures for the development, analysis and application of DOMs. Here, a workflow for the fracture analysis of steep rocky outcrops and slopes using the 3D DOM is presented. In particular, the following steps are discussed: (i) image acquisition; (ii) development of 3D model; (iii) sampling of DOM; (iv) quantification and parametrization of the 3D measures; (v) application of the 3D quantitative data and parameters to different case of study. Four different cases of study were selected to validate the proposed method: the upper Staffora Valley and Ponte Organasco (Northern Apennines, Italy), Ormea (Ligurian Alps, Italy), and Gallivaggio (Western Alps, Italy) cases of study. However, this methodology could not completely replace the 'direct-contact' field activity, because some information as roughness, infilling and aperture of fractures cannot be measured satisfactory, and because, where possible, field control measures to validate the 3D data are necessary. However, this methodology could be considered as a new necessary procedure for rock-fracture studies because it allows to overcome the inevitable errors of the ground-based traditional methodology and because the DOMs are always available for the analysis, promoting data sharing and comparison, two fundamental principles on which science have and will have to be base

    A simple genetic algorithm for calibration of stochastic rock discontinuity networks

    Get PDF
    Este artículo propone un método para llevar a cabo la calibración de las familias de discontinuidades en macizos rocosos. We present a novel approach for calibration of stochastic discontinuity network parameters based on genetic algorithms (GAs). To validate the approach, examples of application of the method to cases with known parameters of the original Poisson discontinuity network are presented. Parameters of the model are encoded as chromosomes using a binary representation, and such chromosomes evolve as successive generations of a randomly generated initial population, subjected to GA operations of selection, crossover and mutation. Such back-calculated parameters are employed to make assessments about the inference capabilities of the model using different objective functions with different probabilities of crossover and mutation. Results show that the predictive capabilities of GAs significantly depend on the type of objective function considered; and they also show that the calibration capabilities of the genetic algorithm can be acceptable for practical engineering applications, since in most cases they can be expected to provide parameter estimates with relatively small errors for those parameters of the network (such as intensity and mean size of discontinuities) that have the strongest influence on many engineering applications

    Characterisation and modelling of natural fracture networks: geometry, geomechanics and fluid flow

    Get PDF
    Natural fractures are ubiquitous in crustal rocks and often dominate the bulk properties of geological formations. The development of numerical tools to model the geometry, geomechanics and fluid flow behaviour of natural fracture networks is a challenging issue which is relevant to many rock engineering applications. The thesis first presents a study of the statistics and tectonism of a multiscale fracture system in limestone, from which the complexity of natural fractures is illustrated with respect to hierarchical topologies and underlying mechanisms. To simulate the geomechanical behaviour of rock masses embedded with natural fractures, the finite-discrete element method (FEMDEM) is integrated with a joint constitutive model (JCM) to solve the solid mechanics problems of such intricate discontinuity systems explicitly represented by discrete fracture network (DFN) models. This computational formulation can calculate the stress/strain fields of the rock matrix, capture the mechanical interactions of discrete rock blocks, characterise the non-linear deformation of rough fractures and mimic the propagation of new cracks driven by stress concentrations. The developed simulation tool is used to derive the aperture distribution of various fracture networks under different geomechanical conditions, based on which the stress-dependent fluid flow is further analysed. A novel upscaling approach to fracture network models is developed to evaluate the scaling of the equivalent permeability of fractured rocks under in-situ stresses. The combined JCM-FEMDEM model is further applied to simulate the progressive rock mass failure around an underground excavation in a crystalline rock with pre-existing discontinuities. The scope of this thesis covers the scenarios of both two-dimensional (2D) and three-dimensional (3D) fracture networks with pre-existing natural fractures and stress-induced new cracks. The research findings demonstrate the importance of integrating explicit DFN representations and conducting geomechanical computations for more meaningful assessments of the hydromechanical behaviour of naturally fractured rocks.Open Acces

    Fracture mapping in challenging environment: a 3D virtual reality approach combining terrestrial LiDAR and high definition images

    Get PDF
    ArticleThis is the author accepted manuscript. The final version is available from Springer Verlag via the DOI in this record.The latest technological developments in computer vision allow the creation of georeferenced, non-immersive desktop virtual reality (VR) environments. VR uses a computer to produce a simulated three-dimensional world in which it is possible to interact with objects and derive metric and thematic data. In this context, modern geomatic tools enable the remote acquisition of information that can be used to produce georeferenced high-definition 3D models: these can be used to create a VR in support of rock mass data processing, analysis, and interpretation. Data from laser scanning and high quality images were combined to map deterministically and characterise discontinuities with the aim of creating accurate rock mass models. Discontinuities were compared with data from traditional engineering-geological surveys in order to check the level of accuracy in terms of the attitude of individual joints and sets. The quality of data collected through geomatic surveys and field measurements in two marble quarries of the Apuan Alps (Italy) was very satisfactory. Some fundamental geotechnical indices (e.g. joint roughness, alteration, opening, moisture, and infill) were also included in the VR models. Data were grouped, analysed, and shared in a single repository for VR visualization and stability analysis in order to study the interaction between geology and human activities.The authors gratefully acknowledge the assistance of the personal of the Romana Quarry and particularly Corniani M. This paper was possible because of support from the Tuscany Region Research Project known as “Health and safety in the quarries of ornamental stones—SECURECAVE”. The authors acknowledge Pellegri M and Gullì D (Local Sanitary Agency n.1, Mining Engineering Operative Unit—Department of Prevention) and Riccucci S (Centre of GeoTechnologies, University of Siena) for their support of this research

    A new approach to upscaling fracture network models while preserving geostatistical and geomechanical characteristics

    Get PDF
    A new approach to upscaling two-dimensional fracture network models is proposed for preserving geostatistical and geomechanical characteristics of a smaller-scale “source” fracture pattern. First, the scaling properties of an outcrop system are examined in terms of spatial organization, lengths, connectivity, and normal/shear displacements using fractal geometry and power law relations. The fracture pattern is observed to be nonfractal with the fractal dimension D ≈ 2, while its length distribution tends to follow a power law with the exponent 2 < a < 3. To introduce a realistic distribution of fracture aperture and shear displacement, a geomechanical model using the combined finite-discrete element method captures the response of a fractured rock sample with a domain size L = 2 m under in situ stresses. Next, a novel scheme accommodating discrete-time random walks in recursive self-referencing lattices is developed to nucleate and propagate fractures together with their stress- and scale-dependent attributes into larger domains of up to 54 m × 54 m. The advantages of this approach include preserving the nonplanarity of natural cracks, capturing the existence of long fractures, retaining the realism of variable apertures, and respecting the stress dependency of displacement-length correlations. Hydraulic behavior of multiscale growth realizations is modeled by single-phase flow simulation, where distinct permeability scaling trends are observed for different geomechanical scenarios. A transition zone is identified where flow structure shifts from extremely channeled to distributed as the network scale increases. The results of this paper have implications for upscaling network characteristics for reservoir simulation

    A finite element framework for modeling internal frictional contact in three-dimensional fractured media using unstructured tetrahedral meshes

    Get PDF
    AbstractThis paper introduces a three-dimensional finite element (FE) formulation to accurately model the linear elastic deformation of fractured media under compressive loading. The presented method applies the classic Augmented Lagrangian(AL)-Uzawa method, to evaluate the growth of multiple interacting and intersecting discrete fractures. The volume and surfaces are discretized by unstructured quadratic triangle-tetrahedral meshes; quarter-point triangles and tetrahedra are placed around fracture tips. Frictional contact between crack faces for high contact precisions is modeled using isoparametric integration point-to-integration point contact discretization, and a gap-based augmentation procedure. Contact forces are updated by interpolating tractions over elements that are adjacent to fracture tips, and have boundaries that are excluded from the contact region. Stress intensity factors are computed numerically using the methods of displacement correlation and disk-shaped domain integral. A novel square-root singular variation of the penalty parameter near the crack front is proposed to accurately model the contact tractions near the crack front. Tractions and compressive stress intensity factors are validated against analytical solutions. Numerical examples of cubes containing one, two, twenty four and seventy interacting and intersecting fractures are presented

    A combined remote sensing–numerical modelling approach to the stability analysis of Delabole Slate Quarry, Cornwall, UK

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00603-015-0805-zRock slope geometry and discontinuity properties are among the most important factors in realistic rock slope analysis yet they are often oversimplified in numerical simulations. This is primarily due to the difficulties in obtaining accurate structural and geometrical data as well as the stochastic representation of discontinuities. Recent improvements in both digital data acquisition and incorporation of discrete fracture network data into numerical modelling software have provided better tools to capture rock mass characteristics, slope geometries and digital terrain models allowing more effective modelling of rock slopes. Advantages of using improved data acquisition technology include safer and faster data collection, greater areal coverage, and accurate data geo-referencing far exceed limitations due to orientation bias and occlusion. A key benefit of a detailed point cloud dataset is the ability to measure and evaluate discontinuity characteristics such as orientation, spacing/intensity and persistence. This data can be used to develop a discrete fracture network (DFN) which can be imported into the numerical simulations to study the influence of the stochastic nature of the discontinuities on the failure mechanism. We demonstrate the application of digital terrestrial photogrammetry in discontinuity characterization and distinct element simulations within a slate quarry. An accurately georeferenced photogrammetry model is used to derive the slope geometry and to characterize geological structures. We first show how a discontinuity dataset, obtained from a photogrammetry model can be used to characterize discontinuities and to develop discrete fracture networks. A deterministic three dimensional distinct element model is then used to investigate the effect of some key input parameters (friction angle, spacing and persistence) on the stability of the quarry slope model. Finally, adopting a stochastic approach, discrete fracture networks are used as input for 3D distinct element simulations to better understand the stochastic nature of the geological structure and its effect on the quarry slope failure mechanism. The numerical modelling results highlight the influence of discontinuity characteristics and kinematics on the slope failure mechanism and the variability in the size and shape of the failed blocks
    corecore