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Abstract 

Natural fractures are ubiquitous in crustal rocks and often dominate the bulk properties of 

geological formations. The development of numerical tools to model the geometry, 

geomechanics and fluid flow behaviour of natural fracture networks is a challenging issue which 

is relevant to many rock engineering applications. The thesis first presents a study of the 

statistics and tectonism of a multiscale fracture system in limestone, from which the complexity 

of natural fractures is illustrated with respect to hierarchical topologies and underlying 

mechanisms. To simulate the geomechanical behaviour of rock masses embedded with natural 

fractures, the finite-discrete element method (FEMDEM) is integrated with a joint constitutive 

model (JCM) to solve the solid mechanics problems of such intricate discontinuity systems 

explicitly represented by discrete fracture network (DFN) models. This computational 

formulation can calculate the stress/strain fields of the rock matrix, capture the mechanical 

interactions of discrete rock blocks, characterise the non-linear deformation of rough fractures 

and mimic the propagation of new cracks driven by stress concentrations. The developed 

simulation tool is used to derive the aperture distribution of various fracture networks under 

different geomechanical conditions, based on which the stress-dependent fluid flow is further 

analysed. A novel upscaling approach to fracture network models is developed to evaluate the 

scaling of the equivalent permeability of fractured rocks under in-situ stresses. The combined 

JCM-FEMDEM model is further applied to simulate the progressive rock mass failure around an 

underground excavation in a crystalline rock with pre-existing discontinuities. The scope of this 

thesis covers the scenarios of both two-dimensional (2D) and three-dimensional (3D) fracture 

networks with pre-existing natural fractures and stress-induced new cracks. The research 

findings demonstrate the importance of integrating explicit DFN representations and conducting 

geomechanical computations for more meaningful assessments of the hydromechanical 

behaviour of naturally fractured rocks. 
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1 Introduction 

1.1 Fractures in rock 

Natural fractures such as joints and faults are ubiquitous in crustal rocks. These naturally 

occurring discontinuities often comprise complex networks and create highly disordered 

geological conditions. The appearance of natural fractures and fracture networks raises a 

fundamental question of the underlying mechanisms that drive such complicated evolutionary 

and collective phenomena. 

Fractures nucleate from flaws, such as voids and grain boundaries, where the local stress 

concentrates and exceeds the strength of the rock [Kranz, 1983; Anders et al., 2014]. The 

concept of fracture initiation from microcracking is supported by field observations [Pollard and 

Aydin, 1988; Crider and Peacock, 2004], physical experiments [Lockner et al., 1991; Moore and 

Lockner, 1995] and numerical simulations [Horii and Nemat-Nasser, 1985; Tang and Hudson, 

2010]. The propagation of a fracture may be governed by three different strain rate regimes: (i) 

the subcritical regime that depends on multiple factors including the local stress, rock type, fluid 

pressure, temperature and stress corrosion agent [Atkinson, 1984], (ii) the quasi-static regime in 

which the tectonic strain rate exceeds the velocity limit of damaging species and the crack 

growth is governed by the strain energy dissipation (or fracture toughness) [Segall, 1984a], and 

(iii) the dynamic regime where fractures can propagate rapidly at a speed comparable to that of 

sound [Irwin, 1968]. 

Fractures can be classified into three main types based on their kinematic characteristics: 

opening-mode joints, shear-mode faults and mixed-mode hybrid fractures [Price and Cosgrove, 

1990]. Joints and faults form under different stress, strain and displacement conditions [Pollard 

and Segall, 1987] that result in their distinct geometrical, textural and mechanical characteristics 

[Pollard and Aydin, 1988]. The propagation of a joint is controlled by the local tensile stress at 

the crack tip and is associated with an opening displacement normal to the fracture walls [Segall 

and Pollard, 1983a]. An oblique dilational displacement may occur in the mixed mode fracturing 

scenario with the concurrence of tensile and nonzero shear resolved stresses [Ramsey and 

Chester, 2004], which is however regarded as a variation of the opening mode due to the absence 
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of frictional sliding [Schultz, 2000]. Faults commonly develop by the shearing, interaction and 

linkage of pre-existing structures, such as dilatant crack arrays that formed earlier under mode I 

failure [Segall and Pollard, 1983b; Cox and Scholz, 1988; Petit and Barquins, 1988; Willemse et 

al., 1997; Healy et al. 2006; Crider, 2015]. This fault growth mechanism explains various field 

observations, such as the scatter in the relation between maximum shear displacement and 

fracture trace length [Cartwright et al., 1995], the consistency of mineral fillings in earlier 

formed joints and later developed faults [Segall and Pollard, 1983b], and the appearance of 

conjugate sets of en échelon tension gashes [Kidan and Cosgrove, 1996]. A debate exists about 

whether faults propagate into intact rocks in their own planes [Reches and Lockner, 1994] or not 

[Segall and Pollard, 1983b; Horii and Nemat-Nasser, 1985]. It was argued that the propagation 

of a fault may not be restricted to be in-plane from a microscopic constitutive view, but the 

composite shear failure in the macroscopic scale advances in its own plane by intensifying 

microcracking damage at its front [Healy et al. 2006]. An exceptional case to this fault growth 

mechanism is the faults in some types of porous sandstones that evolve from deformation bands, 

which nucleate with initial shearing and accommodate the shear strain in the narrow localised 

zones [Antonellini et al., 1994]. 

Continued strain under an enhanced remote displacement loading (i.e. progressive 

deformation) or a sequence of tectonic episodes can further promote the interactions of multiple 

fractures, such as linking or overlapping of subparallel fractures [Cruikshank et al., 1991], wing 

crack growth and fracture coalescence [Rispoli et al., 1981], intersecting and cross-cutting of 

angled fracture sets [Renshaw, 1996], inhibition of nucleation in stress shadows [Ackermann and 

Schlische, 1997; Bai et al., 2000], and termination, reorientation or arrest under stress 

perturbations [Segall, 1984b; Rawnsley et al., 1992]. Such mechanically-controlled interaction 

processes produce complex fracture networks with self-organised (i.e. non-random) population 

statistics, e.g. density, lengths, spacing, intersections, orientations, locations, and displacements 

[Olson, 1993; Renshaw and Pollard, 1994; Renshaw, 1997; Bonnet et al., 2001; de Joussineau 

and Aydin, 2007], which have important consequences on rock engineering applications. 

1.2 Engineering problems 

Fractures, along which rupture has caused cohesion loss and mechanical weakness in the 
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rock, often dominate the strength [Hoek, 1983] and deformation properties [Kachanov, 1992] of 

geological formations. Interconnected fractures can serve as conduits or barriers for fluid and 

chemical migration in subsurface space [Caine et al., 1996; Berkowitz, 2002]. The understanding, 

characterisation and computational modelling of the important effects of fractures on the 

hydromechanical properties (e.g. strength, deformability, permeability and anisotropy) of highly 

disordered geological formations is a challenging issue [Zimmerman and Main, 2004] and is 

relevant to a variety of engineering applications including the extraction of hydrocarbons, the 

production of geothermal energy, the remediation of contaminated groundwater, and the 

geological disposal of radioactive waste [Rutqvist and Stephansson, 2003]. Several key issues in 

hydromechanical modelling of fractured rocks are summarised as follows. 

The first fundamental problem is the geometrical characterisation and representation of 

complex three-dimensional (3D) discontinuity systems based on limited and potentially biased 

field measurements, e.g. one-dimensional (1D) borehole imaging or two-dimensional (2D) 

outcrop mapping [Dershowitz and Einstein, 1988]. Fracture statistics are usually derived from 

lower-dimensional observations with respect to density, trace lengths, orientation, spacing, and 

frequency [Priest, 1993], based on which 2D or 3D synthetic discrete fracture networks (DFNs) 

can be created stochastically [Long et al., 1985; Long and Billaux, 1987] and predications can be 

achieved by conducting Monte Carlo simulations [Adler and Thovert, 1999; Adler et al., 2012]. 

However, the degree of realism and uncertainties of the simplified artificial DFNs in representing 

natural fracture networks that were formed by intricate mechanical and geological processes as 

discussed by Einstein and Baecher [1983] remains an unresolved debate in the geoscience 

community. 

The second fundamental problem is associated with simulating the discontinuous behaviour 

of rock media, which includes interaction of multiple discrete bodies [Jing, 2003], fracturing and 

fragmentation of intact rocks [Hoek and Martin, 2014], opening, shearing and dilation of rough 

fractures [Bandis et al., 1983; Barton 2013], fluid flow through the fractured and porous space 

[Berkowitz, 2002], and coupled hydromechanical or multi-physical processes [Tsang 1999; 

Rutqvist and Stephansson, 2003]. The quest for a means of quantifying the influence of in-situ 

stresses on the permeability of fractured reservoirs has been driven largely by the motivation 
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from petroleum engineering [Zoback, 2007]. The understanding of contaminant migration 

through tectonically strained fractured formations is also important for the groundwater industry 

[Bear et al., 1993]. The assessment and control of damage evolution in fractured rocks caused by 

human activities such as excavations is crucial for radioactive waste management [Tsang et al., 

2005]. 

One more critical issue is the upscaling of small-scale modelling results for large-scale 

predictions and applications. Effective medium theory has been developed to deduce the bulk 

properties of fractured rocks [Long et al. 1982; Kachanov, 1992; Adler and Thovert, 1999] on a 

homogenisation scale. However, the fractal and scaling nature of natural fracture patterns implies 

that the geological system may not have any representative elementary volume beyond which the 

system properties can be homogenised [Bonnet et al. 2001]. Thus, a more rigorous upscaling 

approach based on small-scale simulation results to predict multiscale, multiphysical properties 

of fractured rocks is important for engineering applications. 

1.3 Thesis overview 

The aims of this study include characterisation of the geometrical complexity of natural 

fracture networks, development of a computational model to simulate the geomechanical 

behaviour of naturally fractured rocks, investigation of stress effects on fluid flow in fracture 

networks, and application of the numerical tools to solve relevant engineering problems. The 

chapters of the thesis are designed to propose answers to the following scientific and engineering 

questions: 

 How complex are natural fracture networks at different scales? What are the principles 

behind the observed statistics of fracture systems? 

Chapter 2 presents a statistical study of a multiscale natural fracture system and provides a 

tectonic interpretation for its connectivity evolution. 

 How have natural fracture networks been modelled and for what purposes in the 

community? 

Chapter 3 presents a review of various fracture network models and the studies that apply 

them to simulate the geomechanical behaviour of fractured rocks as well as the 

consequences for fluid flow. 
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 How can geomechanical models be improved to more realistically simulate natural 

fractures? 

Chapter 4 presents a finite-discrete element model integrated with a joint constitutive model 

for a better characterisation of the complex mechanical behaviour of natural fracture 

networks. 

 What new understandings can be gained from having stress introduced into fracture 

network models? How would the stress affect the fluid flow in fracture networks? 

Chapter 5 presents a study of the stress-dependent deformation and permeability of 2D 

natural and synthetic fracture networks at a small scale (~1 m). 

 How could the small-scale modelling results be used to estimate large-scale properties? 

Chapter 6 presents a novel approach to upscaling 2D fracture network models to larger 

domains (~100 m) while preserving geostatistical and geomechanical characteristics. 

 How would stress-induced fracture kinematics (i.e. fracture opening, shearing and dilatancy) 

affect fluid flow in 3D fracture networks with simplified geometries? 

Chapter 7 presents a study of the hydromechanical behaviour of a 3D persistent fracture 

network based on a 3D finite-discrete element formulation combined with a 3D 

stress-induced variable aperture model. 

 How would stress affect fluid flow in more complex 3D fracture networks where new crack 

propagation can occur? 

Chapter 8 presents a study of the stress-dependent deformation and permeability of a 3D 

sedimentary layer embedded with realistic joint sets based on a 3D finite-discrete element 

formulation combined with a joint constitutive model and a crack propagation model. 

 Can the developed fracture network models be used to solve some other engineering 

problems? 

Chapter 9 presents a vivid example of modelling the progressive rock mass failure around 

an underground excavation in a fractured crystalline formation. 
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2 Geometrical properties of a natural fracture system 

linked to an underlying tectonic mechanism 

2.1 Introduction 

Fractures form under certain mechanically self-organised dynamics, where breakage and 

fragmentation can occur at all scales [Allegre et al., 1982]. The interaction of fracture growth 

processes creates a hierarchical geometry that may exhibit long-range correlations from 

macroscale frameworks to microscale fabrics [Barton, 1995; Bonnet et al., 2001]. An unresolved 

debate remains whether natural fractures produced by such critical processes are well-connected 

or poorly-connected [Berkowitz et al., 2002]. The geometrical scaling of a fracture population 

provides clues for a better understanding of the geology and physics behind the statistics. The 

power law model having no characteristic length scale can be a useful tool to interpret the scaling 

phenomena of natural fracture systems, which often do not exhibit a representative elementary 

volume [Davy, 1993; Pickering et al., 1995; Odling et al., 1999; Marrett et al., 1999; Bour et al., 

2002; Davy et al., 2010; Lei et al., 2015a]. This chapter first describes the geological setting of a 

multiscale fracture system in limestone and further analyses its geometrical scaling properties. 

Based on the knowledge of regional tectonics and a calculation of the percolation parameter of 

progressively formed fracture networks during multiple tectonic stages, an underlying tectonic 

mechanism for the connectivity evolution of the natural fracture system will be proposed. 

2.2 Geological setting and fracture dataset 

The geological formation studied is located in the Languedoc region of SE France and 

constitutes a major subsurface aquifer (i.e. the Lez aquifer) for the Montpellier area. The aquifer, 

with a total thickness of ~300 m, is comprised of Early Cretaceous marly limestones (upper unit) 

and Late Jurassic massive limestones (lower unit). The extensive documentation of the tectonic 

history of this area and the accessibility to multiscale fracture data make such a geological site 

well suited for the research objective. 
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Fig. 2.1 A compilation of multiscale fracture patterns from the Languedoc region in SE France. (a) A 

regional-scale lineament pattern generated from the regional structural map, (b)-(d) intermediate-scale 

fracture patterns obtained from aerial photographs and (e)-(g) local-scale outcrop patterns derived from 

geological exposures. (h) A schematic of the criteria used to distinguish individual fractures from digital 

maps/images. 

The sedimentary basin of SE France contains Mesozoic-Eocene sediments which are 

characterised by both extensional and compressional tectonic styles [Séranne et al., 1995]. A 

study of the geological evolution of the Languedoc region indicates that this area has been 

affected by three key tectonic events. The first is the continental stretching related to the 

Tethyian rifting which occurred in the Jurassic (Event I). This event generated the prevailing 

normal faults which strike NE-SW across the region [Benedicto et al., 1999]. During the Late 

Cretaceous to Eocene, the stress regime in the area changed from NW-SE extension to N-S 

compression as a result of the Pyrenean Orogeny. The extensional structures were reactivated as 
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strike-slip faults during this episode (i.e. Event II-A), which may also have created a strike-slip 

fault set striking NNW and conjugate to the reactivated Jurassic faults, and an opening-mode 

joint set aligned along the N-S direction [Petit and Mattaeur, 1995]. This plate contraction further 

gave rise to thrusting (Event II-B) and generated thrust faults striking approximately E-W. The 

crustal extension during the Oligocene (Event III) is related to the opening of the Gulf of Lion 

and contributed mainly to the rejuvenation of the regional Jurassic normal faults and the creation 

of a few new minor normal faults [Benedicto et al., 1999]. The Lez aquifer experienced intensive 

rifting, faulting and folding during the geological history and consequently a multiscale system 

of faults and joints has developed as a result of the superposition of multiple fracture sets each 

linked to a separate tectonic event. 

The characterisation of the 3D structure of the fracture system is impeded by the difficulty 

of direct measurements, so 2D patterns exposed at the Earth’s surface are used. A regional-scale 

(~100 km) fault pattern (Fig. 2.1a), denoted as RP, was generated from the geological map made 

by Bureau de Recherches Géologiques et Minières (BRGM) [2011] at a scale of 1:250,000. 

Three intermediate-scale (~10 km) fracture patterns containing both faults and joint corridors, 

denoted as IP1-3 (Fig. 2.1b-d), were digitised from assembled aerial photographs taken by 

Institut National de l’Information Géographique et Forestière (IGN) [1954] at a scale of 1:25,000 

(resolution may vary slightly due to the uneven terrain). Eleven local-scale (1-10 m) joint 

patterns, denoted as LPs (three of them are presented in Fig. 2.1e-g), were drawn based on 

outcrop mapping. Each outcrop map was constructed from a number of images taken at a fixed 

height of 1.5 m and rectified for perspective distortions before assembly. Fractures were 

manually traced from the digital maps/photographs and individualised according to the spatial 

continuity and directional consistency of digitised traces (Fig. 2.1h). The determination of the 

connectedness of fracture traces may be affected by the resolution limit of the original 

maps/photographs. Some discontinuous segments may be identified as a single fracture, leading 

to an overestimation of the occurrence of larger structures [Davy, 1993]. The fracture patterns 

may suffer from incomplete sampling producing a bias due to lack of exposure caused by the 

vegetation covers and erosion effects. This can result in an exaggeration of clustering properties, 

an underestimation of small-scale populations, and superficial segmentations of large structures. 
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Furthermore, smaller patterns that sample limited local spots of larger domains may 

underestimate the geological heterogeneity. More details of the multiscale fracture dataset are 

provided in Appendix A. 

2.3 Scaling properties of the multiscale fracture system 

Fractal concepts provide a way to identify and quantify the repetition phenomenon of 

natural fracture systems over a wide range of scales [Mandelbrot, 1982]. The spatial scaling 

feature can be characterised by the fractal dimension D, which accounts for the manner whereby 

fractals cluster and spread in the Euclidean space. The standard or modified box-counting 

method has been widely used to measure the fractal dimension of complex fracture systems 

[Chilès, 1988; Odling, 1992; Walsh and Watterson, 1993; Barton, 1995; Berkowitz and Hadad, 

1997; Roy et al., 2007]. However, the box-counting method has intrinsic biases due to the 

presence of cross-over regimes between dimensions of 1 (i.e. dimension of fracture lines) and 2 

(i.e. dimension of the embedding medium) [Odling, 1992; Berkowitz and Hadad, 1997]. As a 

result, it is difficult to discriminate between natural fracture patterns and purely random networks, 

for which the two-point correlation function method can give more appropriate results [Bonnet et 

al., 2001]. The two-point correlation function describes the spatial correlation of fracture 

barycentres [Bour and Davy, 1999] as given by 
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where N is the total number of fracture barycentres, and Nd is the number of pairs of barycentres 

whose distance is smaller than r [Hentschel and Procaccia, 1983]. Barycentres are calculated 

using the observed traces including those intersecting the boundaries, since the two-point 

correlation method is valid irrespective of the type of points (barycentre, fracture tips, or any 

random point on the fracture trace) that are used to represent fracture locations [Bour et al., 

2002]. For a fractal population, C2(r) is expected to scale with r following a power law relation 

with the exponent Dc defined as the correlation dimension. The Dc value varies for different 

patterns: 1.68 for RP, 1.66 for IP1, 1.48 for IP2, 1.20 for IP3, and 1.60 ± 0.11 for LPs (Appendix 

A gives the detailed calculation of Dc and associated logarithmic slopes for each pattern). The 

low Dc values of IP2 and IP3 may be induced by the effects of incomplete sampling, while the 

http://link.springer.com/search?facet-author=%22J.+P.+Chil%C3%A8s%22
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variability in LPs is probably related to local stress variations and lithological heterogeneity. 

Thus, 1.65 might be a realistic value for the underlying fractal dimension and the fitting trend is 

shown in Fig. 2.2a. 

A power law is often used to interpret the length distribution of natural fracture traces and 

its exponent quantifies the manner that frequency decreases with fractures sizes [Odling, 1997; 

Bonnet et al., 2001; Neuman, 2008]. The density distribution of fracture lengths (i.e. trace 

lengths) can be modelled by a power law [Bour et al., 2002; Davy et al., 2013] as given by 

],[for           ),( maxmin llllLLln aD       (2.2) 

where n(l, L)dl gives the number of fractures with sizes l belonging to the interval [l, l + dl] (dl 

<< l) in an elementary volume of characteristic size L, a is the power law length exponent, D is 

the fractal dimension, and α is the density term. The extent of the power law scaling is bounded 

by an upper limit lmax that is probably related to the thickness of the brittle upper crust and a 

lower limit lmin that is constrained by a physical length scale (e.g. grain size) or the resolution of 

measurement [Ouillon et al., 1999; Berkowitz et al., 2000]. The exponents a and D quantify 

different scaling of the fracture network: the length distribution (related to a), and the fracture 

density (related to D). The density term α is related to the total number of fractures in the system 

and varies as a function of fracture orientations [Davy et al., 2010]. The power law length 

exponent a can be derived from the density distribution plot of fracture lengths [Pickering et al., 

1995]. The fracture length data may suffer from the truncation effect due to limited resolution 

and the censoring effect due to incomplete sampling [Pickering et al., 1995; Bonnet et al., 2001]. 

The truncation effect is eliminated by using a lower cut-off of 5% × L for each map when fitting 

the power law curve [Odling et al., 1999]. The censoring bias of the regional map is corrected by 

removing traces that intersect the window sampling boundaries [Bour et al., 2002] with the 

artificial density perturbation amended using an effective system size estimated as the square 

root of the coverage area of the remaining fractures. The a value varies for different patterns: 

2.61 for RP, 2.41 for IP1, 2.62 for IP2, 2.53 for IP3, and 2.73 ± 0.38 for LPs. The variation may 

be influenced by the artefact when tracing individual fractures and determining their persistence, 

and the bias from incomplete mapping. The large standard deviation in LPs may also be related 

to the heterogeneity of stress and lithology, to which small-scale fracturing would be more 
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sensitive. Fig. 2.2b gives the length distribution of all fracture networks normalised by their 

fractal area, i.e. LD, and the overall trend may be fitted by a power law with a = 2.65 and α = 3.0. 

 

Fig. 2.2 (a) Calculation of the normalised two-point correlation functions C2(r/L) as a function of r/L. The 

dashed line represents a power law fitting line with the fractal dimension D = 1.65. (b) The normalised 

density distribution of fracture lengths of the multiscale fracture patterns; the dashed line represents a 

power law fitting line with an exponent a = 2.65 and a density term α = 3.0. (c) Scaling of the distance d(l) 

between the barycentre of a fracture and that of its nearest neighbour having a length larger than l; the 

dashed line represents a power law fitting line with an exponent x = 1.0. 

Fractures having a broad-bandwidth power law size distribution are not randomly placed in 

the geological media, but organised by mechanical interactions that occur during their growth 



31 

 

process [Darcel et al., 2003a; Davy et al., 2010, 2013]. The relationship between the fractal 

dimension and length exponent observed for the dataset studied here, i.e. a ≈ D+1, indicates that 

the multiscale fracture system may be self-similar [Bour et al., 2002]. For a self-similar fracture 

network, the number of fractures N(l) that have lengths comparable to the domain size L (i.e. xL 

< l< x’L given x and x’ are close to 1) can be derived as: 
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It can be seen that, if a = D+1, N is independent of L (i.e. the number of “large” fractures is 

constant at all scales), which is the signature and necessity of self-similar structures [Darcel et al., 

2003a]. A self-similar fracture pattern can emerge under a statistically-valid hierarchical rule that 

a large fracture inhibits smaller ones from crossing it but not the converse [Davy et al., 2010]. 

The average distance d(l) between the centroid of a fracture and that of the nearest larger 

neighbour is theoretically correlated with the fracture length l by d(l)∝lx [Bour and Davy, 1999], 

where x = (a-1)/D and is equal to 1.0 for a self-similar scenario. The distance data of the 

multiscale patterns tend to fit a power law with x = 1.0 (Fig. 2.2c), suggesting that the distance of 

a fracture to its nearest larger one is linearly correlated with its size, and that the sets of faults 

and joints were well developed and had reached quite a dense state controlled by their 

mechanical interaction [Davy et al., 2010]. In addition, the fracture patterns on different scales 

also exhibit quite similar values for the ratio of d(l)/l, implying that fracture interaction may be 

governed by a similar mechanism over different scales (this may seem surprising given that 

faulting is a different brittle process to jointing). 

It is complicated to accurately compute the connectivity of a 2D natural fracture network 

involving a fractal organisation and a power law length distribution [Darcel et al., 2003a]. The 

complex boundaries of the sampled patterns also create difficulties for a direct connectivity 

measurement by checking the presence of connected pathways from one boundary to its 

opposite. In this study, a simple equation postulated by Berkowitz et al. [2000] is employed to 

calculate the percolation parameter p as a connectivity metric of fracture networks, as given by: 
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Here lmin is defined as the fracture length over which all fractures are considered to have been 

correctly sampled, corresponding to the onset of power law length scaling for each network 

(given in Appendix A). The connectivity of a fracture network is made up of two parts, as can be 

seen in Eq. (2.4): the first part describes the contribution made by fractures smaller than the 

system size L and the second represents the contribution from fractures larger than L [Bour and 

Davy, 1997]. Mathematically, the connectivity of a self-similar fractal population is scale 

invariant [Darcel et al., 2003a], and the networks are connected at all scales if p is larger than the 

percolation threshold pc. Here pc is defined as the onset above which a fracture network is, on 

average, connected from one side of the domain to the other. The range of pc was determined to 

be between 5.6 and 6.0 derived using 2D random fracture network realisations [Bour and Davy, 

1997]. Uncertainties may exist for this pc value when it is applied to natural fracture patterns 

involving distinguishable orientation sets [Robinson, 1983, 1984] and fractal density 

distributions [Darcel et al., 2003a]. Furthermore, evaluations relying on this pc for 2D networks 

usually underestimate the connectivity of actual 3D systems [Bour and Davy, 1998]. A 

correcting factor of 2/π was suggested to derive a pc for 3D geometries [Lang et al., 2014], which 

yields pc ≈ 3.6-3.8. In the study area, the p value of the fracture patterns at different scales varies 

significantly: 7.18 for RP, 5.30 for IP1, 14.69 for IP2, 6.90 for IP3 and 6.81 ± 2.17 for LPs. The 

computed p should be less than the real value because fractures smaller than lmin that can 

contribute to connectivity are not included in the calculation. It can be noted that some patterns 

seem to be only slightly above the threshold, whereas others have a much higher value. The 

variation of p may be caused by the diversity of a and D for different samples. The inconsistency 

in the ratio of L/lmin can also have a significant impact on the observed connectivity of a 

self-similar network [Berkowitz et al., 2000]. However, these factors may still not sufficiently 

explain the high contrast in the calculated p values, i.e. 4.6 to 14.69 (Table A.1 in Appendix A). 

2.4 Are natural fractures well- or poorly-connected? 

The connectivity of fracture networks is thought to be a good indicator of the bulk properties 

(e.g. permeability, elastic modulus) of geological formations [Davy et al., 2010]. The proximity 

of the connectivity state of natural fracture networks to the percolation threshold remains an 

unresolved debate. It was argued earlier that natural fracture systems are close to the percolation 
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threshold [Renshaw, 1997], because the driving force (tectonic stress or hydraulic pressure) is 

abruptly released once the system is connected, and a diminished mechanical strength and an 

enhanced hydraulic conductivity is likely to occur [Chelidze, 1982; Madden, 1983; Gueguen et 

al., 1991; Renshaw, 1996; Zhang and Sanderson, 1998]. However, extensive field observations 

suggest that crustal fractures can be well-connected and significantly above the threshold [Barton, 

1995]. 

An understanding of the process by which the natural fracture networks evolve might offer 

an explanation for this. Fracture networks in rock develop over geological time by the 

superposition of successive fracture sets each linked to a different stress regime and set of crustal 

conditions. Thus, there is a strong possibility that early fracture sets may become partially or 

totally cemented as the network evolves and fluids move through it. These sealed or partially 

sealed early fracture sets may act as barriers to fluid flow and the integrity of the rock has been 

to some extent recovered [Holland and Urai, 2010]. Although the network geometrically remains 

almost the same, its “effective” connectivity has been reduced well below the percolation 

threshold. As a result, subsequent stress fields could continue to propagate new fractures until the 

critical state is reestablished. However, if the “apparent” connectivity of trace patterns is 

measured without taking into account their internal sealing conditions, it is likely to derive a 

percolation state significantly above the threshold. In addition, the intrinsic anisotropy of the 

fracture network may also permit tectonic energy to accumulate in other directions which have a 

higher mechanical strength/stiffness and can accommodate more new cracks. 

Table 2.1 Percolation parameters of the progressively formed fracture patterns at the end of each different 

formation stage.
 

Pattern Stage 1 (Event I) Stage 2 (Event II-A) Stage 3 (Event II-B & III) 

RP 3.87 5.05 7.18 

IP1 3.06 4.30 5.30 

IP2 8.16 12.62 14.69 

IP3 3.62 5.69 6.90 

LPs -- 4.38 ± 1.54 6.81 ± 2.17 

 

To test this concept, the percolation parameter of the progressively developed fracture 
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networks at the end of each different formation stage is calculated (Table 2.1). This is achieved 

simply by re-analysing networks from field data with the appropriate later-staged fractures 

removed based on the relation between orientation and tectonic events. The three key tectonic 

events (see section 2.2) governed large-scale faulting and jointing, and produced the 

regional-scale and intermediate-scale fracture patterns. These networks are the results of the 

superimposition of multiple fracture sets each of which is associated with distinct orientation and 

linked to a separate tectonic event. The relative ages of the successively generated fracture sets 

can therefore be determined according to the sequence of the tectonic events [Park et al., 2010]. 

Fig. 2.3 presents a schematic illustration of the kinematic evolution of the studied fracture system 

during the tectonic history. At the small-scale, e.g. the fracture networks observed in outcrop, the 

fracture systems are bounded by larger faults and often form close to the ground surface. These 

larger fractures are likely to severely disturb and rotate the local stress field, and the orientation 

of the resulting small-scale fractures is, therefore, unlikely to reflect that of the regional stress 

field. The chronological sequence of the local-scale joints was determined based on the abutting 

relation of the two major sets. Generally, the first set exhibits a connectivity state close to the 

percolation threshold (see Table 2.1), consistent with the postulation of energy relief at the 

connecting moment observed in both laboratory experiments [Chelidze, 1982] and numerical 

simulations [Madden, 1983; Renshaw 1996; Zhang and Sanderson, 1998]. However, because of 

the possibility of early fractures becoming cemented as has been observed in the Languedoc area 

[Petit and Mattauer, 1995; Petit et al., 1999], a fracture network which at the time of its 

formation was at the percolation threshold may subsequently have an “effective” connectivity 

considerably lower than pc. Thus, in response to later tectonic events, further cracking may occur 

within the network until the system once again becomes connected. The incremental rate of p 

caused by late-stage fracturing seems to gradually decrease due to the presence of early-stage 

fractures. This is because percolation can be reached more easily by reactivating and/or 

coalescing existing fractures rather than by generating new ones. The exceptionally high p in the 

pattern of IP2 may be attributed to its location very close to one of the regional-scale faults, in 

the vicinity of which concentrated fracturing paced by active calcite precipitation may occur, i.e. 

more intensive “crack-seal” cycles may be involved [Petit and Mattauer, 1995; Petit et al., 1999]. 
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Note that the calculation and analysis of the observed connectivity seeks to achieve a first-order 

approximation of the percolation state that may have existed during the multi-stage fracture 

network evolution. The simplified kinematic analysis may not fully capture the complex faulting 

process that can involve linkage of early-formed fractures in later episodes (i.e. the sizes of large 

faults may be slightly different from their original ones). 

 

Fig. 2.3 Tectonic events that have affected the geological formations in the Languedoc region, SE France. 

Note: σ1, σ2 and σ3 denote the maximum, intermediate and minimum tectonic stresses, respectively. 

2.5 Discussion 

The evolution of the percolation parameter implies that a large amount of energy may have 

been released during the early-stage fracturing (as revealed by the high p at the end of the first 

formation stage of each pattern), after which tectonic or hydraulic forces could not be elevated to 

such high levels because they would be dissipated by the shearing and coalescence of the 

existing large structures [Petit and Mattauer, 1995; Park et al., 2010]. A likely universal scaling 

behaviour may exist in a multiscale fracture system [Odling et al., 1999; Marrett et al., 1999; 

Bour et al., 2002; Du Bernard et al., 2002; Bertrand et al., 2015], whereas inconsistent scaling 

exponents separated by characteristic lengths can also occur [Ouillon et al., 1996; Hunsdale and 

Sanderson, 1998; de Joussineau and Aydin, 2007; Putz-Perrier and Sanderson, 2008; Davy et al., 

2010]. A break in scaling may be caused by the different growth mechanisms of jointing and 

faulting [Pollard and Segall, 1987; de Joussineau and Aydin, 2007], the influence of lithological 
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layering [Ouillon et al., 1996; Hunsdale and Sanderson, 1998; Odling et al., 1999; Putz-Perrier 

and Sanderson, 2008], and the nature of driving forces (i.e. boundary or body forces) associated 

with distinct spatial organisation of strains [Bonnet et al., 2001; Davy et al., 2010]. Such effects 

may have also contributed to the great variability in the scaling exponents of the fracture network 

studied in this chapter. However, a power law may fit the overall trend of the study system due to 

a possibility that multiscale fracturing processes in this region were governed by the same set of 

tectonic factors. The quite low D values (i.e. 1.41-1.74) of the joint patterns in this study, 

seemingly contradictory to the general understanding that joints tend to be more space filling (i.e. 

homogeneously distributed), might be induced by the possibility that they have multifractal 

features and therefore the correlation dimension can be significantly smaller than 2.0 [Bonnet et 

al., 2001]. Actually, the measured D values here are in the typical range of 1.4-2.0 for joint 

systems according to the compilation by Bonnet et al. [2001]. Whether mode I fractures are 

clustered or homogeneously spaced may be related to the stress conditions under which they 

were formed [Gillespie et al., 2001]. 

In this chapter, an interpretation is proposed for the connectivity variation of a multiscale 

fracture system based on its polyphase tectonic history and a crack-seal mechanism. The results 

revealed a link between the geometrical statistics of fracture networks and the underlying 

tectonic processes. Note that the assessment using Eq. (2.4) may be associated with uncertainties 

due to the potential scale-dependence of the percolation parameter at the connectivity threshold, 

as pointed out by Darcel et al. [2003a]. Furthermore, the findings of this research are based on a 

specific fracture system which seems to have a self-similar property with a ≈ D+1. Different 

connectivity scaling phenomena can occur in other scenarios [Darcel et al., 2003a]. For a < D+1, 

the connectivity is controlled by fractures having a length larger than or of the order of the 

system size and increases with scale. For a > D+1, the connectivity is ruled by fractures much 

smaller than the system size and thus decreases with scale. To investigate the behaviour of 3D 

fracture systems, the fractal dimension and power law length exponent in 3D can be extrapolated 

from the 2D parameters based on the stereological relationships given in Darcel et al. [2003b]. 

The percolation parameter and percolation threshold of 3D fracture networks with broadly 

distributed sizes may be estimated using the formulation proposed by de Dreuzy et al. [2000]. 
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2.6 Concluding remarks 

To sum up, the spatial and length distributions as well as their cross-relation (i.e. fracture 

distances) of a multiscale fracture system in limestone has been investigated. Contradicting the 

prediction that scale-invariant connectivity is associated with idealised self-similar systems, the 

percolation state of trace patterns mapped at different scales and localities of the study area 

varies significantly, from well- to poorly-connected. A tectonic interpretation based on a 

polyphase fracture network evolution history has been proposed to explain this discrepancy. The 

formation of fracture networks is linked to a succession of tectonic episodes and multiple 

geological processes. The presented data suggest that the driving force for fracture propagation 

may be dissipated at the end of each tectonic event when the system becomes connected. 

However, further fracturing may still be accommodated when later driving forces are applied 

especially if the “effective” connectivity of the system has been reduced well below the threshold 

due to the cementation of some of the fractures within the network. In addition, the connectivity 

anisotropy may also permit additional cracking in directions which have a poorer percolation 

state. As a result, the “apparent” connectivity measured for fracture networks regardless of their 

internal sealing conditions can be highly variable depending on the intensity of crack-seal cycles 

and also indicate a state considerably exceeding the percolation threshold. 

This study illustrated the complexity of the geometrical and topological characteristics of 

natural fracture networks that involves scaling, hierarchy, clustering, anisotropy and connectivity. 

To characterise and simulate such self-organised geological structures, numerous fracture 

network models have been proposed and developed during the past few decades, and further 

applied to solve various engineering problems related to naturally fractured rocks. The next 

chapter will present a review of the approaches, principles, achievements and outstanding issues 

in fracture network modelling of the geomechanical behaviour of fractured rocks and the 

consequences for fluid flow. 
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3 The use of discrete fracture networks for modelling 

geomechanical behaviour of fractured rocks and its 

impacts on fluid flow 

3.1 Introduction 

Fractured rock is a naturally occurring solid material embedded with various discontinuities, 

such as faults, joints and veins. Such geological structures often dominate the geomechanical and 

hydromechanical behaviour of subsurface media [Zimmerman and Main, 2004]. Understanding 

of the nontrivial effect of fractures is a challenging issue which is relevant to many engineering 

applications such as underground construction, geothermal energy, petroleum recovery, 

groundwater management and nuclear waste disposal [Rutqvist and Stephansson, 2003]. The 

importance of the presence of natural fractures, which can result in heterogeneous stress fields 

[Pollard and Segall, 1987] and channelised fluid flow pathways [Tsang and Neretnieks, 1998] in 

highly disordered geological formations, has promoted the development of robust fracture 

network models for numerical simulation of fractured rocks [Herbert, 1996]. 

The purpose of this review is to present a summary of various approaches that explicitly 

mimic natural fracture geometries, and different numerical frameworks that integrate discrete 

fracture representations for modelling the geomechanical behaviour of fractured rocks as well as 

further analysis of the consequences on fluid flow. Section 3.2 reviews the methods of 

representing natural fracture geometries by geological mapping, stochastic generation or 

geomechanical simulation. Section 3.3 provides a brief overview of continuum and discontinuum 

models that integrate fracture information for geomechanical modelling of fractured rocks. 

Section 3.4 summarises numerical studies of geomechanical effects on fluid flow in fractured 

rocks. A discussion is presented on the pros and cons of the different numerical models as well 

as some outstanding issues, and finally, concluding remarks are made. 

3.2 Geometrical modelling of fracture networks 

A “discrete fracture network” (DFN) refers to a computational model of fracture patterns 

that explicitly represents the geometrical properties of each individual fracture (e.g. orientation, 
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size, position, shape and aperture), and the topological relationships between individual fractures 

and fracture sets. Unlike the conventional definition of DFNs that corresponds to stochastic 

fracture networks, the term DFN here represents a much broader concept of any explicit fracture 

network model. A DFN can be generated from geological mapping, stochastic realisation or 

geomechanical simulation. Fracture analogues from physical experiments are not included here 

as their main purpose is to explore the underlying mechanisms rather than building numerical 

models. 

3.2.1 Geologically-mapped fracture networks 

Fracture patterns can be mapped from the exposure of rock outcrops or man-made 

excavations (e.g. borehole, quarry, tunnel and roadcut). These geologically-mapped fracture 

networks were widely used to understand the process of fracture formation [Segall and Pollard, 

1983a; Pollard, and Segall, 1987], interpret the history of tectonic stresses [Engelder and Geiser, 

1980; Olson and Pollard, 1989; Petit and Mattauer, 1995], and derive the statistics and scaling of 

fracture populations [La Pointe, 1988; Bour et al., 2002]. However, digitised outcrop analogues 

(Fig. 3.1) can also be used to build DFNs for numerical simulations. For example, a series of 

discrete fracture patterns were mapped from limestone outcrops at the south margin of the Bristol 

Channel Basin, UK [Belayneh and Cosgrove, 2004]. The traced DFNs were used to study the 

connectivity [Masihi and King, 2008], multiphase flow [Belayneh et al., 2006, 2009; Geiger and 

Matthäi, 2014], solute transport [Geiger et al., 2010] and hydromechanical behaviour [Latham et 

al., 2013; Figueiredo et al., 2015] of natural fracture systems. Similar outcrop-based DFNs have 

also been constructed by many other researchers for modelling natural fracture systems [Zhang 

and Sanderson, 1995, 1996, 1998; Zhang et al., 1996; Brown and Bruhn, 1998; Sanderson and 

Zhang, 1999; Griffith et al., 2009]. Fracture apertures may be determined from a detailed field 

mapping [Jourde et al., 2002; Leckenby et al., 2005] and further calibrated by comparing flow 

simulation results with in-situ measurements [Taylor et al., 1999]. However, apertures were more 

commonly assumed to be constant or to follow an a priori statistical distribution (sometimes 

correlated with trace lengths). 

Advantages of such an outcrop-based DFN model include preservation of natural fracture 

features (e.g. curvature and segmentation) and unbiased characterisation of complex topologies 
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(e.g. intersection, truncation, arrest, spacing, clustering and hierarchy). However, it is often 

constrained to 2D analysis (of more applicability to research study) and may not be applicable 

for general 3D problems involving obliquely dipping fractures. The recent technology of LIDAR 

survey may be able to capture the 3D structural variations in near surface and help build a 

realistic 3D DFN model [Wilson et al., 2011; Jacquemyn et al., 2015], but it is difficult to use 

such a technique to measure deeply buried geological complexities. Extrapolation from borehole 

imaging can provide an estimation of 3D fracture distributions but confidence can only be 

guaranteed for the areas close to boreholes [Wu and Pollard, 2002]. Seismic data can be used to 

build 3D maps of large-scale geological structures [Kattenhorn and Pollard, 2001], for which, 

however, the limited resolution often obscures detailed features such as the segmentation of 

faults and impedes the detection of small cracks widely spreading in subsurface rocks. 

 

Fig. 3.1 Geologically-mapped DFN patterns based on (a) a limestone outcrop at the south margin of the 

Bristol Channel Basin, UK [Belayneh and Cosgrove, 2004], (b) sandstone exposures in the Dounreay area, 

Scotland [Zhang and Sanderson, 1996], and (c) fault zone structures in the Valley of Fire State Park of 

southern Nevada, USA [Jourde et al., 2002]. 

3.2.2 Stochastically-generated fracture networks 

Due to the difficulty of performing a complete measurement of 3D natural fracture systems, 

stochastic approaches using statistics from limited sampling have been developed and widely 
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used [Dershowitz and Einstein, 1988]. The stochastic DFN method emerged in the 1980s with 

the aims to study the percolation of finite-sized fracture populations [Robinson, 1983, 1984; 

Balberg and Binenbaum, 1983] and fluid flow in complex fracture networks [Long et al., 1982, 

1985; Andersson et al., 1984; Andersson and Dverstorp, 1987; Long and Billaux, 1987]. 

The general stochastic DFN approach assumes fractures to be straight lines (in 2D) or planar 

discs/polygons (in 3D), and treats the other geometrical properties (e.g. position, size, orientation, 

aperture) as independent random variables obeying certain probability distributions derived from 

field measurements (e.g. scanline/window sampling of outcrop traces and borehole imaging) 

[Baecher, 1983]. The orientation data can be processed using a rosette or stereogram so that 

fractures can be grouped into different sets with their orientations characterised by e.g. a uniform, 

normal or Fisher distribution [Einstein and Baecher, 1983]. Fracture sizes may exhibit a negative 

exponential, lognormal, gamma or power law distribution [Davy, 1993; Bonnet et al., 2001]. 

Fracture density can be characterised by fracture spacing, the total number/length of fractures per 

unit area (in 2D) or total number/surface area of fractures per unit volume (in 3D). Fracture 

spacing may follow a negative exponential, lognormal or normal distribution depending on the 

degree of fracture saturations in the network [Rives et al., 1992]. Fracture apertures usually obey 

a lognormal [Snow, 1970] or power law distribution [Barton and Zoback, 1992; Hooker et al., 

2009], and may be related to fracture sizes by a power law [Bonnet et al., 2001] with a linear 

[Pollard and Segall, 1987] or sublinear [Olson, 2003] scaling relationship. The 1D/2D 

measurement data may be biased under the truncation and censoring effects and requires to be 

amended to determine the underlying statistical distributions [Laslett, 1982; Pickering et al., 

1995]. 3D parameters can be extrapolated from the 1D/2D data based on stereological analysis 

[Berkowitz and Adler, 1998]. In the stochastic simulation, fractures are assumed randomly 

located (represented by their barycentres), while the geometrical attributes can be sampled from 

the corresponding probability density functions [Dershowitz and Einstein, 1988]. Such a random 

fracture network modelling approach, termed the Poisson DFN model (Fig. 3.2), has been 

implemented within the commercial software FracMan [Golder Associate Inc., 2011] and also 

adopted by many research codes to study the connectivity, deformability, permeability and 

transport properties of fracture networks in the past three decades [Hestir and Long, 1990; 
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Zimmerman and Bodvarsson, 1996; Bour and Davy, 1997, 1998; Renshaw, 1999; de Dreuzy et 

al., 2001a, 2001b, 2002; Min and Jing, 2003; Min et al., 2004a, 2004b; Sanderson and Zhang, 

2004; Baghbanan and Jing, 2008; Leung and Zimmerman, 2012; Rutqvist et al., 2013; Zhao et al., 

2013; Zhang and Lei, 2013, 2014; Lang et al., 2014] (only a few among many others). 

 

Fig. 3.2 The Poisson DFN models: (a) a 2D random fracture pattern conditioned by field data from the 

Sellafield site, Cumbria, UK [Min and Jing, 2003], and (b) a 3D random fracture network with three 

orthogonal sets of disc-shaped fractures [Long et al., 1985]. 

However, the Poisson DFN model tends to have large uncertainties due to its assumption of 

a homogeneous spatial distribution, simplification of fracture shape using linear/planar 

geometries, and negligence of the correlations between different geometrical properties as well 

as disregard of the diverse topological relations (e.g. “T” type intersections). Several researchers 

have examined the Poisson DFN model by comparing it with an original natural fracture network 

with respect to geometrical, hydraulic and mechanical properties and significant discrepancies 

were observed [Odling and Webman, 1991; Odling, 1992; Berkowitz and Hadad, 1997; 

Belayneh et al., 2009]. Several improvements on the Poisson DFN model have been developed 

and include considerations of: (1) the inhomogeneity of fracture spatial distribution based on a 

geostatistically-derived density field [Long and Billaux, 1987] or a cluster point process (e.g. the 

parent-daughter method) [Billaux et al., 1989; Xu and Dowd, 2010], (2) the correlation between 

fracture attributes (i.e. length, orientation and position) based on an elastic energy criterion 

[Masihi and King, 2007; Shekhar and Jr, 2011], (3) the unbroken areas inside individual fracture 

planes based on a Poisson line tessellation and zone marking process [Dershowitz and Einstein, 
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1988; Meyer and Einstein, 2002] (3) the topological complexity based on a characterisation of 

fracture intersection types [Manzocchi, 2002], and (4) the mechanical interaction between 

neighbouring fractures based on a stress shadow zone model [Rives et al., 1992; Josnin et al., 

2002; Jourde et al., 2007]. It has to be mentioned that an alternative to the Poisson DFN model 

may use the spacing distribution to locate fractures in the stochastic generation [Lu and Latham, 

1999], which is however considered more suitable for highly persistent fracture systems. 

 

Fig. 3.3 2D and 3D fractal fracture networks generated with different values of the fractal dimension D 

and the power law length exponent a [Darcel et al., 2003b]. 

A more systematic characterisation of the hierarchy, clustering and scaling of natural 

fracture systems may involve the methods of fractal geometry and power law models [Bonnet et 

al., 2001]. Extensive field observations suggest that fracturing occurs at all scales in the crust and 

creates a hierarchical structure that can exhibit long-range correlations from macroscale 

frameworks to microscale fabrics [Allegre et al., 1982; Barton, 1995]. The spatial organisation of 

natural fracture networks can be characterised by the fractal dimension D, which quantifies the 

manner whereby fractals cluster and spread in the Euclidean space and can be measured using 

the box-counting method [Chilès, 1988; La Pointe, 1988; Ehlen, 2000] or the two-point 

correlation function [Hentschel and Procaccia, 1983; Bour and Davy, 1999]. The density and 

length distribution of a fracture population can be then described by a statistical model given by 

[Bour et al., 2002; Davy et al., 2010]: n(l, L) = γLDl-a, for l ∈ [lmin, lmax] (i.e. Eq. (2.2)), where 

n(l, L)dl gives the number of fractures with sizes belonging to the interval [l, l + dl] (dl << l) in 
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an elementary volume of characteristic size L, a is the power law length exponent, α is the 

density term, and lmin and lmax are the smallest and largest fracture sizes. The exponent a, which 

defines the respective proportion of large and small fractures, can be derived from the 

cumulative distribution or density distribution of fracture lengths [Davy, 1993; Pickering et al., 

1995]. In theory, D is restricted to the range [1, 2] for 2D and [2, 3] for 3D, and a is restricted to 

[1, ∞] for 2D and [2, ∞] for 3D. However, extensive measurements based on 2D trace maps 

reveal that generally D varies between [1.5, 2] and a falls between [1.3, 3.5] [Bonnet et al., 2001]. 

The D and a measured from 1D/2D samples can be extrapolated to derive 3D parameters based 

on stereological relationships [Darcel et al., 2003b]. The density term α is related to the total 

number of fractures in the system and varies as a function of fracture orientations [Davy et al., 

2010]. The extent of the power law relation is bounded by an upper limit lmax that is probably 

related to the thickness of the crust and a lower limit lmin that is constrained by a physical length 

scale (e.g. grain size) or the resolution of measurement [Bonnet et al., 2001]. For numerical 

simulations, the model size L usually meets lmin << L<< lmax [Darcel et al., 2003a]. A fractal 

spatial distribution of fracture barycentres can be modelled through a multiplicative cascade 

process governed by a prescribed D value, while fracture lengths can be sampled from a power 

law distribution with an exponent a [Darcel et al., 2003a]. Fracture orientations can be assigned 

isotropically or based on statistical distributions. Fractal fracture networks can then be generated 

by synthesising the different geometrical attributes modelled by independent random variables 

(Fig. 3.3). A D value of 2 (in 2D) and 3 (in 3D) represents a homogeneous spatial distribution, 

i.e. “space filling”. As D decreases, the fracture pattern becomes more clustered associated with 

more empty areas. A small a value corresponds to a system dominated by large fractures, while 

a→∞ relates to a pattern with all fractures having an equal size (i.e. lmin). The D and a values as 

well as their relationship may control the connectivity, permeability and strength of fractured 

rocks [Darcel et al., 2003a; de Dreuzy et al., 2004; Davy et al., 2006; Harthong et al., 2012]. 

More interestingly, when a = D+1, the fracture network is self-similar and the connectivity 

properties are scale invariant [Darcel et al., 2003a]. A self-similar fracture pattern statistically 

exhibits a hierarchical characteristic whereby a large fracture inhibits the propagation of smaller 

ones in its vicinity, but not the converse [Bour et al., 2002; Davy et al., 2010]. Implementation of 
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such a hierarchical rule together with subcritical fracture growth laws leads to a new DFN model 

that can simulate the sequential stages of fracture network formation associated with nucleation, 

propagation and arrest processes (Fig. 3.4a) [Davy et al., 2013]. 

The assumption of a linear/planar fracture shape in the Poisson model and fractal DFN 

model may be simplistic, since field observations show that natural fracture geometries can be 

curved and irregular [Pollard and Aydin, 1988]. The random walk technique proposed by Horgan 

et al. [2000] for simulating polygonal crack patterns in soil (Fig. 3.4b) may be applied to model 

the curvature of fractures in rock. The invasion percolation method that has been used to model 

channel networks [Ronayne and Gorelick, 2006] may provide a way to simulate some highly 

branched and tortuous fracture systems. 

 

Fig. 3.4 Some new stochastic DFN models: (a) trace map views of a 3D sequential DFN model that 

simulates the nucleation, growth and arrest processes of natural fractures [Davy et al., 2013], and (b) a 2D 

stochastic DFN model that simulates the curvature and arrest of cracks in soil [Horgan and Young, 2000]. 

The stochastic DFN method, in essence, treats problems in a probabilistic framework and 

regards the real physical system as one possibility among simulated realisations sharing the same 

statistics. Hence, a sufficient number of realisations based on a Monte Carlo process are 
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necessary to predict a bounded range. In practice, a balance exists between the benefits of 

collecting detailed information to create more realistic DFNs and the increased cost of field 

measurements. The uncertainty can be reduced by constraining the random process with 

deterministic data, e.g. forcing the 3D DFN generator to reproduce a 2D trace pattern such as one 

exposed on tunnel walls [Andersson and Dverstorp, 1987]. Calibration and validation of 

stochastic DFN models are important for solving real problems and can be conducted based on 

the in-situ data from field mapping and/or hydraulic tests [Dverstorp and Andersson, 1989; 

Cacas et al., 1990a, 1990b; Kulatilake et al., 1993; Sarda et al., 2002; Follin et al., 2014]. The 

random nature of the stochastic DFN method may be regarded as an advantageous aspect, since 

uncertainty is unavoidable when analysing complex geological systems, for which single-valued 

predictions from deterministic methods may be more risky [Herbert, 1996]. However, it is still 

very important to continue improving the realism and accuracy of stochastic DFN models, since 

the predicted range from unrealistic DFNs can be systematically biased from the truth. 

Developments are needed towards a more thorough characterisation of the underlying statistics 

(e.g. multifractals for which a single scaling exponent is not sufficient [Berkowitz and Hadad, 

1997]), and a more precise and efficient generator to create DFNs respecting more details of real 

fracture systems, such as the diversity of individual fracture shapes and morphology [Pollard and 

Aydin, 1988], the topological complexity in fracture populations [Sanderson and Nixon, 2015] 

and the correlation between geometrical properties [Bour and Davy, 1999; Darcel et al., 2003c; 

Neuman et al., 2008]. The important difference between 2D and 3D fracture networks with 

respect to connectivity and permeability [Long et al., 1985; Bour and Davy, 1998; Lang et al., 

2014] renders another advantage of the stochastic method—its intrinsic capability to generate 3D 

networks. 

3.2.3 Geomechanically-grown fracture networks 

Extensive studies have been conducted to interpret the geological history and the formation 

mechanism behind field observations (e.g. patterns, statistics and minerals) of natural fracture 

systems [Engelder and Geiser, 1980; Segall and Pollard, 1983a; Pollard and Aydin, 1988; Olson 

and Pollard, 1989; Petit and Mattauer, 1995]. The increased knowledge of fracture mechanics 

[Pollard and Segall, 1987] promoted the development of geomechanically-based DFN models 
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that incorporate the physics of fracture growth and simulate fracture network evolution as a 

geometrical response to stress and deformation. By applying a geologically-inferred 

palaeo-stress/strain condition, natural fracture patterns may be reproduced by such a DFN 

simulator that progressively solves the perturbation of stress fields and captures the nucleation, 

propagation and coalescence of discrete fractures. Different numerical methods have been 

proposed and the one based on linear elastic fracture mechanics (LEFM) is frequently adopted. 

In the LEFM model, fracture patterns can be simulated by four main steps in an iterative 

fashion [Renshaw and Pollard, 1994; Paluszny and Matthäi, 2009]: (1) generation of initial flaws 

to mimic the process that natural fractures initiate from microcracks, (2) calculation of the 

perturbed stress field in the rock caused by the presence and evolution of fractures under an 

imposed boundary condition, (3) derivation of the stress intensity factor (KI) at the tip of each 

fracture, and (4) propagation of fractures which satisfy a growth criterion, e.g. a subcritical law 

KO ≤ KI ≤ KIC, where KO is the stress corrosion limit and KI is the material toughness [Atkinson, 

1984]. The stress field and stress intensity factor can be calculated based on analytical solutions 

[Renshaw and Pollard, 1994] or (most commonly) numerical methods such as the boundary 

element method (BEM) [Olson, 1993] and finite element method (FEM) [Paluszny and Matthäi, 

2009; Paluszny and Zimmerman, 2011]. The propagation length in each growth iteration can be 

derived according to a power law relation with the energy release rate G (related to KI) through 

the velocity exponent κ (or subcritical index n) [Atkinson, 1984], while the propagation angle 

may be computed if the curvature and coalescence effects are considered especially when the 

tectonic stress field is quite isotropic [Olson and Pollard, 1989]. 

The development of fracture networks is a sophisticated feedback-loop process, in which the 

complexity of growth dynamics is directly related to the complexity of the developing structures. 

Specifically, the propagation of a fracture is influenced by the mechanical interaction with others, 

and the propagated fracture geometries can conversely generate stress perturbations into the 

system. The mechanical interaction of fractures was found strongly dependent on the velocity 

exponent κ: an increased κ tends to promote a localised fracture pattern [Olson, 1993, 2004, 2007; 

Renshaw and Pollard, 1994; Renshaw, 1996]. The fracture pattern evolution is also affected by 

the attributes of the initial flaws (e.g. density [Renshaw and Pollard, 1994; Renshaw, 1996] and 
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orientation [Olson and Pollard, 1991]) and the 3D layer confinement effect [Olson, 2004, 2007]. 

Such a fracture mechanics model has been developed to mimic the evolution of a 2D single set 

of straight fractures (Fig. 3.5a) [Olson, 1993, 2004; Renshaw and Pollard, 1994], 2D orthogonal 

sets of straight fractures [Renshaw, 1996], 2D curved fracture patterns (Fig. 3.5b) [Olson and 

Pollard, 1989, 1991; Olson et al., 2007; Olson, 2007; Paluszny and Matthäi, 2009], and 3D 

curved fracture geometries (Fig. 3.5c) [Paluszny and Zimmerman, 2013]. The generated DFN 

pattern can be further used to evaluate the connectivity [Renshaw, 1996, 1999], permeability 

[Paluszny and Matthäi, 2010] and solute transport properties [Nick et al., 2011] of natural 

fracture systems. 

 

Fig. 3.5 Geomechanically-grown DFN patterns based on linear elastic fracture mechanics: (a) evolution of 

a 2D fracture set [Renshaw and Pollard, 1994], (b) development of a 2D polygonal fracture pattern [Olson 

et al., 2007] and (c) growth of 3D layer-restricted fractures [Paluszny and Zimmerman, 2013]. 

Apart from the LEFM approach, fracture patterns have also been simulated using other 

numerical methods. Cowie et al. [1993, 1995] developed a lattice-based rupture model to 
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simulate the anti-plane shear deformation of a tectonic plate and the spatiotemporal evolution of 

a multifractal fault system. Tang et al. [2006] used a damage mechanics FEM model to simulate 

the evolution of parallel, laddering or polygonal fracture patterns formed under different 

boundary conditions, i.e. uniaxial, anisotropic and isotropic tectonic stretch, respectively. Spence 

and Finch [2014] employed the discrete element method (DEM) to simulate the fracture pattern 

development in a sedimentary sequence embedded with stratified nodular chert rhythmites. 

Asahina et al. [2014] coupled the finite volume multiphase flow simulator (i.e. TOUGH2) and a 

lattice-based elasticity and fracture model (i.e. Rigid-Body-Spring Network) to simulate the 

desiccation cracking in a mining waste material under a hydromechanically coupled process. 

The geomechanically-grown DFN model, as a process-oriented approach, has the advantage 

of linking the geometry and topology of fracture networks with the conditions and physics of 

their formation. Another merit is the automatic correlation between the geometrical attributes 

(e.g. length, orientation, aperture and shear displacement) of individual fractures linked by the 

governing physics. To solve practical problems, such a DFN generator can be constrained by the 

measurement of rock properties (e.g. the subcritical index measured from core samples) and the 

information of geological conditions (e.g. stress, strain, pore pressure and diagenesis) to achieve 

rational predictions [Olson et al., 2001]. However, difficulty and uncertainty still exist in creating 

fracture patterns consistent with the real systems for which coupled tectonic, hydrological, 

thermal and chemical processes may be involved. 

3.3 Geomechanical modelling of fractured rocks 

The numerical methods for geomechanical modelling of fractured rocks can be categorised 

as continuum and discontinuum approaches with the classification based on their treatment of 

displacement compatibility [Jing, 2003]. The preference for a continuum or discontinuum 

modelling scheme depends on the scale of the problem and the complexity of the fracture system 

[Jing and Hudson, 2002]. The continuum approach has the advantage of its greater efficiency to 

handle large-scale problems with the effects of fractures implicitly incorporated, whereas the 

discontinuum method can explicitly model irregular fracture networks and include complex 

constitutive laws of rock materials and fractures, and capture the fracturing and fragmentation 

processes. In this section, commonly used models for simulating the geomechanical behaviour of 
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fractured rocks will be reviewed: continuum, block-type discontinuum, particle-based 

discontinuum and hybrid finite-discrete element approaches. It is worth mentioning that the 

classification here is not intended to be absolute, since the boundary between the continuum and 

discontinuum methods has become very vague. Some advanced continuum techniques have 

included contact algorithms and fracture mechanics to consider discontinuities, while many 

discontinuum models are able to deal with continuous deformations. 

3.3.1 Continuum models 

The conventional continuum approach treats a rock domain as a continuous body that can be 

solved by the finite element method (FEM) or finite difference method (FDM). It may be 

applicable for a fractured rock with only a few or a large number of fractures [Jing, 2003]. If the 

system consists of only a few discontinuities associated with only a small amount of 

displacement/rotation, the discrete fractures can be modelled by special “interface elements” (or 

“joint elements”) that are forced to have fixed connectivity with the solid elements [Goodman et 

al., 1968]. However, such a treatment is difficult to handle the dynamics and large displacement 

problems of natural fracture systems. When the density of DFN fractures is very high, the rock 

mass may be divided into a finite number of grid blocks assigned with equivalent properties 

derived from homogenisation techniques (Fig. 3.6a). The equivalent properties, such as bulk 

modulus and strength parameters, are usually calculated using empirical formulations that 

consider the degradation effect caused by pre-existing fractures [Hoek and Brown, 1997; 

Sitharam et al., 2001] or analytical solutions based on the crack tensor theory [Oda, 1983, 1984]. 

The crack tensor theory can calculate volume averaged parameters accounting for all fractures in 

a population with respect to their geometrical properties (e.g. length, orientation and aperture) 

and was extended to consider coupling between stress and fluid flow [Oda, 1986; Brown and 

Bruhn, 1998]. Such a crack tensor method has been integrated into the FEM [Oda et al., 1993; 

Kobayashi et al., 2001] and FDM [Rutqvist et al., 2013] solvers to model the geomechanical and 

hydromechanical behaviour of fractured rocks. The simulation results may be sensitive to the 

grid block discretisation especially when a block significantly smaller the representative 

elementary volume (REV) is adopted [Rutqvist et al., 2013]. The homogenisation-based 

continuum model may not adequately consider the connectivity effect of very long fractures that 
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penetrate numerous grid blocks and the results can be even worse if apertures are very 

heterogeneous and positively correlated with fracture lengths. Thus, it may not be applicable for 

a fractal fracture system with high variability in density distribution (i.e. a small fractal 

dimension D) and/or a large proportion of long fractures having a size comparable to the 

problem domain (i.e. a small power law length exponent a). Furthermore, the crack tensor 

method cannot consider the interaction between fractures and blocks as well as the resulting 

localised deformation and damage in the rock. The two conventional continuum schemes may be 

combined to explicitly model large discontinuities (e.g. dominant faults) using interface elements 

and then to characterise each isolated block as continuum bodies with bulk properties dependent 

on the distribution of small fractures. 

 

Fig. 3.6 (a) A continuum modelling scheme: a fracture network is divided into a finite number of grid 

blocks with equivalent properties determined analytically or numerically [Rutqvist et al., 2013], and (b) an 

extended continuum modelling scheme: the domain is discretised by a regular finite difference grid and 

fractures are represented by softening and weakening the grid elements intersected by fracture traces 

[Figueiredo et al., 2015]. 
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To more explicitly capture the effects of discrete fractures, an extended continuum model 

has been developed by assuming fractures to have certain numerical width (for connectivity 

preservation) and representing them as arrays of grid elements with softening and weakening 

properties in a very fine finite difference mesh (Fig. 3.6b) [Rutqvist et al., 2009; Figueiredo et al., 

2015]. It treats fracture and matrix as a composite elasto-plastic solid system, in which the failure 

of intact rocks or stress-displacement behaviour of fractures can be modelled by a 

Mohr-Coulomb criterion with tension cut-off. Similar “weak material” representation of 

fractures has also been implemented in the rock failure process analysis (RFPA) code (a damage 

mechanics FEM model) [Tham et al., 2004] and the cellular automation model [Pan et al., 2009]. 

Such a composite continuum model with explicit DFN representations may be more suitable for 

simulating cemented fractures (i.e. mineral filled veins), whereas the physical rationale is not 

intuitive if it is applied to unfilled discontinuities with clean wall surfaces. 

3.3.2 Block-type discontinuum models 

The block-type discontinuum models include the distinct element method (DEM) with an 

explicit solution scheme and the discontinuous deformation analysis (DDA) method with an 

implicit solution form. In this discontinuum modelling framework, the fractured rock is 

represented as an assemblage of blocks (i.e. discrete elements) bounded by a number of 

intersecting discontinuities. The geometry of the interlocking block structures can be identified 

first by e.g. employing the techniques of combinatorial topology [Jing, 2000]. In the subsequent 

mechanical computations, these blocks can be treated as rigid bodies or deformable subdomains 

(further discretised by finite difference/volume grids) with their interactions continually tracked 

by spatial detections during their deformation and motion processes. 

(i) Distinct element method (DEM) 

The DEM method was originated by Cundall [1971; 1988] and gradually evolved to the 

commercial codes UDEC and 3DEC for solving 2D and 3D problems [Itasca, 2013a, 2013b]. Its 

basic computational procedure can be summarised as four steps [Jing and Stephansson, 2007]: (1) 

the contact relations of multiple blocks are identified/updated through a space detection, (2) the 

contact forces between discrete bodies are computed based on their relative positions, (3) the 

acceleration induced by force imbalance for each discrete element is calculated using Newton’s 
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second law, and (4) the velocity and displacement are further derived by time integration with 

new positions determined. An explicit time marching scheme is applied to solve the problem 

iteratively until the block interaction process to be simulated has been completed. The 

mechanical interaction between blocks is captured by a compliant contact model that 

accommodates virtual “interpenetrations” governed by assumed finite stiffnesses to derive 

normal and tangential contact forces. The empirical joint constitutive laws derived from 

laboratory experiments [Bandis et al., 1983; Barton et al., 1985] can be implemented into the 

interaction calculation in an incremental form to simulate joint normal and shearing behaviour 

[Saeb and Amadei, 1990, 1992; Jing et al., 1994; Souley et al., 1995]. A viscous damping 

parameter may be introduced to reduce dynamic effects for modelling quasi-static conditions 

[Hart et al., 1988]. 

 

Fig. 3.7 Deformation of fractured rocks with (a) a relatively low fracture density of 5.25 m/m
2
 and (b) a 

high fracture density of 7.77 m/m
2
 under a uniaxial compression loading. (c) The deformability Bs of the 

fractured rock exhibits a power law scaling behaviour when the fracture density d exceeds the mechanical 

percolation threshold of 6.5 m/m
2
, which is higher than the geometrical threshold of 4.0-5.5 m/m

2
 of the 

study networks [Zhang and Sanderson, 1998]. 

The DEM approach is able to capture the stress-strain characteristics of intact rocks, the 

opening/shearing of pre-existing fractures and interaction between multiple blocks and fractures. 

Combined with DFN models, it has been widely applied to study the mechanical behaviour of 

fractured rocks. Zhang and Sanderson [1998] studied the critical behaviour of fractured rock 



54 

 

deformation and observed an abrupt increase in the deformability associated with a power law 

scaling when the fracture density exceeds the mechanical percolation threshold (slightly higher 

than the geometrical threshold) (Fig. 3.7). Min and Jing [2003] examined the scale dependency 

of the equivalent elastic properties of a fractured rock based on multiple DFN realisations 

conditioned by the same fracture statistics (Fig. 3.8). In their study, a technique to derive the 

fourth-order elastic compliance tensor has also been developed for equivalent continuum 

representations. Min and Jing [2004] further found the equivalent mechanical properties (i.e. 

elastic modulus and Poisson’s ratio) of fractured rocks may also be stress dependent. With the 

increase of stress magnitudes, the equivalent elastic modulus significantly increases, while the 

Poisson’s ratio generally decreases but can be well above 0.5 (i.e. the upper limit for isotropic 

materials). Noorian-Bidgoli et al. [2013] extended this DEM-DFN mechanical modelling 

approach to a more systematic framework to derive the strength and deformability of fractured 

rocks under different loading conditions, which is further applied to study the anisotropy 

[Noorian-Bidgoli and Jing, 2014] and randomness [Noorian-Bidgoli and Jing, 2015a] of the 

strength/deformability of stochastic DFNs. Recently, Le Goc et al. [2014] integrated 3D DFNs 

into the 3DEC simulator and investigated the effects of fracture density, sizes and orientations on 

the magnitude and scaling of the equivalent elastic modulus of fractured rocks. In addition, a 

considerable number of similar DEM-DFN models have been developed where the main motive 

is to study the effect of stresses on fluid flow. Such models were applied to explicitly capture the 

fracture opening, closing, shearing and dilational characteristics in complex fracture networks 

under in-situ stresses, after which the fluid flow implications were investigated [Zhang et al., 

1996; Zhang and Sanderson, 1996, 1998, 2004; Min et al., 2004b; Tsang et al., 2007; Baghbanan 

and Jing, 2008; Zhao et al., 2010, 2011] (more discussion is given section 3.4). Furthermore, 

some models that incorporate the pore fluid pressure show that the pore pressure level can also 

significantly influence the mechanical and hydraulic properties of fractured rocks [Sanderson 

and Zhang, 1999; Noorian-Bidgoli and Jing, 2015b]. 

The classic DEM formulation cannot simulate the propagation of new fractures in intact 

rocks driven by stress concentrations, although plastic yielding can capture some aspects of the 

rock mass failure process [Shen and Barton, 1997]. Such a shortcoming was recently addressed 
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by introducing a Voronoi polygonal discretisation in matrix blocks that allows fracturing along 

the internal “grain” boundaries governed by tensile and shear failure criteria [Damjanaca et al., 

2007; Kazerani and Zhao, 2010; Kazerani et al., 2012]. The DFN representation can also be 

integrated into the Voronoi DEM model using a dual-scale tessellation, in which the primary grid 

represents natural fractures and the secondary discretisation mimics microscopic structures 

[Ghazvinian et al., 2014]. 

 

Fig. 3.8 Variation of the elastic modulus of fractured rocks with the increase of the model size. The ratio 

of shear stiffness to normal stiffness of fractures is assumed to be 0.2. Results are computed using the 

block-type DEM simulator (UDEC) based on multiple DFN realisations [Min and Jing, 2003]. 

(ii) Discontinuous deformation analysis (DDA) 

The DDA method was first proposed by Shi and Goodman [1985, 1989, 1992] to compute 

the deformation and motion of a multi-block system. The discretisation of DDA models is quite 

similar to the one for the DEM, i.e. the medium is dissected into blocks by intersecting 

discontinuities. However, a fundamental difference between the two methods lies in their 

computational frameworks. The DEM treats kinematics of each block separately based on an 

explicit time-marching scheme, while the DDA calculates the displacement field based on a 
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minimisation of the total potential energy of the whole blocky system and an implicit solution to 

the established system of equations through a matrix inversion. Thus, the DDA method has an 

important advantage of fast convergence with unconditional numerical stability compared to the 

DEM method that requires a time step smaller than a critical threshold [Jing, 2003]. Important 

extensions of the original DDA method include the finite element discretisation of rock matrix 

[Jing, 1998], the sub-block technique (similar to the Voronoi DEM) for simulating fracturing 

processes [Lin et al., 1996], the formulation for modelling coupled solid deformation and fluid 

flow [Kim et al., 1999; Jing et al., 2001], and the development of 3D models [Jiang and Yeung, 

2004]. The mechanical behaviour of fractured rocks has also been investigated based on 

DDA-DFN simulations, with emphasis on studying the stability of underground excavations and 

slope engineering (Fig. 3.9) [Wu et al., 2004; Hatzor et al., 2004; Bakun-Mazor et al., 2009]. 

Recently, Tang et al. [2015] combined the RFPA (a damage mechanics FEM model) with the 

DDA method to capture crack propagations and block kinematics of a rock slope system. 

 

Fig. 3.9 (a) A fractured rock with a geologically-mapped DFN pattern, and (b) its dynamic collapsing 

process modelled by the DDA method [Hatzor et al., 2004]. 

3.3.3 Particle-based discontinuum models 

The particle-based discontinuum model was originally introduced by Cundall and Strack 

[1979] to simulate granular materials such as soils/sands and gradually evolved to a commercial 

code, i.e. particle flow code (PFC) [Itasca, 2014]. Similar to the block-type DEM method, PFC 

calculates the inertial forces, velocities and displacements of interacting particles by solving 

Newton’s second law through an explicit time-marching scheme. The discrete particles are 

assumed to be rigid with a circular (in 2D) or spherical (in 3D) shape, and can have variable 
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sizes which are usually much larger than the physical grain scale. To extend PFC to model rock 

materials, Potyondy and Cundall [2004] developed a bonded-particle model (BPM), in which 

intact rocks are represented as assemblages of cemented rigid particles and the macroscopic 

fracturing is simulated as the breakage of numerous microscopic cohesive bonds. The interaction 

between particles can be characterised by two types of bond models in PFC, i.e. the contact bond 

model and the parallel bond model. A contact bond serves as a linear elastic spring with normal 

and shear stiffness, and transmits forces via the contact point between two particles. A parallel 

bond with certain normal and shear strength joins two particles to resist against separation under 

tension, shear and rotation. The parallel bond model is more suitable for simulating rock 

materials as it can capture the tensile and shear failure as well as the resulting stiffness reduction. 

To overcome the original deficiency of PFC in reproducing a realistic rock strength ratio (i.e. the 

ratio of uniaxial compressive strength to tensile strength) and macroscopic friction angle, a 

hierarchical bonding structure can be built based on a cluster logic [Potyondy and Cundall, 2004] 

or a clump logic [Cho et al., 2007]. The cluster approach mimics the interlocking effect of 

irregular grains by defining a higher value of intra-cluster bond strength (i.e. the strength 

between particles in the same cluster) than that of the strength between cluster boundaries. The 

clump approach forces the particles of the same clump to displace and rotate as a rigid body (i.e. 

infinite intra-cluster bond strength). 

The BPM representation using particles with idealised circular/spherical shapes can 

introduce unphysical asperities on discontinuity surfaces, resulting in an additional resistance to 

frictional sliding. To suppress such an artificial roughness effect, a smooth-joint contact model 

(SJM) was proposed to simulate fracture wall behaviour based on the geometry and morphology 

of discontinuities and independent of the arrangement of local contact particles [Mas Ivars et al., 

2011]. The smooth contact is assigned to all particle pairs lying on the fracture interface but 

belonging to opposite matrix blocks, so that they can overlap and pass through each other (Fig. 

3.10a). The contact forces are calculated based on the relative displacements and the 

smooth-joint stiffness in the normal and tangential directions of the local surface. The SJM was 

found to be able to capture the shear strength and dilational behaviour of natural fractures 

associated with significant scale effects [Lambert and Coll, 2014; Bahaaddini et al., 2014]. By 
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simulating intact rocks using the BPM and discrete fractures using the SJM, a synthetic rock 

mass (SRM) modelling approach (Fig. 3.10b) has been developed to characterise the mechanical 

properties of fractured rocks including peak strength, damage, fragmentation, brittleness, 

anisotropy and scale effects [Mas Ivars et al., 2011]. Compared to the Hoek-Brown empirical 

approach for presumed isotropic rock masses, the SRM method that integrates explicit DFN 

representations has an advantage to derive the orientation-specific strength of naturally fractured 

rocks and consider the influence of fracture length distribution and connectivity [Poulsen et al., 

2015]. The SRM model has been applied to reproduce the failure behaviour of veined core 

samples under uniaxial compression tests [Vallejos et al., 2016], estimate the mechanical REV of 

a jointed rock mass near an underground facility [Esmaieli et al., 2010] and evaluate the stability 

of wedges around a vertical excavation in a hard rock [Hadjigeorgiou et al., 2009]. 

 

Fig. 3.10 Integration of (a) a smooth-joint contact model in PFC to achieve (b) synthetic rock mass (SRM) 

modelling of fractured rocks with stochastic DFN geometries [Mas Ivars et al., 2011]. 
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An open source particle-based modelling platform named YADE (Kozicki and Donzé, 

2008a, 2008b) has recently been developed as an alternative to the commercial code PFC. YADE 

represents intact rocks using glued discs/spheres and models the fracturing process based on the 

rupture of inter-particle bonds with the contact bond algorithms following a similar logic to PFC. 

To reproduce the high ratio of compressive to tensile strengths and the non-linear failure 

envelope of brittle rocks, the concept of “interaction range” was introduced by Scholtès and 

Donzé [2013]. They mimic the microstructural complexity by assembling constitutive particles 

in neighbouring zones (not only the particles in direct contact). A joint contact logic equivalent 

to the SJM has also been implemented in YADE to avoid the particle interlocking effects 

between sliding fracture surfaces [Scholtès et al., 2011]. By integrating 3D fractal DFNs into the 

YADE BPM model associated with the smooth joint contact treatment (Fig. 3.11), Harthong et al. 

[2012] studied the influence of fracture network properties (i.e. fractal dimension D, power law 

length exponent a and fracture intensity P32) on the mechanical behaviour of fractured rocks. The 

strength and elastic modulus of rock masses decrease if P32 increases (i.e. more fractures) or a 

decreases (i.e. higher proportion of larger fractures), while the spatial heterogeneity and scaling 

of the mechanical properties are affected by D. Such a combined BPM-DFN model has also been 

applied to analyse the stability of fractured rock slopes, which is controlled by the strengths of 

both pre-existing fractures and intact rocks [Scholtès and Donzé, 2012; Bonilla-Sierra et al., 

2015]. 

 

Fig. 3.11 Integration of (a) a fractal DFN into (b) the YADE bonded-particle model (BPM) for mechanical 

modelling of fractured rocks [Harthong et al., 2012]. 
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3.3.4 Hybrid finite-discrete element models 

The hybrid finite-discrete element method (FEMDEM or FDEM) combines the finite 

element analysis of stress/deformation evolution with the discrete element solutions of transient 

dynamics, contact detection and interaction. In such a discontinuum modelling scheme, the 

internal stress field of each discrete matrix block is calculated by the FEM solver, while the 

translation, rotation and interaction of multiple rock blocks are traced by the DEM algorithms. 

Pre-existing fractures in rocks are treated as the internal boundaries of rock volumes. The 

FEMDEM approach also provides a natural solution route to modelling the transitional 

behaviour of brittle/quasi-brittle materials from continuum to discontinuum (i.e. fracturing 

processes) by integrating fracture mechanics principles into the formulation. This section will 

review the two most commonly used FEMDEM models, i.e. the commercial software ELFEN 

[Rockfield, 2004] and an open source platform Y-code [Munjiza, 2004], which have been 

broadly used to simulate the mechanical processes in geological media containing pre-existing 

discontinuities. 

(i) ELFEN 

The ELFEN code models the degradation of an initial continuous domain into discrete 

bodies by inserting cracks into a finite element mesh. A nodal fracture scheme was introduced by 

constructing a non-local failure map for the whole system [Owen and Feng, 2001]. The 

feasibility of local failure is determined based on the evolution of nodal damage indicators. The 

fracturing direction (if failure occurs) is calculated based on the weighted average of the 

maximum failure strain directions of all surrounding elements. A new discrete fracture is then 

inserted along the failure plane with the local mesh topology updated through either the 

“intra-element” or “inter-element” insertion algorithm with adaptive mesh refinement applied if 

necessary [Klerck et al., 2004]. ELFEN provides various material constitutive models including 

the elastic, elasto-plastic and visco-plastic laws, and many brittle/quasi-brittle failure models 

including the rotating crack model, the Rankine material model, and the compressive fracture 

model (i.e. Mohr-Coulomb failure criterion coupled with a tensile crack model) [Owen et al., 

2004; Klerck et al., 2004]. The explicit DFN fracture geometries generated from e.g. FracMan 

can be imported into the ELFEN platform by embedding fracture entities into rock solids and 
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representing each fracture as opposed free surfaces [Pine et al., 2006, 2007]. To mesh such 

complex systems, special geometrical treatments may be involved to avoid ill-posed elements 

caused by subparallel fractures intersecting at a very small acute angle or a fracture tip 

terminating at the vicinity of another fracture [Rockfield, 2011]. Both pre-existing and newly 

propagated fractures are assigned with contact properties, e.g. fracture stiffness and friction 

coefficient, to simulate solid interactions through discontinuity surfaces [Pine et al., 2007]. The 

degradation of natural fractures during shearing can also be modelled by introducing roughness 

profiles [Karami and Stead, 2008]. 

 

Fig. 3.12 Integration of DFN geometries into the FEMDEM model of ELFEN for modelling strength of (a) 

a prefractured pillar [Pine et al., 2006] (note: σci is the uniaxial compressive strength of intact rocks, P21 

denotes the fracture intensity, i.e. total length of fractures per unit area) and (b) an open pit slope 

[Vyazmensky et al., 2010b]. 

The combined FEMDEM-DFN model has been applied to tackle the geomechanical 

problems for various engineering applications [Elmo et al., 2013]. The presence of natural 

fractures may dominate the strength of slender pillars but have a reduced influence for wider 

pillars (Fig. 3.12a) [Pine et al., 2006]. The orientation and length distribution of DFN fractures 

also affect the failure mode of the pillar structures, which can exhibit splitting with lateral 
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kinematic releases or shearing of critically inclined pre-existing fractures linked by new cracks 

through intact rock bridges [Elmo and Stead, 2010]. This synthetic numerical model has also 

been used to investigate the progressive failure of rock slopes (Fig. 3.12b) [Vyazmensky et al., 

2010a], which in reality is usually triggered by both the reactivation of natural fractures and the 

propagation of new cracks [Eberhardt et al., 2004]. The FEMDEM model is well suited to mimic 

the staged failure processes of rock slopes including initiation, transportation/comminution and 

deposition, which involve yielding and fracturing of intact materials, shearing of fracture 

surfaces and translational/rotational instabilities [Stead et al., 2006]. The rock mass fabrics and 

rock bridge properties can have important influences on the stability of large-scale open pit 

slopes [Vyazmensky et al., 2010a]. The caving-induced rock mass deformations and associated 

surface subsidence may be controlled by the orientation of joint sets and the location/inclination 

of major faults [Vyazmensky et al., 2010b]. All these engineering applications highlighted the 

advantage of the FEMDEM-DFN technique with explicit characterisations of the 

reactivation/interaction of pre-existing fractures and initiation/propagation of new cracks. 

(ii) Y-code 

During the 1990s, many algorithmic solutions for 2D and 3D FEMDEM simulation were 

developed by Munjiza et al. [1995, 1999] and Munjiza and Andrews [1998, 2000]. Extensive 

developments and applications of the FEMDEM method have been conducted after the release of 

the open source Y-code [Munjiza 2004], and different versions have emerged including the code 

developed collaboratively by Queen Mary University and Los Alamos National Laboratory 

[Munjiza et al., 2011, 2015; Rougier et al., 2014], the Y-Geo program by Toronto University 

[Mahabadi et al., 2010, 2012; Lisjak and Grasselli, 2014], and the VGeST (recently renamed 

“Solidity”) platform by Imperial College London [Xiang, 2009a, 2009b; Munjiza et al., 2010; 

Latham et al., 2013]. The FEMDEM model of Y-code accommodates the finite strain elasticity 

coupled with a smeared crack model and is able to capture the complex behaviour of fractured 

rocks involving deformation, rotation, interaction, fracturing and fragmentation. 

In the Y-code, the fractured rock is represented by a discontinuous discretisation of the 

model domain using three-noded triangular (in 2D) or four-noded tetrahedral (in 3D) finite 

elements and four-noded (in 2D) or six-noded (in 3D) joint elements embedded at the interfaces 
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of finite elements. An important difference with the ELFEN code is that the joint elements are 

inserted for all edges (in 2D) or surfaces (in 3D) of finite elements. The deformation of the bulk 

material is captured by the linear-elastic constant-strain finite elements with the impenetrability 

enforced by a penalty function and the continuity constrained by a constitutive relation [Munjiza 

et al., 1999], while the interaction of matrix bodies through discontinuity interfaces is simulated 

by the penetration calculation [Munjiza et al., 2000]. The joint elements are created and 

embedded between triangular/tetrahedral element pairs before the numerical simulation, and no 

further remeshing process is performed during later computations. Pre-existing fractures can be 

represented by a series of joint elements which are initially overlapped (but opposite sides are 

separately defined) free surfaces [Latham et al., 2013]. The brittle failure of intact materials is 

governed by both fracture energy parameters (for mode I and mode II failure) and strength 

properties (e.g. tensile strength, internal friction angle and cohesion) [Lisjak and Grasselli, 2014]. 

A numerical calibration can be conducted to achieve consistency between the input material 

strength parameters and simulated macroscopic response [Tatone and Grasselli, 2015]. Code 

development for modelling 3D crack propagation has also been achieved by different research 

groups [Rougier et al., 2014; Mahabadi et al., 2014a; Guo et al., 2015, 2016]. 

 

Fig. 3.13 FEMDEM-DFN modelling results. (a) Failure of anistropic argillaceous rock samples under 

uniaxial compression test [Lisjak et al., 2014c]. (b) Variation of fracture apertures in a 

geologically-mapped DFN network that accommodates further new crack propagations in response to a 

biaxial stress condition [Latham et al., 2013]. 



64 

 

The advantage of the FEMDEM model for simulating the degradation of continuum into 

discrete pieces promoted the application to tackle various engineering problems, such as rock 

blasting [Munjiza et al., 2000], fracture development around excavations in isotropic/anisotropic 

intact rocks [Lisjak et al. 2014a, 2014b, 2015a, 2015b] and mountain slope failure [Barla et al., 

2011]. It has also been used to model the mechanical behaviour of fractured rocks embedded 

with pre-existing fractures. Lisjak et al. [2014c] integrated DFN crack arrays into the FEMDEM 

model to imitate the anisotropy of an argillaceous rock. Latham et al. [2013] applied the 

FEMDEM technique to model a geologically-mapped DFN system under various stress 

conditions, and captured realistic geomechanical phenomena such as deformation and rotation of 

matrix blocks, opening, shearing, and dilation of pre-existing fractures as well as new crack 

propagation. However, the original FEMDEM model is only equipped with the conventional 

Coulomb friction law [Munjiza, 2004; Munjiza et al., 2011; Xiang et al., 2010b], which requires 

further code development to account for the complex constitutive behaviour of natural fractures 

associated with roughness characteristics and size effects. 

3.4 Impacts of geomechanical behaviour on fluid flow 

The presence of fractures can generate stress perturbations in the rock, such as rotation of 

stress fields, stress shadows around discontinuities and stress concentration at fracture tips 

[Pollard and Segall, 1987]. The resulting heterogeneous stress distribution may lead to variable 

local normal/shear stresses loaded on different fractures having distinct sizes and orientations, 

and produce various fracture responses such as opening, closing, sliding, dilatancy and 

propagation. Since the conductivity of fractures is critically dependent on the third power of 

fracture apertures [Witherspoon et al., 1980], the geomechanical conditions can considerably 

affect the hydraulic properties of fractured rocks including fluid pathways, bulk permeability and 

mass transport [Tsang et al., 2007]. Numerical models that integrate explicit DFNs and 

non-linear rock/fracture constitutive laws provide powerful (and so far irreplaceable) tools to 

investigate the geomechanical effects on fluid flow in complex fracture networks [Jing et al., 

2013]. 
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3.4.1 Fluid pathways 

Fracture networks usually serve as the major pathways for fluid migration in subsurface 

rocks, especially if the matrix is almost impermeable compared to the fractures [Berkowitz, 

2002]. The partitioning of fluid flow within a fracture population relies on the spatial 

connectivity of fracture geometries and the transmissivity of individual fractures, both of which 

can be affected by the geomechanical conditions. 

 

Fig. 3.14 Fluid pathways in fracture networks under in-situ stresses. (a) With the increase of the boundary 

stress ratio, fluid flow becomes more concentrated in only part of the fractures in the network due to the 

shear dilation effect [Min et al., 2004b]. (b) The vertical fluid flow through a jointed layer exhibits a 

highly localised pattern when the fractured rock is deformed under a critical stress state [Sanderson and 

Zhang, 1999]. 

Zhang et al. [1996] used the UDEC DEM code to study the deformation of a fractured rock 

based on a geologically-mapped DFN pattern and found the closure of fractures under applied 

in-situ stresses can re-organise the fluid pathways. They also found the closed joints of one set 
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can hinder fluids from passing through not only themselves but open fractures of another set due 

to the net effect. Zhang and Sanderson [1996] applied the same technique to different types of 

outcrop DFN patterns with/without systematic fracture sets. The fluid flow in systematic fracture 

networks tend to be dominated by the primary joint set if it is relatively open, while for 

non-systematic networks containing fairly randomly oriented small fractures, the flow channels 

tend to align the direction of the maximum principal stress. Min et al. [2004b] incorporated the 

fracture shear dilation behaviour in the DEM modelling of a stochastic DFN with a power law 

distribution of fracture lengths and a uniform distribution of initial (i.e. zero stress) apertures. 

They observed that, under high differential stresses, a small portion of fractures which have 

critical/near-critical orientations, good connectivity and long lengths would dilate and form large 

flow channels (Fig. 3.14a). The “critical orientations” here correspond to a range of fracture 

orientations that would allow discontinuities with no cohesive strength to slide under the given 

in-situ differential stress condition. The localised features would be augmented if the initial 

apertures are broadly distributed (e.g. following a lognormal distribution) and correlated with 

fracture lengths [Baghbanan and Jing, 2008]. Latham et al. [2013] employed the FEMDEM 

method integrated with a smeared crack model to study the geomechanical response and fluid 

flow in an outcrop-based DFN. They found that bent natural fractures under high differential 

stresses may exhibit evident dilational jogs and can be linked by newly propagated cracks to 

form major fluid pathways. Similar localised flow channels created by the connection of 

pre-existing fractures have also been observed by Figueiredo et al. [2015] using a FDM 

simulator. Sanderson and Zhang [1999, 2004] calculated the fluid flow in the third dimension of 

sedimentary rocks using an analytical pipe formula based on the deformed 2D fracture networks. 

They found vertical flow becomes extremely localised when the pore fluid pressure exceeds a 

critical level and very large aperture channels emerge (Fig. 3.14b). The flow distribution also 

exhibits significant multifractality when the loading condition approaches the critical state. 

3.4.2 Permeability 

There are two different notions of rock mass permeability, i.e. equivalent permeability and 

effective permeability. The equivalent permeability is defined as a constant tensor in Darcy’s law 

to represent flow in a heterogeneous medium, while the effective permeability is an intrinsic 
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material property based on the existence of an REV at a large homogenisation scale [Renard and 

de Marsily, 1997]. Permeability here mainly refers to the equivalent permeability of a fractured 

rock at a specific study scale. 

The permeability tensor was observed to be highly dependent on both the geometrical 

attributes of fracture networks (e.g. density, lengths and orientations) and the in-situ stress 

conditions (e.g. direction, magnitude and ratio of the principal stresses) [Zhang et al., 1996]. 

When the differential stress ratio is relatively low, the permeability decreases with the increase 

of burial depth (or mean stress) of the fractured rock due to the closure of most fractures [Zhang 

and Sanderson, 1996; Min et al., 2004b]. The non-linear relationship between normal stress and 

fracture closure results in a phenomenon that the permeability is more sensitive at shallower 

depths (i.e. smaller mean stresses) and approaches a minimum value when most fractures are 

closed to their residual apertures under high mean stresses (Fig. 3.15a) [Min et al., 2004b]. The 

permeability anisotropy of a fracture network with non-systematic fractures is more dependent 

on the ratio and direction of applied principal stresses than that of a network with systematic 

fracture sets which is more controlled by the fracture set orientations [Zhang and Sanderson, 

1996]. With the increase of differential stresses, the permeability exhibits a decrease and then an 

abrupt increase separated by a critical stress ratio that begins to cause continued shear dilations 

along some preferentially oriented fractures (Fig. 3.15b) [Min et al., 2004b]. A similar variation 

of permeability occurs when the pore fluid pressure is elevated [Figueiredo et al., 2015]. 

Simultaneously, the permeability anisotropy is also enlarged by the increased stress ratio [Min et 

al., 2004b]. If initial apertures are correlated with fracture lengths, the permeability of fractured 

rocks is dominated by larger fractures with wider apertures. This model tends to exhibit a 

permeability value much higher than the constant initial aperture model (Fig. 3.15c&d) 

[Baghbanan and Jing, 2008]. The permeability tensor may be destroyed but then reestablished 

with the increase of differential stresses [Baghbanan and Jing, 2008]. In addition to the shear 

dilation of fractures, the increase of network connectivity caused by brittle failure and crack 

propagation under geomechanical loading can also significantly raise the permeability of 

fractured rocks [Renshaw, 1996; Paluszny and Matthäi, 2009; Latham et al., 2013; Figueiredo et 

al., 2015]. More interestingly, the emergence of dilational jogs/bends in response to high 
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differential stresses may lead to even more increase of permeability in the third dimension 

[Sanderson and Zhang, 1999, 2004]. It has to be mentioned that an increased fracture density 

may not always lead to an increased permeability under some tectonic conditions (e.g. an 

extensional regime), because fractures may be closed due to mechanical interactions when they 

are too densely spaced [Bai and Pollard, 2001]. 

 

Fig. 3.15 Variation of permeability of fractured rocks in response to the change of stress conditions. (a) 

Permeability change versus stress change with a fixed principal stress ratio of 1.3 [Min et al., 2004b]. (b) 

Permeability change with the increase of stress ratio for a DFN with a constant initial aperture [Min et al., 

2004b]. (c) and (d) Permeability change with the increase of stress ratio for a DFN with a lognormally 

distributed and length correlated apertures under rotated stress fields [Baghbanan and Jing, 2008]. 
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3.4.3 Transport 

Mass transport in fractured rocks is governed by various mechanisms including advection, 

dispersion, matrix diffusion, interface sorption and chemical reaction [Bear et al., 1993; 

Berkowitz, 2002]. The heterogeneous fluid velocity fields in geological media consisting of 

distributed fractures and porous rocks can result in complex transport phenomena in the system. 

Computational models employing solute components or tracked particles have been developed to 

simulate migration processes in fractured rocks [Moreno et al., 1988; Tsang and Neretnieks, 

1998]. Recently, numerical studies have also been conducted to investigate the effects of the 

stress/deformation on the transport properties of fracture networks, as summarised below. 

Zhao et al. [2010] coupled the UDEC DEM code and a random walk particle tracking code 

PTFR and investigated the stress effects on the hydrodynamic dispersion of contaminant solutes 

in a stochastic DFN system. They found that compressive stresses can close fracture apertures 

and attenuate the dispersivity, but an increased differential stress ratio could greatly intensify the 

spreading phenomenon if it exceeds certain threshold for triggering shear dilations. Zhao et al. 

[2011] extended this modelling technique to incorporate the effects of matrix diffusion and 

sorption, and conducted a systematic study of the solute transport under various stress conditions. 

Their results showed that the stress can significantly affect the solute residence time in the 

fracture network (Fig. 3.16a). When the stress ratio is increased but not very high (<3), the 

breakthrough curve shifts to the right direction (i.e. the average residence time increases) 

compared to the initial no stress condition, due to the closure of fractures under relatively 

isotropic stresses. However, as the stress ratio exceeds 3, fluid velocity is raised drastically in 

some dominant channels formed by dilated fractures due to shearing, and thus the residence time 

decreases with the breakthrough curve shifting backward. They also observed that the 

breakthrough curve for interacting tracers (i.e. with matrix diffusion) exhibits longer tails than 

that for non-interacting tracers (i.e. without matrix diffusion) due to the meandering of a small 

amount of particles passing through tortuous fluid pathways. Such long tail phenomena were 

more significant when the pressure gradient is small, for which the matrix diffusion tends to play 

a dominant role in solute transport (Fig. 3.16b). Rutqvist et al. [2013] used an extended multiple 

interacting continua model combined with the crack tensor approach to simulate the 
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advection-dominated transport (under high hydraulic gradients) and diffusion-retarded transport 

(under low hydraulic gradients). In addition to the stress-dependent transport behaviour, they 

also observed a delayed breakthrough in low pressure gradient scenarios due to the residence of 

solutes in the porous rock matrix. Wang et al. [2014] further applied this multicontinuum method 

to demonstrate the contribution of inactive fractures (i.e. isolated cracks or dead ends of fractures) 

for stagnating solutes by providing additional surface areas for diffusive transfer into/out of 

matrix pores. Zhao et al. [2013] compared the stress-flow models of five different research 

groups, which showed consistency in predicting the stress-dependency of mass transport in a 

fractured rock. Apart from the stress-induced aperture change that can affect the transport 

behaviour, Nick et al. [2011] found that the propagation of fractures under tectonic loading can 

also vary the breakthrough properties due to the increased fracture density and network 

connectivity. 

 

Fig. 3.16 Breakthrough curves for interacting tracers (i.e. with matrix diffusion) in a 2D DFN network 

stressed by various ratios of horizontal to vertical stresses (i.e. K) under a horizontal hydraulic pressure 

gradient of (a) 1 × 10
4
 Pa/m, and (b) 10 Pa/m [Zhao et al., 2011] (note: c0 is the initial concentration along 

upstream boundary, c is the concentration observed at the downstream boundary, K = 0 denotes a zero 

stress condition, and the two figures have different time scales). 

3.5 Discussion 

Modelling the geomechanical evolution and resulting hydraulic characteristics of fractured 

rocks is a challenging issue. Previous studies have demonstrated the importance of integrating 

natural fractures to better characterise the rock mass properties under tectonic stresses or 
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engineering perturbations (more detailed reviews can be found in Elmo et al. [2013] and Jing et 

al. [2013]). However, the simulation results rely highly on the accuracy of the constructed 

fracture networks as well as the implemented constitutive laws for natural fractures [Jing, 2003]. 

The three types of DFN models exhibit distinct strengths but may all suffer from some 

limitations, as listed in Table 3.1. The geologically-mapped DFN method can preserve many 

realistic features of fractures but is hard to characterise deep rocks and 3D structures. The 

stochastic DFN approach has the merits of simplicity and efficiency as well as applicability for 

3D problems. However, its strong geological hypotheses of fracture geometries and topologies 

that tend to ignore some important underlying mechanical and tectonic constraints may result in 

large uncertainties. The geomechanical DFN models, which may capture some mechanical 

characteristics of natural fractures, are sensitive to the assumed/measured rock properties and 

inferred palaeostress fields. If they are to be improved to become the preferred useable model, 

they may need to couple with hydraulic, thermal and chemical mechanisms to reproduce actual 

geological systems. To generate better fracture networks, a future research direction that is 

attracting much effort is the development of hybrid DFN models that assimilate the advantages 

of different approaches. Some of the current DFN models have already exhibited such features. 

For example, Kattenhorn and Pollard [2001] used mechanical simulation to correct the 3D fault 

structures interpreted from seismic survey data. In the sequential stochastic DFN model by Davy 

et al. [2013], fractures develop following the subcritical growth law and their interactions are 

governed by an arrest mechanism. 

The geomechanical modelling of fractured rocks can be achieved by continuum or 

discontinuum approaches, which have important differences in conceptualising geological media 

and treating displacement compatibility [Jing, 2003]. A detailed comparison of continuum and 

discontinuum models is presented in Table 3.1. The continuum modelling scheme mainly reflects 

the material deformation of a geological system from a more overarching view and attempts to 

bypass the geometrical complexity by using specific constitutive laws and equivalent material 

properties derived from homogenisation techniques. However, it cannot adequately consider the 

effects of stress variations, fracture interactions, block displacements and rotations. More 

importantly, the applicability of a homogenisation process is based on the assumption of an REV, 
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which may not exist for natural fracture systems usually having no characteristic length scale 

[Bonnet et al., 2001]. On the other hand, the discontinuum scheme treats the system as an 

assemblage of interacting individual components and permits the integration of complex 

constitutive laws for rock materials and fracture interfaces. A discontinuum model can be 

established at a specific scale of investigation without presuming the existence of an REV. 

However, some of the input parameters (e.g. bonding strength, joint stiffness) may need to be 

determined by indirect numerical calibrations rather than from physical measurements. 

Furthermore, the computational time for solving discontinuous problems can be considerably 

larger than that for continuum models. To take advantage of the two modelling technologies for 

tackling practical issues, a discontinuum model can be used to derive the REV size (if it exists) 

as the onset to treat a geological system as a continuum. 

The stress-dependent hydraulic properties of fractured rocks as observed in numerical 

simulations demonstrate the importance of using explicit DFN representations and incorporating 

geomechanical modelling for characterising fluid flow in natural fracture systems. The results 

show consistency with field measurements, e.g. commonly only a small portion of fractures are 

conductive [Tsang and Neretnieks, 1998; Follin et al., 2014], permeability is less sensitive in 

deep rocks [Rutqvist and Stephansson, 2003], and critically stressed faults tend to have much 

higher hydraulic conductivity [Barton et al., 1995; Zoback, 2007]. The results of 

stress-dependent permeability and solute transport behaviour of fractured rocks have important 

implications for the groundwater industry [Bear et al., 1993], reservoir engineering [Zoback, 

2007] and nuclear waste management [Tsang et al., 2005, 2015]. More effort will be needed in 

the future for various aspects, such as developing more advanced coupling schemes, modelling 

geomechanical effects on multiphase slow (i.e. Darcy) or inertia-dominated flow and importantly, 

extension to 3D work. Another critical issue is to develop appropriate upscaling approaches to 

fracture network models to evaluate large-scale behaviour, which may require preservation of 

geostatistical and geomechanical characteristics. Some techniques have been proposed to 

construct heterogeneous continuum models using upscaled stress-dependent permeability tensors 

for local grid blocks [Zhang and Sanderson, 1999; Blum et al., 2005, 2009]. 
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3.6 Concluding remarks 

To sum up, this chapter began by presenting an overview of various discrete fracture 

network (DFN) models for simulating the geometry and topology of natural discontinuity 

systems. Different continuum and discontinuum models that integrate DFN geometries to 

simulate the geomechanical behaviour of fractured rocks were then surveyed. Numerical results 

of the fracture-dependent mechanical response and stress-dependent hydraulic characteristics of 

fractured rocks suggest that it is important to use explicit DFN representations and conduct 

geomechanical computations to better characterise the bulk behaviour (e.g. strength, deformation, 

permeability and mass transport) of highly disordered geological systems containing naturally 

occurring discontinuities. 

Several outstanding issues were identified by undertaking this review, according to which 

the main objectives of this PhD research are designed. To model the complex geomechanical 

behaviour of natural fractures associated with intrinsic asperities, a joint constitutive model is 

implemented into the “in-house” solid mechanics code, i.e. 2D/3D FEMDEM Y-code (Chapter 

4). To examine the uncertainty of stochastic DFNs, the geomechanical responses of a 2D natural 

fracture network and its Poisson DFN equivalents are simulated and compared, with their 

stress-dependent permeability further evaluated (Chapter 5). To estimate the hydromechanical 

properties of larger scale fractured rocks, an upscaling approach is developed to extrapolate the 

geometry and apertures of a small-scale 2D fracture network to larger domains (Chapter 6). To 

explore the stress effects on fluid flow in 3D systems, a 3D FEMDEM model that integrates a 

stress-induced aperture model is developed to simulate an idealised 3D persistent fracture 

network (Chapter 7), while an extended 3D code that can also mimic new crack propagations is 

employed to model a 3D sedimentary layer embedded with realistic joint sets (Chapter 8). The 

importance of using explicit DFN representations in geomechanical modelling of fractured rocks 

is further demonstrated in a numerical study of the damage evolution around an underground 

excavation (Chapter 9). 
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Table 3.1 Comparison of different numerical models for geometrical and geomechanical modelling of natural fracture networks. 

Numerical models Key inputs Strengths Limitations 

Geometrical modelling 

Geological DFNs Analogue mapping, borehole 

imaging, aerial photographs, 

LIDAR scan or seismic survey 

 Deterministic characterisation of a fracture system 

 Preservation of geological realisms 

 Limited feasibility for deep rocks 

 Difficulty in building 3D structures 

 Constraints from measurement scale and resolution 

Stochastic DFNs Statistical data of fracture 

lengths, orientations, locations, 

shapes and their correlations 

o Simplicity and convenience 

o Efficient generation 

o Applicability for both 2D and 3D 

o Applicability for various scales 

o Uncertainties in statistical parameters 

o Oversimplification of fracture geometries and topologies 

o Requirement of multiple realisations 

Geomechanical DFNs Palaeostress conditions, rock 

and fracture mechanical 

properties 

 Linking geometry with physical mechanisms 

 Correlation between different fracture attributes 

 Uncertainties in input properties and tectonic conditions 

 Large computational time 

 Negligence of hydraulic, thermal and chemical processes 

Geomechanical modelling 

Continuum models Equivalent material properties  Simplicity of geometries 

 Efficient calculation 

 Suitability for large-scale industrial applications 

 No consideration of fracture interaction, block 

displacement/interlocking/rotation 

 Complexity in deriving equivalent material parameters 

and constitutive laws 

 Valid only if an REV exists 

Block-type & 

particle-based 

discrete models 

Material properties for both 

fractures and rocks, damping 

coefficient, bonding strengths 

o Explicit integration of DFNs 

o Simple particle/grain bonding logic 

o Integrated constitutive laws for rocks/fractures 

o Capturing the interaction of multiple fractures 

o Limited data on joint stiffness parameters 

o Calibration of input particle bonding properties 

o No fracture mechanics principle 

o Large computational time 

Hybrid FEMDEM 

models 

Material properties for both 

fractures and rocks, fracture 

energy release rate, damping 

coefficient 

 Explicit integration of DFNs 

 Fracture propagation is based on both the strength 

criterion and fracture mechanics principles 

 Integrated constitutive laws for rocks/fractures 

 Capturing the interaction of multiple fractures 

 Calibration of fracture energy release rates 

 Large computational time 
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4 The finite-discrete element method combined with a 

joint constitutive model 

4.1 Introduction 

During the 1990s, many algorithmic solutions for discontinuum problems in both 2D and 3D, 

which later became known as the combined finite-discrete element method (FEMDEM), were 

developed by Munjiza et al. [1995, 1999] and Munjiza and Andrews [1998, 2000]. Extensive 

development and application of the FEMDEM method has been conducted during the past few 

decades, as has been reviewed in Chapter 3. The FEMDEM method has proven its capability in 

capturing large strain deformation, multibody interaction, fracture and fragmentation [Munjiza, 

2004; Munjiza et al., 2011]. However, to model rock fractures associated with intrinsic surface 

asperities, an extension of the FEMDEM formulation may be important in order to consider 

complex fracture behaviour with respect to shear strength, normal opening/closure and shear 

dilatancy as well as important size effects. 

To describe the behaviour of individual fractures associated with surface roughness, 

empirical joint constitutive laws have been developed based on experimental studies. Goodman 

[1976] proposed a hyperbolic relation to characterise the non-linear closure of fractures under 

normal compression and studied the effect of mismatch between opposite sides of rough joint 

walls. Barton and Choubey [1977] introduced an empirical system based on three main index 

parameters, i.e. joint roughness coefficient (JRC), joint wall compressive strength (JCS) and 

residual friction angle, to predict the shear strength of natural fractures. These parameters can be 

measured based on a visualisation comparison chart or from laboratory tilt tests or shear box 

experiments. Bandis et al. [1983] summarised a series of empirical equations to interpret the 

deformation characteristics of rock joints in normal loading and direct shear experiments. The 

effects of size on shear strength and deformation characteristics of individual fractures were also 

investigated based on laboratory experiments of natural fracture replicas that were cast at 

different sizes [Bandis, 1980; Bandis et al., 1981; Barton, 1981]. Fractures having the same 

roughness characteristics but different sizes may exhibit distinctly different mechanical 
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responses. A longer sample tends to exhibit lower stiffness and less dilation than a shorter one 

with the same JRC value [Barton and Bandis, 1980; Barton, 2013]. The empirical joint 

constitutive law was recently improved to capture the stress-dependency of peak shear 

displacement [Asadollahi and Tonon, 2010]. 

The objective of this study is to develop a methodology to incorporate such an empirical 

joint constitutive model (JCM) into the FEMDEM framework for modelling the geomechanical 

behaviour of fractured rocks with both pre-existing and propagating fractures. The effect of 

fracture closure and dilatancy under in-situ or engineering-induced stress changes is highly 

crucial for fluid flow. Therefore, both the implicitly captured microscale roughness effect by the 

JCM and the explicitly resolved fracture network topology by the FEMDEM must be included to 

give realistic fracture behaviour. 

4.2 Finite-discrete element method (FEMDEM) 

4.2.1 Mesh discretisation 

The combined fracture-matrix solid system of a 2D fractured rock (Fig. 4.1a) is represented 

by a discontinuous discretisation of the model domain using three-noded triangular finite 

elements and four-noded joint elements embedded between edges of triangular elements (Fig. 

4.1b). There are two types of joint elements: cohesive (i.e. unbroken) joint elements and fracture 

(i.e. broken) joint elements. The deformation of the bulk material is captured by the linear-elastic 

constant-strain triangular finite elements with the impenetrability enforced by a penalty function 

and the continuity constrained by a constitutive relation for cohesive joint elements [Munjiza et 

al., 1999], while the interaction of matrix bodies through discontinuity interfaces is simulated by 

the penetration calculation [Munjiza et al., 2000] along fracture joint elements. Construction of 

cohesive joint elements is achieved by a detachment algorithm based on the original continuous 

configuration between triangular elements in the matrix domain, whereas formation of fracture 

joint elements is realised based on the initial configuration of overlapping edges of the opposite 

triangular elements along pre-existing fractures. The joint elements (either broken or unbroken) 

are created and embedded between the edges of triangular element pairs before the numerical 

simulation, and no further remeshing process is performed during later computations. 

Propagation of new fractures is modelled by the transition of cohesive joint elements to fracture 
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joint elements in an unstructured grid system. 

 

Fig. 4.1 Representation of (a) a 2D fracture-matrix solid system using a mesh consisting of (b) 

three-noded triangular elements and four-noded cohesive/fracture joint elements embedded between edges 

of triangular elements. (c) Displacements of a joint element (either unbroken or broken) characterised by 

the geometrical configuration of its nodal system. 

The two opposite edges of a joint element (either unbroken or broken) are assumed initially 

overlapped, so that the displacements of a joint element during the modelling process can be 

calculated based on its current nodal coordinates. As shown in Fig. 4.1c, deformation of the joint 

element AB-A’B’ is calculated by a vector of coordinate difference between the mid-points (i.e. 

C and C’) of the opposite edges, given by 

   BB'AA'CC'
2

1

2

1
ˆ xxxxv       (4.1) 

where xA, xA’, xB, xB’ are 2×1 arrays of the corresponding nodal coordinates. The median line of 

the joint element can be represented by a vector as 
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based on which a local orthogonal coordinate system can be established with mutually unit base 

vectors defined by 
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Thus, the normal displacement δn and shear displacement δs of unbroken joint elements can be 

calculated as 
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For a broken joint element, its opening displacement w and shear displacement u can be similarly 

calculated as 
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4.2.2 Governing equation 

The motions of elements are controlled by the forces acting on elemental nodes and the 

governing equation is given by [Munjiza, 2004]: 

extint ffxM          (4.5) 

where M is the lumped nodal mass matrix, x is the vector of nodal displacements, fint are the 

internal nodal forces induced by the deformation of triangular elements (section 4.2.3), fext are 

the external nodal forces including external loads fl contributed by boundary conditions and body 

forces, cohesive bonding forces fb caused by the deformation of cohesive joint elements (section 

4.2.4), and contact forces fc generated by the contact interaction via broken joint elements 

(section 4.2.5). The equations of motion of the FEMDEM system are solved by an explicit time 

integration scheme based on the forward Euler method. 

4.2.3 Continuum stress and deformation 

The stress field of constant-strain triangular elements is solved by the finite strain 

formulation that treats deformations involving rotations and strains [Munjiza et al., 1995]. 

Assume a triangular element moves from an initial position xi to the current position xc in the 2D 

Euclidean space. The deformation gradient F is given by: 
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and the velocity gradient L is given by: 
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         (4.7) 

The left Cauchy-Green strain tensor B is calculated by: 

T
FFB           (4.8) 

and the rate of deformation tensor D is obtained by: 

 T

2

1
LLD          (4.9) 

The Green-St. Venant strain tensor E is derived as: 

 IBE 
2

1
         (4.10) 

The second-order Cauchy stress tensor T for general viscoelastic materials is calculated based on 

the neo-Hookean constitutive law as given by: 

  DIEET    tr2G        (4.11) 

where G and λ are Lamé constants, η is the viscous damping coefficient, I is the identity matrix, 

tr(E) is the trace of E. Viscous damping is numerically included to consider energy dissipation 

caused by non-linear material behaviour or to simulate quasi-static processes using dynamic 

relaxation [Lisjak and Grasselli, 2014]. The internal nodal forces fint exerted on the edge of a 

triangular element are given by: 

nTf 
int         (4.12) 

where n is the normal vector of the edge of a triangular element. 

4.2.4 Cohesive zone model 

The elasto-plastic fracturing behaviour of geological rock materials is modelled by a 

cohesive zone approach that can capture the non-linear stress-strain characteristics of the plastic 

zone formed ahead of crack tips [Munjiza, 1999]. Fig. 4.2a shows the transition from the elastic 

zone to the fracture (broken) zone via the plastic zone, in which a decreasing normal bonding 

stress occurs due to strain softening, for a mode I fracture tip. The numerical implementation of 

the cohesive zone model in the FEMDEM system is further illustrated in Fig. 4.2b. The sign 
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convention for geomechanics is used in the following discussion, i.e. compressive stress is 

positive and tensile stress is negative. 

 

Fig. 4.2 Cohesive zone model: (a) schematic illustration of the transition from the elastic zone to the 

fracture (broken) zone via the plastic zone around the tip of a mode I fracture, and (b) numerical 

implementation in the FEMDEM system using three-noded triangular finite elements, four-noded 

cohesive (unbroken: intact or yielded) joint elements, and four-noded fracture (broken) joint elements 

(based on a figure by Lisjak et al. [2014a]). 

The normal and tangential bonding stresses, σ and τ, for different strain regimes can be 

calculated as functions of normal displacement δn and shear displacement δs as given by: 

 







rrsss

tnn

)(

              )(

fffH

fH




      (4.13) 

where ft is the intrinsic tensile strength, fs is the shear strength characterised by the internal 

cohesion c and the internal friction angle ϕi following the Mohr-Coulomb failure criterion with 

tension cut-off as given by: 
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tis       with ,tan fcf         (4.14) 

fr is the residual frictional resistance related to the residual friction angle ϕr of broken surfaces as 

given by: 
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The coefficient function Hn for normal bonding stress is given by: 
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where δnp is the maximum elastic normal displacement corresponding to the tensile strength ft, δnc 

is the critical normal displacement related to the mode I energy release rate GI (Fig. 4.3a), and z 

is a heuristic softening function from curve fitting of experimental data of concrete in tension 

(Evans and Marthe, 1968) as given by: 
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where A, B, C are empirical constants and equal to 0.63, 1.8 and 6.0, respectively, and W is a 

dimensionless damage factor determined by: 
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where δsp is the maximum elastic shear displacement corresponding to the shear strength fs, δsc is 

the critical shear displacement related to the mode II energy release rate GII (Fig. 4.3b). The five 
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parts of the piecewise-defined function of damage factor correspond to (i) the elastic regime, (ii) 

the plastic regime bounded by the mode I failure curve, (iii) the plastic regime bounded by the 

mode II failure curve, (iv) the plastic regime bounded by the mixed mode I-II failure curve, and 

(v) the broken regime (Fig. 4.3c). The coefficient function Hs for tangential bonding stress can be 

obtained by replacing δn, δnp, δnc with δs, δsp, δsc in Eq. (4.18). 

 

Fig. 4.3 Constitutive relations of the cohesive zone model for (a) mode I and (b) mode II failure. Failure 

mode analysis: (c) illustration of displacement regimes (elastic, plastic or broken) for cohesive joint 

elements based on their normal and shear displacements, and (d) determination of failure mode based on 

normalised displacements (based on a figure by Tatone and Grasselli [2015]). 

Fracture propagation in brittle materials, e.g. rock, can be mode I, mode II, or mixed mode 

I-II failure [Shen and Stephansson, 1993; Lisjak et al., 2014a]. In FEMDEM, the failure mode of 

a cohesive joint element can be determined by the broken point through which the joint element 
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exceeds the failure envelope in a normalised coordinate system (Fig. 4.3d), in which the 

normalised displacement values are given by: 
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The failure mode indicator m (1 ≤ m ≤ 2) is calculated as 
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4.2.5 Contact force 

Contact force between two triangular elements (one is named the contactor and another the 

target) interacting with each other through fracture joint elements is computed based on the 

penalty function method [Munjiza et al., 2000] by integration over the boundary of penetration: 

  
c

cc
Γ

dΓtcnf         (4.21) 

where n is the outward unit normal to the penetration boundary Γc, while φc and φt are potential 

functions for the contactor and target solids, respectively. In the numerical implementation, the 

total contact force between two discrete solids is calculated as the summation of contact force 

between a set of couples of interacting finite elements. Interaction between two finite elements is 

further reduced into interactions between the contactor and the edges of target element. The 

normal contact force fn and tangential friction force ft exerted by a contactor onto a target edge 

are given by [Munjiza, 2004; Munjiza et al., 2011]: 
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v
ff nt          (4.23) 

where Lp is the penetration length, φ is the potential function along the target edge, vr is the 

relative velocity (at the Gauss point) between the contactor and the target edge, p is the penalty 

term, and µ is the friction coefficient. 
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4.3 Joint constitutive model (JCM) 

4.3.1 Joint normal deformation 

Based on laboratory experiments, rock joints were found to exhibit non-linear deformation 

response under compressive normal stress [Goodman, 1976]. An empirical hyperbolic model 

was proposed by Bandis et al. [1983] to represent this non-linear relation: 
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where vn is the current closure (mm) under the normal stress σn (MPa), kn0 is the initial normal 

stiffness (MPa/mm), and vm is the maximum allowable closure (mm). Values of kn0 and vm are 

given by [Bandis et al., 1983]: 
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where b0 is the initial aperture (mm), JRC is the joint roughness coefficient, and JCS is the joint 

compressive strength (MPa). Coefficients derived from experimental measurements of numerous 

joint samples of five different rock types under a third loading cycle are adopted since in-situ 

fractures are considered more likely to behave in a manner similar to the third or fourth cycle 

[Barton et al., 1985]. These empirical equations and coefficients can statistically interpret the 

observed behaviour of the experiment samples under the specific testing conditions [Bandis et al., 

1983]. However, attention is needed if they are applied to actual engineering and geological 

problems [Baghbanan and Jing, 2008]. Both JRC and JCS are scale-dependent parameters 

[Bandis et al., 1981; Barton, 1981] and their values for field scale, i.e. JRCn and JCSn, can be 

estimated using [Barton et al., 1985]: 
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where Ln is the effective joint length (i.e. size of a block edge between fracture intersections) 

defined by the spacing of cross-joints, JRC0 and JCS0 are measured based on the laboratory 

sample with length L0. For the laboratory sample, the initial aperture b0 may be estimated using 

an empirical relation [Bandis et al., 1983] as given by: 
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where σc is the uniaxial compressive strength (MPa), and JCS0 (MPa) can be set equal to σc, 

assuming the effect of weathering can be ignored. 

Under a varying normal stress condition, the joint normal stiffness knn is given by [Saeb and 

Amadei, 1992]: 
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4.3.2 Joint shear deformation 

Peak shear strength τp of fractures under different normal stress levels can be calculated by 

the following empirical law of friction [Barton and Choubey, 1977]: 
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where σn is the normal compressive stress (MPa) and ϕr is the residual friction angle. The shear 

stress-displacement curve of rock joints in direct shear experiments shows two major phases, i.e. 

pre-peak and post-peak stages. Such relation can be empirically characterised by replacing JRCn 

in Eq. (4.32) with the mobilised value JRCmob: 
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where τ is the current shear stress, JRCmob can be calculated using the dimensionless model 

[Barton et al., 1985] as shown in Table 4.1, in which u is the current shear displacement, and up 

is the peak shear displacement (i.e. the shear displacement that corresponds to the peak shear 

stress). The scale-dependency of peak shear displacement up can be characterised by [Barton et 
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al., 1985]: 
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which was modified by Asadollahi and Tonon [2010] to further consider its stress-dependency as 

given by 
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For post-peak stage, JRCmob can also be estimated using a power-base empirical relation given 

by [Asadollahi and Tonon, 2010]: 
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Table 4.1 Dimensionless model for shear stress-shear displacement [Barton et al., 1985]. 

u/up 0 0.3 0.6 1.0 2.0 4.0 10.0 25.0 100.0 

JRCmob/JRCn -ϕr/i 0 0.75 1.0 0.85 0.70 0.50 0.40 0.0 

Note: i = JRCnlog(JCSn/σn). Clearly, the JRCmob at u = up corresponds to the JRC value measured in the field, 

but will diminish under very large shearing. 

The joint shear stiffness ktt can be derived as the slope of the shear stress-shear displacement 

curve: 

u
k







tt         (4.37) 

4.3.3 Joint shear dilatancy: 

During the shearing process under a normal stress, fractures contract first due to the 

compressibility of asperities and then dilate with roughness damaged and destroyed. Dilational 

displacement can be related to the shear displacement based on an incremental formulation given 

by [Olsson and Barton, 2001]: 

udv dtand mobs         (4.38) 

where dvs is the increment of normal displacement caused by shear dilation, du is the increment 

of shear displacement, and dmob is the mobilised tangential dilation angle. 

A quadratic equation was proposed to describe the pre-peak dilational displacement with the 
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tangential dilation angle given by [Asadollahi and Tonon, 2010]: 
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where vp is the normal dilational displacement corresponding to the peak shear displacement up 

and can be calculated from [Barton and Choubey, 1977]: 
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where M is a damage coefficient that is determined by [Barton and Choubey, 1977]: 
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For the post-peak phase, surface asperities of fracture walls begin to be damaged as shearing 

continues and the variation of the tangential dilation angle can be captured by [Olsson and Barton, 

2001]: 
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4.3.4 Coupled joint normal and shear behaviour 

Fractures in crustal environment may experience complicated loading paths, e.g. shearing 

under a variable normal stress [Saeb and Amadei, 1992]. By combining Eq. (4.31) and Eq. (4.38), 

the coupled behaviour of normal and shear deformation can be modelled by an incremental 

formulation given as: 
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or after rearrangement: 
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It can also be written in a more compact form as: 

ukvk ddd ntnnn         (4.44) 

where knn and knt are the corresponding normal stiffness coefficients. A similar equation can be 
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expressed for the relation between the increments of shear stress and displacement components: 

ukvk ddd tttn         (4.45) 

where the stiffness coefficient ktn is commonly assumed to be zero (i.e. the normal displacement 

of a joint is assumed not to generate additional shear stresses) [Jing and Stephansson, 2007] and ktt 

is derived using Eq. (4.37). A differential formulation for the rock joint deformability can be 

further expressed by a non-symmetric material tangent stiffness matrix as follows: 
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4.4 Combined JCM-FEMDEM formulation 

4.4.1 Characterisation of fracture systems based on a binary-tree search 

Due to the scale-dependency of fracture parameters such as JRC, JCS and peak shear 

displacement, it is important to characterise the distribution of effective fracture lengths precisely 

(i.e. size of a block edge between fracture intersections) in the numerical modelling of a 

disordered, interconnected fracture system. One critical numerical difficulty related to effective 

fracture lengths is to distinguish the sophisticated topological relations of what is very often a 

complex system containing numerous joint elements, in which some pre-existing fracture joint 

elements may connect with each other to form a continuous fracture wall (i.e. block edge) and 

would act together as an equivalent individual fracture with two facing walls. 

A generic algorithm has been developed in this research for the topological diagnosis of 

general fracture networks involving bends, intersections, termination and impersistence. 

Connectivity analysis is first implemented to recognise neighbours of each joint element based 

on the initial geometrical coordinates, in which a joint element connecting the model boundary 

or a fracture intersection is considered having no neighbour on that side with a ‘-1’ value 

assigned numerically, as shown by the schematic example in Fig. 4.4a. Binary-tree structures are 

constructed with the tree-nodes representing joint elements (Fig. 4.4b). When scanning through 

the binary-tree system, previously visited tree-nodes or unreal neighbour tree-nodes are labelled 

to be dead (empty nodes in Fig. 4.4b) and will not grow in further loops. Block edges are 

identified as the connected chains of live tree-nodes (solid nodes in Fig. 4.4b). Thus, the effect of 
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fracture length on the fracture wall properties (i.e. JRC and JCS) can be modelled by relating the 

constitutive parameters of each local joint element to the roughness effect for a fracture length of 

the corresponding block edge. 

 

Fig. 4.4 Characterisation of a pre-existing fracture system, in which four block edges from two 

intersecting fractures are discretised into a number of fracture (i.e. broken) joint elements, based on (a) 

connectivity analysis and (b) binary-tree search. 

4.4.2 Fracture apertures 

The mechanical aperture bm is derived by combing effects of mesoscopic opening (induced 

by fracture network deformation and explicitly resolved in the FEMDEM grid) and microscopic 

closure (controlled by microscale roughness and implicitly captured by the JCM) as given by 
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where w is the mesoscopic normal separation of fracture joint elements as shown in Fig. 4.1, and 

v is the microscopic accumulative closure derived from the incremental formulation, i.e. Eq. 

(4.46). The first part of the piecewise function corresponds to the scenario that the fracture joint 

element is mesoscopically opened, while the second part models the condition that the two 

opposite walls of the fracture are in contact at the scale of FEMDEM discretisation. 

 

Fig. 4.5 Variation of mechanical aperture, hydraulic aperture and their ratio for a fracture with length of 

0.5 m, JRC = 15 and JCS = 120 MPa during a shearing process with an assumed compressive normal 

stress of 10 MPa (note: the x-axis is normalised by the peak shear displacement). 

The hydraulic aperture bh defined as an equivalent aperture for laminar flow is derived based 

on an empirical relation with the mechanical aperture [Olsson and Barton, 2001]: 
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where JRCmob is the mobilised JRC due to the roughness degradation and can be estimated using 

Table 4.1 or the power-base empirical relation, i.e. Eq. (4.36). A linear interpolation is used to 

determine the value of hydraulic aperture in the transition phase, i.e. 0.75 < u/upeak < 1.0, of Eq. 

(4.48) [Olsson and Barton, 2001]. As shown in Fig. 4.5, in the pre-peak phase, asperities of rough 

walls contract first with closed small voids and increased contact areas, which leads to a slight 

decline in the mechanical aperture and the ratio of hydraulic aperture to mechanical aperture, i.e. 
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bh/bm. Thereafter, the fracture walls begin to dilate with asperities not destroyed yet and both 

mechanical and hydraulic apertures exhibit an increasing trend. In the post-peak stage, where 

asperities get worn and damaged, the mechanical aperture continues to increase. However, the 

reduction of joint porosity associated with gouge production results in a decreased ratio of bh/bm, 

and the hydraulic aperture seems to reach a plateau under further shear displacement. It has to be 

mentioned that this empirical equation between the hydraulic and mechanical apertures was 

derived based on the hydromechanical shear experiments of granite rock joints. In this thesis, 

such a relationship is assumed also applicable to sedimentary rocks for generic investigations. 

4.4.3 Coupling between JCM and FEMDEM 

The JCM and FEMDEM modules are combined to achieve compatibility with respect to 

both stress and displacement fields. The displacement fields of JCM and FEMDEM are linked 

through Eq. (4.47), while the stress fields are coupled in both normal and tangential directions 

along the fracture interface. Normal stress of a joint element is extracted from adjacent finite 

elements of the FEMDEM solid model using 

nσn
T nσ        (4.49) 

where σ is the Cauchy stress tensor of the finite element located on the opposite fracture walls, 

and n = [nx,ny]
T is the outward unit normal vector of the finite element edge. By substituting the 

incremental value of normal stress and shear displacement into the JCM formulation, i.e. Eq. 

(4.46), the incremental normal displacement can be solved with the aperture further derived from 

Eq. (4.47). Friction angle between two rough fracture walls is often larger than the residual 

friction angle due to the effect of asperities [Barton and Choubey, 1977]. The friction coefficient 

also varies during the progression of shearing as a result of roughness degradation [Olson and 

Barton, 2001]. Mobilised friction coefficient µmob of each fracture joint element can be calculated 

using its current parameters (see Eq. (4.33)) as given by: 
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The updated friction coefficient is transferred to the FEMDEM solver in each time step for 

calculation of the tangential friction force between a contactor and a target edge as given by Eq. 

(4.23). 
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4.5 Verification and calibration 

The empirical constitutive laws are implemented in the FEMDEM framework at the joint 

element scale, but the consistency between the simulated macroscopic fracture behaviour and the 

empirical formulations requires a detailed verification and will most likely benefit from further 

calibration. The consistency between the empirical formulations and best-fit representations of 

the laboratory experiments has been reported in the literature, most notably by the extensive 

work of Barton, Bandis and co-workers. Clearly, it is important to recognise these best-fit 

relationships do not include the error and scatter in results which will have been presented. 

However, in spite of these errors being compounded, the combined empirical relations as set out 

provide the best estimate of the various mechanical dependencies on fracture wall microscale 

roughness. Hence, the task here is to check whether the new proposed numerical implementation 

of the combined JCM-FEMDEM (that computes the integrated displacement-force history from 

the incremental expressions) can reproduce with sufficient accuracy the predictions of the 

empirical equations designed to cover a wide range of fractures, rock properties and stress 

conditions. In this sense, the “validity” of the numerical model will be examined by comparing 

numerical results with the empirical solutions, i.e. Eq. (4.33) for the shear stress, the integral of 

Eq. (4.38) for the dilational displacement, and Eq. (4.25b) for the normal closure. 

 

Fig. 4.6 Numerical model setup for the direct shear test of a joint sample under a constant normal stress 

condition. The normal stress 𝜎̃n applied on the top of the shear box is designed to generate a constant 

normal stress σn ≡ 24.5 kPa on the joint surface by considering the gravitational forces of the upper block 

and shell. The shearing of the two fracture walls is controlled by the constant velocity boundary condition 

applied on the upper half of the shear box. 
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The model setup is based on the physical experiment conducted by Bandis [1980] using a 

series of cast replicas of natural joint surfaces prepared in different sizes, i.e. 6 cm, 12 cm, 18 cm 

and 36 cm. The material used for casting joints in the laboratory was made from the mixture of 

silver sand, alumina, barites and water. The density of the analogue material was 1850 kg/m3 and 

the Young’s modulus was 0.8 GPa. The Poisson’s ratio was not provided in the reference 

[Bandis, 1980], so a typical value of 0.3 is assumed for the numerical model. As shown in Fig. 

4.6, the specimen consists of an upper portion and a longer lower portion, and is placed in a 

shear box made of steel having a density of 8030 kg/m3, a Young’s modulus of 190 GPa and a 

Poisson’s ratio of 0.3. The bottom and right sides of the lower steel shell are constrained by the 

roller boundary conditions, while the upper one is free to move. The normal stress 𝜎̃n applied 

on the top of the shear box is designed to generate a constant normal stress σn ≡ 24.5 kPa on the 

joint surface with the consideration of the gravitational forces of the upper block and the steel 

shell. The shearing of the two fracture walls is controlled by the velocity boundary condition 

applied on the upper half of the shear box. The input joint properties for the numerical models of 

different sized joints were based on the smallest sample, i.e. L0 = 6 cm, JRC0 = 15.0, JCS0 = σc = 

2 MPa, and ϕr = 32° (the properties of the larger joints will be scaled up using Eq. (4.28) and 

(4.29) based on their actual lengths identified by the algorithm as described in section 4.4.1). The 

penalty term p for the specimen is chosen to be 20 times that of the Young’s modulus [Mahabadi, 

2012], i.e. p = 16 GPa. The damping coefficient η is assigned to be the theoretical critical value, 

i.e. η = 2h (Eρ)1/2, where h is the element size, to reduce dynamic oscillations. 

The numerical shear stress is derived as the quotient between the total tangential contact 

force integrated for all upper wall nodes and the length of the joint sample. In contrast to both the 

indirect measurement method which is used in laboratory testing of shear strength (i.e. by 

monitoring the horizontal forces loaded on the shear box in the laboratory [Bandis, 1980]), and 

the method adopted for the numerical modelling of an explicit roughness profile [Karami and 

Stead, 2008; Bahaaddini et al., 2014], in the proposed JCM-FEMDEM framework the tangential 

force acting on the joint surface is directly extracted from the contact algorithm and emerges by 

virtue of the forces recorded by the joint element data structure. It also gives an unbiased 

measurement of the joint frictional forces as it samples the forces (and stresses) where they need 
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to be known to have been correctly implemented, rather than deducing them from averaged 

values at the specimen boundaries. Obviously, monitoring the boundary forces is the only 

method available for laboratory determination of these shearing properties of joint surfaces. 

 

Fig. 4.7 Assessment of velocity and mesh sensitivities by comparing the numerical results with the 

empirical best-fit for the shear stress-shear displacement behaviour. (a) The numerical models are 

discretised by the same mesh configuration with an element size h = 1 mm along the joint, but conditioned 

with different velocity boundary conditions. (b) The numerical models are discretised by different mesh 

configurations with various element sizes h along the joint, but sheared under the same velocity condition 

of 1 mm/s. 

The sensitivity of the shear stress-shear displacement behaviour to the loading velocity is 

shown in Fig. 4.7a. The numerical models discretised by the same very fine mesh with an 

element size of 1 mm along the joint are loaded by different shearing velocities ranging from 1 to 

5 mm/s. The numerical plot exhibits an oscillatory form, which is possibly attributed to the 

dynamic effect of the explicit time integration scheme for modelling the shear experiment 

processes which are actually performed at loading rates associated with quasi-static deformation, 

i.e. the numerical model cannot sufficiently reach equilibrium during the shearing. However, it 
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can be seen that, as the velocity decreases, the oscillation amplitude is dramatically reduced and 

the numerical curve gradually approaches the empirical one. A velocity of 1 mm/s, however, 

requires a runtime of approximately 50 hours on a desktop computer equipped with an Intel Core 

E5-1620@3.70GHz and is therefore considered to be an appropriate value for simulating the 

quasi-static condition. Although 1 mm/s is still orders of magnitude larger than that of the 

original shear experiment, the loading rate in the numerical models is considered to be quite slow 

given the very small time step of 8 × 10-8 s/step (i.e. more than 1 × 106 iterations are executed 

during every 0.1 mm displacement). The selected very high damping coefficient also helps 

suppress dynamic vibrations. The effect of mesh size on the shear stress is assessed by 

comparing the modelling results with different element sizes along the joint, i.e. 1.5 mm, 1.25 

mm, 1 mm and 0.75 mm (Fig. 4.7b) under the same shearing velocity of 1 mm/s. With the 

refinement of the mesh, the numerical curve tends to converge to the target empirical solution. 

More interestingly, the wavelength of the oscillating numerical curves seems to correspond to the 

element size, possibly due to the use of constant-strain triangular finite elements and the 

transition between positions with perfectly overlapped opposing wall nodes (corresponding to 

the wave peaks) during the shearing. It implies that an element size close to a value of the peak 

shear displacement (i.e. 0.74 mm for the 6 cm specimen according to Eq. (4.34) [Barton et al., 

1985]) divided by an integer number may more accurately capture the peak strength behaviour, 

as demonstrated by the curve of the numerical model with an element size of 0.75 mm in Fig. 

4.7b. 

Based on the results of the sensitivity analysis, the models of larger joint sizes, i.e. 12 cm, 

18 cm, and 36 cm, are also built with the element sizes chosen as 1 mm, 1.5 mm, and 2.0 mm, 

respectively (corresponding to their distinct peak shear displacement values of 1.10 mm, 1.39 

mm, and 2.06 mm). The models are all sheared under the same loading velocity of 1 mm/s and 

the same constant normal stress of 24.5 kPa. Apart from the waviness in the numerical plots, the 

similarity between the empirical and numerical curves of shear stress-shear displacement (Fig. 

4.8a) is evident and is a reasonable justification that the implementation of the JCM-FEMDEM 

model has been verified. The numerical predictions for the joint dilational behaviour fit well to 

the empirical values (Fig. 4.8b), indicating that the implemented joint constitutive model 



96 

 

performs well in the numerical simulation. During the shearing process, the joint specimens 

exhibit a certain contraction in the pre-peak stage and a considerable dilation in the post-peak 

stage. It is reassuring that the scale effects on joint shearing behaviour observed in the laboratory 

test have been largely captured by the numerical model. With the increase of the joint sample 

size, the value of peak shear displacement increases, a transition from a “brittle” to “plastic” 

shear failure mode occurs, and a higher dilational displacement is generated. 

 

Fig. 4.8 (a) Shear stress-shear displacement curves and (b) dilational displacement-shear displacement 

curves obtained from the numerical models and the empirical formulations for joint samples with different 

sizes (i.e. 6 cm, 12 cm, 18 cm and 36 cm) in the direct shear test with a loading velocity of 1 mm/s under a 

constant normal stress σn ≡ 24.5 kPa. 

In order to also examine the numerical model with respect to normal closure, the 6 cm joint 

sample is loaded with a normal stress gradually increased up to a value of 1 MPa, which is still 

smaller than the uniaxial compressive strength (i.e. σc = 2 MPa) of the analogue material and 

therefore will not cause breakage in the intact blocks. No shearing condition is imposed for this 

test of normal closure. As shown in Fig. 4.9, the numerical model also gives consistent results 

with the empirically calculated values, showing that the implementation of the empirical trends 
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for joint aperture closure is near perfect for this investigated JRC and idealised loading 

conditions. 

 

Fig. 4.9 The numerical and empirical results of the closure of the fracture aperture of the 6 cm joint 

sample under a normal stress gradually increased up to a value of 1 MPa. 

4.6 Discussion 

The consistency of the numerical results with the empirical solutions demonstrates the 

performance of the combined JCM-FEMDEM formulation for capturing realistic shear strength 

and normal closure behaviour of single fractures, although it is recognised that it would be ideal 

to further test the model over a parameter space with different JRC, JCS, normal stresses etc. The 

observation of the relation between the oscillation wavelength and the element size inspires an 

idea for future research to employ unstructured adaptive meshes for the initial choice of mesh 

appropriate to each individual fracture with distinct length and therefore specific peak shear 

displacement. Dynamic remeshing may also be developed if the effect of variable normal stress 

on peak shear displacement (i.e. Eq. (4.35)) is to be considered. The underlying mechanism of 

such a repetitive oscillatory form also requires a more detailed study in the future, as there is 

considerable interest in stick-slip phenomena during shearing. 

The addition of the JCM module to the FEMDEM framework permits the simulation of the 

sophisticated shearing behaviour of pre-existing rough fractures based on experimentally derived 

constitutive laws. Unlike the work conducted with an explicit representation of the fracture 

roughness profile [Karami and Stead, 2008; Bahaaddini et al., 2014] that models the underlying 
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process of asperity failure and roughness degradation, the proposed method integrates the 

well-established joint constitutive laws directly as the criteria for implicit microscale modelling 

and can be advantageous in applications for large scale engineering problems. However, the 

discrete modelling approaches based on an explicit time marching scheme may all suffer from 

potential dynamic effects in numerical experiments. Although a large damping coefficient can 

help significantly attenuate the dynamic oscillation and approximate a quasi-static condition 

[Mahabadi, 2012; Tatone and Grasselli, 2015], further development in computational 

formulation and efficiency (e.g. implicit solution, and parallel computing) is still required to 

more realistically represent the physical conditions in laboratory experiments. 

4.7 Concluding remarks 

To conclude, a joint constitutive model that captures the overall behaviour of the 

micro-mechanical phenomena of compressed and/or sheared individual fractures as observed in 

laboratory experiments was implemented in the finite-discrete element analysis framework for 

geomechanical modelling of fractured rocks. The combined JCM-FEMDEM model is able to 

achieve compatibility for both the fracture and intact rock matrix fields with respect to stress and 

displacement. The numerical model exhibits realistic shear strength and displacement 

characteristics with the recognition of the fracture size effect, which was demonstrated by a 

comparison with the experimentally derived empirical solutions. The numerical model can be 

applied to simulate the complex behaviour of natural fracture networks under in-situ stresses 

including fracture opening, closing, shearing, dilatancy and new crack propagation, which will 

be demonstrated in the following chapters. It has to be mentioned that, the complete formulation 

of the JCM model presented in this chapter represents a relatively new work finished in the late 

stage of the PhD. Hence, only Chapter 8 and 9 are based on the latest version of the JCM that can 

consider scale-dependent roughness properties and mobilised shear strength of natural fractures. 

The other chapters (i.e. Chapter 5-7) are based on an early simplified JCM model that uses 

constant JRC and JCS parameters and a constant dilation angle for the calculation of aperture 

closure and dilatancy. Furthermore, the code in Chapter 5-7 uses a generalised energy release 

rate G for brittle failure, whereas mode I and mode II failure types are characterised by separate 

energy release rates GI and GII in the model used in Chapter 8 and 9.  
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5 Hydromechanical modelling of 2D fracture networks 

5.1 Introduction 

To characterise the geometrical attributes of a target natural fracture system that cannot be 

directly observed or sampled, an analogue fracture network (AFN) obtained from geological 

mapping of a “similar” rock mass can be used. The rock outcrop analogues often involve 

complicated intersections, terminations, bends and segmentations. Many studies have used 

mapped analogues to investigate the geomechanical and/or hydraulic behaviour of fractured 

rocks [Zhang and Sanderson, 1996; Sanderson and Zhang, 1999; Leckenby et al., 2005; 

Belayneh et al., 2006; Latham et al., 2013]. However, complete geometrical description of a 

natural fracture system is always difficult due to its 3D nature and the limited access to all 

information. Hence, stochastic discrete fracture networks (DFNs) are often used to approximate 

real discontinuity structures [Dershowitz and Einstein, 1988]. However, its potential to provide 

poor representations of real fracture systems is a widely-recognised disadvantage [Odling 1992; 

Berkowitz and Hadad, 1997], which can lead to significantly biased results in flow simulation 

[Odling and Webman, 1991; Belayneh et al., 2009]. 

Apart from fracture geometries, the fluid flow in fractured rocks is also greatly influenced 

by fracture apertures that are strongly related to geomechanical conditions [Rutqvist and 

Stephansson, 2003]. Some fractures with an unfavourable orientation for closure or a critical 

orientation for shear can become the major pathways for fluid migration while others may 

contribute little [Barton et al., 1995; Zoback, 2007]. The semi-analytical solution [Pollard and 

Segall, 1987; Olson, 2003] for a highly eccentric ellipse or ellipsoid representation of a fracture, 

based on linear elastic fracture mechanics, permits a calculation of the fracture opening under 

in-situ stresses through a simple formulation. However, the analytical solution is based on the 

assumption that fractures are straight, poorly interconnected and in their critical/subcritical state 

for propagation, which oversimplifies the mechanical complexity and stress heterogeneity of 

highly disordered geological systems with interconnected and/or curved fractures. As can be 

seen in Chapter 4, the FEMDEM method offers a whole new technology to solve the 

deformation of complex fracture networks under in-situ stresses. Thus, in this chapter, it is used 
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to evaluate stress effects on fluid flow in fracture networks and examine whether stochastic 

DFNs seem to oversimplify predictions for their more realistic analogue counterparts. Note that, 

for concision, the term “DFN” in this chapter refers to a stochastically-generated fracture 

network, while “AFN” refers to a geologically-mapped fracture network, which is slightly 

different from the nomenclature in Chapter 3. 

5.2 Geological and stochastic fracture networks 

5.2.1 AFN extraction 

 

Fig. 5.1 (a) An outcrop of ~12 × 12 m at Kilve on the southern margin of the Bristol Channel Basin (after 

Belayneh et al. [2009]). (b) The extracted 1.5 m × 1.5 m analogue pattern. (c) Fracture clustering by fuzzy 

K-means algorithm. 

The analogue fracture pattern is based on an outcrop map located at Kilve on the southern 

margin of the Bristol Channel Basin (Fig. 5.1a) [Belayneh et al., 2009]. This outcrop pattern has 

an intermediate fracture density and is quite close to the geometrical percolation threshold 

[Masihi and King, 2007]. As such, it may be considered as a particular case with properties not 

necessarily of networks with very high percolating characteristics. In this geological site, two 
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oblique sets of vertical, layer-normal fractures were formed extensionally and filled with calcite 

minerals, striking approximately 100° and 140°, respectively. The extracted AFN pattern is 

considered particularly well suited to being represented by random DFNs because the fracture 

sets are very distinct, cross-cut with few terminations and are generally straight. 

Two-dimensional analysis is conducted in this study. 

5.2.2 AFN statistics required in the DFN construction 

Statistical analysis is conducted by employing a suite of methods to derive characteristic 

parameters of the AFN fracture pattern, including identification of fracture sets and measurement 

of fracture geometrical attributes such as orientation, length and density. The statistics will be 

used for the generation of equivalent DFNs based on the random Poisson DFN model. 

(a) Fracture set identification 

Fractures formed during the same geological evolution commonly share similar properties 

(e.g. preferential orientation), so it is of great importance to cluster fractures reasonably into 

groups before further statistical analysis. The fuzzy K-means algorithm [Hammah and Curran, 

1998] is used to automatically cluster analogue fractures into two sets based on their orientations 

(Fig. 5.1c). The orientation of a curved fracture is determined by the length-weighted average of 

all its segments. 

(b) Fracture orientation 

The rose diagrams of orientation data further validate the result of fracture set identification 

(Fig. 5.2a&d). In this study, orientation statistics are interpreted with a discrete probability 

distribution, through which DFNs are bootstrapped to share the same fracture orientation dataset 

with the original AFN to enhance their similarity. 

(c) Fracture density 

Location of fractures is represented by their barycentres, which are defined as the midpoints 

of the fracture traces. The concept of “fracture density cells” is introduced to analyse the spatial 

characteristics of natural fractures [Xu and Dowd, 2010]. The whole domain is divided into a 

series of sub-regions with fracture density (i.e. the number of fractures per unit area) calculated 

separately. A non-homogeneous point map is created to account for the spatial heterogeneity of 

the AFN system (Fig. 5.2b&e). 
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(d) Fracture length 

A chi-squared goodness of fit test is made to determine the best probability distributions for 

the AFN fracture lengths. The negative exponential, gamma and lognormal distributions are 

involved in the hypothesis test under a significance level of 5% and the negative exponential 

distribution is found to give the best fit to the length data. Sampling errors caused by the 

censoring bias in window sampling have been corrected using the method proposed by 

Kulatilake and Wu [1984] (Fig. 5.2c&f). 

 

Fig. 5.2 Statistics of the AFN pattern: (a) orientation, (b) barycentres and (c) length distribution of fracture 

set 1, and (d) orientation, (e) barycentres and (f) length distribution of fracture set 2. 

5.2.3 Stochastic DFN realisations 

A stochastic DFN model is constructed with criteria commonly used to build networks for 

normal hydrogeological calculations, but in addition, further constraints are imposed to improve 

the network quality. A DFN is created by three steps. (i) Fracture locations are simulated first 

using a randomly generated point pattern. Barycentres are seeded uniformly in each density cell 
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using the marked Poisson point process with density values matched to the AFN 

non-homogeneous map. (ii) The second step is the modelling of the geometry of individual 

fractures, in which orientation and length parameters are generated independently according to 

their probability distributions. (iii) The final step is the quality examination of the randomly 

created DFN realisations. In this study, the examination focuses on fracture length, connectivity 

and hydraulic conductivity. If either of them fails, the generation process is repeated 

automatically. 

To consider the potential censoring effects on DFN fracture lengths, a chi-squared test is 

implemented to check whether the final DFN pattern has the same length distribution as the AFN. 

The average number of intersections per fracture is measured as the connectivity index of a 

fracture network [Hestir and Long, 1990]. If the relative difference between the AFN and a DFN 

is smaller than 5%, the two models are considered to be equivalent with respect to this 

connectivity index. 

Furthermore, the conductivity parameter η proposed by Leung and Zimmerman [2012] for 

fracture only flow is used to assess the hydraulic equivalence. The parameter η was developed 

from flow simulations based on random two-dimensional fracture networks. It was found to have 

a linear correlation with the hydraulic conductivity of fracture networks that were assigned with 

a uniform aperture distribution. The parameter η that is a combination of crack mean density 

εmean and segment density ρseg incorporates the information of both length and connectivity of a 

fracture network. The definitions of εmean, ρseg and η are given by 
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where n is the total number of fractures, A is the model area, l is the arithmetic mean of all 

fracture lengths and nnode is the number of intersection nodes in a fracture network. The 

parameter η is used to enhance the similarity between DFN realisations with the original AFN. If 
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η calculated for a DFN and for the original AFN are similar at the 95% confidence level, they are 

expected to exhibit similar hydraulic behaviour under the assumption of constant aperture. 

Fig. 5.3 shows ten DFN realisations that passed this similarity examination. Hence with this 

further tuning, the scene is set for geomechanical deformation of the various networks. It should 

be noted that DFN7 was arbitrarily selected to give a visual comparison between the AFN and 

DFN models in the following sections. The quantitative analyses, however, are based on the 

results of all ten DFNs (given by mean values with error bars representing ±1 standard 

deviation). 

 

Fig. 5.3 Multiple stochastic DFN realisations. 

5.3 Hydromechanical modelling 

5.3.1 Geomechanical experiment 

As shown in Fig. 5.4, a series of plane strain geomechanical experiments is designed with 

biaxial effective stresses (σ’1 = 10MPa, σ’3 = 5MPa) applied at a range of angles (0°, 30°, 60°, 

90°, 120° and 150°) (i.e. the strike-slip faulting regime with σ’2 being vertical). Assumed typical 

material properties of limestone [Lama and Vutukuri, 1978; Barton and Choubey, 1977] are 

given in Table 5.1. Geomechanical modelling is conducted on the original AFN and the DFN 

equivalents using the FEMDEM solver. Far-field stresses are applied at the boundaries of the 

domain from an unstressed state with all fractures having a constant initial aperture. The models 

adjust to a new deformed state under in-situ stresses loaded by different orientations. In this 
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research, the fracture behaviour is modelled using a simplified joint constitutive law assuming 

constant JRC and JCS parameters and a constant dilation angle. 

 

Fig. 5.4 Far-field stresses are applied at a range of angles to the fractured rock. 

Table 5.1 Material properties of the fractured limestone. 

Properties Value 

Bulk density ρ (kg/m3) 2700 

Young’s modulus E (GPa) 30 

Poisson’s ratio υ 0.27 

Tensile strength ft (MPa) 2.5 

Internal friction angle ϕi (º) 31 

Cohesion c (MPa) 5 

Energy release rate G (J·m
-2

) 200 

Residual friction angle ϕr (º) 31 

JCS (MPa) 120 

JRC 15 

Dilation angle ϕd (º) 5 

Initial mechanical aperture b0 (mm) 0.3 
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5.3.2 Fluid flow modelling 

Single-phase steady state flow of incompressible fluid with constant viscosity through 

porous media, in absence of sources and sinks, is governed by the continuity equation and 

Darcy’s law. The mass balance of fluid is given by 

0u          (5.4) 

where u is the superficial fluid velocity given by Darcy’s law: 
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u         (5.5) 

where μ is the dynamic viscosity, P is the fluid pressure and k is the permeability tensor of the 

porous medium. For isotropic material, the permeability scalar k is used instead. 

The fluid flow domain Ω is composed of two overlapping subdomains, namely the fracture 

domain Ωf∈R1 and the matrix domain Ωm∈R2. The deformed fractures in response to the loading 

of effective in-situ stresses are extracted from the geomechanical simulation. Fracture geometries 

are derived as the median lines in between opposite fracture walls and apertures are determined 

from the joint constitutive model. Another unstructured grid is created with matrix bodies 

discretised into finite elements and fractures segmented into lower dimensional line elements 

[Paluszny et al., 2007]. The fluid pressure equation is solved by the finite element method and the 

continuity equation is calculated by the finite volume method [Geiger et al., 2004]. A constant 

permeability km is assigned to matrix elements, whereas fracture permeability is characterised 

using piecewise hydraulic apertures obeying the cubic law, i.e. ki = bi
2/12 [Witherspoon et al., 

1980], where ki is the permeability of the ith line element, and bi is its corresponding hydraulic 

aperture. By combining Eq. (5.4) and Eq. (5.5), a fluid field can be described by 

  0  pk          (5.6) 

In the finite element system, each element ei is assigned with constant material properties. Spatial 

integration over the bounded domain Ω gives 
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where N is the shape function of each element and p is the nodal pressure. The nodal pressure is 

resolved by the algebraic multigrid methods for systems (SAMG) [Stüben, 2001]. The fluid 

velocity field is calculated from the gradient of the pressure field based on linear interpolation at 
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the midpoints of finite element edges, i.e. nodes of the finite volume grid. The interstitial fluid 

velocity field is continuous between adjacent node-centred finite volumes, although 

discontinuous between two finite elements [Geiger et al., 2004]. By applying a prescribed 

macroscopic pressure differential on each pair of opposite boundary surfaces with no-flow 

conditions on the remaining ones parallel to the flow direction (Fig. 5.5), the equivalent 

permeability of a fractured porous medium can be computed based on the integration of the fluid 

flux over the node-centred finite volumes along model boundaries [Lang et al., 2014]. 

 

Fig. 5.5 Calculation of equivalent permeability based on single-phase steady state flow under a pressure 

differential imposed on each pair of opposite boundaries while the remaining ones are impervious. 

5.4 Results 

5.4.1 Stress heterogeneity 

 

Fig. 5.6 Contours of the local maximum principal stress of the AFN and DFN7. 
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Fig. 5.6 shows the distribution of local maximum principal stress in the deformed models of 

the AFN and one DFN (i.e. DFN7). The high compressive stress bands are likely to trend along 

the orientation of applied maximum far-field stress, but will be considerably influenced by the 

spatial organisation of fractures as well. For example, in the 0° case, the bands attempt to align 

with the x-direction, but often have to comply with the shape of internal matrix blocks. 

 

Fig. 5.7 (a) Contours of the differential stress of the AFN and DFN7. (b)-(e) Four types of circumstances 

for differential stress concentration in the AFN model (corresponding locations are sequentially marked in 

(a)). 

The heterogeneity of differential stress is presented in Fig. 5.7a. The stress contours of the 

two models appear to have similar overall colour zonation in each scenario, although they 

display distinct features in detail. For example, in the AFN model, high differential stress 

concentration appears to usually occur under four types of circumstances related to fractures with 

high shear stress: (i) the unpenetrated area between coplanar or quasi-coplanar fractures (Fig. 

5.7b), (ii) the rock bridge between offset, nearly parallel fractures (Fig. 5.7c), (3) the intact 

region between the tip of a fracture and a close non-parallel fracture (Fig. 5.7d), and (4) the 
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matrix block between nearly parallel fractures (Fig. 5.7e). Corresponding locations of these 

subareas are sequentially marked in Fig. 5.7a. 

The sensitivity of differential stress distribution to the change of far-field stress orientation 

is also dramatic. Based on the Mohr circle analysis (Fig. 5.8), an explanation is given for the 

variation of stress heterogeneity pattern in different stress angle scenarios. In the 0° and 90° 

cases, as can be derived from Fig. 5.8, high shear stress occurs in fractures of Set 2, with a 

moderate normal stress across them, which leads to several high local differential stress scenarios 

such as the Type I concentration circumstance related to Set 2 (Fig. 5.7b). In the 30° and 120° 

cases, Set 1 affords higher shear stress and the bands of high differential stress are observed to be 

distributed more as if related to fractures in this set (Fig. 5.7c&e). In the 60° and 150° cases, both 

sets get relatively high shear stress between fracture walls and high differential stresses locate in 

places related to both sets (Fig. 5.7d). 

 

Fig. 5.8 Mohr circle analysis. 

In general, the AFN and DFN models show approximately equal area for high maximum 

principal stress and differential stress. In some cases, two models even present significantly 

similar patterns (e.g. the 30° case), whereas they look quite different in some other cases (e.g. the 

90° case). This phenomenon might be caused by the shortcoming of the point-based spatial 
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representation of fractures in the stochastic DFN modelling, which can hardly reflect the 

complex relationships between natural fractures (e.g. the spacing between fractures in the same 

set). In the AFN, fractures in Set 2 have nearly uniform spacing while fractures in Set 1 exhibit 

local clustering. Although a non-homogeneous density cell map is used, it is still difficult to 

accurately capture these specific features in the random process. The unrealistic spacing 

distribution in the DFNs may contribute to the difference in stress distribution with the AFN. 

Furthermore, the Poisson DFN model is difficult to accommodate the Type I circumstance for 

differential stress concentration. In short, the DFN geometries which lack self-organised spatial 

relations of geologically formed natural fractures may lead to certain biases when being used to 

study the stress heterogeneity in fractured rocks. 

5.4.2 Shear displacement 

 

Fig. 5.9 Rose diagrams of length-weighted shear displacement of the AFN and DFNs (mean value of the 

ten DFN realisations). 

The applied deviatoric in-situ stress field, although below critical levels in general, is 

sufficient to locally trigger sliding of fracture walls in the fracture network. Rose diagrams of 

length-weighted shear displacement in the AFN and DFNs (mean value of the ten realisations) 

reveal great similarity, especially with respect to the orientation of maximum values (Fig. 5.9). 

Analysis based on the Mohr circle (Fig. 5.8) provides some interpretations to the rose diagrams. 

For the 0° and 90° cases, Set 1 is suppressed in shear while Set 2 is quite active. For the 30° and 

120° cases, Set 1 is highly active in shear while Set 2 stays quite suppressed. For the 60° case, 
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both sets are quite suppressed at unfavourable orientation for shear. However, for the 150° case, 

both sets are prone to ease of sliding, although with medium magnitude since the shear stress is 

not very high. High shear displacement often happens in pre-existing fractures with favourable 

orientations, but also it accompanies newly propagated cracks which usually grow obliquely 

from the tips of pre-existing ones. Shear displacement develops with large magnitudes along 

large fractures or around isolated matrix blocks. The rose diagrams indicate that DFN fractures 

seem to be slightly more active in sliding, which might be attributed to the straight line 

simplification in DFN models. 

5.4.3 Hydraulic aperture 

 

Fig. 5.10 Rose diagram of length-weighted hydraulic aperture of the AFN and DFNs (mean value of the 

ten DFN realisations). 

Rose diagrams of hydraulic aperture shows that the highest value is likely to occur in the 

direction of wing cracks (Fig. 5.10). Pre-existing fractures under lower compressive normal 

stress also shows higher hydraulic aperture. For example, in the 30° case, fractures in Set 1 are 

less compressed and higher hydraulic aperture is observed. It can be noted that the AFN and 

DFNs show certain similarity in the rose pattern under different boundary conditions. 

5.4.4 Fracture propagation 

Fracture propagation is simulated as the explicit separation between the edges of adjacent 

unstructured finite elements [Munjiza, 2004]. Sliding of pre-existing fracture walls can engender 

stress concentration near the fracture tips and induce the formation of wing cracks or secondary 
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cracks [Willemse and Pollard, 1998]. The initiation of new cracks is greatly correlated to the 

shearing of pre-existing fractures, which has been observed in the numerical simulation. For the 

0° and 90° cases, most new cracks accompany activation of Set 2, which is favourably oriented 

for shearing (Fig. 5.11a&d). For the 30° and 120° cases, new fracturing happens mainly at the 

tips of fractures in Set 1, which has favourable orientation for sliding (Fig. 5.11b&e). For the 60° 

and 150° cases, both sets are almost equally suppressed or activated, which leads to similar 

opportunities for the two sets to develop breakage (Fig. 5.11c&f). It is noticed that the 

orientation of wing cracks varies with the orientation of far-field stresses and seems to follow the 

direction of the maximum principal stress. 

 

Fig. 5.11 Wing crack propagation at the fracture tips of the AFN model in different stress angle cases. 

5.4.5 Connectivity state 

The connectivity nature of a fracture pattern can be characterised by the properties of 

clusters, in which member fractures intersect to form connected sub-networks. Fracture 

propagation may connect pre-existing fractures in different clusters and result in larger 

occupations. Quantitative assessment of the connectivity state of fracture patterns involves the 

distribution analysis of cluster mass, which is defined as the total length of all member fractures 

in a cluster [Odling, 1992]. The AFN and DFNs show certain similarity in their cluster frequency 

and proportion distributions. In both models, most clusters occupy smaller sizes (<0.32m) and 

only a few clusters develop with larger sizes (>10m) (Fig. 5.12a), whereas the largest clusters 

constitute a greater mass proportion in fracture patterns as illustrated in Fig. 5.12b. The DFNs 

appear to have more small-sized clusters (0.01-0.03m) and the AFN pattern has more 

medium-sized ones (0.03m-0.32m), which leads to greater sharpness in the AFN’s cluster mass 

frequency distribution (Fig. 5.12a). Interestingly, these differences in connectivity between the 

two models remain, even though they are initially prescribed with statistically equal numbers of 
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fracture intersection nodes. However, the magnitude of the difference between deterministic and 

stochastic networks is not as significant as for the results shown in the research by Odling [1992], 

which might be attributed to the tuning process. 

 

Fig. 5.12 (a) Cluster mass frequency distribution and (b) cluster mass proportion distribution of the AFN 

and DFNs in different cases. 

5.4.6 Average geomechanical response 

Four indicators are used to measure the average geomechanical response of the rock models 

under various boundary conditions. First, as shown in Fig. 5.13a, the AFN and DFNs exhibit 
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certain similarity in the sensitivity of shear behaviour to the orientation change of applied 

far-field stresses. For example, the lowest value occurs in the 60° case, in which both fracture 

sets are suppressed for shearing. However, DFNs seem to accommodate higher average shear 

displacement than the AFN. This might be attributed to the straight line assumption in DFN 

models, so that the artificial fractures tend to slide more easily than natural fractures with extra 

resistance from curvature. 

 

Fig. 5.13 Variation of different indicators according to the change of boundary stress angle: (a) overall 

average shear displacement, (b) length of new fractures (c) overall average hydraulic aperture, and (d) 

number of “T” and “X” intersection nodes. 

More fracture propagation is also observed in the DFN models (Fig. 5.13b). Unlike the AFN 

pattern which was formed in geological conditions with stress relief under certain failure 

mechanisms, artificially generated DFN fractures are considered likely to require more breakage 

to adapt to a given geomechanical environment. As mentioned before, new crack development is 
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related to the shearing of pre-existing fractures. Maximum length of new fractures occurs in the 

30° and 120° cases, in which Set 1 is highly active for shearing (see the Mohr circle in Fig. 5.8). 

However, in the 0° and 90° cases, the active Set 2 doesn’t lead to much fracture evolution. 

Higher average hydraulic aperture occurs in the 120° and 150° cases (Fig. 5.13c) in which 

both sets are under relatively lower normal stress. On the contrary, the average hydraulic 

aperture in the 60° case is the lowest due to the highly confining experienced by both sets. 

Discrepancy of average hydraulic aperture between AFN and DFNs is significant in the 30° and 

60° cases, in which Set 2 is highly compressed. This might be caused by the fact that the 

geometrical features of Set 2, such as curvature, spacing and coplanarity, are not precisely 

characterised in the DFN models. Hence, fractures of Set 2 in the AFN and DFN models exhibit 

different normal closure and shear dilation behaviours. 

The number of intersection nodes (both “T” and “X” types) (Fig. 5.13d) shows similar 

variation with the length of new fractures (Fig. 5.13b). This indicator is likely to be controlled by 

the degree of new crack growth and the orientation preference for propagation. The DFNs tend to 

have more intersection nodes than the AFN because of more crack growth in DFNs, although 

they are constrained with a statistically equal number of intersections before stress loading. 

5.4.7 Inherent permeability 

Before investigating the stress effects on the permeability of the fracture networks, it is 

important to calculate the inherent permeability of the undeformed AFN and DFNs, which is 

determined by the fracture network geometry [Zhang and Sanderson, 1996]. Single-phase steady 

state flow simulation is conducted on all eleven fracture networks where a uniform aperture 

distribution (0.05 mm) and matrix permeability ranging from 0.1 to 10 mD has been assumed. As 

shown in Fig. 5.14, a good match on macroscopic permeability between the unstressed AFN and 

DFNs is noticed, unlike the permeability results observed by Belayneh et al. [2009] showing 

differences of several orders of magnitude. This might be due to the tuning by using the 

conductivity parameter η in the DFN generation. However, it is worth drawing attention to the 

small discrepancy that still exists. This is because the anisotropic effect of dominant fracture 

orientations was not included in the formulation of the η parameter. The derivation of the 

parameter η as an indicator of connectivity is based on the assumption of nominally isotropic 
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DFN networks with a uniform coverage for fracture orientations, i.e. the effect of fracture sets 

was not considered. Thus, the significant anisotropy of the AFN pattern is not well represented 

by the DFN realisations: DFNs show lower permeability in the x-direction while higher 

permeability in the y-direction. Another possible reason is the planarity assumption (straight line 

in 2D) in DFN modelling. Straight fractures of Set 1 in the DFNs have larger extensions than the 

curved fractures in the AFN, although they are conditioned with the same length distribution. 

This makes DFN fractures of Set 1 easier to connect with other fractures and induce higher 

permeability in the y-direction, whereas the permeability in the x-direction is accordingly 

weakened. Furthermore, the discrepancy may also be caused by the biased representation of 

spatial organisation and the uncorrelated relations between different geometrical properties (i.e. 

density, length, location and orientation) in the DFN models. 

 

Fig. 5.14 Inherent permeability of the AFN and DFNs assigned with a constant aperture (0.05 mm). 

5.4.8 Stress-dependent permeability 

The equivalent permeability of the fractured rocks is calculated based on a series of steady 

state flow computation, in which matrix permeability km is assumed to be 0.1, 1 and 10 mD, 

respectively (Fig. 5.15). It can be noted that the equivalent permeability is much larger than the 

matrix permeability, implying that fractures play a significant role for fluid flow across the 

fractured rock models with the assumed matrix permeability. 
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Fig. 5.15 Equivalent permeability (a) in the x direction kxx, (b) in the y direction kyy and (c) the 

permeability anisotropy ratio kxx/kyy of the AFN and DFNs with the matrix permeability km = 0.1 mD in 

various stress angle cases. Variation of (d) kxx, (e) kyy and (f) kxx/kyy for km = 1mD. Variation of (g) kxx, (h) 

kyy and (i) kxx/kyy for km = 10 mD. 

The 0°, 30° and 150° cases show higher permeability in the x-direction because of the 

smaller normal compression in Set 1 (Fig. 5.8), which serves as the main fluid pathways in the 

x-direction. Fracture propagation sub-parallel to the x-direction may also contribute to the higher 

permeability. The 120° case also shows relatively high permeability in the x-direction, which can 

be attributed to the high hydraulic aperture (see Fig. 5.13c) and more fracture propagation (see 

Fig. 5.13b) in this scenario. The 90° case exhibits the highest permeability in the y-direction as 

the result of relatively smaller normal compressive stress in Set 2 (see Fig. 5.8) and the 

favourable propagating orientation (see Fig. 5.11d). In keeping with expectation from simple 
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mechanical considerations, it is inferred that models are more permeable along the direction of 

the maximum principal far-field stress, while suppressed for fluid flow in the direction of the 

minimum principal far-field stress. The AFN and DFNs show quite similar permeability in the 

x-direction, whereas the DFNs are more permeable than the AFN in the y-direction. 

The high variability in the DFN results (error bar of ± ~30-50%) implies that significant 

uncertainty may exist in the Poissonian DFN method. This is of course not new and the need for 

multiple realisations in DFN modelling is widely recognised. It is of interest to further analyse 

the sensitivity of the equivalent permeability of stressed rocks to the matrix permeability. In the 

km = 0.1 mD case, larger error bars are involved since the uncertainty effect of stochastic models 

is amplified when flow is more dominated by fractures. As km increases, the inconsistency 

between the AFN and DFNs seems to become slightly larger in the x-direction since more 

fractures participate in transporting fluids with more matrix-fracture transfer, and the bias caused 

by DFN geometries becomes more significant. 

5.5 Discussion 

Table 5.2 presents the values of some important geomechanical and hydraulic properties of 

the AFN and ten DFNs. The results of each network model (AFN or DFN) under different stress 

orientations are averaged, while the mean values and standard deviations for multiple DFN 

realisations are further calculated. The ratio between a DFN and the AFN is calculated 

individually for each stress orientation scenario and further averaged for each DFN realisation. 

Mean values as well as corresponding spread for multiple DFN realisations are finally obtained, 

as shown by the last column of Table 5.2. Under in-situ stresses, which are often ignored in 

conventional reservoir simulations based on data of fracture traces on outcrops, the two types of 

fracture networks (i.e. AFN and DFN) present certain differences in geomechanical response. 

The artificially generated straight lines seem to require greater opening, sliding and new fracture 

propagation to adapt to a geomechanical environment. Stress concentration can be quite different 

in local areas because of the fracture-dependent heterogeneity effect, which results in distinct 

fracture propagation and coalescence patterns in the DFNs. This can generate considerable 

uncertainty in the connectivity properties of DFNs. The effects of geomechanical changes, e.g. 

stress heterogeneity, opening and sliding of fracture walls, distribution of connected clusters as 
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well as propagation of new cracks, could potentially lead to a significant impact on the overall 

hydraulic properties of the DFNs. The mean permeability of multiple DFNs shows a reasonably 

good match with that of the AFN in the x-direction while a notable discrepancy can be observed 

in the y-direction. This implies that in the relatively easy percolating direction, after adjustment 

to the geomechanical stress environment, these artificially created DFN models have, in a sense, 

converged to the geologically evolved fracture system. However, the DFNs lead to a significant 

bias in the y-direction, the direction observed to be near to the critical percolating state, due to 

the connectivity change induced by more fracture propagation and new intersections. Thus, the 

DFN might be susceptible to exaggerating the ease of flow when fracture networks are just 

below the percolating threshold. 

Table 5.2 Values of key geomechanical and hydraulic properties of the AFN and ten DFNs. 

 AFN DFN DFN/AFN 

Shear displacement 0.215 mm 0.252 ± 0.019 mm 1.229 ± 0.108 

Length of new fractures 0.988 m 1.192 ± 0.121 m 1.262 ± 0.111 

Number of intersection nodes 134 155 ± 12 1.156 ± 0.083 

Hydraulic aperture 0.067 mm 0.070 ± 0.001 mm 1.040 ± 0.016 

kxx 

km = 0.1 mD 27.100 mD 26.090 ± 8.192 mD 0.960 ± 0.292 

km = 1 mD 37.137 mD 35.172 ± 6.691 mD 0.945 ± 0.170 

km = 10 mD 72.624 mD 67.844 ± 5.242 mD 0.9344 ± 0.068 

kyy 

km = 0.1 mD 3.366 mD 9.415 ± 6.083 mD 2.892 ± 1.764 

km = 1 mD 11.026 mD 15.573 ± 5.710 mD 1.417 ± 0.492 

km = 10 mD 32.975 mD 39.558 ± 5.695 mD 1.204 ± 0.162 

kxx/kyy 

km = 0.1 mD 8.266 4.636 ± 3.220 0.560 ± 0.366 

km = 1 mD 3.429 2.550 ± 0.870 0.746 ± 0.243 

km = 10 mD 2.224 1.761 ± 0.306 0.792 ± 0.130 

 

When using random DFNs to estimate the permeability of a fractured rock, apertures are 

often assigned based on certain statistical distributions, e.g. uniform, lognormal or power law 

distribution [de Dreuzy et al., 2001a, 2001b, 2002; Min and Jing, 2003; Baghbanan and Jing, 

2007; Leung and Zimmerman, 2012]. It is often assumed that fractures with longer extensions 
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accommodate larger apertures [Pollard and Segall, 1987; Vermilye and Scholz, 1995; Olson, 

2003]. However, geomechanical effects may induce a significantly different aperture distribution 

in which a long fracture with unfavourable orientation may exhibit quite a small aperture caused 

by high normal compression [Zhang and Sanderson, 1996; Min et al., 2004b; Latham et al., 

2013]. To further demonstrate the effects of geomechanically-induced aperture variability, the 

undeformed DFN networks are assigned with different statistical aperture distributions (i.e. 

uniform, lognormal and power law distributions), while the substituted distribution parameters 

are deduced from the hydraulic aperture data of the stressed AFN model. Furthermore, for 

models with a lognormal or power law aperture distribution, fracture apertures and lengths are 

positively correlated, i.e. longer fractures are paired with larger apertures. Table 5.3 summarises 

the permeability results of the stressed AFN, stressed DFNs and the non-geomechanical DFNs 

with statistically distributed apertures. By comparing with the stressed AFN model which is 

considered to be a real world system by virtue of its accurate topology characterisation and 

realistic aperture distribution [Latham et al., 2013], it is clear that the DFN models attributed 

with equivalent constant apertures (uniform distribution) show much higher permeability in both 

x and y directions, and tend to exaggerate the conductivity of the fracture system. The DFNs 

with a lognormal or power law aperture distribution show lower permeability in both directions, 

which might be due to the inaccurate fitting by these statistical distributions. Another reason for 

their lower permeability might be due to no consideration of fracture propagation in the 

non-geomechanical DFNs. The stressed DFNs seem to give a closer estimation to the real world 

on account of geomechanical modelling, which also provides a stress-dependent aperture 

distribution for further calculation of the permeability of fractured rocks [Min et al., 2004b]. 

Hence, if geomechanical effects are ignored and aperture distribution is assumed unrealistically, 

the flow simulation based on DFN realisations may produce misleading results. 

The validity of DFN models have been examined based on a specific fracture pattern with 

an intermediate fracture density quite close to the geometrical percolation threshold. However, to 

achieve a more general conclusion, further investigation is required based on a more saturated or 

sparser pattern of fractures. A spectrum illustrating the correlation between fracture density and 

how close DFNs are to an AFN is expected to be valuable. Another limitation of this research is 
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that only one in-situ stress ratio (σ’1/σ’3 = 2) was considered for a fractured rock stressed to a 

level below its critical state at a depth <1 km. Higher stress ratios (e.g. ≥3) are expected to 

trigger more significant shear dilatancy and flow localisation [Sanderson and Zhang, 1999; Min 

et al., 2004b; Baghbanan and Jing, 2008] as well as increase connectivity caused by crack 

propagation [Latham et al., 2013]. 

Table 5.3 Comparison of the permeability results of the stressed AFN, stressed DFNs and 

non-geomechanical DFNs with statistically distributed apertures (km = 1 mD). 

 Stressed AFN Stressed DFNs 
DFNs with statistical aperture distribution 

Uniform Lognormal Power law 

kxx (mD) 37.137 35.172 ± 6.691 47.123 ± 19.487 18.727 ± 5.028 19.509 ± 4.763 

kyy (mD) 11.026 15.573 ± 5.710 18.135 ± 9.758 8.120 ± 2.563 8.640 ± 2.754 

5.6 Concluding remarks 

To conclude, this research used an outcrop analogue to evaluate the uncertainties of DFN 

representations for hydromechanical modelling of naturally fractured rocks. Ten discrete fracture 

networks were created randomly based on the statistics from the analogue pattern. Several 

additional constraints were included during DFN generation to enhance the equivalence of DFNs 

to the original pattern. By applying in-situ stresses at different angles to the fractured rocks, their 

geomechanical response was modelled using the FEMDEM method. Important disparities were 

noticed on several geomechanical aspects, including stress heterogeneity, fracture wall shearing, 

aperture development, crack propagation and network connectivity. The hydraulic comparison 

was made by conducting steady state flow simulation based on the fracture networks with 

stress-induced variable apertures. For this specific fracture network, the deformed DFNs were 

found to take on the hydraulic permeability of the deformed AFN but only in the direction with 

an initially good connectivity state. A significant discrepancy was observed for flow in the 

direction associated with a poor percolation state. Further investigation showed that a fracture 

network with statistically distributed apertures may have great biases for calculating the 

permeability of a fractured rock. The main factors determining the quality of DFNs for 

hydromechanical modelling of a natural fracture system are considered to be its accuracy in 

describing the geologically formed topology and geomechanically induced apertures.  
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6 Upscaling of 2D fracture network models 

6.1 Introduction 

Geomechanical modelling of the development of fracture patterns and apertures achieved on 

a scale spanning the laboratory specimen to perhaps a few meters is becoming relatively accurate 

with the latest mechanical models such as those based on the combined finite-discrete element 

method (FEMDEM) [Munjiza, 2004; Munjiza et al., 2011; Latham et al., 2013; Mahabadi et al., 

2014b; Lei et al., 2014]. Many important geological phenomena can be modelled in FEMDEM 

numerical experiments, such as reactivation of shear on pre-existing fracture walls, propagation 

of new cracks and variation of aperture distribution. Due to the limits of processing power, it is 

currently impossible to extend this accuracy to macroscale simulation. Hence, upscaling is 

required to understand and evaluate important subsurface properties of large-scale naturally 

fractured rocks based on models established at a smaller scale. 

Disordered geological media often exhibit significant scale invariance and self-similarity 

[Barton, 1995; Odling, 1997; Berkowitz et al., 1999; Bour et al., 2002; Lei and Wang, 2016]. 

Nontrivial power law scaling, including fractal properties, was observed in natural fracture 

systems [Bonnet et al., 2001], which often does not have a representative elementary volume 

(REV). An important feature of the fractal geometry and power law methods is the absence of 

the need for a characteristic length scale [Bonnet et al., 2001]. An understanding of the scaling 

behaviour of natural fracture systems opens the possibility that hydromechanical properties of a 

macroscale fractured rock may be estimated based on the characterisation of its crucial features 

from a relatively smaller sampled model [Zimmerman and Main, 2004]. 

Scaling of rock permeability has been extensively studied based on compilation of in-situ 

measurement data [Brace, 1980, 1984; Clauser, 1992; Neuman, 1994; Renshaw, 1998]. Three 

measurement scales of permeability were distinguished: the laboratory scale (1-10 cm), the 

borehole or in-situ scale (1 m-1 km), and the regional scale (1-100 km) (Fig. 6.1) [Clauser, 1992]. 

Increase of permeability from the laboratory to the borehole scale was observed, since laboratory 

tests are usually based on unfractured core specimens [Brace, 1980, 1984]. However, from the 

borehole to the regional scale, although an increasing permeability trend was reported [Brace, 
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1980, 1984; Neuman, 1994], so too was a plateau with no increase or a decrease [Clauser, 1992; 

Renshaw, 1998] (Fig. 6.1). Rather than focusing on the broad spectrum of scales where the 

transition behaviour depends on many complex factors (e.g. seismically visible faults, multiple 

rock types and even karst features), the scope of this study is chosen to be on the in-situ scale 

(say, 1-100 m), where flow is often dominated by fractures [Clauser, 1992], and focus on the 

mechanisms by which permeability of fractured rock may vary with the modelling scale over this 

range. 

 

Fig. 6.1 Permeability of crystalline rocks and characteristic scale of measurements [Clauster, 1992]. 

Much work using discrete fracture networks (DFNs) has focused on flow in random fractal 

patterns where, by neglecting geomechanical constraints, fluid transport has been modelled in 

networks with apertures assumed either constant [Leung and Zimmerman, 2012; de Dreuzy et al., 

2001a], or statistically distributed and correlated with trace lengths [de Dreuzy et al., 2001b, 

2002; Klimczak et al., 2010]. The scaling of network connectivity is dominated by the 

relationship between the fractal dimension and the power law length exponent [Berkowitz et al., 

2000; de Dreuzy et al., 2001a; Darcel et al., 2003a], whereas the scaling of permeability is 

further governed by the transmissivity distribution of individual fractures [de Dreuzy et al., 

2001b, 2002; Davy et al., 2006; Klimczak et al., 2010]. However, since 

geomechanically-constrained apertures vary intimately with a locally varying stress field, it is an 

open question whether the appearance of scale invariants of network topology has useful 

implications for predicting equivalent flow properties over the ~100 m block and larger, e.g. 1 

km, scales. 
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The objective of this study is to develop a 2D fracture network upscaling method to estimate 

hydromechanical properties of larger-scale natural fracture systems that can be based on a small 

sized model. There are two distinct developments needed: (i) to construct the network topology 

on large domains conditioned by the data from smaller outcrops obeying a self-referencing 

scheme, and (ii) to apply geomechanical constraints to derive realistic apertures for each fracture 

at the outcrop scale and to propose a mechanism to preserve such aperture realism in larger 

scales. 

6.2 Scaling properties of a natural fracture system 

The outcrop of a natural fracture system was mapped at Kilve on the southern margin of the 

Bristol Channel Basin covering approximately 225 m2 (Fig. 6.2a) [Belayneh et al., 2009]. 

Tectonic displacement along normal faults underlying the rift system induced porosity reduction 

and excess fluid pressure [Belayneh et al., 2009]. During such tectonic evolution process, two 

oblique sets of vertical, layer-normal fractures were formed extensionally and filled with calcite 

minerals, striking approximately 100° (Set 1) and 140° (Set 2), respectively (note that the vein 

thickness will not be used for this study when deriving fracture apertures for flow prediction). 

The fractured limestone layer (~26 cm thick) is sandwiched between almost impervious shales 

and the joint sets are layer bound [Belayneh et al., 2009]. An important feature of this outcrop 

system is that the fracture sets are very distinct and cross-cut with few abutting relationships. 2D 

analysis is used here, while some potential 3D effects will be discussed in section 6.6. 

The outcrop map represents a limited range of trace data of the actual fracture system 

controlled by the image resolution (~0.05 m) and the mapped domain size (~12 m). To eliminate 

the effect of irregular boundaries of the whole outcrop pattern (with unmapped areas inside the 

domain), a squared subarea of size L = 6 m containing ~1,000 fractures is extracted (Fig. 6.2b) as 

a sample of the fracture system to measure its scaling properties. Since it is very expensive in 

CPU time to compute very large domains given the current processing power [Latham et al., 

2013; Lei et al., 2014], a smaller domain of size L = 2 m is selected for geomechanical modelling 

(section 6.4) and also serves as the source for network upscaling (section 6.5). The larger area (L 

= 6 m) will be used for checking the upscaled fracture networks generated from the source 

pattern (L = 2 m) using the proposed new approach (section 6.3.5). 
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Fig. 6.2 (a) The outcrop pattern mapped at Kilve on the southern margin of the Bristol Channel Basin 

[Belayneh et al., 2009]. (b) Extracted 6 m × 6 m pattern for analysis of scaling properties. (c) Extracted 2 

m × 2 m pattern for geomechanical modelling and as the source for network upscaling (light lines 

represent Set 1 and bold lines represent Set 2). 

6.2.1 Spatial distribution 

The fractal dimension D (or the correlation dimension Dc) describes the spatial distribution 

of fractures. The correlation dimension Dc can be calculated using a two-point correlation 

function [Bour and Davy, 1999] as defined by 

c~)(
1

)(
22

D

d rrN
N

rC         (6.1) 

where N is the total number of fracture barycentres (i.e. midpoint of each fracture trace), and Nd 

is the number of pairs of barycentres whose separation is smaller than r. For a fractal population, 

C2(r) is expected to scale with r following a power law trend and its exponent gives the value of 

Dc. Fig. 6.3 illustrates the scaling of C2(r) with r for the selected 6 m × 6 m pattern, where a 

power law trend is manifest for over two decades on the bilogarithmic diagram. By employing 

least squares analysis, Dc is estimated to be 2.0. Due to the fact that Dc ≤ D ≤ 2.0 (i.e. Euclidean 
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dimension) [Bonnet et al., 2001], D is also equal to 2.0, implying that the network of fracture 

barycentres exhibits a homogeneous filling of the 2D space and is nonfractal. 

 

Fig. 6.3 Calculation of the two-point correlation function C2(r) as a function of r. The slope of the least 

squares fitting line for data points (r, C2(r)) on the bilogarithmic diagram gives an estimate of the 

correlation dimension Dc ≈ 2.0. 

6.2.2 Length distribution 

The density distribution of fracture lengths (i.e. trace lengths) can be described by the power 

law model [Bour et al., 2002; Davy et al., 2010] as given by 

],[for           ),( maxmin llllLLln aD       (6.2) 

where n(l, L)dl gives the number of fractures with sizes l belonging to the interval [l, l + dl] (dl 

<< l) in an elementary volume of characteristic size L, a is the power law length exponent, D is 

the fractal dimension, and α is the density term. The equation is valid irrespective of D [Bour et 

al., 2002], even for the studied nonfractal pattern. The exponent a can be derived from either the 

cumulative distribution or density distribution of fracture lengths. However, a comparison 

between the two derivations of a is considered useful [Davy, 1993]. The observed data of 

fracture lengths is often biased due to the truncation (resolution limitation) and censoring effects 

(incomplete sampling) [Bonnet et al., 2001]. A lower cut-off of 0.3 m (i.e. 5% × L [Odling, 

1997]) is used to eliminate the truncation effect. In the cumulative distribution analysis, the 

censoring effect is corrected using the Kaplan-Meier method [Odling, 1997]. By employing least 

squares fitting, the cumulative exponent c is estimated to be 1.45 and the length exponent is 
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therefore calculated as a = c+1 = 2.45 (Fig. 6.4a). The cumulative distribution may suffer from 

an additional intrinsic bias, i.e. the finite size effect [Pickering et al., 1995]. In the density 

distribution analysis, the censoring effect is corrected by removing fractures that intersect the 

sampling boundaries [Bour et al., 2002]. To account for the density perturbation from the 

artificial deletion, an effective system size is estimated as the square root of the coverage area of 

remaining fractures and used for the calculation of the density term α, given an assumption that 

the proportion of the coverage area to the squared space is equal to the ratio between the total 

length of remaining fractures and the total length of all sampled fractures. The length exponent a 

estimated from the density distribution has a slightly lower value of 2.37, and the density term α 

is calculated to be 3.28 (Fig. 6.4b). The density distribution was recommended more appropriate 

for characterising the length scaling behaviour [Davy, 1993; Bonnet et al., 2001] and is adopted 

for later analysis. 

 

Fig. 6.4 (a) The cumulative distribution, and (b) density distribution of fracture lengths of the studied 

pattern having a size of L = 6 m. A lower cutoff of 0.3 m (i.e. 5% × L) is used to eliminate the truncation 

effect. By correcting the censoring effect using the Kaplan-Meier method [Odling, 1997], the cumulative 

distribution gives an estimate of the length exponent a = 1.45+1 = 2.45. After removing fractures that 

intersect sampling boundaries and correcting the system size, the density distribution gives the length 

exponent a = 2.37 and the density term α = 3.28. 
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6.2.3 Density, intensity and connectivity 

If a fracture system ideally obeys the power law length distribution, its fracture density  

(i.e. number of fractures per unit area) can be derived from the integral of the density function of 

fracture lengths [Darcel et al., 2003a], while the fracture intensity P21 (i.e. total length of 

fractures per unit area) can be derived based on the first moment of the density distribution of 

fracture lengths as [Darcel et al., 2003a] 
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Due to the broad range of fracture lengths, the percolation behaviour of the fracture network is 

determined by two parts that describe the contribution from smaller and larger fractures [Bour 

and Davy, 1997] as given by 
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For the studied network with a < D+1, if lmin is sufficiently small, the first integral of Eq. (6.2) is 

controlled by the upper bound L [Berkowitz et al., 2000], which means the connectivity is only 

slightly dependent on lmin. The critical system size Lc (or the connection length) corresponding to 

the percolation threshold can be further calculated as [Berkowitz et al., 2000] 
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for a > 1 and a ≠ D+1. The percolation threshold pc is a scale-independent parameter with a 

value ranging between 5.6 and 6.0 [Bour and Davy, 1997]. Here, Lc is calculated to be ~0.80 m 

and found marginally influenced by the given lmin (i.e. 0.05 m). Another feature of the scenario of 

a < D+1 is that, if the fracture density  is fixed, the network connectivity will increase with 

scale, i.e. the fracture network is well-connected at larger scales (L >> Lc) [Davy et al., 2006]. 

For measurements based on a finite-sized domain, lmax is likely to be controlled by the domain 

size L, and consequences of such an effect will be discussed in section 6.6. 

6.2.4 Displacement and length correlation 

Fractures often exhibit displacements perpendicular and/or parallel to the discontinuity 

surface. They are termed aperture and shear displacement, respectively, and referred as fracture 
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displacement attributes here. 

The relation between shear displacements and fracture lengths has been extensively studied 

in the literature based on field measurement. By assuming a perfect positive correlation, a 

general form of shear displacement-length correlation law [Bonnet et al., 2001] is given by 

1~max

n
l         (6.6) 

where δmax is the maximum shear displacement of an individual fracture, l is the fracture length, 

and n1 is the correlation exponent. A simple linear relation is predicted by the linear elastic 

fracture mechanics (LEFM) theory [Pollard and Segall, 1987]. A plane strain model taking 

account of inelastic deformation of faults also suggests n1 = 1.0 [Cowie and Scholz, 1992a]. A 

degree of consistency has been observed between the linear scaling predictions and field 

measurements [Cowie and Scholz, 1992a, 1992b; Dawers et al., 1993; Scholz et al., 1993; Kim 

and Sanderson, 2005; Schultz et al., 2008]. However, a range of values for n1 have also been 

reported, such as 0.5 [Fossen and Hesthammer, 1997], 1.5 [Gillespie et al., 1992], and 2.0 

[Walsh and Watterson, 1988]. Variation of n1 is controlled by numerous factors including 

lithology, growth mechanism of faults as well as their interaction and reactivation [Bonnet et al., 

2001; Kim and Sanderson, 2005]. 

The correlation between fracture apertures and trace lengths has also been widely 

investigated [Vermilye and Scholz, 1995; Walmann et al., 1996; Renshaw and Park, 1997; Olson, 

2003; Schultz et al., 2008]. Supposing a power correlation is also valid [Bonnet et al., 2001], 

apertures can then be related to fracture lengths as 

2~max

n
lb         (6.7) 

where bmax is the maximum aperture of an individual fracture, l is the fracture length, and n2 is 

the correlation exponent. The exponent n2 was proposed to range between 0.5 and 2.0 [Bonnet et 

al., 2001; Neuman, 2008]. A square root sublinear scaling law was derived by incorporating 

subcritical and critical fracture propagation criteria into LEFM analysis [Olson, 2003] and is 

given by 
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where KIc is the mode I fracture toughness, E is the Young’s modulus, and υ is the Poisson’s 
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ratio. For plane strain conditions, KIc is related to the energy release rate G by 
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By assuming fracture opening shape to be elliptical in nature, the average aperture bavg can be 

related to bmax [Olson, 2003] as 
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The square root model shows good agreement with field observations [Walmann et al., 1996; 

Olson, 2003; Schultz et al., 2008; Klimczak et al., 2010]. However, variation of n2 still exists due 

to the interaction among fractures in the actual geological environment [Hatton et al., 1994; 

Vermilye and Scholz, 1995; Renshaw and Park, 1997]. 

In reality, the scaling exponents (i.e. n1 and n2) are not only determined by topological 

attributes, but also influenced by geomechanical constraints, e.g. the magnitude and orientation 

of in-situ stresses. In this research, the scaling exponents will be derived based on geomechanical 

modelling of a fractured rock under in-situ stress conditions. For simplicity, fractures are 

associated with no initial phase of shearing, whereas initial apertures are assigned a priori using 

Eq. (6.8) to model rupture-induced initial opening. A further application of assumed far-field 

stresses using the FEMDEM geomechanical model will illustrate the accommodation of closure, 

opening, shearing and dilatancy in the fracture system and introduce variability to the 

distribution of displacement attributes (section 6.4.1). The resulting stress-dependent distribution 

is to be preserved in a scaled and coupled way during the formation of growth networks (section 

6.4.2 and 6.4.3). 

6.3 Fracture network growth model 

6.3.1 Growth lattice 

By assuming the fracture system fills progressively larger and larger Euclidean space 

domains in a repeatable process, a novel scheme is developed to grow the geologically-obtained 

fracture pattern together with its spatially variable displacement attributes (i.e. fracture aperture 

and shear displacement) into larger scales using a growth lattice (Fig. 6.5b). There are two types 

of cells in a growth lattice: the source cell (SC) that is the reference for network growth, and the 
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growth cell (GC) that is a clone of the SC sharing common geostatistics. Here, the source cell 

corresponds to the 2 m × 2 m outcrop sample. Important characteristics of the source network 

will be retained during a growth process: (i) at the population level, fracture density and spatial 

distribution are matched by GCs to the SC; (ii) at the individual fracture level, various properties 

including orientation, length, segmentation, curvature, and displacements are preserved. The 

fractures are classified into censored (partially sampled) and uncensored (completely observed) 

types (Fig. 6.5a), each of which requires distinct means for extrapolation. Boundary constraints 

are applied along the cell periphery to guarantee topological connectivity. The growth procedure 

is implemented separately for each set due to the intrinsic difference in their geostatistical 

properties. 

 

Fig. 6.5 (a) The source cell pattern involving censored and uncensored fractures, and (b) a growth lattice 

consisting of one source cell and eight growth cells. 

6.3.2 Source cell geostatistics 

Methods of statistics are applied to the source pattern to interpret its topological complexity 

in a quantitative way. Location of censored fractures is measured based on the distribution of 

censoring nodes, through which partially sampled fractures are truncated by the SC boundary. 

Spatial organisation of uncensored fractures is characterised by the distribution of their 

barycentres, based on a physically reasonable assumption that barycentre is likely to be the initial 

nucleus position for idealised symmetrical crack development [Bour et al., 2002]. Two exclusion 

parameters, i.e. exclusion radius and spacing, are computed for each barycentre based on its 

spatial relationship with other nuclei (Fig. 6.6). The exclusion radius of a barycentre is the 
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distance with the closest counterpart, while exclusion spacing is measured by projecting the point 

cloud to a line perpendicular to the mean orientation of the fracture set. The procedure allows the 

preservation of fracture barycentre spatial distribution. The SC spatial information is synthesised 

into a mathematical expression given by 

 srniX  ,,        (6.11) 

where Xi corresponds to the location of the barycentre of the ith source fracture, εn, εr, εs denote 

the probability density functions (PDFs) for the distribution of spacing of censoring nodes, 

exclusion radius and spacing of barycentres, respectively, determined from a series of 

nonparametric Kolmogorov-Smirnov (K-S) hypothesis tests. 

 

Fig. 6.6 Barycentre map for characterising fracture exclusion radius and spacing. 

Characteristics of individual fractures are also statistically quantified for various key 

respects. The property, priority degree, is measured for each fracture based on the ratio of its 

length to the size of the SC domain. For example, a censored fracture with a ratio greater than 

1.0 is potentially a traversing fracture in larger scales and is associated with a high priority. The 

number of segments of each source fracture is counted and will be used later to determine the 

duration of the discrete-time sequence for each random walker (section 6.3.3). Curvature of 

multi-segment fracture traces is governed by the inflection nature as well as orientation 

dispersion (Fig. 6.7). It is a property that can greatly influence the tortuosity of migration path 

for subsurface flow [Ronayne and Gorelick, 2006]. The number of inflection points, ñ, is counted 

for each naturally bent fracture by identifying the concavity sign transition based on the second 
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derivatives of the non-uniform rational basis spline (NURBS) in the 2D Cartesian coordinate 

system. Hypothesis tests are conducted to choose an optimal distribution (e.g. uniform, normal, 

lognormal, exponential, gamma) for segmental lengths, orientations, shear displacements and 

apertures with their truncated PDFs denoted as gi(l), hi(θ), ui(δ) and vi(b), respectively, for the ith 

source fracture. For development of ui(δ) and vi(b), see section 6.4.1. The segmental statistical 

properties are measured independently for each source cell fracture to account for their 

length-dependency and inter-correlation. For example, a longer fracture is prone to be more bent 

(see Fig. 6.2c) and have greater trajectory variation, i.e. greater dispersion in segmental 

orientation, for the reason that it occupies larger space and the growth path can be more 

influenced by stress heterogeneity and other existing fractures. Furthermore, the aperture and 

shear displacement may be greatly affected by the degree of curvature. 

 

Fig. 6.7 Characterisation of the curvature of a multi-segment fracture NURBS based on the transition 

between concavity and convexity. 

6.3.3 Growth of fractures 

(a) Growth formulation 

The nucleation process of fractures in GCs, according to the self-referencing scheme, is 

governed by the spatial information model of the source sample as 

 srniX  ,,0         (6.12) 

where Xi
0 is the position of a random nucleus for the ith growth fracture. Propagation of fractures 

from nuclei is simulated through discrete-time random walks in a polar coordinate system [Kaye, 

1994], in which a fracture is traced by variable jumps from one position to another as time 

proceeds: 
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where t∈{0,1,2…,Ti} is the discrete time in sequence, Ti corresponds to the prospective number 

of segments of the ith growth fracture, Xi
t is the position of the walker at the time t, and ∆Xi

t is 

the increment for the next step governed by a multivariate distribution given by 
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where l and θ are two independent random variables for segmental length and orientation, 

respectively, which are generated in a bootstrapping process based on the corresponding source 

fracture statistics, and λt is a sign variable indicating the current concavity state that switches 

from plus to minus or vice versa if the walker passes an inflection point that is associated to the 

discrete time sequence through a Bernoulli process with a success probability of ñ/(T+1). 

Amplitude of a curved trace is modelled by a conditional distribution, i.e. the second part of the 

right hand side of Eq. (6.14), so that the orientation variable monotonically increases or 

decreases in each period between inflection nodes, with the degree of curvature controlled by the 

standard deviation. Fracture displacement variables, i.e. δ and b, are stochastically generated 

using the probability functions ui(δ) and vi(b), and automatically assigned to each segment as 

walkers parade. 

In the numerical implementation, growth of censored and uncensored fractures in GCs is 

achieved in different ways due to their distinct sampling features. Nuclei of censored fractures 

are seeded along lattice edges, while barycentrer of uncensored fractures are spawned inside cell 

domains. In each growth region, censored fractures are grown ahead of uncensored ones and will 

place constraints for barycentre nucleation. Geological arrest model is not included in this 

growth scheme on account of the cross-cutting feature of the source pattern, which means that 

each random walk is an independent process. 

(b) Growth of censored fractures 

Following the self-referencing scheme, GCs are prescribed to share a similar window 

censoring condition to the SC due to the same occupation area in the 2D Euclidean space. 

Censoring nodes are randomly seeded along lattice edges, except those belonging to the central 

SC (Fig. 6.8a). Adjacent cells are constrained to have the same nodes along their identical edge 

to guarantee the connectivity between them, while their nonoverlapped edges are equipped with 
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statistically mirrored settings. A censored growth fracture in GCs evolves from a nucleus located 

on the lattice edge with its propagation traced by a random walker (Fig. 6.8b). The censoring 

nodes already connected with fractures from neighbour cells are hatched first and new fractures 

are forced to propagate with the priority degree retained. Other isolated censoring nodes are 

arbitrarily allocated with the remaining fracture statistics from SC data sets. Censored fractures 

are grown first in the four GCs neighbouring the SC, which can place priority constraints for the 

nuclei along the edges shared with other GCs located at lattice corners. 

 

Fig. 6.8 (a) Nucleation of censored fractures by seeding censoring nodes along edges of the growth lattice, 

(b) propagation of a censored fracture from a censoring node simulated by a random walker, (c) 

nucleation of uncensored fractures by a point packing process constrained by the barycentre exclusion 

parameters, and (d) propagation of an uncensored fracture from its barycentre captured by two 

synchronised random walkers. 

(c) Growth of uncensored fractures 

Nucleation of uncensored fractures is modelled by a point packing process (Fig. 6.8c). 

Barycentres of already generated censored fractures are identified to draw an initial barycentre 

map. An uncensoring window offsetting a width from the cell periphery is recognised to be the 
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domain for coordinate generation, where an uncensored fracture has little chance to touch cell 

borders. The offset width is calculated based on the expected values of the length and orientation 

of the current propagating fracture. Inserting a new nucleus into the barycentre cloud is 

constrained by the frequency distribution of exclusion parameters. The distance between a new 

seed and the closest existing barycentre cannot be smaller than a random variable of exclusion 

radius, while the minimum spacing with existing fractures also has to be larger than a stochastic 

value of exclusion spacing. If the new seed doesn’t satisfy these criteria, it will be abandoned and 

another candidate will be generated. This process is repeated under an automated mechanism 

until the candidate can pass the examination, after which the map will be updated with the new 

nucleus added. An uncensored crack hatches from the barycentre nucleus and propagates as two 

synchronised walkers jogging towards opposite directions (Fig. 6.8d). 

6.3.4 Recursive cell culture 

A recursive cell culture scheme is implemented to extrapolate fracture networks into larger 

lattices under a self-referencing scheme (Fig. 6.9). The recursive formulation is given by 
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where the nth order cell is grown from the n-1th order cell which serves as the source cell in the 

nth phase, fgrowth is the growth function based on random walks in the nine-grid lattice, and the 

0th order cell corresponds to the initial SC. In each growth phase, censored fractures from 

different cells are connected, followed by establishment of a new SC geostatistical library based 

on the larger network for next phase cell culture. 

 

Fig. 6.9 Recursive cell culture scheme. 
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6.3.5 Validity of growth networks 

To examine the validity of growth networks for representing larger fracture systems, a 

comparison is made at a system scale of L = 6 m between the original analogue fracture network 

(AFN) from outcrop mapping (Fig. 6.10a), ten realisations of growth fracture network (GFN) 

cultivated from the central L = 2 m source pattern (Fig. 6.10b), and ten realisations of pure 

Poissonian discrete fracture network (DFN) (Fig. 6.10c). A Poissonian DFN is created by the 

following steps: (i) generating fracture barycentres using a Poisson process with the barycentre 

density equal to that of the AFN, (ii) sampling random lengths conditioned by the power law 

statistics obtained in section 6.2, (iii) assigning fracture orientations (uncorrelated with lengths) 

using a bootstrapping process from the orientation data of the AFN, and (iv) deleting the fracture 

portions that are outside the domain. The Poissonian DFN is constrained to statistically have the 

same (98% confidence interval) fracture intensity P21 as the AFN. Observation of Fig. 6.10 

highlights some interesting differences in visual appearances. The AFN and GFN appear subtly 

different, since the central L = 2 m source cell does not fully feature the characteristics of the 

original AFN, such as the relatively long and straight Set 1 fractures as can be seen in the top left 

region of Fig. 6.10a as well as the significant swing in orientation of Set 2 from the lower left to 

the top right corner. However, the much disordered appearance of Fig. 6.10c is in stark contrast 

to the other two, possibly due to the uncorrelation between lengths and orientations in the DFN 

system [Odling, 1992]. A quantitative comparison is further given as shown in Table 6.1. 

 

Fig. 6.10 Fracture patterns (domain size L = 6 m) of (a) the analogue fracture network (AFN), (b) one of 

the ten growth fracture network (GFN) realisations, and (c) one of the ten Poissonian discrete fracture 

network (DFN) realisations. 
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In Table 6.1, the fractal dimension D is derived from the two-point correlation function, 

length exponent a is estimated from the density distribution of fracture lengths, fracture intensity 

P21 is calculated using Eq. (6.3) and percolation parameter p is computed from Eq. (6.4). 

Intersection density ω is measured as the number of intersection nodes per unit area. It can be 

noted that the GFN realisations show quite similar results to the AFN, although certain 

discrepancy still exists. The AFN has a slightly higher P21 value than GFNs possibly caused by 

intrinsic heterogeneity of geological media and potential scale-dependency of P21 (a further 

discussion is given in section 6.6). The GFNs have a fractal dimension approximately equal to 2, 

indicating that the nonfractality of the barycentre spatial distribution is preserved. Larger length 

exponent (i.e. fewer long fractures) in the GFNs is probably a result of the sampling bias of the 

limited source data as already observed in the visual comparison. However, the Poissonian DFNs 

seem to slightly overestimate several important properties, e.g. p and ω. Fig. 6.11 further 

compares the spacing distribution of the three types of networks measured by placing twenty 

scanlines along the North-to-South direction and the East-to-West direction, respectively, for 

each pattern. It seems that the AFN exhibits a “lognormal-like” spacing distribution, while the 

DFNs tend to have an “exponential-like” distribution since there is no constraint for very close 

barycentres in the Poisson process. The GFNs tend to present a more realistic spacing 

distribution under the control of the exclusion parameters, although certain discrepancies still 

exist probably in relation to the bias in predicting the length distribution. Generally, the growth 

patterns exhibit quite a good match to the actual fracture system regarding geometric properties. 

Table 6.1 Comparison between the analogue fracture network (AFN), growth fracture networks (GFNs), 

and Poissonian discrete fracture networks (DFNs) with the domain size L = 6 m. 

Properties AFN GFNs DFNs 

Fractal dimension D 2.00 1.96 ± 0.04 1.92 ± 0.08 

Length exponent a 2.37 2.54 ± 0.05 2.55 ± 0.05 

Fracture intensity P21 (m
-1

) 11.23 10.67 ± 0.04 11.28 ± 0.11 

Percolation parameter p 12.14 11.55 ± 0.26 13.44 ± 1.52 

Intersection density ω (m
-2

) 23.81 23.79 ± 0.64 27.11 ± 9.09 
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Fig. 6.11 Spacing distribution of the AFN, GFNs, and DFNs measured by placing twenty scanlines along 

(a) the North-to-South direction and (b) the East-to-West direction, respectively, for each fracture pattern. 

6.4 Characterisation of fracture attributes 

Fracture displacement attributes, i.e. aperture and shear displacement, of hierarchical rock 

structures exhibit significant stress-dependency [Min et al., 2004b; Baghbanan and Jing, 2008; 

Latham et al., 2013; Lei et al., 2014] and scale-dependency [Hatton et al., 1994; Walmann et al., 

1996; Renshaw and Park, 1997; Bonnet et al., 2001; Kim and Sanderson, 2005; Neuman, 2008]. 

Geomechanical modelling is conducted on the 2 m × 2 m rock sample to obtain realistic 

distribution of fracture attributes, which will be transformed into larger networks following 

proper scaling laws. 

6.4.1 Stress-dependency of fracture attributes 

A plane strain numerical experiment is designed with biaxial effective stresses applied by 

different ratios, i.e. a hydrostatic stress case with σ’x/σ’y = 1, and a deviatoric stress case with 

σ’x/σ’y = 2, given that σ’y ≡ 5 MPa. Material properties of limestones vary widely, and those of a 

type of limestone deemed to be typical [Lama and Vutukuri, 1978] are chosen as given in Table 

6.2. To eliminate artificial shock, far-field stresses are applied at the model boundaries by a 

ramping stage from an unstressed state, and the fractured limestone adjusts to a new deformed 

state under the two different stress scenarios considered. Stress effect on the variability of 

fracture attributes is characterised in two aspects [Lei et al., 2014]: (i) opening and shearing 

caused by network-scale fracture and matrix interaction under applied far-field stresses (referred 
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to here as mesoscopic effect), and (ii) closure and dilation governed by fracture-scale roughness 

under local compressive stress and shearing movement (referred to as microscopic effect). The 

fracture behaviour is modelled by a simplified joint constitutive model with a constant dilation 

angle and no consideration of the fracture size effect on the JRC and JCS parameters. 

Table 6.2 Material properties of the fractured limestone. 

Properties Value 

Bulk density ρ (kg/m3) 2700 

Young’s modulus E (GPa) 30 

Poisson’s ratio υ 0.27 

Tensile strength ft (MPa) 7 

Internal friction angle ϕi (º) 45 

Cohesion c (MPa) 15 

Residual friction angle ϕr (º) 35 

Energy release rate G (kJ·m
-2

) 1 

JCS (MPa) 100 

JRC 5 

Dilation angle ϕd (º) 5 

Initial mechanical aperture b0 (mm) 0.1 

 

As shown in Fig. 6.12a, longer fractures exhibit relatively larger apertures under the 

hydrostatic condition, mainly controlled by the a priori correlation with fracture lengths. 

However, variation is observed in the deviatoric case (Fig. 6.12b), where some quite large 

apertures emerge locally caused by dilational bends in curved fractures, dilational jogs at sheared 

intersections, and fracture openings along rotated block boundaries [Latham et al., 2013]. The 

influence of in-situ stress ratio on shear displacement distribution is more significant. In the 

hydrostatic case, all fractures are suppressed for shearing (Fig. 6.12c), whereas considerable 

sliding occurs in the deviatoric condition (Fig. 6.12d), especially associated with Set 2 due to its 

favourable orientation. 
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Fig. 6.12 Aperture distribution of the fractured rock in response to different biaxial stress conditions: (a) a 

hydrostatic case with σ’x = 5 MPa and σ’y = 5 MPa, and (b) a deviatoric case with σ’x = 10 MPa and σ’y = 

5 MPa. Shear displacement distribution of the fractured rock in (c) the hydrostatic case and (d) the 

deviatoric case. 

6.4.2 Scale-dependency of fracture attributes 

The scaling exponents, i.e. n1 and n2, of fracture attributes can be derived by statistical 

correlation analysis and are found greatly influenced by the in-situ stress state. As shown in Fig. 

6.13a, fracture apertures in the hydrostatic case experienced significant closure from their initial 

values. However, deformed apertures still tend to follow a power law relation with fracture 

lengths, believed to be mainly caused by the a priori square root correlation. The non-linear 

relation between aperture closure and fracture length (as can be seen from Eq. (4.25)-(4.27)) 

adjusted the exponent n2 to be 0.568 in the hydrostatic condition. Geomechanically-induced 

variability under deviatoric stresses is well captured and a higher exponent is obtained, i.e. n2 = 

0.635. The higher exponent can be possibly attributed to the tendency that a longer fracture may 

generate more openings due to more locally curving parts of the fractures (where it is easier to 

form dilational bends) and more intersections with other fractures (where it is easier to 
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accommodate dilational jogs). Shear displacements also show a power law trend with scale (Fig. 

6.13b). Fractures under the deviatoric condition are associated with a much higher exponent (n1 

= 1.148) than those under the hydrostatic condition (n1 = 0.406). Such aperture and shear 

displacement scale-dependencies produced by the geomechanical model are considered 

important and realistic for these unique scenarios. 

 

Fig. 6.13 (a) Correlation between length-weighted average apertures and fracture lengths, and (b) 

correlation between length-weighted average shear displacements and fracture lengths of the 2 m × 2 m 

fractured rock under different in-situ stress conditions. 

During the formation of growth networks, when some fractures are connected with each 

other via cell boundaries to form a longer fracture, their displacement attributes will be upgraded 

by multiplying a scaling factor ζ deduced from Eq. (6.6) and (6.7): 
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where ls is the length of a shorter fracture which will connect with other shorter fractures to form 

a longer one with length ll, and n is the scaling exponent to be substituted by n1 or n2 for shear 

displacement or aperture, respectively. The upgrading operation is implemented automatically in 

each growth phase. 

6.4.3 Coupling of fracture attributes with a fracture dilation model 

For each growth network, its scaled aperture and shear displacement can be mechanically 

coupled according to a fracture dilation model [Asadollahi and Tonon, 2010] to account for 
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shear-induced dilational displacement bs given by 
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where u is the fracture shear displacement, up is the peak shear displacement, bs,peak is the 

dilational value at up, and σ’n is the effective normal stress applied on fracture walls. The peak 

shear displacement up is a stress- and scale-dependent parameter that can be estimated using an 

empirical relation, i.e. Eq. (4.35) [Asadollahi and Tonon, 2010]. Normal stress σ’n is estimated 

using the Mohr circle equation: 
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where σ’x and σ’y are the values substituted from the applied far-field stresses, τ’xy is equal to 0, 

and θ is the intersection angle between the normal of fracture plane and the positive x direction. 

The integral part in Eq. (6.17) is numerically approximated by the quadratic solution of the 

three-point Simpson's rule. In the hydrostatic case, not surprisingly, dilational effect scarcely 

exists since δs << δpeak. 

Mechanical aperture bm is derived as the summation of the dilational displacement and the 

scaled normal aperture. Hydraulic aperture bh, defined as an equivalent aperture for laminar flow 

between smooth parallel plates, may exhibit a complicated non-linear correlation with 

mechanical aperture [Barton et al., 1985; Olsson and Barton, 2001]. For simplicity, hydraulic 

aperture in this research is treated equally to mechanical aperture, which tends to overestimate 

flow rates by a roughness-dependent factor ≤ 2 [Matthäi and Belayneh, 2004]. However, this 

bias is considered not to have a significant influence for the focus of this study which is the trend 

by which permeability is likely to change over length scales. 

6.5 Multiscale growth networks with stress- and scale-dependent apertures 

6.5.1 Multiscale growth network realisations 

Multiscale growth networks with stress- and scale-dependent apertures are constructed 

through the recursive cell culture scheme based on the stressed 2 m × 2 m Kilve analogue sample. 

Fig. 6.14 presents one realisation set of multiscale growth patterns, in which important features 
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of natural fracture systems are modelled including non-planarity, segmentation, local clustering, 

and spanning fractures. Fig. 6.15 shows the normalised density distributions of fracture lengths 

of this realisation set and it seems that the data can be fitted by a power law with an exponent a ≈ 

2.6. 

 

Fig. 6.14 Multiscale growth realisations achieved by the recursive cell culture scheme. 

 

Fig. 6.15 Normalised density distributions of fracture lengths of a realisation set of multiscale growth 

networks. 

Important properties of multiscale growth networks (ten realisations for each stress 

condition) are summarised in Table 6.3. Variation of fracture density caused by crack 

propagation is neglected due to its minor effect. Topological attributes are averaged for all 

realisations, while stress-dependent parameters (e.g. aperture, porosity) are listed separately for 

each stress scenario. Fractal dimension D ≈ 2 over all scales indicates that the homogeneous 
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filling feature is retained by the growth model. The networks at larger scales show relatively 

higher length exponent, implying the existence of certain biases tending to underestimate the 

existence of longer fractures under the repetitive assumption of the proposed method, which has 

also resulted in the scale-invariance of P21 and intersection density ω (consequences and possible 

solutions will be discussed in section 6.6). Percolation parameter p increases with the system size 

since more large fractures are involved as a result of extrapolating censored fractures in larger 

domains. Rock porosity ϕ, defined as the fraction of aperture space over total rock volume, 

increases with scale as a result of scaled and coupled displacement attributes. 

Table 6.3 Properties of multiscale growth network realisations. 

Properties 2 m 6 m 18 m 54 m 

Fractal dimension D 1.98 1.95 ± 0.04 1.97 ± 0.01 1.96 ± 0.01 

Length exponent a 2.43 2.54 ± 0.11 2.59 ± 0.11 2.66 ± 0.12 

Fracture intensity P21 (m
-1

) 10.84 10.77 ± 0.06 10.72 ± 0.07 10.68 ± 0.07 

Percolation parameter p 7.48 11.32 ± 0.57 13.94 ± 0.94 14.43 ± 1.63 

Maximum fracture length (m) 2.01 6.04 ± 0.00 18.11 ± 0.01 54.34 ± 0.03 

Intersection density ω (m
-2

) 25.00 23.69 ± 0.59 23.72 ± 0.36 23.96 ± 0.36 

     

Hydrostatic Stress Condition 

Fracture porosity ϕ (%) 0.110 0.125 ± 0.020 0.131 ± 0.034 0.133 ± 0.035 

Harmonic mean aperture (mm) 0.062 0.064 ± 0.000 0.066 ± 0.000 0.066 ± 0.001 

Geometric mean aperture (mm) 0.090 0.097 ± 0.001 0.100 ± 0.001 0.101 ± 0.001 

Arithmetic mean aperture (mm) 0.124 0.165 ± 0.004 0.205 ± 0.012 0.253 ± 0.026 

     

Deviatoric Stress Condition 

Fracture porosity ϕ (%) 0.160 0.229 ± 0.006 0.263 ± 0.016 0.273 ± 0.019 

Harmonic mean aperture (mm) 0.058 0.063 ± 0.001 0.065 ± 0.001 0.066 ± 0.001 

Geometric mean aperture (mm) 0.093 0.116 ± 0.002 0.128 ± 0.002 0.134 ± 0.002 

Arithmetic mean aperture (mm) 0.166 0.296 ± 0.061 0.435 ± 0.055 0.628 ± 0.078 

 

The equivalent aperture for each fracture population is calculated using the generalised 
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f-mean function given by: 
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where n is the total number of fractures, wi = li/ltot is the length-based weight of the ith fracture, 

bhi is the hydraulic aperture of the ith fracture, and f = x, 1/x, or ln(x) corresponds to arithmetic, 

harmonic, or geometric mean, respectively. Arithmetic mean treats fractures as connected in 

parallel and tends to give an upper bound, while harmonic mean assumes fractures as connected 

in series and tends to provide a lower bound [de Marsily, 1986; Zimmerman and Bodvarsson, 

1996; Ronayne and Gorelick, 2006; Leung and Zimmerman, 2012]. Permeability of 2D 

heterogeneous media is more likely to be governed by the geometric mean of local fracture 

permeability that follows a lognormal or power law distribution [de Marsily, 1986; de Dreuzy et 

al., 2002]. The aperture of each individual fracture, i.e. bhi in Eq. (6.19), is derived as the 

harmonic mean of its segmental apertures since fracture segments are connected in series in the 

2D scenario. Growth realisations of different stress cases are associated with a close value for 

harmonic mean aperture, whereas the deviatoric case shows slightly higher geometric mean and 

remarkably larger arithmetic mean aperture compared to the hydrostatic case. 

6.5.2 Flow in multiscale fractured rocks 

Fluid flow in the growth networks is modelled by single-phase flow simulation based on the 

hybrid finite element-finite volume method (FEFVM) [Paluszny et al., 2007]. Fractures are 

segmented into lower dimensional line elements, which are embedded in a uniform matrix 

material discretised by an unstructured finite element grid [Paluszny and Matthäi, 2010]. Matrix 

permeability km of fractured hydrocarbon reservoirs ranges between 1 mD and 1 D [Matthäi and 

Belayneh, 2004]. A lower bound value, i.e. km = 1 × 10-15 m2, is adopted here. Fracture 

permeability kf is characterised using piecewise hydraulic apertures obeying the cubic law (i.e. kf 

= bh
2/12), with a harmonic mean value (lower bound) derived to be ~3 × 10-10 m2. In the highly 

connected disordered media, flow is dominated by fractures due to the large fracture-matrix 

permeability contrast, i.e. kf/km > 105-106 [Matthäi and Belayneh, 2004]. By applying a 

prescribed macroscopic pressure differential on each pair of opposite boundaries, the fluid 

pressure and velocity fields are resolved with equivalent permeability of the different sized 
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domains further computed [Lang et al., 2014]. 

 

Fig. 6.16 Equivalent permeability kxx and kyy computed from the flow simulation, and analytical 

permeability kharm, karithm, kgeom calculated by substituting the harmonic, arithmetic and geometric mean 

apertures into Eq. (6.20), under the applied (a) hydrostatic and (b) deviatoric stress conditions. 

Fig. 6.16 shows the permeability scaling trend of the ten sets of growth realisations in both x 

and y directions (error bars represent ±1 standard deviation). It can be noted that the equivalent 

permeability is always at least one order of magnitude larger than the matrix permeability (i.e. 1 

× 10-15 m2), which verifies the expected fluid partitioning behaviour, i.e. fracture-dominated flow. 

With the scale increasing, the permeability of the deviatoric case displays an upward trend at the 

small and intermediate scale (<10-20 m) and a continued downward trend at larger scales (>20 

m), whereas the permeability of the hydrostatic case mainly shows a downward trend except a 

slight increase in the y direction at the small scale (<10 m). Fracture networks under the 

deviatoric condition appear to possess higher permeability due to their wider apertures. 

Two factors are considered to dominate the permeability scaling trend: (i) the length 

exponent a that governs the connectivity scaling of a fracture population [Berkowitz et al., 2000; 

Darcel et al., 2003a], and (ii) the correlation exponents n1 and n2 which regulate the 

transmissivity scaling of each individual fracture [de Dreuzy et al., 2002; Neuman, 2008]. For 

the studied case of 2 < a < D+1, with the increase of domain size L, the number of fractures 
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larger than L (i.e. traversing fractures) increases as ~L-a+D+1 [Davy et al., 2006], whereas the 

relative percentage of such fractures decreases as ~L-a+D-1. Thus, a global downward trend might 

be expected for rock permeability at large scales [Renshaw, 1998; Klimczak et al., 2010]. The 

flow behaviour is also significantly affected by the distribution of variable apertures, which leads 

to diversity of fluid-flow structures [de Dreuzy et al., 2001b] and permeability scaling trends 

[Klimczak et al., 2010]. Under a higher boundary stress ratio, longer fractures play a more 

important role for fluid migration due to their lower resistance [Tsang and Neretnieks, 1998] in 

association with wider apertures that are correlated with fracture length. Hence, at small scales, a 

permeability increase occurs in the deviatoric case attributed to the considerable contribution 

from long fractures. However, a global decreasing trend is inevitable due to the decreasing 

probability of traversing fractures at larger scales, with shorter fractures carrying a heavier role 

for fluid transport. In the hydrostatic stress case, the equivalent permeability mainly declines 

with the increased scale, because the slightly scaled apertures with no shear-induced dilation do 

not endow long fractures with highly conductive capability compared to the decreased relative 

frequency of long fractures whose length follows the power law. 

The trend of rock permeability with scale may be further explained by the flow structure 

transition zone between the connecting scale and the channelling scale [de Dreuzy et al., 2001a, 

2001b; Davy et al., 2006]. The connecting scale Lc (or the connection length) is where the 

fracture network shifts from disconnected to connected, while the channelling scale ξ (i.e. the 

correlation length in the percolation theory) is where the flow structure transforms from 

extremely channelled to distributed. As shown in Fig. 6.17, for growth networks in the deviatoric 

case, the connection length Lc seems to be at a scale <2 m, which is consistent with the predicted 

value of ~0.80 m in section 6.2.3, and the channelling scale ξ is at 20-50 m. Within the transition 

zone (i.e. system size from Lc to ξ), the flow structure is made up of a number of quite 

independent, multi-path, multi-segment channels [Tsang and Neretnieks, 1998; de Dreuzy et al., 

2001a], under the preference of fluid to flow in least resistance paths in the disordered system of 

finite-sized, curved fractures. This tortuosity feature has significant impact on effective flow 

properties [Ronayne and Gorelick, 2006] and may become even more crucial when the 

considered rock volume exceeds the channelling scale ξ, after which the percentage of 
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domain-sized fractures decreases and flow begins to exhibit dispersive behaviour, like in a 

homogeneous porous medium [de Dreuzy et al., 2001a; Davy et al., 2006]. 

 

Fig. 6.17 Flow structure transition from extremely channelled to distributed in multiscale growth networks 

under the deviatoric stress condition (boxes illustrate the main pathways of the flow structure). 

For comparison with the flow modelling, an analytical solution for rock mass permeability 

kanaly can also be computed by assuming idealised orthogonal fractures fully penetrating the 

system domain and ignoring the flow in the matrix [Matthäi and Belayneh, 2004] 
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where ltot is the total length of all fractures in the L × L squared domain, bh is the network 

equivalent aperture that can be substituted by the harmonic, arithmetic or geometric mean, 

corresponding to the analytical permeability, kharm, karithm, kgeom, respectively. It is reassuring to 

note that, the equivalent permeability is quite well bounded by the harmonic and arithmetic 

solutions, while the median trend is better tracked by the geometric one (Fig. 6.16). Highly 

conductive fractures with long lengths and wide apertures capable of transmitting fluid across 

long distances seem to behave more like an “in parallel” connected network [Leung and 

Zimmerman, 2012], so kxx is better captured by the upper bound at small scales, where channels 
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mainly constituted by very long fractures dominate the flow. However, at large scales, fluid has 

to migrate through less conductive branches to reach the opposite boundary due to the 

proportional reduction of longer fractures, which makes the fracture population act more like an 

“in series” connected network and kxx tends to approach the lower bound. The equivalent 

permeability in the y direction kyy mainly exhibits closer values to the lower limit due to the 

inherent zigzag feature of the North-to-South flow structure. Indeed, the mechanism of network 

alteration from “parallel” to “series” is equivalent to the essence of flow structure transition from 

“channelled” to “distributed”. Geometric mean seems to elegantly trace the median trend of 

equivalent permeability, irrespective of the anisotropic flow features, although it cannot capture 

the mechanism of channelling-induced permeability increase at smaller scales. Due to the fact 

that equivalent aperture of harmonic mean is not sensitive to the ratio of far-field stresses (Table 

6.3), magnitudes of equivalent permeability under the prescribed hydrostatic and deviatoric 

conditions tend to converge at larger scales but with intrinsic anisotropy retained (Fig. 6.16). At 

even larger scales (e.g. >100 m) with upscaling based on the original 2 m × 2 m source cell, the 

fractured rock probably behaves like a porous medium [Long et al., 1982] with a lower REV 

permeability conjectured. However, the repetition assumption might not be valid at that scale 

since many complex larger-scale factors (e.g. seismically visible faults, multiple rock types and 

even karst features) will be involved [Clauser, 1992], which is out of the scope of this study. 

6.6 Discussion 

The stress- and scale-dependent properties of fracture attributes were modelled using the 

FEMDEM model for an interconnected fracture system. The results provide estimates of the 

length correlation exponents caused by fracture reactivations and interactions in response to 

applied in-situ stresses. The exponent n1 for the correlation of shear displacements to fracture 

lengths varies from ~0.5 under a hydrostatic state to >1.0 under a deviatoric condition. The 

classical analytical solutions based on, e.g. the linear elastic model [Pollard and Segall, 1987] or 

the post-yield model [Cowie and Scholz, 1992a, 1992b] cannot fully account for the 

displacement-length relationship observed here. One possible reason is that these analytical 

formulations assume that fractures are poorly interconnected and purely straight, which 

oversimplifies the topological complexity of natural fracture systems involving cross-cutting, 
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segmentation and curvature. A second is that these classical solutions apply to fractures at a 

critical state for propagation, which is not the general state of interest. The stress-dependent 

behaviour of fracture apertures in this work was also captured by synthesising both microscopic 

and mesoscopic effects, and a higher exponent n2 is induced under the deviatoric stress condition. 

The exponent n2 for the aperture to length relationship was found greatly controlled by the a 

prior square root correlation [Olson, 2003], whose universality may require further validation. 

Furthermore, more stress scenarios might need to be explored to examine the power law relation 

between aperture and length. 

In the actual field measurements of a natural fracture system based on a finite-sized window 

sampling, observed maximum fracture length lmax may increase with the system size L. By 

assuming n(l, L) ideally obeys the power law, fracture intensity P21 at a certain scale can be 

roughly calculated by substituting lmax ≈ L into Eq. (6.3): 
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which implies that P21 is scale dependent and increases with L for the studied scenario of 2 < a < 

3. If the domain size L is large enough, P21 approaches a constant value determined by lmin. 

Scale-dependency of intersection density ω might also be nontrivial [Darcel et al., 2003a]. The 

proposed growth method that assumes growth cells share the same length distribution as the 

source cell can be seen as a first-order approximation to the real fracture system. Potentially 

important heterogeneity, e.g. when considering a source pattern that visually seems in some ways 

different to the pattern in a neighbour region, cannot be accounted for in such growth models 

based on only one source pattern, and this source cell selection problem has already been 

recognised in section 6.3.5. When solving real problems, extraction of source patterns from 

different locations might be necessary, and by doing so the lower and upper bounds of 

permeability may be informatively obtained based on growth modelling results from multiple 

sources. Discrepancy in length exponent of the multiscale growth networks may also be 

attributed to this space repetition hypothesis. However, such deviation is considered not to 

dramatically change the permeability scaling trend since length exponent is still kept in the 

regime of 2 < a < 3. To more realistically model the natural heterogeneity, a tuning mechanism 
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can be introduced by using a prescribed power law density distribution of lengths to adjust the 

growth results. Correlation between fracture position and length that have been reported [Bour 

and Davy, 1997; Darcel et al., 2003c] is also an important influence to be incorporated. 

Development of such modules will be the next step of this research and a validation may be 

conducted based on some outcrop patterns over several scales, e.g. in [Bour et al., 2002]. 

Interesting directions for future work arising from this growth methodology include modelling of 

networks having different fractal dimensions (e.g. 1 < D < 2) and length exponents (e.g. 1 < a < 

2 and a > 3) [de Dreuzy et al., 2001a], development of a random walk algorithm for hierarchical 

patterns involving sequential formation and geological arrest [Paluszny and Matthäi, 2010; Davy 

et al., 2010, 2013], and upscaling realistic apertures derived from direct (two-way) 

hydromechanical coupling, where the effect of pore fluid pressure on aperture evolution can be 

more realistically captured [Rutqvist and Stephansson, 2003]. 

Another limitation of this research is that 2D analysis was used to model the actual 3D 

fracture systems. The finite layer thickness may influence the fracture growth process and leads 

to the existence of a characteristic length that defines the transition of scaling behaviour [Bonnet 

et al., 2001]. The role of bedding interfaces can also have important 3D effects on the 

hydromechanical behaviour of the layered rock. For example, apertures vary considerably for 

extensional layer-normal joints affected by delamination or variable interface slip. Fractures may 

propagate across the bedding interface, depending on layer mechanical properties, local stress 

fields and finite strains. Potentially dominant role of flow in the bedding planes due to 

delamination between the limestone and the shales and focused flows in such cross-cutting 

fractures may also be essential. To achieve 3D geomechanical modelling, a newly developed 3D 

crack propagation model [Guo et al., 2015, 2016] will be employed to capture the brittle 

deformation response including local concentrations of critically high tensile or differential 

stresses, together with realistic fracture opening and shearing behaviour on both pre-existing and 

newly propagated fractures (see Chapter 8). Such capability opens the way to modelling 3D 

flows in geomechanically realistic fractured layers as well as channelised flow in comminuted 

fracture intersections and bedding planes, based on which a 3D network upscaling method may 

be further developed to statistically estimate rock mass properties in larger scales. 
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6.7 Concluding remarks 

To conclude, a new approach to upscaling 2D fracture network models was proposed for 

preserving geostatistical and geomechanical characteristics of a smaller-scale “source” fracture 

pattern. The scaling properties of an outcrop system were examined in terms of the spatial 

organisation and length distribution using fractal geometry and power law relations. The fracture 

pattern was observed to be nonfractal with the fractal dimension D ≈ 2, while its length 

distribution tends to follow a power law with the exponent 2 < a < 3. To introduce a realistic 

distribution of fracture aperture and shear displacement, the FEMDEM geomechanical model 

was applied to simulate the response of a 2 m × 2 m fractured rock sample under in-situ stresses. 

A novel scheme accommodating discrete-time random walks in recursive self-referencing 

lattices has been developed to nucleate and propagate fractures together with their stress- and 

scale-dependent attributes into larger domains up to 54 m × 54 m. Advantages of this approach 

include preserving the non-planarity of natural cracks, capturing the existence of long fractures, 

retaining the realism of variable apertures, and respecting the stress-dependency of 

displacement-length correlations. Hydraulic behaviour of multiscale growth realizations was 

modelled by single-phase flow simulation, where distinct permeability scaling trends were 

observed for different in-situ stress scenarios. A transition zone was identified where flow 

structure shifts from extremely channelled to distributed as the network scale increases. The 

observed stress effects on the scaling behaviour of fracture attributes and rock permeability 

demonstrate the importance of incorporating geomechanical analysis when upscaling fracture 

network models for reservoir simulation. 
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7 Hydromechanical modelling of an idealised 3D 

persistent fracture network 

7.1 Introduction 

Effects of stress on the permeability of fractured rocks have been widely investigated using 

2D fracture network models [Zhang and Sanderson, 1996; Min et al., 2004b; Baghbanan and 

Jing, 2008; Latham et al., 2013; Lei et al., 2014]. However, the 3D nature of fluid flow in 

fractured rocks under polyaxial (i.e. true-triaxial) stress conditions remains poorly understood. In 

reviewing the literature on fluid flow in fractures, there appears to be two distinct research 

focuses which depend on the chosen scale of study. The first scale is at the level of the individual 

fracture in which the surface roughness is described in detail [Witherspoon, 1980; Tsang and 

Witherspoon, 1981; Barton et al., 1985; Olsson and Barton, 2001], and the second scale is at the 

level of the fracture network with emphasis on the overall properties [Dershowitz et al., 2000; 

Pouya and Fouché, 2009; Lang et al., 2013]. Each aspect needs methods adapted to mechanisms 

for the given scale and appropriate for their analysis and interpretation. Up to now, there are very 

few attempts to bridge these two scales in 3D numerical modelling, with an exception of recent 

work by de Dreuzy et al. [2012] that combined the effects of fracture-scale heterogeneity and the 

network-scale topology in fluid flow modelling of 3D discontinuity systems. However, 

mechanical stress that has a vital impact on the variability of aperture fields were assumed to be 

uniform and isotropic across their model, regardless of the effects of fracture orientation and 

interaction which are known to be highly significant. 

In this chapter, a stress-induced variable aperture model is implemented into the 3D 

FEMDEM geomechanical model which can resolve explicit DFN geometries. The combined 

formulation is applied to investigate the flow heterogeneity in an idealised 3D persistent fracture 

network caused by both fracture-scale roughness and network-scale interaction effects under 

polyaxial stress conditions. This research will mainly focus on the stress effect, whereas the 

complexity of scale effects and the possible existence of an REV are beyond the scope of this 

study. Persistent fracture sets are used here to remove the intricacy associated with fracture 

propagation – a topic which will be covered in the next chapter. 
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7.2 Numerical method 

7.2.1 Solid modelling 

The persistent discrete fracture network is integrated into the 3D FEMDEM model [Munjiza, 

2004] to simulate the geomechanical behaviour of 3D fractured rocks under polyaxial 

(true-triaxial) in-situ stresses. The rock mass dissected by a persistent fracture population (Fig. 

7.1a) is represented by an unstructured grid system (Fig. 7.1b) involving a discretisation of 

matrix domain using four-noded tetrahedral elements and a configuration of fracture interfaces 

using six-noded joint elements. A joint element is formed by two triangular faces that belong to 

opposite volumetric finite elements and are associated with separate nodes but having coincident 

initial coordinates. Kinetics of the multi-block geological system is governed by the Cauchy 

linear momentum equation, i.e. Eq. (4.5). Fracture propagation is not modelled since only 

persistent fracture networks are considered in this study. 

 

Fig. 7.1 Representation of (a) a fractured rock embedded with a persistent fracture network using (b) an 

unstructured grid. 

Fracture space represented by separated interfaces of deformed solids in the mechanical 

model is transformed to lower dimensional surfaces associated with variable equivalent apertures 

for fluid flow. The aperture model presented here is aimed to capture the change in fluid conduits 

caused by the applied in-situ stresses to the rock mass skeleton. The aperture characterisation 

procedure includes identification of 3D fracture system topologies (as described below) and 

calculation of variable hydraulic apertures (see Chapter 4). Note that the fracture behaviour in 
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this chapter is modelled using a simplified joint constitutive model (JCM) model assuming 

constant joint roughness coefficient (JRC) and joint wall compressive strength (JCS) parameters 

and a constant dilation angle. 

The generic search algorithm for 2D fracture network topologies as described in Chapter 4 is 

extended for 3D systems, where a fracture is dissected into several block facets (polygonal shape) 

bounded by the intersections with many other fractures. Each block facet is further discretised 

into a number of connected joint elements in the FEMDEM grid system. Connectivity analysis 

(Fig. 7.2) is first implemented for each joint element to recognise its three continuously 

connected neighbours (i.e. sharing the same edge with identical nodes). If the edge of a joint 

element is located on model boundaries or fracture intersections, it is considered having no 

neighbour via that edge and a value of ‘-1’ is assigned numerically. 

 

Fig. 7.2 Connectivity analysis of fracture joint elements. 

Identification of isolated block facets is achieved based on a ternary-tree data structure (Fig. 

7.3), in which a joint element is represented by a tree-node that has one parent tree-node (except 

the 1st level tree-node) and three child tree-nodes corresponding to its three neighbours. A 

breadth-first search (BFS) is conducted to recognise connected components (i.e. joint elements 

belonging to the same facet) by scanning the built ternary-tree structure, where previously visited 

tree-nodes or unreal neighbour tree-nodes are marked to be dead (i.e. empty nodes in Fig. 7.3) 

and will not grow in further searching loops. 
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Fig. 7.3 Identification of a block facet by breadth-first search (BFS) based on a ternary-tree data structure 

representing the topological connectivity of joint elements. 

Isolated block facets represented by multiple ternary-trees are further combined based on 

their connectivity and coplanarity state to form corresponding discrete fractures (Fig. 7.4). The 

3D fracture space bounded by opposite fracture walls in the solid model is transformed into a 

lower dimensional system represented by the median surfaces between deformed facing walls 

with calculated variable apertures. 

 

Fig. 7.4 Identified discrete fractures formed by combined block facets. 

7.2.2 Fluid flow modelling 

Single-phase steady state flow of incompressible fluid with constant viscosity through 
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porous media, in absence of sources and sinks, is governed by the continuity equation and 

Darcy’s law, which are reduced to a Laplace equation as 

  0  pk          (7.1) 

where k is the intrinsic and isotropic permeability of the porous medium with local variability 

permitted, and p is the fluid pressure solved at nodes of unstructured finite element grids by 

employing the standard Galerkin method. The element-wise constant barycentric velocity is 

resolved based on the pressure gradient vector field by applying Darcy’s law given by 
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where ue is the vector field of element-wise constant velocities, pe is the local element pressure 

field, µ is the constant fluid viscosity, and ke is the local permeability of a matrix volumetric 

element with an assumed constant value or a lower dimensional fracture element having a 

variable value related to the local hydraulic aperture obeying the cubic law for laminar flow 

between parallel plates. By applying a prescribed macroscopic pressure differential on each pair 

of opposite boundary surfaces with no-flow conditions on the remaining ones parallel to the flow 

direction, pressure diffusion is solved for all fracture and matrix elements of the entire domain. 

The equivalent permeability tensor of the fractured media is computed using element volume 

weighted averaging of pressure gradients and fluxes for elements e within a restricted subvolume 

V of the flow region away from the borders to eliminate boundary effects [Lang et al., 2014] 
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where ue
j is the element-wise barycentric velocity in the j direction, ∂pe/∂xi is the element 

pressure gradient along xi, and kij are the components of the symmetric second-rank permeability 

tensor k: 
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whose eigenvectors give the maximum, medium and minimum principal equivalent permeability, 

i.e. kmax, kmed, and kmin, respectively. 
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7.3 Numerical experiment setup 

7.3.1 Persistent fracture network 

The discontinuity system of a periodically fractured limestone involves three orthogonal sets 

of persistent fractures with their geological data given by Table 7.1. The two vertical sets are 

oblique at 45° to the model boundaries where far-field horizontal stresses are to be applied. In 

this study, dispersion of fracture orientation is ignored to avoid treating finite elements with 

extremely high aspect ratios caused by intersection between sub-parallel fractures from the same 

set. All fractures are assumed through-going (i.e. only persistent fractures are modelled), tending 

to provide an upper limit for rock deformability and permeability. In reality, such idealised 

persistent networks might still be representative of some special scenarios involving highly 

fractured “non-strata bound” sedimentary rock. Assumed material properties for this fractured 

limestone are given in Table 7.2 [Bandis et al., 1983; Lama and Vutukuri, 1978]. Due to the 

limits of current processing power, the numerical computation is technically constrained to 

consider only a relatively small scale virtual experiment and a 0.5 m × 0.5 m × 0.5 m 

cube-shaped rock sample is extracted for analysis here (Fig. 7.5). 

Table 7.1 Geological data of the discontinuity system with three orthogonal sets of persistent fractures. 

Fracture sets Dip (°) Dip direction (°) Spacing (m) 

Set 1 90 45 0.050 

Set 2 90 315 0.075 

Set 3 0 0 0.100 

Table 7.2 Material properties of the fractured limestone. 

Properties Value 

Bulk density ρ (kg/m3) 2700 

Young’s modulus E (GPa) 30 

Poisson’s ratio υ 0.27 

Friction angle ϕr (º) 31 

JCS (MPa) 120 

JRC 15 

Initial mechanical aperture b0 (mm) 0.3 
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Fig. 7.5 A 0.5 m × 0.5 m × 0.5 m fracture network with three orthogonal sets of persistent fractures. 

7.3.2 Procedure for numerical experiment 

 

Fig. 7.6 Procedure for the numerical experiment: (a) mechanical modelling with polyaxial stress 

conditions loaded by two phases, and (b) calculation of the equivalent permeability based on single-phase 

steady state flow through the stressed sample under a prescribed macroscopic pressure differential 

imposed on each pair of opposite boundary surfaces while the remaining ones are impervious. 
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The fractured rock is considered to be at a depth of ~350 m with a pore fluid pressure ratio 

(i.e. the ratio of pore fluid pressure to lithostatic stress) equal to 0.45, producing an overburden 

effective stress of 5 MPa. The rock sample is designed to be surrounded by a hollow-box shaped 

buffer zone having a width of 0.025 m and a reduced Young’s modulus of 0.3 GPa. The buffer 

material has no physically corresponding substance in a realistic rock mass. It is introduced 

purely as a means to create boundary conditions that have a less distorting effect in the corner 

regions of the main volume domain of interest. The effect of the buffer zone is to provide a 

semi-free displacement boundary constraint to accommodate potential large slipping in such 

persistent system. The bottom of the model is fixed in the vertical direction, to accommodate the 

body force effect, but has no constraint for movements in the horizontal plane (i.e. “roller” 

boundary condition). 

Table 7.3 Loading scheme for the geomechanical experiment. 

σ’x σ’y σ’z σ’y/σ’x 

Phase I (lithostatic stress condition): 

5 5 5 1.0 

Phase II (deviatoric stress conditions): 

5 5 10 1.0 

5 10 10 2.0 

5 11 10 2.2 

5 12 10 2.4 

5 13 10 2.6 

5 14 10 2.8 

5 15 10 3.0 

5 20 10 4.0 

 

The solid model is loaded in two consecutive phases (Fig. 7.6a and Table 7.3). First, an 

isotropic stress field (σ’x = σ’y = σ’z = 5 MPa) is imposed to consolidate the rock sample under 

the effective lithostatic stress. Second, a series of deviatoric stress conditions is further loaded 

with a fixed σ’x = 5 MPa, various σ’y = 5-20 MPa, and an increased σ’z = 10 MPa to consider the 

evolution of corresponding strike-slip tectonic regimes under an enhanced overburden stress 
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(Table 7.3). More stress conditions are explored for the horizontal stress ratio between 2.0 and 

3.0 where the state is approaching the theoretical value for frictional sliding on ideally oriented 

pre-existing fracture walls (i.e. a ratio of 3.1) given that the friction coefficient equals to 0.6 

[Zoback, 2007]. Though, in the field, observed stress ratios are generally less than 2.0, values 

larger than this is used for the sake of studying the effect from typical to extreme conditions to 

bring out clearly the system behaviour. A larger ratio may also represent conditions close to an 

excavation or fluid injection point. In any case, the simulations may correspond to laboratory 

measurements where such stress ratios may be imposed. Single-phase steady state fluid flow 

through the deformed fracture network with stress-induced variable apertures is further modelled 

by imposing the classical permeameter boundary condition: two opposite boundary surfaces of 

the cube have fixed heads while the four orthogonal boundaries parallel to the flow direction are 

impervious (Fig. 7.6b). 

7.4 Results 

7.4.1 Fracture apertures 

 

Fig. 7.7 (a) Distribution of differential stress in the matrix blocks, (b) distribution of fracture shear 

displacement in log scale, and (c) fracture openings caused by block rotations (observed from the top of 

the model) of the fractured rock under the polyaxial stress condition of σ’x = 5 MPa, σ’y = 15 MPa, and σ’z 

= 10 MPa. 

The model that has arrived at equilibrium under the initial isotropic stress condition further 

adjusts to a new deformed state when various polyaxial stress fields are loaded. The stress ratio 
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of σ’y/σ’x triggers stress heterogeneity in the matrix blocks (Fig. 7.7a), shear displacements along 

the two vertical sets (Fig. 7.7b), and even mesoscopic fracture openings caused by block 

rotations if the stress ratio is high enough (Fig. 7.7c). 

Hydraulic aperture of the stressed fracture networks is calculated as the summation of 

mesoscopic opening caused by fracture interaction and block rotation, and microscopic aperture 

governed by the surface roughness nature. Effect of stress generates significant fracture-scale 

heterogeneity for the distribution of hydraulic apertures in single fractures. Fig. 7.8 shows the 

heterogeneous aperture contour of a vertical fracture extracted from the network under the 

deviatoric stress condition with σ’y/σ’x = 3. Very large apertures are clustered in some local areas, 

which seem to be connected and form a slightly diverted vertical channel from the top to the 

bottom of the model. 

 

Fig. 7.8 Distribution of hydraulic aperture within a single fracture under the polyaxial stress condition of 

σ’x = 5 MPa, σ’y = 15 MPa, σ’z = 10 MPa. 

Fig. 7.9 shows the network-scale distribution of hydraulic apertures in log scale under 

different polyaxial stress conditions. In the stress case of σ’y/σ’x = 1, hydraulic apertures are 

uniformly distributed and exhibit quite low magnitude in such an isotropic stress field. With the 

increase of the far-field stress ratio, heterogeneity of fracture apertures begins to emerge and 

develop. Especially in cases of σ’y/σ’x ≥ 3, very large hydraulic apertures are localised in some 

fractures of the two vertical sets that are favourably oriented for shearing. 



164 

 

 

Fig. 7.9 Distribution of hydraulic apertures in the fracture network under various polyaxial stress 

conditions: (a) σ’y/σ’x = 1, (b) σ’y/σ’x = 2, (c) σ’y/σ’x = 3, (d) σ’y/σ’x = 4, given that σ’x = 5 MPa and σ’z = 

10 MPa. 

 

Fig. 7.10 Fracture porosity of the fractured rock under various polyaxial stress conditions: the three curves 

represent the porosity induced by mesoscopic effects, microscopic effects and the value of total porosity, 

respectively. 

Fracture porosity is calculated as the proportion of fracture hydraulic aperture space to the 

total rock mass volume. The contributions from mesoscopic and microscopic effects are 

distinguished to isolate the sources of hydraulic apertures under different stress conditions (Fig. 

7.10). In the case with a low stress ratio, e.g. σ’y/σ’x < 2.5, fracture porosity is mainly dominated 

by the microscopic roughness effect. As the stress ratio increases, the microscopic component 

exhibits moderate increase due to shear dilatancy, while the mesoscopic counterpart begins to 
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manifest itself by a dramatic growth. As a result, the total porosity shows a continuous increasing 

trend under the increased differential stress ratio. It seems that the microscopic and mesoscopic 

porosity components as well as the total porosity display a positive linear relation with the stress 

ratio when σ’y/σ’x > 2.5. 

7.4.2 Equivalent permeability 

Matrix permeability km is assumed to have a low value, i.e. 1 × 10-15 m2, to produce a high 

fracture-matrix permeability contrast and impose a condition close to fracture-only flow. 

Poroelastic effect of the Biot-type coupling between pore fluid pressure and solid elastic stress 

[Rutqvist and Stephansson, 2003] is only modelled for a particular scenario with the Biot 

coefficient equal to 1.0. The equivalent permeability of the fractured rock under various 

polyaxial stress conditions is derived from the steady state flow simulation, where a subvolume 

is conservatively chosen with a distance of 10% of the model size away from the nearest domain 

boundaries. As shown in Fig. 7.11, the increased stress ratio of σ’y to σ’x leads to considerable 

increase over several orders of magnitude in the diagonal of the permeability tensor, i.e. 

components, kxx, kyy, and kzz. A transition regime with steep permeability increase occurs when 

the far-field stress ratio is approaching the critical threshold (i.e. 3.1) [Zoback, 2007]. 

 

Fig. 7.11 Equivalent permeability of the fractured rock under various polyaxial in-situ stress conditions. 
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Fig. 7.12 Ellipsoid visualisation, after normalisation with respect to kmax, of the permeability tensor of the 

fractured rock under different polyaxial stress conditions: (a) σ’x = 5 MPa, σ’y = 5 MPa, σ’z = 10 MPa, (b) 

σ’x = 5 MPa, σ’y = 15 MPa, σ’z = 10 MPa. Note kmax in (b) is >1000 times kmax in (a). 

 

Fig. 7.13 Flow pathways in the fractured rocks under different polyaxial stress conditions: (a) σ’x = 5 MPa, 

σ’y = 5 MPa, σ’z = 10 MPa, (b) σ’x = 5 MPa, σ’y = 15 MPa, σ’z = 10 MPa (note the flow arrow sizes 

representing local flux magnitudes in the flow simulation of the case σ’y/σ’x = 3 are scaled down by a 

factor that is 20, 50, and 100 times the one of the case σ’y/σ’x = 1 for east-to-west, north-to-south, and 

top-to-bottom pattern, respectively). 
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The permeability tensor is visualised as a triaxial ellipsoid with three semi-principal axes 

indicating the magnitudes of maximum, medium, and minimum principal permeability, i.e. kmax, 

kmed, and kmin, respectively (Fig. 7.12). Normalisation is performed with respect to corresponding 

kmax since the absolute values span several orders of magnitude. In the case of σ’y/σ’x = 1, the 

permeability tensor ellipsoid is quite isotropic, despite of the intrinsic anisotropy in fracture 

geometries. In the case with higher stress ratios, e.g. the one of σ’y/σ’x = 3, significant 

permeability anisotropy is induced by the deviatoric stress acting with respect to the favourably 

oriented vertical fractures, resulting in a very high permeability in the subvertical direction. 

The increased far-field stress ratio also leads to considerable change in flow patterns as 

illustrated by Fig. 7.13. In the case of σ’y/σ’x = 1, fluid spreads through the whole network due to 

the quite uniformly distributed apertures. However, in the case of σ’y/σ’x = 3, fluid flow is 

localised in some zigzag-shaped pathways corresponding to the large aperture channels formed 

by parts of some fractures of the two vertical sets. 

7.5 Discussion 

Stress-induced heterogeneity of hydraulic apertures of a 3D persistent fracture network has 

been modelled with consideration of both fracture-scale and network-scale effects. In cases with 

lower stress ratio, fracture porosity is mainly controlled by the fracture-scale microscopic 

roughness effect. With the increase of stress ratio, pre-existing fractures were reactivated for 

shearing and matrix blocks were mobilised into rotation and sliding at the mesoscale, which 

created some large openings along block boundaries. As a result, even in the persistent fracture, 

local hydraulic apertures can vary greatly, as shown in Fig. 7.8. The formation of large aperture 

channels due to such network-scale mechanical interactions leads to significant flow localisation 

and dramatic increase of overall hydraulic conductivity. The transition stage of permeability with 

steep growth that occurred when the far-field stress ratio is approaching the critical threshold 

(Fig. 7.11) shows consistency with the results of 2D fracture network modelling [Min et al., 

2004b]. 

The results of the case under a critically stressed state, e.g. σ’y/σ’x = 3, are of particular 

interest. First, the shear displacement is extremely heterogeneous, in spite of being given such 

regular geometrical configurations of fracture sets. The system finds equilibrium by activating 
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sliding with local extremes of shear displacement as highlighted in Fig. 7.7b. Locally, the sliding 

on the two vertical sets has created large aperture channels parallel to the active fractures (Fig. 

7.8), which shows consistency with the field observation from boreholes that critically stressed 

faults with favourable orientations appear to have much higher hydraulic conductivity [Zoback, 

2007]. The result supports what is already known of the strike-slip faulting regime, that 

significantly higher permeability can be anticipated in the vertical direction associated with 

localised flow along displacing and dilating fractures [Sibson, 1994; Sanderson and Zhang, 

1999]. This raises the question of whether the imposed boundary conditions with orthogonally 

applied stresses and semi-free displacement constraints are the most appropriate for modelling 

mechanical behaviour of the rock sample with such persistent fractures and whether the 

localisation effect is exaggerated by considering a domain with such few idealised fractures. 

However, some fundamental mechanisms captured in this idealised fractured rock model, e.g. 

stress-induced fracture dilation, block rotation and flow localisation, would probably exist in 

more complicated systems having arbitrarily shaped and oriented fractures, which has been 

proven in many 2D models [Zhang and Sanderson, 1996; Min et al., 2004b; Baghbanan and Jing, 

2008; Latham et al., 2013; Lei et al., 2014]. 

The high sensitivity of equivalent permeability (Fig. 7.11 and 7.12) and flow structure (Fig. 

7.13) to the polyaxial stress condition indicates that special attention is required when the in-situ 

stress state of rock masses is significantly perturbed resulting from natural or human activities. 

For example, unloading effects during the excavation of underground infrastructures may cause 

significant stress redistribution surrounding the openings (see Chapter 9); injections and 

extractions of fluids during oil/gas reservoir production can significantly change the pore fluid 

pressure level and further vary the effective stress state of rock masses; multiple complex factors 

(e.g. underground excavation, radioactivity-induced heat transfer, and glaciation loading) can 

engender remarkable changes on the geomechanical condition of nuclear waste repositories. 

Such irreversible perturbations may lead to intensive fault reactivation, dramatic flow 

enhancement, and severe construction risk. Needless to say, the modelling methods employed in 

this study can also be applied to investigate more permeable matrix rock scenarios. The extreme 

nature of the flow anisotropy would be somewhat ameliorated by modelling a rock system with a 
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more permeable matrix material. However, the realism of the “persistent-only” fracture model 

with no new fracturing adopted here may come into question as such a rock mass with weak 

sedimentary rock properties may be weak enough to locally propagate new fractures before the 

exceptionally high in-situ stress ratios considered here could be generated. 

Unlike some other conventional 3D upscaling methods in the literature [Snow, 1969; Oda, 

1985, 1986; Renard and de Marsily, 1997] that do not require explicit mechanical and flow 

simulations to compute the equivalent hydraulic properties, the proposed approach here may not 

be a practical solution under the limits of current processing power. This is a particular problem 

for applications to real reservoirs with domains spanning hundreds or thousands of metres and 

consisting of millions of fractures. However, this study still has important implications for 

upscaling permeability to grid block properties for 3D reservoir flow simulation. For example, 

the results obtained in this study imply that determination of an REV size, if it exists, may be a 

sophisticated process that requires many coupled effects to be considered in the model including 

not only the description of geometrical features, but also, characterisation of the geomechanical 

setting and changes resulting from any perturbation of the stress field. Indeed, it is recognised 

that there is unlikely to be an REV once a realistic system with impersistent fractures is modelled 

due to its intrinsic fractal nature [Bonnet et al., 2001]. The next step is to model more realistic 

3D fracture networks which have pre-existing fractures of finite sizes and new fractures induced 

by stress concentrations (see Chapter 8). 

7.6 Concluding remarks 

To conclude, this chapter presented a stress-induced variable aperture model to capture the 

effects of polyaxial stress conditions on the flow properties of 3D persistent fracture networks. 

Geomechanical behaviour of the rock mass was simulated by the FEMDEM solid model, where 

a fracture treated as the interface between discrete matrix bodies can open, shear and dilate in the 

heterogeneous stress field. Under the stress condition with a relatively lower differential stress 

ratio, fracture apertures are mainly governed by the fracture-scale roughness effect. With the 

increase of the in-situ stress ratio, fractures with favourable orientations are reactivated to shear 

and matrix blocks bounded by the shearing fractures are promoted to rotate, which generates 

significant fracture openings at the block boundaries. Such fracture openings tend to be the 
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dominant contributor to the aperture field in high stress ratio conditions. To prepare for the flow 

modelling required in this work, a new discrete fracture system indexing logic was developed 

based on a breadth-first search of ternary-tree structures to systematically identify the 3D 

fracture network topology associated with the stress-induced variable apertures. Based on a 

series of single-phase flow simulations, the equivalent permeability of the stressed fractured rock 

was computed, ranging over more than three orders of magnitude with respect to the variation of 

the effective stress ratio. A near-isotropic permeability tensor was observed in the case with a 

lower stress ratio, whereas the fractured rock under a critical stress state exhibits highly 

anisotropic features in its permeability. Fluid flow tends to localise in some critically stressed 

fractures that have much higher hydraulic conductivity than other fractures which are not 

significantly reactivated for shearing. The large aperture channels that are optimally oriented 

with regard to the direction of pressure gradient provide a major pathway for fluid migration. 

The results of this study have important implications for upscaling permeability to grid block 

properties for reservoir flow simulation as well as other relevant engineering problems. 
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8 Hydromechanical modelling of a realistic 3D fracture 

network 

8.1 Introduction 

The stress effects on fluid flow for 2D fracture networks and an idealised 3D persistent 

fracture network have been investigated in the previous chapters using the 2D/3D 

JCM-FEMDEM model developed. In this chapter, these understandings will be extended to the 

scenario of geologically realistic 3D fracture networks with interconnected, impersistent and bent 

discontinuities. The aim of this research is to take advantage of all the relevant new FEMDEM 

modelling techniques in a 3D context and to investigate fluid flow in a stressed 3D fracture 

system without the constraint of parallel persistent discontinuities as imposed in Chapter 7. 

Under in-situ stress conditions, fractures with tips that terminate in the intact rock matrix 

and are aligned subparallel to the maximum principal stress direction are susceptible to aperture 

opening and length extension driven by the high tensile stresses concentrated at their tips 

[Pollard and Segall, 1987]. Furthermore, the sliding of pre-existing discontinuities can also 

generate stress concentrations at their ends and trigger the formation of wing cracks or secondary 

cracks [Willemse and Pollard, 1998]. The new cracks can link pre-existing discontinuities to 

provide important pathways for fluid migration and enhance the connectivity and permeability of 

the geological formation. To simulate the complex brittle fracture process, the 3D FEMDEM 

solver embedded with a newly developed 3D crack propagation model [Guo et al., 2015, 2016] is 

used in this research. This 3D fracture model, implemented in the 3D FEMDEM code is a 3D 

extension of the smeared crack model (also known as the cohesive zone model) developed for 

the 2D FEMDEM [Munjiza et al., 1999] and based on the 3D FEMDEM framework [Munjiza, 

2004; Xiang et al., 2009a] for solving solid deformation and multi-body interaction of 

discontinuum systems. To achieve geomechanical modelling of fracture networks, the code is 

extended to incorporate the 3D JCM model, the principles of which have been described in 

Chapter 4 and 7. By including the roughness effects of fractures via the 3D JCM approach, it is 

possible to capture the mechanical behaviour of rough fractures including degraded shear 

strength and nonlinear normal/shear displacement characteristics. Deformation of 3D discrete 
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fracture networks and stress-induced aperture changes are computed. The hydraulic behaviour of 

the stressed fractured rock is then modelled using single-phase steady state fracture-matrix flow 

with the equivalent permeability further derived (see section 7.2.2 for the governing equations). 

This research will focus on the stress effects. The complexity of scale effects and the possible 

existence of an REV are also potentially of great significance, which are, however, beyond the 

scope of this study. 

8.2 Numerical method 

The principles of the 3D FEMDEM approach for solving stress, deformation and interaction 

as well as fracture propagation in discontinuous solid media are similar to those of the 2D 

FEMDEM as presented in Chapter 4. Below, only the small adaptions found to be necessary for 

the 3D formulation are described. 

The combined fracture-matrix solid system of a 3D fractured rock is represented by a 

discontinuous discretisation of the model domain using four-noded tetrahedral finite elements 

and six-noded joint elements embedded between the facets of neighbouring tetrahedra. Each 

tetrahedral element is connected with four joint elements and each joint element is linked to two 

tetrahedral volumes. There are two types of joint elements: cohesive (i.e. unbroken) joint 

elements and fracture (i.e. broken) joint elements. Cohesive joint elements are constructed by a 

detachment algorithm based on the original continuous configuration between tetrahedral 

elements in the matrix domain, whereas fracture joint elements are generated based on the initial 

overlapping surfaces of opposite tetrahedral elements located on pre-existing discontinuities. The 

joint elements (either broken or unbroken) are created and inserted between the facets of 

tetrahedral element pairs before the numerical simulation and no further remeshing process is 

performed during later computations. Fig. 8.1 presents a schematic illustration of two generic 

scenarios where two tetrahedral elements are neighbours in 3D space. In the first example, two 

tetrahedral elements, i.e. N1N2N3N4 and N5N6N7N8, are linked by a fracture joint element i.e. 

N1N4N3-N7N6N5, which is located on the plane of a pre-existing discontinuity. In the second 

example (b), two tetrahedral elements, i.e. N1N2N3N4 and N9N10N11N12, are connected by a 

cohesive joint element i.e. N2N3N4-N10N11N9, which is inside the intact rock matrix. 
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Fig. 8.1 Two tetrahedral finite elements linked by (a) a fracture joint element or (b) a cohesive joint 

element in 3D FEMDEM. 

 

Fig. 8.2 The capability and validity of the 3D FEMDEM formulation embedded with a smeared crack 

model for capturing the fracturing of brittle/quasi-brittle materials have been demonstrated based on (a) 

three-point bending tests, (b) Brazilian disc tests, and (c) polyaxial compression tests [Guo, 2015]. 

The deformation of the bulk material is captured by the linear-elastic constant-strain 

tetrahedral finite elements with the impenetrability enforced by a penalty function and the 

continuity constrained by the constitutive relation for cohesive joint elements [Munjiza et al., 

1999], while the interaction of matrix bodies through discontinuity interfaces is simulated by the 

penetration calculation [Munjiza et al., 2000] along fracture joint elements. Propagation of new 
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fractures is modelled by the transition of cohesive joint elements to fracture joint elements in a 

3D unstructured grid system. The capability and validity of a smeared crack model implemented 

in the 3D FEMDEM for capturing the fracturing of brittle/quasi-brittle materials have been 

demonstrated based on a series of (a) three-point bending tests, (b) Brazilian disc tests, and (c) 

polyaxial compression tests (Fig. 8.2) [Guo, 2015]. 

The topology of a 3D fracture network (discretised into a system of fracture joint elements) 

is identified using the ternary-tree search algorithm (see section 7.2.1). Each block facet (i.e. 

isolated fracture patch bounded by the intersections with other fractures or model boundaries) is 

treated as an individual fracture having size-dependent roughness properties with their 

deformation characterised by the combined JCM-FEMDEM formulation (see section 4.3&4.4). 

8.3 Numerical experiment setup 

8.3.1 A 3D fractured layer with realistic joint sets 

 

Fig. 8.3 (a) An 18 m × 8 m fracture network mapped at the limestone exposure at the south margin of the 

Bristol Channel Basin, UK [Belayneh and Cosgrove, 2004], (b) a 2 m × 2 m fracture pattern is selected 

and (c) extruded with a height of 10 cm (i.e. bed thickness) to build the 3D fractured layer geometry. 
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The fracture network used in this research is based on the outcrop map (Fig. 8.3a) of a 

limestone bed located at Kilve on the southern margin of the Bristol Channel Basin, UK 

[Belayneh and Cosgrove, 2004]. The fractured limestone bed (10 cm thick) is sandwiched 

between almost impervious shales and the vertically dipping joints are layer bound (do not 

extend into the neighbouring shales). The joint network exhibits a ladder pattern consisting of 

two major sets. The E-W striking set (Set 1) that formed in an early stage contains 

“through-going” (or persistent) fractures. The N-S striking set (Set 2) developed later and is 

characterised by short joints abutting the fractures of Set 1. It can be noted that this highly 

hierarchical joint pattern is featured by “T” and “X” type fracture nodes with only a few “I” type 

nodes (i.e. “dead-end” fracture tips). Considering the very expensive runtime of 3D FEMDEM 

simulations, a 2 m × 2 m pattern (Fig. 8.3b) is selected from the original 18 m × 8 m analogue 

for geomechanical computations. The extracted 2D network is extruded by 10 cm (i.e. the 

thickness of the layer) to build a 3D geometry (Fig. 8.3c). Assumed material properties for this 

fractured limestone are given in Table 8.1 [Bandis et al., 1983; Lama and Vutukuri, 1978]. 

Table 8.1 Material properties of the fractured limestone. 

Properties Value 

Bulk density ρ (kg/m3) 2700 

Young’s modulus E (GPa) 30 

Poisson’s ratio υ 0.27 

Tensile strength ft (MPa) 7 

Internal friction angle ϕi (º) 26.6 

Cohesion c (MPa) 15 

Mode I energy release rate GI (J·m
-2

) 100 

Mode II energy release rate GII (J·m
-2

) 400 

Residual friction angle ϕr (º) 31 

Laboratory sample length L0 (m) 0.2 

JCS0 (MPa) 169 

JRC0 9.7 

Initial mechanical aperture b0 (mm) 0.194 
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8.3.2 Procedure for numerical experiment 

 

Fig. 8.4 Procedure for the numerical experiment: (a) geomechanical modelling with polyaxial stresses 

applied on the boundaries of the problem domain (2 m × 2m), and (b) calculation of the equivalent 

permeability based on single-phase steady state fluid flow through the stressed layer under a prescribed 

macroscopic pressure differential imposed on each pair of opposite boundaries while the remaining ones 

are impervious. 

The fractured limestone is considered to be at a depth of ~700 m with a pore fluid pressure 

ratio (i.e. the ratio of pore fluid pressure to lithostatic stress) equal to 0.45, producing an 

overburden effective stress of 10 MPa (i.e. σ’z ≡ 10 MPa). The gravitational body forces are 

neglected for this thin-bedded layer. The problem domain containing intersected pre-existing 

fractures is discretised by an unstructured mesh with an average element size of ~3.0 cm (Fig. 

8.4a). Geomechanical behaviour of the fractured layer in response to polyaxial (true-triaxial) 

effective stresses is simulated using the 3D FEMDEM model. The effect of pore fluid pressure is 

assumed to be a second-order factor for aperture development and is not included in the 

simulation. The poroelastic effect of the Biot-type coupling between pore fluid pressure and solid 

elastic stress is only modelled for a particular scenario with the Biot coefficient for the solid 

skeleton compressibility equal to 1.0. A series of in-situ stress conditions explore with the 

following horizontal stress ratios: σ’x/σ’y = 1/3, 1/2, 1, 2, 3 (Fig. 8.4a). Single-phase steady state 
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fluid flow through the deformed fracture network with stress-induced variable apertures is 

further modelled by imposing the classical permeameter boundary condition: two opposite 

boundary surfaces of the rectangular volume domain have fixed heads while the four orthogonal 

boundaries parallel to the flow direction are impervious (Fig. 8.4b). Matrix permeability km is 

assumed to have a low value, set here at 1 × 10-15 m2, to produce a high fracture-matrix 

permeability contrast and impose a condition close to fracture-only flow. 

8.4 Results 

8.4.1 Stress heterogeneity 

The fractured rocks arrived at equilibrium and exhibit distinct stress heterogeneity patterns 

under different polyaxial stress conditions. The distribution of maximum principal stresses in 

Case A loaded by an isotropic horizontal stress condition (i.e. σ’x = σ’y = 5 MPa) is quite uniform 

and dominated by the overburden stress (i.e. σ’z = 10 MPa) (Fig. 8.5a). With the increase of the 

stress ratio (either σ’y/σ’x or σ’x/σ’y), stress heterogeneity begins to emerge and escalate, with the 

contour of maximum principal stresses being organised to follow the direction of the applied 

maximum horizontal stress (Fig. 8.5b-e). 

 

Fig. 8.5 Distribution of maximum principal stresses in the fractured layer under different polyaxial stress 

conditions: (a) Case A, σ’x = 5 MPa, σ’y = 5 MPa; (b) Case B, σ’x = 5 MPa, σ’y = 10 MPa; (c) Case C, σ’x 

= 10 MPa, σ’y = 5 MPa; (d) Case D, σ’x = 5 MPa, σ’y = 15 MPa; (e) Case E, σ’x = 15 MPa, σ’y = 5 MPa. 

Note σ’z = 10 MPa for all cases. 
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8.4.2 Shear displacement 

The joint network in Case A is associated with very low (or almost zero) shear 

displacements under the isotropic horizontal stress field (Fig. 8.6a). However, an increased 

horizontal stress ratio triggers and intensifies the sliding of pre-existing fractures (Fig. 8.6b-e). In 

Case B and D, the maximum horizontal stress is applied in the y direction, which accommodates 

moderate shearing along some bent fractures in Set 2, which are also oblique to σ’y. However, in 

Case C and E, much higher shear displacements occur and concentrate in some through-going 

fractures of Set 1 which are striking oblique to the applied maximum horizontal stress σ’x. Hence, 

the occurrence of high shear displacements is not only related to the orientation of fractures, but 

also their connectivity and persistence. The truncated fractures of Set 2 are more suppressed for 

shearing, because they are constrained by intact blocks at their ends and the shearing forces tend 

to be dissipated by the through-going fractures of Set 1. However, the fractures of Set 1 that 

penetrate the whole domain create much easier weakness zones to localise sliding and 

accommodate the applied bulk differential stresses, with no displacement constraints from intact 

rocks at their ends. The high shear displacements in Case C-E are expected to create larger 

dilations and apertures in the fractures. 

 

Fig. 8.6 Distribution of shear displacements in the joint network of the fractured layer under different 

polyaxial stress conditions. 
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8.4.3 Crack propagation 

Propagation of new cracks only appeared in Case D and E, both of which are associated 

with a high horizontal stress ratio of 3. In Case D, several minor cracks grew from “T” 

intersections, where the fractures of Set 2 abut the ones of Set 1. The new cracks that developed 

from the tips of fractures that are subparallel to the y direction seem to be governed by mode I 

tensile failure, while the cracks that extended from oblique fractures are more induced by mode 

II shear failure. More interestingly, one quite long new crack initiated and propagated from the 

middle of a persistent fracture of Set 1 and was mainly driven by tensile failure. It links another 

fracture of Set 1 and exhibits an “abutting” characteristic quite similar to that of the natural joint 

sets. This fracturing process is considered to be related to the stress-induced bending of the rock 

block that the new crack penetrated. In Case E, less fracturing occurred. One crack nucleated 

from the bending point of a tortuous fracture and propagated generally following the direction of 

the maximum horizontal stress σ’x. Surprisingly perhaps, the two joints (close to the back of the 

layer) which are subparallel to σ’x and associated with “dead-end” tips did not propagate. 

Actually, the minimum principal stresses at their tips were found in a compressive state and far 

from reaching the rock tensile strength. 

 

Fig. 8.7 Propagation of new cracks under the stress conditions with a high stress ratio: (a) Case D, σ’y/σ’x 

= 3, and (b) Case E, σ’x/σ’y = 3 (note: geometries in transparent gray colour represent the pre-existing 

fractures). 
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8.4.4 Hydraulic apertures 

Fig. 8.8 shows the distributions of hydraulic apertures on a logarithmic scale under different 

polyaxial stress conditions. In Case A, hydraulic apertures are almost uniformly distributed. The 

relatively smaller apertures in some short fracture sections are probably related to their higher 

scaled JRCn and JCSn values (see Eq. (4.28) and (4.29)). With the increase of the horizontal 

stress ratio, heterogeneity of fracture apertures develops with some very large apertures localised 

at the fractures associated with high shear displacements. Note that the initial mechanical 

apertures of all fractures were assigned a constant value of 0.194 mm (see Table 8.1) before the 

boundary stress loading. However, due to the nonlinear relation between the mechanical and 

hydraulic apertures (see Eq. (4.48)), the initial hydraulic apertures vary for different fractures 

with various sizes and JRCn values and are in a range of 0.020-0.242 mm (larger values for 

larger fracture sections). 

 

Fig. 8.8 Distribution of hydraulic apertures in the joint network of the fractured layer under different 

polyaxial stress conditions. 

8.4.5 Fluid pathways 

The fractured layer under different polyaxial stress conditions also exhibits different vertical 

flow patterns as illustrated in Fig. 8.9. In Case A and B, fluid uniformly passes through all joints 

of the network due to the quite homogeneous aperture distribution. In Case C-E, fluid flow is 
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localised in some parts of fractures corresponding to the large aperture channels formed in bent 

(Fig. 8.9d) or persistent (Fig. 8.9c&e) fractures. 

 

Fig. 8.9 Pathways for vertical flow in the joint network of the fractured layer under different polyaxial 

stress conditions (note the flow arrow sizes representing local flux magnitudes in the flow simulation of 

Case C-E are scaled down by a factor 10 times the one of Case A&B). 

8.4.6 Equivalent permeability 

The equivalent permeability of the fractured rock under various polyaxial stress conditions 

is derived from steady state flow simulations, where a subvolume is conservatively chosen with a 

distance of 10% of the model size away from the nearest domain boundaries. The bed-normal 

permeability, i.e. kzz, of the fractured layer is about one order of magnitude larger than the 

horizontal components, i.e. kxx and kyy (Fig. 8.10). Note that kxx is larger than kyy due to the better 

connectivity of the joint pattern in the x direction, i.e. the strike direction of the dominant 

persistent fractures. It can be noticed that the equivalent permeability of the fractured rock 

exhibits distinct stress-dependent behaviour in the x and y directions. The permeability is much 

more sensitive to an increased stress ratio of σ’x/σ’y (Set 1 is more reactivated for shearing) (Fig. 

8.10b) than to an increased ratio of σ’y/σ’x (Fig. 8.10a). Such an anisotropic stress dependency of 

the permeability is clearly related to the inherent anisotropy of the joint network geometries. 

Furthermore, the bed-normal permeability kzz seems to be more sensitive to the variation of 
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geomechanical loading than kxx and kyy. It can be seen that the permeability contrast of kzz/kyy in 

Case E (i.e. σ’x = 15 MPa, σ’y = 5 MPa) spans over almost two orders of magnitude. The results 

demonstrate that both the magnitude and orientation of the far-field stresses have significant 

influence on the permeability of the fractured layer embedded with an anisotropic joint network. 

 

Fig. 8.10 Variations of the equivalent permeability of the fractured layer under (a) an increased σ’y while 

σ’x ≡ 5 MPa, or (b) an increased σ’x while σ’y ≡ 5 MPa. 

8.5 Discussion 

Stress-controlled variability of fracture apertures in a realistic 3D joint network of a 

sedimentary layer has been modelled based on the 3D JCM-FEMDEM model developed and 

combined with a crack propagation model. Under applied far-field stresses, pre-existing fractures 

can open, close, shear and dilate, which is dominated by the heterogeneous stress field in the 

rock. New fractures can also nucleate and propagate, which is governed by mode I, mode II and 

mixed-mode brittle failure. Compared to the results of Chapter 7 based on an idealised 3D 

persistent fracture network, the permeability of this fractured layer is less sensitive to the 

differential stress ratio. One explanation is that most fractures in this quite orthogonal joint 

pattern trend along or perpendicular to the applied far-field stresses, so that fractures here are less 

active for shearing than the persistent joint sets in Chapter 7 which are 45° oblique to the 

horizontal stresses. Furthermore, the matrix blocks of the limestone layer are partially bounded 
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by some impersistent joints and tend to be more difficult to rotate due to more significant 

interlocking effects between blocks. 

Despite the great capability of the developed 3D simulation tool, some limitations may still 

exist. For example, the joint behaviour was modelled based on an empirical formulation that 

assumes isotropic roughness properties for each individual fracture. However, both laboratory 

and numerical experiments have revealed that fracture apertures evolve anisotropically on the 

fracture plane under shearing and form more pronounced channels in the direction perpendicular 

to the shear displacement [Yeo et al., 1998; Koyama et al., 2006]. Such an anisotropic effect may 

result in even higher bed-normal permeability and more localised vertical flow in the studied 

sedimentary layer. To simulate it, a 3D anisotropic joint constitutive model, e.g. the one 

proposed by Jing et al. [1994], needs to be implemented into the 3D FEMDEM formulation. 

Another limitation is that initial apertures were assumed constant for the joint network. The 

important correlation with fracture sizes can be considered by using a linear [Pollard and Segall, 

1987] or sublinear [Olson, 2003] scaling relation, while the intrinsic heterogeneity of fracture 

wall asperities can be modelled based on fractal or self-affine assumptions [Thompson and 

Brown, 1991; Oron and Berkowitz, 1998]. 

In the current research, the stress-induced localisation of vertical flow was visually 

compared based on the flux patterns of the joint network under different stress conditions. To 

more quantitatively characterise the heterogeneity, the multifractal method [Sanderson and 

Zhang, 1999, 2004] can be used to calculate the evolution of the generalised fractal dimension as 

an indicator of the degree of flow heterogeneity. The vertical flow under a high horizontal stress 

ratio is expected to exhibit more significant multifractal features. Extensions of this 3D work 

also include hydromechanical modelling of a fractured multilayer system where the fluid flow in 

bedding planes may also be stress-dependent and can influence the vertical flow behaviour. 

Another avenue for future work is the analysis of more general 3D fracture networks with 

oriented fractures more indicative of crystalline rocks. 

8.6 Concluding remarks 

To conclude, this chapter presented a study of the stress/deformation and fluid flow in a 3D 

sedimentary layer embedded with a realistic joint network under various polyaxial stress 
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conditions. Geomechanical behaviour of the fractured layer was simulated by the 3D 

JCM-FEMDEM code integrated with a crack propagation model. Important rock and fracture 

responses have been captured including the opening/closing, shearing, dilation of pre-existing 

fractures and the propagation of new fractures into intact rocks driven by stress concentrations. 

Under a high stress ratio, these geomechanical characteristics resulted in strongly heterogeneous 

distributions of stresses, shear displacements and fracture apertures. Based on a series of 

single-phase flow simulations, the flux field and equivalent permeability of the stressed fractured 

rock were derived. The cases examined were all based on a low matrix permeability assumption 

although the methodology is equally applicable to rock with higher matrix flows contributing to 

the equivalent permeability. The vertical fluid flow is quite uniformly distributed under an 

isotropic horizontal stress condition, but tends to be localised in only a few fractures associated 

with high shear displacements as the stress ratio increases. The equivalent permeability was 

observed to have an anisotropic stress dependency attributed to the inherent anisotropy of the 

fracture network geometries. The results of this study have important implications for upscaling 

permeability to grid block properties for reservoir flow simulation and exploring mineral 

deposits for the mining industry. 

  



185 

 

9 Further application to excavation damaged zone 

modelling 

9.1 Introduction 

Subsurface rocks embedded with naturally occurring fractures are often encountered in 

engineering excavations for tunnel construction, hydrocarbon extraction, mining operations, 

geothermal production and deep geological disposal of radioactive waste. Underground and 

surface excavations that reload and perturb the rock mass from an initially equilibrated 

geological system can engender stress redistribution and generate tension, compression and shear 

in different parts around the opening [Read, 2004]. Such perturbations to the in-situ stress field 

are expected to trigger the creation of an excavation disturbed zone (EdZ) and/or excavation 

damaged zone (EDZ) [Hudson et al., 2009]. For crystalline rocks, EdZ corresponds to the region 

where only reversible elastic deformation has occurred, whereas EDZ refers to the region where 

irreversible deformation involving new crack propagation has developed [Tsang et al., 2005]. 

Furthermore, progressive failure in rocks can lead to an excavation failed zone (EFZ) featured by 

wedge failure, spalling and even rockbursting at the periphery of an underground cavity [Martin 

and Christiansson, 2009; Hoek and Martin, 2014]. In the context of nuclear waste repositories in 

crystalline rocks, predication of EFZ depth and position is critical for safety management during 

the excavation stage and/or the open-drift stage, while understanding of EdZ/EDZ properties has 

important implications for assessing the long-term performance involved with radionuclide 

migration and mineral dissolution problems [Tsang et al., 2005]. A schematic of possible 

envelopes of EdZ, EDZ and EFZ in an intact rock is shown in Fig. 9.1a, while the potential 

influence of pre-existing fractures on the envelope geometries is depicted in Fig. 9.1b. It is clear 

that study of the interaction between man-made openings and pre-existing fractures as well as 

newly-propagating cracks is a nontrivial issue for relevant engineering activities. 

Progressive failure of intact rocks has been extensively studied using various numerical 

models, such as the damage mechanics-based finite element model [Tang, 1997], the 

bonded-particle DEM model [Potyondy and Cundall, 2004], the elasto-plastic cellular automaton 

model [Feng et al., 2006], the FEMDEM model incorporating microscale heterogeneity 
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[Mahabadi et al., 2014b] and strength anisotropy [Lisjak et al., 2014a; Lisjak et al., 2014b]. 

Geomechanical behaviour of naturally fractured rock masses represented by explicit DFNs has 

also been widely modelled based on the block-type DFM method [Min and Jing, 2003], the 

bonded-particle DEM method [Mas Ivars et al., 2010; Harthong et al. 2012], and the FEMDEM 

model [Latham et al., 2013; Lei et al., 2014, 2015a, 2015b]. In reviewing the literature, it seems 

that numerical analysis of EdZ/EDZ has mainly focused on crack initiation and propagation in 

intact rocks. Only a few attempts have been made to address the geomechanical study of the 

effect of pre-existing joints or faults, recognised to be an important and nontrivial problem 

[Hudson et al. 2009]. This problem was identified as a “bottleneck” issue for EdZ/EDZ research 

[Tsang et al. 2005], but it has not been adequately investigated in the past decade. In this chapter, 

the FEMDEM method that can capture the reactivation of pre-existing discontinuities and the 

propagation of new cracks will be used to simulate the mechanical evolution of disturbed or 

damaged zones. The research will focus on the excavation stage of an underground tunnel in a 

specific fractured crystalline rock and study the progressive rock mass collapse in an extreme 

case where no artificial support is introduced. The crystalline rock is assumed to have 

incompressible grains, i.e. the modulus of grains is much larger than that of the rock, which leads 

to a Biot-Willis coefficient of 1.0. Geomechanical response of the fractured rock is modelled 

based on the concept of Terzaghi’s effective stress law, whereas the transient dissipation of pore 

fluid pressure as well as the dynamic poroelastic coupling is beyond the scope of this study. 

 

Fig. 9.1 Schematics of (a) the possible envelopes of EdZ, EDZ and EFZ in an isotropic intact rock under 

far-field stresses Smax and Smin, and (b) alteration of the envelopes caused by pre-existing fractures. 
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9.2 Verification and calibration of the numerical model 

The numerical model developed in Chapter 4 is employed to simulate the deformation of 

rock materials, fracturing of intact rocks and shearing of rough fractures involved in the EDZ 

evolution around tunnel excavations. Before applying the numerical model to solve such a 

complex problem, it might be useful to examine the performance of the developed 

geomechanical model in representing the different aspects of rock/fracture behaviour. Numerical 

verification can be conducted by comparing a numerical solution with an analytical one to 

examine if the computer code can match results for the particular condition in the realm of the 

analytical solution. However, due to the complexity of natural geological systems, no numerical 

model can be fully verifiable in such heterogeneous material systems [Oreskes et al., 1994]. 

Hence, calibration of a computational code is often a necessary procedure to achieve empirically 

adequate consistency between input parameters and output properties to investigate a particular 

behaviour [Potyondy and Cundall, 2004; Tatone and Grasselli, 2015]. Verification and/or 

calibration of the FEMDEM model is presented here with respect to simulating the stress 

distribution of an elastic solid and the progressive failure of intact rocks, while the 

verification/calibration for rough fracture shearing has been presented in Chapter 4. 

9.2.1 Elastic stress distribution 

Stress distribution around a circular opening in 2D infinite elastic solid under given far-field 

principal stresses can be described by a closed-form analytical solution [Jaeger et al., 2007]: 
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where Sx and Sy are the far-field principal stresses that align along the x and y axis, respectively, 

ro is the radius of the circular opening, σθθ, σrr and τrθ are the stresses in the (r, θ) polar coordinate 

system. The local maximum and minimum principal stresses σ1 and σ2 at any point of (r, θ) of 

the solid medium can be derived from: 
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Assuming ro = 1 m, Sx = 2 MPa, Sy = 1 MPa, the distributions of σ1 and σ2 near the circular 

opening are as illustrated in Fig. 9.2a&b. 

 

Fig. 9.2 Distribution of (a) maximum principal stress σ1 and (b) minimum principal stress σ2 derived by 

the analytical solution for an infinite elastic plate having a circular hole with a radius of 1 m under 

far-field stresses Sx = 2 MPa and Sy = 1 MPa, and the numerical results of (c) σ1 and (d) σ2 obtained from 

the FEMDEM model based on a finite-sized domain of 20 m × 20 m (only the near field, i.e. -4 m ≤ x and 

y ≤ 4 m, is shown here). 

To verify the FEM part of the FEMDEM method used for capturing the elastic stress field, a 

20 m × 20 m model is built with a circular opening of ro = 1 m at the centre of the domain. 
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Far-field stresses Sx = 2 MPa, Sy = 1 MPa are applied to the boundaries of the squared domain 

along the x and y directions, respectively. The function of fracturing is switched off in this 

simulation. An unstructured mesh with an element size of ~0.05 m is used. Fig. 9.2c&d show the 

numerically obtained distributions of σ1 and σ2 in the near field (i.e. -4 m ≤ x and y ≤ 4 m). The 

analytical and numerical solution fields exhibit quite similar patterns, while the slight 

discrepancy of the contours is caused by the effect of the finite-sized domain used in the 

numerical model. The consistency is further demonstrated by comparing the maximum and 

minimum circumferential stresses σθθ,max and σθθ,min around the opening for a range of far-field 

stress ratios, i.e. Sx/Sy = 1-5 given Sy ≡ 1 MPa (Fig. 9.3). 

 

Fig. 9.3 Maximum and minimum circumferential stresses around a circular opening under a range of 

far-field stress ratios, i.e. Sx/Sy = 1-5 given Sy ≡ 1 MPa, calculated by the analytical and numerical models. 

9.2.2 Fracturing of intact rocks 

The capability of the FEMDEM approach for modelling intact rock fracturing process is 

demonstrated by 2D plane stress virtual experiments for the uniaxial compressive strength (UCS) 

test (Fig. 9.4a) and Brazilian disc (BD) test (Fig. 9.4b). The UCS test is based on a rectangular 

specimen of 75 mm × 150 mm and the BD test uses a circular disc having a diameter of 120 mm. 

Material properties assigned for the modelling are based on the data of the Borrowdale Volcanic 

Group (BVC) rock at the Sellafield area, Cumbria, England [Nirex, 1997a], as given in Table 9.1. 

The model domains are discretised by unstructured meshes with element size h ≈ 1 mm. The 

specimens are loaded by two rigid platens moving inward at a constant velocity of v/2 = 0.05 m/s. 
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The friction coefficient between the platen and specimen is set to be 0.1. The penalty term p is 

chosen to be 100 times that of the Young’s modulus, i.e. p = 8400 GPa. The damping coefficient 

η is assigned to be the theoretical critical value, i.e. η = 2h (Eρ)1/2 ≈ 3 × 104 kg/m·s, to reduce 

dynamic oscillations. The temporal integration scheme is set to have a very small time step of 1 

× 10-9 s in order to accommodate instability induced by the large penalty term. The selected 

model setup parameters are considered to be in the appropriate range for capturing the 

laboratory-scale fracturing process [Mahabadi, 2012; Tatone and Grasselli, 2015]. 

 

Fig. 9.4 Model setup for (a) the uniaxial compressive strength (UCS) and (b) the Brazilian disc (BD) tests. 

Table 9.1 Assumed material properties of the laboratory-scale rock specimens. 

Parameter Value 

Bulk density ρ (kg/m3) 2750 

Young’s modulus E (GPa) 84.0 

Poisson’s ratio υ 0.24 

Tensile strength ft (MPa) 11.6 

Internal friction angle ϕi (º) 31.0 

Cohesion c (MPa) 44.5 

Residual friction angle ϕr (º) 24.9 

Uniaxial compressive strength UCS (MPa) 157.0 
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A calibration can be used to derive an appropriate combination of energy release rates (i.e. 

GI and GII) for consistency between simulated strength properties (e.g. indirect tensile strength, 

UCS) obtained from the numerical specimens and the input strength parameters that serve as the 

calibration targets. Note that the relation between c, ϕi and the target UCS value can be based on 

the Mohr-Coulomb failure criterion as given by 
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The axial stress in the UCS test is calculated as the ratio between the applied load at the top 

boundary of the specimen and the width of the specimen. The indirect tensile stress σt in the BD 

test is derived as 
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where F is the load applied by the top platen, D is the diameter of the disc, and t is the sample 

thickness that is assumed to be 1.0 in 2D. Following the procedure proposed by [Tatone and 

Grasselli, 2015], a series of numerical experiments are designed with the energy release rates GI 

ranging from 50 to 1000 J/m2 and GII ranging from 500 to 5000 J/m2. As shown in Fig. 9.5a and 

b, the surfaces representing the simulated UCS and BD strength as a function of energy release 

parameters can be constructed based on linear interpolation. The intersection polylines between 

the interpolated surface and the plane of target UCS or BD strength represent the scenario where 

a combination of GI and GII can approximately reproduce the target values. The intersection 

point of the UCS and BD polylines (Fig. 9.5c) defines the unique combination of GI = 327.6 J/m2 

and GII = 2367.7 J/m2 that tends to yield correct UCS and BD strength in the laboratory-scale 

experiment. 

The results of the UCS and BD tests with the finalised energy parameters are presented in 

Fig. 9.6. In the UCS test, the failure of the specimen is dominated by propagating mode II cracks 

that form inclined shear planes and the macroscopic UCS strength value is 156.9 MPa. In the BD 

test, the disc contains diametric tension cracks and exhibits an indirect tensile strength of 11.6 

MPa. Furthermore, the emergent elastic modulus measured as the slope of the stress-strain curve 

of the UCS test exhibits a value of ~80.0 GPa, which indicates that the selected penalty term is 

adequately large to capture precisely the rock deformation behaviour. It should be noted that 
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mesh sensitivity (e.g. size and orientation) analysis is not included here, but may be necessary if 

the model is used for solving real problems due to the inherent dependency of the cohesive zone 

calculation on the prescribed grid discretisation. 

 

Fig. 9.5 Calibration of energy release rates for simulating intact rock failure based on the procedure 

proposed by Tatone and Grasselli [2015]: (a) Simulated uniaxial compressive strength (UCS) as a function 

of energy release rates GI and GII and the intersection polyline with the plane of target UCS (i.e. 157.0 

MPa), (b) Simulated indirect tensile strength as a function of energy release rates GI and GII and the 

intersection polyline with the plane of target tensile strength (i.e. 11.6 MPa), (c) The intersection point of 

the projected 2D UCS intersection polyline and BD polyline defines the calibrated combination of GI and 

GII. 

The value of calibrated GII is in the typical range of shear fracture energy release rate [Cox 

and Scholz, 1985], whereas the value of GI that corresponds to a fracture toughness KIC of 5.4 

MPa·m1/2 for a plain strain condition is significantly higher than the value (1.6-1.7 MPa·m1/2) 
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predicted using the empirical correlation proposed by Gunsallus and Kulhawy [1984] and also 

exceeds the typical range measured for crystalline rocks in the laboratory experiments [Atkinson 

and Meredith, 1987; Latham, 1998]. Obviously, this calibration procedure [Tatone and Grasselli, 

2015] is able to produce a self-consistent model in terms of numerical aspects, but the physical 

realism of the calibrated parameters may require further studies. 

 

Fig. 9.6 (a) The fracture pattern and stress-strain curve of the calibrated UCS test. (b) The fracture pattern 

and stress-displacement curve of the calibrated BD test. 
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9.3 Numerical experiment setup 

9.3.1 Rock properties and in-situ stresses 

The numerical experiment of a hypothetical repository is based on the site characterisation 

of a geological formation at the Sellafield area, Cumbria, England, conducted by the UK Nirex 

Limited [Nirex, 1997a, 1997b]. The host medium is a thick sequence of Ordovician 

volcaniclastic rocks. The intact rock properties used in the field-scale model are presented in 

Table 9.1. The joint properties were characterised based on a laboratory sample with size L0 

equal to 0.3 m, which gives JCS0 = 112.2 MPa and JRC0 = 3.85 [Kobayashi et al., 2001]. The 

in-situ stresses can be empirically calculated by [Nirex, 1997a]: 

 26622.0 0294.0v  yS       (10.5a) 

 88747.1 03113.0H  yS       (10.5b) 

 31619.0 01996.0h  yS       (10.5c) 

where Sv is the vertical overburden stress (MPa), SH is the maximum horizontal stress (MPa), Sh 

is the minimum horizontal stress (MPa), and y is the depth (m). The orientation of SH is 340º 

from the North. Pore fluid pressure Pf is assumed to be hydrostatically distributed with the water 

table located at the ground surface. Since the Biot-Willis coefficient is assumed to be 1.0, the 

effective stress components can be calculated by subtracting Pf from the total stress components. 

Fig. 9.7a shows the magnitudes of in-situ stresses and pore fluid pressure at different depths and 

Fig. 9.7b further depicts the variation of lateral effective stress ratio, i.e. S’H/S’v and S’h/S’v. A 

series of numerical experiments corresponding to three different depths, i.e. 250 m, 500 m and 

1000 m (Table 9.2), will be explored in the following sections. 

Table 9.2 Effective in-situ stresses at the selected depth scenarios 

Depth (m) S’v (MPa) S’H (MPa) S’h (MPa) S’H/S’v S’h/S’v 

250 5.15 7.20 2.84 1.40 0.55 

500 10.03 12.52 5.36 1.25 0.53 

1000 19.80 23.15 10.41 1.17 0.52 
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Fig. 9.7 (a) Distribution of in-situ stresses and pore fluid pressure, and (b) effective stress ratios at 

different depths. 

9.3.2 Fracture networks 

Four sets of fractures were observed in the field with their mean dips/dip-directions given as 

8º/145º, 88º/148º, 76º/21º, 69º/87º, respectively [Min et al., 2004a]. Dispersion of fracture 

orientations is not included in this study since uncorrelation between lengths and orientations 

was found to result in unrealistic patterns [Blum et al., 2005]. The field measurement gives a 

limited range of trace lengths between 0.5 m and 250 m, i.e. the minimum length lmin = 0.5 m and 

the maximum length lmax = 250 m. As shown in Fig. 9.8a, a power law fracture length 

distribution has been fitted to the field data [Nirex, 1997b], with the cumulative distribution 

given by 

ClN            (10.6) 

where N is the number of fractures per unit area (m2) having a length larger than l,  is a density 

constant, C is the exponent of the cumulative distribution of fracture lengths. The field data can 

be plausibly modelled by a range of combinations of  and C, resulting in different fracture 

density scenarios. A low density case with  = 1.25 and C = 2.0 is adopted here for creating DFN 

realisations. Fracture lengths are sampled by using the following equation [Min et al., 2004a]: 
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        (10.7) 

where F is a random number uniformly distributed in the range of 0 ≤ F ≤ 1. The distribution of 

fracture barycentres is modelled by a Poisson process. Four sets of fractures are also assumed to 

have equal density, because no available data exists for treating them individually [Blum et al., 

2005]. Two 2D cross-sections are chosen through the host rock oriented at 340º and 250º from 

the North, respectively, corresponding to the plane of SV-SH and that of SV-Sh. The generated 

DFN patterns, denoted as DFN1 and DFN2 (Fig. 9.8b), will be used for the modelling of a 

hypothetical excavation in the crystalline rock under the corresponding 2D stress field. Since 

significant modifications have been made when interpreting the field data, the results presented 

here cannot be used to directly infer the condition of the real system at Sellafield. 

 

Fig. 9.8 (a) Distribution of fracture lengths mapped at Sellafield that can be fitted by a power law 

cumulative distribution (after Blum et al. [2005]), and (b) the 20 m × 20 m discrete fracture network (DFN) 

generated in the cross-section plane oriented 340º (DFN1) or 250º (DFN2) from the North (dashed circles 

represent the tunnels advancing in two different directions). 

9.3.3 Model discretisation and boundary conditions 

The 20 m × 20 m fractured rock domain embedded with one of the DFN networks is 

discretised by an unstructured mesh with pre-existing discontinuities represented by a series of 
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prescribed overlapping edges (but with separated nodes) of triangular finite elements. An 

increased element size (h ≈ 5.0 cm) is used to constrain the modelling to affordable runtime for 

the field-scale simulation, while retaining an acceptable degree of accuracy. Variations of 

simulated strength properties induced by the decrease of mesh resolutions can be evaluated 

through a recalibration when solving real problems. For simplicity, such procedure is not 

included in this study and the calibrated parameters (e.g. GI and GII) based on the 

laboratory-scale specimens are adopted with no change. A discussion about this effect and 

potential solutions is given in section 9.6. The EDZ behaviour captured in the field-scale models 

can be, therefore, mainly used for qualitative assessment. 

The hypothetical circular tunnel with a diameter of 2 m is placed at the centre of the 

field-scale model and the response to stresses is simulated for a range of tunnel depth scenarios. 

The distance from the tunnel centre to the model boundary is five times the tunnel diameter, for 

which the boundary effect is considered minor. The bottom of the model is constrained by a 

roller boundary condition (i.e. no displacement in the y direction) in order to accommodate the 

body force effect. The boundary stress σy that is applied to the top of the model is set equal to the 

effective overburden stress, i.e. S’v, of the studied depth. The lateral stress σx is imposed 

uniformly (i.e. gravity-induced gradient is neglected) to the left and right model boundaries with 

the magnitude defined by the maximum or minimum effective horizontal stress, i.e. S’H or S’h, 

depending on the chosen cross-section. The pre-existing fractures are represented with no initial 

phase of shearing before the phases of far-field stress application. The plain strain numerical 

experiment is designed with multiple sequential deformation-solving phases [Lisjak et al. 2014a, 

2014b]: (i) intact rock and rock mass fractures are deformed from an unstressed state to 

accommodate equilibrium under geological far-field stresses; this includes applying an initial 

ramping stage to avoid sudden violent failure, (ii) the circular core is relaxed in a process that 

mimics the progressive unloading effects during tunnelling face advancement; this is achieved by 

gradually reducing the deformation modulus of the excavated circular area, (iii) rock materials 

inside the excavated area are removed after which an interior free surface is created with no 

tunnel support introduced, and (iv) an EDZ progressively evolves around the unsupported 

opening; this may involve intensive new cracking that links pre-existing discontinuities. Here, 
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the relaxation phase is mainly introduced for the purpose of avoiding unrealistic artificial shocks 

that can arise by instant removal of excavation materials. The final EDZ patterns do not 

correspond to the eventual completely collapsed state, which requires unacceptable excessive 

runtime, but all models are ceased at the same point of simulation time for comparison. 

9.4 Results 

9.4.1 Rock mass failure 

Fig. 9.9 presents the simulation results of the excavation in the rock mass model of DFN1 at 

the depth of 1000 m. The model first reaches the equilibrium state under the effective far-field 

stresses of S’v = 19.80 MPa and S’H = 23.15 MPa and the gravitational forces (Fig. 9.9a). The 

fractured rock medium exhibits remarkable homogeneity for the initial in-situ stress condition 

that is close to isotropic (S’H/S’v = 1.17). With the relaxation of core rocks, stress concentrations 

begin to appear in the fictitiously softening materials as well as the rocks surrounding the tunnel 

(Fig. 9.9b). After the removal of the rocks inside the tunnel (Fig. 9.9c), the model continues to 

solve for the consequent evolution of the excavation damaged zone (EDZ) around the man-made 

opening, i.e. the zone where irreversible deformation involving new crack propagation has 

developed (Fig. 9.9d). The perturbation to the in-situ stress field caused by the excavation is 

dramatic. An interior low stress zone (stress loosing zone) is formed surrounding the tunnel 

boundary, where intensive rock mass failure develops as a result of structurally-governed 

kinematic instability (e.g. key blocks) and stress-driven breakage (e.g. wing cracks). The stress 

loosing zone seems to have a long axis along the direction of the minimum principal stress (i.e. 

S’v) in this 2D plane. A self-organised exterior high stress zone (stress arching zone) is promoted 

at a certain distance to the tunnel periphery, where compression arches seem to evolve along the 

direction of the maximum principal stress (i.e. S’H). In contrast, the DFN2 model at the depth of 

1000 m exhibits significant heterogeneity under the far-field stresses (S’v = 19.80 MPa, S’h = 

9.41 MPa) and the gravitational forces, before any artificial perturbation is introduced (Fig. 

9.10a). After the removal of rocks in the tunnel, a stress loosing zone is created in the near-field 

of the excavation and also tends to follow the direction of the minimum principal stress, i.e. S’h 

(Fig. 9.10d). An exterior stress arching zone is also vertically formed along the maximum 

principal stress, i.e. S’v, especially at the right hand side of the tunnel (the marked asymmetry). 



199 

 

More interestingly, the high-stress contours of these arching zones seem to be microscopically 

constrained by the pre-existing fractures in the local areas (Fig. 9.9d and Fig. 9.10d). 

 

Fig. 9.9 Rock mass failure around the tunnel excavation in the 20 m × 20 m DFN1 rock mass model at the 

depth of 1000 m. The numerical experiment is a sequence of different phases: (a) force equilibration under 

the geological in-situ stress condition that pertains before the excavation, (b) central core relaxation during 

the excavation, (c) physical removal of materials inside the tunnel after the excavation, and (d) evolution 

of the excavation damaged zone around the unsupported opening (note: black lines represent the 

pre-existing discontinuities in the geological formation, and the colour contours represent the maximum 

principal stress distribution). 
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Fig. 9.10 Rock mass failure around the tunnel excavation in the 20 m × 20 m DFN2 rock mass model at 

the depth of 1000 m. 

Fig. 9.11 shows the near-field fracture development around the tunnel excavation in the two 

DFN models of various depth scenarios. For the depth of 250 m, quite few new cracks emerge in 

both networks and the rock can almost remain stable except slight structurally-governed falling 

of rock pieces. For the depth of 500 m, slightly more new cracks are generated in both DFN 

networks. However, for the scenario of 1000 m depth, extensive tension-dominated new cracks 

assembled with a few shear-dominated ones also created. The propagation of these new cracks 

tends to follow the direction of the maximum principal stress in each DFN model, i.e. 

horizontally in DFN1 and vertically in DFN2. The new cracks in DFN1 are concentrated in the 
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rock above the tunnel top or under the invert (Fig. 9.11c), whereas fracturing in DFN2 mainly 

occurs in the lateral space (Fig. 9.11f). 

 

Fig. 9.11 Fracture development at the near-field to the excavation boundary in the DFN models at various 

depths. Shear-dominated new cracks correspond to the broken joint elements with the failure mode 

indicator 1.0 ≤ m ≤ 1.5, while tension-dominated new cracks correspond to the case with 1.5 < m ≤ 2.0. 

9.4.2 Shear reactivation 

Fig. 9.12 illustrates the distribution of shear displacement in the two DFN models at various 

depths, in which high displacement values are highlighted in darker tones. It can be seen that, at 

the shallow depth (i.e. 250 m), only very long fractures exhibit high shear displacement. As the 

depth increases, more fractures including some small ones close to the tunnel are reactivated for 

shearing. The shear displacement magnitudes of sets in DFN1 seem more isotropic (i.e. three sets 

are sheared by a quite equal degree), while the shearing in DFN2 is localised mainly in 

subvertical fracture sets and displays relatively higher displacement magnitudes. Such shearing 
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phenomena may be attributed to the quite isotropic stress fields for DFN1 and the high 

differential stress conditions for DFN2 in addition to the specialisations of their fracture 

geometries. 

 

Fig. 9.12 Shear displacement along pre-existing and propagating fractures in the DFN models at various 

depths. 

9.4.3 Characterisation of the excavation damaged zone (EDZ) 

The geometrical properties of these specific cases of EDZ are characterised using an ellipse 

that has a minimal volume to cover the area with excavation-induced new crack propagation at 

an assumed confidence level (i.e. 90%). With the increase of depth, the extent of the EDZ 

ellipses in DFN1 is gradually enlarged with the aspect ratio attenuated (Fig. 9.13a-c). To further 

explore the spatial heterogeneity and directional variation of the damage developed inside the 

ellipse, the frequency of new broken joint elements is counted based on a polar coordinate 
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system of gridding and is represented using a graphic rose with colour bands showing the ranges 

of distance to the tunnel centre. The direction of the rose with the longest spoke corresponds to 

the direction with the greatest new damage. As shown by Fig. 9.13d-f, major damage direction 

seems to be the vertical direction in DFN1 and the spatial extent of the damage expands with the 

increased depth (more new cracks with larger distances to the tunnel centre emerge). 

 

Fig. 9.13 Ellipses of the EDZ that covers 90% excavation-induced broken joint elements of the DFN1 

model at the depth of (a) 250 m, (b) 500 m and (c) 1000 m; the rose diagram for the directional frequency 

of new cracks of the DFN1 model at the depth of (d) 250 m, (e) 500 m and (f) 1000 m (note: the colour 

bands show the ranges of distance from new crack centroids to the tunnel centre). 

For the DFN2 model, the EDZ ellipses cover almost the whole modelling domain but with 

extremely sparse cracking (Fig. 9.14a-c). Such uniformly distributed damage is probably 

attributed to the relatively higher stress ratio that engenders more shear displacements and 

transmits the influence to a larger region. The rose diagrams for DFN2 indicate that the dominant 

damage orientation (especially close to the tunnel) tends to be along the horizontal axis, i.e. the 
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direction of S’h (e.g. Fig. 9.14f). Apart from new cracking propagation, the sliding along rough 

fractures is also an important indicator of the damage evolution in the rock with naturally formed 

discontinuities. A more in-depth understanding of the EDZ characteristics may benefit from the 

consideration of these two effects based on some means of calculating the energy partitioning by 

fracturing and shearing. Modelling of the energy dissipated by the frictional sliding of rough 

fractures with a varying frictional coefficient and the propagation of new fractures requires 

further code development and is beyond the scope of this study, but might be achieved by 

introducing the acoustic emission model [Lisjak et al., 2013] in the future. 

 

Fig. 9.14 Ellipses of the EDZ that covers 90% excavation-induced broken joint elements of the DFN2 

model at the depth of (a) 250 m, (b) 500 m and (c) 1000 m; the rose diagram for the directional frequency 

of new cracks of the DFN2 model at the depth of (d) 250 m, (e) 500 m and (f) 1000 m. 

9.4.4 Influence of stress on new crack propagation 

The influence of in-situ stresses on new crack propagation is explored by analysing the 

relationship between the maximum principal stress or differential stress ratio and the total length 
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of excavation-induced new cracks (Fig. 9.15). Regardless of the topologies of pre-existing 

fractures (i.e. for both DFN1 and DFN2), a quite monotonic increase of new crack propagation 

occurs with the enhanced maximum principal stress level. However, there is no clear correlation 

between the background principal stress ratio (i.e. σmax/σmin) and new fracturing, at least in the 

modelled scenarios. Needless to say, it is the imposition of zero confinement at the tunnel wall 

that introduces the differential stresses that drive the deformation and these are higher when at 

greater depths, completely masking any differences inherited from the slight differences in 

background tectonic principal stresses. 

 

Fig. 9.15 (a) The relation between maximum principal stress σmax and the total length of 

excavation-induced new cracks, and (b) the relation between principal stress ratio σmax/σmin and the total 

length of excavation-induced new cracks for the two DFN models at various depths. 

9.5 Discussion 

The progressive rock mass failure around a geometrically idealised tunnel in a crystalline 

fractured rock is modelled by using 2D FEMDEM analysis. The characteristics of the EDZ were 

found significantly affected by the in-situ stresses and pre-existing fractures. Excavation in the 

condition of a higher maximum principal stress tends to generate more irreversible damage, i.e. 

new cracks and shear displacements, in the host rock. The ellipses of the EDZ featured by new 

fracturing around a circular opening are influenced by the pre-existing fractures and exhibit a 
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slightly oblique orientation to the far-field stresses. However, to draw a general conclusion, 

simulations based on multiple DFN realisations are important when solving real problems. 

Special care is also required when designing the boundary stresses applied to the FEMDEM 

model, since the actual in-situ stress field can be complex and distorted by tectonic factors, and 

the pore fluid pressure in the subsurface can be quite different from the hydrostatic linear 

prediction (especially in sedimentary and metamorphic terrains). Furthermore, the anisotropic 

nature of intact rock materials is also a nontrivial issue if the deforming and fracturing behaviour 

is to be more realistically simulated, especially for transversely isotropic rocks, e.g. shales 

[Lisjak et al., 2014a]. Integration of a rock support system module in the FEMDEM formulation 

may be important for calculating the safety of the concrete lining that prevents the surrounding 

rock from freely displacing and falling [Lisjak et al., 2014b]. It is also interesting to develop 

techniques for modelling acoustic emissions and/or microseismic events that can be used to 

describe EDZ features and compare with field measurement [Cai et al., 2007; Lisjak et al., 2013]. 

One unresolved issue in this study is related to the cohesive zone model: the mesh size 

dependency of model properties as has been mentioned in section 9.3.3 and also pointed out by 

Lisjak et al. [2014a]. Except for the possible solution of conducting field-scale recalibrations 

when solving real problems, development of a scale independent cohesive constitutive model or 

at least a universal scaling law could be very useful. Furthermore, the computational efficiency 

issue caused by setting a very small time step when using a very large penalty term to reproduce 

accurate deforming response [Mahabadi, 2012] may be overcome by introducing some 

non-penetration algorithms for computing multi-body interactions, e.g. the impulse-based 

method [Paluszny et al., 2013; Tang et al., 2013, 2014]. 

In this research, deformation of the solid was determined by the skeletal effective stresses, 

whereas the dynamic impact of local internal fluid pressure (e.g. fluid pressure dissipation near 

the excavation boundary) was not explicitly included. The immersed shell method [Viré et al., 

2015] and the multiphase flow modelling [Su et al., 2015] that have been recently developed in 

the research group at Imperial College will be coupled with the FEMDEM geomechanical 

models to capture the complex two-way coupling processes involving the transient response of 

rock solid and fluid flow as well as the dynamic fluid-solid interaction. The long-term evolution 
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of EDZ around a nuclear waste repository is a multi-physical problem that is governed by a 

complex thermal-hydromechanical-chemical coupling process [Rutqvist et al., 2002; Hudson et 

al., 2009] and development of approaches for modelling such coupled phenomena are keenly 

anticipated. 

Another limitation of this research is that 2D analysis was used to model the tunnel 

excavation and associated rock mass failure, whereas, in real tunnels, the rock mass fracture 

system deforms in 3D and the tunnelling is a time-dependent 3D process. There might be a way 

that the core relaxation process can be correlated with the advancing speed of the tunnelling face 

in 3D rock space by employing field measurement to calibrate the 2D FEMDEM simulation. 

However, it is essential to develop a 3D model if the fractured rock in response to phased 

excavation is to be realistically simulated. First, the pre-existing fractures are 3D geometries and 

can be arbitrarily oriented. Second, the propagation of new cracks is also a 3D problem in nature, 

which is not restricted in only one plane or manageable with plane strain assumptions, except in 

some peculiar cases, e.g. sedimentary rock with strong bedding features under larger parallel 

extensional tectonic forces. Third, the actual excavation method (e.g. top-heading and bench 

method) in tunnel construction is an extremely complex 3D process that involves significant 

interaction along the tunnel longitudinal axis [Read, 2004; Si et al., 2015]. In addition, the stress 

in the rock is also a 3D heterogeneous field [Lei et al., 2015b], where its three principal 

components can simultaneously affect the deformation of intact rocks and propagation of new 

fractures [Mahabadi, 2014a]. To achieve 3D geomechanical modelling, the 3D FEMDEM model 

combined with the joint constitutive model and crack propagation model (as has been used in 

Chapter 8) will be employed to capture the brittle deformation response including local 

concentrations of critically high tensile or differential stresses, together with realistic fracture 

shearing behaviour on pre-existing and newly propagated fractures. Evolution of the 3D EDZ 

around a tunnel excavation can be, therefore, captured by simulating the actual construction 

procedure. However, such a sophisticated simulation will be highly restrained by the extremely 

expensive computational cost. 

The FEMDEM model that captures the dynamics of rock mass failure goes beyond the 

conventional key block theory that mainly includes static topological analysis [Zhang and Lei, 
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2013, 2014]. Compared to some other discrete modelling approaches such as the block-type 

DEM method [Min and Jing, 2003; Noorian-Bidgoli et al., 2013] and the particle-based DEM 

model [Potyondy and Cundall, 2004; Mas Ivars et al., 2010; Harthong et al., 2012], the proposed 

FEMDEM framework is able to model the realistic fracturing behaviour of brittle rocks governed 

by fundamental fracture mechanics principles associated with self-consistent strength and 

fracture energy parameters [Lisjak and Grasselli, 2014]. The key advantages of this work to the 

previous FEMDEM-based EDZ studies [Lisjak et al., 2014a, 2014b] is the capability of 

simulating the complex topology and sophisticated shearing of pre-existing fractures in addition 

to the brittle fracturing, which allows a more realistic modelling of the EDZ evolution in 

naturally fractured rocks. Furthermore, the detailed attention given to fracture aperture and 

connectivity of all pre-existing and new fractures can help to underpin simulation of 

hydromechanically coupled flow behaviour for the various phases in the life cycle of a nuclear 

waste repository. 

9.6 Concluding remarks 

To conclude, in the scope of 2D analysis, a workflow based on the hybrid FEMDEM 

method has been developed for modelling the underground excavation for nuclear waste disposal 

in geological formations with pre-existing discontinuities. The geomechanical model can capture 

the deformation of intact rock matrix, the heterogeneity of local stress fields, the reactivation of 

pre-existing discontinuities, and the propagation of new cracks induced by tensile, shear or 

mixed-mode brittle failure. A calibration was first conducted based on the laboratory-scale UCS 

and Brazilian disc tests to assign the most appropriate parameters for use in the numerical model 

in order to achieve a consistency between simulated macroscopic rock strengths and input 

microscopic mechanical properties. A joint constitutive model is also applied to pre-existing 

fractures to take into account the effect of asperity degradation and the scale-dependency of 

fracture roughness. A 2D numerical study of a circular tunnel excavation opened in two 

alternative heading directions in a fractured crystalline rock was conducted. The two 

cross-sections correspond to the two planes of far-field principal stresses. As the DFNs are based 

on real data for a specific site, the DFNs appropriate for analysis in each tunnel section have 

different fracture directional properties. An EDZ around the unsupported man-made opening is 
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formed by the coalescence of pre-existing discontinuities caused by new crack propagation in 

response to the excavation process. Excavation in the condition of a higher maximum principal 

stress tends to generate more irreversible damage in the host rock. The ellipses characterising the 

extent of the EDZ around a circular opening is influenced by the pre-existing fractures and 

exhibits a slightly oblique orientation to the far-field stresses. The results of this study have 

important implications for designing stable underground openings for nuclear waste repositories 

as well as other engineering facilities which are intended to generate minimal damage in host 

media. 
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10 Conclusions and future work 

10.1 Summary of the present research 

This thesis presented a systematic study of the geometry, geomechanics and fluid flow 

properties of natural fracture networks. After a brief background introduction of rock fractures in 

nature and associated engineering problems (Chapter 1), the thesis first presented an “appetiser” 

study of the statistics and tectonism of a multiscale natural fracture system to enhance the 

understanding of the geometrical complexity and underlying mechanisms of natural fracture 

networks (Chapter 2). From a literature review of discrete fracture network (DFN) models that 

were used to simulate the geomechanical and hydromechanical behaviour of natural fracture 

systems (Chapter 3), it became clear that several important outstanding issues were needed to be 

addressed, according to which the rest of the thesis was structured. A joint constitutive model 

(JCM) was implemented into the finite-discrete element method (FEMDEM) to simulate the 

complex mechanical behaviour of natural fractures associated with intrinsic surface asperities 

(Chapter 4). The JCM-FEMDEM model was applied to capture the geomechanical response of 

2D natural and stochastic fracture networks at a metric scale with the consequences on their 

equivalent permeability further analysed (Chapter 5). An upscaling approach was developed to 

estimate the hydromechanical properties of larger scale fracture systems based on the metric 

scale simulation results (Chapter 6). The numerical model was extended to 3D to calculate the 

stress-dependent permeability of an idealised persistent fracture network (Chapter 7) and a 

realistic fractured sedimentary layer (Chapter 8). The capability of the developed 

JCM-FEMDEM model was further demonstrated through a vivid example of modelling the 

progressive rock mass failure around an excavation in a geological formation with pre-existing 

discontinuities (Chapter 9). Based on the observations and results of these studies, the following 

conclusions were made. 

1. A natural fracture network is the result of the superposition of multiple fracture sets each 

linked to a separate tectonic event. The driving force for fracture formation may be 

dissipated at the end of a tectonic episode when the system becomes connected. However, 

the “effective” connectivity can successively be reduced by cementation of early 
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fractures and reestablished by subsequent cracking. In addition, the connectivity 

anisotropy may also permit additional cracking in directions which have a poorer 

percolation state. Thus, the “apparent” connectivity measured for fracture networks 

regardless of their internal sealing conditions may be highly variable depending on the 

intensity of previous crack-seal cycles and can indicate a state well above or close to the 

percolation threshold (Chapter 2). 

2. Compared to other continuum or discontinuum approaches, the FEMDEM model 

provides a powerful tool to calculate the stress and deformation of rock matrix and solve 

the translation, rotation and interaction of multiple discrete solids. In such a 

computational scheme, pre-existing fractures can be treated as the internal boundaries of 

rock volumes. The FEMDEM approach also gives a natural solution route to capturing 

the fracturing process in rock governed by fracture mechanics principles (Chapter 3&4). 

3. The FEMDEM formulation was extended to integrate a JCM model to better mimic the 

non-linear constitutive behaviour of natural fractures associated with intrinsic surface 

roughness. The combined JCM-FEMDEM model is able to achieve compatibility for 

both the fracture and matrix fields with respect to stress and displacement. The numerical 

model exhibits realistic shear strength and displacement characteristics with the 

recognition of fracture size effects. This extended FEMDEM model can be applied to 

simulate the complex behaviour of natural fracture networks under in-situ stresses 

including fracture opening, closing, shearing, dilatancy and new crack propagation 

(Chapter 4). 

4. Important disparities may exist between a natural fracture network and its Poisson DFN 

equivalents in terms of geomechanical and hydromechanical properties. The two types of 

fracture networks exhibit significant differences with respect to stress heterogeneity, 

fracture wall shearing, aperture development, crack propagation and network 

connectivity. The stressed Poisson DFNs were found to take on the permeability of the 

stressed AFN but only in the direction with a good connectivity state. A considerable 

discrepancy was observed for flow in the direction associated with a poor percolation 

condition (Chapter 5). 
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5. The stress condition has significant influences on the mechanical behaviour of natural 

fractures including opening/closing, sliding, dilatancy, and can result in a very 

heterogeneous aperture distribution in a fracture network (Chapter 5-8). Stress-driven 

new cracks can also link pre-existing fractures to form critical fluid pathways and 

enhance the connectivity of the network (Chapter 5&8). Such geomechanically induced 

characteristics can also affect the fluid flow in the discontinuity system. Under a high 

stress ratio condition, the fluid flow can be highly localised in some large aperture 

channels created by block rotations and/or shear dilations (Chapter 7&8). The equivalent 

permeability varies with the rotation of the stress field (Chapter 5&8) and the change of 

the stress ratio (Chapter 7&8). As the stress ratio increases, the permeability of a fracture 

network can vary over several orders of magnitude. The permeability tensor under a 

critical stress state (i.e. with a high stress ratio that exceeds a certain threshold) can be 

much more anisotropic than that of a low stress ratio condition (Chapter 7). 

6. The scaling behaviour of the fractured rock permeability relies on the connectivity 

scaling of the fracture system (related to its geometrical distribution) and the 

transmissivity scaling of individual fractures (related to the aperture distribution). 

Distinct permeability scaling trends were observed for fracture networks under different 

in-situ stress conditions. Based on the analysis of a simulated multiscale fracture system, 

the flow structure was observed to be scale-dependent and shift from extremely 

channelled to distributed as the modelling scale increases (Chapter 6). 

7. The EDZ around an underground excavation in fractured rocks is formed by the 

coalescence of pre-existing discontinuities induced by new crack propagations in 

response to the engineering perturbations. Excavation in the condition of a higher 

maximum principal stress tends to generate more irreversible damage in the host rock. 

The EDZ characteristics, e.g. the spatial extent of the failure area and the anisotropy of 

the excavation-induced damage, are influenced by both the distribution of pre-existing 

natural fractures and the condition of far-field stresses (Chapter 9). 

8. The observed effects of fractures and stresses on the rock mass properties (e.g. strength, 

deformation and permeability) illustrated the importance of integrating explicit DFN 
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representations and conducting geomechanical computations for more meaningful 

assessments of the hydromechanical behaviour of naturally fractured rocks (Chapter 5-9). 

10.2 Original contributions 

The original contributions of this thesis are summarised as below: 

1. A tectonic interpretation was presented to explain the pattern formation and connectivity 

evolution of a multiscale natural fracture system (Chapter 2). This work proposed an 

answer to the open question—Are natural fracture networks well or poorly connected? 

2. A JCM model that captures the rough wall interaction behaviour of individual fractures 

associated with asperity characteristics was implemented into the FEMDEM framework 

for simulating the geomechanical behaviour of fractured rocks (Chapter 4). In addition to 

capturing realistic fracture behaviour with respect to normal closure, shear strength and 

dilatancy, the key novel feature of this formulation is its capability of capturing the 

important size effect of fracture wall properties through a systematic characterisation of 

fracture network topologies. 

3. The 2D FEMDEM model embedded with a JCM module was applied to simulate the 

geomechanical behaviour of a natural fracture network and its stochastic DFN 

equivalents at a metric scale (Chapter 5). This research comprehensively examined the 

validity of the Poisson DFN model in representing a 2D naturally fractured rock with 

respect to geomechanical and hydrological properties under in-situ stress conditions. 

4. A new approach to upscaling 2D fracture network models was proposed for preserving 

geostatistical and geomechanical characteristics of a smaller scale fracture system 

(Chapter 6). A novel scheme accommodating discrete-time random walks in a recursive 

self-referencing lattice was developed to populate fractures together with their stress- and 

scale-dependent attributes into larger domains. Advantages of this approach include 

preserving the non-planarity of natural cracks, capturing the existence of long fractures, 

retaining the realism of variable apertures, and respecting the stress-dependency of 

displacement-length correlations. 

5. The JCM model was also integrated into the 3D FEMDEM formulation to simulate the 

geomechanical behaviour of 3D natural fracture systems. The stress effects on fluid flow 
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in 3D were investigated for an idealised persistent fracture network (Chapter 7) and a 

realistic sedimentary layer with impersistent joint sets (Chapter 8). To the best 

knowledge of the author, the 3D work represents a first study to explore the 

stress-dependent permeability of 3D fracture networks based on explicit representation of 

fracture geometries and systematic characterisation of rock mass geomechanics. 

6. The JCM-FEMDEM model was applied to simulate the EDZ evolution around a tunnel 

excavation in a crystalline formation with pre-existing discontinuities (Chapter 9). This 

research developed a workflow to incorporate explicit DFN geometries into the EDZ 

modelling in order to characterise the complex interactions between pre-existing 

fractures and new propagating cracks under excavation-induced perturbations. 

10.3 Recommendations for future work 

Extensions of this PhD research may include the following aspects: 

1. It has been recognised as a challenging issue to create realistic DFN models for 

representing complex natural fracture networks with respect to important characteristics 

such as scaling, hierarchy, clustering and anisotropy. Some self-organised mechanisms 

that govern the correlation between fracture attributes and the interaction of fracture 

populations may be integrated to the stochastic DFN approach for more accurate 

representations. Furthermore, it is worth examining the validity of the conventional 

Poisson DFN model for capturing the hydromechanical behaviour of 3D fracture 

systems. 

2. Enhancement of the computational efficiency seems to be an urgent task for the future 

development of the FEMDEM code. By implementing an implicit solver for calculating 

the nodal force/displacement field, the runtime may be much less than that of the current 

explicit temporal integration scheme. Parallel computing is also a promising technique to 

be employed for dealing with computations for large-scale engineering problems. 

3. An extension to the current study of stress-dependent permeability of fracture networks is 

to simulate 3D fractured multilayer systems. Such a 3D stratified structure can be 

constructed by stacking different sedimentary beds, each of which is extruded from a 2D 

natural or stochastic fracture pattern containing finite-sized joints. The bedding plane 
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between adjacent layers can also be treated as a discontinuity similar to fractures. Due to 

the role of the bedding plane that links joints of neighbouring sedimentary units, the 

bed-normal permeability of the multilayer system may be very different from the one 

derived using the conventional hydrogeology method that assumes multiple layers are 

connected “in series”. The stress effects on fluid flow through the layered fractured 

systems can be explored based on the geomechanical characterisation using the 3D 

JCM-FEMDEM model. Similar 3D geomechanical modelling can also be conducted on 

more general 3D DFNs with randomly dipping fractures that usually occur in crystalline 

rocks. However, the difficulty of meshing such complex geometries that may involve 

very small intersection angles needs to be tackled first. 

4. Another planned research is to study the stress effects on the solute transport in 2D/3D 

fracture networks. The non-linear fracture behaviour (opening/closing, shearing and 

dilation) in response to applied stress conditions captured by the JCM-FEMDEM model 

can result in a strongly heterogeneous fluid velocity field in the fracture network and lead 

to some sophisticated breakthrough characteristics. 

5. The 2D excavation research would benefit greatly from being extended to 3D. The 

natural fractures in rock are 3D geological structures and the excavation-induced new 

cracks also propagate in 3D space. The excavation method (e.g. top-heading and bench 

method) adopted in actual tunnel constructions is an extremely complex 3D process that 

engenders significant mechanical interactions in fractured rocks along the tunnel 

longitudinal axis. The developed 3D JCM-FEMDEM model will thus be used to simulate 

the 3D EDZ evolution around/ahead of an advancing tunnel in the future. 

6. The hydromechanical modelling of fractured rocks in this thesis is based on the 

“effective stress” theory and mainly focused on the solid-to-fluid coupling. However, the 

developed 2D/3D JCM-FEMDEM formulation is well suited to extending to two-way 

fully-coupled simulations that allow total normal stresses to be modified by varying fluid 

pressure in fractures and intact rocks. An already ongoing research effort in the Imperial 

College group is to link the JCM-FEMDEM solver with another “in-house” code, i.e. 

IC-FERST (Imperial College Finite Element Reservoir Simulator), to simulate the 
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coupled fluid-solid processes involved in various engineering problems such as hydraulic 

fracturing and reservoir compaction. 

7. More efforts are also needed with respect to the validation and calibration of the 

numerical models based on experimental data or field measurements. This can be a 

critical issue if the numerical models are to be used for practical applications. 
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Appendix A 

This appendix gives a detailed compilation of a series of multiscale fracture patterns mapped 

from the Languedoc region of SE France (Table A.1 and Fig. A.1-A.2). A regional-scale (~100 

km) fault pattern (Fig. A.3), denoted as RP, was generated from the geological map made by 

Bureau de Recherches Géologiques et Minières (BRGM) [2011] at a scale of 1:250,000. Three 

intermediate-scale (~10 km) fracture patterns containing both faults and joint corridors, denoted 

as IP1-3 (Fig. A.4-A.6), were digitised from assembled aerial photographs taken at an anticipated 

constant flight height (resolution may vary slightly due to the uneven terrain). Eleven local-scale 

(1-10 m) joint patterns, denoted as LP1-11 (Fig. A.7-A.17), were drawn based on outcrop 

mapping. Each outcrop map was constructed from a number of images taken at a fixed height of 

1.5 m and rectified for perspective biases before assembly. When manually tracing fracture 

geometries from digital maps, the image pixel size was set as the connectivity threshold to 

determine the persistence of fracture traces. All fracture patterns may suffer from incomplete 

sampling due to lack of exposure caused by the vegetation and erosion effects. 

The fractal dimension D (formally known as the correlation dimension) that describes the 

spatial organisation of fractures is calculated using the normalised two-point correlation function 

[Bonnet et al., 2001] as defined by C2(r/L) = Nd(r)/N2, where N is the total number of fracture 

barycentres, L is the domain size, and Nd is the number of pairs of barycentres whose normalised 

separation is smaller than r/L. The domain size L is calculated as the square root of the area of 

the irregular map bounded by the outermost nodes of each fracture network. The D value of each 

pattern is derived from a power law fitting to the data points of (r/L, C2(r/L)). The local value of 

apparent logarithmic slope is also analyzed for uncertainty evaluations. A short plateau of local 

slope over less than one order of magnitude can be found in some patterns. Such phenomenon 

may be caused by the mechanical interaction of different fracture sets [Du Bernard et al., 2002] 

or incomplete mapping due to the vegetation and erosion effects. The power law length exponent 

a is derived from the density distribution of fracture lengths for each pattern. The truncation 

effect is eliminated by using a lower cut-off of 5% × L for each map when fitting the power law 

curve [Odling et al., 1999]. The censoring bias of the regional map is corrected by removing 

traces that intersect the window sampling boundaries [Bour et al., 2002], with the artificial 
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density perturbation amended using an effective system size estimated as the square root of the 

coverage area of the remaining fractures [Lei et al., 2015a]. Such a censoring effect is not 

considered for the intermediate-scale and local-scale patterns bounded by irregular sampling 

boundaries. 

Table A.1 summarises the key statistical parameters of all sampled fracture networks. Fig. 

A.1 and A.2 illustrates the variation of the measured D and a values for different networks. Fig. 

A.3-A.17 present the individual fracture patterns and the derivation of their scaling exponents D 

and a. 

 

Table A.1 The key statistical parameters of the fracture networks 

Patterns Domain size L 

(m) 

Number of 

fractures 

Fractal 

dimension D 

Power law length 

exponent a 

Percolation 

parameter p 

RP 63,879 518 1.68 2.61 7.18 

IP1 9,271 399 1.66 2.41 5.30 

IP2 10,989 2,088 1.48 2.62 14.69 

IP3 8,572 1,237 1.20 2.53 6.90 

LP1 4.52 1,234 1.71 2.96 9.37 

LP2 4.34 396 1.43 2.73 4.91 

LP3 5.02 647 1.59 2.37 9.53 

LP4 1.78 240 1.65 2.13 7.36 

LP5 2.05 413 1.74 2.59 6.68 

LP6 2.90 443 1.62 2.69 6.79 

LP7 2.52 2,185 1.73 3.30 10.62 

LP8 1.19 331 1.62 2.52 5.46 

LP9 1.39 480 1.41 3.04 4.60 

LP10 3.88 1,429 1.59 3.26 4.85 

LP11 3.26 266 1.48 2.41 4.79 
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Fig. A.1 Synthesis of the measured fractal dimensions of different patterns. (a) Each fractal dimension is 

plotted with respect to the length range over which it has been determined. (b) A histogram of the 

measured fractal dimensions. 

 

 

 

Fig. A.2 Synthesis of the measured power law length exponents of different patterns. (a) Each length 

exponent is plotted with respect to the length range over which it has been determined. (b) A histogram of 

the measured length exponents. 



243 

 

 

Fig. A.3 (a) A regional-scale (~100 km) lineament fault pattern, denoted as RP, was generated from the 

geological map made by Bureau de Recherches Géologiques et Minières (BRGM) [2011] at a scale of 

1:250,000. (b) Calculation of the normalised two-point correlation function C2(r/L) as a function of r/L. 

Squares correspond to the correlation integral, and the bold solid line corresponds to a power law fitting 

line with a fractal dimension D = 1.68 derived from a scale range of 0.03<r/L<0.4. The light solid line 

corresponds to the local value of logarithmic slope, and the dashed line represents the slope value D = 

1.68. (c) The density distribution of fracture lengths (represented by squares). The dashed line corresponds 

to a power law fitting line with an exponent a = 2.61. 
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Fig. A.4 (a) An intermediate-scale (~10 km) fracture pattern including both faults and joint, denoted as 

IP1, was drawn from assembled aerial photographs. (b) Calculation of the normalised two-point 

correlation function C2(r/L) as a function of r/L. Squares correspond to the correlation integral, and the 

bold solid line corresponds to a power law fitting line with a fractal dimension D = 1.66 derived from a 

scale range of 0.08<r/L<0.4. The light solid line corresponds to the local value of logarithmic slope, and 

the dashed line represents the slope value D = 1.66. (c) The density distribution of fracture lengths 

(represented by squares). The dashed line corresponds to a power law fitting line with an exponent a = 

2.41. 
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Fig. A.5 (a) An intermediate-scale (~10 km) fracture pattern including both faults and joint, denoted as 

IP2, was drawn from assembled aerial photographs. (b) Calculation of the normalised two-point 

correlation function C2(r/L) as a function of r/L. Squares correspond to the correlation integral, and the 

bold solid line corresponds to a power law fitting line with a fractal dimension D = 1.48 derived from a 

scale range of 0.05<r/L<0.5. The light solid line corresponds to the local value of logarithmic slope, and 

the dashed line represents the slope value D = 1.48. (c) The density distribution of fracture lengths 

(represented by squares). The dashed line corresponds to a power law fitting line with an exponent a = 

2.62. 
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Fig. A.6 (a) An intermediate-scale (~10 km) fracture pattern including both faults and joint, denoted as 

IP3, was drawn from assembled aerial photographs. (b) Calculation of the normalised two-point 

correlation function C2(r/L) as a function of r/L. Squares correspond to the correlation integral, and the 

bold solid line corresponds to a power law fitting line with a fractal dimension D = 1.20 derived from a 

scale range of 0.09<r/L<0.6. The light solid line corresponds to the local value of logarithmic slope, and 

the dashed line represents the slope value D = 1.20. (c) The density distribution of fracture lengths 

(represented by squares). The dashed line corresponds to a power law fitting line with an exponent a = 

2.53. 
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Fig. A.7 (a) A local-scale (~5 m) joint pattern, denoted as LP1, was mapped from an outcrop exposure. (b) 

Calculation of the normalised two-point correlation function C2(r/L) as a function of r/L. Squares 

correspond to the correlation integral, and the bold solid line corresponds to a power law fitting line with a 

fractal dimension D = 1.71 derived from a scale range of 0.02<r/L<0.2. The light solid line corresponds to 

the local value of logarithmic slope, and the dashed line represents the slope value D = 1.71. (c) The 

density distribution of fracture lengths (represented by squares). The dashed line corresponds to a power 

law fitting line with an exponent a = 2.96. 
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Fig. A.8 (a) A local-scale (~5 m) joint pattern, denoted as LP2, was mapped from an outcrop exposure. (b) 

Calculation of the normalised two-point correlation function C2(r/L) as a function of r/L. Squares 

correspond to the correlation integral, and the bold solid line corresponds to a power law fitting line with a 

fractal dimension D = 1.43 derived from a scale range of 0.03<r/L<0.2. The light solid line corresponds to 

the local value of logarithmic slope, and the dashed line represents the slope value D = 1.43. (c) The 

density distribution of fracture lengths (represented by squares). The dashed line corresponds to a power 

law fitting line with an exponent a = 2.73. 
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Fig. A.9 (a) A local-scale (~5 m) joint pattern, denoted as LP3, was mapped from an outcrop exposure. (b) 

Calculation of the normalised two-point correlation function C2(r/L) as a function of r/L. Squares 

correspond to the correlation integral, and the bold solid line corresponds to a power law fitting line with a 

fractal dimension D = 1.59 derived from a scale range of 0.04<r/L<0.2. The light solid line corresponds to 

the local value of logarithmic slope, and the dashed line represents the slope value D = 1.59. (c) The 

density distribution of fracture lengths (represented by squares). The dashed line corresponds to a power 

law fitting line with an exponent a = 2.37. 
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Fig. A.10 (a) A local-scale (~2 m) joint pattern, denoted as LP4, was mapped from an outcrop exposure. 

(b) Calculation of the normalised two-point correlation function C2(r/L) as a function of r/L. Squares 

correspond to the correlation integral, and the bold solid line corresponds to a power law fitting line with a 

fractal dimension D = 1.65 derived from a scale range of 0.05<r/L<0.5. The light solid line corresponds to 

the local value of logarithmic slope, and the dashed line represents the slope value D = 1.65. (c) The 

density distribution of fracture lengths (represented by squares). The dashed line corresponds to a power 

law fitting line with an exponent a = 2.13. 
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Fig. A.11 (a) A local-scale (~2 m) joint pattern, denoted as LP5, was mapped from an outcrop exposure. 

(b) Calculation of the normalised two-point correlation function C2(r/L) as a function of r/L. Squares 

correspond to the correlation integral, and the bold solid line corresponds to a power law fitting line with a 

fractal dimension D = 1.74 derived from a scale range of 0.05<r/L<0.2. The light solid line corresponds to 

the local value of logarithmic slope, and the dashed line represents the slope value D = 1.74. (c) The 

density distribution of fracture lengths (represented by squares). The dashed line corresponds to a power 

law fitting line with an exponent a = 2.59. 
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Fig. A.12 (a) A local-scale (~3 m) joint pattern, denoted as LP6, was mapped from an outcrop exposure. 

(b) Calculation of the normalised two-point correlation function C2(r/L) as a function of r/L. Squares 

correspond to the correlation integral, and the bold solid line corresponds to a power law fitting line with a 

fractal dimension D = 1.62 derived from a scale range of 0.04<r/L<0.4. The light solid line corresponds to 

the local value of logarithmic slope, and the dashed line represents the slope value D = 1.62. (c) The 

density distribution of fracture lengths (represented by squares). The dashed line corresponds to a power 

law fitting line with an exponent a = 2.69. 
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Fig. A.13 (a) A local-scale (~3 m) joint pattern, denoted as LP7, was mapped from an outcrop exposure. 

(b) Calculation of the normalised two-point correlation function C2(r/L) as a function of r/L. Squares 

correspond to the correlation integral, and the bold solid line corresponds to a power law fitting line with a 

fractal dimension D = 1.73 derived from a scale range of 0.01<r/L<0.2. The light solid line corresponds to 

the local value of logarithmic slope, and the dashed line represents the slope value D = 1.73. (c) The 

density distribution of fracture lengths (represented by squares). The dashed line corresponds to a power 

law fitting line with an exponent a = 3.3. 
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Fig. A.14 (a) A local-scale (~1 m) joint pattern, denoted as LP8, was mapped from an outcrop exposure. 

(b) Calculation of the normalised two-point correlation function C2(r/L) as a function of r/L. Squares 

correspond to the correlation integral, and the bold solid line corresponds to a power law fitting line with a 

fractal dimension D = 1.62 derived from a scale range of 0.03<r/L<0.2. The light solid line corresponds to 

the local value of logarithmic slope, and the dashed line represents the slope value D = 1.62. (c) The 

density distribution of fracture lengths (represented by squares). The dashed line corresponds to a power 

law fitting line with an exponent a = 2.52. 
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Fig. A.15 (a) A local-scale (~2 m) joint pattern, denoted as LP9, was mapped from an outcrop exposure. 

(b) Calculation of the normalised two-point correlation function C2(r/L) as a function of r/L. Squares 

correspond to the correlation integral, and the bold solid line corresponds to a power law fitting line with a 

fractal dimension D = 1.41 derived from a scale range of 0.1<r/L<0.6. The light solid line corresponds to 

the local value of logarithmic slope, and the dashed line represents the slope value D = 1.41. (c) The 

density distribution of fracture lengths (represented by squares). The dashed line corresponds to a power 

law fitting line with an exponent a = 3.04. 

 



256 

 

 

Fig. A.16 (a) A local-scale (~5 m) joint pattern, denoted as LP10, was mapped from an outcrop exposure. 

(b) Calculation of the normalised two-point correlation function C2(r/L) as a function of r/L. Squares 

correspond to the correlation integral, and the bold solid line corresponds to a power law fitting line with a 

fractal dimension D = 1.59 derived from a scale range of 0.01<r/L<0.3. The light solid line corresponds to 

the local value of logarithmic slope, and the dashed line represents the slope value D = 1.59. (c) The 

density distribution of fracture lengths (represented by squares). The dashed line corresponds to a power 

law fitting line with an exponent a = 3.26. 
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Fig. A.17 (a) A local-scale (~3 m) joint pattern, denoted as LP11, was mapped from an outcrop exposure. 

(b) Calculation of the normalised two-point correlation function C2(r/L) as a function of r/L. Squares 

correspond to the correlation integral, and the bold solid line corresponds to a power law fitting line with a 

fractal dimension D = 1.48 derived from a scale range of 0.06<r/L<0.6. The light solid line corresponds to 

the local value of logarithmic slope, and the dashed line represents the slope value D = 1.48. (c) The 

density distribution of fracture lengths (represented by squares). The dashed line corresponds to a power 

law fitting line with an exponent a = 2.41. 

 


