5,645 research outputs found

    An estimating equations approach to fitting latent exposure models with longitudinal health outcomes

    Full text link
    The analysis of data arising from environmental health studies which collect a large number of measures of exposure can benefit from using latent variable models to summarize exposure information. However, difficulties with estimation of model parameters may arise since existing fitting procedures for linear latent variable models require correctly specified residual variance structures for unbiased estimation of regression parameters quantifying the association between (latent) exposure and health outcomes. We propose an estimating equations approach for latent exposure models with longitudinal health outcomes which is robust to misspecification of the outcome variance. We show that compared to maximum likelihood, the loss of efficiency of the proposed method is relatively small when the model is correctly specified. The proposed equations formalize the ad-hoc regression on factor scores procedure, and generalize regression calibration. We propose two weighting schemes for the equations, and compare their efficiency. We apply this method to a study of the effects of in-utero lead exposure on child development.Comment: Published in at http://dx.doi.org/10.1214/08-AOAS226 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Surveying human habit modeling and mining techniques in smart spaces

    Get PDF
    A smart space is an environment, mainly equipped with Internet-of-Things (IoT) technologies, able to provide services to humans, helping them to perform daily tasks by monitoring the space and autonomously executing actions, giving suggestions and sending alarms. Approaches suggested in the literature may differ in terms of required facilities, possible applications, amount of human intervention required, ability to support multiple users at the same time adapting to changing needs. In this paper, we propose a Systematic Literature Review (SLR) that classifies most influential approaches in the area of smart spaces according to a set of dimensions identified by answering a set of research questions. These dimensions allow to choose a specific method or approach according to available sensors, amount of labeled data, need for visual analysis, requirements in terms of enactment and decision-making on the environment. Additionally, the paper identifies a set of challenges to be addressed by future research in the field

    Cloud engineering is search based software engineering too

    Get PDF
    Many of the problems posed by the migration of computation to cloud platforms can be formulated and solved using techniques associated with Search Based Software Engineering (SBSE). Much of cloud software engineering involves problems of optimisation: performance, allocation, assignment and the dynamic balancing of resources to achieve pragmatic trade-offs between many competing technical and business objectives. SBSE is concerned with the application of computational search and optimisation to solve precisely these kinds of software engineering challenges. Interest in both cloud computing and SBSE has grown rapidly in the past five years, yet there has been little work on SBSE as a means of addressing cloud computing challenges. Like many computationally demanding activities, SBSE has the potential to benefit from the cloud; ‘SBSE in the cloud’. However, this paper focuses, instead, of the ways in which SBSE can benefit cloud computing. It thus develops the theme of ‘SBSE for the cloud’, formulating cloud computing challenges in ways that can be addressed using SBSE

    Exploring the ethical dilemmas of afro-centric social media use through agent-based modeling: A review

    Get PDF
    Social media (SM) has become indispensable for individuals and workplaces/organizations in Africa and beyond. Therein, ethical concerns are posed due to the inability to create virtual boundaries (VM), the intractability of guidelines for managers and other unintended risks/con­sequences. Operations research was used for modeling ethical concerns but have been defeated due to reasons of several ethical values and various assessment criteria for stakeholders. Conse­quently, this review paper initially x-rays the import of ethical dilemmas in older studies so as to conceive a strategy characterized by engaging stakeholders that utilize SM via Agent-Based Modeling (ABM), in such a manner that ethics can be evaluated. Additionally, it presented the rudiments of social media ABM explorations and the peculiarities of Africa. Finally, the review provided a suitable methodology and sheds light on the possible challenges of ABM implementation. Besides the benefit of increased patronage, the agent technology may also constitute a pedagogical tool for learning ethical behavior. Moreover, it is our hope that with the involvement of experts of related disciplines in Africa, attendant theories are formalized and used for building agent models that allows ethical decision making, weighing of pros and cons, analyzing differences and dimensions inherent in VM creation

    Detecting and Tracking the Spread of Astroturf Memes in Microblog Streams

    Full text link
    Online social media are complementing and in some cases replacing person-to-person social interaction and redefining the diffusion of information. In particular, microblogs have become crucial grounds on which public relations, marketing, and political battles are fought. We introduce an extensible framework that will enable the real-time analysis of meme diffusion in social media by mining, visualizing, mapping, classifying, and modeling massive streams of public microblogging events. We describe a Web service that leverages this framework to track political memes in Twitter and help detect astroturfing, smear campaigns, and other misinformation in the context of U.S. political elections. We present some cases of abusive behaviors uncovered by our service. Finally, we discuss promising preliminary results on the detection of suspicious memes via supervised learning based on features extracted from the topology of the diffusion networks, sentiment analysis, and crowdsourced annotations

    Automating Deductive Verification for Weak-Memory Programs

    Full text link
    Writing correct programs for weak memory models such as the C11 memory model is challenging because of the weak consistency guarantees these models provide. The first program logics for the verification of such programs have recently been proposed, but their usage has been limited thus far to manual proofs. Automating proofs in these logics via first-order solvers is non-trivial, due to reasoning features such as higher-order assertions, modalities and rich permission resources. In this paper, we provide the first implementation of a weak memory program logic using existing deductive verification tools. We tackle three recent program logics: Relaxed Separation Logic and two forms of Fenced Separation Logic, and show how these can be encoded using the Viper verification infrastructure. In doing so, we illustrate several novel encoding techniques which could be employed for other logics. Our work is implemented, and has been evaluated on examples from existing papers as well as the Facebook open-source Folly library.Comment: Extended version of TACAS 2018 publicatio

    Scalable Profiling and Visualization for Characterizing Microbiomes

    Get PDF
    Metagenomics is the study of the combined genetic material found in microbiome samples, and it serves as an instrument for studying microbial communities, their biodiversities, and the relationships to their host environments. Creating, interpreting, and understanding microbial community profiles produced from microbiome samples is a challenging task as it requires large computational resources along with innovative techniques to process and analyze datasets that can contain terabytes of information. The community profiles are critical because they provide information about what microorganisms are present in the sample, and in what proportions. This is particularly important as many human diseases and environmental disasters are linked to changes in microbiome compositions. In this work we propose novel approaches for the creation and interpretation of microbial community profiles. This includes: (a) a cloud-based, distributed computational system that generates detailed community profiles by processing large DNA sequencing datasets against large reference genome collections, (b) the creation of Microbiome Maps: interpretable, high-resolution visualizations of community profiles, and (c) a machine learning framework for characterizing microbiomes from the Microbiome Maps that delivers deep insights into microbial communities. The proposed approaches have been implemented in three software solutions: Flint, a large scale profiling framework for commercial cloud systems that can process millions of DNA sequencing fragments and produces microbial community profiles at a very low cost; Jasper, a novel method for creating Microbiome Maps, which visualizes the abundance profiles based on the Hilbert curve; and Amber, a machine learning framework for characterizing microbiomes using the Microbiome Maps generated by Jasper with high accuracy. Results show that Flint scales well for reference genome collections that are an order of magnitude larger than those used by competing tools, while using less than a minute to profile a million reads on the cloud with 65 commodity processors. Microbiome maps produced by Jasper are compact, scalable representations of extremely complex microbial community profiles with numerous demonstrable advantages, including the ability to display latent relationships that are hard to elicit. Finally, experiments show that by using images as input instead of unstructured tabular input, the carefully engineered software, Amber, can outperform other sophisticated machine learning tools available for classification of microbiomes
    corecore