894 research outputs found

    Design of Transverse Gradient Coil Technology for Dynamic Manipulation of Image Volume in MRI

    Get PDF
    The aim of this thesis was to investigate the capabilities of a novel gradient concept for the purpose of dynamic manipulation of imaging volume and gradient performance in Magnetic Resonance Imaging (MRI). The proposed concept exploits the natural inverse co-dependence between the gradient strength of the coil generated magnetic field profile, and the volume over which the gradient is uniform, to optimize gradient performance for a given anatomical region of interest. The design also has the potential to extend the available range of gradient performance within the operation constraints imposed by gradient induced Peripheral Nerve Stimulation (PNS). A design paradigm is proposed that expresses the gradient field needed for imaging as a weighted sum of individual harmonic-modulated gradient fields of variable order. Weighted sums of harmonic field profiles are found to agree closely in overall shape to theoretical predictions, confirming the high degree of fidelity in the coil generated field profiles to the target harmonics. A wide range of variable linear region performance is observed and power deposition characteristics of the proposed harmonic gradient set are found to be comparable to commercial gradient sets in use today. The proposed novel concept offers a comprehensive solution to the problem of optimizing gradient performance for a particular anatomical region of interest and has the potential to extend the range of PNS-constrained gradient performance beyond what is currently possible with present day gradient technology

    Improving foetal and neonatal echo-planar imaging with image-based shimming

    Get PDF
    Tese de mestrado integrado em Engenharia Biomédica e Biofísica, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2015O Developing Human Connectome Project pretende realizar um progresso científico único através da criação do primeiro connectome 4D no início da vida do bebé. De forma a criar um mapa dinâmico da conectividade do cérebro do bebé, é fundamental obter imagens funcionais e com ponderação em difusão. A imagem eco-planar (EPI) é a principal sequência de ressonância magnética aplicada na aquisição dessa informação. Esta sequência permite uma aquisição rápida e repetida de imagens cerebrais permitindo mapear as flutuações da atividade cerebral (imagiologia funcional) bem como ter uma boa resolução nas imagens de difusão (movimento de moléculas de água no volume cerebral). No entanto, esta técnica está associada a artefactos de suscetibilidade. Estes artefactos surgem quando existem interfaces entre duas amostras com suscetibilidades magnéticas diferentes como sejam o tecido biológico e o ar. De forma a minimizar esses artefactos é necessário reduzir as heterogeneidades do campo magnético principal B0 através de shimming. O presente trabalho focou-se em shimming ativo, no qual o campo magnético é mapeado com base num modelo composto por funções harmónicas esféricas e são calculadas as correntes a aplicar às bobinas de shimming. Essas bobinas geram um campo magnético que compensa as heterogeneidades presentes anteriormente. Convencionalmente, as tentativas para superar este problema envolvem a utilização do método disponibilizado no sistema de ressonância magnética, nas quais o campo é mapeado com base em projecções (ex: FASTMAP). Este método é de execução rápida mas apresenta duas desvantagens principais: em primeiro lugar, o utilizador tem um controlo reduzido sobre o processo; em segundo, as regiões nas quais o campo é mapeado não são definidas com base na anatomia de interesse. No contexto deste trabalho, o controlo sobre o processo é importante no sentido de ser possível aplicar exatamente a mesma metodologia a um grupo elevado de sujeitos. Por seu lado, o mapeamento com base na anatomia permite obter uma optimização mais precisa. Com o surgimento de novas tecnologias passou a ser possível fazer um mapeamento mais detalhado do campo magnético com técnicas baseadas em imagem ao invés de projecções. Estas técnicas envolvem a definição de um volume relacionado com a anatomia, e que é incluído na totalidade na optimização do campo. O principal objetivo deste trabalho foi desenvolver uma ferramenta de shimming baseado em imagem a fim de otimizar o campo magnético no contexto de imagens de EPI do cérebro neonatal e fetal. O cérebro do bebé sofre alterações na sua dimensão e forma durante o seu desenvolvimento desde a idade fetal até neonatal. Em cada uma dessas fases o bebé encontra-se cercado por um ambiente diferente que requere uma abordagem específica ao mesmo. Neste sentido, o trabalho desenvolvido foi dividido em três partes principais: descrição da estrutura necessária para a correta aplicação do shimming, shimming neonatal e shimming fetal. Em primeiro lugar, as limitações do shimming baseado em imagem foram estudadas e o algoritmo básico para aplicar o método foi testado. Nesta parte do trabalho foi demonstrado que os campos gerados pelas bobinas de shim presentes no equipamento de ressonância magnética são consistentes com as funções harmónicas esféricas que compõem o modelo aplicado. O efeito do movimento da cama do equipamento sobre a eficiência do shimming foi também estudada. Foi possível corrigir a informação do sistema de coordenadas que descrevem o mapa de campo B0 de forma a incluir o movimento da cama necessário para a obtenção das imagens em sujeitos fetais. A segunda parte do trabalho focou-se no desenvolvimento do shimming para o caso neonatal. Foi desenvolvida uma ferramenta para definição de uma região de interesse, unwrapping da fase e cálculo das correntes de shim. Esta foi desenvolvida em ambiente MATLAB. Nos recém-nascidos o shimming deve ser aplicado numa região de interesse restrita ao cérebro devido à presença da interface ar/tecido no escalpe do bebé. Assim, a definição da região de interesse consistiu principalmente na aplicação de um limiar a fim de binarizar a imagem de magnitude, ajustada pelo utilizador. Em simultâneo foi implementada uma técnica de exclusão dos olhos com base na anatomia dos diferentes planos. No seu conjunto o método apresentou-se flexível de forma a ser ajustado ao sujeito em estudo. Quando aplicado com a mesma metodologia (limiar e exclusão de olhos) o volume incluído foi semelhante entre bebés. O método de shimming foi avaliado com base em três medidas de dispersão do mapa de campo residual: largura a meia altura, desvio padrão dos pixéis no interior da região de interesse e o intervalo de frequências no interior do qual 95 % dos pixéis se encontravam. A utilização de diferentes medidas permitiu a avaliação do m´etodo em relação a diferentes aspetos. Este método foi aplicado a 52 participantes recém-nascidos com idade gestacional média de 39.8 ± 1.7 semanas. O cálculo das correntes de shim permitiu gerar um campo magnético que melhorou a homogeneidade do campo B0 no volume adquirido, sendo consistente com o previsto. Uma imagem média do campo residual foi calculada mostrando que existem duas regiões (occipital e pequenas regiões laterais) nas quais o campo magnético B0 apresenta ainda heterogeneidades. Por fim, os resultados indicam que este método melhorou o campo perto da periferia do cérebro quando comparado com o método convencional disponibilizado no equipamento. O shimming neonatal (shimming ótimo ou OIBS) foi utilizado como alicerce para a implementação de um método ajustado às características das aquisições fetais. Existem duas características principais que devem ser tidas em conta. Em primeiro lugar, os fetos encontram-se envoltos em líquido amniótico e tecido materno pelo que o ambiente no qual estão inseridos permite que a região de interesse seja definida de forma menos restrita. Em segundo lugar, o facto de a cabeça do feto ser pequena pode levar à existência de valores de corrente das bobinas de shim elevados. Essas correntes, principalmente associadas às bobinas de segunda ordem geram campos de magnitude elevada na região do tecido adiposo, o que altera a sua frequência de ressonância. Desta forma, as técnicas de supressão de gordura específicas em frequência são menos efetivas e a imagem de EPI apresenta artefactos. Assim, a ferramenta para shimming fetal incluiu a definição de uma região de interesse cilíndrica e um método de shimming baseado em imagem com limites lineares (shimming limitado ou CIBS) impostos com base na frequência de ressonância do tecido adiposo. O CIBS consistiu na aplicação de limites superiores e inferiores ([-300 100] Hz) para a frequência dos pixéis pertencentes à gordura após a aplicação do shimming. Adicionalmente, o impulso de radiofrequência utilizado para a supressão de gordura foi estudado a fim o otimizar para a sua utilização no contexto do shimming fetal. Para o estudo dos parâmetros do impulso de radiofrequência, os rins de dois voluntários adultos saudáveis foram utilizados como simulação do ambiente fetal, devido as semelhanças entre a localização e interface entre tecidos. Os métodos OIBS e CIBS foram aplicados em 6 grávidas saudáveis com idades gestacional média de 28±6 semanas. Os mapas de campo residuais mostraram que as técnicas eram semelhantes em termos de homogeneidade no interior da região de interesse definida como cérebro, mas a segunda (CIBS) apresentou melhores resultados na supressão de gordura. Como estudo do impulso de radiofrequência foi demonstrado que o desvio do impulso em cerca de 100 Hz no sentido da frequência de ressonância da água melhoraria a supressão de gordura sem detrimento do sinal da água. A utilização do novo método CIBS em simultâneo com um impulso de radiofrequência otimizado mostrou ser a melhor solução para homogeneizar o campo e suprimir a gordura. Em conclusão, as ferramentas apresentadas permitiram melhorar a qualidade das imagens de EPI da cabeça do feto e do recém-nascido no contexto do Developing Human Connectome Project. O shimming neonatal mostrou ser um método consistente que pode facilmente ser utilizado por parte da equipa clínica. A nível fetal foi apresentado um método que demonstra a capacidade de superar as limitações demonstradas pelas técnicas convencionais.The Developing Human Connectome Project (dHCP) aims to make major scientific progress by creating the first 4-dimensional connectome of early life. Echo planar imaging (EPI) is the main acquisition technique applied in functional and diffusion imaging, which are central to map the human brain. This technique allows fast acquisition of spatial information enabling volumetric coverage of the whole brain, but it is associated with susceptibility artefacts. In order to minimize those artefacts it is necessary to reduce main magnetic field B0 in homogeneities through shimming. Conventionally, the attempts to overcome this problem use the manufacturer’s default method. Unfortunately, with those techniques the user has little control over the process, and the regions within which the field is corrected are not anatomically based. The main objective of this project was to develop an image-based shimming tool to optimize the magnetic field in the context of EPI images adjusted to the neonatal and foetal brains. The babies’ brain suffers changes in dimension and shape during its development from foetal to neonatal age. In each one of those stages the baby is surrounded by a different environment which requires a distinct shimming approach. As a result, the work was divided into three main parts: framework description, neonatal shimming and foetal shimming. First, the limitations of image-based shimming were investigated, and the framework to apply the method was described. It was demonstrated that fields generated by shim coils were consistent with the spherical harmonic model applied. In addition, the coordinate information of the B0 field map was corrected in order to include the table displacement needed for foetal imaging. Second, a tool was developed for neonatal shimming. The tool included region-of-interest (ROI) definition, phase unwrapping and shim calculation. The ROI definition implemented was flexible in order to adjust to each subject under study. When applying this approach while keeping the same threshold/eye exclusion methodology the volume included was similar between babies. The shim calculation allowed to generate shim values that improved homogeneity of the magnetic field within the volume imaged. This method slightly improved the field near the brain’s margins when compared with the manufacturer’s default techniques. Finally, for foetal shimming the groundwork of the neonatal tool was adjusted to this cohort characteristics. The tool for foetal shimming included additional cylindrical ROI definition and constrained image-based shimming. The constrained shimming allowed to account for the mother’s adipose tissue which in the presence of high shim values can lead to imperfect fat suppression. Along with the implementation of shimming tools, the radio frequency pulse used for fat suppression was studied. The new constrained image-based shimming showed similar results in terms of field homogeneity within the fetus’ brain when compared with the optimal image based shimming, with improvement of fat suppression that is enhanced when simultaneously used with the optimized fat suppression radiofrequency pulse

    A regularised-adaptive Proper Generalised Decomposition implementation for coupled magneto-mechanical problems with application to MRI scanners

    Get PDF
    Latest developments in high-strength Magnetic Resonance Imaging (MRI) scanners with in-built high resolution, have dramatically enhanced the ability of clinicians to diagnose tumours and rare illnesses. However, their high-strength transient magnetic fields induce unwanted eddy currents in shielding components, which result in fast vibrations, noise, imaging artefacts and, ultimately, heat dissipation, boiling off the helium used to super-cool the magnets. Optimum MRI scanner design requires the capturing of complex electro-magneto-mechanical interactions with high fidelity computational tools. During production cycles, this is known to be extremely expensive due to the large number of configurations that need to be tested. There is an urgent need for the development of new cost-effective methods whereby previously performed computations can be assimilated as training solutions of a surrogate digital twin model to allow for real-time simulations. In this paper, a Reduced Order Modelling technique based on the Proper Generalised Decomposition method is presented for the first time in the context of MRI scanning design, with two distinct novelties. First, the paper derives from scratch the offline higher dimensional parametrised solution process of the coupled electro-magneto-mechanical problem at hand and, second, a regularised adaptive methodology is proposed for the circumvention of numerical singularities associated with the ill-conditioning of the discrete system in the vicinity of resonant modes. A series of numerical examples are presented in order to illustrate, motivate and demonstrate the validity and flexibility of the considered approach

    Real-time Feedback of B0 Shimming at Ultra High Field MRI

    Get PDF
    Magnetic resonance imaging(MRI) is moving towards higher and higher field strengths. After 1.5T MRI scanners became commonplace, 3T scanners were introduced and once 3T scanners became commonplace, ultra high field (UHF) scanners were introduced. UHF scanners typically refer to scanners with a field strength of 7T or higher. The number of sites that utilise UHF scanners is slowly growing and the first 7T MRI scanners were recently CE certified for clinical use. Although UHF scanners have the benefit of higher signal-to-noise ratio (SNR), they come with their own challenges. One of the many challenges is the problem of inhomogeneity of the main static magnetic field(B0 field). This thesis addresses multiple aspects associated with the problem of B0 inhomogeneity. The process of homogenising the field is called "shimming". The focus of this thesis is on active shimming where extra shim coils drive DC currents to generate extra magnetic fields superimposed on the main magnetic field to correct for inhomogeneities. In particular, we looked at the following issues: algorithms for calculating optimal shim currents; global static shimming using very high order/degree spherical harmonic-based (VHOS) coils; dynamic slice-wise shimming using VHOS coils compared to a localised multi-coil array shim system; B0 field monitoring using an NMR field camera; characterisation of the shim system using a field camera; and designing a controller based on the shim system model for real-time feedback

    Diffusion MRI of Brain Tissue: Importance of Axonal Trajectory

    Get PDF
    Obtaining microstructural information non-invasively on brain tissue remains a challenge. Diffusion magnetic resonance imaging (dMRI) is an imaging method that can provide such information. That includes geometrical considerations of nerve cells projections, axons, that are present in the white matter of the human brain. Axons carry information encoded into electrical impulses to other cells. The thesis deals with estimating parameters of the axonal trajectories, modeled as one-dimensional pathways, from the dMRI signal. That is achieved in two steps: constructing a forward model to predict the dMRI signal and, vice versa, estimating the tissue parameters from dMRI signal by solving the so-called inverse problem. The proposed forward model employs a spectral analysis of dMRI signal. This formulation enables signal prediction for any gradient waveform and helps to identify the physical characteristics of the underlying system that are preserved in the dMRI signal. The physical properties are represented in so-called diffusion spectra whereas gradient waveforms, that sensitizes the signal, are in the encoding spectra. To mimic biologically plausible axonal trajectories, axonal trajectories were modeled by a 1D-toy model that incorporates harmonic waves with variable degree of randomness. Different numerical methods for computation of diffusion spectra were compared, and the resulting spectra were characterized by a phenomenological model incorporating three parameters. It was not possible to estimate the exact parameters of the 1D-toy model from diffusion spectra. Nonetheless, it was possible to estimate their statistical descriptors, namely microscopic orientation dispersion and dispersion-weighted wavelength. Solving the inverse problem posed a major challenge. The phenomenological model of the diffusion spectra was incorporated in a forward model of the diffusion-weighted signal perpendicular to the trajectory and applied to a state-of-the-art data acquired in human brain white matter of a healthy volunteer. It was not possible to estimate all the parameters of the phenomenological model but by constraining the parameters to plausible values we could estimate the last that was within the range predicted by histology. Incorporating trajectory-parameters in the model of white matter diffusion yielded fit residuals as small as those obtained with current state-of-the-art models assuming parallel, straight, and cylindrical cylinders. However, the cylinder model predicted axon diameters far outside the range expected from histology. We conclude that neglecting the axonal trajectories leads to biased models of axons in brain white matter.MRI can serve as an example of successfully applied fundamental research from physics to biological sciences, humanities, chemistry or medicine. Biomolecules in biochemistry can be probed with atomic resolution. Nanomaterials in material sciences, porous rocks in geology, cell structures or tissues in biology and medicine can be examined. Statistical analysis of MRI signal can reveal functional state of the brain and is relevant in e.g. psychology. This thesis deals mainly with applications within medical sciences. Diffusion magnetic resonance imaging (dMRI) unravels the tissue microstructure, i.e. the structure of tissue on the micrometer length scale. At this scale, the arrangement of cells and other biologically relevant structures emerges as a new property from a deeper, biochemical, scale. Microstructural appearance is often defining feature of biological tissues and is intertwined with their biological behavior, which is a highly interesting information from a medical point of view. In this project, we study in a systematic way, often neglected, geometrical aspects of axons called axonal trajectories. Axons are the wiring of the brain. Based on microscopical images we proposed their representation, inspected their properties and forecasted the outcome of a diffusion measurement. The inverse question, whether the information on the axonal trajectories can be inferred from the outcome of measurement, and whether they could be neglected, was answered as well. The results suggest that non-straight axonal trajectories need to be considered in the of representations of axons, although to estimate them reliably the practical diffusion measurements need to be improved. The estimated properties of axonal trajectories were congruent to the gold-standard method, microscopy. Same methodology applied to the investigation of axonal trajectories can be employed in other problems in the dMRI field and may also lead to better understanding of the nature of the results of the diffusion measurements in the human tissue. Potentially, novel biomarkers that could help to diagnose diseases could be discovered. Generally, dMRI is an interesting research field where potential breakthrough could be made. It probes the microstructural region that is highly important from the biological point of view, has a solid foundation in physical theory, allows for large variety of possible arrangements of the dMRI experiments and is not as widespread as other imaging modalities

    Recommended Implementation of Quantitative Susceptibility Mapping for Clinical Research in The Brain: A Consensus of the ISMRM Electro-Magnetic Tissue Properties Study Group

    Get PDF
    This article provides recommendations for implementing quantitative susceptibility mapping (QSM) for clinical brain research. It is a consensus of the ISMRM Electro-Magnetic Tissue Properties Study Group. While QSM technical development continues to advance rapidly, the current QSM methods have been demonstrated to be repeatable and reproducible for generating quantitative tissue magnetic susceptibility maps in the brain. However, the many QSM approaches available give rise to the need in the neuroimaging community for guidelines on implementation. This article describes relevant considerations and provides specific implementation recommendations for all steps in QSM data acquisition, processing, analysis, and presentation in scientific publications. We recommend that data be acquired using a monopolar 3D multi-echo GRE sequence, that phase images be saved and exported in DICOM format and unwrapped using an exact unwrapping approach. Multi-echo images should be combined before background removal, and a brain mask created using a brain extraction tool with the incorporation of phase-quality-based masking. Background fields should be removed within the brain mask using a technique based on SHARP or PDF, and the optimization approach to dipole inversion should be employed with a sparsity-based regularization. Susceptibility values should be measured relative to a specified reference, including the common reference region of whole brain as a region of interest in the analysis, and QSM results should be reported with - as a minimum - the acquisition and processing specifications listed in the last section of the article. These recommendations should facilitate clinical QSM research and lead to increased harmonization in data acquisition, analysis, and reporting

    On motion in dynamic magnetic resonance imaging: Applications in cardiac function and abdominal diffusion

    Get PDF
    La imagen por resonancia magnética (MRI), hoy en día, representa una potente herramienta para el diagnóstico clínico debido a su flexibilidad y sensibilidad a un amplio rango de propiedades del tejido. Sus principales ventajas son su sobresaliente versatilidad y su capacidad para proporcionar alto contraste entre tejidos blandos. Gracias a esa versatilidad, la MRI se puede emplear para observar diferentes fenómenos físicos dentro del cuerpo humano combinando distintos tipos de pulsos dentro de la secuencia. Esto ha permitido crear distintas modalidades con múltiples aplicaciones tanto biológicas como clínicas. La adquisición de MR es, sin embargo, un proceso lento, lo que conlleva una solución de compromiso entre resolución y tiempo de adquisición (Lima da Cruz, 2016; Royuela-del Val, 2017). Debido a esto, la presencia de movimiento fisiológico durante la adquisición puede conllevar una grave degradación de la calidad de imagen, así como un incremento del tiempo de adquisición, aumentando así tambien la incomodidad del paciente. Esta limitación práctica representa un gran obstáculo para la viabilidad clínica de la MRI. En esta Tesis Doctoral se abordan dos problemas de interés en el campo de la MRI en los que el movimiento fisiológico tiene un papel protagonista. Éstos son, por un lado, la estimación robusta de parámetros de rotación y esfuerzo miocárdico a partir de imágenes de MR-Tagging dinámica para el diagnóstico y clasificación de cardiomiopatías y, por otro, la reconstrucción de mapas del coeficiente de difusión aparente (ADC) a alta resolución y con alta relación señal a ruido (SNR) a partir de adquisiciones de imagen ponderada en difusión (DWI) multiparamétrica en el hígado.Departamento de Teoría de la Señal y Comunicaciones e Ingeniería TelemáticaDoctorado en Tecnologías de la Información y las Telecomunicacione

    Towards MRI scanner design: the Proper Generalised Decomposition in the context of coupled magneto-mechanical problems

    Get PDF
    Latest developments in high-strength Magnetic Resonance Imaging (MRI) scanners, with in-built high resolution, have dramatically enhanced the ability of clinicians to diagnose tumours and rare illnesses. However, their high-strength transient magnetic fields induce unwanted eddy currents in shielding components, which result in high-frequency vibrations, noise, imaging artefacts and, ultimately, heat dissipation and boiling off of the helium used to super-cool the magnets. Optimum MRI scanner design requires the capturing of complex electro-magneto-mechanical interactions with high fidelity computational tools. Moreover, manufacturing new MRI scanners still represents a computational challenge to industry due to the large variability in material parameters and geometrical configurations that need to be tested during the early design phase. This process can be highly optimised through the employment of user-friendly computational metamodels constructed on the basis of Reduced Order Modelling (ROM) techniques, where high-dimensional parametric offline solutions are obtained, stored and assimilated in order to be efficiently queried in real time.This thesis presents a novel a priori Proper Generalised Decomposition (PGD) computational framework for the analysis of the electro-magneto-mechanical inter-actions in the context of MRI scanner design to address the urgent need for the development of new cost-effective methods, whereby previously performed compu-tations can be assimilated as training solutions of a surrogate digital twin model to allow for real-time simulations. The PGD methodology is derived for coupled electro-magneto-mechanical problems in an axisymmetric Lagrangian setting, in-cluding the possibility to vary several material and geometrical parameters (as part of the high-dimensional offline solution), that are relevant for the industrial part-ner of the project, Siemens Healthineers. A regularised-adaptive strategy and a staggered PGD approach are proposed in order to enhance the accuracy and robust-ness of the PGD algorithm while preserving its a priori nature. The Lagrangian adaptation of the governing equations will allow for a comparison between staggered and monolithic solvers, where the staggered approach will be shown to enhance the robustness and accuracy of the PGD technique. Moreover, geometric changes in the computational domain will be accounted for in the PGD solution by using a PGD-projection technique that will enable the computation of a separable expression even for geometrical variations, preserving thus the efficiency of the online PGD stage. A set of numerical problems will be presented in order to validate the PGD formula-tion, which will be benchmarked against the full order (reference) model. Moreover, a comparison between two families of ROM methods, the a priori PGD and the a posteriori Proper Orthogonal Decomposition (POD), will also be performed in order to assess and compare different ROM strategies

    Single acquisition electrical property mapping based on relative coil sensitivities: A proof-of-concept demonstration.

    Get PDF
    PURPOSE: All methods presented to date to map both conductivity and permittivity rely on multiple acquisitions to compute quantitatively the magnitude of radiofrequency transmit fields, B1+. In this work, we propose a method to compute both conductivity and permittivity based solely on relative receive coil sensitivities ( B1-) that can be obtained in one single measurement without the need to neither explicitly perform transmit/receive phase separation nor make assumptions regarding those phases. THEORY AND METHODS: To demonstrate the validity and the noise sensitivity of our method we used electromagnetic finite differences simulations of a 16-channel transceiver array. To experimentally validate our methodology at 7 Tesla, multi compartment phantom data was acquired using a standard 32-channel receive coil system and two-dimensional (2D) and 3D gradient echo acquisition. The reconstructed electric properties were correlated to those measured using dielectric probes. RESULTS: The method was demonstrated both in simulations and in phantom data with correlations to both the modeled and bench measurements being close to identity. The noise properties were modeled and understood. CONCLUSION: The proposed methodology allows to quantitatively determine the electrical properties of a sample using any MR contrast, with the only constraint being the need to have 4 or more receive coils and high SNR. Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc
    corecore