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Abstract

Latest developments in high-strength Magnetic Resonance Imaging (MRI) scanners with in-
built high resolution, have dramatically enhanced the ability of clinicians to diagnose tumours
and rare illnesses. However, their high-strength transient magnetic fields induce unwanted eddy
currents in shielding components, which result in fast vibrations, noise, imaging artefacts and,
ultimately, heat dissipation, boiling off the helium used to super-cool the magnets. Optimum
MRI scanner design requires the capturing of complex electro-magneto-mechanical interactions
with high fidelity computational tools. During production cycles, this is known to be extremely
expensive due to the large number of configurations that need to be tested. There is an
urgent need for the development of new cost-effective methods whereby previously performed
computations can be assimilated as training solutions of a surrogate digital twin model to
allow for real-time simulations. In this paper, a Reduced Order Modelling technique based on
the Proper Generalised Decomposition method is presented for the first time in the context
of MRI scanning design, with two distinct novelties. First, the paper derives from scratch
the offline higher dimensional parametrised solution process of the coupled electro-magneto-
mechanical problem at hand and, second, a regularised adaptive methodology is proposed for
the circumvention of numerical singularities associated with the ill-conditioning of the discrete
system in the vicinity of resonant modes. A series of numerical examples are presented in order
to illustrate, motivate and demonstrate the validity and flexibility of the considered approach.

Keywords: Magneto-mechanics, coupled problems, hp-FEM, medical imaging, MRI scanners,
reduced order methods, proper generalised decomposition, real-time simulation.

1. Introduction

Magnetic Resonance Imaging (MRI) scanners are routinely used these days in hospital envi-
ronments for medical imaging due to their non-intrusive nature [1] and their high performance
when imaging fractures [2], joints [3] and soft tissues, such as damaged cartilage [4] or tumours
[5]. The underpinning physical principle of an MRI scanner relies on the generation of high-
strength magnetic fields through superconducting magnets [6] immersed in a supercooled vessel
of liquid helium. A prototypical MRI scanner, see Figure 1, consists of a cryostat with con-
ducting radiation shields that prevent radiation from escaping through and help maintain the
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supercooled coils at a temperature of approximately 4K [7]. Main coils create a strong uniform
static magnetic field that aligns the protons of the hydrogen atoms in the patient’s body. The
strength of this static magnetic field determines the so-called strength of the magnet, usually
between 1.5 and 7 T [8, 9]. Additional gradient coils emit time-varying magnetic pulses that
knock the protons out of alignment. When these transient magnetic pulses are turned off |
the protons tend to realign differently depending on the type of tissue, sending thus different
electric signals which form the patient’s medical image [1].

Radiation shields

, Main coils
/

Gradient coils

(a) MRI model MAGNETOM Sola 1.5 T, courtesy of Siemens Health- (b) Simplified MRI showing the three main components:
ineers. main coils, gradient coils and radiation shields.

Figure 1: MRI scanner description.

The two main physics interacting in an MRI scanner are electromagnetics and mechanics.
It is now well established, from the computational modelling viewpoint, how to independently
solve either of them. For instance, for high frequency problems, the displacement currents in
Maxwell’s equations dominate over the Ohmic currents [10]; but when considering low frequency
signals interacting with highly conducting bodies, the eddy current approximation [11-14] can
be applied, as in the case of the conducting shields in an MRI scanner. In the context of
mechanics, the small deformations assumption for these conducting components is considered
to be valid and the theory of linear elasticity to hold [15]. However, the coupling or interaction
between both physics introduce extra complexities from the modelling standpoint. First, the
interaction of a transient magnetic field with conducting components generates eddy currents
which propagate and translate into undesirable deformations and vibrations. These vibrations
can, in turn, perturb the surrounding magnetic field. This feedback mechanism between (i)
transient magnetic fields, (i) eddy currents and (iii) mechanical vibrations, results in a fully
nonlinear electro-magneto-mechanical problem [16]. This complex coupled effect can yield imag-
ing artefacts [17, 18] as well as disconcerting mechanical vibrations [19], which overall decrease
the imaging quality and the lifespan of the MRI scanning equipment.! The computational
modelling of this problem has been the subject of study of some authors. In [22, 23] a low or-
der space-time finite element scheme for the solution of three-dimensional magneto-mechanical
problems was presented. In previous work [20, 21, 24] and in search of highly accurate compu-
tations, a high order hAp-finite element software was developed for axisymmetric configurations

INote that the consideration of the acoustics phenomenon has been neglected in this study. The interested
reader is referred to our previous work [20, 21] for all the necessary details of a fully coupled acousto-electro-
magneto-mechanical problem.



in conjunction with a stress tensor formulation and a novel linearised approach using an AC-DC
splitting, which allows for its time harmonic solution in the frequency domain.

Latest developments in MRI scanners show how manufacturers have oriented their research
towards the design and manufacturing of high-strength MRI equipment, with in-built high
resolution, capable of dramatically enhance the ability of clinicians to diagnose tumours and
rare illnesses [25]. Yet according to Siemens Healthineers, the design phase of an MRI scanner
is still far from being an automatised process. Indeed, “...the magnet was four years in the
making, two of which were spent in scientific research...” according to their design lead team
[26]. A design bottleneck relates to the large number of configurations that need to be tested
(i.e. variable frequency, conductivity, shield thicknesses) making the production cycle extremely
expensive from the computational standpoint. There is an urgent need for the development
of new cost-effective modelling techniques whereby previously performed computations can
be assimilated as training solutions of a surrogate digital twin model to allow for real-time
simulations, thus minimising human intervention.

In this sense, Reduced Order Modelling (ROM) techniques have recently gained momentum
to help speed up the multiple-query stage of the design optimisation process via real-time ap-
proximations of the so-called full order solution [27, 28]. Within the ample spectrum of ROM
methods, so-called a posteriori ROM relies on a previously known (or pre-computed) approxi-
mation basis (reduced basis [29, 30]) for the full order solution, typically obtained through the
calculation of key snapshots that can potentially describe the general response of the system, as
in the Proper Orthogonal Decomposition (POD) method [31, 32]. Alternatively, a priori ROM
methods, such as the Proper Generalised Decomposition (PGD) method [33], do not require
any previously stored information of the system. They formulate first, a higher-dimensional
parametric offline stage solution and, subsequently, in the online stage, a simple interpolation
of this parametric solution is carried out, being thus able to achieve fast (real-time) simulations.
This PGD methodology has been successfully implemented in numerous applications, such as
Helmholtz based problems [34, 35], solid mechanics [36], power distribution systems [37], flow
problems [38, 39], thermal problems [40, 41|, degenerated 3D domains such as plates and shells
[42] and also with geometrical parametrisations for heat problems [43].

The main aim of this paper is to formulate and develop, for the first time, a PGD ROM
computational framework for the design phase of the next generation of MRI scanners (>7T),
speeding up the optimisation workflow and its resulting manufacture. In this work, the ex-
ternal exciting frequency will be considered as an additional parameter of our offline higher-
dimensional parametric solution permitting frequency spectra for kinetic energy and dissipated
Ohmic power to be efficiently queried in real time in the online stage. With this in mind, two
main novelties will be put forward in this work. First, the development from scratch of the PGD
ROM methodology for the coupled electro-magento-mechanical problem at hand and, second,
a regularised adaptive methodology proposed for the circumvention of numerical singularities
associated with the ill-conditioning of the PGD system in the vicinity of resonant modes.

The paper is organised as follows; in Section 2 the two physics governing the behaviour
of the problem are described together with the appropriate set of transmission, boundary and
initial conditions. Section 3 presents the computational treatment of the problem, including
a linearisation approach and the axisymmetric assumption. The fundamentals of the PGD
method are briefly presented in Section 4, where the angular frequency is considered as the
extra parameter used in the higher-dimensional parametric offline solution. A regularised-
adaptive PGD methodology is then described in Section 5 to overcome the presence of numerical
singularities in the resonance region. The paper finishes with Section 6, where a set of numerical
examples are presented in order to demonstrate the validity, applicability and versatility of the
proposed PGD technique.



2. Physics description

In the presence of moving components (within a computational electromagnetic domain),
it is customary to establish a reference position X and a time-dependent (¢ € [0,7]) mapping
¢ that links this reference state to the current position ¢(X,t). Adopting a Lagrangian view-
point [44], the Lagrangian electromagnetic fields Hy, Ey and By are used, which denote the
magnetic field intensity, the electric field intensity and the magnetic flux density, respectively.
In addition, the following considerations are made: (1) both the eddy current approximation
and the constitutive laws for electromagnetics are applied in the Eulerian setting and, then,
the simplified Maxwell equations are transformed to the Lagrangian description; (2) for small
displacements u (although not necessarily small velocities or accelerations), Total and Updated
Lagrangian descriptions coincide; (3) a vector potential formulation A is used where the gaug-
ing of the electromagnetic problem is applied to the already Lagrangian eddy current model;
(4) the Cauchy stress tensor is comprised of a mechanical o™ (u) and an electromagnetic inter-
action Maxwell stress component o¢(A) defined in terms of By. Thus, the non-linear coupled
magneto-mechanical problem, see Figure 2, can be summarised in strong form as follows: Find
(A, u)(t) € (R® x R?)[0,T] such that

Figure 2: Conducting component Q¢ (with magnetic permeability p = p. and electrical conductivity v = )
in a non-conducting three dimensional space R3 \ QC (with y = pg and v = 0). Problem excited by a current
source J* acting in a series of coils.

curl(p ! curl A) + 7% =J° in R?, (1a)
divA =0 inR*\ Q°,  (1b)
d*u
div(e™(u) + o°(A)) = P in Q°, (1c)
o"(u):=C:e(u) in Q°, (1d)
o(A):=put ((curl A)® (curl A) — %| cur1A|2I> in Q°, (le)
A=0(z|™) as |x¢| - o0,  (1f)
uU=1up on 009, (1g)
n X [Algoe =0 on 90N, (1h)
n x [ curl Algge =0 on 90N, (1i)



(0" () + 0" (A)) e = 0 (4) e on 00, (1

Al,_,=0 in R?, (1k)
d
ul,_y = d—": ~0 in Q°, (11)
t=0

where p is the magnetic permeability, 7 is the electrical conductivity and p the material density.
The current source is denoted by J?, I is the second order identity tensor, @ represents the
position vector, m denotes the outward normal vector (pointing from the conducting to the
non-conducting side), € := (Vu+ (Vu)?) /2 is the small strain tensor and C is the fourth order

elasticity tensor dependent upon the Lamé parameters. Note that Q€ := Q€ U90QC and hence
the overbar denotes the closure of ¢, later we will also use the overbar to denote the complex
conjugate, however, it should be clear from the context as to which definition applies. The
A-based formulation [14] is used in (1) with By = curl A. In (1a), (1c) and (11), & represents
the total (material) derivative. The notation [-]poc appearing in (1h) and (1i) indicates the
jump on the interface 9Q°, namely [Joac = (-)|5oc — ()|5ge, where (1)[7,c and (+)|;oc denote
the non-conducing and conducting sides, respectively, on the interface 9Q°.

The equations governing the electromagnetic problem (1a)-(1b) describe the so-called eddy
current approximation of the general Maxwell’s equations. The mechanical problem is repre-
sented by the conservation of linear momentum (1c) together with the definitions of the Cauchy
(1d) and the Maxwell (1le) stress tensors. The decay of the vector potential field is shown in
(1f) and the imposed displacements on the Dirichlet part of the boundary are shown on (1g).
Interface conditions (1h)-(1j) represent the continuity on the tangential component of A and
H, together with the continuity of tractions, respectively. Finally, the initial conditions (1k)-
(11) are added for the well-posedness of the problem. After solution of (1), the actual Eulerian
electric and magnetic quantities of interest can be recovered as?

dA du
E=—"+Byx — in Q¢ 2
o + By X o in QY (2a)
H=,"'"By=p'curlA in R, (2b)

3. Weak formulation and approximating assumptions

Following previous work in [20, 21, 24], this Section briefly recalls the approximating as-
sumptions introduced to lead from the strong form (1)-(2) to the weak form. First, a lin-
earisation methodology is introduced, where an AC-DC splitting of the problem is performed,
which enables the transformation of the transient problem from the time to the (more effi-
cient) frequency domain. Second, the axisymmetric approximation is described and, finally, an
augmented (extended) weak formulation is presented for both electromagnetic and mechanical
problems, including the parametric domain of exciting frequencies as part of the augmented
(extended) solution domain.

3.1. Linearisation methodology

Since the operating of an MRI scanner involves the application of a strong static magnetic
field (DC) and superimposed small time-dependent magnetic fields (AC), it is advocated in
[45-49] for a linearisation of the governing equations about the static solution, resulting in a
linear transient problem. In addition, in [21], a linearised frequency approach is discussed and
assessed against the linearised and the non-linear time dependent formulations, obtaining an

2 H = H is assumed due to low electric permittivities.



excellent agreement for this particular application yet with considerably less computational
effort. With this in mind, the first step is the split of the current source as

J3(t) = JPC + JA°(1), (3)

into a static (DC) field J”¢ generated by the main coils and a time-depending (AC) field
J Ac(t) generated by the gradient coils. The linearisation of the transient problem can be found
in [16, 20], where a time-harmonic representation of the time-dependent fields is introduced by
assuming that they can be written in terms of a single frequency w as follows

A () — g4, (4a)
uAC(t) — ‘ZIACei‘”t, (4b)
JAC(t) N ]ACeiwt7 (4C)
where i := v/—1 and w = 27 f represents the angular frequency of the harmonic excitation,

with f the temporal frequency of the problem. The angular frequency is selected within a
prescribed interval of interest as w € €, = (0, Wmas] Where wyq, is the maximum frequency
considered. Note that 44¢, €4¢ and 94¢ denote the complex amplitudes of their respective
time-dependent fields. The linearisation consists on formulating a static (DC) problem whose
solution is used as the initial condition for the transient (AC) problem, see Figure 3. The
solution of the overall problem is thus obtained as the sum of both DC and AC solutions as

A(t) = APC + Re (2791 | (5a)
u(t) = uP° + Re (u'“e"), (5b)

where Re () denotes the real part of a given field.

—_— —_—
Non-linear Linearised
static problem transient problem

Figure 3: Linearisation process; initial state excited through static current source JP¢. Solution of static
problem is used as the initial state for the transient problem with time-harmonic current source 4.

3.1.1. DC problem
The non-linear (due to the Maxwell stress tensor o¢(AP?)) static problem is defined through
the following strong from: Find (A”% uP¢) € (R® x R?) such that

curl(p ! curl APC) = gP¢ in R?, (6a)
div APY =0 in R?, (6b)
div (6™ (uP%) + 0¢(A"9)) =0 in Q, (6¢)



AP =0(lz|™) as || — oo, (6d)

uP? = ub¢ on 909, (6e)

n x [AP%)yqc =0 on 90N°, (6f)

n x [t curl AP 50 = 0 on 90N, (6g)

(6™ (uPY) + o¢(AP)) ‘ggcn = o'e(ADC)’;QCn on 90°. (6h)

3.1.2. AC problem
The governing equations for the linearised transient problem are derived in [16] and the
strong form is defined as: Find (44¢, ) € (C* x C?) such that

curl(p~* curl 44Y) 4 iwya?c = g4¢ in R?, (7a)

diva’® =0 in R*\ QC, (7b)

div (o™(UAC) + i~ ' T(APC, 24°)) = —pwa*® in QC (7c)
'Y = O0(|e|™") as |x| - o0,  (7d)

u’® = ui’ on 909, (7e)

n x [2%%yqc =0 on 9Q°, (7f)

n x [ curl 44 500 = 0 on 00, (7g)

(am(‘UAC) + ,u_lT(ADC,ﬂlAC)) ‘(‘;an = ,u_lT(ADC,ﬂlAC)) ‘;an on 00°, (7h)

where in (7c¢) and (7h) the linearised electromagnetic stress tensor is introduced and defined as

p ' T(APC, 2% = 7 (el APY) @ (curl 27Y) + (curl 279) @ (curl APC)
— (curl AP - curl 24)I).

(8)

Once the linearised transient problem (7) is solved, the Eulerian electric and magnetic AC
fields can be computed as
£4¢ = _iwa’’ + iwBPC x 4’ in Q°, (9a)

HAC = 7' BAC = el 24C in R?. (9b)

Finally, the complete time-dependent solution of the problem (5) can be written as
E = Re (E"9"") = Re ((—iwa"° + iwBy“ x 4"“)e"") in QY (10a)
H = H”® | Re (ﬂAceM> _— ( curl AP 4 Re ((curl 24€) ) ) n R (10b)

Note that (10) is the linearised time harmonic version of (2).

3.2. Axisymmetric weak formulation

An axisymmetric {r, ¢, z} representation is assumed when deriving the weak forms of above
strong forms (6)-(7) and the problem is formulated in the meridian two-dimensional plane €2,
as shown in Figure 4. The unbounded domain is truncated at a finite distance away from
the conducting embedded domain Qg and the decay conditions for AP”Y and 44 apply. In
addition, the transient current source is represented as 4(r, ¢, 2) = ](f (r, z)es and, thus, the
solution variables become

e = T%(T, Z)€¢, (11&)
U’ = U =rau,.(r, 2)e, + U.(r, 2)e., (11b)



where the upper index AC' in the fields {4, U} is dropped for simplicity and e,, e, and e, are
the unit normal vectors in the r, ¢ and z directions, respectively. In addition, solution fields are
scaled in order to avoid singularities along the r = 0 axis. In what follows, the axisymmetric
AC weak form of problem (7) is presented, as this will form the basis of our frequency (w)
based Proper Generalised Decomposition (PGD) method. Notice that, although the solution
to the DC stage is still required, this is independent of the PGD parameter of interest, namely,
the frequency w, and so it is omitted and the reader is referred to [16, 24] for further details.

A

Figure 4: Axisymmetric {r, ¢, z} representation of the problem; a conducting component Qg in a non-conducting
domain €2,,.

3.2.1. Electromagnetics
The augmented axisymmetric weak form of the electromagnetic problem is formulated in a
higher-dimensional space-frequency space as: Find 4, € X(4, p) such that

Wit (89,05) + W5 (A5, 085) = §4(04,) Vo4, € X(0), (12)
where
Wit (a,b) == ) Wit (a,b) dw, (13a)
WaA (a,b) = /Q wWi(a, b) dw, (13b)
SA(b) = / SA(b) dw, (13c)
with w
Wih(a,b) == /Q “T_lvp(ﬁa)-vp(r%)da, (14a)

/ yabr® dSQ, (14b)

Q

S4(b) ::/ jqurz dQ, (14c)
Q

where (*) now denotes the complex conjugate of a given field and
X(0):={a,:2,€ H(Q x Q,), 4y = Ayp on I, p x A}, (15)
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where 0€, p is the Dirichlet part of the electromagnetic boundary and the gradient of the scalar

potential in the meridian plane is defined as V4 := w;f” e+ a% » [16]. Note that the angular
frequency w € €, has been considered as an extra (parametrlc) dimension in the augmented
weak form (12) and this is emphasised by stating 4, = 44(r, z,w).

3.2.2. Mechanics in embedded conductors
The augmented axisymmetric weak form of the mechanic problem is formulated in a higher-
dimensional space-frequency space as: Find U € Y(Up) such that

Wik (a, 6U) + Wit (Ay, 0U) — Wii(d, 6U) = 0 vou € Y(0), (16)
where
Wi (a,b) ::/ Wi (a,b) dw, (17a)
Wi(a,b) := /Q Wit (a, b) dw, (17b)
Wit(a,b) ::/ W (a, b) dw, (17¢)
with
Wi (a, b) /Q o"(a): Vbrdo, (182)

Wi (a, b) ;:/ u‘lT(A(fC,a):VErdQ—/ 115" T(ADC a)|'n - brdS, (18D)
Qg N

00s”

Wi (a, b) = / pa-BrdQ. (18¢)
o

Similarly as above, the frequency w € ), has been considered in the solution 4 = U(r, z,w)
and
Y(Up) :={u:ue (H'(Q x0))*, U==Up on 905, x O}, (19)

with BQg p denoting the Dirichlet part of the mechanical boundary.

3.2.3. Coupled magneto-mechanics
Addition of (12) and (16) and introduction of the combined unknown field ¢ = q(r, z, w)

defined as q = [ﬁl¢ ‘ZIT}T leads to the augmented higher-dimensional space-frequency weak
form of the coupled magneto-mechanical formulation: Find g € X(4,p) x Y(Up) such that

Wk(q,0q) +iWe(q,0q9) — Wul(q,dq) = S(0q) Voq € X(0) x Y(0), (20)
where
Wi (q,8q) := Wi (4,,63,) + Wik (U, 0U) + Wi (4, 6), (21a)
Welq, 6q) = Wit (4,,04,), (21b)
Wi (q,0q) := W“”(‘U ou), (21c)
S(6q) =84 (64,). (21d)

Remark 3.1. As it will be seen, the additional formulation of the classical weak form for
the coupled problem will be proven to be very useful. In this case, the solution field q is only



considered to be Q, space varying as q = q(r, z) and, hence, the so-called two-dimensional space
weak form of the problem is formulated as: Find q € X (4, p) x Y (Up) such that

Wi(q,6q) +iwWe(q,dq) — w*W(q,8q) = S(5q) Vog € X(0) x Y(0), (22)

where
Wi (q,6q) == Wil(44,044) + Wik (d, 0U) + Wi (4,4, 64), (23a)
Weol(q,8q) = Wi (A, 64,), (23b)
Wi (g, 0q) = Wy'(U,é4), (23c)
S(6q) == 5*(64,), (23d)

with

X(0):={a,:45€ H'(Q,), 45 = A,p on I}, (24a)
Y(Up):={u:ue (H(Q))? U4=4Up on 90} (24b)

4. The frequency based Proper Generalised Decomposition method

In this Section, the Proper Generalised Decomposition (PGD) method is presented for
the coupled magneto-mechanical problem (20), where a multi-dimensional parametric solution
g = q(r,z,w) is sought in the higher-dimensional space €, x €),. The PGD methodology
[33-35, 43, 50] can be succinctly summarised in three steps:

1. q(r, z,w) is assumed to be approximable by a separable function q” (r, z,w) defined as in
[39] with one parametric mode for every component

q(r,z,w) ~ ¢V (r,z,w) =) B e F'(r,2)G"(w), (25)

where each n'" term of the above series is the product of normalised separable functions
F'(r,z) € X(0) x Y(0) and G"(w) € Z = L?*(f,) and a weight vector 3", with ®
representing the element-wise Hadamard product as defined in [51]. Note that the non-
homogeneous Dirichlet boundary conditions are incorporated within the first mode.

2. Each term n is sequentially obtained using a Greedy algorithm [50].

3. For a given term n, functions F"(r, z) and G™(w) are computed iteratively with an alter-
nating directions fixed-point algorithm [33].

In general, for a given n'® term of above series (25), the accumulated solution q"(r, z,w)
can be written as

q"(r,z,w) = q" ' (r,z,w) + f(r,2)g(w) n=12---N, (26

~—  ~—

where f(r, z)g(w) denotes an approximation which is assumed to converge to 8"©F" (r, 2) G™(w
through the alternating directions fixed-point algorithm, with f(r,z) € X(0)xY(0) and g(w)
Z. In this work, we have adopted the following representation for the weight vector 3"

184, B ﬁZ]T, with [|[F"||f2q,) = 1 and [|G"||r2,) = 1. A suitable (compatible) test (or
virtual) field to f(r,z)g(w) can then be introduced as
0q(r, z,w) = 0f(r,z)g(w) + f(r, 2)dg(w), (27)

with 0 f(r,2z) € X(0) x Y(0) and dg(w) € Z. In this case, substitution of (26) and (27) into
the augmented weak form (20), permits the alternating directions fixed-point algorithm for the

Il m
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computation of the n'® term in (25) to be formulated as: Find (f,g) € X(0) x Y(0) x Z such
that

R(0f;q" 1, F,9) + Ry(69;:4" ", f,9) =0 V(0f,d0g) € X(0) xY(0) x Z,  (28)
with

Ri(0f:q" ', f.9) : = Golg, )Wk (f.6F) +1G1(g, 9)We(f,6f)
—Ga2(g,9)Wu(f,6F) — Go(1,9)S(6 f) (29a)
+Wik(q" ', g0f) +iWa(q" ™ g6 f) — Wu(q" ™, g0 f),

Re(09;q" ", £, 9) - = Golg,09)Wk(f, ) +iG1(g,69)We(f, f)
—Ga(9,69)Wu(F, f) — Go(1,09)S(f) (29Db)
+Wk(q" ™, fog) +Wa(q" ', fo9) — Wu(q" ™, £og),

where

Go(a,b) ::/ abdw, Gi(a,b) ::/ abwdw, Gs(a,b) ::/ abw? dw. (30)
4.1. Solve for f and g using the Alternating Direction Scheme (ADS) method

In order to solve (28), the [k]-iterative ADS method is typically preferred [33]; first solving
for £+ based on a known value of ¢ and then updating ¢ with the newly computed
Y The ADS method can be summarised as: Find (F*1 g#+1) € X(0) x Y(0) x Z such
that

R(6f;q" " 5 M) =0, Ry(6g;¢" ", fFHHY, 1) =0, (31)

for all (6f,dg) € X(0) x Y(0) x Z, where [k] = 1,2,... denotes the fixed-point iteration and
the stopping criteria is presented in Section 4.3. Alternatively, the solution fields f**U and
g1 can be written as

and thus, (31) can be re-written by making use of the concept of directional derivatives [52] as:
Find (Af,Ag) € X(0) x Y(0) x Z such that

DR;(6f; £, g™ Af] = —Rs (0 ¢" 7, £, o), (33a)
DR, (3g; FF, g"M)[Ag] = —R,(dg; ", Y, gy, (33h)

for all (0f,dg) € X(0)xY(0) x Z. Above residual equations (33) can be sequentially solved for
Af and Ag in order to iteratively evolve the ADS algorithm as shown in (32). The directional
derivatives appearing in (33) can be expanded as

DRs(0f: £, 9)IAf] = Go(g, ))Wk(AF,0f) + Gi(g, 9)We(AF, 0 f) (34a)
— Ms(g, 9)Wn(Af,0F),

DRy(dg; f,9)[Ag] = Wk(f, £)Go(Ag, d9) + Wo(f, £)G1(Ag, dg) (34D)
— Wu(f, £)Ga(Ag, dg),

and the residuals have been already defined in (29).

11



4.2. Discretised system

This Section briefly presents the discretised problem (33) using the standard Bubnov-
Galerkin approximation. The finite element computational domain will be discretised gen-
erating an unstructured triangular mesh, defining a non-overlapping partition (V,€,Z), where
V denotes the set of vertices, £ the set of edges and Z the set of cells. In each element, the
H' conforming hierarchic finite element basis functions [53] are employed. Hence, the spatial
discretisation of the fields 4, and U allows an arbitrary increase in element order p and local
refinement of the mesh spacing h. The discretised system is obtained by replacing the fields
Af,df, Ag and d¢g in (33) by the discrete variables as

P P
Af =) NAf,, 0f =) Nof,

Q Q
Ag =Y NiAgs, d9=>Y Nyg,

a=1 b=1

where N, is a typical shape function and P = P, + Ps + Py and @ = Qy + Q¢ + Q7 are
the number of degrees of freedom of the spatial and frequency problems, respectively. The
global system is constructed from the elemental matrices and vectors by a standard assembly
procedure [15]. Thus, the global discrete expression of the spatial problem (33a) is

(90K +ig1C — goM)Af = _Rf(f[k]7 Q[k])~ (36)

Note that here and in the following we use Roman boldface to describe discrete matrix/vec-
tor quantities. The discretised version of the residual is defined as

n—1
Rs(f,9) = (90K +ig1C — oaM)f — gis + > [gém}K +ig/"C — gy"M|FIM (37

m=1
with the following scalar quantities
= G ) ) m
% Gogg gi %" = Go(G, g),
g1 = G1\g9,9), [m] [m]
=G1(G™, g), (38)
9= Calg.g), "t 3 . 9)
g5 = Go(l,g), 92 = G(G"9)

Similarly, the problem on the frequency domain (33b) can be written in its discrete from as

(kGo + icG; — mGy)Ag = —Rg(f[kﬂ},g[k]), (39)
where the residual is defined as

n—1
Rg(_f, g) = (ICGO + iCGl — mGg)g — 584 + Z |:]{;[m]G0 + lc[m}Gl - m[m] GZ] G[m]’ (40)

m=1

with the following scalar quantities

]Z;gf(((?;))? kU = Wi (FIM, f),
m= W;(f’ f)’ dm = We(FM™ f), 4
s i = W (e, ),

12



In this paper, it will prove useful to use an alternative Petrov-Galerkin methodology when
solving (33b), where the test function d¢g associated to a frequency w, is chosen to be the Dirac
delta distribution defined as dg = §(w — w,) and, thus, the discretised system becomes

(KT + iew — mw?)Ag = —Rg(f[kﬂ],g[k]), (42)

where the residual is defined as

n—1
Ry(f.9) = (kI +icw — mw?)g —s1+ > [k:[m]I +icdmw — mMw? |G (43)

m=1

with I is the identity matrix of dimension the size of the parametric domain N, 1 is a vector
of ones of dimension N,, and w = diag(wy, - ,wn,,)-

4.8. Stopping criteria

The PGD methodology involves two iterative procedures which require appropriate stopping
criteria; one required to control the convergence of the ADS fixed point algorithm (31) and
another one needed to control the so-called Greedy algorithm (26), namely, the number of
PGD modes required to achieve a reasonably accurate solution. For the ADS convergence, our
preferred measure of tolerance is defined through the following error norm

g — e,

|| flEH gl | L2(0, x0)

where tolgp is a user-defined tolerance value. Whenever the criterion (44) is satisfied, the PGD
algorithm advances to the next enrichment step (or mode). To monitor and control the number
of modes added to the series (25), the following two error norms are monitored

b4 n

T <toly, ey Py, (45)
P4

m=1

T & m
m;u

where toly is another user-defined tolerance value and above criteria (45) permit control in-
dependently the convergence of the vector potential and the displacement field vectors of the
PGD approximation.

erp < tolpp, (44)

n _
CEM,N —

4.4. Algorithmic flowchart of the PGD algorithm

In this Section, two algorithmic flowcharts, corresponding to the offline and online stages,
of the PGD methodology are presented. Firstly, Figure 5 shows the workflow of the offline
PGD stage described in Section 4. Secondly, Figure 6 displays the interpolation procedure
to compute the parametric solution for the desired (user-defined) set of parameters (r,z,w),?
being thus able to achieve so-called real-time simulations [41].

5. Regularised-adaptive PGD methodology

Numerical singularities in the vicinity of the conductors’ resonant modes can arise when
simulating the coupled magneto-mechanical problem. In order to motivate the numerical dif-
ficulties encountered and introduce our regularised-adaptive PGD methodology, a simplified
coupled magneto-mechanical MRI test problem consisting is set up, consisting of a conducting
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Figure 5: Flow chart of PGD algorithm; description of the offline stage.

mechanical shell Qg located within a non-conducting domain, as presented in Figure 7a. The
problem is excited through a pressure driven force applied on the conducting shell.

In the context of an MRI problem, two main integrated quantities of interest are typically
analysed, namely, the dissipated or Ohmic power and the kinetic energy, which can be computed
as a postprocess of the solution fields as?

1 1
Poe = —/ VEACPAQ,  Efo = —/ pw?| L) 2dQ. (46)
Q¢ [ele

2 2
By sweeping over frequencies along the range of interest, the response of the MRI scanner
(conducting shell) for these quantities of interest can be obtained. This frequency spectrum is
presented in Figure 7b, where the resonance modes are clearly visible in the form of singularities.
These sharp changes in the kinetic energy can make extremely challenging the convergence of the
PGD algorithm due to the ill-conditioning of the resulting PGD system in the proximity of these
resonance modes. As a result, two main strategies have been devised in order to overcome these

3Bold non-italisiced fonts (r,z,w) are used to symbolise the discrete set of user-defined parameters in the
multiple-query stage.

4The integrated quantities in (46) have been presented in its three-dimensional form. The reader is referred
to [20] for the axisymmetric description of these quantities.
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(a) Geometry and boundary conditions description. (b) Kinetic energy EF. in the conducting mechanical shell.

Mesh of 351 triangular elements with polynomial order p = 3.

Figure 7: Magneto-mechanical test problem; geometry description and kinetic energy in the conducting me-
chanical shell.

numerical difficulties; first, the addition of numerical regularisation and, second, an automatic
adaptive PGD splitting of the frequency interval.
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5.1. Numerical reqularisation

Numerical regularisation is simply introduced in our algorithm through the addition of
mechanical damping which, in its simplest form, can be formulated as Rayleigh mass based
damping [15], where a damping contribution proportional to the mass of the system is consid-
ered, as presented in [16], with « the Rayleigh damping coefficient used to adjust the level of
regularisation added into the system.

In Figure 8, the kinetic energy in the conducting mechanical shell Qg is plotted for different
values of the damping parameter . The mesh used for these simulations consists of 351
triangular elements with polynomial order p = 3, which produces a fully resolved full order
solution. It is interesting to observe that the resonant frequencies remain unaffected regardless
of the damping introduced but with lower energetic contributions. This shows how the use of
numerical regularisation helps reduce the ill-conditioning of the overall system near resonant
modes, without modifying the overall energy spectrum [15]. This is confirmed in Figure 8,
where the singularities at resonant frequencies are dramatically reduced.

10% ‘
a=0
a = 50
a = 200

102 a = 400

0 500 1000 1500 2000
[ [Hz]

Figure 8: Magneto-mechanical test problem; values of the kinetic energy Eéc in the mechanical shell Qg for
different damping parameters «.

5.2. Automatic adaptive PGD splitting

The resonant phenomenon has been illustrated in Figure 7b and stated how this can nega-
tively affect the solution of the PGD algorithm. Indeed, if the workflow as described in Section
4.4 was to be applied directly, it would not immediately yield an accurate approximation of the
solution. This can be observed in Figure 9a, where the PGD solution (in green) is compared
against the full order solution (in blue), the latter used as the benchmark for comparison. No-
ticeable differences between both graphs can be easily appreciated. Nonetheless, we can still
use this PGD first approximation in order to approximately identify the location of the largest
(in response) resonant mode in an automatic manner, meaning that the a priori nature of the
PGD methodology (no beforehand knowledge of the solution required) is preserved.

Once a singularity (or several singularities) has (have) been identified, partitioned frequency
subdomains (clusters) can be defined and a refined PGD solution is computed within these sub-
domains, that can better capture the overall solution, see Figure 9b. This three-step process
of i) identification of resonance modes (in green), i7) frequency interval splitting and #ii) adap-
tive PGD calculation (in orange), might need to be repeated several times until convergence
is achieved, namely, after no further resonance frequencies are detected. For the example
considered here, the process was repeated three times before converging to the final PGD ap-
proximation displayed in Figure 9d. As can be observed, differences between the full and the
PGD solutions are virtually undistinguishable. Notice that the splitting in step i) is carried out
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(c) 37% step; refined PGD solution around resonant frequencies (d) 4*" step; solution of the regularised-adaptive PGD.

and global PGD to next domain (repeat until all subdomains
have a refined PGD solution).

Figure 9: Magneto-mechanical test problem; description of the automatic splitting process performed to locate
the resonance frequencies and refine around them. Plot of kinetic energy Egc in the conducting mechanical
shell with a damping coefficient o = 50.

by setting a tolerance value tol ;, that controls the size of the subdomains, obtaining frequency
subdomains that are neither too small nor too large. Once the singularities are approximately
identified (in green), the refined PGD solution (in orange) is used to accurately approximate
the full order model.

For this problem, the user-defined parameters are shown in Table 1. Iy and Irp denote the
maximum number of PGD modes and fixed-point iterations, respectively; toly and tolgp are the
tolerance values used for the stopping criteria of the greedy and ADS algorithms, respectively,
as defined in (45) and (44). As for the spatial domain €2, its discretisation is defined by the
mesh size h, the number of triangular elements Egg and the polynomial order p. In addition,
a denotes the damping coefficient. As for the parametric domain €2, the mesh size is h,,, the
frequency range is defined by the interval range [winin, Wmaz| and the tolerance when splitting
the frequency domain is denoted by toly,;,, which controls the maximum size of the resulting
subdomains. Note that the parameters Iy, Irp used for the refined PGD solution are larger
than those used for the less accurate global PGD solution (employed for the localisation of
resonant modes). The reduction in ADS iterations and the coarsening of the computational
frequency interval implies less computational cost without sacrificing numerical accuracy.
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Table 1: User-defined parameters for the simulation in Figure 9.

Global PGD parameters ‘ Refined PGD parameters

IN ]Fp tOlN tOle ]N ]Fp tOlN tOle
10 5 107% 1072 | 20 10 1074 1072

Spatial domain (2, ‘ Parametric domain €,

h EQ%‘ p « he  Wmin Wmaz tOl:}plit
0.25 351 3 50 0.01 1Hz 2000 Hz 0.02

10°
=1 a
2 g
] 3
2 1072 2
B £
=1 =]
S S
S} S}
® )
E E
g 1o g
+ 10 -
n n
@ @
— —
10-6 I I I I I L
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# PGD mode # PGD mode
(a) 1%t frequency subdomain: [10, 717] Hz. (b) 27¢ frequency subdomain: [717, 1513] Hz.

Figure 10: Magneto-mechanical test problem; PGD convergence using the last mode contribution for both
physics; electromagnetics €f,, y and mechanics ejy .

As for the greedy algorithm, modal contributions for both physics, namely, electromagnetics
epyn and mechanics e, v (45), are computed and plotted in Figure 10 for the first two
frequency subdomains [10, 717] and [717, 1513] Hz. There is a clear overall descending trend in
both subdomains yet with some modes having a higher weight than their predecessors, which
is one of the characteristics of the greedy algorithm [34].

6. Numerical examples

This section includes a series of numerical examples in order to demonstrate the validity,
applicability and versatility of the proposed PGD methodology. Two different MRI magnet
configurations will be studied. First, a simplified tailor-made MRI (test) magnet problem
followed by a realistic, and more challenging, MRI configuration. In both cases, the PGD
approximation will first be validated against the full order model. The presence of numerical
difficulties such as the existence of resonant modes will be circumvented through the adaptive-
regularised strategy presented in the previous section. It will shown how the combination of
both frequency domain adaptive splitting and the use of numerical regularisation in the vicinity
of resonant modes, leads to a robust and versatile PGD algorithm. A comprehensive set of
results will be shown with special emphasis on magnitudes of interest for the industry (46).
The section will conclude by presenting snapshots of our PGD online tablet tool demonstrating
the flexibility of the new methodology for fast prototyping.
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6.1. Test magnet problem

The test magnet problem corresponds to a simplified MRI scanner geometry, which consists
of three conducting shields embedded in a non conducting rectangular domain, see Figure 11.
The three shields are known as the Outer Vacuum Chamber (OVC) shield Q%,,., the 77K
radiation shield Q% and the 4K helium vessel shield Q¢ and they have different material
parameters that cannot be exactly specified due to confidentiality issues. However, the ap-
proximate values are u, ~ 1077 H/m, v, ~ 10° S/m, p ~ 10® Kg/m?3, £ ~ 10° Pa, v ~ 0.3.
The thickness of each shield is slightly different and it is of the order of a few millimetres.
The problem is excited through the current sources JP¢ and 94¢ that create a uniform mag-
netic field of strength By = max(||B5|,—o||) = 1.5 T and a gradient along the r = 0 axis of
|0B4C|,—0/02|| = 100 mT /m, respectively. Regarding the boundary conditions, displacements
U = Up = 0 are fixed to a small part in the centre of each shield and the scalar potential is
set to 4, = 4, p = 0 far away from the conducting objects such that n x 44¢ = 0 on 9.

Ay =0 Air

Gradient coils
( lf Main coils

4K shield
77K shiled
OVC shield

E

Figure 11: Test magnet problem; geometry description. 3D view (left) and 2D axisymmetric view (right) with
components names and boundary conditions.

6.1.1. Full order model
The frequency range of interest is set from 1 to 5000 Hz and Figure 12 shows the values of
the kinetic energy ES’?ZC in this frequency range. The results show a smooth trend up to 3500
C

Hz followed by resonance when approaching the high-frequency range, from 3500 to 5000 Hz.
The accurate identification of this phenomenon is of extreme interest for the design of the MRI
scanner, as high eddy currents can generate large displacements which can, in turn, lead to
excessive heat radiation within the helium vessel. The helium contained within the vessel is at
4 K and exceeding this value can result in an undesired boil-off effect, requiring then the re-fill
of the vessel which increases the maintenance costs. Another consequence of the existence of
resonance is that high vibrations of the mechanical components can have a negative impact on
the lifespan of the MRI.

In Figure 13 a convergence analysis is presented in order to demonstrate the consistency of
the numerical scheme employed in the solution of the full order model [20, 21, 24]. This analysis
is important prior to developing a PGD approximation to the full order method, so that h- and
p-refinement studies are carried out and results displayed in Figure 13. Comparison of Figures
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Figure 12: Test magnet problem; value of the dissipated Power Eéc in the OVC shield for different frequencies

from 1 to 5000 Hz. Right Figure shows a zoomed view in the resonance region (red rectangle). Results shown
are for a mesh of 2.9K triangular elements using a polynomial order p = 4.

1010 ‘ 1010
——3.1K elem
——6.4K elem
105 L ;2§ elem I
—_— elem
—— 158K elem ml \’ l
= 10° 500K elem A :\l
o
e
10°
ool
10-15 * | | | I 10—15 k I I | |
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

[ [Hz] [ [Hz]

Figure 13: Test magnet problem; h-refinement (left) using a polynomial order p = 1 and p-refinement (right)
with a mesh of 2.9K elements.

13 (left) and (right), demonstrates that p-refinement leads more efficiently to a converged
solution. Figure 14 shows the converged solution obtained with either refinement strategies
which agree well. However, whilst the 500K element mesh and p = 1 results in 695K degrees
of freedom (ndof), only 77K ndof are used in 2.9K element mesh and p = 6. In this case,
the results suggest that increasing the polynomial order p is a good strategy to accurately
capture the skin depth effect inside the thin conducting shields without the need to resort to a
prohibitively large number of degrees of freedom.

A further study explores the number of sampling points required in order to obtain an ac-
curate energy spectrum. Figures 12, 13 and 14 have been obtained sweeping over the frequency
range with sampling points every 5 Hz. In order to certify that a 5 Hz spacing is sufficient,
Figure 15 is presented, where frequency energy spectra for five different frequency spacings are
displayed, namely, every 0.5, 1, 5, 10 and 20 Hz. The main conclusion than can be extracted
from these results is that a 5 Hz spacing is sufficient to accurately represent the spectrum and
capture the resonance modes. Notice that this is only applicable to this specific problem and
it should not be generalised to other MRI configurations.

Figure 16 shows the magnitude of the transient magnetic field |B{°| in the axisymmetric
plane in the form of contour lines, where the magnitude of the displacement field || is also
plotted in the OVC shield as well as the deformed shape of the shield. The six subfigures
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Figure 14: Test magnet problem; comparison between solutions obtained with a mesh with 500K elements with
p =1 and a mesh with p = 6 with 2.9K elements.
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Figure 15: Test magnet problem; study on the number sampling of points in the frequency interval required to
accurately capture the solution.

correspond to six different frequencies, one at the pre-resonant frequency of 2000 Hz and the
other five at the resonance frequencies obtained from Figure 12, namely, 3591, 3871, 3956, 4281
and 4881 Hz. Regarding the magnetic field |$64C|, major changes are not visible when increasing
the excitation frequency, yet it is interesting to notice how this magnetic field is generated in
the gradient coils and travels through the free space permeating across the conducting shields.

On the other hand, major changes can be seen in the magnitude of the displacement field | .
Figure 16a represents the displacement that would be typically observed for frequencies in the
pre-resonance region, where the maximum values are concentrated in regions near the gradient
coils that generate the transient magnetic field. Figures 16b-16f, display the displacement fields
for the first resonant modes of the spectrum.

6.1.2. PGD solution

Section 5 described our methodology to circumvent the numerical difficulties arising from
the ill-conditioning of the PGD system by combining an automatic frequency domain splitting
and numerical regularisation. This section aims to benchmark the PGD approximation against
the full order model by comparing two quantities of interest, namely, dissipated or Ohmic power
P and kinetic energy Efe, see (46).

With this in mind, Figure 17 presents the comparison between the PGD approximation
and the full order solution using the user-defined parameters shown in Table 2. These results
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Figure 16: Test magnet problem; visualisation of the magnetic field |!B()4C| contour lines on the axisymmetric
plane and the magnitude of the displacements |U| in the OVC shield. Plot of the deformed OVC shield for
different frequencies.

clearly show a very high accurate PGD approximation that is able to reproduce all the resonance
frequencies appearing in the full order model. Whilst a high number of full order solutions are
necessary in order to generate this Figure, in the case of the PGD approximation, only the fast
online interpolation is needed in real time in order to generate a high number of points in the
frequency sweep, being able to achieve a real-time response, see Section 4.4.
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Table 2: User-defined parameters for the simulation in Figure 17.

Global PGD parameters ‘ Refined PGD parameters

]N ]Fp tOlN tOle IN ]Fp tOlN tOle
20 10 107* 1072 | 40 10 107 1072

Spatial domain (2, ‘ Parametric domain €,

h EQ%’ p Q hy  Wmin Wmaz tOlLsUplit

0.25 2.9-103 4 100 | 0.01 1Hz 5000 Hz 0.05

6.2. Full magnet problem

The full magnet problem is a more realistic MRI scanner configuration that, similarly to
the test magnet problem, consists of three radiation shields in a non conducting domain, see
Figure 18. Note that now the three shields, OVC, 77K and 4K, have a more complex geometry
consisting in closed cylindrical shells. Again, each shield has different material parameters that
cannot be exactly specified due to confidentiality issues. However, the approximate values are
te = 1077 H/m, 7, ~ 10° S/m, p ~ 103> Kg/m?®, E ~ 10° Pa, v =~ 0.3. The thickness of each
shield is slightly different and it is of the order of a few millimetres. The problem is excited
through the current sources JP¢ and 4¢ that create a uniform magnetic field of strength
By = max(||BY°|,—o||) = 1.5 T and a gradient along the r = 0 axis of ||0B4.C|.—o/0z|| = 100
mT /m, respectively. Regarding the boundary conditions, displacements U = Up = 0 are fixed
at the rear part of each shield (see Figure 18) and the scalar potential is set to 4, = 4, p =0
far away from the conducting objects such that m x A4Y = 0 on 9.

6.2.1. Full order model

Before validating and benchmarking the PGD algorithm, the full order solution is presented
in this Section. Although this paper focuses on the transient AC problem, it has been explained
in Section 3.1 that the total solution is the sum of DC and AC stages. It is interesting to observe
the solution of both problems as presented in Figure 19, where a mesh of 17.4K triangular
elements with p = 4 is used. First, the DC problem is solved excited through a static current
source that generates a strong static magnetic field which is as uniform as possible on the
imaging bore axis (r = 0). Figure 19a shows this static solution and how it is indeed fairly
uniform in the interior of the MRI scanner. Note that the magnetic field Bg) ¢ is generated in
the main coils. In addition, this Figure shows the static magnetic field magnitude in the OVC
shield, with maximum values near the set of main coils. Once the static solution is obtained,
this will become the initial state of the dynamic problem, which will be solved considering a
dynamic current source several orders of magnitude lower than the static one, in this particular
case [94€|/|JP| ~ 2%. The solution of the AC problem is presented in Figure 19b, where the
displacements || are plotted in the OVC shield and the magnitude of the dynamic magnetic
field |$OAC\ is represented through contour lines. In this Figure, it can be seen how the magnetic
field is generated in the gradient coils and it is no longer uniform. The displacements have its
maximum values in the interior of the MRI device around the gradient coils.

6.2.2. PGD solution

The PGD algorithm has already been validated for the test magnet problem. Now, the
robustness and flexibility of the algorithm is assessed with this more challenging geometry: the
full magnet problem. With this aim, two different studies will be presented, first a comparison
of the PGD approximation and the full order model by computing the absolute error for a
given frequency. The second test consists in performing a frequency sweep to see if the PGD
approximation is able to recover the full order model solution.
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Figure 17: Test magnet problem; comparison between PGD approximation and full order model with a damping

coefficient & = 100 using 40 PGD modes and 10 ADS iterations for each frequency subdomain. Plot of dissipated
power ch and kinetic energy Egc in the three conducting shields OVC, 77K and 4K.

Figure 20 shows a comparison between the PGD solution and the full order model for a
single frequency of 100 Hz. Two quantities are considered; the magnetic field |B{°| near the
gradient coils for electromagnetics and displacements |U| in the three shields for mechanics. The
user-defined parameters used in this simulation are presented in Table 17. Similar conclusions
apply to both physics, the PGD solution has a good agreement with the full order model,
achieving errors of approximately 1-10%. These results suggest that the PGD solution is a
good approximation of the problem considered.

Similarly than for the test magnet problem, the second study consists on a frequency sweep
in which the two integrated quantities of interest (46) are computed for every frequency of the
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Figure 18: Full magnet problem; geometry description. 3D view (left) and 2D axisymmetric view (right) with
components names and boundary conditions.

(a) DC problem; visualisation of |BC| in the OVC shield and (b) AC problem; visualisation of |2| in the OVC shield and
streamlines. streamlines of |B{'C|.

Figure 19: Full magnet problem; full order solution of both DC and AC problems for a frequency of 1000 Hz.

Table 3: User-defined parameters for the simulation in Figures 20 and 21.

Global PGD parameters ‘ Refined PGD parameters
IN ]Fp tOlN tOle IN IFP tOlN tOle
10 5 107 1072 | 20 10 10~ 1072

Spatial domain €2, ‘ Parametric domain €,
h Eﬂg p « he, Wmin Wmaz tOZ:}plit
0.25 17.410% 4 50 | 0.01 1Hz 5000Hz 0.05

sweep. In Figure 21, both quantities, dissipated power and kinetic energy, are presented for
each shield in the range [1, 2000] Hz. Again, the parameters used are specified in Table 17.
Note that, since the goal is to capture the first resonance modes, the frequency range has been
reduced. In the test magnet case, see Figure 17, the resonance phenomenon did not occur until
3500 Hz whereas for this full magnet case, resonance appears throughout the entire frequency
range. These differences are due to the more complex geometry of the full magnet that includes
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Figure 20: Full magnet problem; comparison between solutions obtained using the full order model and the PGD
approach. Visualisation of |85 | around the gradient coils and || in the conducting shields for a frequency of
100 Hz.

closed cylindrical shells. Hence, this more realistic geometry represents a major challenge which
is however nicely resolved by the regularised-adaptive PGD algorithm, splitting the frequency
domain accordingly and capturing all the singularities accurately.

Finally, a simple Matlab [54] application has been designed to create a user-friendly interface
that particularises the high-order parametric solution computed in the offline PGD stage as
presented in Figure 6. This PGD app is presented in Figure 22 where four different tabs are
displayed. The first one presents the application and its developers. The second one loads a
particular precomputed PGD offline solution. The third tab displays the plot of a particular
field of interest. Moreover, this tab also offers numerical quantities computed on the fly that
are industrially relevant. The last tab offers the possibility to perform a frequency sweep in a

26



T 1 L 1 1
;FLIH ();‘der modell ! ! ! s [l Order model 1
S| PGD solution —— PGD solution 1
107y o I I I I
1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
= 1 1 1 1 1 1 1 1
E 1 1 1 1 1 1 1 1
© 100t/ 1 | | (T I | |
o 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 [ 1 1 1 1 1 1
10 1 1 1 1 1 1 10° 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 L 1 | L 1 1 L 1 L1 L 1
0 500 1000 1500 2000 0 500 1000 1500 2000
f [Hz] f [Hz]
0 i i i T 1 10° 1 T 1 [ 1
10 e FUll Order model | | | s FUll order model | | |
——PGD solution 1 1 1 ——PGD solution 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 sl 1 1 1 1 1
— i I o I = 10 I 1 [ 1
E 10t 1 1 1 1 1 1 - 1 1 1 1 1
« 1 1 1 1 1 R 1 1 1 1 1
O 0O
28 1 1 1 1 1 1 = 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 10 1 1 1 1 1 1 1
I I I o I 10 I I I o I
1 1 1 1 1 1 1 1 1 1 1
1072 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 L 1 | L 1 1 L 1 L1 L. 1
0 500 1000 1500 2000 0 500 1000 1500 2000
f [Hz] f [Hz]
i T I T 1 1 [N 1 [ 1 1 1
e F111 Order model | s U1l order model | | |
100+ ———PGD solution 1 ——— PGD solution 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 10°1 1 1 1 1
1 1 1 1 1 1
— 1 1 1 . 1 1 1
= i (I I = I (] I
£ 10° 1 1 (| 1 o 1 1 1 e 1
e 1 1 1 1o 1 g 1 1 1 | 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 10710 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
10710 I I I o I 1 I I I 1o I
1 1 1 1 1 1 1 1 1 1 1 1
1 L 1 L1 L. 1 1 L 1 L1 L. 1
0 500 1000 1500 2000 0 500 1000 1500 2000
f [Hz] f [Hz]

Figure 21: Full magnet problem; comparison between PGD approximation and full order model with a damping
coefficient o = 50 using 20 PGD modes and 10 ADS iterations for each frequency subdomain. Plot of the
dissipated power ch and kinetic energy ES’%C in the three conducting shields OVC, 77K and 4K.

range of interest and plot a specific quantity of interest in one of the conducting components
of the problem. The entire interface is based on sliders, numerical boxes, switches and lamps
that make the app very user-friendly.

7. Conclusion

This paper has presented a new Reduced Order Modelling Proper Generalised Decompo-
sition (ROM-PGD) method to help speed up the design phase of the next generation of MRI
scanners (>7T), improving the optimisation workflow through a real-time, multiple-query,
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Figure 22: On-line PGD application for coupled magneto-mechanical problems with application to MRI scan-
ners. Visualisation of the four tabs; Presentation, Loading PGD, Plotting and Frequency sweep.

frequency-based enabled online stage. The work focusses on using the external exciting fre-
quency as an additional parameter of the offline higher-dimensional parametric solution per-
mitting frequency spectra for kinetic energy and dissipated Ohmic power to be efficiently queried
in the online stage. The paper derives the ROM-PGD methodology for the coupled electro-
magneto-mechanical problem of interest and introduces a regularised adaptive methodology
to account for the numerical singularities associated with the ill-conditioning of the discrete
system in the vicinity of resonant modes. A key advantage of this approach is the fact that the
major computational expense takes place during the offline stage, whilst the online stage can be
resolved in real-time and through user-friendly app interfaces, such as that shown in the paper.
The further consideration of optimisation parameters such as the magnetic conductivity, the
strength of the static magnetic field or the thicknesses of the conducting shields constitute the
next steps of our work, in the search of a surrogate digital twin model which allows for real-time
simulations, thus minimising human intervention.
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