553 research outputs found

    Minimum cost VRP with time-dependent speed data and congestion charge

    Get PDF
    A heuristic algorithm, called LANCOST, is introduced for vehicle routing and scheduling problems to minimize the total travel cost, where the total travel cost includes fuel cost, driver cost and congestion charge. The fuel cost required is influenced by the speed. The speed for a vehicle to travel along any road in the network varies according to the time of travel. The variation in speed is caused by congestion which is greatest during morning and evening rush hours. If a vehicle enters the congestion charge zone at any time, a fixed charge is applied. A benchmark dataset is designed to test the algorithm. The algorithm is also used to schedule a fleet of delivery vehicles operating in the London area

    Topics in logistics

    Get PDF

    Meta-heuristic Solution Methods for Rich Vehicle Routing Problems

    Get PDF
    Le problĂšme de tournĂ©es de vĂ©hicules (VRP), introduit par Dantzig and Ramser en 1959, est devenu l'un des problĂšmes les plus Ă©tudiĂ©s en recherche opĂ©rationnelle, et ce, en raison de son intĂ©rĂȘt mĂ©thodologique et de ses retombĂ©es pratiques dans de nombreux domaines tels que le transport, la logistique, les tĂ©lĂ©communications et la production. L'objectif gĂ©nĂ©ral du VRP est d'optimiser l'utilisation des ressources de transport afin de rĂ©pondre aux besoins des clients tout en respectant les contraintes dĂ©coulant des exigences du contexte d’application. Les applications rĂ©elles du VRP doivent tenir compte d’une grande variĂ©tĂ© de contraintes et plus ces contraintes sont nombreuse, plus le problĂšme est difficile Ă  rĂ©soudre. Les VRPs qui tiennent compte de l’ensemble de ces contraintes rencontrĂ©es en pratique et qui se rapprochent des applications rĂ©elles forment la classe des problĂšmes ‘riches’ de tournĂ©es de vĂ©hicules. RĂ©soudre ces problĂšmes de maniĂšre efficiente pose des dĂ©fis considĂ©rables pour la communautĂ© de chercheurs qui se penchent sur les VRPs. Cette thĂšse, composĂ©e de deux parties, explore certaines extensions du VRP vers ces problĂšmes. La premiĂšre partie de cette thĂšse porte sur le VRP pĂ©riodique avec des contraintes de fenĂȘtres de temps (PVRPTW). Celui-ci est une extension du VRP classique avec fenĂȘtres de temps (VRPTW) puisqu’il considĂšre un horizon de planification de plusieurs jours pendant lesquels les clients n'ont gĂ©nĂ©ralement pas besoin d’ĂȘtre desservi Ă  tous les jours, mais plutĂŽt peuvent ĂȘtre visitĂ©s selon un certain nombre de combinaisons possibles de jours de livraison. Cette gĂ©nĂ©ralisation Ă©tend l'Ă©ventail d'applications de ce problĂšme Ă  diverses activitĂ©s de distributions commerciales, telle la collecte des dĂ©chets, le balayage des rues, la distribution de produits alimentaires, la livraison du courrier, etc. La principale contribution scientifique de la premiĂšre partie de cette thĂšse est le dĂ©veloppement d'une mĂ©ta-heuristique hybride dans la quelle un ensemble de procĂ©dures de recherche locales et de mĂ©ta-heuristiques basĂ©es sur les principes de voisinages coopĂšrent avec un algorithme gĂ©nĂ©tique afin d’amĂ©liorer la qualitĂ© des solutions et de promouvoir la diversitĂ© de la population. Les rĂ©sultats obtenus montrent que la mĂ©thode proposĂ©e est trĂšs performante et donne de nouvelles meilleures solutions pour certains grands exemplaires du problĂšme. La deuxiĂšme partie de cette Ă©tude a pour but de prĂ©senter, modĂ©liser et rĂ©soudre deux problĂšmes riches de tournĂ©es de vĂ©hicules, qui sont des extensions du VRPTW en ce sens qu'ils incluent des demandes dĂ©pendantes du temps de ramassage et de livraison avec des restrictions au niveau de la synchronization temporelle. Ces problĂšmes sont connus respectivement sous le nom de Time-dependent Multi-zone Multi-Trip Vehicle Routing Problem with Time Windows (TMZT-VRPTW) et de Multi-zone Mult-Trip Pickup and Delivery Problem with Time Windows and Synchronization (MZT-PDTWS). Ces deux problĂšmes proviennent de la planification des opĂ©rations de systĂšmes logistiques urbains Ă  deux niveaux. La difficultĂ© de ces problĂšmes rĂ©side dans la manipulation de deux ensembles entrelacĂ©s de dĂ©cisions: la composante des tournĂ©es de vĂ©hicules qui vise Ă  dĂ©terminer les sĂ©quences de clients visitĂ©s par chaque vĂ©hicule, et la composante de planification qui vise Ă  faciliter l'arrivĂ©e des vĂ©hicules selon des restrictions au niveau de la synchronisation temporelle. Auparavant, ces questions ont Ă©tĂ© abordĂ©es sĂ©parĂ©ment. La combinaison de ces types de dĂ©cisions dans une seule formulation mathĂ©matique et dans une mĂȘme mĂ©thode de rĂ©solution devrait donc donner de meilleurs rĂ©sultats que de considĂ©rer ces dĂ©cisions sĂ©parĂ©ment. Dans cette Ă©tude, nous proposons des solutions heuristiques qui tiennent compte de ces deux types de dĂ©cisions simultanĂ©ment, et ce, d'une maniĂšre complĂšte et efficace. Les rĂ©sultats de tests expĂ©rimentaux confirment la performance de la mĂ©thode proposĂ©e lorsqu’on la compare aux autres mĂ©thodes prĂ©sentĂ©es dans la littĂ©rature. En effet, la mĂ©thode dĂ©veloppĂ©e propose des solutions nĂ©cessitant moins de vĂ©hicules et engendrant de moindres frais de dĂ©placement pour effectuer efficacement la mĂȘme quantitĂ© de travail. Dans le contexte des systĂšmes logistiques urbains, nos rĂ©sultats impliquent une rĂ©duction de la prĂ©sence de vĂ©hicules dans les rues de la ville et, par consĂ©quent, de leur impact nĂ©gatif sur la congestion et sur l’environnement.For more than half of century, since the paper of Dantzig and Ramser (1959) was introduced, the Vehicle Routing Problem (VRP) has been one of the most extensively studied problems in operations research due to its methodological interest and practical relevance in many fields such as transportation, logistics, telecommunications, and production. The general goal of the VRP is to optimize the use of transportation resources to service customers with respect to side-constraints deriving from real-world applications. The practical applications of the VRP may have a variety of constraints, and obviously, the larger the set of constraints that need to be considered, i.e., corresponding to `richer' VRPs, the more difficult the task of problem solving. The needs to study closer representations of actual applications and methodologies producing high-quality solutions quickly to larger-sized application problems have increased steadily, providing significant challenges for the VRP research community. This dissertation explores these extensional issues of the VRP. The first part of the dissertation addresses the Periodic Vehicle Routing Problem with Time Windows (PVRPTW) which generalizes the classical Vehicle Routing Problem with Time Windows (VRPTW) by extending the planning horizon to several days where customers generally do not require delivery on every day, but rather according to one of a limited number of possible combinations of visit days. This generalization extends the scope of applications to many commercial distribution activities such as waste collection, street sweeping, grocery distribution, mail delivery, etc. The major contribution of this part is the development of a population-based hybrid meta-heuristic in which a set of local search procedures and neighborhood-based meta-heuristics cooperate with the genetic algorithm population evolution mechanism to enhance the solution quality as well as to promote diversity of the genetic algorithm population. The results show that the proposed methodology is highly competitive, providing new best solutions in some large instances. The second part of the dissertation aims to present, model and solve two rich vehicle routing problems which further extend the VRPTW with time-dependent demands of pickup and delivery, and hard time synchronization restrictions. They are called Time-dependent Multi-zone Multi-Trip Vehicle Routing Problem with Time Windows (TMZT-VRPTW), and Multi-zone Mult-Trip Pickup and Delivery Problem with Time Windows and Synchronization (MZT-PDTWS), respectively. These two problems originate from planning the operations of two-tiered City Logistics systems. The difficulty of these problems lies in handling two intertwined sets of decisions: the routing component which aims to determine the sequences of customers visited by each vehicle, and the scheduling component which consists in planning arrivals of vehicles at facilities within hard time synchronization restrictions. Previously, these issues have been addressed separately. Combining these decisions into one formulation and solution method should yield better results. In this dissertation we propose meta-heuristics that address the two decisions simultaneously, in a comprehensive and efficient way. Experiments confirm the good performance of the proposed methodology compared to the literature, providing system managers with solution requiring less vehicles and travel costs to perform efficiently the same amount of work. In the context of City Logistics systems, our results indicate a reduction in the presence of vehicles on the streets of the city and, thus, in their negative impact on congestion and environment

    Pemecahan Masalah Rute Kendaraan Dengan Trip Majemuk, Jendela Waktu Dan Pengantaran-penjemputan Simultan Menggunakan Algortima Genetika

    Full text link
    Vehicle routing problem (VRP) is one of decision problems having an important role in transportation and distribution activity in the logistic management. The VRP deals with determining vehicle routes that minimizes total distance by satisfying the following constraints: (1) each route starts and ends at the depot, (2) each vehicle serves only one route, (3) each costumer is served by one route, (4) all customers must be served, and (5) total load for each route does not exceed the vehicle capacity. In literature, this definition is the definition for the basic or classical VRP. This paper discusses an extension of the basic VRP including the following characteristics: (1)multiple trips (MT), (2) time windows (TW), and (3) simultaneous pickup-delivery (SPD). A solution method based on genetic algorithm (GA) is proposed to solve the VRP discussed in this papaer. The proposed GA is examined using some hypothetical instances

    The Waste Collection Vehicle Routing Problem with Time Windows in a City Logistics Context

    Get PDF
    AbstractCollection of waste is an important logistic activity within any city. In this paper we study how to collect waste in an efficient way. We study the Waste Collection Vehicle Routing Problem with Time Window which is concerned with finding cost optimal routes for garbage trucks such that all garbage bins are emptied and the waste is driven to disposal sites while respecting customer time windows and ensuring that drivers are given the breaks that the law requires. We propose an adaptive large neighborhood search algorithm for solving the problem and illustrate the usefulness of the algorithm by showing that the algorithm can improve the objective of a set of instances from the literature as well as for instances provided by a Danish garbage collection company

    The stochastic vehicle routing problem : a literature review, part II : solution methods

    Get PDF
    Building on the work of Gendreau et al. (Oper Res 44(3):469–477, 1996), and complementing the first part of this survey, we review the solution methods used for the past 20 years in the scientific literature on stochastic vehicle routing problems (SVRP). We describe the methods and indicate how they are used when dealing with stochastic vehicle routing problems. Keywords: vehicle routing (VRP), stochastic programmingm, SVRPpublishedVersio

    A simheuristic algorithm for time-dependent waste collection management with stochastic travel times

    Get PDF
    A major operational task in city logistics is related to waste collection. Due to large problem sizes and numerous constraints, the optimization of real-life waste collection problems on a daily basis requires the use of metaheuristic solving frameworks to generate near-optimal collection routes in low computation times. This paper presents a simheuristic algorithm for the time-dependent waste collection problem with stochastic travel times. By combining Monte Carlo simulation with a biased randomized iterated local search metaheuristic, time-varying and stochastic travel speeds between different network nodes are accounted for. The algorithm is tested using real instances in a medium-sized city in Spain
    • 

    corecore