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ABSTRACT

This master thesis proposes modified fathoming and bounding procedures for the bi-directional Time-

Dependent Labeling algorithm (TDL) which is used solve Time-Dependent Elementary Shortest Path

Problem with Resource Constraints (TDESPPRC). In this study TDESPPRC is solved as the pricing

problem in the decomposition of the arc based formulation of Time-Dependent Vehicle Routing Problem

with Time Windows (TDVRPTW). The aim of the fathoming proposed is to solve TDVRPTW more

efficiently by not extending the unproductive labels in bi-directional TDL algorithm. Moreover, we

introduce an arc bounding model to stop the extension of labels as an alternative to resource bounding

used in bi-directional search. In addition, this thesis includes an effects analysis of a new customer

on Kuehne+Nagel(K+N) Netherlands Fast Moving Consumer Goods (FMCG) and returns distribution

network. This study focused on analyzing the current network performance of the distribution network

and evaluating the future scenarios for K+N’s future distribution network by a simulation study.
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CHAPTER 1

INTRODUCTION

Logistics in general is concerned with the organization, movement and storage of material and peo-

ple. Over the years the meaning of the term has gradually generalized to cover business and service

activities. Providing the necessary subcomponents for manufacturing,having inventory on the shelf of

a retailer, having the right amount and type of blood available for hospital surgeries are example of

logistics activities. According to the definition of Council of Logistics Management (CLM),Logistics

is the process of planning, implementing, and controlling the efficient, cost-effective flow and storage

of goods, services, and related information from the point-of-origin to the point-of-consumption for the

purpose of conforming to customer requirements. It is the one of the most important activities in modern

societies. 8 to 14% of the company sales in EU countries is devoted to logistics, whereas this percent-

age changes from 2 to 5%. According the annual report, of the companies in USA spent 63% of their

logistics costs for transportation services which move materials between facilities using vehicles and

equipment such as trucks, tractors, trailers, crews, pallets, containers, cars and trains. Among the trans-

portation services freight transportation: plays a key role in today’s economies as it allows production

and consumption to take place at locations very far from each other. Freight transportation accounts for

even 2/3 of total logistics cost and has a major impact on the level of customer service. One of the impor-

tant decisions in freight transportation is the vehicle fleet management. A warehouse supplies products

to a set of retailers using a fleet of vehicles of limited capacity. To answer the questions such as how to

assign loads to vehicles or how to determine the vehicle routes well defined mathematical models are

constructed throughout the years. But they are extremely difficult combinatorial problems in the class

called NP-hard problems. It is very unlikely to construct an algorithm that always finds the optimum

in computation time that is polynomial in the size of the problem. Hence heuristics or approximation

methods are employed most of the time to solve these problems. Especially meta-heuristics is widely

used to solve more difficult variants of these problems.Ghiani et al. (2004)
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In the first part of this thesis, we will introduce the introduce bounding procedures for the solution

of ,a variant of vehicle routing problem, Time-Dependent Vehicle Routing Problem with Time Win-

dows(TDVRPTW) which is solved by an exact method, Branch and Cut and Price (BCP) algorithm. In

the framework of BCP, the pricing problem is a Time-Dependent Elementary Shortest Path Problem with

Resource Constraints (TDESPPRC) and it is solved by bi-directional time-dependent labeling algorithm.

Our motivation in this study is to reduce the number of paths produced by the labeling algorithm to solve

TDESPPRC. We propose that the bounding procedure will speed up the BCP algorithm by decreasing

the number of labels produced in the part of bi-directional time dependent labeling algorithm. To in-

troduce the proposed methods, we first review the mathematical models for the well known variants of

the Vehicle Routing Problem (VRP) which are Capacitated Vehicle Routing Problem (CVRP) and Ve-

hicle Routing Problem with Time Windows (VRPTW) in addition to the TDVRPTW. Next, we review

the solution methods exist in the literature for these problems. In chapter 3, we introduce the solution

methodology for TDVRPTW by Dabia et al. (2011) and after, in Chapter 4, we introduce the fathoming

and bounding procedure. We provide the computational results for the proposed models in Chapter 5 and

conclude the first part of the thesis in Chapter 6. Moreover, Chapter 7 is devoted to the second part of

the thesis in which we analyze the effects of a new customer on the FMCG and Returns distribution net-

work of Kuehne+Nagel Netherlands. In this chapter, we present the analysis for the current distribution

network of the company and the simulation study performed to search for the potential improvements

in the future distribution network. We conclude the chapter after presenting the simulation results by a

brief conclusion and future research directions for this study.

1.1 THE VEHICLE ROUTING PROBLEM

The Vehicle Routing Problem (VRP) aims to deliver every customer’s demand from the home depot with

a homogenized fleet of vehicles by minimizing the total cost of the routes. Every customer is visited

only once and every vehicle starts and ends the route at the depot. Since the fist formulation of the

problem by Dantzig and Ramser , the problem has been studied with many variants. In this section, we

will first formulate the basic variant of VRP which is called Capacitated VRP (CVRP) to distinguish it

from other variants of the problem. Then, Vehicle Routing Problem with Time Windows (VRPTW) will

be introduced. Finally, we will define Time-Dependent Vehicle Routing Problem with Time Windows

(TDVRPTW) which is an extension of VRPTW.
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1.1.1 FORMULATION OF CAPACITATED VEHICLE ROUTING PROBLEM

The objective of CVRP is to minimize the total costs considering the following constraints:

• All customers should be visited only once,

• Sum of the customers’ demands in a route should be smaller than the vehicle capacity,

• Number of routes should be equal to the number of vehicles or less than the number of vehicles;

given that

• Each customer has a deterministic demand qi and it cannot be split,

• The vehicle fleet has K identical vehicles,

• Each vehicle has a capacity Q.

There are alternative formulations for CVRP. We will introduce a vehicle flow model and the set parti-

tioning model by Toth and Vigo.

1.1.1.1 CVRP TWO-INDEX VEHICLE FLOW MODEL

The vehicle flow model of CVRP is formulated as integer linear programming on a complete graph

G(V, A) where V = {0, 1, ..., n} is the vertex set and A is the arc set. In the formulation, 0 represents the

depot and V\ {0} represents the customers. The cost of traveling on arc (i, j) ∈ A is defined as ci j and

these costs are asymmetric. The binary variable xi j takes value 1 if arc (i, j) is traversed by a vehicle, 0

otherwise. Given a customer set S ⊂ V\{0}, r(S ) is the minimum number of vehicles needed to serve set

S . ⌈∑ i∈S qi/Q⌉ is usually taken as the lower bound on r(S ) where the demand of the depot q0 is 0.
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minimize
∑
i∈V

∑
j∈V

ci jxi j

subject to∑
i∈V

xi j = 1 ∀ j ∈ V\ {0} (1.1)

∑
j∈V

xi j = 1 ∀i ∈ V\ {0} (1.2)

∑
i∈V

xi0 = K (1.3)

∑
j∈V

x0 j = K (1.4)

∑
i∈S

∑
j∈S

xi j ≤ |S | − r(S ) ∀S ⊆ V\ {0} , S , ∅ (1.5)

xi j ∈ {0, 1} ∀i, j ∈ V (1.6)

In the vehicle flow model, constraints (1.1) and (1.2) provides that only one arc enters and leaves each

vertex associated with a customer, respectively. Constraints (1.3) and (1.4) also impose the degree

constraints for the depot and can be modified to include less vehicles in the solution. (1.5) are the well-

known Generalized Subtour Elimination Constraints which require that at least r(S ) arcs leave each

customer set S .

Figure 1.1: A solution for an example CVRP
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1.1.1.2 CVRP SET PARTITIONING MODEL

In the set-partitioning model, the aim is to select the minimum number of paths to cover all customers

given that the set of all feasible CVRP routes,Ω. In the formulation, Vc = {1, 2, ..., n} is the set of

customers. cp is the cost of traversing on the path p. The constant aip is 1 if customer i is visited on

the path p, 0 otherwise. The binary decision variable yp takes value 1 if the path p ∈ Ω is included

in the optimal solution, 0 otherwise. Based on the description of the variables and parameters, the

mathematical programming formulation of the set partitioning model is given as follows:

P 1

minimize
∑
p∈Ω

cpyp

subject to∑
p∈Ω

aipyp = 1 ∀i ∈ Vc (1.7)

∑
p∈Ω

yp = K ∀p ∈ Ω (1.8)

yp ∈ {0, 1} ∀p ∈ Ω (1.9)

Constraints (1.7) impose that each customer is covered exactly once. (1.8) requires that exactly K routes

are selected. However, this constraint can be modified to select less than K routes or set K can be defined

as unbounded. The set-partitioning model can be adapted for many VRP models. We will refer to this

formulation for other variants of VRP.

1.1.2 FORMULATION OF THE VEHICLE ROUTING PROBLEM WITH TIME WINDOWS

In the definition of VRPTW, all the constraints and assumptions for CVRP are valid. In addition,

• Customers must be visited within their time windows,

given that

• Every vertex i has an associated time window [ai, bi] and a service time si,
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• Hard time windows are considered which means that a customer should be visited within specific time

windows,i.e. an arc (i, j) is feasible if and only if ai + ti j + si ≤ b j.

• For each arc (i, j) ∈ A there is a defined travel time ti j.

Below, we provide the three index network flow model and the set partitioning model for VRPTW.

1.1.2.1 VRPTW THREE INDEX NETWORK FLOW MODEL

VRPTW is formulated as mixed integer programming (MIP) on a complete graph G(V, A) where V =

{0, 1, ..., n, n + 1} is the vertex set and A = {(i, j) : i, j ∈ V} is the arc set. In the formulation, the depot is

represented by two different vertices such that 0 is the start depot and n+ 1 is the end depot. Hence,Vc =

V\ {0, n + 1} represents the set of customers to be served. The cost of traversing on an arc (i, j) is denoted

as ci j. The sets γ+(S ) = {(i, j) ∈ A : i ∈ S } and γ−(S ) = {(i, j) ∈ A : j ∈ S } represent the arcs leaving and

ending in the customer set S ∈ V\{0, n + 1}, respectively. They are shown as γ+(i) and γ−(i) instead

of γ+({i}) and γ−({i}). The decision variable xk
i j takes value 1 if arc (i, j) is traversed by the vehicle k.

In addition, the decision variable wk
i indicates the time when the service at vertex i starts if vertex i is

visited by vehicle k, it is undefined otherwise. In addition, for the sake of simplicity, xk(B) is written

instead of
∑

(i, j)∈B xk
i j for the set B. Following these notations, the mathematical programming model for

VRPTW is given below:
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minimize
∑
k∈K

∑
(i, j)∈A

ci jxk
i j

subject to∑
k∈K

xk(γ+(i)) = 1 ∀i ∈ Vc (1.10)

xk(γ+(0)) = 1 ∀k ∈ K (1.11)

xk(γ−( j)) = xk(γ+( j)) ∀k ∈ K,∀ j ∈ V\ {0, n + 1} (1.12)

xk(γ−(n + 1)) = 1 ∀k ∈ K (1.13)

wk
i + ti j + si ≤ wk

j + (1 − xk
i j)M ∀k ∈ K,∀(i, j) ∈ A (1.14)

ai ≤ wk
i ≤ bi ∀k ∈ K,∀(i) ∈ V (1.15)∑

i∈N
qixk(γ+(i)) ≤ Q ∀k ∈ K (1.16)

xk
i j ∈ {0, 1} ∀k ∈ K,∀(i, j) ∈ A (1.17)

wk
i ≥ 0 ∀k ∈ K,∀i ∈ V (1.18)

Constraints (1.10) require that a customer is visited by only one vehicle. Constraints (1.11) ensure that

each vehicle leaves the depot once. Constraints (1.12) guarantee that a vehicle k can leave customer j if it

enters to that vertex j, and vice versa. In constraints (1.13), it is required that each vehicle returns to the

depot once. Constraints (1.14) ensure the time feasibility at the vertices where M is a large number. In

addition, constraints (1.15) and (1.16) ensure the feasibility with respect to time windows and capacity.

1.1.2.2 VRPTW SET PARTITIONING MODEL

VRPTW set-partitioning formulation is same as CVRP set-partitioning model (P 1) where K route se-

lection is not a constraint. In addition, the set Ω in VRPTW model represents all the feasible routes for

VRPTW. The constraints in the network flow model are included in the set Ω. The number of feasible

routes will be huge in number even for the medium sized problem instances. Although the solution

approach for VRPTW will not be discussed here, we will elaborate more on the solution methodology

of the set partitioning model of TDVRPTW in the next chapters.
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1.1.3 PROBLEM DEFINITION: TIME-DEPENDENT VEHICLE ROUTING PROBLEM WITH

TIME WINDOWS

TDVRP is defined by Malandraki and Daskin (1992) as follows: ”A vehicle fleet of fixed capacities

serves customers of fixed demands from a central depot. Customers are assigned to vehicles and the

vehicles routed so that the total time of the routes is minimized. The travel time between two customers

or between a customer and the depot depends on the distance between the points and time of the day.

Time windows for serving the customers may also be given as well as maximum allowable duration

of each route.” Accordingly, we will consider TDVRP with time windows such that the service at the

customers can only start within their time windows.

The general properties and the assumptions in the formulation of TVRPTW are also valid for TD-

VRPTW. However, any additional or different parameters and variables are defined in the table below

for the mixed integer programming of the problem.

Table 1.1: Description of Additional Variables and Parameters for TDVRPTW

δi(t) : Arrival time at node i given the dispatch time t at the depot
τi j(ti) : Travel time from node i to j given that the departure time at node i is ti
Zi j : Set of zones of the corresponding travel time function τi j(ti) for arc (i, j)
Zm : A zone ∈ Zi j defined by two breakpoints
θm : The slope of the the travel time function in the time zone Zm

ηm : An intersection with the y axis in the time zone Zm

Z+i j : Set of zones with θm > 0
Z−i j : Set of zones with θm < 0
wk

i (m) : Equals wk
i if the the service at node i starts in time zone Zm, 0 otherwise

1.1.3.1 PROBLEM CHARACTERISTICS

VRPTW has been largely studied in the literature. However, scarce resource is found for the time

dependent characteristics of this problem. With the motivation of modeling VRPTWs more realistically,

time dependent characteristics is also considered in TDVRPTWs. In real life, when traveling between

two locations,the speeds of the vehicles change due to traffic congestion. Therefore, the travel time

between the two locations change depending on the time of the day. In this study, planning time horizon

is divided into time zones to take into account the changing traffic congestion during the day and the

speeds of the vehicles change depending within the time zones. Ichoua et al. (2003) introduced the time
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dependent travel speed model to formulate time dependency in vehicle routing problems. The model

holds the ”first-in-first-out” (FIFO) assumption, that is from the two identical vehicles leaving the same

origin node for the same end nodes, the one which left the origin node at an earlier time always arrives at

the end destination earlier than the other vehicle. The main property of the model is that the travel speed

is a step function of the planning horizon. Therefore, speed changes when the boundary between two

consecutive time zones is crossed and the travel time function turns into a stepwise continuous function

of time as it is shown in Figure 1.2. Hence, for any time within a time zone, travel time is computed by

using the breakpoints of the corresponding time zone.

Figure 1.2: Travel Speed and the corresponding travel time function Ichoua et al. (2003)

As the travel times are time dependent, the arrival time of a partial path at an end node depends on the

dispatch time from the depot. Due to FIFO property of the time dependent travel speed model, a later

departure at the depot will always end up with a later arrival at the end node of the path. Therefore,

if a path is infeasible for a dispatch time t, it will also be infeasible for a later dispatch time t′ > t.

Given a partial path with an end node i and parent node j, which is directly visited before i, the arrival

time function δi(t) of the partial path with the dispatch time δ0(t) = t from the depot is calculated as in
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equation (1.19). The arrival time function includes the service and waiting time at the end node visited.

δi(t) = δ j(t) + τ ji(δ j(t)) (1.19)

As the right hand side of the equation (1.19) is composed of piecewise linear functions, the arrival time

function can be represented by the arrival time function breakpoints. Moreover, the optimal dispatch

time from the depot to find the shortest duration of a path can also be calculated by using the arrival time

function breakpoints such that

t∗ = arg mint∈T {δi(t) − t} (1.20)

where T is the domain for the feasible dispatch times from the depot.

1.1.3.2 TDVRPTW ARC BASED MODEL

The definition of the sets, variables and parameters are analogous to the ones in VRPTW. However,

in the arc based formulation of TDVRPTW an additional time zone index m is added to the decision

variables. The binary decision variable xk
i j(m) takes value 1 if arc (i, j) is traversed by the vehicle k and

the departure time from node i is within time zone Zm. wk
i (m) indicates the time when the service at

vertex i starts if vertex i is visited by vehicle k if xk
i j(m) = 1 and it is undefined otherwise. It is assumed

that the demand at the start and end depot is zero and the set of vehicles K is taken as unbounded.

Following the descriptions in Table 1.1, the mathematical programming model for TDVRPTW is given
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below:

minimize
∑
k∈K

∑
(i, j)∈A

|Zi j |∑
m=1

(θmwk
i (m) + ηmxk

i j(m))

subject to∑
k∈K

xk(γ+(i)) = 1 ∀i ∈ Vc (1.21)

xk(γ+(0)) = 1 ∀k ∈ K (1.22)

xk(γ−( j)) = xk(γ+( j)) ∀k ∈ K,∀ j ∈ Vc (1.23)

xk(γ−(n + 1)) = 1 ∀k ∈ K (1.24)

(1 + θm)wk
i (m) − si + ηm ≤

minimizennnwk
j(m) − s j + (1 − xk

i j(m))M ∀k ∈ K,∀(i, j) ∈ A,∀m ∈ |Zi j| (1.25)

wk
i (m) ≥ wk

i − (1 − xk
i j(m))M ∀k ∈ K,∀(i, j) ∈ A,∀m ∈ |Z+i j| (1.26)

wk
i (m) ≤ min(wk

i ,Mxk
i j(m)) ∀k ∈ K,∀(i, j) ∈ A,∀m ∈ |Z−i j| (1.27)

ai + si ≤ wk
i (m) ≤ bi + si ∀k ∈ K,∀(i) ∈ V (1.28)∑

i∈N
qixk(γ+(i)) ≤ Q ∀k ∈ K (1.29)

xk
i j(m) ∈ {0, 1} ∀k ∈ K,∀(i, j) ∈ A,∀m ∈ |Zi j| (1.30)

rm ≤ wk
i (m) < rm+1 ∀k ∈ K,∀i ∈ V,∀m ∈ |Zi j| (1.31)

Constraints (1.21) require that each customer is visited by one vehicle. Constraints (1.22) ensure that

each vehicle leaves the depot once. Constraints (1.23) guarantee that a vehicle k can leave customer j if

it enters to that vertex j, and vice versa. In constraints (1.24), it is required that each vehicle returns to

the depot once. With (1.25) the time feasibility at the vertices is ensured. In addition, constraints (1.26)

and (1.27) put bound on the value of wk
i (m) in case the departure from vertex i is at positive and negative

slope region, respectively. Finally, inequalities (1.28) and (1.29) ensure the feasibility with respect to

time windows and capacity.

1.1.3.3 TDVRPTW SET PARTITIONING MODEL

In the set partitioning model of TDVRPTW, Ω represents the set of all feasible paths p for TDVRPTW.

The cost of a path cp is the duration of that path and it is the difference between the end time ep and the

start time sp of path p. The constant aip is 1 if customer i is visited on the path p and 0 otherwise. yp is
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the binary decision variable which takes value 1 if the path p ∈ Ω is included in the optimal solution, 0

otherwise. Following these definitions, the formulation of set partitioning model is given in P2.

P 2

minimize
∑
p∈Ω

cpyp

subject to∑
p∈Ω

aipyp = 1 ∀i ∈ Vc (1.32)

yp ∈ {0, 1} ∀p ∈ Ω (1.33)

As the set of vehicles is assumed as unbounded. So,there is not a constraint on the number of vehicles

selected as in P1.

In this thesis, TDVRPTW is solved by branch and cut and price algorithm which merges the enumeration

approach of branch and bound algorithms with the polyhedral approach of cutting planes Padberg and

Rinaldi (1991). In chapter 3, we refer to the BCP algorithm of Dabia et al. (2011) on TDVRPTW and

introduce their solution approach.

In this chapter, we introduced the basic mathematical models for VRP, VRPTW and TDVRPTW before

the solution methodology of TDVRPTW in this thesis is discussed. In the next chapter, we will review

the related literature on the solution approaches for these problems.
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CHAPTER 2

LITERATURE REVIEW

The vehicle routing problem was introduced by Dantzig and Ramser (1959). They considered the prob-

lem of gasoline delivery from a bulk terminal to service stations so that every customer’s demand is

satisfied and the total distance covered by the vehicle fleet is minimized. They formulated a mathe-

matical model for the problem and solved it by an algorithmic approach. In 1964, Clarke and Wright

developed a greedy heuristic to improve Dantzig and Ramser’s approach. Since then the vehicle rout-

ing problem has been the most studied combinatorial optimization problem in the literature because of

its practical relevance to real life applications and difficulty. In addition, the problem has been studied

with many variants. In this section, we will briefly review the solution approaches on VRPs, VRPTWs

and finally TDVRPTWs. In addition, the solution approaches of elementary shortest path problem with

resource constraints in the column generation problem will be discussed.

2.1 VEHICLE ROUTING PROBLEM (VRP)

Study of VRP in the literature has given rise to several exact and heuristic solution techniques of general

applicability. It can be shown as a specific case of traveling salesman problem (TSP) (VRP with one

vehicle and infinite capacity) and is therefore a non-deterministic polynomial-time (NP) hard problem.

Cordeau et al. (2007) VRP is considerably more difficult to solve than a TSP of the same size. Although

TSPs with hundred or even thousands of customers can be solved by exact algorithms routinely, the

most advanced exact algorithms can solve VRPs up to 100 customer with a success rate. However,

heuristics can solve instances with more customers with flexibility to deal with many variants of VRP

in practice.Laporte (2007) Therefore, considerable amount of research for solving VRPs is concentrated

on heuristics. Below, exact algorithms and heuristics that mostly drew the attention of researchers are

presented. A recent review on the solution procedures on VRP is provided by Laporte (2007) and
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Cordeau et al. (2007). For a more detailed review on the variants of VRP, reader is refereed to the book

edited by Toth and Vigo (2001b).

2.1.1 EXACT ALGORITHMS

An exact algorithm is an algorithm that solves a problem to optimality. NP-hard problems are a special

kind of optimization problems for which most probably no polynomial time algorithm exists. It can-

not be expected to construct exact algorithms that solve NP-hard problems in polynomial time unless

NP = P. For some classes of problems there are hope of finding algorithms that solve problem instances

occurring in practice in reasonable time though. Røpke (2005)

In the literature, exact methods for solving VRPs are generalized into three main categories:

Direct tree search methods: Christofides et al. (1981b) presents tree search algorithms by incorporat-

ing lower bounds computed from shortest spanning k-degree center tree and q-routes.Hadjiconstantinou

et al. (1995) uses lower bounds obtained from a combination of two relaxations of the original problem

which are based on the computation of q-paths and k-shortest paths.

Dynamic programming: Christofides et al. (1981a) introduced the dynamic programming formulation

with the state-space relaxation method which provided an efficient way of reducing the number of states.

Integer linear programming: Naddef and Rinaldi (2002) solves the two index vehicle flow formulation

of VRP with branch and cut algorithm by solving 15 instance at the root node. Another successful ap-

plication of branch and cut algorithm is introduced by Baldacci et al. (2004) for two index vehicle flow

formulation of VRP. Baldacci et al. (2008) presents a set partitioning formulation of the CVRP with

additional capacity cuts which are the capacity and clique inequalities. Fukasawa et al. (2006) solves

CVRP by combining branch and cut with the q-routes relaxation. The resulting branch and cut and price

algorithm can solve important number of instances up to 100 vertices to optimality.

2.1.2 HEURISTICS

The heuristics developed for VRPs extended from classical heuristics to metaheuristics over ten years in

the past 40 years. The early classical heuristics usually first finds a feasible solution in the construction

phase and applies a post optimization procedure afterwards. On the other hand, metaheuristics uses

mainly two two principles: local search and population search. In local search methods, an intensive ex-
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ploration of the solution space is performed by moving at each step from the current solution to another

promising solution in its neighborhood. Population search consists of maintaining a pool of good parent

solutions and recombining them to produce offspring. Cordeau et al. (2002)

Next, the most promising heuristics methods to solve VRPs are presented:

Classical Heuristics: The classical heuristics is classified into two categories as constructive and im-

provement heuristics. The most well known constructive heuristics are savings algorithm Clarke and

Wright (1964), sweep algorithm Gillett and Miller (1974) and a heuristics based on a two phase de-

composition procedure Fisher and Jaikumar (1981). The general frameworks described in Thompson

and Psaraftis (1993) and Kindervater and Savelsbergh (1997) encompass most available improvement

heuristics.

Metaheuristics: Tabu search algorithms Gendreau et al. (1994), simulated annealing Osman (1993) and

genetic algorithms and their variants are mostly available to solve VRPs in the literature. A recent review

on VRP heuristics is provided in Cordeau et al. (2005).

2.2 VEHICLE ROUTING PROBLEM WITH TIME WINDOWS (VRPTW)

VRPTW has been solved in the literature by both exact methods (Kallehauge et al. (2005), Kallehauge

(2008)) and heuristics (Bräysy and Gendreau (2005a), Bräysy and Gendreau (2005b)). In this section,

we review the most promising solution techniques used in the literature.

2.2.1 EXACT ALGORITHMS

The research on the solution of VRPTW by exact algorithms mostly focuses on column generation

methodology introduced by Dantzig and Wolfe (1960). Since VRPTW is hard to solve as an MIP, it

is recommended to use Lagrangean relaxation (LR) or decomposition, for example Dantzig-Wolfe De-

composition (DWD), to break up the overall problem into a master problem (set partitioning formulation

of VRPTW) and a subproblem. ”To date, the most successful decomposition approaches for the VRPTW

cast the subproblem as a constrained shortest path structure. The master problem is an integer pro-

gram whose solution cannot be obtained directly, so its LP relaxation is solved. The column generation

process alternates between solving this linear master problem and the subproblem. The former finds

new multipliers to send to the latter which uses this information to find new columns to send back. A

lower bound on the optimal integer solution of the VRPTW model is obtained at the end of this back and
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forth process. This is then used within a branch-and-bound framework to obtain the optimal VRPTW

solution. If the vehicles are identical, all subproblems will be equivalent and therefore it is necessary

to only solve one.(Kallehauge et al. (2005) Applying cutting planes either in the master or the pric-

ing subproblem leads to a branch-and-cut-price algorithm(BCP).” Column generation is first used in a

DWD framework by Desrochers et al. (1992). Feillet et al. (2004),Irnich and Villeneuve (2005),Chabrier

(2006),Righini and Salani (2006), Jepsen et al. (2008), Desaulniers et al. (2008) proposed enhanced al-

gorithms to solve the subproblem.

2.2.2 SPPRC AS THE PRICING PROBLEM IN COLUMN GENERATION

In most vehicle routing applications solved by column generation, the subproblem corresponds to a

Shortest Path Problem with Resource Constraints (SPPRC) or one of its variant. In Irnich and De-

saulniers (2005), the contribution of SPPRC to the success of column generation of this class of prob-

lems is based on there main reasons. Firstly, through the resource constraints, it constitutes a flexible

tool for modeling complex cost structures for an individual route and a wide variety of rules that define

the feasibility of a route. Secondly, because it does not possess the integrality property, the column

generation approach can derive tighter bounds than those obtained from the linear relaxation of arc-

based formulations. Thirdly, there exist efficient algorithms available for important variants of SPPRC.

In many vehicle routing problems, the pricing problem is an Elementary Shortest Path Problem with

Resource Constraints (ESPPRC). Feillet et al. (2004),Chabrier (2002),Rousseau et al. (2004) solved ES-

PRRC in the context of VRPTW. ESPPRC was proposed to solve by using Lagrangian relaxation by

Beasley and Christofides (1989).

The most recent and promising method to solve ESPPRC recently is the label setting algorithm proposed

by Feillet et al. (2004),Righini and Salani (2006). ESPPRC is solved by bi-directional label setting

algorithm in Righini and Salani (2006) which uses Dijkstra’s bi-directional shortest path algorithm that

expands paths both forward from the start depot and backward from the end depot. The paths are spliced

in the middle which reduces the running time of the algorithm since the running time is dependent on the

length of the path. Figure 2.1 illustrates the comparison of mono and bi-directional search performance.

Furthermore Righini and Salani (2008) and Boland et al. (2006) proposed to solve ESPPRC by use of a

decremental state space algorithm that iteratively solves a SPPRC by applying resources forcing nodes

to be visited at most once. In Righini and Salani (2008), three methods to solve ESPPRC are proposed.
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Figure 2.1: Comparison of mono-directional and bi-directional search to find a feasible path from node
s to node t Petersen (2006)

The first method is exact dynamic-programming algorithm improved by new ideas, such as bidirec-

tional search with resource-based bounding. The second method consists of a branch-and-bound algo-

rithm, where lower bounds are computed by dynamic-programming with state-space relaxation where

bounded bidirectional search can be adapted to state-space relaxation with different branching strategies

and their hybridization. The third method, decremental state-space relaxation (DSSR), is a new one;

exact dynamic-programming and state-space relaxation are two special cases of this new method. Ac-

cording to the experimental comparisons of the three methods,decrement state-space relaxation has the

most promising results. In addition to Righini and Salani (2008),Chabrier (2006) successfully solved

several previously unsolved instances of the VRPTW from the benchmarks of Solomon (1987) using a

label-setting algorithm for the ESPPRC.
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2.2.3 HEURISTICS

Classical Heuristics: Route construction, route improvement and composite heuristics are the reported

in the literature as approximations methods to VRPTW. For a detailed review and comparison of the

heuristics, the reader is referred to Bräysy and Gendreau (2005a).

Metaheuristics: The research focus on the approximation methods of TDVRPTW is on metaheuristics,

mainly simulated annealing, tabu search Pisinger and Ropke (2007),Potvin et al. (1996) and mostly

evolutionary algorithms yves Potvin and Bengio (1996),Homberger (2005).

2.2.4 TIME-DEPENDENT VEHICLE ROUTING PROBLEM WITH TIME WINDOWS (TD-

VRPTW)

The solution methods proposed to solve TDVRPTW in the literature is mostly based on metaheuristics,

especially tabu search (Ichoua et al. (2003), Woensel et al. (2008), Jabali et al. (2009)). On the other

hand, for the time dependent vehicle problem, Malandraki and Daskin (1992) proposes heuristics based

on nearest neighbor and cutting planes. Metaheuristics such as genetic algorithm by Haghani and Jung

(2005) and ant colony optimization in Donati et al. (2008), Balseiro et al. (2011) are also present for

time dependent vehicle routing problem.
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CHAPTER 3

TDVRPTW SOLUTION METHODOLOGY

In this chapter, we refer to the exact solution method of Dabia et al.(2011) in which TDVRPTW is solved

by branch and cut and price. The decomposition of the arc based formulation of TDVRPTW leads to a set

partitioning model, described in Section 1.1.3.3, as the master problem and a time dependent elementary

shortest path problem with resource constraint as the subproblem. However, the capacity constraint of

the vehicles is handled in the master problem by the capacity cuts. Therefore, time is considered as

the only resource constraint in the subproblem.In Figure 3.1, the general framework of the algorithm is

presented with a flowchart. In this chapter, we will introduce the steps of the BCP algorithm through the

column generation process, capacity cuts and the pricing subproblem.

3.1 THE MASTER PROBLEM

The set of feasible routes Ω can be a very large set even for medium sized customers. The set usually

grows exponentially with the number of customers. Therefore, the master problem cannot be solved

directly. The linear relaxation of the problem P3 is considered to handle the complexity of the problem.

P 3

minimize
∑
p∈Ω

cpyp

subject to∑
p∈Ω

aipyp = 1 ∀i ∈ Vc (3.1)

yp ≥ 0 ∀p ∈ Ω (3.2)
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Figure 3.1: Flowchart of BCP algorithm for TDVRPTW

However, the linear programming model of the problem is not sufficient to handle the complexity of the

problem. Therefore, the column generation methodology starts with a Restricted Master Problem(RMP)

which considers a subset Ω′ ⊆ Ω of the feasible routes. However, RMP keeps growing during column

generation process. With the definition of the master problem, the dual variable Πi associated with the

constraint 3.1 becomes

c̄p = ep − sp −
∑

(i, j)∈A
Πixi j. (3.3)

Since the constant aip is 1 if customer i is visited on the path p and 0 otherwise, it can be rewritten as
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aip =
∑

(i, j)∈γ+( j)

xi jp. (3.4)

where xi jp is a binary variable which takes value 1 if arc (i, j) is traversed in path p. Hence, the reduced

cost of a path becomes:

c̄p =ep − sp −
∑
i∈Vc

Πi

∑
(i, j)∈γ+( j)

xi jp

 (3.5)

=ep − sp −
∑

(i, j)∈A
Πixi jp (3.6)

3.2 THE CAPACITY CUTS

In the formulation of the capacitated vehicle routing problem, we introduced the subtour elimination

constraints which are the alternative formulations of the capacity cut constraintsToth and Vigo (2001a).

In order to include the capacity cuts in the master problem, the arc variables xi j are transformed into path

variables yp. With this addition of these capacity cuts, a new dual variable is introduced in the pricing

problem for each of the inequalities. For, k capacity constraints defined by the set S 1, S 2, ..., S k and the

corresponding k dual variables λ1, λ2, ..., λk, the reduced cost of a path p becomes

c̄p = ep − sp −
∑

(i, j)∈A
Πix

p
i j −

k∑
l=1

∑
(i, j)∈A(S l)

λlxi jp (3.7)

As the contributions of the dual variables λ and Π are aggregated into the dual variable φi j, the reduced

cost c̄p is defined as

c̄p = ep − sp −
∑

(i, j)∈A
φi jxi jp (3.8)

In conclusion, by handling the capacity cuts in the restricted master problem, an additional dual variable

is introduced in the reduced cost of a path. Accordingly,the objective of the pricing problem changes

and vehicle capacity restrictions are not a constraint for the pricing problem. In the next section, the

labeling algorithm used to solve the pricing problem is introduced.
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3.3 THE PRICING PROBLEM

In the BCP framework of TDVRPTW, the pricing problem becomes Time-Dependent Elementary Short-

est Path Problem with Resource Constraint (TDESPPRC)in which only resource is time.Dabia et al.(2011)

introduces the time dependent labeling algorithm (TDL) with bi-directional search to solve TDESPPRC

by adapting the solution method by Righini and Salani (2006) to the time dependent case of ESPPRC.

In this section we introduce the bi-directional search algorithm for TDESPPRC.

3.3.1 FORWARD TDL ALGORITHM

In the forward TDL algorithm, labels are extended from the start depot to the end depot through the

successors of start depot and the extension is restricted by time which is the only resource considered. A

forward label’s ,L f , extension is feasible until the earliest arrival time at the end node of the partial path

is no further than a fixed time tm. The functions in Table 3.1 are defined to describe the forward TDL

algorithm.

Table 3.1: The attributes of label L f

v(L f ) : The last node visited on the partial path L f

c(L f ) : The sum of the dual variable associated with the arcs traversed on the partial path L f

δL f (t) : The arrival time function of L f which gives the arrival time (including waiting and service time)
at the end node v(L f ) when the depot is left at time t .

S (L f ) : The set of nodes visited along the partial path L f

When a label L′f is extended to a new path L f by traversing an arc (v(L′f ), j), the arrival time at node j is

calculated as

δL f (t) = δL′f
(t) + τv(L′f ) j(δL′f

(t)) (3.9)

As a new node is visited along the path, the set of nodes visited and the sum of the dual variables of the

path are updated as

S (L f ) = S (L′f ) ∪ { j} and c(L f ) = c(L′f ) − φv(L′f ) j (3.10)

These extension of the label is feasible if node j is not visited before such that S (L′f ) ∩ { j} = ∅ and the

earliest arrival time to node j satisfies the condition δL f (0) ≤ min
{
tm, b j + s j

}
. As the label reaches the

end node v(L f ), the reduced cost of the path becomes

c̄(L f ) = mint∈T
{
δL f (t) − t

}
+ c(L f ) (3.11)
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where T is the domain definition of δL f (t).

In the extension of the labels, it is not desirable to extend labels that will not be part of an optimal

solution. Therefore, dominance criterion are introduced for the dominance test in order to reduce the

number of labels that are created during the execution phase of the TDL algorithm. Let E(L f ) denote

the set of all feasible extensions of L f ,i.e. the partial paths departing at node v(L f ) at time δL f (0) and

reaching the end depot n + 1 satisfying the feasibility constraints. If L ∈ E(L f ), then the label results

from extending the path L f by L is denoted as L f ⊕ L. With these definitions as building blocks, the

domination is defined:

Definition 3.3.1 Label L2
f is dominated by L1

f if

1. v(L1
f ) = v(L2

f )

2. E(L2
f ) ⊆ E(L1

f )

3. c̄(L1
f ⊕ L) ≤ c̄(L2

f ⊕ L), ∀L ∈ E(L2
f ).

Definition 3.3.1 implies that label L1
f dominates L2

f if the partial paths end at the same depot, all feasible

extensions of label L1
f is also a feasible extension of L2

f and extending the former label is not more costly

than extending the latter. Since, the computational effort of extending all the paths to their feasible

extensions is high, two propositions with efficient dominance criterion are introduced. We will not give

a detailed explanation for these dominations since it is not in the scope of this thesis.

3.3.2 BACKWARD TDL ALGORITHM

The backward TDL algorithm works in the same way with forward TDL algorithm. However, the labels

are extended from the end depot to its predecessors. A backward label’s ,Lb, extension is feasible if the

latest possible departure time from the end node is larger than the fixed time tm. The following functions

in Table 3.2 are defined to describe the backward TDL algorithm.

When a label L′b is extended to a new path Lb by traversing an arc ( j, (v(L′b)), the arrival time function

associated with the label Lb is computed as

δLb(t) = δL′b
(t + τ jv(L′b)(δL′b

(t))). (3.12)
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Table 3.2: The attributes of label Lb

v(Lb) : The last node visited on the partial path Lb

c(Lb) : The sum of the dual variable associated with the arcs traversed on the
partial path Lb

δLb(t) : The arrival time function of Lb which gives the arrival time (including waiting
and service time)at the end depot when the end node v(Lb) of the partial path is
left at time t

S (Lb) : The set of nodes visited along the partial path Lb

As a new node is visited along the path, the set of nodes visited and the sum of the dual variables of the

path are updated as

S (Lb) = S (L′b) ∪ { j} and c(Lb) = c(L′b) − φ jv(L′b). (3.13)

These extension of the label is feasible if node j is not visited before such that S (L′b) ∩ { j} = ∅ and the

latest possible departure time t(Lb) at node j satisfies the condition t(Lb) ≥ (a j+ s j). Furthermore, as the

extension of the labels are bounded by time, the latest possible departure time should be t(L′b) ≥ tm.

As the label reaches the end node j, the reduced cost of the path becomes

c̄(Lb) = mint∈T
{
δLb(t) − t

}
+ c(Lb) (3.14)

where T is the domain definition of δLb(t).

Let E(Lb) denote the set of feasible extensions of Lb, i.e. all partial paths departing at the start depot

at time 0 and arrival time at node v(Lb) is smaller than t(Lb) which is the latest departure time from the

fist node visited on Lb. As it is computationally expensive to extend all the labels, it is not desirable

to extend labels that will not be part of an optimal solution. Therefore, efficient dominance tests are

proposed to reduce the number of labels extended. We will not give a detailed explanation for these

dominations since it is not in the scope of this thesis.

3.3.3 SPLICING FORWARD AND BACKWARD LABELS

After all the forward and backward labels are extended, they are combined to obtain a path. Let Lb be in

the extension of forward path L f . The labels are then merged to obtain a path L = L f ⊕ Lb such that

1. v(L) = n + 1
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2. c(L) = c(L f ) + c(Lb)

3. S (L) = S (L f ) ∪ S (Lb)

4. δL(t) = δLb(δLb(t)), ∀t ∈ DδL f (t) such that DδL f (t) ∈ DδLb (t).

The bi-directional TDL algorithm generates paths all with negative reduced costs. Let P = v0 → ...→ vp

be a path in the optimal solution, it is proposed that

Proposition 3.3.2 Let vi be a node in P. P can be found as P = P f ⊕ Pb where P f = v0 → ... → vi is

generated by the forward TDL algorithm and Pb = vi → ... → vp is generated by the backward TDL

algorithm.

Let P = v0 → v1 → vi → vi+1...vp−1 → vp be an arbitrary path where v0 is the start depot, vp is the end

depot and vi+1 is the node visited right after vi. The splicing node is defined as :

Definition 3.3.3 Node vi is a splicing path of path P if

• δL f (0) ≤ tm

and

• δLi+1(0) > tm or,

• δLi+1(0) ≤ tm and vi+1 = n + 1.

The bi-directional TDL algorithm can generate duplicate paths and a path can be spliced at different

nodes.However, any node that can be defined uniquely makes sure that a path spliced at that node is

found only once. Therefore, according to the definition , it is proposed that

Proposition 3.3.4 The splicing node of P exists and it is unique.

For the proof of the propositions, the reader is referred to Dabia et al. (2011).

25



3.3.4 PRICING PROBLEM HEURISTICS

In BCP framework, pricing heuristics are used to generate columns with negative reduced cost in the

pricing problem. If heuristics cannot find any more columns with negative reduced costs, then the bi-

directional TDL algorithm is called to check if a path can be found with negative reduced cost. Therefore,

for every node in the branching tree, TDL algorithm is called only once.

3.4 BRANCHING

Best bound strategy is used to select the next active node in the branch and bound tree. The branching is

done on the arc variables. The pairs (i, j), i, j ∈ Vc are searched such that the current fractional solutions

expressed in arc pairs (x∗i j+x∗ji) is close to 0.5. Then the branch on the tree node is (xi j+x ji) ≤ ⌊(x∗i j+x∗ji)⌋

and (xi j + x ji) ≥ ⌈(x∗i j + x∗ji)⌉. If (x∗i j + x∗ji) is integer for all pairs, then the a fractional value for xi j is

searched and branching is done on that instance instead. The algorithm uses strong branching and

performs the branch that maximizes the lower bound in the weakest of two child nodes. 15 branch

candidates in the first 10 nodes of the brnch and bound tree and 10 candidates in the rest is considered.
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CHAPTER 4

BOUNDING MODELS ON BI-DIRECTIONAL TDL ALGORITHM

When introducing the bi-directional dynamic programming for elementary shortest path problem with

more than one resource, Righini and Salani (2006) also proposed bounding procedures to limit the

number of labels produced by :

• Bounding for Fathoming: Recognizes and fathoms states that cannot produce optimal solutions

• Arc and Resource Bounding: Stops the extension of forward and backward paths in order to reduce

the number of labels generated, while preserving the guarantee that the optimal solution will be found.

In arc bounding, this is done by computing the number of arcs that can be added to the corre-

sponding partial path without exceeding the resource constraints. A multi-knapsack problem is solved

and an upper bound on the number of vertices that can be added along the path after the last reached

vertex of the label is obtained. If the number of nodes visited on the corresponding path is less than

the result of the knapsack problem than the extension of the label is stopped.

On the other hand, it is also possible to stop the extension of the paths when at least half of

available amount of the selected resource is consumed. It is necessary to select a resource whose

consumption is monotone along the path.

Within their computational experiments,Righini and Salani (2006) always uses fathoming with arc and

resource bounding. In most of the instances with different resource constraints, resource bounded bi-

directional dynamic programming outperforms arc bounded bi-directional dynamic programming. Al-

though the performance of the bounded bi-directional search is better than mono-directional search in

general, latter produces less labels for instances with tight time windows. Furthermore, arc bounding is

useful only when the optimal path is made of a significant number of arcs Righini and Salani (2006).
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In this study, TDESPPRC is solved with resource bounded bi-directional search without bounding for

fathoming. In this chapter, we will develop

• A bounding technique in order to fathom unpromising states in bi-directional TDL algorithm,

• An arc bounding procedure for bi-directional search TDL algorithm.

4.1 BOUNDING FOR FATHOMING

The aim of the bounding technique proposed in this section is to limit the number of labels in the T DL

algorithm. The labels whose extensions will lead to a worse solution than a known one are fathomed by

applying the bounding procedure. Within the pricing algorithm, this technique should be applied after

the dominance testes are done on forward on backward labels. In this section, we first introduce the

fathoming technique on forward labels and then backward labels.

4.1.1 BOUNDING FOR FATHOMING ON FORWARD LABEL EXTENSION

For each of the non-dominated label L f , we are looking for an upper bound PL f which is the maximum

gain that can be obtained by extending that label using minimum resources. To find this upper bound,

an optimization problem is solved to maximize the prize collected subject to available resources. The

only resource considered in this problem is time. The cost of traveling on an arc is also defined in

terms of time. It is the time between the arrival times of the two end nodes of an arc, called duration.

In addition, arrival time function includes the waiting time and the service time of the visited node.

Therefore, duration of traveling on an arc consists of the traveling time between two nodes, waiting time

and service time at the end node.

The description of the variables and parameters used in the optimization problem for fathoming (P4) is

listed in Table 4.1.

For each of the non-dominated label L f , optimization problem (P4) should be solved in order to decide

whether to fathom the label:
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Table 4.1: Description of Parameters and Variables

φk j : Dual variable of traveling on arc (k, j)
γk j(ηk) : Duration of traveling on arc (k, j) where ηk is the arrival time at node k
γ j : Minimum duration needed to visit node j
u j : Maximum prize collected when node j is visited
y j : Decision variable of visiting node j

P 4
maximize PL f =

∑
j∈Vc\S (L f )

u jy j + un+1

subject to δL f (0) +
∑

j∈Vc\S (L f )

γ jy j + γn+1 ≤ T

y j ∈ {0, 1} ∀ j ∈ Vc\S (L f )

In the objective function of the problem (P4), we are searching for the maximum gain that can be

collected by visiting unvisited customers, Vc\S (L f ) , of label L f within the planning horizon T . Due to

FIFO property of the arrival time functions, a later dispatch time results in a later arrival at the end node

of the path. Hence, to increase the allocated time for the unvisited nodes in the inequality constraint,

the departure time at the start depot is taken as ”0”. Therefore, we consider the arrival time at the end

node of the label L f as δL f (0). In the objective function, u j is the maximum gain that can be collected

by visiting node j. To find the maximum gain, the dual variable of a possible arc is reduced by the

minimum duration of the outgoing arc since it is always needed when a node is selected such that

u j = maxk∈{Vc\S (L f )}∪{v(L f )}


φk j −minmax

{
(ak+sk),δL f (0)

}
≤ηk

ηk≤(bk+sk)

γk j(ηk) if
(k, j) ∈ A,

δL f (0) ≤ (bk + sk).

−M otherwise.

(4.1)

un+1 = maxk∈{Vc\S (L f )}∪{v(L f )}


φkn+1 −minmax

{
(ak+sk),δL f (0)

}
≤ηk

ηk≤(bk+sk)

γkn+1(ηk) if
(k, n + 1) ∈ A,

δL f (0) ≤ (bk + sk).

−M otherwise.

(4.2)

where M is a very big positive number. As defined before, γk j(ηk) is the duration of traveling on arc

(k, j) and depends on the arrival time at node k. Since we are searching for an upper bound on the prize

collected by visiting all possible reachable nodes, the arrival time at node k is taken as the the arrival

time at the end node visited on label L f which is δL f (t). The departure time from the depot, t, is taken as
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0 to increase the search space on the arrival time function in order to find the minimum duration when

calculating u j and un+1 which are defined in the equations (4.1) and (4.2), respectively. However, if

δL f (0) is smaller than the minimum possible arrival time at node k, then (ak + sk) is taken as the arrival

time of node k for reachable nodes. In addition, the upper bound on ηk is taken as (bk + sk) since it is

the maximum feasible arrival time at node k. To conclude, the aim is to calculate the maximum gain

with regards to the end time windows. Therefore, we do not consider the lower bound by the start time

windows of the nodes that can be visited as a feasibility condition.

γ j, on the other hand, is the minimum resource used to visit node j. Following the same approach as in

the calculation of u j and un+1 ,the bounds on the arrival time, ηk, are taken the same as in the equations

(4.1) and (4.2). Therefore, the minimum time needed to visit node j, which is γ j, and the end depot,

which is γn+1, are defined as in the following:

γ j =


mink∈{Vc\S (L f )}∪{v(L f )}

max
{
(ak+sk),δL f (0)

}
≤ηk

ηk≤(bk+sk)

{
γk j(ηk)

}
if

(k, j) ∈ A,

δL f (0) ≤ (bk + sk).

bn+1 otherwise.

(4.3)

γn+1 =


mink∈{Vc\S (L f )}∪{v(L f )}

max
{
(ak+sk),δL f (0)

}
≤ηk

ηk≤(bk+sk)

{γkn+1(ηk)} if
(k, n + 1) ∈ A,

δL f (0) ≤ (bk + sk)

bn+1 otherwise.

(4.4)

where duration on arc (k, j) and (k, n + 1) are calculated as

γk j(ηk) = τk j(ηk)︸ ︷︷ ︸
Travel Time

+max
{
0, a j − (ηk + τk j(ηk))

}︸                             ︷︷                             ︸
Waiting Time

+ s j︸︷︷︸
Service Time

. (4.5)

γkn+1(ηk) = τkn+1(ηk) +max {0, an+1 − (ηk + τkn+1(ηk))} + sn+1. (4.6)

By solving the knapsack problem, an upper bound PL f is obtained on the maximum gain that can be

collected by extending the label L f . If

mint≤t(L f )(δL f (t) − t) + c(L f )︸                               ︷︷                               ︸
Reduced Cost of L f

−PL f ≥ UB, (4.7)
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then the label L f is fathomed. In the inequality (4.7), mint≤t(L f )(δL f (t) − t) is the minimum duration of

the label L f and c(L f ) is the sum of the dual variables associated with arcs traversed along the partial

path L f . To find the minimum duration,departure time from the depot is searched over the arrival time

function breakpoints. The departure time from the start depot which results in the minimum duration

belongs to a breakpoint. Moreover, UB represents an incumbent upper bound which is the value of

a known feasible solution. UB is calculated by comparing the reduced costs of the columns found in

the solution of the linear relaxation of RMP. If this value is positive, than UB is taken ”0” such that

UB = min {0,min {column reduced cost}}. By subtracting the upper bound,P, from the reduced cost

of the label L f , a lower bound on the reduced cost of a total path by extending label L f is obtained.

Notice that, when solving the optimization problem (P4), only the reachable nodes from L f can be in

the extension. In conclusion, if the lower bound on the reduced cost of a potential path is not better

than the reduced cost of a known feasible solution, then the label L f should be fathomed. The intuition

behind this rule is that if we cannot get a better solution by extending a label with maximum gain and

minimum resource, than it is not meaningful to keep the label in the set of non dominated labels and we

can fathom it.

4.1.2 BOUNDING FOR FATHOMING ON BACKWARD LABEL EXTENSION

As in the fathoming procedure proposed for forward labels, the same steps are followed for fathoming

backward labels. However, we should customize the problems,parameters and their calculation steps

according to backward label extension.

For each of the non-dominated label Lb, optimization problem (P5) should be solved for the decision of

fathoming Lb:

P 5
maximize PLb =

∑
j∈Vc\S (Lb)

u jy j + u0

subject to
∑

j∈Vc\S (Lb)

γ jy j + γ0 ≤ t(Lb)

y j ∈ {0, 1} ∀ j ∈ Vc\S (Lb)

In the objective function of the problem (P5), we are searching for the maximum gain that can be

collected by traversing unvisited customers, Vc\S (Lb), of label Lb within the planning horizon T . To
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increase the allocated time for the unvisited nodes in the inequality constraint, the latest possible depar-

ture time t(Lb) is taken as the departure time from v(Lb). Hence, the available time for traversing the

unvisited nodes of label Lb becomes t(Lb). The maximum gain that can be collected by visiting node j

and the start depot, 0, is calculated by subtracting the minimum duration of an incoming arc from the

dual variable of that arc :

u j = maxk∈{Vc\S (Lb)}∪{v(Lb)}


φ jk −minmax{(a j+s j),t′(Lb)}≤η j

η j≤(b j+s j)

γ jk(η j) if
( j, k) ∈ A,

t(Lb) ≤ (bk + sk)

−M otherwise.

(4.8)

u0 = maxk∈{Vc\S (Lb)}∪{v(Lb)}


φ0k −minmax{(a0+s0),t′(Lb)}≤ηk

η0≤(b0+s0)
γ0k(η0) if

(0, k) ∈ A,

t(Lb) ≤ (bk + sk)

−M otherwise.

(4.9)

where M ia a very big positive number. In the equation (4.8, γ jk(η j) is the duration of traveling on arc

( j, k) and depends on the arrival time at node j. The arrival time η j is restricted by the time windows of

that node. However, if the earliest possible departure time from the end node v(Lb), which is denoted as

t′(Lb), is between the time windows of node j, then t′(Lb) is taken as the arrival time for reachable nodes.

Node k is reachable from node j if there exists an arc between ( j, k) and the latest possible departure

time of Lb, t(Lb), is not larger than b j + s j.

γ j, on the other hand, is the minimum resource used to visit node j. Following the same approach as

in the calculation of u j and u0, the bounds on the arrival times, η j and η0, are taken the same as in the

equations (4.8) and (4.9). Therefore, the minimum time needed to visit node j, which is γ j, and the start

depot, which is γ0, are defined as in the following:

γ j =


mink∈{Vc\S (Lb)}∪{v(Lb)}

η j≥max{(a j+s j),t(Lb)}
η j≤(b j+s j)

{
γ jk(η j)

}
if

( j, k) ∈ A,

t(Lb) ≤ (bk + sk).

b0 otherwise.

(4.10)

γ0 =


mink∈{Vc\S (Lb)}∪{v(Lb)}

max{(a0+s0),t(Lb)}≤η0
η0≤(b0+s0)

{γ0k(η0)} if
(0, k) ∈ A,

t(Lb) ≤ (bk + sk)

b0 otherwise.

(4.11)
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where duration on arc ( j, k) and (0, k) are calculated as

γ jk(η j) = τ jk(η j)︸ ︷︷ ︸
Travel Time

+max
{
0, ak − (η j + τ jk(η j))

}︸                             ︷︷                             ︸
Waiting Time

+ sk︸︷︷︸
Service Time

. (4.12)

γ0k(η0) = τ0(η0) +max
{
0, ak − (η0 + τ0 j(η0))

}
+ s0. (4.13)

By solving the knapsack problem, an upper bound PLb is obtained on the maximum gain that can be

collected by extending the label Lb. If

mint≤t(Lb)(δLb(t) − t) + c(Lb)︸                              ︷︷                              ︸
Reduced Cost of Lb

−PLb ≥ UB, (4.14)

then the label Lb is fathomed.

In the inequality (4.14), mint≤t(Lb)(δLb(t) − t) + c(Lb) is the minimum duration of the label Lb and c(Lb)

is the sum of the dual variables associated with arcs traversed along the partial path Lb. To find the

minimum duration, departure time from the depot is searched over the arrival time function breakpoints.

The departure time from the start depot which results in the minimum duration belongs to an arrival

time function breakpoint. Moreover, UB represents an incumbent upper bound which is the value of a

known feasible solution which is the same value calculated in fathoming forward labels. By subtracting

the upper bound,PLb , from the reduced cost of the label Lb, a lower bound on the reduced cost of a total

path by extending label Lb is obtained. Notice that, when solving the optimization problem (P5), only

the reachable nodes from Lb can be in the extension. In conclusion, if the lower bound on the reduced

cost of a potential path is not better than the reduced cost of a known feasible solution, then Lb shouldn’t

be in the set of non-dominated labels and we can fathom it.

4.1.3 IMPLEMENTATION OF FATHOMING TO BCP FRAMEWORK

The fathoming procedure is implemented on the TDL algorithm of the solution procedure of TDVRPTW

by BCP. Therefore, the knapsack problems 4 and 5 are implemented in the pricing problem for the non-

dominated labels. If the forward or the backward labels satisfy the inequalities 4.7 and 4.14, then they are

fathomed and their extensions to form a path is not considered anymore. Hence, we expect to produce

less number of labels when the pricing algorithm is called in the BCP algorithm.
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4.2 ARC BOUNDING

Another way to reduce to stop the extension of forward and backward labels is arc bounding instead

of resource bounding. In this bounding technique, it is aimed to stop the extension of a backward or

forward label if the maximum number of vertices that can be added to that label is less than the number

of visited nodes on the label. Following the notation in Table 4.1, an upper bound on the number of

arcs that can be added to the path L f without exceeding the available resource is obtained by solving a

similar optimization problem as in (P4):

P 6
maximize

∑
j∈Vc\S (L f )

y j + 1

subject to δL f (0) +
∑

j∈Vc\S (L f )

γ jy j + γn+1 ≤ T

y j ∈ {0, 1} ∀ j ∈ Vc\S (L f )

If the solution of the problem (P6) is less than the number of nodes visited on the label L f , |S |, then the

extension of the label is stopped. The remaining part of the path will be generated by the labels extended

in the other direction due to the bi-directional search.

In a similar way, the same procedure is followed to stop the extension of the backward labels. The

knapsack problem that is solved to find the upper bound on the maximum number of nodes that can be

visited on a backward label Lb is given in (P7) below:

P 7
maximize

∑
j∈Vc\S (Lb)

y j + 1

subject to
∑

j∈Vc\S (Lb)

γ jy j + γ0 ≤ t(Lb)

y j ∈ {0, 1} ∀ j ∈ Vc\S (Lb)
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CHAPTER 5

COMPUTATIONAL RESULTS

5.1 DATA SET

The test instances are derived from Solomon test instances which are originally designed by Marius

Solomon in 1983 for VRPTW with 100 customers. The instances used in this thesis are from Dabia

et al. (2011) which adapts the original test instances of VRPTW for TDVRPTW. The instances are

designed taking into several factors. These factors are listed as follows.

• Geographical distribution of the customers: The customers can be in Randomly(R), Clustered(C),

Randomly Clustered (RC) categories according to their displacements.

• Width of the time windows: The time windows of the customers is classified into two categories as

(1) with tight time windows and (2) as the wide time windows.

• Number of customers: The number of customers in the test instances are up to 100 customer. We

will present the results for 25, 50 and 100 customers.

Time dependency is adapted to test instances by considering different speed profiles. The speed profiles

change during the planning horizon due to road congestion. In addition to the speed profiles, different

type of links connect these speed profiles. Three different links: slow, normal and fast represent the

type for the change of speed within city center, traveling from highways to city center and within the

highways. These links are selected randomly and is the same for all instances. The speed profiles with

3 type of links can be found in the Appendix A. The planning time horizon is divided into five planning

time zones with regards to the speed profiles. The zones are defined as Zone1 = [0, 0.2T [,Zone2 =

[0.2T, 0.3T [,Zone3 = [0.3T, 0.7T [,Zone4 = [0.7T,O.8T [ and Zone5 = [0.8T,T [ where T is the end

time window of the end depot bn+1.
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In the notation DTm.n, ”D” shows the type of geographic distribution of customers, ”T” represents the

width of the time windows, ”m” denotes the number of the instance and finally ”n” shows the number

of customers to be served.

5.2 COMPUTATIONAL RESULTS

The procedures proposed in chapter 5.2 for the BCP framework were tested on Intel(R) Core(TM)2

Quad CPU, 2.83 GHz, 4 GB of RAM computer. The linear relaxation of the master problem is solved

by LP solver CLP from open source framework COIN, COIN-OR (2011). The knapsack problems were

solved in the bounding procedures by using the optimization IBM ILOG CPLEX version 12.1 including

ILOG Concert Technology libraries,IBM (2011).

In Appendix B, we present the computational results for the TDVRPTW instances with 25 and 50

customers solved by BCP framework in which the solution to the pricing problem TDESPPRC is found

by resource bounded bi-directional TDL algorithm and the instances when fathoming is implemented.

The average of the percentage improvements (according to Dabia et al. (2011)) in the number of labels

produced can be seen in Table 5.1 below:

Table 5.1: Average % decrease in the number of labels by data type

Instance type Average % decrease # of instances solved
R1m.25 9% 12
R2m.25 93% 2
RDm.25 21% 14
C1m.25 51% 7
C2m.25 57% 3
CDm.25 52% 10
RC1m.25 6% 5
RC2m.25 73% 2
RCDm.25 25% 7
Overall Average 32% 31

The results in Table 5.1 show that the ”best improvement on average in the total number of labels

produced” is in the data type with randomly located customers who have wide time windows. However,

if we base the comparison only according to the geographical distribution of the customers, it is seen that

the best improvement was obtained for the instances with customers who have clustered displacements.
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Moreover, Table 5.2 shows the % decrease in the number of labels based on the time windows of the

customers. The average % decrease in the instances with customers with wide time windows is larger

than the one with tight time windows.

Table 5.2: % decrease in the number of labels according to the classification of time windows

T=1 T=2
% decrease 21% 63%
# of instances solved 24 7

Furthermore, on average 33% and 31% less labels are produced in the extension of backward and for-

ward labels, respectively. In addition, in 8 instances out of 31, less number of columns are generated

in column generation and pricing algorithm is called less frequently in 5 instances out of 31 instances

solved compared to the results of Dabia et al. (2011). Although solving the knapsack problem in the

fathoming procedure increases the time spent solving the exact pricing algorithm, we observed that in

10 instances the time to solve an instance decreased.

Figure 5.1: Solution of r104.25 with and without fathoming

A good example is given in Figure 5.1 for the instance r104.25 in which labels are produced more effi-

ciently with fathoming. Hence, in the BCP framework less columns are generated and less number of

calls are made to the pricing problem which led the algorithm to find the optimal solution in less time.

To give it in figures, without fathoming, r104.25 is solved in 74116 seconds by generating 16 columns.
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However, r104.25 is solved in 1053.44 seconds by generating 12 columns when fathoming is introduced

to bi-directional TDL algorithm.

The results for the instances with 50 customers is given in Appendix B. As in the case with 25 customers,

there is a larger improvement in the instances with clustered geographical distribution of the customers

in terms of number of labels produced as shown in Table 5.3. In addition, among these instance, we

could reduce the time to solve the instance r109.50, c101.50 and c106.50.

Table 5.3: decrease in the total number of labels produced by instance

r101.50 r105.50 r109.50 r110.50 c101.50 c106.50 rc101.50
16% 95% 12% 2% 89% 93% 2%

As discussed in chapter , in the original problem solved by Dabia et al. (2011) by bi-directional search,

the author already uses resource bounding. When we implemented arc bounding, in the test instances

we realized that the resource bounding performs much better than arc bounding. Therefore, here we do

not present the results when arc bounding is implemented instead of resource bounding.
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CHAPTER 6

CONCLUSION

In this study we implemented fathoming and arc bounding procedure to the pricing problem of TD-

VRPTW in BCP framework. In the analysis performed for the instances solved, we realized that the

fathoming procedure works well in general for the instances with clustered geographical distribution of

the customers and instances with customers having wide time windows, in terms of the number of labels

produced. In addition, the efficient production of forward and backward labels led to a decrease in the

solution time in 13 instances out of 38 in total. In the other instances we could not improve the existing

solution by Dabia et al. (2011).

6.1 FUTURE RESEARCH DIRECTIONS

With the introduction of bi directional dynamic programming by Righini and Salani (2006), researchers’

attention increased to solve the resource constrained elementary shortest path problems by bi-directional

search algorithm within the branch-and-price and branch-and-cut-and-price algorithms. This led to the

emerge of more promising methods to solve ESPPRC. One of these methods is the decremental state

space relaxation proposed by Righini and Salani (2008). The method has comparable computational

performances with exact dynamic programming when the resource constraints are very tight. Therefore,

the future extension of this research could be implementing decremental state space relaxation to solve

ESPPRC.
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CHAPTER 7

EFFECTS ANALYSIS OF A NEW CUSTOMER ON KUEHNE NAGEL

NETHERLANDS FMCG DISTRIBUTION NETWORK

Logistics plays an increasingly important strategic role for organizations that strive to keep pace with

market changes and supply chain integration. Meade (1998)Therefore, third party logistics (3PLs) play

an increasing role in the supply chain of the companies who outsource logistics activities. The main ad-

vantage of outsourcing services to 3PLs is that these 3PLs allow companies to get into a new business,

a new market, or a reverse logistics program without interrupting forward flows; in addition, logistics

costs can be greatly reduced. Accordingly, an important reason for the growth of 3PL services is that

companies compete in a number of businesses that are logistically distinct due to varied customer needs.

Most providers have specialized their services through differentiation, with the scope of services encom-

passing a variety of options ranging from limited services (for example transportation) to broad activities

covering the supply chain.Fuller et al. (1993). In addition, 3PLs have also become important players in

reverse logistics since the implementation of return operations requires a specialized infrastructure need-

ing special information systems for tracking/capturing data, dedicated equipment for the processing of

returns, and specialist trained nonstandard manufacturing processes. Some 3PLs, on the other hand, offer

complete supply chain solutions on warehousing, order fulfillment, and especially value-added services

such as repackaging, re-labeling, assembly, light manufacturing, and repair.Ko and Evans (2007)

In this chapter, we will introduce an effects analysis of a new customer on the Dutch distribution network

of Kuehne+Nagel (K+N), a 3PLs firm who provides its customers integrated services including all

aspects of logistics planning, control and execution. Recently, Kuehne+Nagel signed a contract with

a new customer PepsiCO whose main business is manufacturing, marketing and distribution of grain-

based snack foods, beverages and other products. PepsiCo decided to outsource its warehousing, freight

management and distribution operations in the Netherlands in order to improve customer service by
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responding even quicker to changing market demands while at the same time reducing supply chain costs

as well as the environmental impact of its transportation activities. Therefore, the company decided to

have a contract with Kuehne+Nagel for 10 years and outsource its logistics activities.The company chose

Kuehne+Nagel since KN ensured an integrated and flexible solution that copes with the daily patterns

and seasonality of the food industry with their in depth knowledge of Fast Moving Consumer Goods

(FMCG) industry. Within the scope of 10 year contract, K+N provides supply chain solutions tailored

to PepsiCo’s specific needs. By integrating PepsiCo into Kuehne + Nagel’s Dutch distribution network,

fewer kilometers will be needed to transport salty snacks, cereals and nuts from manufacturing sites to

the distribution center in Utrecht and further to retailers throughout the Netherlands. In addition, Kuehne

+Nagel will develop a new state-of-the-art, multi-user FMCG warehouse in Utrecht, equipped with high

bay storage and automatic layer picking during the first year of the agreement.http://knet.int.kn/ (2011)

The aim of the study that will be provided in this chapter is to give an insight to K+N logistics team

about the possible effects of the new customer on K+N distribution network and evaluate possible alter-

native scenarios for the operational changes by constructing a simulation model. In the next sections,

we introduce the 3PLs company, the problem definition in detail, our solution methodology and the cor-

responding simulation study performed to evaluate the future scenarios on K+N distribution network.

7.1 KUEHNE+NAGEL (K+N)

Kuehne+Nagel delivers integrated supply chain solutions to its customers. It has many locations in more

than 100 countries all over the world with over 58,000 employees. K+N offices are mainly located in

Africa, Asia Pacific, Europe, Middle East, and North America (http://knet.int.kn/ (2011)). The countries

in the global logistics network are listed in Appendix C. The key business activities and market positions

in the located regions are built on the company’s world class capabilities which are

• Seafreight,

• Airfreight,

• Contract logistics and lead logistics

• Road and rail logistics.
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The company provides logistics services to virtually all key industry sectors including aerospace, auto-

motive, FMCG, high technology, industrials, oil and gas logistics, pharma and healthcare and retail.

7.2 K+N NETHERLANDS CONTRACT LOGISTICS

The company has been present in the Netherlands since 1955. In addition to sea freight and air freight

activities, contract logistics also contributes to the company’s business within Netherlands.

Figure 7.1: Key Business Activities of K+N in Netherlands

In the scope of contract logistics, K+N provides service to different customer profiles. Contract logistics

in the company is divided into three business units:

• Technology Solutions,

• Fast Moving Consumer Goods (FMCG),

• Returns.

The contract logistics in K+N Netherlands is specialized in solutions to high technology and FMCG.

In addition, reverse logistics activities for the FMCG customers are also provided. In the further sub-

sections, business units, their functions and specialized facilities for these business units are explained.

To provide a general view, K+N warehouses located in the Netherlands are shown in Figure 7.2. The

company has many warehouses allocated to different business units to cover the distribution of goods.

Besides these warehouses are specialized according to the main customers they are dedicated to.
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Figure 7.2: Contract Logistics - Netherlands

7.2.1 TECHNOLOGY SOLUTIONS

Facilities in Moerdijk, Zoetermeer, Tiel, Helmond, Born and Wijchen are dedicated to the Business Unit

Technology Solutions. Products such as engines, small spare parts, complete communication systems,

printers, etc. are stored and distributed over these warehouses. Also, this business unit is specialized in

aftermarket sales technology in terms of Reverse Logistics and Service Logistics. A detailed overview

of the facilities can be seen in Appendix D.

7.2.2 FMCG

FMCG is the biggest division of contract logistics within Netherlands. The distribution and storage of

the retail goods to the retail distribution centers are provided by Kuehne+Nagel. The warehousing and

dispatching of the retail goods are mainly handled in K+N FMCG facilities located in Nieuwegein, Veg-

hel and Raamsdonskveer.
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Facility Nieuwegein: The facility is located on 34,000 m2. The unloading and loading of the goods

are handled manually or by Automatic Layer Picker (ALP) system. The facility is specialized for

FMCG Food warehousing and it is utilized for only national distribution. The main customers served

via Nieuwegein are Sara Lee, Nutricia, SCA and Britvic. Among these customers, products for SCA are

distributed over Benelux and the customer Britvic is leaving the network.

Facility Veghel: The facility is located on 103,000 m2 and composed of three buildings. The build-

ings have different properties. One of them is a high bay warehouse with ALP. The facility serves as a

national distribution center for Mars, Unilever and Nespresso and it serves as a duty free DC for Mars,

Cadbury, Ferrero and Nestle. In addition, it serves for International Travel Retail (ITR) of Mars, Ferroro,

Cadbury and Nespresso. Therefore, the facility is mostly specialized for these main customers.

Facility Raamsdonksveer: The facility is located on 40,000 m2. The unloading and loading of the goods

are handled manually or by ALP system. The facility serves as a manufacturing consolidation center for

its customers. There are approximately 400 types of dangerous goods stored and handled in the facility.

Therefore, the operations done within the facility differ from other facilities. The employees get special

training to deal with the dangerous goods. The main customers served are Kimberly Clark Consumer,

Reckitt Benckiser and Unilever Home and Personal Care.

More information about these warehouses and smaller facilities (Vaassen, Ede, Oud Beijerland) are

provided in Appendix D.

7.2.3 RETURNS

The facilities in Zaandam, Zwolle, Tilburg and Pijnacker serve as return centers. These four return cen-

ters are recently taken over from Albert Heijn. The return centers are responsible for performing needed

operations for all return goods such as boxes, packaging and crates which return from approximately

900 Albert Heijn stores in The Netherlands. There are different types of returns in the network:

• One type of return is collected from Albert Heijn distribution centers and delivered to K+N return

centers. These type of returns are composed of wastes, boxes, recycle bottles and empty crates. These

returns are sorted and processed in return centers and some of them are delivered back to the sourcing

units. For example, after empty crates are washed in Tilburg facility, they are delivered back to the

sourcing unit.

• The second type of return is the scheduled returns. These returns are collected from the retailer

distribution centers and brought back to the K+N warehouses. These types of returns are mostly the
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excess promotions.

• The third type of returns is composed of wrong deliveries. These type of returns have to be collected

from the retailer distributions centers and delivered back to the K+N warehouses.

More information for the return centers can be seen in Appendix D.

7.2.4 CURRENT DISTRIBUTION (AS IS) NETWORK FOR FMCG and RETURNS

The company provides storage and distribution of FMCG to its customers. The transportation activities

over the distribution network include:

• Primary Transport: Collection of goods from the sourcing units to K+N distribution centers,

• Secondary Transport: Delivery of goods from K+N distribution centers to retail distribution centers,

• All type of returns explained in section 7.2.3,

• Inter K+N: Delivery of all type of products between K+N depots,

• Direct Shipments: Pick-up and delivery orders from the customer site to the end customer’s delivery

address.

As it is listed, both forward and backward logistics are performed in the distribution network of FMCG

within K+N Netherlands. The transportation activities over the distribution network are shown in the

following figure:

This current distribution network in other words ”AS IS” network runs with the following characteristics:

• Transport home base warehouses: Veghel, Raamsdonskveer , Nieuwegein

• Supporting home bases: Vaassen ,Ede, Oud Beijerland

• Retail return centers: Zaandam, Zwolle, Tilburg, Pijnacker.
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Figure 7.3: Current Distribution Network - FMCG and Returns

PLANNING OVER AS-IS NETWORK The planning over the distribution network is done by the

planners on site. Every planner is responsible for his/her own trucks and truck drivers. The aim of the

planners is to optimize the flows taking into account both the inbound and outbound logistics. The plan-

ners use the tool ”Intertour” for the transport optimization. However, in the current situation, planners

do not utilize the optimization part of the software. Instead, the software is used as a visualization tool

to plan the routes manually. After the routes are planned, these routes are assigned to the trucks to check

the capacity. Hence, the capacity allocation is done as the second step. For the secondary transport,

generally customer orders are consolidated and delivered to retail distribution centers. However, in these

processes, there is not a complete integration of forward and reverse logistics because of the complexity

of the network. The most important factors that affect the transportation planning are the customers’

market pressure and strict time windows of the end customers. The company has three types of cus-

tomer orders which are called Type A, Type B, Type C. Type C orders have lead time of 2 days, type B

orders have lead time of 1 day and type A orders belongs to the orders delivered to Albert Heijn Retail

Distribution Centers (RDCs). Type A orders are given at 12:00 every day and have to be delivered to

Albert Heijn RDCs at night. In addition, according to the interview done with the transport planning

manager, 80% of the deliveries have a specific time which means the delivery is assigned to the same

day of the week to the same time window.
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7.3 PROBLEM DEFINITION

”3PLs’ logistics networks typically differ from the logistics networks owned by single company. The

primary purpose of the company-owned network is to take care of its own products and customers. How-

ever, 3PLs’ networks must consider a number of various clients over time. The network design issues

can be divided into two categories with respect to the material flows: forward flow and reverse flow.

Current 3PLs tend to provide logistics services for both flows.”Ko and Evans (2007)

As mentioned before, Kuehne + Nagel is a 3PL that performs both forward and reverse logistics for a

variety of customers. For a 3PL to survive in the market, it is important to satisfy its customers with a

high customer service level and low costs. In the dynamic environment of the retail sector it is important

to take control over the costs and re-develop the existing network to keep pace with the changing market

requirements.

Recently, K+N had a new contract with a new customer, PepsiCo. PepsiCo has products with lightweight

but high volume products. The company expects an increase of approximately 50 % in the transportation

activities with the addition of the new customer to the existing network. Therefore, it is important to

analyze the current and future network, define the strategies for the future with the changing structure of

the network.

System boundary is defined to decide which part of the network is in interest in Figure 7.4. The distri-

bution network of the business units FMCGs and returns is in the system of interest since they are the

components of the system that will be directly affected by the changing conditions. Among FMCGs and

returns, we are not interested in the distribution over out of home (OOH) customers in Belgium (and

partially in Netherlands) since the distribution is outsourced. The planning and distribution of goods are

done by outsourcing transport companies. In addition, the facilities Vaasen, Ede and Oud Beijerland are

described as supporting home bases which means they are not warehouses but there are trucks assigned

to these facilities and most of the trucks start and end the trip in these facilities. Therefore, these facilities

are also taken in the system boundary. In the environment of the system, there will be customers, end

customers and subcontractors since they will be affected by the changes in the system.

The system boundary is defined but with PepsiCO there will be new opportunities and alternatives in

the system. With the PepsiCo contract, the products will be distributed via K+N network by January

2011 which will lead to several changes in the network. With the addition of PepsiCo, it is foreseen an

extension of the transport network activities. Therefore, a new warehouse will be opened in Utrecht by

2012 and the facility in Nieuwegein will be closed. The view of the main warehouses in the current (AS
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Figure 7.4: System of interest in terms of business units and facilities

IS) and the future (TO BE) networks are provided on the maps in Figure 7.5.

In addition to the changes in warehouses with PepsiCO contract, the firm will be able to use 3 LZVs

(Langere en Zwaardere Vrachtautocombinatie) which are 25 meter long vehicles. The firm wants to

know how to utilize these LZVs in TO BE network, including the decision of automatic or non-automatic

unloading. Further investment on these vehicles is also in consideration if it is profitable. Moreover,

more night and weekend deliveries are in consideration with changing conditions.

The company does not know precisely how much value is added by its recent customer to the network.

Besides, it is not known how much value will be added by PepsiCo to the existing network and which

companies will be more or less valuable when PepsiCo enters into the network. Hence, the company is

looking for an assessment of the customer contributions to the network.

As mentioned before, in the current situation the primary transport is done between a specific warehouse

and sourcing unit and the products of that sourcing unit is done via that specific warehouse. Another

topic for the customer contribution is that the effect of change in the network in case of changing the

gravity of the customer to other warehouses.

All in all, it is clearly seen that the new customer PepsiCO will change the AS IS network and there

will be new alternatives over the distribution network. For the future of the distribution network, it is

important to know the effect of PepsiCO over the AS IS and analyze further alternatives for TO BE.
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Figure 7.5: The AS IS network (on the left) and the TO BE network (on the right)

However, one important thing is to know about the current performance of AS IS network which will

also guide us in the further phases of the research. The possible causes for the need of analysis of the

AS IS network is given in the cause-effect diagram in Figure 7.6.

In accordance with the information and problems provided, it is necessary to define the research scope

and the research questions in terms of what should be done in the further phases of the study.

7.4 RESEARCH DESIGN

As the distribution network is introduced and problems are described, it is decided to go through the

following steps during the research study:

• There is a lack of analysis in the current system. As the first step; the current situation of the distribu-

tion network in the system of interest should be analyzed. The performance of the current distribution

network should be measured to evaluate the efficiency and the effectiveness of AS IS network.

• The second step is the measure the impact of the new customer on the current network and operational

processes.
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Figure 7.6: Cause-effect diagram for the analysis of the current network

• Finally, in line with the second step, what if analysis of the possible alternatives should be performed.

In what if analysis, it is important to define different scenarios and alternatives to reach an optimized

solution. The steps in the research scope are summarized in Figure 7.7. It is clearly seen that every

step leads to a research question.

Throughout the study, in every research question same measures is used to evaluate the network perfor-

mance and alternatives over the network. These performance measures are:

• Empty KMs traveled vs. Loaded KMs

• Capacity utilizations of the trucks

• Number of deliveries per period

• Order fulfilments

• Number of vehicles required per vehicle type

• Kilometers traveled and hours spent for each trip.
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Figure 7.7: Research Scope

7.4.1 RESEARCH QUESTION 1

How does the current distribution network perform in K+N Netherlands for FMCGs and returns?

The objective of the first research question is to gain an insight on the current network performance of

the company. Therefore, it is necessary to process the past data in order to derive quantitative results for

performance measures. In addition to understanding the past performance, it is aimed to compare the

performance of the network with the theoretical optimum. Hence, the approach that should be followed

for this part is to first model the current network. For this, we can construct a simulation model, and then

verify and validate the model so that we can compare the actual costs and simulation costs. According

to the research conducted, the software SHORTREC is a suitable tool for simulation study. It is an

automated trip routing and scheduling system and optimizes transport and distribution planning. The

optimum allocation of the vehicle fleet by efficiently filling in trips, combined with the fastest routes,
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enables the user to agree more accurate delivery times with its clients. In addition, the best planning can

be determined in a unique situation by comparing various scenarios. Accordingly, we can compare the

performance of the current network with the optimum solution found by SHORTREC.

7.4.2 RESEARCH QUESTION 2

How will the new customer affect the performance of the current distribution network with FMCGs and

returns?

The objective of the second research question is to see the affect of the new customer in the network in

terms of transportation costs. Therefore, the approach that should be followed for the second research

question is to construct the model with the new customer included in the network. For the simulation

study it is decided to use the software SHORTREC.

7.4.3 RESEARCH QUESTION 3

How to minimize costs in an expanding network within a dynamic environment?

How to utilize alternative methods to find the optimum solution for FMCGs and returns network?

There will be new alternatives to be evaluated such as

• A new warehouse: This alternative includes the new warehouse that will be opened in Utrecht.

• New vehicles (LZVs) utilized: In this alternative, it is aimed to evaluate the optimal use of LZVs.

• Operational changes in the system:

• Allowing more night deliveries and more Sunday deliveries: With this alternative, the company will

be assumed to work for 24 hours over 7 days a week.

• Overnight stay of truck drivers which also means multi-day planning.

With the new warehouse the network will become TO BE network. Hence, the alternatives should be

evaluated to minimize the costs over TO BE network. In Figure 7.8, the structure of the research design

is provided. The research will be conducted starting with analysis of the AS IS network followed by

measuring the impact of PepsiCo. Lastly TO BE network will be constructed and new alternatives over

TO BE network will be evaluated. Throughout this study, detail planning is not in research scope since
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the network is dealt with at high level. Therefore, it is more convenient to conduct the research with

SHORTREC in which the planning over the FMCG network can be determined and various alternatives

can be compared. Accordingly, the defined alternatives can be evaluated in an easy manner by using

SHORTREC.

Figure 7.8: Structure of Research Design

7.5 AS IS NETWORK

The data to perform the necessary analysis for AS IS network were collected from the Transportation

Management System (TMS) of the company. However, it is important to select the data within the

system boundary. The transportation services within the company are performed by their own trucks,

subcontractors and charters. When the company cannot satisfy the demand of its customers by its own

trucks, subcontractors’ trucks are utilized. In addition, there are two different uses of charters. The first

type of charter firms work for Kuehne + Nagel but make their own planning. The second type of charter

service is used when there is excess demand within the distribution network. We exclude the first type

of charter firms in the analysis since they are responsible of their own planning. Therefore, the data

collected for the analysis do not include the trips performed by these companies such that 20 carriers out

of 50 are excluded in the analysis.
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To perform analysis of the transportation network of the company 26 weeks data were collected. How-

ever, it was costly in terms of time and effort, to make the analysis for all the collected data. Therefore,

three representative weeks were chosen for the analysis, simulation and the comparison of the two. The

total kilometers covered and the total demand volume were taken into account to select the representa-

tive weeks. The distance calculations in the system are based on the theoretical distances and a common

weight-volume measure, which is called chep equivalent units, is used for all types of products in the

company database. Moreover, in the selection, the weeks with very high or very low demand were ig-

nored. The weeks in which there were national holidays or the weeks in vacation time were also ignored.

Thus, the following weeks were chosen for the analyses in general:

• High volume week: Week 35

• Medium volume week: Week 11

• Low volume week: Week 23

Kilometers covered for the 26 weeks data on a weekly basis can be seen in Figure 7.9.

Figure 7.9: Total overview kilometers traveled in 26 weeks

A general statistics of the empty and full kilometers is provided in Table 7.1.
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Table 7.1: Summary of the kilometers covered

Minimum Average Maximum
Full KMs 130906 148036 168795
Empty KMs 64039 75072 87318
Total KMs 195300 223108 245802
% of empty KMs 31% 34% 36%

Figure 7.10 shows the KMs traveled per trip execution type. In the graph, when refer to K+N KMs,

the temporary workers hired to service customers by using KN trucks is also included. Though, it is

seen that KMs covered by subcontractor firms increases from the week with low level of demand, KMs

covered by K+N owned trucks decreases.

Figure 7.10: Trip execution type KM distributions

In Figure 7.11, we also see the decrease in the number of trips performed in AS IS network decrease

from low to high. However, the average trip length is much higher in the week medium and high than

the week low. Thus it can be concluded that, KN used its own trucks more efficiently when then demand

level increased. This is also due to the temporary workers hired in this period. The temporary workers

were only utilized at the week with high level of demand. Temporary workers were used in 15 weeks in

total out of 26 week data.
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Figure 7.11: Number of trips vs. average trip length

7.6 SIMULATION STUDY

7.6.1 SIMULATION TOOL

In order to simulate the TO-BE Network, commercial routing software SHORTREC was used as the

simulation tool to solve the VRPTW. SHORTREC is a program for trip and route planning developed

by ORTEC consultants. The route planning indicates the best route for a vehicle to take between two

or more addresses. The trip planner, on the other hand, assigns orders to the entire vehicle fleet in an

efficient way. The objective of the program is to minimize the total related costs by taking into account

various type of restrictions such as

• Heterogeneous and fixed vehicle fleet

• Multiple capacity constraints of vehicles (volume, height and weight)

• Product requirements (eg. Cooling)

• Handling of backhaul customers (suppliers)

• The sequence of the service of the customer (first or last)

• Load capacity
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• Multiple service intervals (loading and unloading time windows)

• Distance

• Depots

• Drivers’ working hours

• Driving times.

By the allowance of these factors, SHORTREC makes efficient plans for the user. These plans can be

analyzed in various ways and can be adapted according to the planner’s preferences. Although SHORT-

ERC is an automated planning system, manual adjustments can be made within trips after the planning

is done. The software has many different interfaces which makes it easier for the user to make modifica-

tions in the plan. In addition, the scenario analysis option enables to draw up various plans and compare

them with each other. Furthermore, the output of the software provides detailed reports about the kilo-

meters driven, the overtime of drivers, service levels etc. All in all, SHORTREC has many features for

efficient route planning. However, it is important for the user to define the requirements before deciding

to implement the software. The tool’s comparison with different vehicle routing softwares in terms of

their specifications, features and capabilities is presented in Hall (2006). The detailed solution approach

of SHORTREC is beyond our knowledge. However, there is basic information in the literature (Kant

et al. (2008) and Poot et al. (1999)) about how the software handles real life vehicle routing problem

restrictions.

7.6.2 SHORTERC SOLUTION METHODOLOGY

SHORTREC first finds a basic solution by construction heuristics and then improves the first solution

by improvement heuristics. Sequential insertion algorithm and saving based algorithm are used as con-

structive heuristics to find a feasible solution. The main idea behind the insertion algorithm is to add

non-served customers to the current plan by inserting them at the best position. Once it is not possible

to insert a customer into the current trip anymore, the algorithm starts with a new trip Poot et al. (1999).

Figure 7.12 summarizes the steps for the sequential insertion algorithm used in SHORTREC.

In order to overcome the unattractive view of the results of the sequential insertion algorithm, SHORT-

REC developers also used saving based algorithm. The idea behind the algorithm is to start with each
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Figure 7.12: The Sequential Insertion Algorithm for VRP Poot et al. (1999)

customer in a separate trip and then try to find improvements on this solution (”savings”) by combining

the customers of two trips into one trip without changing the order in which the customers are visited

Poot et al. (1999). In order to handle the real life restriction of vehicle routing problem, adjustments

were made on the algorithm. The main steps of the saving based algorithm are summarized in Figure

7.13.

After the basic solution is found variable neighborhood search is utilized as improvement heuristics.

Several neighborhood structures (the opt algorithms) are used, the order and frequency of which can be

determined by the user. In a way, these neighborhoods are used as building blocks, to create a heuristic

solution method that is adapted to the specificities of the routing problem at hand. By this way the solver

can be adapted by the user, so that a balance is reached between computing time and solution quality.

Moreover, a large degree of control over the length of the search can be defined. Schittekat (2010). In

the version of SHORTREC used in this study, a repetition cycle of the following option settings can be

formed and a maximum run time can be specified in total and for each of the options to improve the

basic solution:

1. Basic Solution: The basic solution involves preliminary allocation of orders to vehicles (trips). The

basic algorithm adds the orders to the schedule, and then all other algorithms seek to improve it. The

basic algorithm is the so called construction algorithm; the following are the enhancement algorithms
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Figure 7.13: The Savings Based Algorithm for VRP Poot et al. (1999)

and their calculation times can be adjusted.

2. Optimize within trip: SHORTREC seeks to improve on the sequence of orders assigned to each trip,

so as to reduce the cost of the plan. The optimization process does not involve moving orders within

trips.

3. Replacing of orders: The optimization option involves assessing each possible pair of planned trips

to establish whether a cost saving is possible by moving one or more orders from one trip to the other.

4. Optimize within trips: This procedure is a combination of the optimization options 7 and 8.

5. Equalize workload: SHORTREC tries to equalize the number of hours worked in different trips.
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This is done by applying a notional surcharge the time that each vehicle is in use in excess of the

average. If this optimization option is activated, the plan is liable to become more expensive in terms

of kilometers covered and overall resource utilization time. However, the work will be more evenly

distributed across the vehicle fleet.

6. Selection of cheapest vehicles: This optimization process involves assigning each complete set of

tasks to the vehicle that can perform at the lowest cost. SHORTREC’s basic solution is based only on

capacity and availability. Some trips may, therefore, initially be assigned to vehicles that are relatively

expensive to operate or are locate a considerable distance from the trip’s starting point. The purpose

of this optimization process is to identify vehicles that could do the work more cheaply, because they

are either cheaper to operate or located more conventionally.

7. Trip swapping: In the context of this optimization process, each pair of trips is assessed, to see

whether the cost of the plan could be reduced by swapping them over.

8. Stop swapping: This option also entails trying to minimize the cost of the plan. Every trip pairing

examined to assess the cost implications of swapping some of their orders (i.e. moving one or more

orders from trip A to trip B and one or more orders from trip B to trip A.)

A view of the option settings for the opt algorithms in SHORTREC can be seen in Appendix E. In

addition to these explanations, the reader is referred to Close (2009) for a more detailed explanation of

SHORTERC solution approach.

7.6.3 SIMULATION MODEL PARAMETERS SETTINGS

In order to simulate the transportation system of the company, the parameters in the simulation software

were defined and estimated. The data collected from the TMS were used in order to estimate the param-

eters. Furthermore, an Excel tool is created to transfer the data from TMS into simulation input so that

further simulations can be performed for other purposes in the company. The parameters were tested on

the AS-IS network simulations and then utilized in the TO-BE network simulations.

7.6.3.1 PLANNING HORIZON

In the sample simulation runs, the rolling horizon was taken as one week in order to simulate the repre-

sentative weeks at one time. However, the results couldn’t be validated with the real figures of the AS-IS
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network. Therefore, the planning horizon was taken as one day for the simulation. Another arrangement

was done in order to plan the night delivery orders. These orders couldn’t be planned when the working

hours of the depots and the vehicle fleet were taken as 24 hours. For example, the orders to be delivered

at 23:30 or 00:30 couldn’t be planned since the vehicle cannot return the depot in 30 minutes from the

delivery address or cannot leave the depot and be at the delivery address in 30 minutes. Hence, in the

simulations, the working hours of the depots, trucks and drivers were taken as from 00:01 to 30:00. It

was tested that the six hours extension would be sufficient to prevent the planning problem discussed.

Unfortunately, with this setting all the possible scenario analysis for operational changes within the

system such as multi-day planning were eliminated.

7.6.3.2 LOADING AND UNLOADING TIMES

The unloading and loading time analysis was done for the depots and non-depot points separately be-

cause of two reasons. Firstly, in the company database, only the vehicle arrival and departure times at

an address exist. Therefore, the time between the arrival and departure time not only includes the time

required to load or unload the orders but also the waiting time at the address. Secondly, when drivers

arrive at the depot, the trailers are already loaded.The drivers only couple the trailer to the truck. Time

is needed only for paper work. This is the same for unloading. The drivers only uncouple the trailer

and do the paperwork when they arrive to the depot with loaded truck. Therefore, the time between

the departure and arrival times in the database does not include any information about the times of the

loading and unloading processes. On the basis of this information, the following calculations were done

for the loading and unloading time analysis.

DEPOT LOADING AND UNLOADING TIMES The loading and unloading time of the orders at

the depot does not depend on the number of pallets loaded at the depots. Therefore, a simple average of

the loading and unloading durations was taken.

NON-DEPOT LOADING AND UNLOADING TIMES The following times are meant by the load-

ing and unloading times at non-depots:

• The loading time at customer’s pick-up address for direct shipment

• The loading time at sourcing unit for primary transport
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• The unloading time at end customer’s delivery address for direct shipment

• The unloading time at customer’s delivery address for secondary transport.

Every driver is responsible for loading and unloading the orders at specified points on the route. Differ-

ently from the loading and unloading times at the depots, the times in this section also depend on the

loaded or the unloaded quantities. Moreover, the duration in the database includes the time for loading

or unloading activity, waiting time at the point and the time needed for paperwork. In order to calculate

the times for the simulation, a linear regression model was constructed such that the dependent variable

in the model is the loading/unloading time and the loaded/unloaded quantity is the only explanatory vari-

able. Figure 7.14 and Figure 7.15 shows the loaded quantity line fit plots respectively. The descriptive

statistics for the two regression models is provided in Appendix F.

Figure 7.14: Quantity loaded line fit plot

Based on the results of the two regression models the fixed and variables times for loading and unloading

times at customers’ addresses were defined. However, in the test simulations, it is realized that the

loading and unloading times in total is larger than the actual figures. Hence, it was decided to decrease

the fixed times for loading and unloading activities considering that the durations also includes the

waiting times at the depots. In conclusion, the parameters for loading and unloading times are defined

as in Table 7.2.
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Figure 7.15: Quantity unloaded line fit plot

Table 7.2: Loading and unloading time parameters

Depots Non-Depots
Loading
Time

Unloading
Time

Loading
Time

Unloading
Time

Fixed Time (min.) 27 27 24 30
Variable Time per chep
equivalent unit (min.)

0 0 1 1

7.6.3.3 FIXED AND VARIABLE COSTS

The fixed cost of utilizing a truck in the planning horizon was provided by the logistics engineers in the

firm. In the simulations, the fixed cost of utilizing a KN truck is the lowest and utilizing a charter truck

is the highest. A comparison of the costs are presented in Figure 7.16.

The variable cost a truck based on the kilometers traveled and hours spent are calculated using shipment

costs. To calculate the shipment costs all weekly costs were summarized. Average hour and kilometer

costs were calculated based on these total weekly costs. These costs are also used in the contracts with

the customers. The variable cost comparison for each vehicle type is provided in Figure 7.17.
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Figure 7.16: Fixed cost comparison of utilizing a truck

Figure 7.17: Variable cost comparison of utilizing a truck

7.6.3.4 THE OPT ALGORITHMS SETTINGS

The opt algorithms which were used for improving the basic solution and constructing a complete solu-

tion are described in section 7.6.2. According to the list of these options, the following sequence of opt

algorithms were utilized to obtain the complete solution:

1. The solution starts with the basic solution

2. The repetition cycle starts and repeated five times with the following sequence of opt algorithms:

a.Selection of the cheapest vehicle

b.Optimize within trips

c.Trip swapping

d.Equalize workload

e.Optimize within trips
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f.Trip Swapping

7.6.4 VERIFICATION and VALIDATION OF THE SIMULATION MODEL

7.6.4.1 VERIFICATION

Verification is defined by Law and Kelton (1991) as determining that a simulation computer program

performs as intended. Based on this definition, the companies who use SHORTREC as a vehicle routing

and simulation tool are the main references to verify the simulation software. Quak and Koster (2005)

used SHORTREC to calculate the impacts of different time window pressure scenarios for fourteen

Dutch retailers. In addition, SHORTREC is used by several of the retail organizations involved in their

study. Moreover, several implementations were made for companies such as Coca-Cola Enterprises,

InBev, BP, DHL, Yellow Transportation, Philips, Royal Ahold etc. Kant et al. (2008),Hall (2006)

7.6.4.2 VALIDATION

”Validation is concerned with determining whether the conceptual simulation model (as opposed to the

computer program) is an accurate representation of the system under study”Law and Kelton (1991). In

this study, actual figures of three representative weeks were compared with the results in SHORTREC

in order to validate settings in the software program.

Table 7.3: AS IS network actual figures and simulation results

Weekly Average Weeks’
HIGH MEDIUM LOW Average

# of trucks:
ACTUAL 125 126 117 122.67

SIM. AS IS 122 119 108 116.33
%∆ (ACTUAL-SIM.) 2% 6% 8% 5%

# KMs:
ACTUAL 63892 65139 59275 62768.67

SIM. AS IS 64877 61460 57666 61334.33
%∆ (ACTUAL-SIM.) -2% 6% 3% 2%

# of hours:
ACTUAL 1991 1969 1853 1938.67

SIM. AS IS 1931 1790 1662 1794.33
%∆ (ACTUAL-SIM.) 3% 9% 10% 7%

In Table 7.3, a summary of the actual figures and the simulation results in terms of the number of trucks
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utilized, kilometers covered and number of hours worked for the representative weeks is given. These

figures were accepted as good enough to validate the simulation results. However, it was observed that

the performance of the software decreases as the number of orders increases, i.e. the number of orders

approaches to 1000 for a day. The percentage difference between the simulation and the actual figures

increases from the week with high level of demand to the week with low level of demand. Although we

expected the simulation software would perform better than the actual performance of the network, in

some cases we see that the actual figures are better than the results of the simulation tool. For example,

in the case of the week with high demand level, the average kilometers covered for the actual figures are

even lower than the planning results. Therefore, this issue was considered when interpreting the results

of the TO BE network. In addition, in order to test this argument, very small orders which were assigned

to the same address were combined. This combination was allowed up to 20% of the vehicle capacity not

to affect the planning process of the software. Thus fewer orders were obtained for all the days within

representative weeks. In conclusion, average number of trucks used decreased for all weeks. However,

kilometers covered and number of hours worked increased for the week with low demand. The detailed

figures for Table 7.3 and AS IS network with combined orders can be seen in Appendix G.

7.6.5 TO BE NETWORK SIMULATION

The definition of TO BE network and the changes with this definition are described with the problem

definition in Section 7.3. To validate the simulation settings, a base simulation model was constructed

and TO BE network simulation was constructed with some changes on this base simulation model. The

changes are listed below:

• The orders in the TO BE network are the combination of the AS IS orders and PepsiCO orders. To se-

lect the representative PepsiCo orders, the same approach was followed with AS IS orders. However,

only the data of PepsiCo with medium level demand week were used due to data inaccuracy. There-

fore, TO BE network was planned to be simulated with three representative weeks with additional

PepsiCo orders with medium demand level.

• The vehicle fleet in the TO BE network is the combination of the AS IS trucks and the trucks utilized

by PepsiCo before the contract. The new trucks are included in the simulation as

22 additional trucks owned by KN,

3 LZVs and
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5 subcontractors’ truck.

• All orders that belong to the depot Nieuwegein are simulated as if they are distributed by the new

warehouse that will be opened in Utrecht, Lageweide.

One important decision in TO BE distribution network simulation was to allocate the transportation lines

that LVZs would be in use since every vehicle in the simulation model has to be assigned to a depot. It

is not possible in SHORTREC to optimally decide on the allocation decision. Therefore, the lines with

most full truck load orders were defined over 26 week data. The lines with most frequent full truck loads

per day were selected. The selected lines can be seen in AppendixH. For the decision of allocating the

three LZVs (taken over from PepsiCo) to depots, four alternative scenarios were created. The allocation

of LZVs to depots for different scenarios is represented in Table 7.4.

Table 7.4: Alternative Scenarios for LZV allocations

ALLOCATION S0 S1 S2 S3
LZV1 UTRECHT UTRECHT UTRECHT UTRECHT
LZV2 UTRECHT UTRECHT VEGHEL VEGHEL
LZV3 UTRECHT VEGHEL VEGHEL RAAMSDONKSVEER

Moreover, for the case of addition of extra LZVs to the transportation network which is defined as

scenario ”S4”, 10 more LZVs were added to each depot and simulations were performed. The results

are presented in the next section.

7.6.6 SIMULATION RESULTS

Simulation results of the scenarios S0, S1, S2 and S3 for the weeks with low, medium and high level

weeks can be seen in Appendix I. The averages for the simulation days are given in Table 7.5 for each

scenario. The aim was to simulate TO BE network with different allocations of LZVs to defined depots

in Table 7.4. In the figures, it can be noticed that 5% of the available trucks are not used. In the results

of the AS IS network simulation for validation, it can also be seen that 5% of trucks are not utilized.

Therefore, based on this argument, it may be concluded that with the addition of PepsiCO to the AS IS

network, the performance of the network would not change.

According to results in Table 7.5, there is not a big difference between the scenarios chosen. This is due
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Table 7.5: Average figures for the simulation results

S0 S1 S2 S3
KMs 82175.3 82012.5 82050 81621.4
% of Empty KMs 35% 35% 35% 35%
# of Hours 2340.7 2340.3 2341.7 2177.8
# of Available Trucks 149.8 149.8 149.8 149.8
# of Trucks Used 142.9 142.9 142.9 142.8
% of trucks Used 95% 95% 95% 95%
# of LZVs Used 3 3 3 3

to the size of the network. Changing the assignment of LZVs to different locations does not affect the

performance of the network significantly. This conclusion led us to simulate the network in an alternative

scenario ”S4” where 10 extra LZVs are assigned to each depot in TO BE network. Table 7.6 represents

the results for scenarios S0 and S4. In addition, detailed results are given in Appendix J. The results

Table 7.6: Average simulation results for scenarios ”S0” and ”S4”

S0 Avg. S4 Avg.
KMs 81486.8 80457.7
% of Empty KMs 35% 35%
# of Hours 2298.6 2279.2
# of Available Trucks 148.3 148.5
# of Trucks Used 130.7 140.4
% of Trucks Used 88% 95%
# of LZVs Used 15.5 3

in Table 7.6 show that adding more LZVs to TO BE network will not make a big difference such that

the KMs covered decreased by only 1.26% on average in S4. The percentage of empty KMs traveled

did not change and the number of hours worked on average decreased by 0.86%. The chep equivalent

units carried per km in each scenario is also compared as an alternative performance indicator. While

the chep equivalent units carried per km is 11.8 in scenario S0, it is 11.7 in scenario S4 which means

on average less chep equivalent units are carried per km by utilizing more LZVs in the latter scenario.

Although the number of available trucks utilized decreased in S4 compared to S0, on average 12.5 more

LZVs are used in S0 instead. The allocation of the average number of LZVs used is listed in Table 7.7

which shows that all the extra LZVs are used in Utrecht for all the simulation days. However, it is not

needed to utilize the LZVs for other depots as much as in the case of Utrecht. For example, the LZVs

assigned to Raamsdonksveer, Ede and Oud Beijerland are not utilized at all as we restricted the usage of

the LZVs to lines on which most FTL orders are carried per day.
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Table 7.7: Allocation of LZVs used

Utrecht Veghel Vaassen
Day 1 13 1 1
Day 2 13 1 1
Day 3 13 1.5 1.5
Day 4 13 1.5 -
Day 5 13 2 2

7.7 CONCLUDING REMARKS

In the final section dedicated to the research project of Kuehne+Nagel Netherlands, we summarize what

has been done and recommend future research directions.

7.7.1 CONCLUSION

The aim of the project conducted for Kuehne+Nagel was to analyze the affect of the new customer in the

distribution network of FMCG and returns. To reach this aim, it was proposed to simulate the network

by the routing software SHORTREC since detailed planning was not in the scope of the project. In

the project, firstly, AS-IS network was analyzed and three representative weeks for the simulation was

chosen. These representative weeks were used to validate the results of the simulation tool with the

actual figures calculated from the TMS of K+N. Since SHORTREC is an optimization tool, we expected

that the simulation results would be better than the actual figures. However, it was observed that this

argument was not always true, especially when the number of orders increased the performance of the

simulation tool decreased. Based on this observation, in the scenarios created for TO-BE network,

it can be concluded that with the additional trucks and LZVs taken over from the new customer to

the distribution network, there will not be a change in the performance of the distribution network of

Kuehne+Nagel. Nevertheless, it is not necessary for K+N to buy new LZVs with the aim of increasing

the network performance. But it is clear that, if new LZVs are utilized within the network, they should

be assigned to the new depot which is to be constructed in Utrecht.

One important issue with the project was that because of the restriction of the software, not all the

performance indicators mentioned in the beginning could be measured or alternative scenarios could be

simulated. For example, as we had to choose the planning horizon as 29 hours in order to simulate the

night deliveries, overnight stay of truck drivers or central planning could not be evaluated. However,

with the Excel tool coded in VBA to generate SHORTREC input from the data of TMS, a template was
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built for the company to simulate further scenarios in the future. As the distribution network of K+N

has a very dynamic environment, it is better for the company to have a standard for the simulations and

build more scenarios on it.

Last but not least, compared to the current regional planning system ,where route planning is performed

manually by on site planners ,the routing software could perform good enough. In terms of costs, the

planning software can be less costly to the company compared to the manual route planning if it is

implemented.

7.7.2 FUTURE RESEARCH DIRECTIONS

At the accomplishment of this project, it is noticed that there are directions for future research in the

transportation network design of the distribution system of the company.

First of all, during the AS-IS analysis, it is observed that the company plans customers’ orders region-

ally. It will be interesting to re-cluster these customers in order to optimize the network efficiency and

comparing it with the current assignment of the customers to the depots. There can be improvement

opportunities to increase the performance of the distribution network.

Secondly, instead of regional planning, improvement opportunities can be searched by central planning.

This can be an interesting future research though the implementation would require a lot of effort.
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APPENDIX A

SPEED PROFILES

Table A shows the speed profiles used to include the time dependency in the Solomon instances. The

travel time breakpoints are calculated as in the procedure described in Ichoua et al. (2003) by using these

speed profiles.

Table A.1: Speed Profiles

Zone 1 Zone 2 Zone 3 Zone 4 Zone 5
Fast 1.5 1 1.67 1.17 1.33
Normal 1.17 0.67 1.33 0.83 1
Slow 1 0.33 0.67 0.5 0.83
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APPENDIX B

RESULTS

The explanation for the columns in the tables used in this Appendix are given as in the following:

• ”Instance” : Name of the instance

• ”Forw. labels” : Total number of labels produced by forward TDL algorithm

• ”Back. labels” : Total number of labels produced by backward TDL algorithm

• ”Σ labels” : Total number of labels produced in the pricing problem

• ”Time” : The total time spent to solve an instance

• ”Tree” : The size of the branching tree

• ”N.cols” : Number of columns produced by column generation

• ”N.pric exact” : Number of calls to the exact pricing algorithm.

Tables B.1 and B.3 summarize the results for the case (Initial) in which pricing problems is solved as

TDESSPRC by bi-directional TDL algorithm for instances with 25 and 50 customers, respectively. In

addition, Tables B.2 and B.4 show the results when fathoming is implemented in the pricing problem

,which is indicated as (Initial+Fathoming) for the instance with 25 and 50 customers, respectively.
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Table B.1: Computational results for instances with 25 customers (Initial)

Instance Forw. labels Back. labels Σ labels Time Tree N. cols N. pric exact
r101.25 133 155 288 0.063 0 162 1
r102.25 984 7002 7986 0.593 0 311 3
r103.25 14436 68898 83334 15615 2 778 9
r104.25 105128 362044 467172 74116 4 823 16
r105.25 970 966 1936 0.234 0 241 3
r106.25 2568 13415 15983 1482 0 404 4
r107.25 9384 41399 50783 5335 0 676 4
r108.25 79362 224115 303477 58079 2 911 9
r109.25 5993 4844 10837 0.952 0 459 5
r110.25 5773 7703 13476 1248 0 413 3
r111.25 38882 149892 188774 22495 8 708 20 2
r112.25 476583 502501 979084 157951 26 1276 55
c101.25 5475 1483 6958 0.515 0 423 2
c102.25 402253 343139 745392 151025 6 2914 22
c103.25 4333772 8577834 12911606 33685.1 6 5528 25
c105.25 69714 13131 82845 12418 4 1361 15
c106.25 6884 3080 9964 0.733 0 479 4
c107.25 229615 102148 331763 62837 10 2599 26
c108.25 1330492 501380 1831872 337071 36 5020 129
rc101.25 14490 9447 23937 7691 14 1035 32
rc105.25 11849 11705 23554 3058 2 698 9
rc106.25 8744 4906 13650 0.826 0 406 4
rc107.25 32235 11322 43557 3448 0 1022 4
rc108.25 135129 45378 180507 24.71 0 968 5
r201.25 167881 8637 1325956 13993 2 914 10
r202.25 965449 996932 12306101 5746.73 0 778 3
c201.25 660 25690 26350 1778 0 702 1
c205.25 5148 387209 1006441 250897 0 1177 4
c208.25 150398 4360321 1580432 12876.1 0 3033 7
rc201.25 1315775 10181 4510719 772688 2 1546 12
rc205.25 984611 21830 1962381 928892 0 1310 5
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Table B.2: Computational results for instances with 25 customers (Initial+Fathoming)

Instance Forw. labels Back. labels Σ labels Time Tree N. cols N. pric exact
r101.25 131 128 259 0.453 0 162 1
r102.25 981 6859 7840 26598 0 311 3
r103.25 7584 45286 52870 322095 2 778 9
r104.25 47167 264122 311289 1053.44 4 816 12
r105.25 964 928 1892 3369 0 241 3
r106.25 2494 13254 15748 74725 0 404 4
r107.25 8169 40032 48201 276371 0 676 4
r108.25 69151 218995 288146 1352.04 2 911 9
r109.25 5052 4596 9648 33478 0 459 5
r110.25 5732 7471 13203 69842 0 413 3
r111.25 38155 148453 186608 943323 8 708 20
r112.25 474519 494809 969328 5659.37 26 1276 55
c101.25 622 266 888 2808 0 423 2
c102.25 276836 234750 511586 2447.08 6 2881 23
c103.25 1166775 4253207 5419982 57410.1 6 5528 25
c105.25 54277 4177 58454 133786 4 1361 15
c106.25 2129 639 2768 7036 0 460 4
c107.25 157244 19595 176839 386571 10 2532 23
c108.25 1072969 215616 1288585 6324.08 32 5151 109
rc101.25 13355 8866 22221 67.33 14 1036 31
rc105.25 10091 9499 19590 66784 2 670 8
rc106.25 8723 4662 13385 69233 0 406 4
rc107.25 32212 10970 43182 266809 0 1022 4
rc108.25 135035 44081 179116 1770.42 0 968 5
r201.25 62105 3197 65302 256996 2 914 10
r202.25 639173 539461 1178634 11224.8 0 778 3
c201.25 39 110 149 0.921 0 702 1
c205.25 299 35892 36191 208667 0 1077 4
c208.25 7703 1979448 1987151 15639.3 0 3031 7
rc201.25 671029 4970 675999 2246.37 2 1562 11
rc205.25 750276 15811 766087 4020.93 0 1310 5
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Table B.3: Computational results for instances with 25 customers (Initial)

Instance Forw. labels Back. labels Σ labels Time Tree N. cols N. pric exact
r101.50 2311 2309 4620 0.889 0 567 3
r105.50 28273 13175 41448 16239 2 1330 8
r109.50 84082 73983 158065 25366 2 1560 12
r110.50 1920768 1884639 3805407 848.77 44 3217 100
c101.50 1104023 109248 1213271 196031 6 5309 25
c106.50 1893087 234841 2127928 409487 10 6864 42
rc101.50 1858406 1336968 3195374 1328.1 696 5998 1059

Table B.4: Computational results for instances with 25 customers (Initial+Fathoming)

Instance Forw. labels Back. labels Σ labels Time Tree N. cols N. pric exact
r101.50 2311 1553 3864 12465 0 567 3
r105.50 964 928 1892 182116 2 1330 8
r109.50 75211 63970 139181 1595.16 2 1560 12
r110.50 1915469 1818913 3734382 62453.3 44 3217 100
c101.50 75211 63970 139181 2053.11 6 5429 21
c106.50 75211 63970 139181 4849.31 10 6918 42
rc101.50 1814061 1322109 3136170 15734.6 686 6243 1063

APPENDIX C

GLOBAL LOGISTICS NETWORK OF K+N
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Table C.1: The Global Logistics Network of KUEHNE+NAGEL

Africa Europe Asia Pacific Middle East North America South & Central
America

Angola Albania Afghanistan Azerbaijan Canada Argentina
Equatorial
Guinea

Austria Australia Bahrain Mexico Bolivia

Kenya Belarus Bangladesh Egypt United States Brazil
Mauritius Belgium Cambodia Iran Chile
Mozambique Bosnia & Herze-

govina
China Israel Colombia

Namibia Bulgaria Hong
Kong/China

Jordan Costa Rica

Nigeria Croatia India Kazakhstan Cuba
Réunion Cyprus Indonesia Kuwait Ecuador
South Africa Czech Republic Japan Lebanon El Salvador
Tanzania Denmark Korea Qatar Guatemala
Uganda Estonia Macau/China Saudi Arabia Honduras
Zambia Finland Malaysia Turkey Nicaragua
Zimbabwe France Maldives Turkmenistan Panama

Germany New Zealand United Arab Emi-
rates

Peru

Greece Pakistan Uzbekistan Puerto Rico
Hungary Philippines Uruguay
Ireland Singapore Venezuela
Italy Sri Lanka
Latvia Taiwan
Lithuania Thailand
Luxembourg Vietnam
Macedonia
Malta
Netherlands
Norway
Poland
Portugal
Romania
Russian Federa-
tion
Serbia
Slovak Republic
Slovenia
Spain
Sweden
Switzerland
United Kingdom
Ukraine
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APPENDIX D

K+N NETHERLANDS FACILITIES

Table D.1: Facilities dedicated to technology solutions business unit

TECHNOLOGY SOLUTIONS
Zoetermeer Moerdijk Tiel

Characteristics Dedicated solution for Siemens 12,000 m2 54,000 m2, 3,000 m2 office
2,500 m2 Very high security level, 24/7 4 bulk compartments of 30,400 m2
500 m2 shelving Tapa C Secured
Spare parts operation 67 Docks

Fully sprinkled
Key Capabilities Centrally Located Warehousing Warehousing

High Security Level X-dock Multi modal transport solutions
RF Based Transport Management Transport Management
Complete Service Offering Multi modal transport solutions Value Added Services
24/7 Standby Service Custom solutions, incl. fiscal representative RF based operation

Buyers consolidation

Wijchen - PACT Helmond Born
Characteristics 7.000 sqm x-dock for High Tech 22,000 m2 21,025 m2

TAPA A secured High Security Level / TAPA C 886 m2 office
Security & zero-damage driven processes Operating hours Mon-Fri 24 hours High security level
Trucking and delivery to a.o. Benelux, FR,

Key Capabilities Highly Secured Transport network Return logistics (quarantine area) Warehousing
Visibility during transport Warehousing Multi modal transport solutions
1 single IT system in all countries Packing and Labeling Transport Management
Customized IT support Transport Management Value Added Services
Control Tower, pro-active process control Configuration

Customs activities (cust. clearance)
RF based / paperless operation

Table D.2: Facilities dedicated to FMCG business unit

FAST MOVING CONSUMER GOODS
Veghel Raamsdonksveer Nieuwegein

Characteristics 103,000 m2 (three buildings) 40,000 m2 34,000 m2
High bay Warehouse 36 Loading docks Automatic Layer Picker (ALP)

Automatic Layer Picker (ALP) Centrally Located
Key Capabilities Warehousing (ALP) / Factory Warehousing Manufacturing Consolidation Centre FMCG Food oriented

Raw materials and Packaging National distribution Multilingual
National Distribution / Primary Transport Co-packing Complete Service Offering
Transport co-ordination Very high security level National Transport
Co-packing RF based / paperless operation
RF based / paperless operation Multilingual
Complete service offering
Oud Beijerland Ede Vaassen

Characteristics 5,600 m2 Ambient storage 23,000 m2 16,000 m2
200 m2 temperature Controlled area 10,0 m free height Crate Washing Machines

Fully sprinkled
Centrally located

Key Capabilities Warehousing Warehousing and Co-packing National platform Chilled distribution
Co-packing RF based / paperless operation Cross docking activities
Transport Management Focused on non food customers Conditioned Warehousing
Custom solutions Multilingual Services (crate and pallet rental/washing)
RF based / paperless operation Complete chilled service offerings
Multilingual
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Table D.3: Facilities dedicated to returns business unit

Pijnacker Tilburg
Characteristics 14,000 m2 1,000 m2 Crates washing machine

700 - 1,000 trucks a day 14,000 m2 Sorting area
1,750 m2 Docks in-out

Key Capabilities Inhouse Return Centre: Multi user crate and washing centre
Processing of returns and waste Crates rental / pallet rental
Processing of re-usable packaging FTL transport
Crate and pallet washing/rental Pool management
RF based / paperless operation Receiving, sorting and sending returns
Multilingual Control returning goods

In addition to these return centers Zaandam and Zwolle are taken over from Albert Heijn.

APPENDIX E

SHORTREC OPTION SETTINGS

Figure E.1: Option Settings for Opt Algorithms in SHORTREC
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APPENDIX F

DESCRIPTIVE STATISTICS FOR REGRESSION MODELS OF

LOADING AND UNLOADING TIMES

Table F.1: Summary output of loading time regression model

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.215178
R Square 0.046302
Adjusted R Square 0.045309
Standard Error 0.017337
Observations 963

ANOVA
df SS MS F Significance F

Regression 1 0.014024 0.014024 4.665.616 1.5E-11
Residual 961 0.288865 0.000301
Total 962 0.302889

Coefficients Standard Error t Stat P-value Lower 90.0% Upper 90.0%
Intercept 0.018918 0.002198 8.608.555 2.99E-17 0.0153 0.022536
Quantity Loaded 0.000589 8.63E-05 6.830.532 1.5E-11 0.000447 0.000732

Table F.2: Summary output of unloading time regression model

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.410407
R Square 0.168434
Adjusted R Square 0.167908
Standard Error 0.018167
Observations 1582

ANOVA
df SS MS F Significance F

Regression 1 0.105623 0.105623 3.200.301 2.55E-65
Residual 1580 0.521463 0.00033
Total 1581 0.627086

Coefficients Standard Error t Stat P-value Lower 90.0% Upper 90.0%
Intercept 0.022071 0.001033 2.137.099 3.23E-89 0.020371 0.023771
Quantity Unloaded 0.000883 4.93E-05 1.788.938 2.55E-65 0.000801 0.000964
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APPENDIX G

AS IS NETWORK SIMULATION RESULTS

Table G.1: Results for the week with high level of demand

(1) ACTUAL
DAY 1 DAY 2 DAY 3 DAY 4 DAY 5

# of trucks: 120 123 132 130 122
# of km: 58956 68849 65724 69340 56592
# of hours: 1888 2131 2017 2131 1790

(2) ORDERs AS IS
DAY 1 DAY 2 DAY 3 DAY 4 DAY 5

Total costs: 73175 83343 85655 86071 72918
# of scheduled orders: 904 1008 1052 1082 907
# of unscheduled orders: 0 8 0 4 0
# of trips: 275 323 303 310 284
# of trucks: 117 123 129 130 112
# of km: 57867 70584 68954 69271 57707
# of hours: 1779 2042 2051 2041 1744

(3) SMALL ORDERs COMBINED
DAY 1 DAY 2 DAY 3 DAY 4 DAY 5

Total costs: 66571 76013 78294 77917 66207
# of scheduled orders: 706 740 785 760 698
# of unscheduled orders: 0 1 0 0 0
# of trips: 262 301 286 292 267
# of trucks: 106 112 119 120 102
# of km: 55340 66588 62920 62433 53485
# of hours: 1656 1862 1851 1842 1549
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Table G.2: Results for the week with medium level of demand

(1) ACTUAL
DAY 1 DAY 2 DAY 3 DAY 4 DAY 5

# of trucks: 127 125 127 127 122
# of km: 63133 64047 69004 68639 60870
# of hours: 1983 1982 2057 2053 1771

(2) ORDERs AS IS
DAY 1 DAY 2 DAY 3 DAY 4 DAY 5

Total costs: 73385 76811 80768 77114 72456
# of scheduled orders: 941 987 978 985 937
# of unscheduled orders: 1 0 0 0 0
# of trips: 257 279 281 269 258
# of trucks: 119 119 124 119 113
# of km: 56490 63241 65651 62717 59199
# of hours: 1696 1866 1854 1852 1680

(3) SMALL ORDERs COMBINED
DAY 1 DAY 2 DAY 3 DAY 4 DAY 5

Total costs: 80954 79360 81877 77892 61528
# of scheduled orders: 668 682 667 663 617
# of unscheduled orders: 1 0 0 0 0
# of trips: 209 203 193 182 243
# of trucks: 119 115 117 110 96
# of km: 79536 81953 85040 82446 54664
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Table G.3: Results for the week with low level of demand

(1) ACTUAL
DAY 1 DAY 2 DAY 3 DAY 4 DAY 5

# of trucks: 118 116 116 116 121
# of km: 49467 64533 60835 66713 54827
# of hours: 1608 1941 1907 2063 1747

(2) ORDERs AS IS
DAY 1 DAY 2 DAY 3 DAY 4 DAY 5

Total costs: 66483 66005 73669 77973 66197
# of scheduled orders: 828 853 922 951 796
# of unscheduled orders: 1 1 1 11 0
# of trips: 249 250 252 288 247
# of trucks: 104 105 114 116 100
# of km: 57311 52673 59234 65102 54011
# of hours: 1531 1600 1719 1869 1592

(3) SMALL ORDERs COMBINED
DAY 1 DAY 2 DAY 3 DAY 4 DAY 5

Total costs: 55529 67198 64345 65889 60309
# of scheduled orders: 620 826 706 693 716
# of unscheduled orders: 0 0 5 6 0
# of trips: 207 248 226 247 222
# of trucks: 90 104 99 100 93
# of km: 45467 56531 52479 55938 50443
# of hours: 1357 1635 1539 1579 1484
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APPENDIX H

SELECTION OF LINES WITH MOST FREQUENT FULL TRUCK

LOAD ORDERS

As the number of full truck load orders are calculated on the distribution lines, the average figures for

the number of FTL orders are derived. LZVs are allowed to serve only on these lines.

Table H.1: Transportation lines with full truck load orders

From Address Description To Address Description FTL orders ∼ FTL/day
City Customer City Customer
Rotterdam Unilever Nederland Veghel Kuehne+Nagel 2041 15.7
Utrecht Den Koffiefabriek Utrecht Kuehne+Nagel 1271 9.78
Oss Vdbn Sourcing Unit Veghel Kuehne+Nagel 844 6.49
Vaassen Kuehne+Nagel Log. Wezep Plukon Poultry BV 889 6.84
Veghel Vetipak Veghel Kuehne+Nagel 638 4.91
Joure De Nl Tea (M008) Utrecht Kuehne+Nagel 360 2.77
Veghel Kuehne+Nagel Veghel Vetipak 341 2.62
Wezep Plukon Poultry BV Veghel Jumbo S. 320 2.46
Vaassen Kuehne+Nagel Beilen Super de Boer 219 1.68
Veghel Kuehne+Nagel Veghel Vetipak 211 1.62
Vaassen Kuehne+Nagel Log. B. Spakenburg Mayonna B.V. 194 1.49
Beilen Super de Boer Vaassen Kuehne+Nagel Log. 193 1.48
Zwolle K+N Log. MCO Wezep Plukon Poultry BV 179 1.38
Veghel Jumbo Supermarkten Vaassen Kuehne+Nagel Log. 176 1.35
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APPENDIX I

TO BE NETWORK SIMULATION RESULTS

Table I.1: Results for the week with low level of demand

SIM. TO BE, WEEK : LOW SIM. STATISTICS
S0 S1 S2 S3 MIN. AVG. MAX.

DAY 1 KMs 70757 70757 70757 70757 70757 70757 70757
% Empty 36% 36% 36% 36% 36% 36% 36%
# of Hours 2037 2039 2039 2039 2037 2039 2039
# of Available Trucks 145 145 145 145 145 145 145
# of Trucks Used 131 131 131 131 131 131 131
# of LZVs Used 3 3 3 3 3 3 3

DAY 2 KMs 80256 80256 80099 80099 80099 80178 80256
% Empty 35% 35% 35% 35% 35% 35% 35%
# of Hours 2266 2269 2265 2265 2265 2266 2269
# of Available Trucks 143 143 143 143 143 143 143
# of Trucks Used 138 138 138 138 138 138 138
# of LZVs Used 3 3 3 3 3 3 3

DAY3 KMs 83141 83213 83284 83265 83141 83226 83284
% Empty 34% 34% 34% 34% 34% 34% 34%
# of Hours 2286 2288 2291 2290 2286 2289 2291
# of Available Trucks 143 143 143 143 143 143 143
# of Trucks Used 142 142 142 142 142 142 142
# of LZVs Used 3 3 3 3 3 3 3

DAY 4 KMs 88740 88812 88812 83265 83265 87407 88812
% Empty 35% 35% 35% 36% 35% 35% 36%
# of Hours 2478 2481 2483 2454 2454 2474 2483
# of Available Trucks 143 143 143 143 143 143 143
# of Trucks Used 143 143 143 143 143 143 143
# of LZVs Used 3 3 3 3 3 3 3

DAY 5 KMs 75011 75011 75082 75082 75011 75047 75082
% Empty 35% 35% 35% 35% 35% 35% 35%
# of Hours 2043 2046 2047 2047 2043 2046 2047
# of Available Trucks 148 148 148 148 148 148 148
# of Trucks Used 122 122 122 122 122 122 122
# of LZVs Used 3 3 3 3 3 3 3
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Table I.2: Results for the week with medium level of demand

SIM. TO BE, WEEK : MEDIUM SIM. STATISTICS
S0 S1 S2 S3 MIN. AVG. MAX.

DAY 1 KMs 72619 71945 72380 69260 69260 71551 72619
% Empty 34% 35% 35% 34% 34% 34% 35%
# of Hours 2100 2085 2084 2084 2084 2088 2100
# of Available Trucks 154 154 154 154 154 154 154
# of Trucks Used 139 138 138 138 138 138 139
# of LZVs Used 3 3 3 3 3 3 3

DAY 2 KMs 82455 82455 82455 82455 82455 82455 82455
% Empty 33% 33% 33% 33% 33% 33% 33%
# of Hours 2421 2422 2425 2424 2421 2423 2425
# of Available Trucks 152 152 152 152 152 152 152
# of Trucks Used 146 146 146 146 146 146 146
# of LZVs Used 3 3 3 3 3 3 3

DAY3 KMs 86481 86552 86552 86536 86481 86530 86552
% Empty 35% 35% 35% 35% 35% 35% 35%
# of Hours 2422 2422 2426 2425 2422 2424 2426
# of Available Trucks 154 154 154 154 154 154 154
# of Trucks Used 154 154 154 154 154 154 154
# of LZVs Used 3 3 3 3 3 3 3

DAY 4 KMs 87107 87107 87107 86118 86118 86860 87107
% Empty 35% 35% 35% 34% 34% 35% 35%
# of Hours 2537 2536 2536 2511 2511 2530 2537
# of Available Trucks 154 154 154 154 154 154 154
# of Trucks Used 150 150 150 150 150 150 150
# of LZVs Used 3 3 3 3 3 3 3

DAY 5 KMs 78010 79255 79255 79236 78010 78939 79255
% Empty 33% 34% 34% 34% 33% 34% 34%
# of Hours 2202 2205 2208 2202 2202 2204 2208
# of Available Trucks 149 149 149 149 149 149 149
# of Trucks Used 139 139 139 139 139 139 139
# of LZVs Used 3 3 3 3 3 3 3
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Table I.3: Results for the week with high level of demand

SIM. TO BE, WEEK : HIGH SIM. STATISTICS
S0 S1 S2 S3 MIN. AVG. MAX.

DAY 1 KMs 71834 71905 71905 71886 71834 71883 71905
% Empty 34% 34% 34% 34% 34% 34% 34%
# of Hours 2173 2175 2177 2174 2173 2175 2177
# of Available Trucks 147 147 147 147 147 147 147
# of Trucks Used 136 136 136 136 136 136 136
# of LZVs Used 3 3 3 3 3 3 3

DAY 2 KMs 90447 90447 90447 90447 90447 90447 90447
% Empty 35% 35% 35% 35% 35% 35% 35%
# of Hours 2579 2576 2579 2578 2576 2578 2579
# of Available Trucks 150 150 150 150 150 150 150
# of Trucks Used 150 150 150 150 150 150 150
# of LZVs Used 3 3 3 3 3 3 3

DAY3 KMs 92159 92159 92159 92159 92159 92159 92159
% Empty 34% 34% 34% 34% 34% 34% 34%
# of Hours 2660 2663 2665 264 264 2063 2665
# of Available Trucks 159 159 159 159 159 159 159
# of Trucks Used 159 159 159 159 159 159 159
# of LZVs Used 3 3 3 3 3 3 3

DAY 4 KMs 95903 92603 92675 95975 92603 94289 95975
% Empty 37% 37% 37% 37% 37% 37% 37%
# of Hours 2653 2639 2639 2650 2639 2645 2653
# of Available Trucks 157 157 157 157 157 157 157
# of Trucks Used 156 157 157 156 156 157 157
# of LZVs Used 3 3 3 3 3 3 3

DAY 5 KMs 77710 77710 77781 77781 77710 77746 77781
% Empty 36% 36% 36% 36% 36% 36% 36%
# of Hours 2254 2259 2261 2261 2254 2259 2261
# of Available Trucks 149 149 149 149 149 149 149
# of Trucks Used 139 139 139 139 139 139 139
# of LZVs Used 3 3 3 3 3 3 3
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APPENDIX J

SIMULATION RESULTS FOR SCENARIOS S0 AND S4

Table J.1: Results of scenarios S0 and S4

SIM. TO BE (S0) SIM. TO BE (S4)
LOW MEDIUM LOW MEDIUM

DAY 1 KMs 70757 72619 69163 72701
% Empty 36% 34% 36% 35%
# of Hours 2037 2100 1976 2076
# of Available Trucks 145 154 145 154
# of Trucks Used 131 139 116 128
# of LZVs Used 3 3 15 15

DAY 2 KMs 80256 82455 79145 84395
% Empty 35% 33% 34% 35%
# of Hours 2266 2421 2254 2408
# of Available Trucks 143 152 143 152
# of Trucks Used 138 146 123 137
# of LZVs Used 3 3 16 14

DAY 3 KMs 83141 86481 83758 91469
% Empty 34% 35% 33% 36%
# of Hours 2286 2422 2361 2521
# of Available Trucks 143 154 143 153
# of Trucks Used 142 153 136 145
# of LZVs Used 3 3 15 17

DAY 4 KMs 88740 87107 90182 90643
% Empty 35% 35% 34% 33%
# of Hours 2478 2536 2517 2556
# of Available Trucks 143 154 143 153
# of Trucks Used 143 150 139 142
# of LZVs Used 3 3 15 14

DAY 5 KMs 75011 78010 74240 79172
% Empty 35% 33% 35% 33%
# of Hours 2043 2202 2100 2217
# of Available Trucks 148 149 148 149
# of Trucks Used 132 139 114 127
# of LZVs Used 3 3 17 17
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