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Abstract

The joint optimization of sequential activities in supply chain has been proven to yield
large cost savings even when applied to simple real-world contexts. The technological
advances in the available computational power turned integrated planning into a hot topic
in recent years. Typical supply chains comprise production, inventory management, and
transportation activities, which are planned at strategic, tactical and operational planning
levels. In some, transportation costs assume a significant portion of the global supply chain
cost. Notwithstanding, planning transportation at an operational level is a difficult task,
as it maps into the classical Vehicle Routing Problem, considered to be one of the most
challenging problems in Operational Research. Routing decisions impact and constrain
the planning of surrounding supply chain processes. Nonetheless, it is yet to be found an
established methodology for integrating routing decisions with interrelated supply chain
decisions. Considering this, the present thesis tackles five different Integrated Vehicle
Routing Problems (iVRPs), which belong to two research branches. In the first branch,
dealing with the integration of supply chain processes at the operational level, we explore
a pickup and delivery problem with synchronization, an inventory routing problem, and
a production routing problem. In the second branch, dealing with the integration of dif-
ferent planning horizon levels, we explore the time window assignment vehicle routing
problem and the consistent vehicle routing problem. The outcome of this research miti-
gates some research gaps and contributes to the field of iVRPs at three distinct levels: (1)
new problems and novel mathematical formulations with increasing levels of realism; (2)
new decomposition, exact, and approximation algorithms to efficiently explore the struc-
ture of several integrated routing problems which are validated within real-world contexts;
(3) managerial insights which emerged from extensive sensitivity analysis to literature and
real-world instances. Hence, our contributions are particularly aimed at bridging the gap
between scientific research and practical application, adding value to the transportation
field by fulfilling the needs of both the scientific community and the practitioners.






Resumo

O planeamento integrado de varias atividades da cadeia de abastecimento possibilita a
obtencdo de poupancas significativas, mesmo quando realizado em contextos simples do
mundo real. Recentemente, com os avangos tecnoldgicos ao nivel do poder computacio-
nal, o interesse pelo tema do planeamento integrado aumentou consideravelmente. Tipica-
mente, as cadeias de abastecimento incluem atividades de producdo, gestdo de inventario
e transportes que sdo planeadas ao nivel estratégico, tatico e operacional. Em algumas ca-
deias de abastecimento, os custos de transporte assumem uma por¢ao muito significativa do
custo global. No entanto, o planeamento dos transportes ao nivel operacional é uma ardua
tarefa que obriga a resolu¢c@o de um Problema de Roteamento de Veiculos, considerado um
dos mais complexos na drea da Investigacdo Operacional. Numa cadeia de abastecimento,
as decisdes de transporte impactam e restringem todos os processos adjacentes. Contudo,
ainda ndo existem metodologias para planear decisdes de transporte simultaneamente com
outros processos da cadeia de abastecimento, de forma integrada. A presente tese aborda
cinco Problemas de Roteamento de Veiculos Integrados (PRVis) cujos tipos de integragdo
de desdobram em dois ramos.

No primeiro ramo, cujo objetivo € integrar processos da cadeia de abastecimento ao nivel
operacional, sdo explorados os problemas de recolha e entrega com sincronizagado, rotea-
mento de inventdrios e roteamento da producio.

No segundo ramo, que visa a integracao de niveis de planeamento, sdo explorados os pro-
blemas de alocacio de janelas de entrega com roteamento de veiculos e roteamento veiculos
com consisténcia no condutor e na hora de entrega.

O resultado deste trabalho de investigacdo mitiga algumas lacunas da literatura e contribui
para a area relacionada com PRVis em trés niveis destintos: (1) novos problemas e for-
mulagdes matemadticas mais realistas; (2) novos algoritmos de decomposicdo, exatos e de
aproximacao para explorar a estrutura de varios problemas de roteamento integrado efici-
entemente, validados em contextos reais; (3) conselhos de gestdo que emergem de anélises
de sensibilidade extensivas a instancias da literatura e reais. Deste modo, as contribui¢cdes
desta tese sdo particularmente proficuas para a aproximagao entre a investigacao cientifica
e a aplicacdo prética, adicionando valor ao sector dos transportes, satisfazendo as necessi-
dades tanto da comunidade cientifica como dos profissionais do sector.
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Résumé

Il a été prouvé que I’optimisation conjointe des activités séquentielles dans les chaines
d’approvisionnement permet de réaliser des économies importantes, méme lorsqu’elles
sont appliquées aux contextes simples du monde réel. La planification intégrée est de-
venue un sujet populaire ces dernieres années, grace aux progres technologiques dans la
puissance informatique. Les chaines d’approvisionnement typiques comprennent les acti-
vités de production, de gestion des stocks et de transport qui sont planifiées aux niveaux
de la planification stratégique, tactique et opérationnelle. En général, les cofits de transport
représentent une partie importante des codits de la chaine d’approvisionnement. Cependant,
la planification du transport a un niveau opérationnel fait parti du probleme classique de
tournées de véhicules, qui est considéré comme 1’un des problemes les plus complexes de
la recherche opérationnelle. Les décisions de transport limitent la planification des outres
processus de la chaine d’approvisionnement. Néanmoins, on n’a pas encore trouvé une
méthodologie pour intégrer les décisions de transport aux décisions interdépendantes de
la chaine d’approvisionnement. Par suit, cette these aborde cinq problemes différents de
tournées de véhicules intégrés (PTVi) qui appartiennent a deux branches de recherche. La
premiere branche traite I'intégration des processus de la chaine d’approvisionnement au
niveau opérationnel. Nous explorons un probléme du ramassage et de la livraison avec la
synchronisation, un probleme de gestion de stocks et tournées de véhicules et un probleme
de production et tournées de véhicules. La deuxiéme branche traite 1’intégration de diffé-
rents niveaux d’horizon de planification. Ici, nous explorons le probleme de tournées de
véhicules avec attribution de fenétres de temps et le probleme de tournées de véhicules
consistants. Le résultat de notre recherche atténue certaines lacunes dans la connaissance
et contribue au domaine des PTVis a trois niveaux distincts : (1) nouveaux problémes et
nouvelles formulations mathématiques avec des niveaux de réalité croissant ; (2) nouveaux
algorithmes de décomposition, exacts et d’approximation pour explorer efficacement la
structure de plusieurs problemes de tournées intégrés qui sont validés dans des contextes
réels; (3) les idées de gestion qui ont émergé d’une analyse de sensibilité approfondie a les
instances de la littérature et du monde réel. Ainsi, nos contributions visent particulierement
a combler la lacune entre la recherche scientifique et 1’application pratique, en ajoutant de
la valeur au secteur des transports en répondant aux besoins des communautés scientifiques
et les praticiens.






Contents

1 Motivation and overview 1
1.1 A Brief Review On Integrated Distribution Literature . . . . . .. ... .. 2
1.2 Research Objectives and Methodology . . . . . . ... ... ... ..... 5
1.3 The Collection Of Papers . . . . . .. ... ... ... ... ....... 9

1.3.1  Supply Chain Process Integration . . . . . .. ... ... ..... 9
1.3.2 Planning Horizon Level Integration . . . . . . ... ... ... .. 11
1.4 Final considerations . . . . . . . . . ... .. e 12
1.5 Furtherwork . . . . . .. ... 13
Bibliography . . . . . . ... 16

2 Pickup and delivery with synchronization 19
2.1 Introduction . . . . . . . . . e e 20
2.2 Literature Review . . . . . . . . ... L e 23

221 TTRP . . . . o 24
222 PDP ... 26
223 VRPB . ... e 27
224 RRVRP . . ... e 28
225 Fulltruckloads . . . . ... ... ... .. ... . 29
2.2.6 Precedence constraints . . . . . . . . .. ... ..ol 30
2.277 Multiple time-windows . . . . . . . ... ... . L. 30
2.3 Problem Statement . . . . . .. ... 31
2.3.1 Definition of entities . . . . . . . . ... ... 31
2.3.2 Pairingobjective . . . . . . ... ... 33
233 Triptypes . . . . oo 33
2.3.4 Transferconcept . . . . . . . . . . . ... 34
2.3.5 Pre-processing . . . . ... ..o e 36
2.3.6 Long-haulexample . . . . . .. ... ... ... . ... .. 37
2.4 Mathematical formulation . . . .. ... .. ... ... L. 38
2.4.1 Decision variables . . . . .. ... L oo 38
2.4.2 Objective function . . . . . . . . . ... ... 38
2.4.3  Vehicle flow conservation . . . . .. ... ... L. 39
244 Travel times consistency . . . . . . . . . ... ... 40
2.4.5 Requests flowcoherence . . . . ... ... ... ... .. ... .. 40
24.6 Transfertimes . . . . .. . ... ... ... 42
247 Time windows . . . . . ... 42
2.4.8 Practical constraints . . . . ... ..o 42
2.5 Solution Approach: Matheuristic MH1 . . . . .. ... ... ... ... .. 44
2.6 Computational Experiments . . . . . ... ... ... ........... 46

2.6.1 Real-worldinstances . . . . . . . . . . . ... 46



Contents

2.6.2 Matheuristic settings . . . . . . ... Lo o 46
2.6.3 Solution approach analysis . . . . . . . ... ... ... ..., 46
2.7 Conclusions and Future Work . . . . . . ... ... ... L. 50
Bibliography . . . . . . . ... e 51
2.A ResultsTable . . ... ... ... ... ... 56
Inventory-Routing 59
3.1 Introduction . . . . . . . . . L 60
3.2 Literature Review . . . . . . . . ... L L 62
3.3 Problem Description and Mathematical Formulation. . . . . . .. ... .. 64
3.3.1 Valid Inequalities . . . . . . . . ... ... ... . ... ... 67
34 Methodology . . . . . . . . . . ... 69
3.4.1 Branch-and-Cut scheme with deterministic demand . . . . . . . . . 69
3.4.2 Rolling Horizon scheme with error prone forecasts . . . . . .. .. 72
3.5 Computational experiments . . . . . . . . . . . .. ... 74
3.5.1 Instancesetandtestconditions. . . . . . . . .. ... ... .. .. 74
3.6 Conclusions . . . . . . .. 82
Bibliography . . . . . . . .. 83
3.A Summary of computational results for the literature instances . . . . . . . . 85
Production-Routing 89
4.1 Introduction . . . . . . . . . ... 90
4.2 Literature Review . . . . . . . . . . oL e 92
4.3 Problem Description and Formulation . . . . . ... ... ... ...... 95
431 Notation . . . . . . . e e e 95
432 Formulation. . . . ... ... ... 96
4.4 Solution Approach . . . . . .. ... ... ... 98
44.1 SizeReduction . . ... ... ... o s 99
442 Initial Solution . . . . . . ... ... 102
443 Solution Improvement . . . ... ... ... ... ... ... ... 106
4.5 Computational Experiments . . . . . .. ... ... ... ......... 112
4.6 CaseStudy . . . . . . . . e 117
4.6.1 Analysis of the Current Situation. . . . . .. ... ... ...... 117
4.6.2 Methodology Application . . . . ... .. ... ... ....... 120
4.6.3 Results Analysis . . . . . .. ... 120
47 Conclusion . . . . . ... 121
Bibliography . . . . . . . .. 122
4.A Decomposition strategy base formulations . . . . . .. ... ... ..... 126
Routing for time window assignment 131
5.1 Introduction and Related Work . . . . . ... ... ... ... ... .. 132
5.2 Problem Description and Mathematical Formulation. . . . . . .. ... .. 136
5.3 Solution Method . . . .. ... ... .. 138

5.3.1 RouteGeneration . . . . . . . . . . .. e 139



Contents XV

5.3.2 Initial Solution Construction . . . . . . . . ... ... ... .... 142

5.3.3 Improvement Matheuristic . . . . . . ... ... ... ....... 143

5.4 Computational Experiments . . . . . ... ... ... ........... 145
54.1 Instance Set . . . . . . . . . .. 146

5.4.2 Stochastic Optimization versus Average Demand Scenario . . . . . 147

5.4.3 Operational Models and Change Levels . . . . ... ... ... .. 148

5.5 Conclusion . . .. . ... e 154
Bibliography . . . . . . . .. 156
5.A Other Operational and Business Constraints . . . . . . ... ... ..... 158
6 Enforcing driver and time consistency in vehicle routing 161
6.1 Introduction . . . . . . . . . .. 162
6.2 Literature Review . . . . . . . . ... oL 164
6.2.1  Vehicle Routing Problem With Time Windows . . . . .. ... .. 164

6.2.2 Periodic Vehicle Routing Problem . . . . . .. ... ... .. ... 165

6.2.3 Consistent Vehicle Routing Problem . . . . . . ... ... ... .. 166

6.3 Problem Statement and Mathematical Formulation . . . .. ... ... .. 168
6.3.1 Mathematical formulation . . . . .. ... ... ... ....... 169

6.4 Solutionapproach . . . . . . . ... 172
6.4.1 Methodology overview . . . . . . . . . . ... ... 172

6.42 Nodegrouping . . . . . . . . . . o v i i it e 172

6.4.3 Initial solution construction . . . . . . . ... ... oL 173

6.4.4 Fix-and-Optimize algorithm . . . . . .. ... ... ... ..... 175

6.4.5 Validation of the solution approach . . . . . ... ... ... ... 178

6.5 Case study in a pharmaceutical distribution company . . . ... ... ... 179
6.5.1 Casestudyoverview . . . . . . ... ... ... .. 179

6.5.2 Routeplanning . . . . . ... .. ... Lo 180

6.5.3 Simulationmodel . . . . . ... .. Lo 181

6.6 Results. . . . . . .. L 182
6.6.1 Instance characteristics . . . . . . . . .. ... ... ... 182

6.6.2 conVRPSLATresults . .. ... ... ... ... .. ...... 183

6.6.3 Simulationresults . . . .. ... ... L oL 184

6.7 Conclusions and future work . . . . . .. ... Lo 185
Bibliography . . . . . . .. 187
6.A Nomenclature . . . . . . . . . ... . L 190

6.B Comparison between the solver and the matheuristic . . . ... ... ... 192






CHAPTER 1

Motivation and overview

Globalization has fostered a more aggressive competition between companies around the
world (Ghiani et al. [2005]). The receptiveness for innovative and systematic approaches
for supply chain optimization is increasing considerably, in an attempt to foster efficiency
during the planning and execution phases. With the recent technological advances and the
available computational power, new alternatives became available to fulfil the requirements
of decision makers, considering broader sets of decisions simultaneously.

Supply chain activities are generally classified according to a matrix where the two dimen-
sions account for the planning horizon and the supply chain process (Fleischmann et al.
[2015]). The interdependency between adjacent planning levels and supply chain processes
adds a huge complexity to the inherent planning phases. Sometimes, planners address this
interdependency by taking an hierarchical approach. In terms of planning horizon, strategic
problems are solved initially and then, the tactical and operational levels are addressed. In
terms of supply chain process, problems are generally solved following the materials flow
considering procurement, production, distribution and sales, though this is not mandatory.
Hierarchical approaches, however, are prone to result in suboptimal solutions for the supply
chain as a whole. The decisions made at each planning level in each supply chain process
are highly dependent on the quality of the decisions made at other levels. Due to this fact,
some integration between different dimensions is likely to be beneficial (Bektas [2017]).
In the foreword of Bektas [2017], Gilbert Laporte describes supply chain distribution pro-
cesses as core to ensure the contemporary economic system and civilization. The author
affirms that to maintain their competitiveness, it has become essential for companies to
improve their distribution activities, employing advanced models and algorithms based on
Operational Research (OR) techniques. These techniques are considered to be very suc-
cessful for solving distribution-related problems. Laporte refers three factors to justify
this success. First, mathematical programming often shows an unprecedented ability to
capture complexity and intricacies of distribution problems. Second, the hardness of these
problems makes them suitable for heuristic search. Third, the improvements found by opti-
mization techniques are generally translated into considerable monetary savings and higher
efficiency.

The scope of this research is framed by the integration of distribution supply chain pro-
cesses, particularly at the operational level (i.e, transportation), with interdependent deci-
sions. Hence, the classical Vehicle Routing Problem (VRP), which is at the very heart of
this thesis, is integrated with other decisions related to production, inventory, and schedul-
ing activities. This class of problems, combining the VRP with other optimization prob-
lems within the broader context of logistics, is known as Integrated Vehicle Routing Prob-
lems (iVRPs) (Bektag et al. [2015] and Coté et al. [2017]).
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This thesis seeks to establish meaningful breakthroughs both for the scientific community
and practitioners as well. First, we introduce new problems and propose novel mathemat-
ical formulations with increased levels of realism. Our aim is to address particular real-
world transportation contexts, to capture the interest of researchers into new challenges, as
well as companies in the transportation sector that may benefit from this research. Sec-
ond, to efficiently solve the realistic formulations, we aspire to hybridize exact methods
with approximation algorithms. We expect to achieve important findings in the recent
matheuristics field, which is far from maturity with regards to applications in transporta-
tion problems. Matheuristics show an enormous potential for solving real-world integrated
problems as they can be easily adapted to cope with model extensions and decomposed
subproblems. All the formulations and matheuristics are validated using a case study and
should be extensible to other companies operating in the transportation sector, facing sim-
ilar problems. Third, new managerial insights are derived in each case study. We not
only quantify the potential savings for integrating routing activities but also cover several
planning aspects that might be faced by real-world companies by means of performing
extensive sensitivity analysis on critical parameters.

The remainder of this chapter is composed of four sections. In Section 1.1 we review the
literature on integrated vehicle routing. Section 1.2 poses the research questions to achieve
our research objectives. Section 1.3 gives guidance to the reader about the organization and
subjects covered in this thesis. In Section 1.4 we discuss the main scientific breakthroughs
achieved. Finally, Section 1.5 provides some research directions.

1.1. A Brief Review On Integrated Distribution Literature

Recently, the research community has been very active on combining different classical
optimization problems. The increasingly interest on these integrated problems has been
mainly fostered by two reasons. Firstly, with the technological advances in processing
units, more people have access to larger computing power, enabling them to solve more
complex problems. Secondly, practitioners are becoming more and more interested on the
potential savings achieved not only by OR techniques but also by the integration of supply
chain activities. In particular, the vehicle routing community has been researching several
classes of integrated problems. Since its seminal paper by Dantzig and Ramser [1959], the
VRP has been extensively studied. The literature on vehicle routing has achieved a very
mature state, exploring an immense number of extensions and objectives with exact and
heuristic solution approaches. The remarkable development of this field, partially described
by Laporte [2009], reached a point where the integration of supply chain processes and / or
decision levels is attainable by combining state-of-the art solution approaches with efficient
decomposition methods. In other words, solving larger than toy instances of iVRPs is now
a reality and, as stated by Archetti and Speranza [2014], there is a growing trend towards
modelling and solving such problems.

To the best of our knowledge, there is no standardized taxonomy to classify the different
types of iVRPs. However, there are three main classes of iVRPs which have been very
well studied by the vehicle routing community, under a widely accepted nomenclature:
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the Location Routing Problem (LRP), the Inventory Routing Problem (IRP), and the Pro-
duction Routing Problem (PRP). The LRP integrates two kinds of decisions that need to be
made while designing distribution systems. The strategic facility location problem is solved
while taking into account operational routing costs. As stated in the survey of Prodhon and
Prins [2014], many studies show that if the interdependence between location and routing
decisions is ignored, an excessive overall system cost may be incurred. Most approaches to
the LRP are heuristics (e.g. Harks et al. [2013]) or lower bounds (e.g. Albareda-Sambola
et al. [2005]). The proposed exact and matheuristic approaches are quite recent (e.g. Be-
lenguer et al. [2011] and Contardo et al. [2014]). Additionally, the authors point out the
quick growth of the number of articles on this topic, since the survey published by Nagy
and Salhi [2007]. Another class of problems that integrates distribution with other inter-
related supply chain decisions is the IRP. These problems, which were introduced by Bell
et al. [1983], integrate the operational inventory management and transportation decisions.
Many solution approaches have been proposed, including heuristics (e.g. Bertazzi et al.
[2002] and Archetti and Bertazzi [2012]) and exact methods (e.g. Archetti et al. [2007]
and Desaulniers et al. [2016]). The number of papers on this subject has increased consid-
erably in the recent years, as it is shown by Coelho et al. [2014]. A natural extension to the
IRP is to further consider the production-related supply chain processes. The PRP jointly
optimizes production, inventory management and routing decisions. The production rate
parameter that is used in IRPs is turned into a decision variable, adding a lot-sizing compo-
nent to the problem. This idea was introduced in the work presented by Chandra and Fisher
[1994]. Since the PRP is more recent, its literature is not at the same state of maturity as
the aforementioned integrated problems. Nonetheless, several heuristics (e.g. Absi et al.
[2015] and Adulyasak et al. [2014a]) and exact methods (e.g. Bard and Nananukul [2010]
and Adulyasak et al. [2014b]) have been recently proposed. For an overview on the recent
works addressing the PRP, the reader is referred to the survey published by Adulyasak et al.
[2015].

It can be noted that the aforementioned problem classes demand particular modelling tech-
niques and solution approaches to be tackled. While the LRP integrates different plan-
ning horizon levels, strategic and operational, the IRP and the PRP focus on integrating
different operational supply chain processes, comprising production planning, inventory
management and routing, at the operational level.

In the LRP, decision makers need to take into account an extended time horizon and, in
some way, capture the data patterns that may influence the strategic location decisions
inherent to the problem. In location-routing decisions, it is common to have different time-
period granularity for the location and routing parts. As stated by Fleischmann and Kober-
stain [2015], one way of integrating these patterns is to consider stochastic optimization
with a set of representative scenarios spanning through a sufficiently long horizon and solve
the operational routing problem for each scenario. Using the probability of occurrence of
each scenario, such approach allows for the definition of the location decisions while com-
puting the expected cost of performing the operational delivery schedules. Hence, the rout-
ing problems are solved in order to capture expected costs, guiding the strategic objectives
of the LRP.

This is completely different from the type of approaches that are usually adopted in the case
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of IRPs and PRPs. These problems focus on a single planning horizon level, operational,
and seek to define inventory-routing and production-routing plans that are generally to be
executed in the short term. Most publications regarding these two problems consider deter-
ministic data and shorter planning horizons comprising few periods (usually days). Thus,
the solution approaches that are generally applied to these operational problems consider
information provided by the surrounding processes such as short term demand forecasts,
capacity allocations and production rates. The granularity of the data and decision variables
is similar across the production, inventory management and routing processes, considering
each product, customer, vehicle and period separately. It is less common to use stochastic
approaches as the uncertainty is not so severe (i.e. planning horizons are shorter) and re-
planning can be an option when new information becomes available (i.e. after executing
part of the operations). These information flows between execution and planning iterations
can improve supply chain performance significantly (Fleischmann et al. [2015]).
Logically, these examples on how to deal with planning horizon level and supply chain
process integration are just a myopic view over the entire iVRP literature. The recent trend
towards integrated planning is fostering the introduction of new optimization problems,
solution approaches and real-world applications. There is a large number of recent publi-
cations where new problems are proposed to integrate vehicle routing with several planning
problems in particular. We review recent publications on iVRPs.

With respect to integrating strategic decisions with vehicle routing, the LRP is not the
only one dealing with such issue. For instance, You et al. [2011] address the optimization
of industrial gas distribution systems, integrating short-term distribution decisions for the
vehicle routing with long-term inventory decisions for sizing storage tanks at customer lo-
cations. Three case studies considering instances with up to 200 customers are solved to
show the performance of two fast computational strategies. This is a good example of a
real-world application modelling iVRPs. However, the article focuses on the computational
efficiency instead of providing insightful analysis on the underlying trade-offs of the prob-
lem. A relatively new extension to location problems is the Hub Location Problem (HLP)
([Farahani et al., 2013]) where hubs need to be located to efficiently consolidate, connect,
and switch flows between predefined origins and destinations. Lopes et al. [2016] propose
new heuristics for setting hub location-routing decisions, commonly considered in freight
transportation and telecommunications. Three heuristics are implemented and tested com-
prising variable neighbourhood descendent algorithms and a biased random-key genetic
algorithm. The authors compare the proposed heuristics with a branch-and-cut algorithm
and show that the former are efficient to solve medium to large instances.

In the tactical level, there is a large number of planning problems that need to be solved.
These are generally solved in order to set some parameters that are taken into account in
the subsequent activities. Dalmeijer and Spliet [2018] integrate the tactical assignment of
time windows with the operational VRP. The authors propose a branch-and-cut algorithm
which is considered to be the state-of-the-art among other exact approaches. Several valid
inequalities and precedence inequalities are proposed to strengthen the model. The ap-
proach is able to solve small instances comprising 35 customers. However, the authors do
not provide any insights on the structure of the integrated problem. Enderer et al. [2017]
integrate the operation decisions of assigning trucks to dock-doors and defining vehicle
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routes. The objective is to jointly minimize the total material handling and transporta-
tion costs. The authors propose a column generation algorithm and a heuristic approach to
solve small instances of the problem, showing that significant savings can be achieved even
when one of the costs dominates the other. Dong et al. [2017] combine inventory manage-
ment of cargos with tactical maritime fleet deployment. A time-continuous formulation is
proposed and computational experiments are performed on a set of realistically generated
test instances. However, the size of instances that are tackled is too small. The authors
point some research directions including decomposition methods, new valid inequalities,
and advanced heuristics to obtain near optimal solutions for larger instances.

Regarding supply chain process integration at the operational level, Darvish et al. [2017]
explore the existing trade-offs between economically optimized versus environmentally
friendly solutions in the context of IRPs and PRPs. The authors contribute to the liter-
ature by modelling and solving emission minimization integrated distribution problems
(with randomly generated instances), optimizing the total cost, distance, and emissions.
A counter-intuitive insight states that it is interesting to decrease the average vehicle load
during the route to reduce emissions, even if the travelled distance increases. In a working
paper on the IRP with pickups and deliveries, Archetti et al. [2017] propose a branch-and-
cut algorithm to solve instances considering a single vehicle serving up to 50 customers
over 3 periods. The study reveals that the average cost of a non-integrated policy, with de-
coupled routing and inventory decisions, can be 35% higher than the cost of an integrated
one. The authors show that more complex problems can now be tackled by modern tech-
nologies and methodologies. Coté et al. [2017] study the value of integrating loading and
routing. The authors show that it is worthwhile to jointly optimize strongly interdependent
problems even when the monolithic model cannot be solved by exact methods. Indeed,
the error generated by heuristic approaches while solving the integrated problem, remains
smaller than the cost increase of non-integrated approaches.

Analysing these recent publication and technical reports, it seems that the iVRP literature
still lacks publications considering realistic models with real-world applications. The great
majority of the papers deals with random generated instances and focuses on analysing the
algorithmic efficiency of the integrated approach. We consider that integration is one of
the most challenging objectives when it comes to planning operations that are performed
without any optimization software support. Therefore, despite the scientific value of such
challenge, there is a clear opportunity to make an impact on large organizations by propos-
ing new models, algorithms, and managerial insights regarding real-world iVRPs.

1.2. Research Objectives and Methodology

This research intends to contribute with new insights into the resolution of iVRPs, par-
ticularly in real-world contexts. We address a set of integrated problems and propose new
models and algorithms, evaluating their efficiency and proneness to real-world applications.
Supply chain integration can be achieved over two dimensions: (1) integrating supply chain
processes or (2) integrating planning horizon levels. Since they pose distinct difficulties in
terms of modelling techniques, this research covers integrated routing problems which fall
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into these two dimensions.

Since the vehicle routing problem is NP-hard (Laporte [2009]), the class of problems ad-
dressed in this thesis is computationally intensive to solve. Therefore, to tackle the pro-
posed formulations and realistic instances, our solution approaches focus on two aspects.
First, the vehicle routing hardness needs to be tackled efficiently as it will be present in all
addressed problems. Second, since we address a very particular set of realistic problems,
our solution approaches need to be sufficiently flexible and adaptive to several formulations
and decomposition strategies. By incorporating exact and heuristic methods, we are able
to provide efficient solutions to a set of real-world cases, providing valuable managerial
insights. We find the integration of scientific breakthroughs within companies to be funda-
mental. However, a significant gap between theory and practice, regarding decision support
for integrated supply chain planning, is yet to be bridged. Firstly, most approaches do not
point out the challenges posed by different types of integration. Secondly, the great major-
ity of iVRP approaches focus on algorithmic issues but not on solving problems regardless
of their size (i.e. through efficient decompositions). Thirdly, it is rare to find literature
providing useful managerial insights while solving real-world instances.

Vehicle Routing Problems and Interrelated Supply Chain Activities

Integrate Integrate
Supply Chain Processes Planning Horizon Levels
01) (02)

{ PDPS H IRP H PRP TWAVRP W conVRP T

Develop Exact Approach To Deal Develop Efficient Matheuristics For
With Vehicle Routing Hardness Integrated Vehicles Routing Problems
(03) (04)

[ [

Provide Managerial Insights On The Ad-

dressed Ingrated Vehicle Routing Problems
(05)

[Integrated Problems Addressed]

PDPS - Picup and Delivery With Synchronization | IRP - Inventory-routing Problem | PRP - Production-routing Problem
TWAVRP - Time Windows Assignment Vehicle Routing Problem | conVRP - Consistent Vehicle Routing Problem

Figure 1.1 — Research canvas and research objectives

Figure 1.1 presents a visual representation of the research objectives of this thesis and their
relationship. To achieve them, five research questions provide the underlying guidelines.
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Research Questions For Research Objective 1
How to comprehensively address realistic supply chain process integration?

To answer this research question we propose a set of mathematical formulations which
model more than one supply chain process. Since our focus is on transportation-related pro-
cesses, we integrate, extend and propose new models for integrating vehicle routing with
other operational decisions. The models cover three different problems comprising pickup
and delivery with request synchronization, inventory-routing, and production-routing deci-
sions, and account for different realistic features, such as new operational models, lateral
transshipments, and perishability control.

Research Questions For Research Objective 2
How to comprehensively address realistic planning horizon level integration?

This research question is answered by exploring the integration of different planning hori-
zon levels with the operational routing decisions. In this case, we cover two iVRPs. The
operational routing decisions are integrated with the tactical time window and driver assign-
ment. Since the planning horizon of both problems is not the same, demand uncertainty is
one of the issues that needs to be addressed by the new models. We expect to draw some
conclusions regarding transportation planning with non-deterministic demand, providing
guidelines for the reader to model, solve, and extract insightful conclusions while integrat-
ing different planning horizon levels in vehicle routing problems.

Research Questions For Research Objective 3
What are the challenges posed by integrated routing problems when devising exact ap-
proaches? Which instance size can we expect to solve by such approaches?

We seek to understand the challenges of combining vehicle routing problems with other
optimization problems while developing exact solution methods. The main solution tech-
niques that are successful in the classical vehicle routing problems are explored in the
context of integrated vehicle routing problems. We devise an exact solution approach, em-
bedding several acceleration techniques, expecting to understand if their applicability to
integrated problems holds. Furthermore, it is expected that the output of this objective will
be useful in the subsequent phases of our research.

Research Question For Research Objective 4

Are innovative hybrid solution methods, namely matheuristics, suitable to solve mathe-
matical formulations related to integrated vehicle routing problems? Where do they stand
in comparison to purely exact and heuristic methods?

The attainment of the third research objective is core for pursuing our fourth research ob-
jective. Using the developed exact approach to deal with vehicle routing efficiently, we seek
to materialize the outcome of this research objective by proposing a set of hybrid solution
methods where a set of subproblems is solved to optimality. The idea is to take advantage
of the huge flexibility provided by matheuristics to deliver good results in reasonable time
(considering the needs imposed in a business context). We aim at contributing to the liter-
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ature by showing that several business-based decomposition strategies enable the efficient
application of matheuristics to a considerable set of iVRPs.

Research Question For Research Objective 5

What are the main challenges and insights obtained by addressing integrated routing prob-
lems in real-world contexts? In scientific and practical terms, what are the impacts of such
integration?

All the aforementioned objectives are fundamental to achieve the last research objective of
this thesis. We seek to analyse the results provided by the developed models and algorithms
to derive enlightening conclusions related to the structure of integrated routing problems as
well as valuable managerial insights. First, we expect to come up with general guidelines
for dealing with the computational challenges of integrated routing problems. Second, we
seek to quantify the potential savings coming from the integration of several supply chain
processes as well as different planning horizon decisions. We deal with four real-world
integrated routing problems, proving the applicability of our approaches in an attempt to
bridge the literature gap related to real-world applications.

Table 1.1 summarizes the work developed in this thesis, revealing the main differences
between each chapter. We indicate the supply chain processes and planning horizon levels
that are jointly optimized in each chapter, as well as the type of solution approach devised
to solve the integrated vehicle routing formulations that serve as a basis for each one. Fur-
thermore, we provide a brief summary of the terms that are considered in each objective
function and the businesses in which the provided managerial insights are validated. Fi-
nally, we indicate the chapters that are more connected to the answers provided to each
research question in the final considerations of this thesis.

Table 1.1 — Chapter summary and relation to each research question.

Research Questions

) Supply Chain Planning Solution Lo . Managerial
Chapter Process Horizon Level ~ Approach Objective Function Insights Ql Q2 Q3 Q4 &
Transportation + Maximize Third Party
2 (PDP) Inventory Operational MH Request Logistics v v v
Synchronization Movements Operator
Transportation + Minimize Theoretical
3 (IRP) Inventory Operational E Inventory And Study On v v
Management Transportation Cost  Transshipments
Production + Minimize Production ~Meat Store
4 (PRP) Inventory Management +  Operational MH Inventory And Chain v v v
Transportation Transportation Cost
Time Window Tactical Minimize Food
5 (TWAVRP) Assignment + + MH Fleet And Retail v v v
Transportation Operational Transportation Cost  Operations
Time Window And Tactical Minimize Penalty Pharmaceutical
6 (conVRP) Driver Assignment + + MH And Industry v v v
Transportation Operational Transportation Cost
Legend: MH - Matheuristic | E - Exact Approach | PDP - Pickup and Delivery Problem | IRP - Inventory Routing Problem

PRP - Production Routing Problem | TWAVRP - Time Window Assignment Vehicle Routing Problem
conVRP - Consistent Vehicle Routing Problem
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1.3. The Collection Of Papers

We have chosen to elaborate this thesis as a collection of papers either already published
or under review in international peer-reviewed journals instead of a monograph. Hence,
the collection of papers targets the research objectives defined in the previous section. In
Figure 1.2 we present the supply chain matrix presented by Fleischmann et al. [2015]. We
explore the integration of transportation problems can be with other supply chain processes
(horizontally) and other planning horizon levels (vertically).

Supply Chain Process (Material Flow)
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=
o0 + Materials . . e *+  Product progr:
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£ e « Production system structure h
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[S—

Figure 1.2 — Thesis focus represented in the supply chain matrix adapted from Fleischmann
et al. [2015].

Chapters 2, 3, and 4 are aligned with the objectives pursued for integrating routing with
other supply chain processes. Chapters 5 and 6 follow the research objectives related to
the integration of planning horizon levels. In the remainder of this section we briefly point
out the main subjects and contributions presented in each of the papers. Additionally, we
indicate the references where this research was originally published or submitted to.

1.3.1 Supply Chain Process Integration
The first three papers in this thesis (Chapters 2, 3, and 4) focus on integrating routing
problems with other production and distribution supply chain processes.

1.3.1.1 Pickup and delivery with synchronization

Chapter 2 introduces a new optimization problem which is based on a very unique opera-
tional model which is designed to reduce empty trips of a third-party logistics operator. In



10 Chapter 1. Motivation and overview

this problem, truck semi-trailers need to be moved passing through multiple transshipment
locations. Hence, inventories of semi-trailers need to be synchronized through several de-
pots, resulting in a problem comprising routing, inventory, and scheduling aspects. Three
main contributions are added to the literature. Firstly, we provide an overview over dif-
ferent parts of the VRP literature. As the paper unfolds, it becomes clear that there is a
need for a set of features coming from a broad set of problems. In some cases, the sim-
ilarities may only be physically noticeable whereas in other cases there are similarities
only in the methodologies and modelling techniques used. Secondly, a new operational
model for the pickup and delivery problem is presented as a new glance at the possibili-
ties of using transshipment locations to support distribution. Considering that the use of
transshipment locations is part of a new logistics paradigm, this work surely presents a
fresh approach to vehicle routing and scheduling problems. Thirdly, we contribute to the
matheuristics field by proposing a solution approach which outperforms a general-purpose
solver, obtaining superior solutions in shorter time. We further validate the approach in
a real-world case study and we understood, however, that inventory management should
be considered explicitly in the models. One of main innovative features of the proposed
model is in the objective function, which attempts to maximize the number of semi-trailers
flowing through the network. The reference that serves as basis for this chapter is:

e Fabio Neves-Moreira, Pedro Amorim, Luis Guimarées, and Bernardo Almada-Lobo.
A long-haul freight transportation problem: Synchronizing resources to deliver re-
quests passing through multiple transshipment locations. European Journal of Op-
erational Research, 248(2):487 — 506, 2016.

1.3.1.2 Inventory-Routing

Chapter 3 explicitly integrates the VRP with inventory management. To explore the value
of owned fleet lateral transshipments in the context of the IRP, the paper associated with
this chapter provides four main scientific contributions. We first propose a novel IRP for-
mulation considering owned fleet lateral transshipments. This realistic feature is used in
business contexts where inventories can be reallocated between retail sites, after some dis-
ruptive events introduce unbalances in the inventory management activity. The second
contribution is an efficient exact branch-and-cut algorithm which focuses on patching in-
feasible routing solutions to accelerate the branching process. In the third contribution,
we perform a sensitivity analysis over a set of parameters that are crucial for real-world
applications of the IRP. We provide results for extensive computational experiments where
different operational models are tested with different planning horizons and forecast accura-
cies. Our fourth and last contribution is translated into new managerial insights comparing
the standard IRP with the extended problem, where lateral transshipments are an option.
The reference that serves as basis for this chapter is:

e Fabio Neves-Moreira, Luis Guimaraes, Bernardo Almada-Lobo. Owned fleet lateral
transshipments in the inventory routing problem. Computers & Operations Research
(Submitted)
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1.3.1.3 Production-Routing

Chapter 4 explicitly integrates production, inventory management, and vehicle routing de-
cisions. We tackle a large multi-product PRP with delivery time windows using a matheuris-
tic approach based on the exact approach developed in the third chapter. The main contri-
butions of this chapter are fourfold. First, we propose a novel mathematical formulation for
the PRP increasing the realism of the standard models. The model provides solutions for
problems considering multiple perishable products, production lines with different speci-
fications and delivery time windows. Second, to solve the proposed model, we present a
decomposition approach which divides the PRP into several IRPs and one Capacitated Lot
Sizing Problem (CLSP) reducing the size of the original problem. Third, to explore the so-
lution space of large PRPs which are intractable for the best available commercial solvers,
we propose an improvement matheuristic. The solution approach proves to be competitive
while solving literature instances of the IRP and PRP. In the last contribution, we apply our
solution approach to a real-world context, and provide valuable managerial insights using
data of a meat store chain. The reference that serves as basis for this chapter is:

e Fabio Neves-Moreira, Bernardo Almada-Lobo, Jean-Frangois Cordeau, Luis Guima-
rdes, Raf Jans. Solving a large multi-product production routing problem with time
windows. Omega (Submitted)

1.3.2 Planning Horizon Level Integration

The last papers in this thesis (Chapters 5 and 6) take advantage of the approaches developed
in the first part of the thesis, to integrate the tactical and operational levels of distribution.

1.3.2.1 Time window assignment based on vehicle routing

In Chapter 5, the vehicle routing problem is jointly optimized with the tactical time win-
dow assignment. The idea is to develop a systematic approach for redefining time windows
based on delivery schedules that combine pre-generated routes. The main contributions of
this paper are the following. First, we propose a novel set-partitioning formulation for the
time window assignment vehicle routing problem considering multiple product segments.
This formulation is guided by a new objective function which accounts for the cost of fleet
requirements. Second, to deal with real-world instances, we propose a matheuristic us-
ing business related decomposition strategies for accelerating its convergence. Third, we
present extensive computational experiments, testing an average demand scenario approach
against our stochastic optimization approach. Three different operational models with dif-
ferent time window settings are compared in terms of potential savings. Furthermore, a
sensitivity analysis is performed on a baseline solution provided by a European food re-
tailer to explore the trade-off between implementation effort (number of time windows
changed) and total cost. Fourth, we provide business related insights as well as real-world
considerations that have been revealed during the development and implementation of our
solution approach. The reference that serves as basis for this chapter is:
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o Fabio Neves-Moreira, Diogo Pereira da Silva, Luis Guimaries, Pedro Amorim, Ber-
nardo Almada-Lobo. The Time Window Assignment Vehicle Routing Problem With
Product Dependent Deliveries. Transportation Research Part E: Logistics and Trans-
portation Review (Submitted)

1.3.2.2 Enforcing driver and time consistency in vehicle routing

In the last chapter of this thesis, Chapter 6, we deal with the consistent VRP. We integrate
the operational vehicle routing problem with two tactical decisions: time windows and
driver assignment. The contributions provided by the paper in the sixth chapter are twofold.
Firstly, a new problem is introduced and a formulation is proposed. We extend the con-
sistent VRP by considering service level agreements which induce a different number of
visits to each customer in each period of the day. Secondly, we devise a solution approach
which uses a Consistent Vehicle Routing Problem (conVRP) formulation to effectively ad-
dress a real-world problem. Furthermore, the proposed mathematical programming based
solution approach is validated with historical data for planning the consistent routes of a
pharmaceutical distribution company with over 3.000 daily deliveries. This environment
comprises both expected and unexpected customers with uncertain demand. The proposed
plans are then simulated and their performance is compared to real-world plans of the case
study. The reference that serves as basis for this chapter is:

e Pedro Campelo, Fdbio Neves-Moreira, Pedro Amorim, Bernardo Almada-Lobo. Con-
sistent Vehicle Routing Problem with Service Level Agreements European Journal
of Operational Research (Under Review)

1.4. Final considerations

Integrated vehicle routing is still in its infancy. Although there are some well studied
classes of problems, such as location, inventory, and production routing, other classes of
problems still have to be explored. This thesis presents five iVRPs and proposes new
extended mathematical formulations to model them. Given the complexity of iVRPs, it is
very unusual for commercial solvers to solve them out of the box. Therefore, the models
are tackled by enhanced exact and hybrid approaches. The latter, are proven to be highly
successful in dealing with four real-world applications comprising a third party logistics
provider, a food retailer, a meat store chain, and a pharmaceutical distributor. We largely
contribute to the recent field of matheuristics, pointing out their enormous flexibility to
deal both with computational and business complexity. Furthermore, matheuristics detain
three main characteristics we felt to be fundamental for real-world implementation of OR
techniques: (1) their mathematical programming base allows for fast integration of new
features that are constantly popping up in real contexts; (2) matheuristics’ subproblems are
extremely easy to tune and flexible enough to undertake business tailored decomposition
strategies; (3) although they are not as fast as pure metaheuristics, they usually obtain high
quality solutions in reasonable computational times.
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The results provided by of our solution approaches are able to show-off the power of OR
while solving complex logistics problems in the real world. Studying VRPs is extremely
important for the evolution of supply chain planning. Most companies still rely on man-
ual and hierarchical planning processes that are very time consuming, very error prone,
and generally poor in terms of solution quality. Although planners are usually quite good
while dealing with separate problems, supply chain process and planning level integration
are extremely difficult to be handled manually. Indeed, integrating decisions comprising
various activities with continuous and binary decisions rapidly entraps manual planners
in local optima. Therefore, we consider that systematic approaches that model different
supply chain processes and planning levels, capturing their interaction, are a requisite for
competitive supply chain management.

Furthermore, we recognize that most of the insights presented in this thesis would be very
hard (if possible) to be found without proposing systematic and flexible approaches based
on our enhanced OR techniques. A very unique set of iVRPs is tackled using both litera-
ture and real-world instances. By doing so, we were able to solve different scenarios and
test new operational models within the context of the iVRP. This research allowed us to
address new logistics paradigms and unveil important findings regarding the structure of a
wide variety of challenges. Regarding the Pickup and Delivery Problem (PDP), we show
how a new operational model can use short-haul trips to provide long-haul services while
reducing truck empty trips. In the context of the IRP, we explore a new operational model
using lateral transshipments and show that lateral transshipments can be a useful hedging
mechanism in uncertain contexts when holding costs are high. We tackled a large PRP
and showed the impact of considering Vendor Managed Inventory (VMI) and different de-
mand visibilities in a real-world case study of a meat store chain. We integrated the tactical
time window assignment with vehicle routing, modelling the Time Window Assignment
Vehicle Routing Problem (TWAVRP) as a two-stage stochastic optimization problem. We
quantify the savings obtained by considering stochastic optimization against using aver-
age demands showing that a cost reduction of 5.3% can be achieved in a multiple product
segment context. Furthermore, based on the case of a large European food retailer, we pro-
vided managerial insights for three operational models which test different time window
setting paradigms. In the last research of this thesis, we introduce service level agreements
in the conVRP for tackling the real-world case of a pharmaceutical distributor. The applica-
tion of the developed solution approaches to the real-world data estimates a cost reduction
of 12.7% in the costs optimized in the project.

Considering the large savings obtained in every chapter of this thesis, it is undeniable that
solving iVRPs using OR techniques can be extremely valuable for practitioners. Despite
the enormous increment in complexity, we consider that iVRPs can be used for further
enhancing new business models or pushing the efficacy of the current ones.

1.5. Further work

In this thesis, several contributions for the iVRP have been made to support a growing inter-
est in this research area and real-world applications. Nonetheless, a number of interesting
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issues remains unaddressed. While focusing on devising solution approaches to address
each iVRP tackled in this thesis, some questions were constantly emerging:

e While building initial solutions, which problem should we address in first place?

o Which part of the integrated problem has a higher potential to be improved?

What is the best decomposition strategy for a certain problem?

o How many periods should be considered in the planning phase?

Do the previous questions depend on the type of problem and instance?

Few papers aim at answering these questions. However, we still find them really important
in the context of integrated planning problems in general. Hence, these questions should
be approached in a systematic fashion.

Finally, apart from the aforementioned research gaps, we selected a set of iVRPs and chal-
lenges that, to the best of our knowledge, have not been well explored yet. We consider that
these problems pose real challenges both for the scientific community and practitioners.

Integrate the strategic and tactical decisions Although the literature has already addressed
some problems where strategic and tactical decisions are integrated with vehicle
routing (location-routing has been well studied [Prodhon and Prins, 2014]), there
are some challenges that deserve to be tackled. During our research, it was quite
clear that some solutions need to be found to support other supply chain processes.
Despite the importance of location decisions, we point out the importance of defin-
ing the type of infrastructure in which a decision maker should invest in. In fact, this
decision may largely impact operations, posing several challenges to the subsequent
fleet size, fleet mix, and workforce planning problems. For instance, if we design
a transportation network where deliveries are to be performed autonomously by the
drivers at night (demands large storage areas and unloading equipment), using large
vehicles (demands good accessibility), a large investment may have to be made to
build the necessary infrastructure. Some issues may be apparently despicable at first
sight, but the irreversible character of these decisions may be later translated in large
costs for not being considered in the early phases of the network design process. We
consider that the literature should expand the type of strategic and tactical decisions
addressed in the iVRP literature.

Integrate different Lot Sizing Problem (LSP) variants Although our approach to the PRP
adds realism to related literature, we consider that a large set of LSP extensions
still needs to be integrated with the VRP. The vehicle routing community has been
much more active in developing the PRP than the lot-sizing one, and this may be
one of the reasons why the LSP extensions are not so well-studied. We encour-
age researchers to incorporate into PRP models well-known LSP extensions, such
as sequence-dependent setups, setup carry-over, production scheduling and backlogs
[Quadt and Kuhn, 2008].
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Integrate minor planning problems Minor planning problems may be a good opportu-
nity for further improvements in transportation planning. Although they are not the
main concern in the planning phase, they are indispensable for the transportation ac-
tivity to be conducted. For instance, the importance of refuelling decisions can be
largely influenced by the context. There is a large differential in the prices of gas
between Portugal and Spain. This fact may create a large impact in delivery sched-
ules, as planners seek to refuel vehicles in Spain. Studying the impact of refuelling
decisions in transportation planning in order to take advantage of price differentials
is a very interesting problem which has not been properly tackled yet.

Robustness in iVRPs Robustness is a concept that has not even achieved maturity within
VREP literature. However, we consider that this is a really challenging issue and prac-
titioners are becoming increasingly interested in robust solutions in a large variety
of problems. Robust solutions can be extremely important when the impact of dis-
ruptive events is high and corrective actions take time to be effective. This is quite
common, particularly when integrating the VRP with non-operational decisions such
as location decisions, capacity planning, and fleet sizing.

Consider the final customer Very few papers integrate vehicle routing with sales-related
supply chain processes. However, there are new challenges that study the behaviour
of the final customer to get further benefits. For instance, last-mile and same-day
deliveries are very valued by customers in general and are now being integrated
within VRPs. Recently, Archetti et al. [2016] present a very interesting problem
which takes advantage of crowdshipping where ordinary drivers drop-off packages
en route to their destination. This approach has been considered by some retail giants
(such as Walmart and Amazon) and is completely in-line with the new trends seeking
for shared economies.

We encourage researchers to pursue further developments on integrated routing problems.
The world is now witnessing the rise of few technologies that may disrupt the way we
deal with transportation, operational research, and collaboration between different compa-
nies. New delivery modes will become available with the deployment of drones and au-
tonomous vehicles. The technological advances in computing power may suffer a huge leap
with quantum computing, enabling the possibility for solving larger problems, integrating
larger sets of decisions. Furthermore, most integrated problems assume specific collabora-
tion conditions between various stakeholders. Self-executing smart contracts, stored on the
blockchain ([Swan, 2015]), will allow companies to collaborate more transparently, trust-
fully, and efficiently. We foresee that powerful applications may rise from the hybridization
of optimization techniques, data science, and blockchain based-governance. This could
well be the birth of a whole new set of thesis regarding iVRPs.
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Abstract  This research aims at tackling a real-world long-haul freight transportation
problem where tractors are allowed to exchange semi-trailers through several transship-
ment points until a request reaches its destiny. The unique characteristics of the consid-
ered logistics network allow for providing long-haul services by means of short-haul jobs,
drastically reducing empty truck journeys. A greater flexibility is achieved with faster re-
sponses. Furthermore, the planning goals as well as the nature of the considered trips led to
the definition of a new problem, the long-haul freight transportation problem with multiple
transshipment locations. A novel mathematical formulation is developed to ensure resource
synchronization while including realistic features, which are commonly found separately
in the literature. Considering the complexity and dimension of this routing and scheduling
problem, a mathematical programming heuristic (matheuristic) is developed with the ob-
jective of obtaining good quality solutions in a reasonable amount of time, considering the
logistics business context. We provide a comparison between the results obtained for 79
real-world instances. The developed solution method is now the basis of a decision support
system of a Portuguese logistics operator.
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2.1. Introduction

Setting an efficient and flexible logistics network and defining its planning and operational
processes is one of the most complex challenges one can find in the transportation sector.
In the last two decades, we have witnessed a considerable effort towards the creation of a
new generation of transportation systems [Crainic et al., 2009] which have to fit the value
proposals of each company, focusing on distinct strengths such as quality, speed, reliability
or cost.

Recently, cost pressures fostered a modification in the logistics paradigm and transshipment
points are being deployed for long-haul freight transportation, introducing more flexibility
into logistics networks. Usually, logistics operators (LO) find different solutions for the
challenges imposed by long distance trips, such as using more than one driver per vehicle.
However, adopting a transshipment-based distribution process may be truly advantageous.
From a global point of view, the transportation network becomes much more flexible as it
provides additional possibilities to perform the transportation of freight. Since the tasks as-
signed to each resource are much shorter, points in time when a resource becomes available
can be rationally spread along the entire area occupied by the customers and will happen
more frequently. In what concerns real-world cases, knowing that the variance of the plan-
ning variables may drastically affect timings, this is an advantage to ensure the execution of
a transportation plan. In fact, this flexibility will be reflected in an increment of the service
level as the network offers more solutions per unit of time. Furthermore, this flexibility
not only accounts for the aforesaid facts, but also may yield solutions with less and shorter
empty truck paths, which are a major concern among LO.

Logically, these advantages come at a cost. On one hand, the complexity of a planning
problem considering transshipment points is much larger. On the other hand, the opera-
tional complexity at each facility is also likely to increase due to the difficulties imposed
by the need to synchronize resources. This also means that it is extremely difficult to obtain
a feasible solution manually.

In this research we develop a systematic approach on top of a real transportation network
that has both the intermediate facilities and the human expertise to perform transshipment
operations. Since in Mitrovic-Minic and Laporte [2006] the authors state that transship-
ment points have shown to be very useful in clustered instances (typical found in long-haul
transportation) and that the advantages of using those nodes increases with problem size
(real-world instances are large), we consider that our challenge is a valuable research topic.
In order to provide an example of the aforementioned networks and context, Figure 2.1 is
shown. In this novel problem, a set of tractors (Figure 2.2a) is located in each depot and the
objective is to pickup requests from a certain location and deliver them to other locations.
A request consists in the transportation of an entire semi-trailer (Figure 2.2b) and thus,
considering that each tractor can only pull one semi-trailer at a time, we are in the presence
of a full truckload case. Whenever a customer submits a request, both a pickup and a deliver
time-window have to be defined, meaning that loading and unloading operations have to
occur during those intervals. It is also possible to request each operation to be made in
different days and for that reason, semi-trailers can be temporarily stored in a transshipment
location (note that every depot also has a transshipment location). Additionally, a service to



2.1. Introduction 21

be provided by a tractor can only occur during the period in which its base depot is opened.
Tractors can only travel inside their reach radius which is defined by the maximum number
of hours that drivers are allowed to work.

Loading/Unloading node (single reach)
Loading/Unloading node (multiple reach)
Depot

Transshipment location

Reach radius

(a) Tractor used to pull semi-trailers (b) Semi-trailer to be pulled by tractor

Figure 2.2 — Resources that compose a vehicle

This real-world challenge includes a combination of conditions that are rare in the litera-
ture.

Firstly, in consideration of the company’s desire to maintain a certain level of comfort
among its drivers, the maximum working time (including driving and other activities) is
assumed to be 9 hours. Note that tractors are obliged to return to their base depot in the end
of a workday. Therefore, drivers have a limited reach radius of approximately 4.5 hours
which clusters the customers around each depot. In sum, we may assume that policies
found in short-haul transportation activities are preferred.

Secondly, since drivers are confined to a limited region around their base depot, the neces-
sity of executing multiple transshipments with the same request may be imposed in some
services. Thus, in order to provide long-haul services by means of short-haul jobs, the
company allows for the possibility of performing transshipments at certain locations. In
fact, different regions may only communicate in these locations where two vehicles are



22 Chapter 2. Pickup and delivery with synchronization

able to exchange freight. This is strictly necessary, otherwise it would not be possible to
send requests between every combination of sender/receiver, while ensuring compliance
with the law and with the policies of the company. It is now clear that if a request is to be
picked in the zone of a certain depot and to be delivered in the zone of another depot, it
is mandatory that at least one transshipment is going to happen. Additionally, a transfer is
only possible if the compatibility between tractors and semi-trailers is assured (the terms
“transfer” and “transshipment” are used interchangeably in this paper).

Thirdly, tractors are only able to leave a certain depot if they are to return pulling a semi-
trailer, meaning that the delivery of a request must always be paired with the pickup of
another request in the same trip (throughout the paper we use the term path to describe
the movement of a vehicle from one location to another and the term trip to refer to a set
of paths performed by a vehicle). Specifically, a tractor is not allowed both to leave or to
arrive at its base depot without pulling a semi-trailer. In fact, if this condition is verified
in every trip, the distance travelled without pulling semi-trailers will be minimized since
the only possibility to execute such trips is reserved to the case when a tractor travels from
an unloading location to a loading location. In reality, if the truck unloads a semi-trailer
and picks another semi-trailer in the same location (despite being represented by different
nodes), trips including empty truck paths can be fully extinguished from the transportation
plans emerging from this pairing strategy. Additionally, there is no room for complex
itineraries because most of the requests have different pickup and delivery zones, meaning
that the semi-trailers will most likely be transported directly from their initial location to a
depot or between depots before reaching their final destination.

Lastly, given the latter conditions, one may conclude that in long-haul requests there is a
portion of the total journey to be crossed by the request that is defined a priori, specifically,
the depots through which the request has to pass in order to be moved from one zone to
another are known in advance. The necessary transshipment, pickup and delivery paths
are defined in the moment a request is posted. Therefore, the objective of minimizing the
travelled distance was not considered to be critical when analysing movements between
zones. However, if a tractor unloads a semi-trailer in a certain location and has to return
without pulling a semi-trailer, an empty truck path is incurred. Since these empty truck
paths are undesirable among the transportation sector, although they are essential to con-
tinuing operations as stated by Crainic [1998], the company decided to follow the strategy
of maximizing the number of pairings which are the trips where a tractor delivers and picks
a semi-trailer. Although this pairing maximization objective is not the most common, if
we consider that the arcs to be traversed are roughly defined in the beginning of the plan-
ning phase, we conclude that the routing part is not the main concern of this problem and
thus it is admissible not to focus the attention in the objective of minimizing the travelled
distance. Still, one does not have an idea of the exact moment when the trips are to be
executed and the tractor that will execute them. Additionally, in requests with pickup and
delivery time-windows to be made in different days, a minimum number of transfers must
be accomplished in order to ensure that a feasible solution exists in the future. This is
due to the fact that the length of the considered planning horizon may be shorter than the
difference between the pickup and delivery time-windows of a given request.

To the best of our knowledge such conditions were never addressed in a systematic man-
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ner before. Furthermore, being motivated by a real-world case, this research has to con-
sider practical aspects which confer an additional complexity to the planning problem that
hampers the computation of a feasible solution manually, even for planners with years of
experience. We developed a novel mathematical formulation which models transshipment
locations based on the approach presented by Cortés et al. [2010]. In order to address the
necessary practicalities of the real-world problem, some enhancements had to be made re-
sulting in a more complex formulation, which is only capable of solving small instances.
Aiming at the resolution of larger instances and with the objective of obtaining better qual-
ity solutions in a reasonable amount of time, a matheuristic was developed in order to
iteratively decompose the set of integer variables in the original MIP and explore simpler
sub-problems.

The remainder of this paper is as follows. In Section 2.2 a literature review of problems
with similar features is performed. The problem description is detailed in Section 2.3. In
Section 2.4 the novel mathematical formulation capable of producing real-world applicable
solutions is introduced. Section 2.5 is devoted to the proposed solution method and Section
2.6 reports numerical experiments that were performed on real-world instances. Finally, in
Section 2.7, the paper summarizes the main achievements and future works that may arise
from this research.

2.2. Literature Review

Since its introduction by Dantzig and Ramser [1959], the research community has been
studying extensively different vehicle routing problem (VRP) variants and applications.
Expectedly, the complexity of the addressed challenges also suffered a massive increase
since the value of the optimization techniques captured the interest of most competitive
LO. In addition, the computational power that is available nowadays enables the scientific
community to further develop new mathematical models as well as the necessary methods
to solve them. This remarkable and logical evolution is described by Laporte [2009].

Regarding the VRP variants, this paper is devoted to a practical application that is mainly
similar to the pickup and delivery vehicle routing problem (PDVRP), which was introduced
by Dumas et al. [1991]. In the PDVRP vehicles have to pickup goods from one location
and deliver them to another location. This variant is considered to be the most flexible rout-
ing problem and its applicability to real-world problems, which has sparked an enormous
interest among companies, is motivating the introduction of novel features. The reader is
invited to explore the surveys made by Mitrovic-Minic [1998], Parragh et al. [2008a], Par-
ragh et al. [2008b], Berbeglia et al. [2007] and Berbeglia et al. [2010] in order to obtain an
overview of the principal paradigms that rule pickup and delivery problems. Considering
the characteristics presented in the previous section, the interest of this paper also goes to
problems including transshipment activities and using tractors and semi-trailers to perform
deliveries. In order to capture important aspects about these features we studied the truck
and trailer routing problem (TTRP), which allows for a different kind of transshipment
where vehicles can park trailers and reload the truck, to study cases where the trailer may
be separated from the rest of the vehicle. We also studied pickup and delivery problems
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(PDP) as our challenge includes loading and unloading operations at different locations.
Since some semi-trailers are stored at depots for later consideration, we consider that it is
also important to review the literature on vehicle routing problems with backhauls (VRPB).
Additionally, we review some roll-on roll-off vehicle routing problems (RRVRP) because,
similarly to our case, it is common to model different trip types to enable vehicles to per-
form their activities correctly. Finally, given that we consider full truckloads, precedence
constraints and multiple time-windows, some papers about these topics are also reviewed.
None of these problems includes all the features addressed in our problem, nevertheless
they share important points. To clarify our positioning, we define our problem as a full
truckload a pickup and delivery problem with trailers and multiple transshipped requests
(FT-PDPTmTR).

22.1 TTRP

Most of the literature dealing with trailers is concerned with the TTRP (trailers are not
exchanged). Villegas et al. [2010] present a GRASP/VND and multi-start evolutionary
local search for the TTRP. Although there is the possibility of detaching the trailer, the
authors only address the single-vehicle case which is a significant simplification compared
to the objective of this paper. Additionally, the goods are located at the depot eliminat-
ing the necessity of picking them up. In Villegas et al. [2011], the authors propose a
GRASP with evolutionary path relinking. Although they consider an heterogeneous fleet,
the truck and trailer concept is only used to respect the accessibility constraints showed by
some customers. Therefore, each vehicle needs to leave the trailer in a designated location
and has the possibility of delivering goods and picking up more goods from the parked
trailer. Drexl [2011] consider variable and fixed costs for trailers, time-windows and pure
transshipment locations simultaneously. The author tests his branch-and-price and heuris-
tic column generation approaches on randomly generated instances structured to resemble
real-world situations and TTRP benchmark instances from the literature. The results show
that with a heuristic column generation approach, real-world general TTRP instances can
be solved in short time with high solution quality. However, the results for the benchmark
instances are not so successful due to the low ratio of customer supplies to vehicle capacity
in these instances. Recently, Derigs et al. [2013b] develops some simple heuristics that are
able to compete with complex approaches from the literature. The heuristic is capable of
solving TTRPs with/without load transfer as well as with/without time-windows. Addi-
tionally, the author considers the benchmark instances to be unrealistic since they do not
include real-world features such as coupling and un-coupling costs and time consumption.
Villegas et al. [2013] also tackle the same problem by means of a matheuristic that uses
the routes of the local optima of a hybrid GRASP/ILS as columns in a set-partitioning
formulation. This approach outperforms state-of-the-art methods both in terms of solution
quality and computing time. The authors also present a table summarizing the most rele-
vant approaches to the TTRP, providing a short description of the problem along with the
proposed solution methods. Prodhon and Prins [2014] present a section dedicated to the
TTRP which provides a very good overview of recent approaches to this problem. Con-
sidering the papers cited in the latter survey, it is clear that this type of problem contains
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features that are quite similar to our challenge. Although using the same acronym, TTRP,
Derigs et al. [2011] tackle a slightly different problem which is the tractor and trailer rout-
ing problem. In this problem, vehicles are not allowed to transport load without a trailer.
The authors study a real-world situation in which EU-Regulations and compatibilities be-
tween trips and trailers have to be taken into consideration. The authors clearly state that
this problem has not been studied neither in literature nor from a practical point of view.
Analysing the aforementioned papers, it is necessary to point out that none of them consid-
ers the possibility of picking up requests from one customer and delivering them to another
customer. Indeed, vehicles are only allowed to pick up additional load from their parked
trailers which is something that does not happen in our case. Furthermore, their concept
of transshipment is completely different from the one that is of interest for this paper in
which two tractors may have the possibility of exchanging trailers. Although these prob-
lems are slightly different from ours, they include the main aspects regarding the binomen
tractor/trailer that is found in the challenge to be addressed. In a recent survey concerning
the applications of the VRPTT, an extension where trailers may be exchanged between ve-
hicles, Drexl [2013] makes a reference to the pickup and delivery problem with trailers and
transshipments (PDPTT). This problem seems quite similar to ours as it includes pickup
and delivery operations, trailers and transshipments. Drexl, which is the only one mention-
ing this pickup and delivery problem type, states that when transshipments are allowed, the
set of vehicle routes of a solution is no longer sufficient to describe the path taken by each
request. Drexl] [2007] also refers the difficulty of considering complex synchronization re-
quirements at transshipment locations. In fact, the necessity of assuring that a specific set
of resources is at a certain place in a given time is something extremely challenging, spe-
cially because it influences a considerable portion of the surrounding variables. Although
DrexI considers that such problems constitute a promising application for VRPTT, we were
not able to find a single application or paper devoted to this version of the pickup and de-
livery problem which is, in fact, quite similar to the problem we aim to solve (except for
the multi-transshipment flow of requests). In order to better understand the main features
in which the aforementioned references are related to our problem, we provide Table 2.1.
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Table 2.1 — Problem features comparison for cited papers considering TTRPs
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2.2.2 PDP

On the subject of the pickup and delivery problem without considering trailers or semi-
trailers, only a few papers addressed transshipments. Note that this transshipment con-
cept assumes that there is an exchange of load between different vehicles, which in our
case may be a swap of the entire semi-trailer between two tractors. One of the problems
which makes use of this transshipment concept is the dial-a-ride problem. This problem
is concerned with the transportation of people from one place to another and is tackled by
Cortés et al. [2010] with a formulation of the transshipment nodes where people have the
possibility to change from one vehicle to another. The problem is described with a math-
ematical formulation and solved by means of a branch-and-cut method. Mitrovic-Minic
and Laporte [2006] address a pickup and delivery problem with time-windows allowing
for the exchange of loads between vehicles. The main reasoning behind this transfer op-
portunity lies in the idea of keeping the drivers near their domicile, which is something
quite similar to the depot zones considered in our case. A heuristic procedure is presented
and tested in small instances with the objective of proving the utility of performing trans-
shipments. Similarly, Qu and Bard [2012] tackle the pickup and delivery problem with
transshipments with an implementation of a GRASP with adaptive large neighbourhood
search (ALNS). Considering the previous three approaches, their main drawback is related
to the number of requests that each can address. Indeed, this continues to be the greatest
disadvantage of formulations and solutions methods to solve transportation problems with
transshipments. When considering problems with less features such as the pickup and de-
livery problem with time-windows (PDPTW), researchers are able to obtain good results
in larger instances. Masson et al. [2013b] develop an efficient feasibility test for inserting
requests in pickup and delivery problems with transfers. Since requests are strongly inter-
dependent due to the transshipment option, heuristic operators may constantly introduce
infeasibilities which need to be detected and eliminated. The authors achieve a constant



2.2. Literature Review 27

time feasibility checker which is based on the forward time slack principle presented in
[Savelsbergh, 1992]. This feasibility checking procedure is later extended by Grangier
et al. [2014] to be faster when tackling their problem. Masson et al. [2013a] implement an
ALNS for the PDP with transfers introducing new neighbourhood operators. The algorithm
improves the results obtained in [Mitrovic-Minic and Laporte, 2006]. When the PDP deals
with people, it is called the Dial-a-Ride problem. Masson et al. [2014] tackle a Dial-a-
Ride problem where vehicles have to pickup and deliver people who have the possibility of
changing vehicles in the middle of a trip. A large neighbourhood search algorithm solves
real-life and generated instances, obtaining savings of up to 8% due to the use of transfers.
The reader is also referred to the work of Dumas et al. [1991], Nanry and Wesley Barnes
[2000], Bent and Hentenryck [2006], Ropke and Pisinger [2006a] and Liu et al. [2013] for
an overall perspective of the existent solutions for this type of problems. Heuristic meth-
ods have been the most successful. A comparison between these PDPs and our problem is
presented in Table 2.2.

Table 2.2 — Problem features comparison for cited papers considering PDPs
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2.2.3 VRPB

Since backhauls are a necessity arising from the fact that certain requests may not be sat-
isfied during the considered planning horizon (1 day in our case), it is worth referring
some works related to the vehicle routing problem with backhauls (VRPB). The concept
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of pickup and delivery with backhauls is not common in the literature. In our case, re-
quests may return to a depot, perform several inter-depot trips and be sent from a depot to
the linehaul customer (final destination). However, if the requests are not able to reach its
destination within the given planning horizon, we consider that a backhaul is incurred and
the request has to be considered in the next planning horizon. Generally, we can only find
vehicle routing problems with backhauls (not pickup and delivery problems) because the
customers who demand a pickup want only to send something back to one of the depots,
that is, once the load enters a depot it stays there. In order to obtain some insights on this
type of feature, the reader is referred to the papers of Duhamel et al. [1997], Toth and Vigo
[1997], Zhong and Cole [2005], Ropke and Pisinger [2006b] and Liu and Chung [2008].

2.2.4 RRVRP

There is still a class of problems which shares several characteristics our problem: the
rollon-rolloff vehicle routing problem (RRVRP). In the RRVRP, tractors move large trailers
between locations and a disposal facility. Bodin and Mingozzi [2000] address this problem
providing a mathematical programming formulation, two lower bounds and four heuristic
algorithms, testing the results on 20 different problems. The authors modelled 4 trip types
in a problem with one depot and one disposal facility which did not include time-windows
on the servicing of the trailer. A multiple disposal facilities with multiple depots (inventory
locations) version is considered by Baldacci et al. [2006]. The authors model the RRVRP as
a time constrained vehicle routing problem on a multigraph. They describe an exact method
based on a set-partitioning formulation. Recently, interesting hybridizations and heuristic
procedures are also presented for the RRVRP by Derigs et al. [2013a], Wy and Kim [2013]
and Wy et al. [2013]. The main objectives of the research community when considering
the RRVRP are to include new real-world constraints and to solve larger instances in an
efficient manner. Likewise, since our attention goes for a real application, solving large
and realistic instances is one of our first priorities.

Table 2.3 gives an overview of the similarities between the cited VRPBs and RRVRPs and
our challenge.
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Table 2.3 — Problem features comparison for cited papers considering VRPBs and RRVRPs
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2.2.5 Full truckloads

Most of the referenced papers deal with less-than-truckload requests as opposed to the
problem we aim to solve. Considering this fact, our research also included problems where
containers need to be moved from one point to another. Zhang et al. [2010] tackle a truck
scheduling problem for container transportation with multiple depots and multiple termi-
nals including containers as a resource. Four types of movements are used to describe
different transportation activities and the objective is to reduce the total operating time of
the fleet. A mathematical model is presented being addressed as a multiple travelling sales-
man problem with time-windows. In Zhang et al. [2011], a container drayage problem with
resource constraints is studied. Although drayage operations are usually short-haulage con-
tainer transportation between terminals and shippers/receivers, some of the its challenges
are also found in our problem. The authors state that the problem becomes extremely
complicated when different resources are regarded separately. The problem is described
as a multiple travelling salesman problem with time-windows and additional constraints
are tackled with a meta-heuristic based on reactive tabu-search. Arunapuram et al. [2003]
develop a branch-and-bound for solving an integer-programming formulation of a VRP
with full truckloads. The algorithm takes into consideration time-window constraints and
waiting costs. This problem is simpler than ours since it does not include transfers. The
work-flow in container transportation is also analyzed by Chung et al. [2007]. The authors
develop mathematical models integrating the operating and design characteristics of con-
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tainers. Additionally, they present heuristic algorithms to solve the models and report an
example problem in order to explain how to apply the models to real-world cases. Imai et al.
[2007] address a VRP that arises in picking up and delivering full container loads trans-
porting them between intermodal terminals. Substantial cost and time savings are expected
arising from an efficient linkage between pickup and delivery tasks taking into account
temporal constraints. A two sub-problem heuristic is developed in which the classical as-
signment problem and the generalized assignment problem are solved. Considering these
full truckload articles, we notice that none of them could address every aspect contained
in the challenge we aim to solve. Having requests flowing through multiple transshipment
locations augments the complexity of our full truck load routing problem and to the best of
our knowledge this is the first the time that such problem is addressed.

2.2.6 Precedence constraints

One of the most distinctive characteristics of the problem we aim to solve is the necessity
to meet precedence constraints. This is due to the sequence of moves that each request has
to perform. These request moves may be seen as activities which need resources that may
be available or not in a certain moment, the vehicles. In Schmid et al. [2009], the authors
effectively integrated optimization and heuristic techniques in order to solve a ready-mixed
concrete delivery problem which includes several constraints that impose precedence be-
tween events. For example, some orders require vehicles with special equipment to be
present for the delivery of concrete, something that requires a synchronization between re-
sources. Moreover, some vehicles need to arrive first and remain at construction sites until
the complete order has been fulfilled as they have some tools that are necessary during
the entire process. Interesting modelling techniques were applied in order to ensure the
applicability of the model to a real-world problem.

2.2.7 Multiple time-windows

This last subsection is concerned with the concept of multiple time-windows. Although few
papers were found addressing this feature, in real-world problems this is frequent since it
is difficult to maintain a steady availability particularly during work peaks or lunch time,
for example. In Tricoire et al. [2010], the multi-period orienteering problem with multiple
time-windows (MuPOPTW) is presented as a new routing problem combining objective
and constraints of the orienteering problem (OP) and team orienteering problem (TOP),
standard VRPs, and the original constraints form a real-world application. In this problem,
sales representatives have to visit customers on a regular basis in certain periods. Cus-
tomers may have up to two different time-windows per day. The authors develop an exact
algorithm to check route feasibility and solve some instances using an efficient variable
neighborhood search algorithm. Doerner et al. [2008] develop a model and several heuris-
tic procedures to solve a problem motivated by a project carried out with the Austrian Red
Cross which demands blood pickup services in certain periods of the planning horizon. A
mathematical model for the VRP with multiple time-windows is presented by Bitao and
Fei [2010]. The authors tackle the problem with a hybrid algorithm which combines the
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ant colony system with 2-opt, a cell algorithm and a mutation operator. The proposed al-
gorithm shows very good performance in terms of solution quality and robustness. This
problem is also addressed by Belhaiza et al. [2013] in an implementation of a hybrid vari-
able neighborhood search-tabu search heuristic. Additionally, a minimum backward time
slack algorithm is developed.

Finally, for the latter 3 subsections, we present an analogy between the considered refer-
ences and the problem that is tackled in this paper.

Table 2.4 — Problem features comparison for cited papers considering full truckloads,
precedence constraints or multiple time-windows

Transshipment. Time
. . Practical aspects
Depot Fleet 1 Requests
=
= 2
g g
]
" § 4 E 5 s &
“ 2 5 |l¢ ¢ S|y £ E £
g & F E|¢ § 5% ¢ 3 T S 2
g 3 -1 = ] g 25| § g ) 0
= g < £ i = 25 < » ) = & £ =
S £ 2 & 5 £ 2 8 2 k] 5 = s
2 & & 5| = & EFS/S 2 £ §F 3 2l » F 2
o ® ] = 53§ ) 3 g 2 2 & 2 S
= %5 £ % §|% £ m:|: 2 £ = E|% £/f% : ¢ 3
i 2|2 § £ F | F E S8| 5 2 % % = | & E|E 5 8§ 3
Ref = 7} = = =] [=] & = Ss| & & a ] [ & = a = < &
Arunapuram et al. (2003) [ ] [ ) [ ) [ ] [ ) [ ) [ )
Chung et al. (2007) [ ] [ ) [ ) [ ] [ ) [ ) [ ) [ ] [ ]
Imai et al. (2007) [ ) [ ) [ ) [ ] [ ) [ ) [ ]
Zhang et al. (2010) [ ] [ ) [ ) [ ] [ ) [ ) [ )
Zhang etal. (2011) [ ) [ ) [ ) [ ] [ ) [ ) [ )
Schmid et al. (2009) [ ] [ ) [ [ ) [ ) [ ] [ ]
Doerner et al. (2008) [ ) [ ) [ ] [ ) [ ) [} [ ]
Tricoire et al. (2010) [ ) [ ) [ ) [ ) [ ]
Bitao & Fei (2010) [ ) [ ) [ ) [ )
Belhaiza et al. (2013) [ ] [ ) [ ) [ ) [ ]
Our problem [ [ [] [J [ [ [ [ [] [J [J [

2.3. Problem Statement

In this section we describe the full truckload pickup and delivery problem with trailers and
multiple transshipped requests (FI-PDPTmTR). We consider a planning horizon of one to
two days. Some requests may need to be considered in more than one planning iteration,
as their pickup and delivery time windows can be separated by more than two days.

2.3.1 Definition of entities

Requests The main objective of this challenging problem is to serve a set R = {1,...,|R|}
of customers’ requests for transporting semi-trailers from one point to another. A
request r is defined by two nodes, r* and r~, corresponding to pickup and delivery
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destinations, respectively. Also, denote the set of pickup nodes by P = {1%,...,r"}
and the set of delivery nodes by D = {17,...,#"}. The union between these two sets,
N = PU D, includes all the nodes where loading or unloading operations are to be
made, i.e., customer sites. Another specification of each request is related to the
moments when the deliveries may be executed. Customers are allowed to define
multiple time windows [ for each node i € N, with limits denoted by [a;;, b;;], within
which the picking and delivering operations can be executed. Additionally, in each
planning horizon it is necessary to define a minimum number of moves that a request
has to perform in order to ensure that it can be delivered in time. For instance, if the
pickup and delivery time-windows of a certain request are separated by three days
and it needs to perform three one-day trips, it will be obliged to perform one trip per
day, otherwise it will not reach its final destination in time.

Trips and paths The requests are to be transported by tractors, actually, semi-trailers need

to be pulled by a tractor. Thus, in each planning horizon, tractors have to perform a
set of trips K = {1, ...,|K|}. Each trip k comprises several paths where a tractor leaves
the depot and returns to the same depot.

Transportation network Each tractor is assigned to one of the base depots s€ S ={1,...,|S|}

considered in the planning horizon. A depot is defined by two nodes, s* and s~, cor-
responding to starting and finishing nodes, and it has a time window [ang, bn,] indi-
cating the period during which it is opened. The set of starting nodes is I ={17,..., 5"}
and the set of finishing nodes is denoted by F' ={17,..., s~ }. The union between these
two sets, /U F, is W. Regarding transshipment locations, they are represented us-
ing four nodes, 1%, t*/, ¢* and /. We define a set of upper start transfer nodes
T = {1"5,...,1*°}, a set of upper finish transfer nodes T = (1%, ...}, a set of
lower start transfer nodes 7% = {15,...,#} and a set of lower finish transfer nodes
TY = {1¥,..,#7}). The entire set of transfer nodes, which defines a transshipment
location, is the union 7 = T* U T* U TS UTY. The relevance of the four sets of
transfer nodes will be clarified in Section 2.4. Generally, these nodes are positioned
on the same exact location of depots although this is not mandatory, meaning that
transshipment locations can be defined in other places, rather than depots. These
locations are only able to store semi-trailers as opposed to depots where tractors can
also be parked. In Figure 2.3, the nodes of a depot with a transshipment location are
depicted.

_____

S
N Depot nodes
N

Transshipment location nodes

_____

Figure 2.3 — Node representation of a depot with transshipment location
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Each trip & has a specific set Ny = P UDy, Wy = [ UF; and Ty, = T,'(” U TZf U T]is U T]if.
Given so, we define a network Gy = (Vi,Ay) for each trip. The set Vi = Ny U W, U T
includes all the reachable pickup and delivery nodes, the origin and sink nodes and
the necessary transshipment nodes. The set of arcs Ay, is obtained in a pre-processing
procedure that is described in Section 2.3.5. Travel times and distances between two
different nodes i, j € Ay, are considered to be identical for every trip and are denoted
by 1;; and td;;, respectively.

2.3.2 Pairing objective

One of the most distinctive features of this problem is related to the pairing objective that
was mentioned previously. Indeed, this objective demands a different mindset when solving
transportation problems. In our problem it is not necessary to serve all the customers in a
certain planning horizon and the travel distance is not taken into account. Note that after
imposing that a tractor can only leave and enter a depot while pulling a semi-trailer, a single
trip will always move at least two requests, otherwise it cannot be executed. Considering
that the itinerary to be crossed by each request is roughly defined a priori (as we know
the depots and transshipment locations through which it will pass), every move that is
accomplished means that we are closer to deliver a pair of requests. Provided that the
company is not able to deliver all the requests in one planning iteration, we choose to
maximize the number trips moving pairs of requests (pairings) as a proxy to the number of
requests that we will be able to service in future planning iterations. Hence, maximizing
the number of pairings turns to be logical in this case as the company wants to deliver
the maximum number of requests. The greatest challenge of this planning problem is to
synchronize all the resources while ensuring the accomplishment of the requested services.

2.3.3 Trip types

The pairing objective cuts several possibilities regarding path combinations. In order to
describe the possible trips to be performed in this transportation problem, we assume that
there exists a stock of semi-trailers in each depot, otherwise tractors would not be allowed
to initiate a trip. Given so, a vehicle is allowed to execute one out of three existing trip

types:

Zone trips A vehicle delivers a request to an unloading location, picks up a different re-
quest from a location inside the same zone and returns to the starting point (Figure
2.4a). Zone trips are suitable to finish a delivering of a request (since the vehicle
leaves the depot to an unloading location) and to start a long-haul service (since the
vehicle returns to the depot pulling a semi-trailer).

Depot trips A vehicle delivers a semi-trailer to a depot or transshipment location and re-
turns pulling a semi-trailer of another request (Figure 2.4b). Depot trips allow for
a transportation between zones, something that is mandatory in this problem as the
reach of one vehicle would not be sufficient to provide long-haul services. These
trips are defined a priori minimizing the distance to go from one zone to another.
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Mixed trips A vehicle delivers a request to an unloading location, picks up another request
from a different depot or transshipment location and returns to the starting point
(Figure 2.4c). Mixed trips also support the transportation of freight between zones
and are specially advisable in situations where the loading point is in between two
depots. Some gains are achieved since the freight always travels in direction to its
delivering point.
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Figure 2.4 — Types of trips allowed

These three types of trips are flexible enough to provide the service that a long-haul trans-
portation network is supposed to offer. Although we present the most basic trip type possi-
bilities, some variants may also be applied. Analysing the moves represented in Figure 2.4,
one concludes that tractors are always pulling a semi-trailer both when they leave and when
they arrive at a depot or a transshipment location. In sum, whenever a vehicle delivers a
request, it has to pickup another one before returning to its starting point.

2.3.4 Transfer concept

Considering the definition of request in this problem, it is not possible to split the contents
of a given semi-trailer. Accordingly, whenever a semi-trailer needs to be transported be-
tween different zones, a transfer must be executed in a location reachable by the involved
zones. Transshipment locations are then necessary not only to park semi-trailers but also
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to provide transfers. Figure 2.5 shows an example of a transfer between two tractors and a
semi-trailer that was already in the transshipment location.

Figure 2.5 — Vehicles exchanging semi-trailers at a transshipment location

In terms of nodes, in order to allow multiple transshipments in a given transfer point for
the same vehicle, transfer operations have to follow some rules which are the main reason
to have four nodes representing a transshipment location. Transfers may occur in each of
the three trip types that have been presented before. In the following examples we consider
depots that are also transshipments locations.

In order to perform a zone trip (Figure 2.6), a tractor needs to leave its source node s*
to load a semi-trailer in an upper starting transfer node **. When the tractor leaves this
node in direction of its finishing transfer node #*/, it incurs in a service time st. In the next
moves, the tractor delivers the semi-trailer to a customer and loads another semi-trailer
which is returned when it enters the lower starting transfer node #/*. The tractor unloads the
semi-trailer and returns to its sink node s~.

Figure 2.6 — Zone trip node paths

In case a depot trip is to be executed (Figure 2.7), a tractor initiates at a starting node s*
which is located at its base depot wy. After initiating the trip, the tractor loads a semi-trailer
at the upper starting transfer node f“* and incurs in a service time st during its fictitious
path to the upper finishing transfer node /. After loading the semi-trailer, the tractor pulls
it to depot w and unloads it after reaching the lower starting transfer node 7**. Given that
the considered tractor does not belong to depot wy, it needs to load another semi-trailer
at the lower finishing transfer node ¢/ in order to return to its base depot. The moment
it arrives to its base depot, the tractor enters the node 7 to unload the semi-trailer that it
picked from w,. Another service time st is incurred in the fictitious path to #/ and, because
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it is in its base depot, the tractor has to finish its trip in the finishing node s~.

Figure 2.7 — Depot trip node paths

When a mixed trip is necessary, the paths to be executed are quite similar to the latter trip
types, as it is shown in Figure 2.8. The same loading path is used and the tractor leaves the
upper finishing transfer node ** delivering the semi-trailer to a customer. In its next move,
the tractor travels to a different depot without pulling a semi-trailer. The tractor enters the
lower starting transfer node #/* of depot w, and it loads a semi-trailer that is to be returned
to wi. The return path and the unloading process is exactly the same as it was presented
before.

Figure 2.8 — Mixed trip node paths

2.3.5 Pre-processing

Pre-processing the data is a crucial step to tackle this planning problem. Since the trips to
be made by each request are roughly defined a priori, as well as their corresponding paths,
the set of arcs to be considered is much smaller. In order to define the set of possible arcs
to be made in each trip k, we analyse the origin and destination of each request and insert
the possible and logical arcs that are necessary into Ax. This phase is able to comprise a
considerably large number of real-world constraints that can be addressed a priori and do
not have to be included in mathematical models.

Necessary arcs A request can only be transported throughout arcs that it explicitly needs
in order to be delivered. This means that only the arcs that are comprised in the pos-
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sible zone trips, depot trips and mixed trips need to be added. Note that the resultant
arc set has to be in concordance with all the aforementioned rules that were described
above. Additionally, it is possible to define certain tractors to perform depot trips or
special arcs for subcontracted vehicles, for example. This pre-processing step largely
reduces the number of possible arcs.

Request/Tractor Compatibility In case we have more than one type of tractor and semi-
trailer, the compatibility between the resources can be ensured by assigning the right
trips to the right resources. This simplifies the model to tackle our problem and
output solutions that are applicable to real-world problems.

Minimum number of nodes The aforementioned minimum number of nodes that each
request needs to visit in a certain planning iteration is also computed in this pre-
processing procedure. The number of trips and their duration needs to be taken into
account in order to define this number of moves.

Depot requests When a request from a latter planning iteration needs to be considered
in the current planning iteration, its pickup node will appear at one of the depots
(where it was left). In this case, fictitious pickup locations need to be created in
the pre-processing phase. Therefore, when backhauls are incurred, it is necessary to
keep track of the stock of semi-trailers that was left at the depot at the end of each
planning iteration.

2.3.6 Long-haul example

With the objective of explaining the remaining characteristics of the problem, we present
an example of a long-haul request that passes through five transshpiment locations.
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Figure 2.9 — Delivering a long-haul request
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The example presented in Figure 2.9 shows the itinerary to be executed by a request which
has to be picked from a loading location r; and delivered to an unloading location ;.
Although we are particularly interested in focusing on request r», it is necessary to represent
other movements which are executed by other vehicles. Therefore, the figure shows paths
where a tractor is pulling the semi-trailer r, to be delivered to r, (solid lines), paths where
a tractor is finishing the rest of the trip dealing with other requests (dashed lines) and paths
where a tractor is not pulling a semi-trailer (dotted lines), which happens in zone trips.
The label of each path indicates its origin and destination. The vehicle which crosses a
path is superscript and the request that is transported is subscript. In the beginning, a
tractor ki, located at depot wy, executes a zone trip where it delivers a request r; to its
unloading location r{, picks up request r; from its loading location 7] and returns to depot
w1 because r has to be transported to another zone. At this point, the request r» needs to
be transported to the next zone and thus a depot trip has to occur. In order to execute this
depot trip a tractor k;, which has to move a request from w; to wy, will move the request
ry from wy to wy in its return. Here, request rp, which is at depot w», needs to perform 3
more depot trips in order to be moved to the zone to which its unloading location belongs
(reachable from w4). When it arrives to depot w4, another zone trip has to be executed to
finish this long-haul transportation. Hence, a tractor k¢ pulls the semi-trailer requested by
rp from wy to rys picks up another request from r; and returns to wy.

During this procedure, the freight requested by r, had to perform six moves that were
executed by 6 different tractors. Although this may seem inefficient, if we analyse the
cases in which a tractor was travelling empty, we conclude that the distance driven in this
condition is minimal. In fact, empty paths were only executed during zone trips when
traversing arcs between loading and unloading locations.

2.4. Mathematical formulation

2.4.1 Decision variables

The mathematical model works with the following binary variables. Xf‘j is equal to 1 if and
only if location j immediately follows location i on trip k. Zf‘r is equal to 1 if and only if
request r visits location i on trip k. Uj; is equal to 1 if and only if time window [ is used for
location i. S, is equal to 1 if and only if final stock of request r exists at transfer node i.
Additionally, continuous variables Wl.k are used to represent the time when trip k passes at
loading or unloading location i. WDi.‘ and WAf.C are used to represent the time when trip k
departs and arrives at locationi € T U W.

Let6*() ={j: (i, j) €A} and 6~ (j) = {i : (i, /) € A} denote the set of successors and prede-
cessors of i and j, respectively. The arcs that are included in this set are generated in the
pre-processing procedure that was described previously.

2.4.2 Objective function

Considering that it is not mandatory to deliver every single request, we needed to induce
movements only if the request is picked. We want to maximize the number of moves
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which can be measured in visits to pickup or delivery locations by counting the Z variables.
In the moment a certain request is picked up, the model has to make sure it reaches a
favourable and feasible position in the network in order to be delivered in a later planning
iteration. This is particularly important to ensure a connection between different periods
(days) since the requests that are not delivered in a certain planning iteration are afterwards
tackled in a rolling horizon approach. Objective function (2.1) simultaneously maximizes
the movements performed by each request and minimizes the time that is necessary to
execute the plan. These two criteria are weighted by a and 3, respectively, which should be
defined in collaboration with the person who is going to use the model (decision maker).

maxa/-ZZZ Z Z i X @2.1)

ieN reR keK keK (i,j)eA

2.4.3 Vehicle flow conservation

Constraints (2.2) ensure that only one arc exits from the starting node s* of the pre-
processed arc set Ay whereas constraints (2.3) guarantee that only one arc enters to the
finishing node s~ of the same arc set. In case a trip & is not to be executed, its vehicle may
fictitiously traverse an arc directly from its starting node to its finishing node.

D xE =1, VkeK(s",j) €A (2.2)
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Loading and unloading nodes are visited at most one time with constraints (2.4).

DD, xf<1 VieN. 2.4)

kek jes (i)

Flow conservation is ensured by constraints (2.5) which establish that a tractor executing a
path entering a loading or unloading node must also leave that node.

> xh= D Xh=0 Vijeaukek. os)

je (i) jes(i)

Transfer nodes also have rules to be addressed. Constraints (2.6) to (2.9) define the flow of
upper and lower transfers which have to start at a given starting transfer node #** and finish
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at a finishing transfer node #*/ of the same transfer location 7.

> Xuw=XS,,, VieTkek 2.6)
i€o™ (")

> xb, =Xk, VieTkek 2.7)
i€ (i)

k

D, Xiy = Xh VieTkek (2.8)
jes )

Z Xﬁf X,k/s,,/_/ YteT,keK. (2.9)
jestr

2.4.4 Travel times consistency

For all types of movements, it is necessary to enforce coherence in terms of travel times.
When traversing a certain arc/path (i, j), a service time s; and a travel time ##;; have to be
taken into account. Consequently, constraints (2.10) have to be defined for every single arc
that is used in the solution. Only arcs that belong to the pre-processed arc sets A; need to
be considered.

Wi+ sti+1t;; < M(1— Xk)+W V(,j) €A ke K. (2.10)

2.4.5 Requests flow coherence

When a trip enters in an upper starting transfer node ", its tractor cannot be pulling a
semi-trailer. Likewise, when a trip enters its sink node s, its tractor has to be empty. This
means that Ztlf,s,r and Z’S‘_’r have to be 0 and thus we do not need to instantiate these variables
for each trip k and request r.

The requests coherence throughout trips is ensured by constraints (2.11) and (2.12). If a
trip traverses an arc, its tractor has to be pulling the same semi-trailer r in both nodes of
the arc or it is pulling it in neither. Moreover, each move from one transfer node to another
one belonging to a different depot has to carry the same request from the departure depot
to the destination depot (constraints (2.13)).

]rS I,J)EA:1€1U U ,FER, ke K. .
Zi-Zh <1-X Y, j)€Ac:igIUT"UT",reRkek (2.11)
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Z5 -7 <1-X, V(. j)eAc:igIUT"UT",reRkeKk. (2.12)
X< Y (ZE+Zh) VG jeAieT TV je T UT" ke K. (2.13)
reR

Constraints (2.14) ensure that movements for a given request can only happen after its
respective loading. After leaving a loading node the tractor of a trip has to be loaded with
the respective request (constraints (2.15)) and after leaving an unloading node the tractor
has to be empty (constraints (2.16)). Moreover, a tractor performing a trip can only enter
an unloading node in case it is carrying the respective request (constraints (2.17)).

ZZZ,?;SMZ Z XE, Vrer. (2.14)

keK ieN k’eK jest(rt)

zfrzx’rzj VjeVi,reRkeKk. (2.15)

Z5<1-Xy ., VjeVireRkeKk. (2.16)

k k

Zk,> > Xt VreRkeKk (2.17)
jes~(r)

A request is not allowed to enter a transfer node and leave it within the same vehicle
(constraints (2.18)) as the vehicle could be traveling to a region where it does not belong.
Furthermore, with constraints (2.19) each request is not allowed to be loaded at the same
transfer node more than once. Additionally, a request may only be carried to a node if there
is actually a trip passing in this node (constraints (2.20)).

Zy 7y <1, VieT,reRkeKk. (2.18)
> zE <1, vjer“uT" reR. (2.19)
keK

Zh< Y Xi, VYjeVireRkeKk (2.20)

i€6=())
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2.4.6 Transfer times

The transfer time coherence for each request is assured by constraints (2.21) and (2.22).
Constraints (2.21) are related to transfers that leave the transfer node by its upper finishing
node and constraints (2.22) are active for trips that perform a transfer leaving the transfer
node by its lower finishing node. These constraints ensure that the trip " may only load a
request that has already arrived in a different trip k.

Wi, + sty < Wi, +M(2—Z§S’F—Z§:f,r), VreRteT ke KK eKk+kK. (221)

Wy, + sty WDy + MQ2=Zy, ~Zy ), VreRi1eTkeKK eKk#k. (222)

2.4.7 Time windows

Multiple time windows have to be respected at each loading and unloading node (con-
straints (2.23).

DlanUn < WE< Y byUy, VieNkeK. (2.23)
leL leL

Moreover, it is only possible to use one of the available time windows (constraints (2.24)).

ZUﬂ =1, VieN. (2.24)

leL

Time windows also have to be taken into account in the origin and sink nodes (constraints
(2.25). These correspond to the opening and closing times of the depots. Additionally,
the arriving time of each vehicle needs to be larger than the departure time, as forced by
constraints 2.26.

anf SWf<bnk VielkeK. (2.25)

Wk <WE Vst 5T e Vg ke K. (2.26)

2.4.8 Practical constraints

Constraints (2.27) put a limit of wt on the time elapsed in a path between an unloading
node and a loading node. The time taken by a path between nodes i and j is defined by #z;;.
These constraints come from a practical standpoint, as the company does not want to have
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its resources too much time waiting and they also want to control the time that tractors are
traveling without pulling a semi-trailer.

W — 11— WE = M(1 —foj)sm (i, j) € Ap,k € K. (2.27)
k

Moreover, due to the working time limitation of the drivers, a trip cannot last beyond a
fixed parameter mT (constraints (2.28)).

WE WX <mT V{s*,s7}eVk,keKk. (2.28)

To ensure that the decisions made in a planning period are not completely blind in relation
to the next planning period, constraints (2.29) set a minimum number of transfers that need
to occur in case a request is loaded. For instance, if a certain request needs to be delivered
in two days but the total distance takes more than a workday to be crossed, part of the trip
to be made by this request needs to be executed in the first day. Otherwise, it will not be
possible to deliver the request in time. Therefore, if the model decides to pickup a request,
the number of times that this request passes through transfer nodes plus its zone trip has to
be greater or equal to a minimum number of moves defined a priori.

D 2 Y Y Xk e,y Y XK vreR. (2.29)

keK jeTusUT!s keK jeAx keK jeAy

Intermediate time-windows are also important to be enforced through the paths crossed by
a request, in order to ensure that the next planning period is able to deliver requests on time
(constraints (2.30) - (2.32)). We introduce intermediate time-windows [ap;.,, bp; ] for each
transfer node ¢ and request r in order to ensure that each request arrives at transshipment
locations on time.

WA, <bpg,+M(1-Z ) VteT,reRkek. (2.30)
W, >apur,-M(1 -2k, ) VieT,reRkek. (2.31)
Wy, > apus,—M(1-2, ) VieT,reRkeK. (2.32)

Integrality and binary conditions are defined by conditions (2.33).

Xk 78 ULS,€0,1); WrE>o0. (2.33)

ij*“~ir i =
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Finally, since we may need to reconsider some requests in a future planning iteration, we
need to keep track of the remaining stock of each request r at transfer location ¢, S,,.. If a
request starts a transfer, either it leaves the transfer by the upper finishing transfer nodes,
the lower finishing transfer nodes or it stays in stock to be carried in the next planning

period.
k k k
Swr= Zzﬂf,r - Zzt”f,r - Z Zt’f,r’ VreRteT.
keK keK keK

2.5. Solution Approach: Matheuristic MH1

The matheuristic designed for the problem is a neighborhood search improvement heuristic
and is inspired by the ‘exchange’ improvement heuristic of Pochet and Wolsey [2006]
and the fix-and-optimize version of Helber and Sahling [2010]. Essentially, this heuristic
explores the idea that most of the computational burden comes from the existence of a large
number of integer variables and that small instances of the MIP can be solved efficiently.
Hence, the heuristic proceeds iteratively by decomposing the set of integer variables in the
original MIP to create easier MIP subproblems to re-optimize.

The matheuristic, MHI, works on the set Z defined by all Z variables, since they control
the assignment of requests to trips and nodes, and therefore most of the problem’s deci-
sions. Simultaneously, the remaining integer variables of the problem denoted by the set
C have their values limited by the definition of Z. At each iteration of the matheuristic,
the original MIP problem is decomposed into a MIP subproblem by selecting a subset Z’
of the Z variables corresponding to the variables to be re-optimized in the next iteration,
while the value of the Z variables not present in this set is fixed to the best solution found
in the previous iterations. As this is an improvement heuristic it requires an initial feasible
solution, which in the context of our problem can be easily obtained by setting all Z to zero.
The subset Z is determined by defining a set of requests for which all the associated Z
variables will be ‘freed’. i.e. re-optimized in the next iteration. To avoid local minima
entrapment the selection of Z  is guided through a neighborhood search algorithm and
using an ordered finite set of user-defined neighborhood structures N,,, (n = 1,...,na4x),
where n denotes the n'* neighborhood structure. Neighborhood structures are defined by
the number of requests E to be optimized setting the size of the set of ‘freed’ variables
and the potential complexity of the MIP subproblem to solve. Neighborhoods contain
all possible combinations of Z' of a given cardinality which are denoted as neighbors.
Since our neighbor evaluation (solving a MIP) is a computational expensive process a full
evaluation of the neighborhoods is unpractical. Therefore, a stochastic process controls
neighbor selection to conduct a partial neighborhood search. After solving a subproblem
from the current neighborhood structure the new solution objective value is compared with
the previous best solution value. In case of an improvement, the search restarts at the
first neighborhood structure (n = 1). Otherwise, the number of failed attempts within the
current neighborhood structure is increased. A limited number of failures within a given
neighborhood is allowed before switching to the next neighborhood structure in the ordered
set.

Based on the latter ideas, MH1 tries to find path related requests in order to set similar



2.5. Solution Approach: Matheuristic MH1 45

conditions during the procedure. In order to improve the algorithm efficiency, the selection
of the R requests is biased. Given that the tractor will always leave and arrive pulling a
semi-trailer, some combinations of requests are more advantageous than others based on
the complementarity of the requests paths. Thus, before selecting any request the com-
plementarity among requests is assessed by calculating a compatibility score 7(r;,7;). To
this purpose we introduce function o ((, j), p) which equals one if the inverse arc (j,i) is
found in request path p and zero otherwise. The compatibility score of two requests can be
computed using:

T(ri,rj) =To+ Z (f((i,j),pr,-)

)P,

When creating the subset Z  only the first request is chosen randomly. The following se-
lections are made considering the last request r; appended to the subset Z' and according
to probabilities prob(r;) = %, until the number of desired requests has been selected.
The term 7 is added to every score to ensure that any request can be chosen, but is suffi-
ciently low to bias the search towards more desirable combinations (¢ was set to 0.25 in
our tests).

To illustrate how the selection is performed consider the following example. Suppose that
at the first iteration of the algorithm two requests are to be selected from a set composed
of ry, ry, r3 and r4 with the associated paths p; = {1,2,3}, p» ={3,2,4}, p3 =1{3,2,1} and
psa =1{4,2,3,1}. The first request chosen randomly is 7, the selection of the second re-
quest is based on scores 7(ry,rp) = 1.25, 7(r1,r3) = 2.25, 7(r1,r4) = 0.25 and the consequent
probabilities prob(ry) = 33%, prob(r;) = 60% and prob(rs) = 7%.

The algorithm ends according to the following stopping criteria: (1) the maximum run-
ning time allowed has been achieved, or (2) the maximum number of neighbors without
improvement has been achieved in all neighborhood structures. The pseudo-code for the
described matheuristic is given in Algorithm 1.

Algorithm 1 Matheuristic. MH1 (n,,4x, noimp .y, tlimit)

1: Calculate 7 for all possible request combinations

2: stop « false,n — 1, noimp < 0, solutionp,s < 0
3: while not stop do

4 Create subset Z  with n requests

5. solution « solve subMIP with Z' € {0, 1}

6 if solution > solutionp,s; then

7 solutionpes; — solution, n < 1, noimp <0
8 else

9 noimp « noimp + 1

10: if noimp = noimp,,,, then

11: n<«n+1, noimp <0

12: if n > n,,,, or time > tlimit then
13: stop « true

return solutionpes;
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2.6. Computational Experiments

In this section we present the results obtained by the matheuristic as well as the limitations
shown by the mathematical model when it was used independently. Our algorithm was
coded in C++ and every time we needed to solve a mathematical model, CPLEX 12.4 was
used. The tests were performed on Intel @ 2.40 GHz processing units with 4 GB of random
access memory running under the Linux operating system.

2.6.1 Real-world instances

The instances that were used to test the solution approaches were collected during the
daily distribution of a real-world LO and comprise orders placed during March (03) and
April (04) of the year 2014. Furthermore, we include instances from two different contexts
(C1 and C2), corresponding to two different regions, one in the south and the other in the
north of the country. Overall, 79 real-world instances were solved. A summary of the
characteristics of the realistic instances faced by the company is presented in Table 2.5.
The column Depot Requests concerns the number of requests that start at a depot and do
not have to be picked from a remote location.

Table 2.5 — Description of the instances considered

Requests Depot Requests  Vehicles Physical Locations Nodes Depots Transfer Locations

Max 96.00 16.00 62.00 196.00 216.00 5.00 5.00
Average 60.23 3.67 59.97 124.94 147.42 4.49 4.49
Min 35.00 0.00 58.00 75.00 100.00 4.00 4.00

2.6.2 Matheuristic settings

Considering Algorithm 1, we need to set some parameters for testing the algorithm. The
maximum number of iterations is set to a large number because time is a priority in our
case. Therefore, n_max was set to 1000 iterations. Regarding the number of consecutive
iterations in the same neighbourhood without improving, noimp_max was set to 3. The
neighbourhood structures are defined by varying the number of requests to be optimized
in each iteration. The initial neighbourhood structure reoptimizes 10 requests and it is in-
creased by two every noimp_max consecutive fails to improve. These values were defined
after a careful tuning that was performed during the preliminary tests of our matheuristic.
The computational time is limited to 15 minutes as required by the company.

2.6.3 Solution approach analysis

With the objective of analysing the efficiency of matheuristic MHI, we make a compari-
son with an implementation of the mathematical model (MathMod) in IBM CPLEX 12.4.
Figure 2.10 shows the average results for tests comprising the aforementioned contexts
and months of data. It is possible to conclude that, in a large portion of the instance set,
the matheuristic obtains better results as its objective values are above the line that repre-
sents the direct solution of the mathematical model. Moreover, as the size of the instances
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increases, the differences between the two approaches also increase (larger instances are
likely to have larger objective values in this case).

8000
8000
7000
7000
6000
6000
5000
5000

4000

obj. 4000
value 3000 3000
2000 2000
1000 1000
0 0
I A R AR A R A Slmialginieye e e ynalengng
:‘:‘::‘"’mf":"’:mf“m‘:::‘:fﬁ::""mlm :‘:‘:‘""“”’1”"’:“”:‘“;"‘:”::‘:‘:‘:‘"‘::“"I Instance
© < ©° < gyggs8goog8 g e @2 g *C 58 e Yeggggsgg g gg g e e g8
100 116 122 134 140 150 152 156 160 164 166 168 170 174 176 186 196 112 114 116 122 124 126 128 134 136 138 142 148 150 152 nNodes
(a) Context 1, Month 3 (b) Context 2, Month 3
7000
7000
6000
6000
5000
5000
4000
obj. 4000
value 3000 3000
2000 2000
1000 1000
0 0
S A N R A A A T T SRR N R A R R R R R
e T T T T T T e T T T e SN YL EEEYEEIEEYY st
5§ 3 8 8 “° g *“gg @@ *© 25 g2 zgoso g gg e 2egesgg g @ gy e’
108 122 128 146 156 160 164 166 170 172 174 178 180 182 188 190 216 100 110 114 116 122 132 134 138 142 144 146 148 152 160 164 180 186 nNodes
(c) Context 1, Month 4 (d) Context 2, Month 4
——MathMod == MH1

Figure 2.10 — Comparison between the average values obtained by the mathematical model
and the matheuristic while maximizing the objective function (10 runs, 15 minutes)

The aggregated results per context and month can be observed in Figure 2.11. This figure
depicts the ranges, median and average (crosshair) values for the relative different between
the mathematical model MathMod and the implemented matheuristic MHI. It is clear that
the matheuristic obtains superior results in every case since the relative difference is always
positive. It is also important to note that the intervals are mostly located on the positive side.
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Figure 2.11 — Box plots depicting the relative difference between matheuristc MHI and the
mathematical model MathMod (average objective values)

According to the ideas presented in [Dolan and Moré, 2002], an overall assessment compar-
ing the mathematical model against our matheuristic is performed in Figure 2.12. The chart
depicts the cumulative probability for each algorithm to obtain a solution with a relative
gap smaller than or equal to 7. The relative gap is computed in relation to the best-known
solution for each instance p. For each method s the relative gap r, s is computed. The
performance probability po,(7) is then for each 7 defined according to expression:

ps(T) = isize{p €EP:rps <7}
np

n, is the total number of instances and 7 is the threshold for the relative gap based on
the best solution found among all methods. Chart 2.12 allows us to understand that there
is a probability of around 80% for the matheuristic MH1 to find the best-known solution
(for T = 0), whereas this probability corresponds to slightly more than 30% in the case
of the mathematical model MathMod. Larger probabilities are therefore preferred. We
conclude that for short periods of time, our matheuristic has a larger probability to find
the best-known solution, which is completely in line with the initial objective of efficiently
providing a good solution approach to be applied in a business context.
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The time of convergence is also important. Indeed, we decided to test the mathematical
model and the matheuristic for 15 minutes, but with the latter charts it is not possible to
understand if the total running time is needed. Therefore, in Figure 2.13, we present an
example of a run for the 3 largest instances of the considered instance set. It is possible to
observe that the mathematical model never achieves a better solution when compared with
the matheuristic (at the end of the 15 minutes). Furthermore, note that the 15 minutes may
be unnecessary for the matheuristic to find good quality solutions, as it stabilizes early in
these runs. Indeed, for these three instances, the best solution was obtained in less than
200 seconds, meaning that our approach is specifically suited for a business context where

different solutions may be needed at a fast pace.
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Figure 2.13 — Scatter plots depicting the evolution of a run for the 3 largest instances

Additionally, Table 2.6 (2.A) presents the results obtained for all instances.

2.7. Conclusions and Future Work

In this paper the long-haul freight transportation problem with requests flowing through
multiple transshipment points is presented. A novel mathematical formulation is proposed
in order to obtain solutions for a real-world problem faced by a Portuguese LO. Addi-
tionally, with the objective of obtaining good quality solutions in short periods of time,
we propose a fix-and-optimize matheuristic, proving its superiority compared to solutions
obtaining by solving the mathematical model with a commercial solver.

The main contribution of this research is threefold. Firstly, a new operational model for
the pickup and delivery problem is presented. Although this is a very specific case of a full
truckload vehicle and scheduling problem, this is a new glance at the possibilities of using
transshipment locations to support distribution. Considering that the use of transshipment
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locations is part of a new logistics paradigm, this work surely presents a fresh approach
to vehicle routing and scheduling problems. Additionally, we unified the best of long-
haul and short-haul policies, resulting in a broader concept which can offer more service
types without jeopardizing the comfort and working conditions of the drivers as well as the
compliance with the legislation. Secondly, we provide an overview over different parts of
the VRP literature. As this paper unfolds, it becomes clear that this problem includes a set
of features that is present in several problems. In some cases, the similarities may only be
physically noticeable whereas in other cases there are similarities only in the methodologies
and modelling techniques used. Thirdly, we provide a solution approach that is able to beat
one the best commercial solvers on the market. In fact, the developed matheuristic is able
to obtain better solutions and converges more rapidly.

Regarding real-world results, although we are not allowed to reveal detailed information, it
is worth mentioning that the company obtained a reduction of 6% in the cost per shipment
for the requests served in the year after the implementation of the transshipment paradigm.
This reduction is computed relatively to the year before the implementation, where the
requests were delivered following a direct shipment strategy.

Finally, taking into account the lack of variety of papers addressing the tractor and trailer
concept, we consider that tackling problems with the concept of modular vehicle parts may
be an interesting field of research since these ideas can provide greater flexibility, occupa-
tion and efficiency. Furthermore, it would be interesting to extend this study to the case
where request paths are not given in advance. In this extended version, the mathematical
model would have to make additional decisions. The routing part becomes more complex
and the synchronization possibilities are more diverse. Therefore, it would be interesting
to test if our solution approach would be able to efficiently explore this new search space
as it is larger and more difficult to be explored.
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Appendix 2.A Results Table

Table 2.6 — Average values for 10 runs of 15 minutes

Mean running time (secs)

Mean Objective Function Mean Deviation to best

Instance MathMod MH1 MathMod MH1 MathMod MH1
Cl1_3_1 903.1 900.5 2289.87 2289.87 - -
Cl1_3.2 917.3 901.1 5413.13 5425.14 - -
C1_3_3 907.4 901.3 4890.55 4900.55 - -
Cl.3 4 901.9 902.0 4067.88 4070.08 - -
Cl1_3.5 912.8 902.1 4628.66 5892.06 -0.21 -
Cl_3_6 911.2 901.2 5500.27 5867.04 -0.06 -
C1.3.7 923.2 901.0 5107.60 5332.06 -0.04 -
Cl1._3_8 924.9 904.6 4337.18 4337.18 - -
C1.3.9 902.5 901.2 5865.00 6146.00 -0.05 -

C1_3_10 912.9 900.4 5862.04 6346.01 -0.08 -

C1_3_11 909.9 901.0 5751.55 5900.04 -0.03 -

Cl1_3_12 901.1 901.6 5896.58 6272.54 -0.06 -

C1_3_13 914.7 902.4 5459.38 6118.55 -0.11 -

Cl1_3_14 911.7 901.4 4888.92 5097.61 -0.04 -

C1_3_15 940.4 902.6 5118.18 5580.14 -0.08 -

Cl1_3_16 910.0 901.7 5470.61 5879.58 -0.07 -

Cl1_3_17 910.0 901.3 4399.63 4399.63 - -

C1_3_18 914.1 900.6 6019.84 6036.03 - -

C1_3_19 915.2 900.5 4374.10 4374.10 - -

C1_3_20 908.8 901.4 4992.10 5542.07 -0.10 -
Cl 4.1 912.7 901.0 4688.27 5092.16 -0.08 -
Cl_4.2 923.3 900.8 4954.00 5131.04 -0.03 -
Cl 4.3 905.9 901.0 4593.11 5067.07 -0.09 -
Cl 4.4 910.4 901.2 4895.12 4953.13 -0.01 -
Cl1_4.5 904.4 900.8 5022.14 6160.04 -0.18 -
Cl 4.6 912.5 900.9 5464.56 6326.99 -0.14 -
Cl_4.7 920.6 901.5 5175.00 6853.56 -0.24 -
Cl 4.8 919.5 901.8 5404.58 5404.59 - -
Cl1_4.9 919.3 901.7 5102.53 5842.61 -0.13 -

C1_4_10 909.9 901.5 5723.05 5819.05 -0.02 -

Cl_4_11 20.6 900.6 3408.31 3408.31 - -

Cl_4_12 21.2 900.8 3079.77 3079.75 - -

Cl1_4_13 2.4 901.0 884.88 884.88 - -

Cl_4 14 916.8 901.7 3783.00 3955.08 -0.04 -

Cl_4_15 907.4 901.0 5188.41 5475.06 -0.05 -

Cl_4_16 917.8 902.1 4119.70 4119.70 - -

Cl_4_17 74.2 710.8 3394.83 3394.83 - -

Continued on next page
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Table 2.6 — Continued from previous page

Mean running time (secs)

Mean Objective Function

Mean Deviation to best

Instance MathMod MH1 MathMod MH1 MathMod MH1
Cl1_4_18 914.3 901.7 2834.44 2809.69 - -0.01
Cl1_4_19 900.7 901.9 3877.18 3877.18 - -
C1_4_20 909.5 900.9 3569.68 3569.68 - -
C2.3_1 907.2 904.1 3664.81 3930.89 -0.07 -
C2.3.2 914.1 902.0 4753.18 7352.75 -0.35 -
C2.3.3 908.4 904.6 4167.33 4536.84 -0.08 -
C2.3 4 924.0 902.2 3647.03 4042.80 -0.10 -
C2.3.5 912.4 901.6 3234.35 3429.60 -0.06 -
C2.3.6 930.3 904.0 4527.36 4800.66 -0.06 -
C2.3.7 910.7 901.1 5643.82 6104.81 -0.08 -
C2.3.8 913.8 906.4 3162.43 3162.43 - -
C2.3.9 913.4 904.3 2990.36 2990.36 - -
C2_3_10 915.2 904.2 3312.34 3263.45 - -0.01
C2.3_11 906.7 907.2 2244.68 3714.88 -0.40 -
C2.3_12 932.5 904.4 4149.87 4144.77 - -
C2_3_13 925.6 902.4 2697.43 5214.63 -0.48 -
C2.3_14 925.8 904.5 3873.85 3858.55 - -
C2_3_15 900.9 902.6 3891.36 4534.85 -0.14 -
C2_3_16 926.1 903.6 5237.35 5064.90 - -0.03
C2_3_17 930.1 903.1 3442 .88 3426.38 - -
C2_3_18 914.8 904.0 3137.41 3551.09 -0.12 -
C2.3_19 932.5 907.4 2709.90 2633.99 - -0.03
C2_3.20 944.2 904.5 3502.39 4063.38 -0.14 -
C2_4_1 920.7 908.0 2020.94 2071.03 -0.02 -
C2.42 913.6 910.0 2320.93 2318.18 - -
C2.4 3 908.1 902.7 3472.60 3514.40 -0.01 -
C2.4 4 953.9 908.0 2169.91 2169.91 - -
C2.4.5 954.0 903.1 3441.85 3467.35 -0.01 -
C2.4. 6 930.3 903.3 3252.35 3263.75 - -
Cc2.4.17 925.5 903.9 2661.91 3178.90 -0.16 -
C2.4.8 905.9 903.3 2535.40 2958.89 -0.14 -
C2.4.9 914.4 902.8 3494.87 3483.87 - -
C2_4_10 931.5 906.2 3230.90 3302.40 -0.02 -
C2_4 11 914.7 904.5 1445.92 2030.38 -0.29 -
C2_4_12 916.2 905.7 2529.64 2545.14 -0.01 -
C2_4_13 918.2 903.5 3169.89 3158.84 - -
C2_4_14 927.7 904.4 4138.62 4281.62 -0.03 -
C2_4_15 906.3 902.2 2447.42 2447.42 - -
C2_4_16 901.1 904.3 321991 2883.92 - -0.10
C2_4_17 915.7 919.0 4402.43 4462.38 -0.01 -

Continued on next page
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Table 2.6 — Continued from previous page
Mean running time (secs) Mean Objective Function Mean Deviation to best
Instance MathMod MH1 MathMod MH1 MathMod MH1

C2_4_18 915.0 903.8 2620.66 2887.40 -0.09 -

C2_4_19 913.4 904.6 3918.81 3918.81 - -
Avg 871.54 900.58 3999.76 4293.64 -0.102 -0.021
Min 2.40 710.80 884.88 884.88 -0.489 -0.104
Max 954.00 919.00 6019.84 7352.75 -0.007 -0.005

StDev 194.83 21.66 1174.60 1339.86 0.10 0.02
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Abstract The purpose of this paper is to assess the value of owned fleet lateral trans-
shipments in the context of the Inventory Routing Problem (IRP). This approach for trans-
ferring products between retail sites is adopted in various business contexts, such as the
automatic-teller-machine and the vending-machine sectors. A novel mathematical formu-
lation considers lateral transshipments performed by vehicles that are based at a central
supplier. The model is solved by means of an exact branch-and-cut algorithm with a patch-
ing heuristic that explores routing-infeasible solutions by turning them feasible and per-
forming local search before injecting them back into the branching process. Our solution
approach efficiently solves small to medium sized instances available in the literature, both
for instances with and without owned fleet lateral transshipments. We further study the
case where the IRP is solved on a rolling horizon scheme with non-deterministic demands.
A sensitivity analysis is performed on the length of the planning horizon, forecast accuracy,
and proportion of the inventory costs over the total costs. The results show that for the lit-
erature instances with deterministic demand, owned fleet lateral transshipments allow for
an average cost reduction of 1.1% with 2.4% of the total demand being transshipped. In a
context with non-deterministic demand, the rolling horizon scheme leads to significant cost
reduction when the inventory cost assumes a large portion of the total cost. Clearly, owned
fleet lateral transshipments can constitute a hedging mechanism that eradicates inventory
unbalances, which otherwise would remain in the system for several time periods.
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3.1. Introduction

Organizations are constantly seeking for added value opportunities that may foster better
service levels or cost reductions. The Vendor Managed Inventory (VMI) policy central-
izes inventory management decisions in a single entity, the vendor or supplier, which owns
inventories and defines the inventory levels for a set of retail sites where the final cus-
tomer buys the product. VMIs target solutions where inventory management is coordinated
with distribution decisions to achieve lower global activity costs. Despite its advantages,
inventory-distribution coordination implies a very challenging optimization problem called
the Inventory Routing Problem (IRP). In this problem, a supplier holds a central inventory
and decides the replenishment process to a set of retail sites which also have a storage area.
Therefore, the supplier needs to decide: (1) when to serve a certain retail site, (2) how much
to deliver of each product, and (3) which delivery routes should be performed in each day.
Lateral transshipments correspond to inventory movements that are performed between lo-
cations of the same echelon. In a VMI system, the supplier corresponds to one echelon and
the retail sites constitute a second echelon. Therefore, whenever two retail sites exchange
inventory in order to satisfy their requirements (i.e. avoiding stockouts or stock in excess),
they are performing lateral transshipments. Figure 3.1 shows an example of a supplier
which controls a central inventory to be delivered to retail sites. Lateral transshipments are
allowed between them.

A,

<:> Product flow intra-echelon

—> Product flow inter-echelon

Figure 3.1 — Possible product flows in an IRP with lateral transshipments. Retail sites are
allowed to exchange inventories helping each other to solve inventory unbalances.

Entities have several motivations to perform lateral transshipments. Additional operational
flexibility allows for lower stock levels, reducing global inventory cost. In some situations,
inventory unbalances may be solved more rapidly by reallocating inventory from surround-
ing retail sites than from the central warehouse. Consequently, better service levels are
likely to be achieved in supply chains using lateral transshipments [Paterson et al., 2011].
Paterson et al. [2011] classify the timing of lateral transshipments as proactive and reac-
tive. Proactive lateral transshipments are conducted periodically at predetermined points
in time whereas reactive lateral transshipments occur in stock-out (or when a reorder point
triggers an order) situations at any instant. The first type is more suited to situations where
the events triggering a lateral transshipment, such as inventory unbalances left from latter
period or predicted demand peaks, are somehow noticeable in advance. On the contrary,



3.1. Introduction 61

the second type may have greater fit with very uncertain scenarios where the decision of
transshipping is made after unbalances are created. Logically, reactive lateral transship-
ments are preferred when the costs of transshipment are relatively low compared to the
costs incurred by maintaining higher inventory levels and by lost sales.

In this work, we are particularly interested in a situation where a central supplier deals
with an IRP with multiple products, having the possibility to perform proactive lateral
transshipments using owned fleet. In non-deterministic environments, this type of inven-
tory re-allocation mechanism allows for a consistent reduction of the mismatch between
supply and demand essentially caused by forecast errors. The idea is to increase robustness
while minimizing the global cost. An example of an application of the IRP with owned
fleet lateral transshipments is the vending-machine industry where a supplier has to deliver
a mix of products to its machines (which are retail sites). In this business, it is common
to re-allocate products from one machine to another either because the inventory is un-
balanced or because some products are close to perish and could be sold faster in another
machine. Figure 3.2 shows a schematic representation of the planning process faced by a
decision maker.

Retail Sites
(i.e. Vending Machines)

~HEE EE0 OU0 BED BEE E0E BEC

Deliver Transfer

Stockouts? Excess?

products products
,\ <H /.\ =L .\
D;livery \ 389 ‘ \ .\ $x | \
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® OU0 o o EHOE mm.o
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Solve IRP
(Daily) %
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Figure 3.2 — Stockouts are solved by delivering more products (period 3) while stock sur-
plus is mitigated solved by transferring products between retail sites (period 6). IRPs are
solved in the beginning of each period, after recoding demands and updating forecasts of
the previous period.

In every period, an IRP considering some periods ahead (four in the example) is usually
solved on a rolling horizon basis. The decisions of the first period are implemented and
it is likely that new information (real demand figures) becomes available at the end of
that period. Planners use the new information to perform a new planning iteration, rolling
forward the forecasts. The accuracy of the forecasts deteriorates with the number of periods
considered ahead. Therefore, stockouts (period 3) or excesses of stock (period 6) are likely
to occur on some of the vending machines. In a scenario where lateral transshipments
are not possible, these events can have a high impact on lost sales and inventory costs as
well as shrinkage costs. In fact, without transferring stock between vending-machines the
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quantities to be replenished in out of stock machines can only be provided by the supplier,
which is likely to have its capacity fully occupied and predestined. Additionally, if the
demand of a certain machine is over-foretasted and an excess of stock is created, large
inventory costs will be incurred if there exists no mechanism to re-allocate inventories.
After such events, the initial inventory of each machine will not be balanced. Without
considering lateral transshipments, unbalances could only be fixed several periods ahead.
Despite the potential savings arising from lateral transshipments, it is worth mentioning
that the IRP with owned fleet lateral transshipments that is not well-studied in the literature,
mostly due to its inherent complexity. For that reason, this paper seeks to extend the IRP
literature and provide four main scientific contributions:

e A new IRP formulation that addresses two versions of the problem (the standard
Inventory-Routing Problem Without Transshipments (IRPWOT) and the extended
Inventory-Routing Problem With Owned Fleet Transshipments (IRPWT)).

e A branch-and-cut procedure which improves the number of optimal solutions as well
as the average gap of the multi-product multi-vehicle instances available in the liter-
ature (proposed by Coelho and Laporte [2013]).

e A sensitivity analysis over a set of parameters that are crucial for real-world imple-
mentations of planning processes based on the IRP.

e New managerial insights are derived from the value of owned fleet lateral transship-
ments by comparing the IRPWOT against the IRPWT for both the deterministic and
non-deterministic demand cases.

The remainder of this document is divided as follows. Section 3.2 reviews the main relevant
literature regarding extensions of the IRP focusing on lateral transshipments. In Section
3.3 we introduce the IRPWT and present the novel mathematical model for the problem.
Section 3.4 describes the solution methodology developed for the deterministic and non-
deterministic versions of the IRPWT. The value of lateral transshipments is discussed in
Section 3.5. Finally, in Section 3.6, we present the main conclusions of this work and
suggest future research directions.

3.2. Literature Review

Since the introduction of the single item IRP by Bell et al. [1983], the research community
has been quite active while developing new solution approaches for the standard version of
the IRP. For more than 30 years [Coelho et al., 2014], researchers have been focused on
increasing the efficiency of mathematical formulations which could only find optimal solu-
tions for very small IRP instances with few customers. Maybe because the complexity of
the standard problem is already challenging enough, IRP extensions received less attention.
Indeed, it seems that the potential gains of extending the IRP were not sufficient to induce
the research community to explore and tackle more complex IRPs.
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Although some IRP extensions were already tackled, there are not many papers regard-
ing each type of extension. Usually, the IRP models available in the literature extend the
standard problem with only one new feature. Hence, there are no mathematical formula-
tions capable of addressing a multiple set of features simultaneously. The existent exten-
sions deal with features such as pickups and deliveries [Anholt et al., 2013, Ramkumar
et al., 2012], backhauls [Mes et al., 2014, Liu and Chung, 2008], split deliveries [Papa-
georgiou et al., 2014, Cordeau et al., 2015], time-windows [Liu and Lee, 2011, Rusdian-
syah and Tsao, 2005], and perishable products [Diabat et al., 2016, Coelho and Laporte,
2014]. All these extensions provide reasonable flexibility to apply the IRP to various real-
world contexts including the vending-machine business, cash replenishment of automatic-
teller-machines, distribution of fuel, distribution of automotive components, and maritime
transportation. However, the inherent complexity found when integrating inventory man-
agement and transportation activities still poses enormous difficulties when the size of the
instances goes beyond few customers, vehicles, and products. Since the literature is still
scarce in terms of real-world applications, we consider important to measure the value of
each extension related to the standard IRP in order to further foment the use of integrated
models.

In this paper, we are particularly interested in the case where the standard operational
model of the IRP is extended with the possibility of transferring products between entities
of the same echelon, using owned fleet. This type of inventory reallocation is commonly
referred as lateral transshipments in the inventory management literature [Paterson et al.,
2011]. In order to cope with demand variability, companies may use lateral transshipments
so as to rebalance stocks whenever mismatches between supply and demand exist. Many
papers highlight the benefits of transshipments in systems where inventory management is
centralized [Salameh and Jaber, 1997, Tiacci and Saetta, 2011].

Regarding these stock movements, Coelho et al. [2012] tackle an extension of the basic
IRP which includes lateral transshipments. The authors introduce transshipment variables
to model quantities to be transferred between retail sites by a subcontracted fleet. The
problem is solved by an Adaptive Large Neighbourhood Search (ALNS) heuristic and the
results indicate that cost reductions are possible when considering subcontracted trans-
shipments. Instances with up to 50 retail sites and three periods, and 30 retail sites and
six periods are solved considering both the Order-up-to Level (OU) and the Maximum
Level (ML) replenishment policies with and without transshipments. It is concluded that
transshipments are profitable when the cost of outsourcing the delivery of ten units does
not exceed the cost of transporting one unit with the owned fleet. Note that the considered
transshipments are slightly different from the ones we aim to study. In fact, since the author
considered subcontracted fleet, transshipment variables do not directly impact the routing
decisions.

Shen et al. [2011] address an IRP in crude oil transportation. This problem is based on
a real-world application which includes many different entities and business-tailored con-
straints. They formulate the problem as a mixed-integer program and use a Lagrangian
relaxation method to find near optimal solutions. Multiple transportation modes and vari-
ous logistics costs are considered. The solution approach is tested on instances with a 12-
period planning horizon. Along with the fact of being a maritime transportation problem,
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the transshipments executed in this problem are also slightly different from ours. There are
no product flows between retail sites (customer harbours), specifically, input and output
ports are used to perform lateral transshipments. This means that if a product is already at
the retail site, it has to return to an output port and after that, it can be delivered to a dif-
ferent retail site. Considering this specification, the presented mathematical model is not
applicable to the problem we addressed here. Jemai et al. [2013] consider a particular case
of an IRP with static routings and show that transshipments allow for a better optimization
of global indicators of the supply chain. A comparison between three different scenarios
considering the total distance and the number of visits is performed. Recently, Mirzapour
Al-e-hashem and Rekik [2014] address the IRP with transshipments considering the con-
cept of "* . The objective is to solve an IRP while selecting the appropriate
vehicle by considering greenhouse emission levels, capacities and transportation costs. In
fact, vehicles need to visit pickup locations and deliver the goods to a plant. The considered
transshipments allow for the possibility to temporarily store products at every node. This
means that vehicles can consolidate demands at a certain node in a given period and deliver
the products to the plant in another period. The authors develop a mathematical formula-
tion and use a commercial solver to obtain the solution to instances with up to 16 nodes,
five vehicle types and 12 periods. Logically, this problem differs from the one we aim to
tackle, however it is one of the few papers where stock reallocations between entities of the
same echelon are executed in the context of the IRP.

"

green logistics

3.3. Problem Description and Mathematical Formulation

To introduce the IRPWT, consider a complete graph G = (N, E), where the set of vertices
N ={0,1,...,n} is partitioned into vertex 0, the supplier which acts as the vehicle depot, and
vertices {1, ...,n}, corresponding to n retail sites to be served. Edges (i, j) € E are associated
with a travelling cost ¢;;. Let P = {1,..., p} be the set of products that can be sold by each
retail site and stored in their warehouse with an associated periodic holding costs of hf .
All inventories need to be maintained between a lower and an upper limit defined by the
interval [ilﬁ(’ , il;”7 1. The supplier owns a fleet of vehicles K with capacity vc* which is
used both to deliver and to transship products. We assume that lateral transshipments are
performed at no cost. Note that this assumption is reasonable in a real context, since the
driver may only incur in a larger service time to unload and load the desired products. In
each period ¢ € T a certain quantity p”’ of product p is made available at the supplier and
each retail site needs to satisfy a demanded quantity df !. Figure 3.3 shows an example of
the IRPs to be considered in this research.

The figure shows one route to be performed by a single vehicle on a given period ¢ of the
IRPWT. The pickups and deliveries are described below each retail site. In the example,
the vehicle performs two deliveries and three pickups. Note that the last pickup allows the
vehicle to return one unit to the depot so it can be used at a later period.

To model the IRPWT, we propose a novel mathematical formulation which allows for
owned fleet lateral transshipments while routing inventories. The replenishment policy
considered in this research is the ML policy. We use binary decision variables Xf‘j’, Zl{“,
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Figure 3.3 — Example of one period of the considered IRP with owned fleet lateral trans-
shipments representing the entity sets and parameters involved.

BDp ! BP‘” " for routing decisions, and continuous variables Dp ! Pp ! Ip ! and Lp for dealing
with quantities delivered, picked up, stocked, and flowing in each arc. Let th be the binary
variables to indicate whether an edge (i, j) is traversed by vehicle & in perlod t. Zf’ indicate
if retail site i is visited by vehicle & in period ¢. Binary variables BDf’ " assume value one if
product p is delivered to retail site i in period ¢, while continuous variables Df " indicate the
quantity that is delivered. Binary variables BP?7 " detect if a pickup of product p is made at
retail site i in period ¢ while continuous variables Pf " indicates the quantity that is picked
up. Auxiliary continuous variables Ip " define the inventories of each product p held in each
retail site 7 in each period ¢. Finally, continuous variables Lp control the quantity of product
p that flows through each edge (i, j) in each period t. The proposed formulation reads as
follows:

(IRPWT):
minimize fiyr = . 3 DRI+ NN 6 XM 3.1
i€EN peP teT (i,j))€E keK t€T
S.t.
-1
](I)”: (’)” +pl’t+ZL%—ZLg; VpePteT (3.2)
JEN JEN

=" DM PV —a" VieN\{0}), pePteT 3.3)
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P <ili’.BP!" VieN\{0},teT (3.16)

BPI'+BD!' < ) 7' VieN\(0}pePteT (3.17)
kekK

DX XM<Y 27 vOCVikeK.teT, forsome g€ 0 (3.18)

i€0 jeO i€0

X8,z BD!, BP!' €{0,1); I, L1, D", P!’ > 0. (3.19)

The objective function fiyr (3.1) minimizes the total cost of the system, comprising in-
ventory and transportation costs. Constraints (3.2) and (3.3) define the inventories of each
product in each period both for the supplier and retail sites, respectively. In our model back-
hauls (i.e. returns to the depot) are allowed and given by )’ jey L%. At each retail site, stock

may flow out due to external demand (dl.p ") or lateral transshipments (allowed by pickup
variables Pll.7 "). Constraints (3.4) and (3.5) ensure that the inventory levels of the supplier
and retail sites are maintained in-between their minimum and maximum levels [ilfo, il?p ].
Note that, since constraints (3.5) consider the remaining inventory ¢ — 1 and the deliveries
performed in ¢, we assume that the retail site capacity is never violated in each period. The
network commodity flows are ensured by constraints (3.6). Constraints (3.7) ensure that
vehicles’ capacities are respected. Constraints (3.8) limit delivery quantities to the amount
transported by the vehicle while constraints (3.9) limit pickup quantities. Note that stocks
to be picked in a certain period were stocked at the end of the previous period. Constraints
(3.10) limit quantities available to be shipped by the supplier. The vehicle flow conserva-
tion is ensured by constraints (3.11) and (3.12). Constraints (3.13) force each retail site to
receive a single visit per period. Each vehicle can only leave the depot once in each period,
as enforced by constraints (3.14). Constraints (3.15) and (3.16) capture the binary deci-
sions which define whether a product is delivered or picked up, respectively. A product can
only be delivered or picked up if the retail site is visited, as imposed by constraints (3.17).
Hence, if a product is delivered, it cannot be picked up. Constraints (3.18) are the so-called
subtour elimination constraints, used to prevent disconnected cycles or paths. Finally, the
non-negativity constraints and variable bounds are defined by expressions (3.19).

3.3.1 Valid Inequalities

To strengthen the IRPWT model we add three groups of constraints to the original formula-
tion. The first group focuses on symmetry breaking and on connecting Xl’.‘j’ to Zf’ variables.
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Z <Y 7K VieNkeK\(0}teT (3.20)
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iEN ieN

Z' <7y YieN\{0),keK,teT (3.22)

XM <zM i jeNkeK teT (3.23)

ij =i

Given that the fleet is homogeneous, symmetry breaking constraints (3.20) are added to
ensure that the vehicles with smaller index k are used in first place. Constraints (3.21)
also cut symmetries by ordering the vehicles based on the number of retail sites visited.
Constraints (3.22) only allow a vehicle to visit a retail site if it leaves the depot. Similarly,
constraints (3.23) allow a vehicle to traverse an edge leading to a retail site only if this retail
site is visited.

The second group of constraints is adapted from the work proposed by other authors.

-1 ;
PE_ 1PV |[ilt? | < \ i€ ,pEP € )
HZDf’g Ifo)/'lﬂ > >'Z VieN\(0},pePieT (3.24)

g=1 keK g=1

t t
Iff‘gz(l—z > zf")( > dﬁ”’) Vie N\{0}, peP,teT,geT,g<t (3.25)

keKt'=t—-g+1 t'=t—g+1

To tighten the bounds on the number of visits to each retailer, we adapt the valid inequalities
proposed by Coelho and Laporte [2013] to our formulation and add constraints (3.24).
These constraints discount the initial stock and compute the deliveries that are made to
each retail site of each product in each set of subsequent periods. By doing so, and taking
into account the maximum inventory level allowed by each retail site, a lower bound on
the number of visits is computed and used to guide the definition of the Zl{“ variables.
Additionally, we add constraints (3.25) which adapt the valid inequalities presented by
Archetti et al. [2014] for the case where a certain retail site is not visited between periods
g and ¢. The inventory held by a retail site in period 7 — g needs to be sufficient to serve the
total demand between periods g and ¢. Otherwise, the retail site has to be visited at least
once, which is guaranteed in case the summation of the Zl{" variables is positive.

Finally, we propose a third group of constraints to cut off solutions where the same product
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leaves and returns to the depot, which is clearly suboptimal.

Z L < Z D" VpePieT (3.26)
ieN\{0} ieN\{0}

Z L < Z P" VpePieT (3.27)
ieN\{0} ieN\{0

Inequalities (3.26) impose that it is not possible to load the vehicles with a larger quantity
than the one that is going to be delivered. Inequalities (3.27) impose that the supplier only
receives products (i.e. products returned to the depot) if they have been previously picked
up. Considering the in and out flows of the depot, the expression

ZL ZD”’+ZP’” >

ieN\{0 ieN\{0 ieN\{0} ieN\{0}

holds for each product p and period ¢. For the sake of simplicity, we rewrite this expression
as

g —d+p=q", (3.28)

where ¢~ is the quantity of product leaving the depot, d is the total quantity delivered, p
is the total quantity picked up, and g* is the quantity returning to the depot. Clearly, it
is not necessary to load the vehicles with a larger quantity than the one to be delivered,
which is expressed by requirements (3.26). Hence, g~ < d holds. Rearranging the terms
of (3.28) and considering that g~ —d < 0 for any optimal solution, then g™ — p < 0, proving
that inequalities (3.27) are valid.

3.4. Methodology

The main objective of this paper is to provide insights on the value of lateral transship-
ments IRPs. To do so, we test two different contexts. Firstly, the instances available in the
literature are solved considering the whole planning horizon with deterministic demand.
Secondly, a rolling horizon scheme is used and several planning iterations are performed
to construct a solution for the entire problem considering non-deterministic demands (i.e.
forecasts with an associated error). Both cases are later compared with the case where
lateral transshipments are not allowed.

3.4.1 Branch-and-Cut scheme with deterministic demand

The IRP with lateral transshipments contains the Vehicle Routing Problem (VRP) as a spe-
cial case. Therefore, the formulation presented in Section 3.3 is particularly challenging as
it incorporates a few complicating constraints. Indeed, the subtour elimination constraints
(3.18) are quite demanding as their number grows in an exponentially with the number of
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retail sites considered. This means that, in case we include all these constraints, the for-
mulation is only able to provide solutions for toy instances, with a very limited number of
retail sites, products, vehicles and periods. However, for medium-sized problems (up to 50
customers) the formulation can be solved exactly if the complicating constraints (3.18) are
properly tackled. In order to provide solutions for larger instance sizes, it is necessary to
drop the subtour elimination constraints (3.18) and solve a simpler relaxed problem. The
violated subtour elimination constraints are dynamically added to the problem on the fly.
The solution approach starts by quickly creating an initial solution. This solution consists in
a decoupled inventory-routing plan, meaning that the delivery quantities and inventory lev-
els of each retail site are defined first using a lot-sizing formulation. The routing sequences
are defined afterwards by means of a random cheapest insertion heuristic and local search
based on 2-OPT moves. This decoupled solution may already provide a high quality upper
bound if the link between inventory management and routing activities is not too strong
for a particular instance. Figure 3.4 provides an overview of the devised branch-and-cut
scheme.

J

Solve Relaxed
Inventory-Routing Problem

J

Solve
Lot-Sizing Problem

l

Cheapest
Insertion Algorithm

Local Search

(2-OPT)

Lot-Sizing

Routing

Yes

Elimination Constraints

l

Apply Patching Rules ‘

‘ Separate and Add Subtour

(Insertion + Local Search)

Figure 3.4 — The solution approach for the IRP with deterministic demand embeds a pro-
cedure to build an initial solution followed by a branch-and-cut procedure. During the
branching process, the routing part of the solution is improved by several simple heuristics.

The first step is to solve an adapted Capacitated Lot Sizing Problem (CLSP) which adds a
penalty to the objective function whenever a retail site receives a delivery. This penalty is
proportional to the distance between the supplier and the retail site receiving the deliveries.
This penalty, equal to the distance of a direct trip from the depot to the served retail site i,
is given by cg; + cio. To model the adapted CLSP, a different set of continuous variables is
used to define delivery quantities. Let Dip K represent the quantity of product p that needs to
be delivered to retail site i using vehicle & in period ¢. Maintaining all the previous decision
variables and parameters, the formulation of the adapted CLSP reads as follows:
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(ACLSP):
mlnlleeZZZhlpllpt+ Z ZZ(CQI"FCI‘O)‘ZZ{{I (329)
i€K peP teT ieN\{0} keK teT
S.t.
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keK
il < 2(1;1;1 - ZDf’“) <il!’ VieN\{0}teT (3.32)
peP keK
DM < min(vc,il'")-Z" VieN,pePkeK,teT (3.33)
> Y DM vk Zl VkeK,teT (3.34)
ieN\{0} peP
ZMe(0,1); DI > 0. (3.35)

The objective function (3.29) minimizes the total inventory cost and the penalties that try
to roughly estimate the routing cost. Other constraints are adapted to use the new set
of variables Df K Constraints (3.30) and (3.31) define the inventories at the supplier and
retail sites, respectively. Constraints (3.4) and (3.32) impose lower and upper limits in these
inventories. Constraints (3.33) connect continuous variables Df * to the integer variables
Zf“ , capturing the retailers that need to be visited. Constraints (3.34) are vehicle capacity
constraints. To impose at most one visit to each location in each period, constraints (3.13)
are added to the model.

After solving this CLSP (it is not necessary to solve it to optimality) using a general-
purpose solver, we obtain a set of deliveries that need to be performed in each period. We
use a cheapest insertion algorithm which randomly chooses retail sites and inserts them in
the cheapest position of an opened route until the capacity of the vehicle is fulfilled. When
all the retail sites are inserted, a fast local search, composed of 2-OPT moves, is applied to
the routes to finalize the initial solution construction.

The initial solution is then used in the root node of a branch-and-cut process. In each node



72 Chapter 3. Inventory-Routing

of the search tree, a relaxed Mixed-Integer Program (MIP), defined with constraints (3.1)
- (3.25) except (3.18), is solved. The solutions provided by this formulation may have
subtours. We separate the necessary subtour elimination constraints, which are a subset of
constraints (3.18), and add them to the current MIP. At this point we use some patching
rules to turn the infeasible solutions (with respect to the routing part) into feasible ones.
In these patching rules, the routing part of each infeasible solution is completely redefined
by the same route construction algorithm used in the initial solution phase and fed into the
current MIP. This simple procedure is able to find feasible solutions and allows for quick
improvements in the upper bound. The program is then reoptimized and this process is
repeated until no more cuts are added. Here, branching on fractional variables occurs until
the optimal solution is reached.

3.4.2 Rolling Horizon scheme with error prone forecasts

This section aims at developing an approach to simulate the hypothetical situation of a sup-
plier that needs to solve an IRP on a regular basis. This scenario can be described with
a rolling horizon planning scheme with non-deterministic demand. Consider a planning
horizon with T time periods which are planned taking into account L periods in each plan-
ning iteration. The horizon rolls forward F periods in each iteration. We consider the case
where only the first period of each planning iteration is implemented (F = 1). Based on
the ideas presented by Clark [2005], we assume that the accuracy of demand forecasts im-
proves as we approach the actual demand event. This fact is usually observed due to the
incorporation of new information into demand forecasts. Figure 3.5 presents an example
with the necessary steps to simulate demand forecasts. The rational of the procedure is
described below.

In this approach, a parameter « is used to quantify the degree of uncertainty in the demand
forecasts (o = 0 corresponds to perfect forecast). Note that we do not want to recreate a
certain forecast process, we only assume that a generic forecast process has an inherent
error proportional to @ (similarly to Clark [2005]). For each retail site, product, and period,
we define the base value VT for the first forecast T periods ahead of the actual demand V0.
VT is computed as a function of the actual demand value (V0), a random factor (@), and a
random variable r following a standardized random distribution:

VT =max{0,VO(1 + Tar)}. (3.36)

The larger the value of @, the more likely it is for VT to be further away from V0. The up-
dated forecast F; is computed as a function of the interpolated base value V; = VO + %(VT -
V0), a random factor that is proportional to t = DemandPeriod — Planninglteration, a, and
arandom variable r following a standardized random distribution, similarly to what is done
in expression (3.36):

F,=max{0,V,(1+tar)} t=T,T—1,..,1,0. (3.37)
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Real Values VO (For T Periods)

1 2 3 4 5 6 7 8 9 10
vo 50 30 20 60 35 20 50 10 30 20
VT 8 5 3 10 6 3 8 2 5 3

Demand Forecasts Ft

1 2 3 4 5 6 7 8 9 10
1 50(50) 24(30) 14(20) 43(60) 21(35) 8(20) 32 (50) 4(10) 7 (30) 7 (20)
| 2 30(30) 21(20) 42(60) 24(35) 8(20) 9 (50) 2(10) 14 (30) | 11(20)
.g 3 20(20) 55(60) 27(35) 19(20) 39(50) 6(10) 12 (30) 0(20)
Sl 4 60(60) 33(35) 19(20) 42(50) 2(10) 19 (30) 8(20)
§ 5 35(35) 14(20) 50(50) 8(10) 18 (30) 7 (20)
%" 6 20(20) 52(50) 10(10) 1(30) 19 (20)
g 7 50 (50) 9(10) 28(30) | 14 (20)
é‘ 8 10 (10) 33(30) | 15(20)
9 30(30) | 20(20)
10 20 (20)
Example: Forecasts Ft for period 10 in each planning iteration
1 2 3 4 5 6 7 8 9 10
Vo 20 20 20 20 20 20 20 20 20 20
vVt 5 7 8 10 12 13 15 17 18 20
Ft 7 11 0 8 7 19 14 15 20 20
Demand 30
25 (Actual Demand)
Vo

20
15
10

.10 .
Planning Iterations

Figure 3.5 — Demand forecasts for a set of planning iterations. The real demand for each
period is Vj.

On the top of Figure 3.5, we present the values for V0 and VT that allow us to compute
the forecasts F; presented in the matrix in the middle of the figure. This matrix shows the
forecasts F; that are considered in each planning iteration and the actual demand values of
each period (inside the parenthesis). For example, the second column of the first row tells
that in the first planning iteration, the model will consider a forecast of 24 units (# = 1) but
the actual demand will be 30 units. In the second planning iteration, the model will see this
demand as 30 units which is exactly the same as the forecast (¢ = 0). The chart in the bottom
of Figure 3.5 illustrates how the forecasts of the demand of period 10 evolve until the tenth
planning iteration. V; ensures the convergence of the forecast F; to the actual demand V0.
However, the random element is much stronger in the first planning iteration, resulting in
a larger volatility of F;. Thus, this forecast simulation method incorporates a random ele-
ment while accounting for the accuracy improvement as we approach each actual demand
period. Although real-world demands are stochastic, deterministic subproblems arise when
solving stochastic IRPs in a rolling horizon framework Coelho et al. [2012]. Therefore, we
use demand forecasts for some periods ahead as approximations of the unknown demand
in order to guide and align decisions to be made in the present period. Only the most im-
mediate decisions are implemented although the whole plan is built for all periods within a
certain time horizon, based on available information [Sethi and Sorger, 1991]. Taking the
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aforementioned ideas into account, we simulate a realistic rolling horizon planning process
using the procedure depicted in Figure 3.6.

For all considered planning iterations No

N . Solve Subproblem Fix F
Update Iteration . .
” Considering L Periods Implemented
Initial Inventory .
7 (Branch-And-Cut Scheme) Periods

Rolling Horizon Plan

Figure 3.6 — The rolling horizon scheme start by computing demand forecasts, apriori.
Afterwards, a series of subproblems are solved considering L periods. In each iteration, F'
periods are fixed and the procedure is complete when all the periods are fixed.

T Periods
Fixed
?

Generate
Demand Forecasts

The proposed rolling horizon scheme starts by computing the demands to be used in each
IRP subproblem (according to the example in Figure 3.5). Afterwards, a series of T plan-
ning iterations is solved considering subproblems with a planning horizon of L periods. In
each planning iteration, the initial inventory is loaded (the remaining inventories of the pre-
vious iteration) and our branch-and-cut scheme is invoked to solve the inventory-routing
subproblem. When the stopping criteria of the branch-and-cut scheme are met, F' periods
are implemented by fixing the values of their variables. If all the periods have been imple-
mented, the algorithm outputs the rolling horizon inventory-routing plan. Otherwise, the
planning horizon rolls over F periods and the process is repeated until all the 7" periods are
implemented.

3.5. Computational experiments

This section presents the computational experiments performed using both schemes de-
scribed in Section 3.4. First, we validate and assess the efficiency of our branch-and-cut
scheme on a set of instances available in the literature. We compare the performance of
our exact approach against the approach proposed by Coelho and Laporte [2013]. Second,
using the same set of instances, we provide insights on the additional savings achieved by
using an operational model with owned fleet lateral transshipments. Third, the instances
are adapted to introduce demand uncertainty in order to test the rolling horizon scheme in
a realistic environment. We aim at deriving conclusions regarding the use of owned fleet
lateral transshipments in such context.

3.5.1 Instance set and test conditions

The considered set of instances is based on the MMIRP (multi-product multi-vehicle IRP)
instances proposed by Coelho and Laporte [2013] (http://www.leandro-coelho.com/
instances/inventory-routing/). We selected instances with multiple products, ve-
hicles, and periods to fully evaluate our problem structure. The set contains five instances
for each possible combination of retail sites (10, 20, 30, 40, 50, 100), products (1, 3, 5),
vehicles (1, 3, 5) and periods (3, 5, 7). In the computational experiments related to the
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developed branch-and-cut scheme, the instances are used in their original form. For the
experiments regarding the rolling horizon scheme, each instance was extended by copy-
ing the same demand in the same order until the desired number of periods was achieved.
All numerical tests were conducted on Intel®Xeon®E5-2650 processing units at 2.00GHz
and 16GB memory. A single thread was used. The algorithms were implemented in C++
(Visual Studio 2015) and CPLEX 12.6 is used as the mathematical model solver.

To compare different algorithms, we rely on the ideas presented by Dolan and Moré [2002].
The authors introduce the concept of performance profile, a chart depicting the cumulative
probability for each algorithm to obtain a solution with a relative gap smaller than or equal
to 7. The relative gap is computed in relation to the best-known solution for each instance
p- For each approach s the relative gap r,, s is computed. The performance probability p4(7)
is then defined, for each 7, according to expression

1
ps(t) = —size{pe P :rp <1},
np
where n,, is the total number of instances and 7 is the threshold for the relative gap based
on the best solution found among all methods.

3.5.1.1 Patching B&C efficiency assessment

To assess the efficiency of our exact branch-and-cut algorithm, we compare its results with
the results presented by Coelho and Laporte [2013]. We refer to the authors’ branch-and-
cut as B&C and to our patching branch-and-cut as P-B&C. The P-B&C is tested in a context
without owned fleet lateral transshipments (WOT) and in a context where these inventory
reallocations are allowed (WT). We solve 675 literature instances and compare the average
relative gap (U%‘BLB ), time, and number of optimal solutions between the three approaches.
The time limit for these tests was 43 200 seconds, similarly to Coelho and Laporte [2013].

The summarized results of the computational experiments are presented in Table 3.1.

Table 3.1 — Summary of computational results for the MMIRP instances presented by
Coelho and Laporte [2013]. The P-B&C is able to improve the average relative gaps for
the standard problem (WOT) and for the extended problem considering owned fleet lateral
transshipments (WT).

B&C P-B&C WOT P-B&C WT

Optimally Solved 268 280 266
Avg Gap (%) 18.71 16.77 17.84
Avg Time (s) 26 358 27119 28 432

Considering the case without transshipments (WOT), our P-B&C algorithm proves to be ef-
ficient compared to the B&C. Although the tests show larger average computational times,
the number of instances that are optimally solved by the proposed approach is larger and the
average gap is improved by 1.94%. When solving the IRP with owned fleet lateral trans-
shipments (WT), the P-B&C obtains slightly larger gaps and less optimal solutions. This
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was expected due to the additional complexity added by the lateral transshipments, which
implies a larger solution space. The performance profiles comparing the three algorithms
are depicted in Figure 3.7.
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Figure 3.7 — The performance profiles show that the patching branch-and-cut algorithm
is superior for solving IRP instances without owned fleet lateral transshipments. When
owned fleet lateral transshipments are allowed, the heuristic is also competitive, although
the number of optimal solutions found is the smallest.

The superiority of the P-B&C is clear when no lateral transshipments are considered, mean-
ing that the probability of solving a certain problem with a lower relative gap is higher with
our approach. When owned fleet lateral transshipments are considered, our approach finds
less optimal solutions but for 7 € [0.03,0.34] it shows a larger probability of obtaining
smaller relative gaps. We provide more detailed results of our efficiency assessment tests
in 3.A.

3.5.1.2 The value of owned fleet lateral transshipments in literature instances

Our proposed formulation extends the standard IRP by allowing vehicles to transship prod-
ucts between retail sites. All the solutions that are valid in the formulation without trans-
shipments (WOT) are also valid in the formulation with transshipments (WT). Therefore,
JSwr < Jfwor holds, when fi. and fy, - are the optimal objective values of each formula-
tion, respectively. Although this relation is trivial, the magnitude of the potential savings
that can be obtained by considering owned fleet lateral transshipments in the IRP has not
been measured. This analysis is different from the one presented in Coelho et al. [2012]
as the lateral transshipments are performed by vehicles that are based at the supplier loca-
tion. From the entire set of instances that have been tested, we compare the results of 264
runs that were able to achieve the optimal solution both in the WOT and in the WT case.
Owned fleet transshipments have been performed in 83% of the instances. We compute
the transshipped quantity over the total delivered quantity y = Pf > Df " to measure the
percentage of deliveries that are served by transshipped products. Although transshipments
are not used in 45 instances, the average value for the transshipped percentage vy is 2.40%.
The maximum transshipped percentage achieved in an instance was 15.55%. In Table 3.2
we present the potential savings achieved by owned fleet lateral transshipments.
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Table 3.2 — Summary of the results obtained in the 264 instances optimally solved by both
models (WOT and WT). The table shows the minimum, maximum, and average savings

(%), obtained for every cost component.

Total Cost Transportation Cost ~ Supplier Inventory Cost  Retail Site Inventory Cost  Transshipped percentage y

Max  13.25% 14.06% 9.92% 20.26% 15.55%
Avg 1.05% 0.57% -0.47% 2.08% 2.40%
Min 0.00% -18.53% -14.61% -24.31% 0.00%

In terms of objective function, the owned fleet lateral transshipments allowed for an average
reduction of 1.05% in the total cost. These average savings are essentially due to a reduc-
tion in the inventories cost of the retail sites, given that the supplier inventory costs and
the transportation costs are not largely affected. The largest total cost saving achieved in
an instance was 13.25%. However, in the worst cases, there are instances where the trans-
portation cost increases by 18.53% and the retail site inventory cost increases by 24.31%.
Note that despite these large cost increases in each component separately, the total cost will
never be larger in the WT case, as other cost components will certainly compensate (given
that fy;, < fiyor). This is confirmed since the minimum total cost saving achieved in an
instance is zero.

We further explore the structure of the solutions obtained, depending on the type of instance
considered. To do so, we ordered the instances by transshipped percentage vy and plotted
bubble charts where each bubble is positioned according to an instance dimension (retail
sites, vehicles, products or periods) and its size measures the saving percentage. Therefore,
instances where owned fleet lateral transshipments have been largely used and large savings
achieved are represented with a large bubble in the right side of the chart. In Figure 3.8 we
position each bubble in the y-axis according to the number of retail sites of each instance.

#Retail Sites
120

100
80
60
40
20

0
0.00% 2.00% 4.00% 6.00% 8.00%  10.00% 12.00% 14.00% 16.00% 18.00% 20.00%

Transshiped Percentage

Figure 3.8 — The y-axis shows the number of retail sites of each instance. In the x-axis,
instances are ordered according to the transshipped percentage y obtained in the optimal
solution to the P-B&C WT. The size of the bubble is proportional to the savings obtained
relatively to the optimal solution obtained to the P-B&C WOT.

As expected, in instances where larger quantities are transshipped, larger saving percent-
ages were obtained. Although larger savings are obtained for instances with less retail sites,
we should not ignore the fact that less instances are solved to optimality when the number
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of retail sites increases.
Figure 3.9 presents similar information as Figure 3.8, but now emphasizing the number of
vehicles of each instance.

#Vehicles
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0
0.00% 2.00% 4.00% 6.00% 8.00%  10.00% 12.00% 14.00% 16.00% 18.00% 20.00%
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Figure 3.9 — The y-axis shows the number of vehicles of each instance (x-axis and bubble
as in Figure 3.8).

Results seem to indicate that for a larger number of vehicles, the bubbles are larger and
most frequently in the right part of the chart. In other words, the number of vehicles is
positively correlated both with the transshipped percentage and savings percentage.

With respect to the number of products, Figure 3.10 provides additional information.

#Products
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Figure 3.10 — The y-axis shows the number of products of each instance (x-axis and bubble
as in Figure 3.8).

The conclusions we can derive from the number of products are similar to the ones taken
for the number of vehicles. Indeed, the larger savings are found on instances with more
than one product. It is interesting to note (despite not having a justification for it) that our
approach was able to optimally solve more instances containing more than one product
than with just one product.

Finally, the number of periods of each instance is represented in the y-axis of Figure 3.11.
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Figure 3.11 — The y-axis shows the number of periods of each instance (x-axis and bubble
as in Figure 3.8).

The number of periods where more instances have been solved to optimality was three.
Additionally, larger quantities are transshipped in these instances. This behaviour is likely
to be related to the nature of our formulation. Since we do not define any rules for remain-
ing inventories, it seems that in instances with longer planning horizons it is not profitable
to reallocate inventories as they will eventually be needed later.

3.5.1.3 The value of owned fleet lateral transshipments in a rolling horizon planning
context

The results presented in Section 3.5.1.2 show that owned fleet lateral transshipments are
not largely used across all instances. The question of whether owned fleet lateral transship-
ments are useful in realistic setting stills remains unanswered. Our last group of experi-
ments consists in simulating a realistic planning process to provide managerial insights on
the IRP with owned fleet lateral transshipments. To do so, we test it in a rolling horizon
planning context, performing a sensitivity analysis over three dimensions:

Planning periods Defining the number of periods to be considered in each planning it-
eration is not trivial. There is a trade-off between computational complexity and
solution quality that needs to be taken into account when solving IRPs in a rolling
horizon planning process. We test demand visibility L equal to 2, 3, and 4 periods.

Forecast errors In the real world, since demands are usually uncertain, inventory-routing
planning is based on demand forecasts. The accuracy of these forecast deteriorates
as the number of periods ahead to which the forecasts are made increases. Hence,
considering the concepts presented in Section 3.4.2, we test the a parameter with the
values 0.05, 0.10, and 0.20.

Holding cost magnitude The results obtained in the latter section showed that using lat-
eral transshipments can lead to a total cost reduction of 1.05% on the tested literature
instances. However, inventory costs are a small portion of the total cost in these in-
stances. Therefore, to test different holding cost magnitudes, we adapt the original
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holding costs of the literature instances by multiplying them by a factor m. In our
tests, the holding cost multiplier m assumes the values 1 (original holding cost), 10,
20, and 30.

In each run, the plans need to satisfy the demand of ten periods (7" = 10) coming from
the adapted instances that have been extended for the rolling horizon case. For this test,
we consider all the instances with 10 retail sites, 3 products and 3 vehicles. The instances
are solved for the WOT and WT cases, using our P-B&C algorithm, and the improvement
(JM) achieved from using owned fleet lateral transshipments is computed. The results

fwor
of our computational experiments are presented in Table 3.3.

Table 3.3 — Summary of the computational results for the rolling horizon setting. The
table shows the average improvement (W) in the total cost, transportation cost, and
inventory cost (supplier and retail sites), for each combination of holding cost multiplier,
demand visibility periods, and a.

Holding Cost  #Periods a=0.05 a=0.1 =02
Multiplier (m) (L) TC TRSP IC TC TRSP IC TC TRSP IC
2 -1.57% -827% -1.06% -4.00% -449%  0.62% -5.01% -5.68% 1.32%
1 3 -0.72% -1.14%  2.08% -1.83% -2.65% 3.35% 0.87% 0.00% 5.21%
4 521%  -6.50% 1.56% “431% -520% 0.42% -3.16% -451%  3.95%
2 -331% -7.67% 1.24% -498% -8.01% -1.80% 2.72% -6.14% 0.94%
10 3 095% -2.68% 4.27% 1.65% -128% 4.43% 1.21% -1.77%  4.00%
4 -1.68% -7.06%  3.27% 221% -730%  2.54% -1.64% -8.12%  4.49%
2 313% -8.17% 9.87% 2.84% -8.05% 9.48% 371% -7.96% 10.76%
20 3 4.92% -743% 12.12% 4.69% -8.08% 12.19% 4.42% -7.710% 11.67%
4 2.06% -7.80% 7.88% 1.85% -5.93% 6.67% 1.92% -6.69% 7.22%
2 339% -9.19% 8.92% 6.32% -7.81% 12.51% 535% -8.85% 11.66%
30 3 481% -597% 9.62% 4.66% -7.89% 10.26% 6.52% -6.78% 12.44%

4 419% -7.03%  9.17% 498% -5.82%  9.88% 4.88% -589%  9.78%
Legend: TC - Total Cost TRSP - Transportation Cost  IC - Inventory Cost

The results show that in a rolling horizon planning process under uncertain demand, owned
fleet lateral transshipments are more beneficial when the inventory cost is high and when
demand uncertainty is more severe. For the original holding costs (m = 1), inventory costs
are generally reduced. When demand uncertainty increases (for larger values of «) larger
inventory cost savings are achieved. However, in terms of total cost, the WT case only
outperforms the WOT case when demand visibility is 3 periods and @ = 0.2 under m = 1.
In our tests, we have not set any value for the final inventory, thus in each planning iteration
the model tries to minimize inventory as much as possible, without considering the future
iterations. In the WT case, it seems that the model is myopic and tries to anticipate some
routing decisions that turn to be not so good in the later planning iterations. Analysing
the results for the remaining values of m (10, 20, and 30), we observe that the total cost
savings of WT over WOT increase proportionally to the value of m. It is not clear whether
the number of periods impacts the magnitude of lateral transshipments. In most cases,
the impact from considering the WT case is more beneficial with a visibility of 3 periods
rather than with 4. The a parameter is not determinant as the lateral transshipments add
almost no benefit when compared to the WOT case. Note that when m is greater than 10 the
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WT operational model outperforms the WOT operational model in every case. Although
the transportation costs of the WT operational model are larger, the inventory cost savings
always compensate. Given so, these results suggest that owned fleet lateral transshipments
are more likely to be beneficial in a rolling horizon planning process when the ratio ﬁ
is high. In Figure 3.12, we present the total cost savings achieved by the WT operational
model in each instance. Instances are ordered first by the holding cost multiplier and then

by the ratio %
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Figure 3.12 — The savings obtained by the WT operational model are larger when the total
inventory cost assumes a large proportion of the total cost.

According to the results obtained for this set of instances, using lateral transshipments
when m <= 10 is not likely to be beneficial, as the lateral transshipments induced in the
first planning iterations turn out to be expensive compared to the future savings on the
inventory cost. When the inventory cost ratio % is slightly larger than 0.6, it is more likely
to achieve cost savings by performing owned fleet lateral (proactive) transshipments. This
is in-line with what is stated by Paterson et al. [2011]. Reactive transshipments are more
suitable to environments where the transshipment costs are low compared to the inventory
costs. The authors refer the case of spare parts environments such as the semi-conductor
sector. Finally, we present some routing indicators in Figure 3.13 to further compare the
type of transportation solutions obtained by each operational model.
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Figure 3.13 — The figure represents the average difference (%) of the number of visits
per route, number of routes, vehicle occupation, and percentage of periods with routes (at
least one vehicle is used) for each m. The transportation cost (TRSP) is also represented.
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To analyse this figure, keep in mind that the magnitude of the savings obtained in the
WT case increases proportionally to the value of m. The number of periods with routes
increases by around 5% for every value of m. The vehicle occupation is similar in every
m. Hence, it seems that the larger savings obtained by the WT case are not related to these
indicators. The main difference between the results obtained for each value of m is in the
reduction of the number of routes and in the increment on the number of visits of each route.
Despite the increase in the transportation costs, in the WT case, longer routes performing
lateral transshipments allow for better inventory cost. We conclude that the more important
and frequent the necessity to reallocate inventories is (when holding costs are large), the
more important it is to transship products between retail sites efficiently (with longer routes
and higher vehicle occupation).

3.6. Conclusions

In this paper, the value of owned fleet lateral transshipments is studied for of the Inventory
Routing Problem (IRP). A novel mathematical formulation generates integrated inventory
and distribution plans that are able to reallocate inventory between entities of the same ech-
elon. To solve the formulation, we propose a new exact branch-and-cut algorithm which
repairs non-feasible routing solutions and performs routing local search procedures during
the branching process. We improve the average gap of the best results available in the
literature for multi-product multi-vehicle instances without considering transshipments,
proving the effectiveness of our approach. Furthermore, we provide managerial insights
on the IRP with owned fleet lateral transshipments both for deterministic demand, and for
non-deterministic demand in rolling horizon planning setting. In the former, the average
results obtained show that when 2.40% of the demand is served by lateral transshipments,
we achieve a reduction of 1.05% on the total cost. In some instances, a total cost reduc-
tion of 13.25% is obtained and 15.55% of the total demand is transshipped. Hence, it is
clear that some instances show a larger proneness to lateral transshipments. In the rolling
horizon planning setting with non-deterministic demand, a set of instances with 10 retail
sites, 3 vehicles, and 3 products is tested. For the original holding costs from the literature
instances, the lateral transshipments do not reduce the total cost in the great majority of the
instances. The performance of the model with lateral transshipments improves as the de-
mand uncertainty increases, yet the weight of the holding costs is so small in the literature
instances that lateral transshipments are not fundamental. For instances with larger hold-
ing costs, lateral transshipments allow for longer routes and better inventory reallocations.
Usually, the transportation costs are higher but large savings in the inventory cost result in
substantial savings in the total cost. Clearly, owned fleet lateral transshipments are more
beneficial when the total inventory cost represents more than 60% of the total cost.
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Appendix 3.A Summary of computational results for the liter-
ature instances

Table 3.4 — Summary of computational results for the instances with 1 product.

B&C P-B&C WOT P-B&C WT

#Vehicles  #Periods  #Customers ~ - o iSolved Time(s)  Gap (%) #Solved Time(s)  Gap (%) #Solved Time (s)
10 000% 5 0 000% 5 0 000% 5 0

20 000% 5 2 000% 5 1 000% 5 1

3 30 000% 5 13 000% 5 10 000% 5 10
40 000% 5 102 000% 5 151 000% 5 111

50 000% 5 300 000% 5 190 000% 5 219

10 000% 5 1 000% 5 1 000% 5 4

20 000% 5 20 000% 5 38 000% 5 12

1 5 30 000% 5 182 000% 5 1116 000% 5 1500
40 000% 5 9465 0.00% 5 8978 000% 5 13257

50 0.56% 4 20713 031% 4 14 806 081% 3 26045

10 000% 5 28 000% 5 80 000% 5 244

20 000% 5 3336 000% 5 8439 1.00% 4 19 685

. 30 3.06% 2 28529 219% 3 25958 345% 3 29730
40 603% 0 43200 347% 0 43200 510% 0 43200

50 997% 0 43188 566% 1 39508 1030% 0 43200

10 000% 5 7 000% 5 15 000% 5 21

20 000% 5 184 000% 5 143 000% 5 312

3 30 000% 5 5113 000% 5 3135 000% 5 4105
40 292% 3 28222 159% 4 17 428 0.00% 5 11848

50 1944% 0 43200 147% 3 24 464 293% 2 35679

10 022% 4 12555 259% 3 28 446 348% 2 29502

20 17.04% 0 41683 1B371% 0 43200  1684% 0 43200

3 s 30 3L16% 0 43181 2608% 0O 43200 2939% 0 43200
40 £21% 0 43189 8361% 0 43200 £291% 0 43200

50 48.12% 0 43197 3802% 0O 43200  4388% 0 43200

10 1440% 0 28173 1042% 0 33580 1409% 0 43200

20 27.67% 0 41297 3195% 0 43200 3295% 0 43200

; 30 33.60% 0 43171 3992% 0 43200 4040% 0 43200
40 61.12% 0 43200  5267% 0O 43200  5261% 0O 43200

50 62.17% 0 43200  53.06% 0O 43200 5473% 0 43200

10 000% 5 120 000% 5 235 000% 5 279

20 409% 2 29770 3271% 2 28984 267% 3 25 446

3 30 1553% 0 43200  13.64% 0O 43200 1107% 0 43200
40 1620% 0 43190  14.59% 1 41148 1448% 1 42779

50 3222% 0 43189 2849% 0 43200 1726% 0 43200

10 12.82% 1 35354 1281% 0 43200 1675% 0 43200

20 $B333% 0 43200 4807% 0 43200 4901% 0 43200

5 5 30 4384% 0 43197 4934% 0 43200 50.18% 0 43200
40 51.82% 0 43198 5233% 0 43200  5001% 0 43200

50 65.98% 0 43200  58.19% 0 43200 60.64% 0O 43200

10 27.61% 0 40106  2482% 0 26240 2854% 0 43200

20 4628% 0 43175 5550% 0 43200 55.10% 0 43200

. 30 6135% 0 43191 5576% 0 40907 61.01% 0 42537
40 71.09% 0 43200 5337% 0 43200  61.82% 0O 43200

50 761% 0 40688  60.79% 0 43200  63.19% 0 43200
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Table 3.5 — Summary of computational results for the instances with 3 products.

B&C P-B&C WOT P-B&C WT

#Vehicles #Periods  #C Gap (%) #Solved Time(s)  Gap(%) #Solved Time(s)  Gap (%) #Solved Time (s)
10 000% 5 2 000% 5 0 000% 5 0

20 000% 5 1 000% 5 2 000% 5 3

3 30 000% 5 1 000% 5 16 000% 5 23
40 000% 5 5 000% 5 52 0.00% 5 265

50 000% 5 11 0.00% 5 153 0.00% 5 203

10 000% 5 3 000% 5 12 000% 5 30

20 000% 5 46 000% 5 122 000% 5 2168

1 5 30 000% 5 506 000% 5 2489 000% 5 5669
40 0.00% 5 6968 096% 4 23 803 118% 3 33 460

50 272% 1 40243 129% 2 34381 1.62% 2 43200

10 000% 5 24 000% 5 91 000% 5 130

20 000% 5 6173 000% 5 4207 000% 5 13 840

. 30 541% 0 43200 117% 3 25152 205% 2 29 893
40 1L04% 0 43200 378% 0 43200 465% 0 43200

50 15.15% 0 43200 436% 0 43200 396% 0 43200

10 000% 5 6 000% 5 14 000% 5 3

20 0.00% 5 323 000% 5 1835 047% 4 9197

3 30 0.00% 5 3575 000% 5 14037 033% 4 17470
40 026% 4 12953 0.00% 5 14922 034% 4 21876

50 221% 2 35502 627% 1 43200 779% 1 40206

10 0.00% 5 8008 134% 4 17 503 130% 3 25 584

20 17.05% 0 02202 1177% 0 43200 1741% 0 43200

3 5 30 2067% 0 43196 2378% 0 43200 3076% 0 43200
40 2357% 0 43189 2483% 0 43200 2928% 0 43200

50 4554% 0 18555  3291% 0 43200 3382% 0 43200

10 2194% 0 27184 13.15% 0 43200  17.16% 0 43200

20 2036% 0 43198 27.82% 0 43200 B17% 0 43200

. 30 30.89% 0 43198 3454% 0 43200 3837% 0 43200
40 3835% 0 43200 0238% 0 51840  3174% 0 43200

50 5469% 0 43200 43.04% 0 43200 3840% 0 43200

10 000% 5 102 000% 5 385 000% 5 710

20 246% 3 21 424 396% 2 29007 246% 3 26014

3 30 381% 2 36037 743% 1 38343 403% 2 34234
40 236% 1 0242 1072% 0 43200 520% 1 39 165

50 945% 0 43200 2354% 0 43200 1743% 0 43200

10 1939% 0 41232 1534% 0 41582 17.30% 0 43200

20 2604% 0 43200 2899% 0 43200 3296% 0 43200

s 5 30 3785% 0 43181 4863% 0 43200  47.40% 0 43200
40 51.09% 0 37074 4374% 0 43200  4802% O 43200

50 47.08% 0 21028 4699% 0 43200  47.77% 0 43200

10 30.18% 0 2541 2726% 0 37858 2830% 0 43200

20 41.00% 0 43195 4635% 0 43200  48.63% O 43200

; 30 60.65% 0 43190 4779% 0 43200  5328% 0 43200
40 61.09% 0 34767 47.66% 0 43200 5232% 0 43200

50 5643% 0 43200 4979% 0 43200 4786% O 43200
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Table 3.6 — Summary of computational results for the instances with 5 products.

B&C P-B&C WOT P-B&C WT

#Vehicles  #Periods  #Customers ~ - C o iSolved Time(s)  Gap (%) #Solved Time(s)  Gap (%) #Solved Time (s)
10 000% 5 5 000% 5 0 000% 5 1

20 000% 5 1 000% 5 4 000% 5 9

3 30 000% 5 2 000% 5 19 000% 5 49
40 000% 5 6 000% 5 70 000% 5 333

50 000% 5 19 000% 5 427 000% 5 2618

10 000% 5 7 000% 5 7 000% 5 14

20 000% 5 95 0.00% 5 622 000% 5 1057

1 5 30 0.00% 5 5670 0.00% 5 3929 021% 4 19747
40 211% 2 32089 013% 5 13999 173% 3 19 368

50 749% 0 43194 1.88% 2 32 666 428% 2 38 046

10 000% 5 54 000% 5 140 000% 5 256

20 033% 4 18 774 0.00% 5 10253 051% 4 15 104

. 30 939% 0 43195 123% 3 29736 1.68% 2 36070
40 1230% 0 43200 240% 1 42690 509% 0 43200

50 17.65% 0 43195 599% 0 43200 1100% 0 43200

10 000% 5 5 000% 5 6 000% 5 13

20 000% 5 520 000% 5 3120 000% 5 543

3 30 081% 3 17739 204% 3 19614 086% 4 17 096
40 071% 4 14205 0.69% 4 20258 247% 2 35638

50 114% 2 33 966 361% 2 43200 558% 0 43200

10 510% 3 16428 342% 3 21483 389% 3 23325

20 1528% 0 43200  11.58% 0 43200 18.60% 0 43200

3 5 30 249% 0 43189 1929% 0 43200 2578% 0 43200
40 3040% 0 43195  2538% 0 43200 3178% 0 43200

50 4556% 0 2173 3L12% 0 43200 30.17% 0 43200

10 277% 0 26783 1500% 0 43200  1537% 0 43200

20 3034% 0 43200  2847% 0 43200  2751% 0 43200

. 30 30.84% 0 43200 3532% 0 43200 3494% 0 43200
40 6296% 0 43192 3412% 0 43200 3667% 0O 43200

50 55.65% 0 43200  3781% 0 43200 3203% 0 43200

10 000% 5 64 000% 5 176 000% 5 310

20 0.60% 4 9813 165% 4 15177 094% 4 24624

3 30 313% 2 37412 7.04% 0 43200 684% 1 39597
40 555% 0 43199 18.64% 0O 43200 2486% 0 43200

50 1214% 0 41010 2577% 0 43200 3428% 0 43200

10 17.73% 0 43122 1L13% 0 43200 1477% 0 43200

20 30.06% 0 43200  2953% 0 43200 34.19% 0 43200

s 5 30 3907% 0 43200 39.13% 0 43200 £252% 0 43200
40 5465% 0 43200  4210% 0 43200 43.52% 0O 43200

50 5434% 0 41345  4M433% 0 43200  4248% 0 43200

10 2058% 0 2114 2167% 0 43200  2278% 0 43200

20 40.03% 0 43200 202% 0 43200 4776% 0 43200

; 30 405% 0 43185 4831% 0 43200 4729% 0 43200
40 5470% 0 43200  4725% 0 43200  5447% 0 43200

50 5506% 0 43200  4665% 0O 43200  5133% 0 43200
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Abstract  Even though the joint optimization of sequential activities in supply chains is
known to yield significant cost savings, the literature concerning optimization approaches
that handle the real-life features of industrial problems is scant. The problem addressed
in this work is inspired by industrial contexts where vendor-managed inventory policies
are applied. In particular, our study is motivated by a meat producer whose supply chain
comprises a single meat processing centre with several production lines and a fleet of ve-
hicles that is used to deliver different products to meat stores spread across the country. A
considerable set of characteristics, such as product family setups, perishable products, and
delivery time windows, needs to be considered in order to obtain feasible integrated plans.
However, the dimensions of the problem make it impossible to be solved exactly by current
solution methods. We propose a novel three-phase methodology to tackle a large Produc-
tion Routing Problem (PRP) combining realistic features for the first time. In the first
phase, we attempt to reduce the size of the original problem by simplifying some dimen-
sions such as the number of products, locations and possible routes. In the second phase,
an initial PRP solution is constructed through a problem decomposition comprising several
inventory-routing problems and one lot-sizing problem. In the third phase, the initial so-
lution is improved by different mixed-integer programming models which focus on small
parts of the original problem and search for improvements in the production, inventory
management and transportation costs. Our solution approach is tested both on simpler in-
stances available in the literature and on real-world instances containing additional details,
specifically developed for a European company’s case study. By considering an integrated
approach, we achieve global cost savings of 21.73% compared to the company’s solution.
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4.1. Introduction

Competitiveness is intimately connected with the ability to be prepared, to predict market
changes, and to be ready for adopting fast changes in various operations. Today, competi-
tiveness is being considered at a supply chain level because no single organizational unit is
solely responsible for the competitiveness of its products and services [Stadtler and Kilger,
2010]. Provided that companies are aware of the latter facts, the receptiveness for system-
atic and optimized planning processes has been steadily increasing in the last few years. A
recent trend in operations research is to integrate and coordinate various planning problems
in order to obtain better plans, trading-off pros and cons from a much wider and inclusive
perspective [Pochet and Wolsey, 2006]. Indeed, in the past, most optimization processes
comprised a number of problems that were solved sequentially. In most cases, the effects
caused by decisions fixed in previous stages of the planning process were not even mea-
sured. Therefore, most entities were not aware that optimizing a certain problem could
prevent the achievement of better solutions for subsequent problems and, consequently, a
better global solution for the whole planning process.

The literature has been reporting various experiments in which considerable cost savings
arise from planning integration [Chandra and Fisher, 1994, Thomas and Griffin, 1996,
Fumero and Vercellis, 1999]. Activities are optimized with a monolithic model, as op-
posed to sequentially optimizing parts of the global problem (Figure 4.1). Logically, the
impressive results obtained by monolithic models contributed to augment the interest in
integrated planning processes. However, the enormous set of decisions and factors to be
considered often results in intractable problems [Schmid et al., 2013].

‘ Sequential activity optimization ‘ ‘ Integrated activity optimization ‘

‘ Planning Problem A ‘

[

‘ Planning Problem B ‘ i Planning Problem B

‘ Planning Problem C ‘

Planning Problem A

Planning Problem C

Local optimum Global optimum

Figure 4.1 — Sequential activity optimization and integrated activity optimization planning
processes. Integrated planning allows for lower global cost but poses a more difficult prob-
lem to solve.

The Production Routing Problem (PRP) is an integrated planning problem which jointly
optimizes production, inventory management and transportation decisions. The integration
of these activities is particularly interesting in a Vendor Managed Inventory (VMI) context
where inventories held at retail sites are managed by a single entity, usually the supplier
of the products. The supplier produces a set of products deciding whether it sends them
directly to be stocked at retail sites or if it stocks them in its own warehouse in order to
distribute them at later periods. Therefore, as it is shown in Figure 4.2, typical decisions
comprised by the PRP include (1) when and how much to produce; (2) when and how much
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to deliver to each retail site; (3) how to route vehicles such that production, inventory and
transportation costs are minimized while meeting retail sites’ demand. These decisions are
usually to be made during a planning horizon composed of several days.

Line 1: Product A ‘ Line 1: Product B
Supplier
(e.g.: Meat Processing Facility)| Line 2: Product B Production

R L 0 o
Routing
@ @
Retail Sites
(e.g.: Meat Stores) 9 @

Inventory Management

Figure 4.2 — Decisions to be made in a PRP. Productions, Inventory management, and trans-
portation are coordinated to deliver cost-effective solutions from a monolithic perspective.

This problem is extremely challenging as it integrates two classic optimization problems,
the Lot Sizing Problem (LSP) and the Vehicle Routing Problem (VRP), which were pro-
posed by Wagner and Whitin [1958] and by Dantzig and Ramser [1959], respectively.
Similarly to its particular case where production is not taken into account, the Inventory
Routing Problem (IRP), the PRP is NP-hard, as it demands the solution of several VRPs
[Adulyasak et al., 2014c]. However, Chandra and Fisher [1994] reported 3 to 20% cost sav-
ings coming from integration, which is a strong motivation to study the PRP in the context
of realistic and large planning problems.

We aim to propose a novel mathematical formulation considering product and family se-
tups when producing perishable products that are to be delivered to retail sites within cer-
tain time windows. The set of features comprised in the model allows great flexibility,
which enables the possibility to apply it to several process industries. However, the inher-
ent complexity of such a PRP requires the development of advanced solution methods in
order to efficiently explore its large and heterogeneous structure. The proposed solution
approach consists of three main phases comprising a size reduction phase, an initial so-
lution construction phase, and an improvement phase based on a fix-and-optimize (F&O)
approach.

The developed algorithm is first tested on standard PRP instances available in the liter-
ature and then on real-world instances considered in the case study of a European meat
store chain that motivated the underlying research. The real-world challenge clearly shows
the necessity of considering sets of realistic features in the context of the PRP where any
kind of extension is rare to be found in the literature. Additionally, the current practice of
the company is based on decoupled plans considering demand for a single period ahead.
Therefore, we devise an integrated approach so as to show its advantages with respect to
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various practical dimensions.
The contributions of this paper are fourfold:

e We propose a novel mathematical formulation for the PRP with realistic features in-
cluding multiple vehicles performing routes with time windows, multiple perishable
products, and multiple production lines with different specifications.

o We present a decomposition approach for large PRPs where available data are used
to reduce the problem size and divide the original problem into several tractable
subproblems. The decomposition requires the solution of several IRPs and one LSP.

e We provide an improvement matheuristic based on a F&O scheme, capable of ex-
ploring the solution space of large PRPs which are intractable for the best general-
purpose solvers available.

o The algorithm is tested on multi-product multi-vehicle instances available in the lit-
erature and validated with real-world instances belonging to the case study of a Eu-
ropean vertical meat store chain.

The remainder of this paper is organized as follows. In Section 4.2 a literature review is
presented, focusing on different extensions and real-world applications of planning prob-
lems integrating production, inventory management and distribution. Section 4.3 gives a
description of the general PRP to be tackled in this work. Section 4.4 presents the pro-
posed solution approach to efficiently solve large PRPs. The computational experiments
obtained in the literature instances are discussed in Section 4.5. Section 4.6 details the case
study of a meat store chain. Finally, Section 4.7 summarizes the main achievements and
conclusions, pointing out future research opportunities.

4.2. Literature Review

In this research, we are particularly interested in the PRP, which integrates production, in-
ventory management and routing decisions [Adulyasak et al., 2014c]. Chandra and Fisher
[1994] are amongst the first attempts to integrate production decisions with distribution,
reporting considerable gains coming from activity integration. Since then, several authors
addressed supply chain coordination [Thomas and Griffin, 1996, Fumero and Vercellis,
1999, Bard and Nananukul, 2008, Boudia et al., 2007, 2008, Boudia and Prins, 2009] and
there are some works reporting case studies where large gains were obtained [Cetinkaya
et al., 2009, Brown et al., 2001]. For a review on the origins of the PRP, the reader is
referred to the work of Sarmiento and Nagi [1999]. Although there are some PRP vari-
ants, we focus on problems where lot sizing, inventory management, and explicit routing
decisions are integrated at an operational level.

Lei et al. [2006] study a production, inventory, and distribution routing problem and pro-
pose a two-phase solution approach. In the first phase, only direct shipments are con-
sidered and in the second phase, an associated consolidation problem is solved in order
to eliminate direct shipment inefficiencies. Unlike most uncoupled approaches, this one
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does not completely separate production from distribution. Bard and Nananukul [2009]
present a comparative analysis of various heuristics for the PRP. Since optimal solutions
could not be achieved with exact methods, a two-step procedure first allocates daily de-
livery quantities and solves a VRP afterwards. They show that the IRP component can be
solved efficiently with a branch-and-price framework. Absi et al. [2015] propose a heuris-
tic which iteratively focuses on production and distribution decisions. The production part
is modelled as a Capacitated Lot Sizing Problem (CLSP) whereas the daily distribution is
modelled as a Travelling Salesman Problem (TSP) or a VRP. A single-item PRP under the
Maximum Level (ML) policy is studied. Both the single and multiple vehicle versions are
explored. Computational results show that this solution approach outperforms previously
proposed methods. Armentano et al. [2011] use a combination of Tabu Search (TS) and
a Path Relinking (PR) procedure and test it on instances with up to 10 products. They
introduce a mathematical model which is able to consider multiple vehicles and products
but resort to a phased approach where a production problem is solved before an unlimited
fleet distribution problem. Instances with up to 15 retail sites, 14 periods and five prod-
ucts are solved with less than 2% gaps based on CPLEX optimal solutions. While CPLEX
needs more than four hours to compute the solutions, the heuristic only needs less than
30 seconds. Adulyasak et al. [2014b] introduce an Adaptive Large Neighbourhood Search
(ALNS) heuristic for the PRP which handles setup variables by an enumeration scheme and
routing variables with upper-level search operators. The continuous variables are computed
in a network flow subproblem. The proposed algorithm outperforms existing approaches,
computing superior quality solutions in short amounts of time. Computational tests were
performed on instances with up to 200 retail sites, 13 vehicles and 20 periods. Recently,
Qiu et al. [2017] address a pollution PRP considering carbon emissions. The authors pro-
pose a mathematical formulation and solve it by means of a branch-and-price heuristic.
Managerial insights are provided for instances with 14 retail sites and 6 periods, showing
that it is possible to reduce carbon emissions and operational costs simultaneously.

The above-mentioned papers consider heuristic methods to tackle the integrated planning
problems. Given the complexity of integrated planning, these are still the most suitable
methods to address large instances of this problem. Exact approaches are quite rare in
the context of the PRP and the size of the problems that are possibly solved is obviously
smaller. Their complexity seems to have repelled researchers from studying them. Indeed,
few exact methods are found in the literature and the problems they address are usually
simplified in the number of entities or in the type of features considered. Solyali and Siiral
[2009] propose a mathematical formulation and a Lagrangian relaxation based approach
to solve a single-vehicle, single-product PRP. Although the supplier is able to decide or-
der quantities, the problem is simplified because the production activity is uncapacitated.
The authors tackle instances with up to 50 retail sites and 30 periods with constant de-
mands. Bard and Nananukul [2009, 2010] propose a branch-and-price algorithm for a
PRP. This algorithm is a combination of a Dantzig-Wolfe (D-W) decomposition with tra-
ditional Branch-and-Bound (B&B). Different methods to obtain initial solutions, branch-
ing rules and rounding schemes are tested. After tuning, their approach is able to solve
instances with up to 50 retail sites and 8 periods. Ruokokoski et al. [2010] present effi-
cient formulations and a branch-and-cut algorithm for the PRP. They consider a problem
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with uncapacitated plants and vehicles and test new formulations strengthened by valid
inequalities. Randomly generated instances with up to 40 customers and 15 periods or
with 80 customers and eight periods are solved to optimality. A heuristic algorithm is also
tested, obtaining solutions with an average cost increase of 0.33% within less than 1% of
the time required by the exact approach. Archetti et al. [2011] develop a hybrid heuristic
for the PRP with ML policy which quickly obtains high quality solutions by solving the
production and distribution problems sequentially. The authors compare the single-vehicle
case with an exact solution method based on a branch-and-cut scheme. Note that the lat-
ter two approaches only create delivery routes separately, after deciding the quantities to
be delivered to each retail site. Adulyasak et al. [2014a] tackle the multi-vehicle PRP.
The authors present vehicle and non-vehicle index formulations strengthening them using
symmetry breaking constraints and several cuts, respectively. An ALNS heuristic is used
to build initial solutions which are improved by a branch-and-cut algorithm. Instances
with around 30 customers, 3 vehicles, and 3 periods are solved both for the Order-up-to
Level (OU) and ML policies. Adulyasak et al. [2015] tackle a PRP with uncertain de-
mands. Production setups and customer visit schedules are defined in the first stage while
the production and delivery quantities are determined in subsequent stages. A Benders
decomposition approach using lower-bound lifting inequalities, scenario cuts and Pareto-
optimal cuts is implemented. Besides this paper, few other papers deal with PRPs with
uncertainty. Adulyasak et al. [2014c] provide a review of formulations and suggest future
research directions regarding the PRP.

The importance of considering realistic constraints is undeniable in several industries.
However, the literature is still scarce when dealing with realistic integrated planning at
an operational level. Furthermore, despite their increasing popularity, matheuristics for the
PRP are still rare. We provide a summary of the algorithms proposed in the last decade in
Table 4.1.

Table 4.1 — Main recent PRP approaches

Production Inventory Routing Solution Method

Authors #Plants  #Prod C. Policy C. #Vehicles C. Type Approach
Lei et al. [2006] Multiple ~ Single v ML Limited (Het) v H Decomposition
Boudia et al. [2007] Single Single v ML v Limited (Hom) v H GRASP
Boudia et al. [2008] Single Single v ML v Limited (Hom) v H Decomposition
Bard and Nananukul [2008] Single Single v ML v Limited (Hom) v H Tabu search
Boudia and Prins [2009] Single Single v ML v Limited (Hom) v H Memetic algorithm
Solyali and Siiral [2009] Single Single ou v Limited (Hom) v H/L  Lagrangean relaxation
Bard and Nananukul [2009, 2010]  Single Single v ML v Limited (Hom) v H/L  Branch-and-price
Ruokokoski et al. [2010] Single Single ML Single E Branch-and-cut
Armentano et al. [2011] Single Multiple v ML v Limited (Hom) v H Tabu search / Path relinking
Archetti et al. [2011] Single Single ML/OU Vv Single v E/H  Branch-and-cut / MIP heuristic
Adulyasak et al. [2014b] Single Single v ML v Multiple (Hom) v H ALNS
Adulyasak et al. [2014a] Single Single v ML/OU Multiple (Hom) v E/H  Branch-and-cut / ALNS
Absi et al. [2015] Single Single v ML/OU Multiple (Hom) v H Iterative MIP heuristic
Adulyasak et al. [2015] Single Single v ML v Multiple (Hom) E Benders-based branch-and-cut
Our approach Single Multiple v ML v Multiple (Het) v MH  Fix-And-Optimize

Legend:
Prod. - Products | C. - Capacitated | Hom. - He | Het. - H | H - Heuristic | E - Exact | MH - Matheuristic | L - Lower bound computation
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4.3. Problem Description and Formulation

In this section, we first define the problem in general terms. We start by describing the rel-
evant entities as well as the parameters that are related to them. Afterwards the constraints
to capture production and routing decisions are presented, as well as the linking constraints
to connect both dimensions of the problem.

4.3.1 Notation

The PRP considered in this paper can be defined on a complete directed graph G = (V,A)
where V represents a set of locations including a supplier and retail sites indexed by
i€{0,..,n}, and A ={(i,)) : i,j € V,i # j} is the set of arcs. The supplier manages the
set of retail sites V'’ = V' \ {0} applying a VMI policy and it owns a set of production lines
M ={0,...,]M|} which are used to produce a set of product families ¥ ={1,...,|¥ |} over a
finite horizon 7 = {1,...,|7|}. Each family is composed of several products which belong
to the entire set of products £ = {1,...,|P|} to be delivered by the supplier. Each line m can
only produce some products belonging to the set #,,. Deliveries are made by a fleet of
vehicles K = {1, ...,|%]} that is owned by the supplier. Each vehicle is able to perform one
route in each shipping period ¢ € 7. The quantity of each product available in each retail
site is used to satisfy the demand of each consumption period / € 7. The parameters and
decision variables included in our formulation are the following:

Parameters Production

Umg production capacity of line m in production period g (time);
Afm setup time for family f on line m (time);
bpm setup time for product p on line m (time);
Ppm processing time of product p on line m (time);
Inventory
Ci capacity of the warehouse at location i;
hip holding cost of product p at location i;
dipi demand for product p at location i in consumption period /;
Routing
Vi capacity of vehicle k;
lij travel time between i and j;
Cij travel cost between i and j;

[ai, bi] service time window of location i.
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Decision  Production

Variables Anfe
Bnpg

Ppmgf

Routing
Xijke

Zik

Wikt

Dippt

4.3.2 Formulation

equal to 1 if line m is set up to produce family f in production period g,
0 otherwise;

equal to 1 if line m is set up to produce product p in production period g,
0 otherwise;

quantity of product p produced on line m in production period g to be
delivered in shipping period #;

equal to 1 if arc (i, j) is traversed by vehicle k in shipping period ¢,
0 otherwise;

equal to 1 if location i is visited by vehicle k in shipping period ¢,
0 otherwise;

arrival time of vehicle k at location i in shipping period ¢;

quantity of product p to be delivered to location i by vehicle & in shipping
period ¢ to be consumed in consumption period /.

We assume an ML policy and that quantities produced in period g are ready to be delivered
in period g+ 1. Quantities received at each retail site are ready to be consumed in the period
they are shipped. M is a big number. Given this, the multi-product PRP with time windows
can be formulated as follows:

(MPRPTW):

g 17Tl

minimizez Z ZZ Z hop * P pme

pEP meMgeT h=0t=g+1

ST S Dy

S.t.

Bpg < Amfg

171

4.1)
i€V’ peP keK teT h=0 I=t+1
DWW WWER
i€V jeVkeK teT
VpePumeM,geT 4.2)
4.3)

> Pomgt <M-Byp; VpePpme MgeT

t=g+1
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7]
Z Afm 'Amfg + Z (bpm 'Bmpg + Z Ppm 'Ppmgt) < Umg VmeM,geT 4.4
f€Fm PEPm r=g+1

g 17l

Z Z Z Z Ppmht <cy VgeT 4.5)

peP me M h=0t=g+1

-1 171
D Pomg= ) > > D VpePteT (4.6)
g=0 meM i€V keK =t
1
D Dipw=dip ViV, pePleT @.7)
t=0 ke
t |71

D D MieViieT 4.8)

veK peP h=0 =t

171

Z Z ZDipktl <v, VkeK,teT (4.9)
i€V’ peP I=t
Dipist < min{dipr,vi} - Zixy Vi€V ,pePkeK,teT leT (4.10)

injkt =Zi VieVkeKteT

JjeV

(4.11)
D X =Zi VieVkeK.reT
JjeV
ZZ,-k,sl YieV,teT 4.12)
keK

Wikt+tij < ijt+M-(1 _Xijkt) Vi E(V/,jE V' k eK,teT (4.13)
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ai <Wiu <bj VieVkeK,teT (4.14)

Xijkt,Zikt’Amfg’ Bmpg € {O, l}a Ppmgt’ Dipktl’ Wikt >0. (415)

The objective function (4.1) minimizes the holding cost at the supplier and retail sites as
well as the routing cost. Constraints (4.2) - (4.5) model the lot sizing part of the prob-
lem. Constraints (4.2) and (4.3) impose that each production line can only produce if the
family and product set up operations have been performed. Constraints (4.4) model the
time capacity for each production line. Constraints (4.5) impose the maximum capacity
for the inventory at the supplier. Constraints (4.6) ensure that the quantities produced of
each product satisfy the deliveries made in each shipping period to each retail site, linking
the production and routing decisions. Constraints (4.7) - (4.14) define the routing part of
the problem. Constraints (4.7) ensure the demand satisfaction of each retail location. Con-
straints (4.8) are inventory management constraints to impose the maximum capacity for
the inventory at each retail site. Constraints (4.9) are added to the formulation to impose
vehicle capacities. Constraints (4.10) ensure that a location can only receive products if it
is visited. Constraints (4.11) are the so-called vehicle flow conservation constraints. The
degree constraints (4.12) impose at most one visit per location in each period. In order to
define arrival times at each location for each vehicle, constraints (4.13) are added. Finally,
these constraints also serve as subtour elimination constraints. Time windows are imposed
by constraints (4.14). This formulation has been tested for toy instances but, when the
number of locations, vehicles, and products grows, the problem becomes intractable. In
fact, just enumerating the set of D, variables is already a very time-consuming task. For
that reason, and considering the ultimate objective of solving real-world instances, the next
section details a new matheuristic approach for large PRPs with realistic constraints.

4.4. Solution Approach

The proposed solution approach was designed by considering the dimension and complex-
ity of the instances to be solved in a real-world context. Indeed, various decomposition
mechanisms are added to ensure that the problem can be solved, regardless of its size.

The first phase (Size Reduction) attempts to decrease the granularity of the problem to
largely reduce computational times in later phases (or make the problem tractable). Re-
duced subproblems are derived to serve as inputs for the following procedures. Retail sites
with similar geographic location and time windows are clustered into hypernodes (a hyper-
node is a set of retail sites to be visited in a given sequence). Afterwards, the obtained set of
hypernodes is partitioned into regions (sets of hypernodes) to obtain tractable subproblems.
A reduced set of routes (visiting hypernodes) is created for each region, taking advantage
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of a smaller number of locations (hypernodes) to reduce the complexity of the routing de-
cisions. Products with similar production specifications and low demand are aggregated in
hyperproducts (sets of products), as it is assumed that smaller priority should be given to
them.

In the second phase (Initial Solution), the algorithm solves a set of subproblems. Each
subproblem corresponds to an IRP where delivery quantities and routes are defined for
each region. When a solution for the IRP subproblems is obtained, we also obtain a de-
livery schedule for the original problem. Afterwards, an LSP is solved to define the setup
decisions and production quantities at the supplier, taking the delivery schedule as an input.
This procedure builds an initial decoupled production-routing plan.

The third phase (Improvement) aims at improving the initial solution. Since the initial solu-
tion is obtained by partitioning the original problem, we seek to find solution improvements
by relating variables describing entities that have been initially aggregated or separated in
different subproblems. To do so, Mixed-Integer Program (MIP) formulations are used to
improve different parts of the PRP solution.

The three phases are described in detail in the following subsections.

4.4.1 Size Reduction
4.4.1.1 Node Clustering And Region Decomposition

We propose a node clustering algorithm (Algorithm 1) to create hypernodes. The algorithm
mainly focuses on geographical and time aspects. The order in which nodes are inserted
into the hypernode defines the order in which each node should be served when a vehicle
visits the hypernode. Hence, each hypernode has an associated path. The procedure needs
two parameters: a maximum distance d,,, and a maximum duration t,,,,. Nodes are first
ordered by their earliest service time a; and then by their latest service time ;. From
this ordered list of candidates, we take the first element to be visited, the hypernode seed,
and open a new hypernode. Afterwards, a list of candidates to join the currently opened
hypernode is created. A node is a candidate if, after its insertion, the following criteria are
met:

1. the travel distance of the hypernode path (following the insertion order) is less than

Amax;
2. the travel time of the hypernode path (following the insertion order) is less than ,,,,;
3. the time windows of all nodes in the hypernode are respected.

From the list of candidates obtained by applying these criteria, the nearest candidate is
selected. Nodes are added to the hypernode until no candidates are available. At that point,
a new hypernode is opened with the first element of the remaining ordered nodes.
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Algorithm 1 Node Clustering

1: procedure cLusTERNODES(Nodes, diqx, tmax)

2: hn < Open a new hypernode

3 while Nodes # 0 do

4 n « Get a candidate from the set Nodes, considering the hypernode hn, dpyx, and ty,4x

5 if n # 0 then

6 hn <« Add the candidate node n to the currently opened hypernode in

7: Remove the added node n from the set Nodes

8 else

9: Hypernodes «— Add the hypernode 4 to the set Hypernodes
10: hn < Open a new hypernode

1

11: return Hypernodes

Algorithm 1 defines a set of hypernodes that will be used in the initial solution phase. This
set of hypernodes can still be intractable in the following phase, depending on its size. For
that reason, the entire set of hypernodes can be decomposed into subsets called regions.
To define the set of regions, we use a K-means algorithm [Hartigan and Wong, 1979]
based on the distance between the centroids of each hypernode. Since we incorporate
some routing aspects in the node clustering and region decomposition steps, the set of
routes to be considered, visiting hypernodes, can only be generated after these steps. This
is an advantage as the resulting set of routes of each region becomes more compact.

4.4.1.2 Route Generation

In order to create a new set of routes serving hypernodes, we use a simple procedure (Al-
gorithm 2), as further route improvements can be performed later. The goal of this step
is to generate a set of routes that is sufficiently rich to build good feasible solutions yet
small enough to be solved using a general-purpose solver to tackle a set-partitioning for-
mulation. The procedure uses four parameters: a set of depots Depots, a set of loca-
tions to be visited Vertices (i.e., hypernodes), the maximum number of visits per route
maxVisits, and the maximum duration of each route maxDuration. For each hypernode,
the nNearest = maxVisits — 1 nearest neighbours are selected (line 4, Algorithm 2). Then,
we create every possible combination containing the considered hypernodes. This means
that we will create sets with 1 to maxVisits hypernodes. Afterwards, for each depot and
each set of hypernodes, we create a route using a cheapest insertion algorithm (line 12,
Algorithm 2). After randomly choosing a hypernode to be the seed, the algorithm analyses
each hypernode in the set and tries to insert it in the cheapest position. If it is not possible
to insert the hypernode, the next hypernode is analysed. All the generated routes obey the
time windows and maximum route duration constraints.
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Algorithm 2 Route Creator

1: procedure crReatEROUTES(Depots, Vertices,maxVisits, maxDuration)

2: nNearest < maxVisits — 1

3 for all i € Vertices do

4 NeighbourssS et < Create a set with vertex i and its nNearest nearest neighbours

5: Subsets «— Create all distinct subsets of NeighboursS et with 1 to maxVisits vertices
6 AllS ubsets < Save the subsets of vertices created considering vertex i

7

8

AllS ubsets « Clear repeated subsets that are found in AlLS ubsets

: for all d € Depots do

9: for all S € AllSubsets do
10: r < Open a new route starting and finishing at depot d
11: forallie S do
12: r < Insert vertex i in the cheapest position considering route r (respecting time windows)
13: if r.duration < maxDuration then
14: RouteS et — Add route r to the set RouteS et
15: return RouteS et

4.4.1.3 Product Clustering

We assume that higher priority should be given to products with higher demand, which
implies that these should be represented with a higher level of detail when approxima-
tions are performed. Products within the same family have similar production constraints
(i.e., setup times and production lines are similar) thus aggregating them in a hyperprod-
uct is reasonable. The product clustering procedure uses three parameters: the set of
demands Demands, a maximum quantity of products allowed inside each hyperproduct
maxQuantity, and the set of product families Families. Within each family, we aggregate
low demand products in hyperproducts. The aggregated quantity of each hyperproduct
should not exceed maxQuantity (line 9, Algorithm 3). Note that if the aggregated quanti-
ties are small, their impact in the production and transportation capacities is not consider-
able. We sort products by total demand and aggregate the products corresponding to the
bottom of the list (usually around 80% of the products are aggregated). For each family,
this clustering procedure ends up with a reduced set of products (which are not clustered
because their demand is large), and a set of hyperproducts (including products with small
demand). Algorithm 3 details the aforementioned product clustering procedure.
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Algorithm 3 Product Clustering

1: procedure cLustERPrODUCTS(Demand, maxQuantity, Families)
2: for all f € Families do

3: D « From the set of demands Demand get the demands for products belonging to family f
4: ClassABC « Classify each demand in D according to its quantity (A - large, B - medium, or C -
small)
5 ToCluster «— Get the demands to be clustered (i.e., class B or C, according to ClassABC)
6: hp < Open a new hyperproduct hp
7: while ToCluster # 0 do
8: p < Get the product p with the lowest demand from the set of products ToCluster
9: if hp.total_quantity + p.demand < maxQuantity then
10: hp < Add product p to the currently opened hyperproduct hp
11: ToCluster «— Remove product p from the set ToCluster
12: else
13: Hyperproducts «— Add the currently opened hyperproduct Ap to the set Hyperproducts
14: hp < Open a new hyperproduct ip

15: return Hyperproducts

The product clustering is the final step in the Size Reduction phase. At this point, a set
of hyperproducts, and a set of generated routes visiting hypernodes inside each region are
available to serve as input to the next phase.

4.4.2 Initial Solution

In the beginning of the second phase, the outputs provided by the first phase will serve
as inputs to be used in the construction of the initial solution. These inputs comprise one
IRP instance for each region (including a set of routes visiting hypernodes and a set of
hyperproducts) and the data related to the LSP part of the problem. Figure 4.3 presents the
procedure to obtain the initial solution.

1. Constructive Solution

IRP 1 IRP 2 IRP 3 IRP n

Disagg 1 Disagg 2 Disagg 3 Disagg n

— 2. Check & Fix — | Initial PRP Solution)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 4.3 — To build the initial solution an IRP is solved for each region. The shipping
quantities demanded by each region are then disaggregated and used to solve an LSP to
define production quantities. Finally, infeasibilities are fixed in the Check & Fix procedure.

In order to construct the initial solution for the PRP, the algorithm starts by solving the IRP
subproblem corresponding to each region defined in the first phase. We assume infinite
production capacity. Each of these IRPs is solved, using a set-partitioning formulation
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based on path variables, corresponding to the routes created in the first phase. The path
variables are used to decide which routes of the reduced route set will be selected to make
the deliveries in each period. After solving all IRP subproblems, the aggregated quantities
of each hyperproduct to be delivered by each vehicle to each hypernode are known and
are used to define the demand for the LSP formulation. The LSP formulation is solved by
a general-purpose solver, completing the solution to the original problem. We name this
step Constructive Solution because this initial decoupled PRP solution may be infeasible.
Considering this fact, in the second step, some repair procedures are applied in order to
obtain a feasible initial PRP solution. In the following subsections, we detail the steps of
the second phase.

4.4.2.1 Constructive Solution

Regional delivery schedule definition

The algorithm starts by solving the IRP subproblem corresponding to each region. To do
so, an IRP set-partitioning formulation is used. Consider the decision variables ®,,, which
are equal to 1 if route r is performed by a vehicle of type v in period ¢, and Q;),; which
define the quantity of product p delivered to retail site i by a vehicle of type v in period
t, to be consumed in period /. We define parameters o;, to indicate if location i is visited
by route r, ¢, for the cost of performing route r, and cap, for the capacity of a vehicle of
type v. R is the set including only the previously generated routes and K, is the available
number of vehicles of type v. The set of vehicle types is given by K”7¢ The remaining
parameters are retained from the MPRPTW formulation. The considered set-partitioning
formulation can be defined as follows:

(SPIRP):
t 171
minimize > 3° 3" Y NN hip Do+ D, DL > cr-Opy (4.16)
i€V’ pePveKre teT h=0 I=t+1 reR veKre teT”
S.t.
/
D> Qpu=dip VieV . pePleT (4.17)
veKnhre t=0

171

> Zzt: Dipm <t VieV. ieT (4.18)

veKipe peP h=0 I=t

Z ZOir'("Drszl YieV . ,teT (4.19)

veKhre reR
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Z@rw <K, Vve Ktype’t €T (4.20)
reR
QipvﬂSdipl'ZOir'Qrvt Vie(vl,pGP,VEK[ype,tET,ZET,ISl (421)
reR
|7
D3 Qipi < capy+ M-(1-8,) VreRyve K™, 1eT (4.22)
i€V’ peP I=t

O, €{0,1} VreRveK" teT

4.23
Qipi =20 YieV pePveK ™ teT leT 1<l ( )

The objective function comprises two terms. If a location i stocks a unit of product p in
period ¢, it incurs an inventory holding cost of 4;,. Additionally, if route r is made by a ve-
hicle of type v in period ¢, a transportation cost ¢, is incurred. Constraints (4.17) make sure
that the delivered quantities satisfy the demand. Constraints (4.18) ensure that the inven-
tory capacity is respected for each retail site. Constraints (4.19) impose at most one visit
per retail site in each period. Constraints (4.20) impose a maximum number of vehicles of
each type to be used in each period. Constraints (4.21) ensure that retail sites may only re-
ceive deliveries if they are visited. Constraints (4.22) are vehicle capacity constraints. Note
that what is called retail sites and products in this formulation, are actually hypernodes and
hyperproducts that have been aggregated in the previous phase. Therefore, the solutions
obtained with this formulation include aggregated deliveries (including various products)
that are made to aggregated nodes (including various retail sites).

Disaggregation

Since the IRP subproblems are created using hypernodes and hyperproducts provided by
the Size Reduction phase, it is necessary to disaggregate the delivered quantities to match
the original problem. Note that at this point the inventories and delivery quantities of each
individual retail site are not known. Further holding cost optimization may be achieved
by assigning delivery quantities at a disaggregated level. A simple linear programming
problem is solved, minimizing the holding cost of the disaggregated inventories. Here, the
indices i are individual retail sites, p are individual products, hin € HYV’ are hypernodes,
and hp € HP are hyperproducts. The model works with continuous variables Q;,,,, which
define the quantity of product p delivered to retail site i by a vehicle of type v in period ¢, to
be consumed in period /. The quantities g np vy are parameters provided by the solutions
obtained by solving the IRPs of each region. The remaining parameters are maintained
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from the MPRPTW formulation. The disaggregation linear programming program can be
defined as follows:

(Disagg):

t 17l

minimize Z Z Z ZZ Z hip - Qipvhi (4.24)

i€V’ pePveKdre teT h=0 I=t+1
S.t.

Z Z Qipvtl = Ghn,hpvil Vhn € }{KV/,hp eHPveK P teT ,leT 1<l (4.25)
i€V’ iy pEPp

t
> > Qpu=dip VieV.pePreT (4.26)

veKnre 1=0
t |71
DD Qs VieViieT (4.27)

|
veKipre peP h=0 I=t

Qipi =20 YieV pePveK ™ teT leT 1<l (4.28)

The objective function minimizes the holding cost incurred by all retail sites. Constraints
(4.25) impose that the sum of the disaggregated quantities must be equal to the aggregated
quantities of each hypernode and hyperproduct. Constraints (4.26) make sure that the dis-
aggregated demand of each retail site is satisfied. Constraints (4.27) impose the inventory
capacities for each retail site. Constraints (4.28) are the non-negativity constraints.

Lot sizing problem

After disaggregating the quantities of each hyper entity, the demand d,, of each product p,
for each shipping period ¢ to be satisfied by the supplier can be defined. In order to define
how the supplier should satisfy this demand, a CLSP formulation is used (see Karimi et al.
[2003] for a review). This formulation works with continuous variables P, to decide the
quantity of product p that must be produced on production line m in production period g
to be shipped in shipping period ¢. Additionally, the model uses the binary variables A, ¢,
equal to one if production line m is set up to produce products of family f in production
period g, and binary variables B, equal to 1 if the production line m is set up to produce
product p in period g. The formulation is defined as follows:
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(CLSP):

g 17l

minimize > > Y>> hop* Py (4.29)

peEP meMgeT h=0t=g+1

st (4.2), (4.3), (4.4), (4.5),

t—1
ZZPpmg,:dpt VpeP,teT (4.30)
meM g=0
Ppugt >0 VpePme M,geT,teT ,g<t. (4.31)

The objective function minimizes the total holding cost incurred by the supplier. Con-
straints (4.30) impose that the produced quantities must meet the demand d,,; = 3’ ,,; Qipvit
for each product p in each shipping period ¢. Note that quantities produced in a production
period g only become available to be shipped in the next period. In order to define the nec-
essary conditions to model production line capacities, setups, and the warehouse capacity
of the supplier, we add constraints (4.2), (4.3), (4.4), and (4.5) from the original M PRPTW
formulation presented in Section 4.3.

4.4.2.2 Check & Fix

As indicated in Figure 4.3, after solving the LSP, a constructive solution for the PRP be-
comes available by joining every IRP solution of each region with the LSP solution. How-
ever, since an a priori vehicle assignment is made in the Size Reduction phase, it is possible
that the created solution exceeds the number of available vehicles. In that case, a proce-
dure is used in order to merge routes and lower the number of vehicles in the problematic
periods. At the end of the Check & Fix step, an initial PRP solution is found.

4.4.3 Solution Improvement

The improvement phase of the algorithm relies on the F&O heuristic ([Helber and Sahling,
2010], [Chen, 2015]). Different decomposition strategies are followed to define different
subproblems, which allow for a flexible exploration of the search space. The global solution
is iteratively improved by analysing the trade-offs that are typically inherent to a PRP.
As opposed to most F&O approaches, the variables and constraints related to the entire
formulation of our problem are never loaded. In fact, the complete PRP formulation is
not used in our approach, as the large number of products and retail sites requires several
minutes just to build the model. Therefore, we decided to avoid the case where a single
formulation is used, contrasting with the work of other researchers (e.g., the IRP tackled by
Larrain et al. [2017]). Here, in each decomposition approach, a subinstance is created and
solved using a decomposition-tailored formulation. Afterwards, the values of the variables
are updated in the global PRP solution. The size of each subproblem is controlled, ensuring
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that the best possible local decisions are taken for the considered entities, while solving
them to optimality. With such a matheuristic approach, it is also easier to find a compromise
between solution quality and running time.

4.4.3.1 Improvement Matheuristic

In general terms, our matheuristic selects a decomposition strategy w € € and explores it
until the criteria to proceed to the next decomposition strategy are met. A decomposition
strategy works with an associated mathematical formulation plus a subset of entities S7 7,
which are used to create a subinstance, smaller than the original problem. The size of the
subset of entities (and subinstance) is controlled by a parameter w_size. For instance, in a
decomposition strategy based on the routing part of the problem, a pair (k,7) may represent
a route performed by vehicle k in period ¢. A subset of pairs (k,#) € ST can be defined
to select a set of routes across several periods to be optimized. The number of routes
in the subset S7°7 is defined by the parameter w_size. The algorithm explores various
decomposition strategies in the set () until the stopping criteria are met. All subproblems
are solved using a general-purpose solver. However, if the formulation comprises subtour
elimination constraints, a simple branch-and-cut procedure is called, which dynamically
adds the necessary cuts for violated constraints. Figure 4.4 gives a schematic view of the
improvement phase.

Choose
Decomposition
Strategy{ (we)

! For each variable subset (S7"")

Terminate

Leave
Decompostion
Strategy?

Create L Solve | Update Solution —» Adjust Iteration
Subinstance Subproblem p Parameters

Next variable subset to optimize

Figure 4.4 — In the improvement phase, decomposition strategies are selected in order to
explorer different decisions inherent to PRPs. In each iteration, a subset of entities is se-
lected to create a subproblem to be solved using a decomposition-tailored formulation. The
global solution, maintained outside, is updated whenever improvements are found.

After selecting a decomposition strategy w, the idea is to analyse a small set of related
entities S7°7" at a time. In each iteration, we define ST "'
a subinstance. The subinstance is solved using the mathematical formulation associated
with the current decomposition strategy. The time it takes to solve each subproblem must
be within the interval [tfz;;”,t:% 1. If it is below the lower limit, w_size is increased by
one. If it is above the upper limit, w_size is decreased by one. This allows the algorithm
to consider larger sets of entities without maintaining the runtime of each iteration within
a defined interval. After solving a subproblem, if the relative gap is excessively large,
say larger than a parameter max_gap, the algorithm solves the subinstance with a period-
oriented decomposition strategy (i.e., each period is solved separately when the subinstance
is multi-periodic). By doing so, we achieve tractable subproblems and ensure that the
runtime spent with this iteration is not completely lost. After exploring a decomposition

with w_size entities and create
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strategy, the percentage of iterations where improvements were found is computed. If the
improvement percentage is larger than ni%, the decomposition strategy is explored again.
If the improvement percentage is smaller than ni%, the algorithm advances to the next
decomposition strategy (w = w+ 1). In the last decomposition strategy (w = |Q]) if the
improvement percentage is smaller than ni%, the algorithm terminates. Otherwise, it needs
to decide if it repeats the same decomposition strategy or if it is worth to go back to the
first (w = 1). If the percentage of improvement is larger than a parameter reload%, it means
the solution may have changed considerably and it may be worth to restart from the first
decomposition strategy. If the percentage of improvement is not high but still larger than
ni% (note that ni% < reload%), the algorithm re-explores the same decomposition strategy.
The pseudo-code of the algorithm is presented in Algorithm 4 below.

Algorithm 4 Improvement Matheuristic

1: procedure IMPROVE(curr_sol,max_gap,tyq x,tf%f’ ,tiil';g " ni%, reload%)

2 w « 1; best_sol « curr_sol,

3 while curr_t < t;;4, and w < |Q| do

4 for each entities related to the current decomposition strategy w do

5: Define the subset ST P with w_size surrounding entities to create a subinstance
6 curr_sol « Solve the subinstance with a general-purpose solver

7 if relative_gap > max_gap then

8 curr_sol « Solve the current subproblem with a periodic F&O procedure

9: if curr_sol < best_sol then
10: best_sol « curr_sol
11: if tiasi_ir & 10", 17" ] then
12: w_size < Update the parameter w_size to adjust the runtime of the next iteration
13: Choose decomposition strategy w € Q depending on ni% and reload%
14: return best_sol

4.4.3.2 Decomposition Strategies

We developed three different decomposition strategies in order to achieve a flexible im-
provement phase, focusing on different solution attributes. We start the search with a
decomposition strategy (w = 1) focused on the routing part of each period. Its base for-
mulation is called Daily VRP. The second decomposition strategy (w = 2) focuses on the
lot sizing part of the problem and we call its base formulation Partial LSP. The objective
of the third decomposition strategy (w = 3) is to integrate all the decisions inherent to the
PRP. Hence, we call its base formulation Local PRP. Table 4.2 summarizes the costs to be
improved by each decomposition strategy as well as the entities defining the corresponding
sets of entities ST "' related to the decisions to be optimized.

We detail the base formulation and the procedure to build subinstances of each decompo-
sition strategy below.

Daily VRP (w = 1) A subinstance is defined for each combination of vehicle and period
k e K,t € T. The w_size routes that are nearest to route k in period ¢ (based on their
centroids in the incumbent solution) are inserted into S7°”' to define the Daily VRP
subproblem.
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Table 4.2 — Description of the three developed decomposition strategies. Each strategy
focuses on and integrates distinct sets of decisions. Only the LocalPRP formulation is able
to improve all types of cost (for a subset of retail sites).

Cost Improvements

Base Formulation Entities defining S7°”  Number of subinstances ~ Supplier Inventory ~ Retail Sites Inventory ~Routing

W =g

Daily VRP k=1,..., Kit=1,..., T K- T v
Partial LS P i=1,...,V Vv v Vv
Local PRP i=1,..., \% \% v v v

The objective of the Daily VRP formulation (details are given in 4.A.0.1) is exclu-
sively to improve the routing cost. This can be interesting due to the fact that the
solution that is initially constructed by the algorithm may not be optimal regarding
the routing cost. There are two main reasons for this fact. First, it is likely that
the route generator does not provide a set containing the optimal routes considering
the nodes of a certain region. Thus, it is necessary to transform the path variables
from the initial IRP set-partitioning formulation, (4.16) - (4.23), into the routing
variables to be included in the Daily VRP, which is an arc-based formulation con-
sidering every possible arc between two locations. With these new variables, we
seek to find inter-route and intra-route improvements. Second, since the problem
may have been decomposed into regions, it is probable that some interesting visiting
sequences (containing nodes of different regions) are still available. The Daily VRP
model allows for an analysis of routes that were part of different regional IRPs, try-
ing to find inter-route improvements, and mixing nodes that could not communicate
in the formulation with path variables (see Figure 4.5).

Region A Region Partition

. Daily VRP Iteration
Region B _—

Figure 4.5 — The path variables considered in the initial solution (considering hypernodes)
phase are disaggregated into arc variables (between nodes) during the improvement phase.
This allows for inter-region, inter-route, and intra-route improvements.

Partial LSP (w = 2) A subinstance is defined for each retail site i € V’. The w_size nearest

neighbours of i (surrounding entities) are inserted into the set S7°7*. The production
and delivery quantities related to the selected retail sites are optimized considering
the entire planning horizon.

Considering that the initial solution is composed by decoupled decisions coming
from one LSP and several IRP subproblems, further improvements regarding pro-
duction and inventory management variables may still be found. Furthermore, dur-
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ing the improvement phase, most solution changes are focused on small subproblems
(particularly when exploring decomposition strategies with routing decisions, which
are more complex) and it is necessary to integrate supplier and retail site decisions
at a larger scale. The Partial LSP base formulation (details are given in 4.A.0.2)
aims at improving the production setup variables, the production quantities, and the
delivery quantities. Since routing variables are not loaded into this model, larger sets
of retail sites can be analysed simultaneously. Nevertheless, the size and complexity
of the model can be adjusted, considering the computing time of each iteration. If
the model takes too long to solve, each iteration may be simplified either by fixing
some production setups or by loading smaller sets of retail sites. Figure 4.6 gives
a schematic overview of the possible decisions to be made with this formulation,
showing the entities and variables to be loaded in each time period.

Delivery Quantities | O

Partial demand to optitize
Dipu

Setup Variables |

Figure 4.6 — In the Partial LSP, the production and delivery quantities of a subset of retail
sites are optimized. All routing decisions are maintained. Only some production flows are
allowed (white setup variables, in the bottom) and some shipping flows are allowed (white
nodes visited by the vehicle, on the top).

In Figure 4.6, the entities in white are the ones that can be optimized. This means
that only some setup, production, and delivery quantity decisions can be improved.
The entities represented in gray are fixed and are not to be loaded into the model.
The production line shown at the bottom, can produce (or provide flow for) three
products. The retail sites that were loaded into the Partial LSP (in white) have some
scheduled visits fixed in the current solution. These visits are represented by a pa-
rameter z;;, which is equal to one if the retail site i is visited in period ¢ in the current
solution. If the retail site is visited, the delivered quantities of each product p to sat-
isfy its demand in period /, D;,, can be optimized and the supplier can also adapt the
production quantities to better satisfy each retail site included in the model (white
part of the ellipse). This means that the supplier can decide not only its own invento-
ries but also the inventories to be held at each retail site in the subinstance. The retail
sites that were not loaded into the model (in gray) demand a fixed quantity, d;’;’””“l ,
for each product p, in each period ¢ (gray ellipse) and their deliveries must remain as
they are in the incumbent solution. Therefore, the supplier can only decide if these
quantities are to be made-to-stock or made-to-order, which means that the invento-
ries of the unloaded retail sites are not changed. Note that in the incumbent solution,
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different vehicles visit different sets of locations (in Figure 4.6, a set is represented by
the dashed ellipse). Therefore, it is necessary to keep track of the deliveries of each
day to make sure that the capacity of the vehicles ¢, and the maximum inventory
levels ¢; of the retail sites continue to be respected.

Local PRP (w = 3) A subinstance is defined for each retail site i € V’. The w_size nearest
neighbours of i (surrounding entities) are inserted into the set S7°”". These retail
sites are considered through the whole planning horizon. For each period t we de-
fine the set of vehicles %K; visiting any of the retail sites belonging to S7°” (in the
incumbent solution). Additionally, all the locations visited by the vehicles in K;
and not in S7°"" are inserted into Vou for each period 7. The set of retail sites
V, = ST°P' UV and vehicles in each subinstance is different in each time period
t.

The models presented in the two previous subsections either deal with routing or
holding costs separately. Although they can be called iteratively, their solutions will
never be able to trade-off holding costs against routing costs. For this reason, a third
model is developed. The objective of the Local PRP base formulation (details are
given in 4.A.0.3) is to enable the solution approach to perform the aforementioned
trade-off analysis, allowing for fully integrated decisions considering production,
inventory management and routing aspects (at least locally). Figure 4.7 provides a
schematic representation of the variables to be loaded in each Local PRP.

Figure 4.7 — Example showing a Local PRP instance for 3 selected retail sites in the first
period

In this model, the set of retail sites S7°7" (white nodes) is considered through the
whole planning horizon of the global PRP. In the incumbent solution, these retail
sites are visited by a set of vehicles which also visit other retail sites which do not
belong to S7°7" (gray nodes in periods 2 and 4). These additional retail sites will
be different in each period and are represented by the sets V?“. The deliveries to
these external retail sites have to be maintained, therefore they will be fixed in the
model. The only decision that can actually change is the vehicle that will perform
these visits. In some periods, retail sites of the set S7°”" may not be visited in the
incumbent solution (as in period 3). However, they are still loaded into the model
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in conjunction with vehicles that are not used in that period or with vehicles that are
passing nearby. This enables the algorithm to eliminate and start routes. The idea
is to create subPRPs allowing for integrated decisions considering only the retail
sites of the set S7°7. The LSP part (represented in the lower part of Figure 4.7) is
completely loaded, thus deliveries that are internal and external to the subinstance
are both considered in the production plan. Note that it is necessary to ensure that
these PRPs are tractable and can be loaded quickly. In order to adjust the running
time of these small PRPs, one can fix setup decisions and some routing decisions
such as arcs or visiting variables if necessary.

4.5. Computational Experiments

Our solution approach was developed to solve large multi-product PRPs with time windows
including complex production activities. However, the literature does not provide instances
considering such complexity. For this reason, we compare our algorithm using instances
that are proposed both in the IRP and the PRP literature.

The conditions for all the experiments performed by our matheursitc (F&O) are the fol-
lowing:

e Runs of 3600 seconds;
o CPLEX 12.6.1 is used to solve subproblems;

Intel Core processors running at @ 2.4 GHz;

A single thread is used during the improvement phase;

e Regions are created using a k-means algorithm based on centroid distances (regions
should have less than 50 nodes to be handled by the general-purpose solver);

o Initial route sets are created using a nearest neighbour heuristic.

The comparison of our matheuristic with other approaches is based on the ideas presented
by Dolan and Moré [2002]. The authors present the concept of performance profile, a chart
depicting the cumulative probability for each algorithm to obtain a solution with a relative
gap smaller than or equal to 7. The relative gap is computed in relation to the best-known
solution for each instance p. For each approach s the relative gap r, s is computed. The
performance probability p,(7) is then defined, for each 7, according to expression

1
ps(t) = —size{pe P:rp <7},
np

where n,, is the total number of instances and 7 is the threshold for the relative gap based
on the best solution found among all methods.

Coelho and Laporte, MMIRP instances
In order to compare the performance of our matheuristic we consider the most similar
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instances available in the literature, which consider a multi-product and multi-vehicle set-
ting. These instances were proposed by Coelho and Laporte [2013] in a work related
to the IRP and can be accessed in the first author’s website (www.leandro-coelho.
com/instances). Despite disregarding production decisions, we consider that the IRP
is closely related to the PRP and this is still an interesting comparison. We compare our
F&O approach against the B&C approach proposed by Coelho and Laporte [2013] using
the performance profiles presented in Figure 4.8.

100% 100%
90% WA 90%
80% | 80% o/
70% | 70% |/
— 60% A — 60% [
£ s0% < 50%
S 40% S 40%
30% 30%
20% 20%
10% 10%
0% 0%
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(a) 10 retail Sites (b) 20 retail Sites
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Figure 4.8 — Performance profiles related to Coelho and Laporte [2013] solutions, MMIRP
instances

We conclude that for the smaller instances with 10 and 20 retail sites (Figures 4.8a and
4.8b), Coelho and Laporte’s exact approach presents a larger probability to find best-known
solutions (for T = 0). For instances with 30, 40, and 50 (Figures 4.8c, 4.8d, and 4.8e) retail
sites our approach outperforms Coelho and Laporte’s B&C as it is able to find a larger
number of best-known solutions (i.e., 7 is closer to 0) and presents a larger probability to
find solutions with smaller gaps to the best-known solution.

In the performance profile including all the instances (Figure 4.8f) (excluding instances
with 100 retail sites that are not solved by Coelho and Laporte’s exact approach) we con-
clude that our F&O never finds solutions with a gap that is larger than 10% whereas Coelho
and Laporte’s B&C obtains some solutions with a gap larger than 50% for instances with
40 and 50 retail sites. Note that despite being an exact method, Coelho and Laporte’s B&C
experiments were run for 42 000 seconds. Therefore, we conclude that with a smaller com-
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puting time, our matheuristic has a larger probability of finding best-known solutions.
Additionally, we present the average improvement in the best-known solutions in Table
4.3.

Table 4.3 — Average upper bound improvement, F&O vs B&C, MMIRP instances (Coelho
and Laporte [2013])

#Retail Sites
Instances 10 20 30 40 50 100 AvgImp Avg Time (s)
mmirp-1-1-3  0.00%  0.00% 0.00% 0.00% 0.00% - 0.00% 122.84
mmirp-3-1-3  0.00% -0.05% 0.00% 0.00%  -0.11% - -0.03% 97.64
mmirp-5-1-3  -0.12%  0.00% -0.02%  -0.02%  -0.03% - -0.04% 104.64
mmirp-1-3-3  0.00%  0.00% -0.05%  -0.62%  -1.21% - -0.38% 1120.92
mmirp-3-3-3  -0.35% -0.34% 1.72% 815% 27.78% - 7.39 % 1998.60
mmirp-5-3-3  0.00%  0.00% -0.11%  -0.78%  -0.84% - -0.35% 1840.36
mmirp-1-5-3  -0.34% -1.35% 1.65% -1.05% 12.61% - 2.30% 2202.00
mmirp-3-5-3  0.00% -2.07% 227%  -1.68% 2.25% - -0.75% 2703.84
mmirp-5-5-3  0.00% -0.30% -0.52%  -1.50% 6.10% - 0.75% 2686.56
mmirp-1-1-5  0.00% -0.13% -0.38%  -0.41% 0.13% - -0.16% 371.80
mmirp-3-1-5  -0.24% -0.43% -045%  -071%  -0.65% - -0.50% 628.60
mmirp-5-1-5  -0.59% -0.11% 0.00%  -0.25% 0.12% - -0.17% 509.16
mmirp-1-3-5  -0.39% -0.01% 2.74% 12.53% 21.26% - 7.23% 2753.96
mmirp-3-3-5  -0.33%  0.66% 249%  -1.01% 25.45% - 4.46 % 3088.20
mmirp-5-3-5  0.00%  0.00% 0.00% 0.65% 10.35% - 2.20% 3232.76
mmirp-1-5-5  -1.26% -0.07% 4.00% 20.99% 33.18% - 11.37% 3165.08
mmirp-3-5-5  -1.94% -1.64% 4.98% 26.02% 14.00% - 8.28% 3583.56
mmirp-5-5-5 -0.74%  2.20% 1093% 35.82% 34.30% - 16.50% 3600.00
mmirp-1-1-7  -0.36% -1.90% -1.06%  -1.07%  -0.64% - -1.01% 749.00
mmirp-3-1-7  -0.59% -1.09% -0.18% 0.48 % 0.71% - -0.14% 1597.40
mmirp-5-1-7  -0.02% -0.67% -0.58%  -0.12% 2.09% - 0.14% 1746.04
mmirp-1-3-7  -2.52% -0.76% 034% 29.10% 26.71% - 10.58% 3087.48
mmirp-3-3-7  -0.36% 0.91% -1.17% 6.69% 25.40% - 6.29 % 3530.16
mmirp-5-3-7  -0.48% -0.19% 0.77% 41.73%  34.08% - 15.18% 3600.00
mmirp-1-5-7  -0.23% -1.22% 15.60% 31.20% 29.22% - 14.92% 3480.72
mmirp-3-5-7  -1.10%  2.10% 30.59% 27.65% 14.33% - 14.71% 3600.00
mmirp-5-5-7  0.30%  0.80% 4.75% 18.84% 14.15% - 7.77 % 3600.00
Avg -043% -0.21% 2.55% 9.28% 12.25% - 4.69 % 2177.83
-0.32% 8.03%

The results suggest that our matheuristic provides better results for instances with larger
size. While for smaller instances (#Retail Sites < 20) we provide solutions with an average
deviation of —0.32% to the best-known solution, for larger instances (#Retail Sites > 30)
we find an average improvement of 8.03%. We provide 377 new best solutions, which
account for 46% of the entire instance set. This includes 135 instances (the ones with 100
retail sites) which had no solution available in the literature. The average runtime of these
tests was 2177.83 seconds.

Region decomposition analysis F'& O, MMIRP instances with 100 retail sites

Since Coelho and Laporte [2013] did not report any result for instances with 100 retail sites,
we consider that these instances are more challenging. Therefore, we tested our matheuris-
tic for the cases where the initial solution is created without regional decomposition against
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the cases where the problem is decomposed into 2 to 4 regions. The results are presented
in Table 4.4.

Table 4.4 — Average objective value comparison of regional decompositions, MMIRP in-
stances with 100 retail sites

Initial solution objective (Instances solved) Final solution objective
Periods  Vehicles Products No Decomposition 2 Regions 3 Regions 4 Regions No Decomposition 2 Regions 3 Regions 4 Regions
3 1 1 12970.84 (5) 10972.42 (5) 10815.78 (5) 10738.82 (5) 10563.04  10563.04 10563.04 10563.04
3 1 3 20683.38 (5) 18370.70 (5) 18344.86 (5) 18312.24 (5) 18188.98 18188.98 18188.98 18188.98
3 1 5 27919.62 (5) 25811.02 (5) 25697.92 (5) 25659.78 (5) 25522.64 25522.10 25522.88  25521.78
3 3 1 13768.00 (5) 14414.96 (5) 15527.16 (5) 15344.48 (5) 10866.48 1088570  10904.86  11126.60
3 3 3 21694.44 (5) 21891.26 (5) 22773.44 (5) 24055.70 (5) 19132.68 19253.38  19784.70  19564.20
3 3 5 29223.30 (5) 28966.26 (5) 30041.06 (5) 30641.42 (5) 26609.82  26168.16 26484.06  26505.40
3 5 1 15608.24 (5) 14540.94 (5) 15028.74 (5) 16235.54 (5) 11690.06  11388.92 11701.62 11701.70
3 5 3 23216.08 (5) 22007.88 (5) 22742.08 (5) 23638.68 (5) 19658.44  19576.88 19797.52 19795.58
3 5 5 31274.80 (5) 29756.44 (5) 29909.64 (5) 30417.04 (5) 27823.64 26531.16 26646.34  26813.86
5 1 1 19032.84 (5) 17102.76 (5) 16271.80 (5) 17061.68 (5) 15605.06  15742.84  15589.42  15665.28
5 1 3 30639.06 (5) 30931.04 (5) 30313.82 (5) 32474.90 (5) 27972.18 28402.06 29097.38  28702.44
5 1 5 43436.58 (5) 47693.66 (5) 47069.48 (5) 56131.92 (5) 3893594  38893.60 39035.06  39009.36
5 3 1 26565.96 (5) 23281.58 (5) 25061.92 (5) 23241.24 (5) 19381.26  18982.96 18338.22  18739.22
5 3 3 38675.46 (5) 46211.84 (5) 39113.20 (5) 41295.10 (5) 33138.68 38224.50 32116.44  32396.98
5 3 5 50038.72 (5) 64979.92 (5) 54824.44 (5) 51498.48 (5) 45407.74 4720590 42845.76  43540.44
5 5 1 32585.06 (5) 27607.10 (5) 27603.22 (5) 28324.92 (5) 22923.06  20921.00 20941.68 20945.12
5 5 3 48592.72 (5) 40485.50 (5) 39867.44 (5) 42587.80 (5) 3829422 34089.00 33725.78  34644.96
5 5 5 62724.86 (5) 49403.10 (5) 49219.82 (5) 52328.88 (5) 51161.62 4442922  43874.78  45457.62
7 1 1 26812.10 (5) 38001.98 (5) 53033.32(5) 43965.76 (5) 22176.50  21780.94 22053.54  22367.70
7 1 3 45248.04 (5) 82047.56 (5) 69747.78 (5) 67159.28 (5) 40630.30  41712.42 4144256  40822.90
7 1 5 60317.36 (5)  114063.60 (5)  112091.00 (5)  106659.10 (5) 55080.28 56279.94 55608.98  55482.66
7 3 1 37075.93 (4) 44608.50 (4) 41849.78 (4) 40040.78 (4) 26896.30  25041.78 26196.00 26291.50
7 3 3 68574.28 (4) 79927.10 (4) 86745.18 (4) 73519.25 (4) 56826.73  52481.08 61993.08 52529.73
7 3 5 73996.94 (5) 80079.32 (5) 97818.48 (5) 96876.50 (5) 64271.64 58845.36  66494.46  67406.94
7 5 1 45519.00 (3) 4134747 (3) 40239.80 (3) 45359.13 (3) 39297.50 37337.17  30288.57 33779.03
7 5 3 77951.60 (1) 62796.30 (1) 58904.20 (1) 58669.60 (1) 60807.30  52508.80  51595.90  52215.50
7 5 5 105180.40 (2) 71640.10 (2) 67168.50 (2) 91626.25 (2) 79515.55  63972.80  62483.30  66300.00
Average (Count) 37278.97 (124) 40898.11 (124) 41071.95 (124) 41173.27 (124) 31433.83  30407.24 30435.28  30453.64
Average Time To Best (s) 2363.09 2115.98 2102.51 2275.78

Regional decomposition is particularly useful when the set-partitioning formulation is not
able to provide an initial solution, preventing the approach from solving an instance. When
the initial solution has a large relative gap, it is also a sign that regional decomposition
may be beneficial. Furthermore, cases where the initial solution takes too much time to
be found may also be addressed with regional decomposition, as the time available for the
improvement phase becomes short. These are the main reasons for the results presented in
the No Decomposition columns of Table 4.4. When no regional decomposition is applied,
11 of the 135 instances with 100 retail sites are not solved. When regional decomposition
is applied (from 2 to 4 regions) all the instances are solved, though we only compare the
124 instances that are solved in all cases. The quality of the initial solution deteriorates as
the number of regions increases. However, the time to obtain an initial solution with more
regions is usually shorter, providing more time for the improvement phase. The additional
time for improving the solution proves beneficial as the average objective value of the
final solution is smaller. Figure 4.9 shows that, on average, the algorithm spends 22.36%
(size of the bubble) of the time to compute the initial solution when no decomposition is
performed, whereas the decomposed instances only need around 7% of the total time to
obtain the initial solution. The average runtime to achieve the best solution is smaller with
2 and 3 regions.
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Figure 4.9 — The initial objective value is better if fewer regions are created. However,
larger computational times are required to obtain an initial solution. When the original
problem is decomposed into more regions, the initial solution is obtained faster. The addi-
tional time to use in the improvement phase allows for better final objective values.

One important aspect that needs to be addressed when solving these instances is the feasi-
bility of the fleet. The Check & Fix procedure is usually called when the deliveries sched-
uled for each region cannot be performed by the available fleet. Therefore, this procedure
is always called when the number of regions is larger than the number of vehicles (since
some vehicles will be repeated in some regions). In larger instances the Check & Fix pro-
cedure may take more time to repair these infeasibilities as seen in the initial solutions of
the instances with 7 periods and 1 vehicle.

Archetti et al., MPRP instances

Finally, we compare the performance of our algorithm with PRP instances considering
a single product and multiple vehicles, presented by Archetti et al. [2011] and available
on the authors’ website (http://or-brescia.unibs.it/instances). This algorithm
is tailored for a particular PRP with constant demands and an uncapacitated production

facility. Some changes were made in the models used in our matheuristic in order to match
the same assumptions (e.g.: the authors consider that production becomes available to be
shipped as soon as it is produced). Archetti et al. [2011] consider four classes of instances
with 19, 50 and 100 retail sites. Since the authors allow for an unlimited fleet, we adapted
the instances and considered the maximum number of vehicles that is used in their tests for
each number of retail sites. Table 4.5 shows the number of vehicles that are used in our
tests, the average deviation between our solutions and those of Archetti et al. [2011] for the
four instance classes, and average runtimes.

The results suggest an improvement in the average objective function of the instances with
19 and 50 retail sites. For instances with 100 retail sites, the objective value is 0.68% worse
on average. Considering the total set of instances, we improve the average difference over
the best solution by 0.11%. Note that the problem considered in Archetti et al. [2011] is
slightly different from our context. However, the results show that our matheuristic is also
competitive on this instance set. Figure 4.10 shows the performance profiles for each set of
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Table 4.5 — Average deviation from Archetti et al. [2011] solutions and runtime

Retail Sites (Vehicles) I I 111 v Dev Time (s)
19(1) -0.83% -0.12% -1.15% -024% -0.58%  241.22
50 (7) -038% -0.10% -0.65% -0.53% -0.41% 1733.89
100 (14) 025% 005% 135% 1.07% 0.68% 3599.20
Dev -032% -0.05% -015% 0.10% -0.11% 1858.10

instances. For instances with 19 and 50 retail sites, our matheuristic finds a larger number
of best solutions. For instances with 100 retail sites, the approach of Archetti et al. [2011]
shows a larger probability to find solutions with a deviation smaller than or equal to 5%
from the best-known solution. The average runtime of these tests was 1861.30 seconds.
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Figure 4.10 — Performance profiles related to Archetti et al. [2011] solutions, MPRP in-
stances

Considering the afore presented perspectives, our matheuristic is considered to be compet-
itive in terms of solution quality. Indeed, the flexibility provided by our approach is one of
its greatest strengths as matheuristics considering problem extensions are still scarce in the
IRP and PRP literature.

4.6. Case Study

4.6.1 Analysis of the Current Situation

This section details the case study of a European meat store chain which owns a Meat Pro-
cessing Center (MPC) where several meat products are processed and delivered to several
meat stores. The characteristics of the problem include 13 productions lines, 175 perish-
able products, 185 meat stores with delivery time windows and 35 heterogeneous vehicles.
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With the objective of detailing the challenge faced by the company, a simplified overview
of the problem is presented in Figure 4.11 and explained below (the numbers in the text
correspond to the numbers in the figure).
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Figure 4.11 — Representation of the realistic multi-product PRP with time windows

The company manages a single MPC where several cutting lines, with particular specifi-
cations, are able to make specific cuts to produce different sets of product families. Each
family comprises a set of products which are packaged in different sizes. The MPC is the
entity which decides the production schedule (1) by applying a VMI policy. In order to pro-
duce a certain family, a major setup operation (usually around 1 hour) must be performed
on the cutting line. Additionally, in order to set up a cutting line to produce a certain meat
product within a product family, a minor setup (usually around 15 minutes) must also be
performed. These setup times are usually necessary to clean the machines, to set cutting
speeds and thickness, as well as to set the labelling and packaging processes (2). Each time
a family is set up on a cutting line, a minimum lot needs to be produced. The MPC works
during two work shifts of 8 hours, with a break of 1 hour between shifts. Processed meat
products may be directly loaded into vehicles to be delivered or they can be stored at the
MPC'’s refrigerated warehouse to be delivered in a later period. Most of the meat products
have a shelf life of around 7 days. Different holding costs per product are incurred when
the refrigerated warehouse of the MPC is used (3).

When the products are to be delivered to the meat stores, the fleet is loaded (4), respecting
the capacity of each vehicle. Each driver performs a different vehicle route in order to
deliver the necessary products and quantities to satisfy the demands of each meat store
(5). Note that in this realistic context, each meat store may only receive deliveries during
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a certain time window (6). The delivery sizes (7) are defined by the MPC, and have to
respect the capacity of the warehouse of each meat store (8). Each store can also stock
products incurring a holding cost that is different per store and product. The holding costs
are incurred on a daily basis.

Since all the vehicle routes need to start from and finish at the MPC (supplier and depot),
it is impossible to perform all the deliveries in the north region, given that the legislation
prohibits drivers to work more than 9 hours in a day. Therefore, the MPC also needs to
make deliveries to a Transshipment Facility (TF) located in the north of the country. A
larger vehicle needs to deliver the products to be distributed by the fleet that is based at
the TF (9). This transshipment operation also needs to be performed during a certain time
window.

Finally, in the meat stores, the customer demands need to be satisfied on a daily basis.
Since we are dealing with food, meat products may perish either at the warehouse of the
MPC or at the warehouses of the meat stores.

The current planning process of the company considers all these decisions in a decoupled
approach. This means that the events that are triggered by changes both in the information
and product flows are not received and interpreted in the same manner by each of the
comprised entities (MPC and meat stores). This leads us to four main reasons to investigate
an integrated approach:

Capacity issues Currently, each store makes orders without having the information about
the MPC capacity. Usually, meat stores order more than they need as they are aware
that sometimes the MPC is not able to fulfill all the demand (a clear contributor to
the bullwhip effect).

Lack of visibility The MPC only has visibility of the demand of the stores for 1 or 2
periods ahead. This fact is clearly hampering the planning activity of the MPC, as it
ends up producing almost every product every day. Therefore, a significant part of
the available time capacity is spent setting up the cutting lines to produce small lots
of each product.

Improve cost One of the objectives of this research is to quantify the savings obtained
by an integrated approach, compared to the decoupled approach where each store is
making orders individually. As proven by numerous papers in the past (considering
simpler versions of the PRP), we expect to improve the global activity cost.

Deal with complexity Since the planning process currently is built manually by experi-
enced planners, it is important to devise a systematic approach. Although the plans
obtained by the planners may already present good quality, the process is still very
time consuming and non-scientific. Additionally, when unexpected events occur, it
may be quite difficult for the planners to react in a timely manner, thus having an
algorithm to aid the planning process is valuable.
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4.6.2 Methodology Application

In order to apply the developed solution approach to the case study, some additional con-
straints need to be taken into account. In fact, these constraints are not common in the
context of the PRP literature and need to be adapted to be included in our approach. Table
4.6 presents the additional constraints as well as the specific parts of our approach that have
to be adapted.

Table 4.6 — Case study additional constraints

Label Act. Constraint / Description Mathematical form Adaptation
(@) Pro  Minimum Family Lot Size ¥ ,cpser Ppmgr = minLots, VfeF,meM,geT IS, PLSP, LPRP
(b) Pro Retail Site Perishability Xipit =0 VieV,pe PkeK,teT,leT,t+maxConsumptionDays < | IS, PLSP, LPRP
(¢) Pro  Supplier Perishability Ppng=0 VpePmeM,geT,teT,g+maxShippingDays <t IS, PLSP, LPRP
(d) Pro Compatible Product/Line Byupt < compy, VYmeM,pePteT IS, PLSP, LPRP

(e) Pro  Time Capacitated Lines 2rFstm-Ampe+ 2p PStpm* Bmpt + Xp Plpm* Ppmgr < capmy  Yme M,t €T IS, PLSP, LPRP

(f) Inv  Safety Stocks Lipt>ssiyy YieVpePteT IS, PLSP, LPRP
(g) Rou Delivery Time Windows a;i<Wy;<b; YieVjteT DVRP, LPRP
(h) Rou Maximum Route Visits SievZiie <maxVis VkeK,teT DVRP, LPRP
(i) Rou Maximum Route Duration  ¥; jey tij- Xijxr < maxDur Vke K, t€T DVRP, LPRP
(j) Rou Transshipment Facility Ziu<T; VieVikeKrp,teT DVRP, LPRP

Legend:
Act. - Activity | Pro - Production | Inv - Inventory | Rou - Routing | IS - Initial Solution | PLSP - Partial LSP | DVRP - Daily VRP | LPRP - Local PRP

To impose a minimum lot size minLot s, per family f in each cutting line m, constraints
(a) are added. Constraints (b) and (c) impose a maximum time both on the time to ship
products after production and on the time to consume products after reception at the meat
stores. Constraints (d) ensure that the cutting lines are adequate to cut certain types of
meat. For instance, to process minced meat, a different type of cutting line is needed.
The parameter comp,,, is equal to one if cutting line m is able to process meat product p.
Constraints (e) ensure that the time spent on family setups, product setups and processing
does not exceed the time capacity cap,,; of each line m in each period ¢. Constraints (f)
impose the safety stocks ss;, agreed with each meat store i and product p. This is one
method to avoid inadequate stock levels at the end of each planning iteration. Additionally,
it allows a better absorption of forecast errors when implementing the solutions in real
world. Constraints (g) impose the delivery time window at each store. Constraints (h) and
(i) model a maximum number of visits maxVis and a maximum duration maxDur for each
route. Finally, Constraints (j) model the transshipment facility. We consider that the set
of vehicles based at the transshipment facility Krr can only be used if a transshipment
operation is performed.

4.6.3 Results Analysis

To provide managerial insights regarding the integration of the planning process of the
considered meat store chain, we performed a set of experiments. We recreated the planning
process of the company by devising a rolling horizon approach with only two periods of
demand visibility. Note that currently the company does not integrate production decisions
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with the decisions made by each store (following a Retailer-Managed Inventory (RMI)
policy). Therefore, we assume that the company solution can be obtained by using the
initial solution of our approach in a rolling horizon approach considering two periods.

We tested the case where all the decisions are integrated while solving the problem, which
mimics a VMI policy, and the case where a larger demand visibility is assumed, which
would require stores to forecast demands further in time. Table 4.7 shows the results ob-
tained in the experiments comparing them to the company solution. These results are
obtained for instances created using the company data corresponding to the month of June
2015, performing the rolling horizon approach for the entire month.

Table 4.7 — Case study results

Integrated Production

Company Solution  Integrated Production Increased Visibility Increased Visibility

Cost 2RMI 2VMI 7RMI 7VMI
Routing Cost 170633.00 € 149435.00 € 125793.00 € 118802.00 €
Total Transshipment Cost 7182.00 € 7182.00 € 8208.00 € 8208.00 €
Retailers Holding Cost 29445.18 € 29164.15 € 30124.64 € 30160.04 €
Suppliers Holding Cost 959.56 € 869.60 € 13265.29 € 5799.17 €
Cost Per Delivery 69.69 € 63.47 € 84.35 € 78.58 €
Total Cost 208219.80 € 186650.70 € 177390.93 € 162969.21 €
Cost Reduction 21569.10 € 30828.87 € 45 250.59 €
Percentage Savings 10.36% 14.81% 21.73%
Other KPIs

Number of Routes 395 328 320 291
Number of Visits 2988 2941 2103 2074
Total Driving Time 3345.73 h 2993.40 h 2388.51h 2277.71h
Setup Time 29292 h 306.30 h 286.58 h 257.08 h

We present cost related indicators and other operational Key Performance Indicators (KPIs)
as well. In Table 4.7, the company solution corresponds to the case where each planning
iteration considers two periods and a RMI policy. We achieve a cost reduction of 10.36%
by integrating the production decisions (VMI policy) maintaining the demand visibility
of two periods. When we increase demand visibility for seven periods and apply a RMI
policy, the cost is reduced by 14.81%. Finally, increasing demand visibility and applying a
VMI policy results in a cost reduction of 21.73%

An interesting behaviour is shown by other indicators. Part of the total cost is transferred
to the supplier. However, this transfer allows for a large reduction in the routing cost.
Furthermore, the cost per delivery increases when demand visibility is increased. However,
inventory and routing integrated decisions allowed for a large reduction in the number of
visits to the stores.

4.7. Conclusion

In this paper, a large multi-product PRP with time windows is addressed by means of a
F&O based matheuristic. A novel mathematical formulation was proposed in order to pro-
vide integrated production, inventory, and routing plans for a vertical meat store chain. The
large-size instances result in intractable problems which have to be tackled by efficient so-
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lution methods. This fact motivated us to propose a novel size reduction and decomposition
technique to the PRP allowing for the construction of good quality initial solutions regard-
less of the size of the problem. Since these solutions are built by several IRP solutions plus
a CLSP they do not integrate all decisions (only inventory management and routing deci-
sions are jointly optimized). Therefore, these initial solutions are very good for problems
where the link between the production and routing activities is not strong.

We devised a F&O based matheuristic for the PRP so as to integrate all decisions. Our
approach iteratively integrates production, inventory management and routing decisions by
solving different MIPs with variable size and scope. Matheuristics are still quite rare both
in the IRP and PRP literature. Furthermore, to best of our knowledge, adjusting the size of
the subproblems based on the runtime of previous iterations is a fresh contribution to the
literature related to the F&O heuristic.

It was shown that the algorithm is efficient for solving large-sized instances both for the
IRP and PRP. New best solutions are provided for several instances in shorter runtime,
compared to state-of-the-art branch-and-cut implementations. Furthermore, we test our re-
gion decomposition approach with large IRP instance and show that the algorithm benefits
from it.

Additionally, we presented a case study considering a European meat store chain. A set
of more complex instances was solved in order to validate the ideas proposed in this paper
within a real-world context. The challenge considers additional constraints which include
multiple production lines with different specifications and one transshipment facility. Al-
though it is necessary to introduce new constraints, the extensions are trivial and enforce
the value of matheuristic approaches that are strongly based on mathematical formulations.
After increasing demand visibility and considering a VMI policy, our solution approach
achieves savings of 21.73% compared to the company’s solution.
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Appendix 4.A Decomposition strategy base formulations

Before presenting the base formulations of each decomposition strategy we comment on
the order in which they are called. Since the largest expected size reduction (obtained in the
first phase) usually comes from the routing part, and as it is commonly the largest portion
of the total cost, the first decomposition strategy starts by exploring the Daily VRP for-
mulation which focuses on routing cost. The second decomposition strategy, which uses
the Partial LSP formulation, is not so promising at this point because all the inventories
have already been optimized, taking into account the delivery schedule of the initial solu-
tion. Though large gains are not expected, improvements can still be achieved by jointly
optimizing inventories of the supplier and of the retail sites, particularly in the cases where
the problem is divided into regions. Furthermore, the production line setups may also be
changed to better redistribute the production quantities needed to satisfy the shipping quan-
tities in each period. In case the problem considers setup costs, these can also be improved.
In fact, the order in which the first two decomposition strategies are explored is irrelevant as
the decisions to be analysed by each of them are completely independent. However, in the
third decomposition strategy all the decisions inherent to the PRP are taken into account lo-
cally. Integrating most of the decisions taken at the supplier with the routing decisions of a
set of retail sites results in difficult subproblems. For this reason, we decided to follow this
decomposition strategy in the last place (after reaching a local optimum regarding the rout-
ing part of the solution). The following subsections describe the three base formulations of
the decomposition strategies comprised in our F&O approach.

4.A.0.1 Daily VRP base formulation

The inputs to this model comprise a single period 7, a set of vehicles K, a set V including
the retail sites visited by these vehicles in the incumbent solution, and the delivery quanti-
ties made to each retail site, denoted by d;. The deliveries are needed because the fleet is not
homogeneous (different capacities vcy), thus their quantities have to be taken into account
in the vehicle capacity constraints. Additionally, vehicles must respect the time windows
[ai, b;] of each location i. The time needed for a vehicle to traverse an arc (i, j) is given by
1t;;. Note that it is not necessary to load more than one period, as there are no dependencies
between periods in this formulation, given that the delivery quantities are fixed. In fact, this
formulation is similar to the routing part of the PRP formulation presented in Section 4.3
but the index # is dropped. The model works with the binary variables X; j, which are equal
to one if vehicle k traverses arc (i, j). Continuous variables W, define the time at which
vehicle k arrives at location i.

(DailyVRP):

minimize Z Z Z cij- Xijk (4.32)

i€V jeVkeK
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S.t.

DY Xig=1 VieV'

JjEVkeK

ZX,‘jk—ZXﬁk =0 ieVkeXK
jev jev

Z injk'd,‘ﬁvck Vke K

i€V jevV
Wik+l‘tij < ij+M'(1—Xl'jk) VieV,jeV,keK
a;, <Wy<b; YieVkeK

Xijk€{0,1} Vi,jeV,keXK
Wi >0 VieVkeK.

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)

The objective function (4.32) of the Daily VRP formulation simply accounts for the routing
cost to perform the deliveries that are currently scheduled in the solution and were loaded
to be optimized. Constraints (4.33) ensure that the scheduled deliveries in the incumbent
solution must continue to be performed after solving this subproblem. Constraints (4.34)
are the so called flow conservation constraints to ensure that if a vehicle visits a node, it has
to leave that node. Constraints (4.35) are to ensure that vehicle capacities are respected.
Constraints (4.36) define the time at which each retail site is visited by a vehicle. This time
is used to define constraints (4.37), where the time windows [a;, b;] of each retail site must

be respected. M is a big number which is at least the duration of a day.

4.A.0.2 Partial LSP base formulation

The PartialLS P formulation uses the same variables presented before but in this case,
index k is dropped from delivery quantities D;,; as the visits are assumed to be fixed:
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(PartialLSP):

g 7Tl

minimize Z Z Z Z Z hop * P pmne

pEP meMgeT h=0t=g+1
t 7]

PIDIIIPI R

i€V’ peP teT h=0 I=t+1

(4.39)

s.t. (4.2), (4.3), (4.4), (4.5), (4.8),

> ) Dipn<cy VkeKieT (4.40)

i€V i peP €T

t 7]
DD Pomg =d ™+ 3 Dipy VpePiteT (4.41)
§=0 meM eV 1=t

1
>z Dipn=dipy VieV.pePleT (4.42)
=0
Ppmtla Diptl > 0. (443)

The objective function (4.39) is similar to the one presented in the LSP formulation used
in the initial solution. However, the inventory holding costs are now accounted for each
location and not only for the supplier. In order to define the necessary conditions to model
production line capacities, setups, and the warehouse capacity of the supplier, constraints
4.2),(4.3), (4.4), and (4.5) are added from the M PRPT W formulation presented in Section
4.3. Constraints (4.8), from the M PRPT W formulation, are also added to ensure that ware-
house capacities are respected for each retail site. However, the index k is now dropped.
The vehicles visiting the selected retail sites in a certain period may also visit other retail
sites that were not loaded into the model. Accordingly, we define a partial capacity cy; for
each vehicle k in each shipping period ¢. Constraints (4.40) ensure that the deliveries per-
formed to the set of visited retail sites V’y, (visited by vehicle & in shipping period #) do not
exceed the capacity of the vehicle. Constraints (4.40) ensure that the deliveries performed
to the set of visited retail sites V’;, (visited by vehicle k in shipping period ¢) do not exceed
the capacity ci,; of the vehicle in each shipping period. Constraints (4.41) force the produc-
tion quantities to satisfy both the demands of loaded and unloaded retail sites. Constraints
(4.42) ensure the demand satisfaction of each loaded retail site. Finaly, the bounds of all
variables are defined by constraints (4.43).
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4.A.0.3 Local PRP base formulation

The LocalPRP formulation includes most of the constraints presented in the MPRPTW
formulation and it is defined as follows:

(LocalPRP):

g 17Tl

minimize Z Z Z Z Z hop * P pmh

peP meMgeT h=0t=g+1

* Z Z Z 22 g hyp - Dipkni (4.44)

i€V’ peP kekK; teT h=0 I=t+1

B IISPIIEN

i€V, jeVi k€K teT

s.t. (4.2), (4.3), (4.4), (4.5),

t 7]
D Pomg=d + > Dipis IpePteT (4.45)
g=0 meM i€V, kekK; 1=t
D Dipki=dipn VieVi".pePueT leT i<l (4.46)
keK;
> Ziw=1 Vie VM ieT. (4.47)
keK;

The objective function minimizes both the supplier and retail sites’ holding costs, and the
routing cost. From the M PRPT W formulation, constraints (4.2), (4.3), (4.4), and (4.5) are
added to model the family setups, the product setups, the time capacity of each production
line, and the warehouse capacity constraints of the supplier, respectively. Constraints (4.45)
impose that the produced quantities must satisfy both the internal and external demand
considered in the model. Note that each period considers a different set of vehicles %,
which includes the vehicles performing the routes in the incumbent solution visiting some
retail site belonging to V’. The sets of nodes V; includes all the retail sites that can
be visited in a period (white and grey nodes in Figure 4.7). Constraints (4.46) force the
delivery quantities to the fixed retail sites (gray nodes), belonging to the set V", to be
equal to the delivery quantities g;,; defined by the incumbent solution. For each retail
site in these sets, the delivery quantities will be fixed, thus we also now know that their
warehouse capacity is not violated. However, the vehicle that performs the delivery can
still change. Constraints (4.47) ensure that a visit is still performed to the fixed retail
sites of each period. The remaining constraints belong to the M PRPT W formulation and
are added with proper changes in the sets to be considered. For the selected retail sites,
constraints (4.7) ensure demand satisfaction of the free retail sites. In constraints (4.9) and
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(4.10), which model vehicle capacity and delivered quantities (respectively), the set V’ is
replaced by the sets V,;\{0} and the set K is substituted by the sets K}, in each period ¢. For
the remaining constraints regarding the routing part of the problem, namely (4.11) - (4.15),
the set V" is substituted by the sets V, and the set K by the sets K, in each period ¢.
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5.1. Introduction and Related Work

Most distribution networks need to assign regular time windows to its delivery locations.
Actually, in food retail, it is quite rare to find applications with complex unloading opera-
tions where no time windows are stipulated. This is due to the importance of the delivery
process in managing physical space, product inventories, and personnel [Spliet and Gabor,
2015]. Food retailers face several planning challenges related to warehouse, fleet, and retail
site operations in order to provide good quality service to their final customer [Sternbeck
and Kuhn, 2014]. An example of a food retailer, including the involved stakeholders, is
depicted in Figure 5.1.

Suppliers Final
o . Customer
Retailer Inner Stakeholders
& li : Warehouse Transports Retail Sites
DN
Ed Product %
Segment A \\ @.
L] Load Vehicles R Deliver products
i 0 ______ Q@ =o0=0
g O f— RO gy p— .
Pa nQ
Product & s [ B — — 4 L~

Segment B

KL @t
Figure 5.1 — An example of a food retailer including its stakeholders. Products are received

from many suppliers and prepared in one warehouse. Afterwards, vehicles deliver products
to each retail site, respecting product specific time windows.

In the warehouse, products are received and prepared in shipping units (usually, products
are palletized). Each supplier may have a different delivery lead time and time window.
Therefore, different product segments are received by the warehouse in different periods of
the day, influencing the preparation cycles. For instance, if fresh products are required to
be in the retail site before its opening time, fresh product suppliers need to perform night
deliveries so that the warehouse is able to prepare them in time.

The transportation activity also adds several constraints to be addressed. In multi-product
operations, each product segment requires different logistics equipment and operations.
Vehicles are often required to maintain product compatible temperatures. Retail sites may
have accessibility constraints enforcing the fleet to comprise vehicles with different dimen-
sions and heterogeneous trailers. Additionally, labour laws do not allow changes in the
drivers’ shifts for a given period of time. This means that the number of drivers available
along a day is not constant. For instance, when one driver ends his shift and another driver
starts working using the same vehicle, the vehicle is idle at the depot for some time. These
drivers will never perform routes that are incompatible with their shift switching period,
which is no easily changed due to law restrictions. Hence, shift switching periods limit the
number of available drivers.

Retail site constraints often demand certain products to be delivered during specified peri-
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ods of the day. For illustration purposes, it is quite common for some final customers to
prefer buying fresh products (such as fruits or fish) early in the morning. This behaviour
forces some products to be delivered to the retail site early enough so that the sales areas
are ready at the opening hour. Likewise, laws to prevent noise near populated areas dur-
ing the night time or traffic congestions at rush hours may demand specific delivery time
windows at certain retail sites. Moreover, some products may only be received by expert
collaborators that are a scarce resource only available during specific periods of the day.
The aforementioned reasons demand the definition of product dependent time windows to
ensure feasible unloading operations at the retail sites.

Assigning delivery time windows to each retail site is a tactical planning problem that needs
to be tackled by retailers. These decisions largely impact the operational decisions taken
in transportation planning, namely routing and fleet costs (Deflorio et al. [2012]). Com-
panies operating in similar environments to that described above are obviously interested
in optimizing their integrated activities to pursue substantial cost savings. It is definitely
worth a methodology to define the set of time windows capable of providing cost reduction
opportunities.

The underlying problem is very complex as it involves assigning time windows based on
transportation plans. The Time Window Assignment Vehicle Routing Problem (TWAVRP)
can be defined as a two-stage stochastic optimization problem which integrates the tactical
time window assignment decisions (first-stage) with the operational vehicle routing deci-
sions (second-stage). Given a set of locations to be visited within a regular time period,
the first stage decisions are to assign a set of time windows to each location, before de-
mand is known. In the second stage, after the demand is revealed for each day, a delivery
schedule respecting the assigned time windows is defined. Since the time windows remain
unchanged for a reasonably long period of time, the goal is the way to perform this as-
signment while allowing for a daily efficient transportation planning across every demand
scenario. Given their importance in many applications, time window assignment problems
are now receiving an increasingly level of attention.

Since the second stage decisions of the Time Window Assignment Vehicle Routing Prob-
lem (TWAVRP) demand the definition of a delivery schedule respecting time windows for
each demand scenario, it is closely related to the VRP with Time Windows (VRPTW). In
the VRPTW a fleet of vehicles is used to satisfy the demand of a set of customers while
respecting vehicle capacity and delivery time window constraints (Toth and Vigo [2001]).
Despite its extensive literature (see [Cordeau et al., 2001], [Baldacci et al., 2012], and
[Kallehauge, 2008]) the VRPTW is still one of the most challenging problems in combi-
natorial optimization, which takes the TWAVRP to, at least, the same level of complexity.
This latter problem has not been well studied. To the best of our knowledge, there are only
four papers addressing it.

Spliet and Gabor [2015] introduce the TWAVRP and propose a branch-price-and-cut algo-
rithm to find the optimal expected travelling cost. The computational results show that the
algorithm is capable of solving instances of the problem up to 25 customers and three de-
mand scenarios. The authors state that using time windows defined for an average demand
scenario results in 1.85% costs increase compared to TWAVRP solutions.

Spliet and Desaulniers [2015] tackle the same problem with discrete time windows (DT-
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WAVRP), which is more applicable to real-world contexts. The authors develop an im-
proved branch-price-and-cut algorithm and a Tabu Search (TS) based on a column genera-
tion heuristic to minimize the total transportation cost. The approach is tested on randomly
generated instances with up to 30 customers and 5 demand scenarios. The results show
that considering 5 scenarios allows for an average cost reduction of 3.64% compared to a
single-scenario approach.

Recently, Spliet et al. [2017] propose an extended mathematical formulation considering
time-dependent travel times and apply a branch-price-and-cut to obtain optimal solutions
for instances with up to 25 customers.

Despite labelling it a vehicle routing problem with self imposed time windows (VRP-
SITW), Jabali et al. [2015] also address the TWAVRP. The proposed approach considers
uncertainty in travel times. A TS heuristic assigns customers to vehicles and the timing
decisions are subsequently generated by solving a linear subproblem. The objective is
to optimize the expected effect of one disruption. The approach is able to solve adapted
VRPTW instances with up to 100 customers. However, the instances only consider de-
mands for one period.

The four aforementioned papers are the ones closer to our problem definition however
there are additional works tackling similar problems with different approaches. Agatz et al.
[2011] use aggregate-level routing models and continuous approximation methods to esti-
mate expected transportation costs while defining customer time windows. The problem
is defined as a Time Slot Management Problem (TSMP). The idea is to define sets of time
windows to be offered to a set of potential customer services, with uncertain demands, oc-
curring in different zip code areas. Since the routing operation is not explicitly taken into
consideration this approach is not applicable to cases where routing constraints invalidate
most of the time window assignments.

Other works try to achieve solutions for the TWAVRP based on consistency requirements.
The concept of consistent service is intimately related with the ideas explored in the afore-
mentioned papers. The goal is to design consistent routes which satisfy any of the follow-
ing requirements whenever a customer is served: (i) arrival-time consistency, wherein a
customer should be visited roughly at the same time during the day, (ii) person-oriented
consistency, in which a customer needs to be visited by the same driver (as in Braekers and
Kovacs [2016]), and (iii) delivery consistency, when a customer should receive the same
quantity of goods. The Consistent Vehicle Routing Problem (conVRP) with arrival-time
consistency requirements is the most similar to the TWAVRP. Kovacs et al. [2015] aim at
having the same driver visiting the same customers at roughly the same points in time. The
authors experiment different input parameters to trade-off the travel cost against a customer
satisfaction measure and conclude that by allowing more than one driver to visit each cus-
tomer, large cost savings are obtained. Groér et al. [2009] develop an heuristic for serving
a set of customers with known demands, using consistent routes. The algorithm is tested
over five simulated data sets with up to 1000 customers and a real-world data set with more
than 3700 customers from a small package shipping company. The authors state that the
consistent routes are able to achieve customer service objectives with low total travel time.
Subramanyam and Gounaris [2016] deal with consistency of arrival times in a Travelling
Salesman Problem (TSP). They propose a branch-and-cut algorithm which is the first exact
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method for the problem. The solution approach is tested on instances with 50 customers
and 5 periods, showing that arrival time consistency can be achieved with a small increase
in routing costs. A summary of the literature review is provided in Table 5.1 together with
the positioning of our challenge.

Table 5.1 — The literature regarding arrival-time consistency is still scarce. Most ap-
proaches are found in the conVRP literature where time window amplitude is a decision.
We are particularly interested in the TWAVRP with fixed time window amplitude.

Problem Description Solution Method

Authors (year) Problem T.W. Var. S.D. Travel Time Products Vehicles C. Periods Type Approach
Agatz etal. [2011] (2011) TSMP Discrete - Deterministic ~ Single Limited (Hom) v Single H Approximation (no routing)
Spliet and Gabor [2015] (2015) TWAVRP Continuous - Deterministic = Single Unlimited (Hom) v Multiple E Branch-Price-And-Cut
Spliet and Desaulniers [2015] (2015) DTWAVRP  Discrete - Deterministic ~ Single Unlimited (Hom) v/ Multiple E Branch-Price-And-Cut
Spliet et al. [2017] (2017)  TWAVRP Continuous - Uncertain Single Unlimited (Hom) v Multiple E Branch-Price-And-Cut
Jabali et al. [2015] (2015) VRP-SITW  Continuous - Uncertain Single Limited (Hom) v Single H Tabu Search
Groér et al. [2009] (2009) ConVRP Continuous - Deterministic = Single Limited (Hom) v/ Multiple H Record-To-Record
Kovacs et al. [2015] (2015) ConVRP Continuous - Deterministic ~ Single Limited (Hom) v/ Multiple H Large Neighbourhood Search
Subr: am and Gounaris [2016] (2011) ConTSP Continuous - Deterministic ~ Single Single - Multiple E Branch-And-Cut
Our Approach TWAVRPP  Discrete v Deterministic Multiple ~ Unlimited (Het) v Multiple MH  Fix-And-Optimize
Legend:
T.W. Var. - Time Window Variables | S.D. - Split Deliveries | C. - C: i | Hom. - H | Het. - Heterog | H - Heuristic | E - Exact | MH - Matheuristic

To the best of our knowledge, no single approach has considered split deliveries and mul-
tiple product segments. Therefore, none of the publications explores product dependent
time windows and multiple product routes (i.e., different product segments are consoli-
dated). Regarding solution methods, all the approaches proposed for time window assign-
ment are either purely heuristic or exact, hence hybrid methods have not been explored.
Furthermore, an important aspect for real-world implementation is the consideration of the
number of active vehicles in each point in time. In vehicle routing literature, some works
propose set-partitioning formulations which consider the fixed vehicle cost embedded in
the cost of each route (as in Salhi et al. [2013]), ignoring the fact that a vehicle can perform
multiple routes during the day.

In this paper, we build upon the aforementioned ideas and aim at extending the TWAVRP
to deal with product dependent time windows, while complying with specific business
constraints. Our approach is inspired by the case of a large European food retailer which
owns two warehouses with a fleet for serving around 200 retail sites with time windows
defined for different product segments. The state-of-the-art approaches in this field do not
provide any solution for such challenge, as there is a significant complexity increment over
the current formulations and approaches available in the literature.

Hence, the main contributions of this paper are the following. We propose an extended
mathematical formulation for assigning time windows in real-world contexts, capable of
dealing with (1) product dependent time windows; (2) multiple product deliveries; (3) split
deliveries. A novel objective function, considering both the travelled distance and fleet
requirements cost, is also proposed. We develop a matheuristic for dealing with real-world
sized instances, with business-related decomposition strategies for accelerating the con-
vergence of the algorithm. Extensive computational experiments are presented on a set of
real-world instances. We test three operational models to assess the impact of different
time window conditions on the solutions obtained by the proposed approach. A sensitiv-
ity analysis is performed over the number of retail sites where time windows changes are
introduced. We provide interesting business-related insights as well as real-world consider-
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ations that have been revealed during the development and implementation of our solution
approach.

The remainder of this is paper is organized as follows. In Section 5.2 we introduce the
TWAVRP with product dependent deliveries and present the proposed formulation for the
problem. Section 5.3 details our matheuristic solution approach. In Section 5.4, the com-
putational experiments are analysed. In Section 5.5, the main conclusions of this work are
presented as well as directions for future work.

5.2. Problem Description and Mathematical Formulation

To describe the TWAVRP, consider a complete graph G = (N, E), where the set of vertices
N ={0,1,...,n} is partitioned into vertex 0, the warehouse (depot), and vertices {1,...,n},
corresponding to n locations to be served. Edges (i, j) € E are associated with a travelling
cost ¢;j, measured in monetary units (m.u.), and a travelling time #;;, measured in time
units (t.u.). Let P ={1,...,p} be the set of product segments that can be ordered by each
location. A set Q of scenarios is given, where each scenario corresponds to a realization of
services to be satisfied on a certain day. Let S = {(v,h) : v € N, h € P} be the set of services
composed by a pair of a location v and a product segment 4. The quantity demanded
by a service s € § in scenario w € Q is given by d¥. The probability of occurrence of
scenario w is given by p,, and ) cqpw = 1. Two types of time windows are considered
in a time window assignment problem: exogenous and endogenous. The former indicate a
time period where delivery time windows can be defined from. For example, the retail site
opening hours is an exogenous time window (fixed). The latter are simply the delivery time
windows known from other optimization problems (such as the VRPTW) that are defined
inside exogenous time windows (decision). For each service s, let [ay, by] be an exogenous
time window within which the endogenous time window must be defined. The service
has an expected service time st,; and needs to start and finish within the boundaries of the
exogenous time window. To perform the deliveries, an heterogeneous fleet is available. The
fleet is composed by a set K of vehicle types, where each vehicle type k € K has capacity gx.
Each vehicle type can only transport the product segments in the set P; that are compatible
with the temperature of its trailer. The fixed cost of each vehicle type is given by fcy.

In this paper, we use {E,,S ;, T, k;, pty, st., et,,dur,,c,) to define a route r belonging to the
entire set of routes @. E, C E are the sequenced edges to be traversed by route . S, C § is
the set of services that can be served by route r considering all the operational constraints
related to the transportation planning. 7, is an ordered set with the arrival times to the
locations visited in the route. Parameter ¢,; indicates the arrival time of route r to the
location of service s, and k, is the index of the vehicle type used to perform route r. This
vehicle type has capacity g and fixed cost fci. Let pt, be the preparation starting time
of the vehicle loading. Parameters st,, and ef, are the route start time, and the route end
time, respectively. The route duration is given by dur, = }; jeg, tij and the travelling cost
is given by ¢, = 3. ; jjek, ¢ij- For modelling reasons, we define the subset ®""” containing all
the routes where a multiple product delivery can be performed. Additionally, for multiple
product deliveries, we define the parameter ¢ which indicates the minimum quantity to
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be delivered related to the main product. For instance, if the time window for the fresh
segment is used in a multiple product route (containing fresh products), the respective
product segment needs to deliver at least a quantity q.

Let W be the set of discrete time slots within one scenario. Each time slot w = [w,w]e W
has fixed amplitude A = w —w (for instance, 30-minute slot within the day). Associated
with each route r, a parameter e,g, indicates whether it is possible to provide service s
in time slot w. Thus, e, is equal to 1, if (r,s,w) belongs to the set RS = {(r,s,w)|r €
O,seS,,weW :w<t,y, <w+st,s AW+ st <bg Aw+ A > ag}, 0 otherwise. Moreover,
h,, indicates whether route r is active during time slot w. A, is equal to 1 if time slot w
intersects the interval [pt,, et,].

In order to formulate the Time Window Assignment Vehicle Routing Problem with Product
Dependent Deliveries (TWAVRPP) as a two-stage stochastic optimization problem, we use
decision variables yy,, for first stage decisions (i.e., tactical time window assignment) and
variables z w, for second stage decisions (i.e., operational vehicle routing). Variables
Ysw are used to assign the beginning of a time window for service s to time slot w. Let z¥

©.2,
be the binary route variables indicating the selection of a route r in scenario w. Continuous
variables x; define the portion of service s demand served with route r in scenario w.
Binary variables w¥, are used in multi-product deliveries to define the main product of the
route (i.e., the product segment of the time window to be used). To quantify the maximum
number of vehicles used in each scenario w, auxiliary integer variables v}’ are used.

Our proposed set-partitioning formulation for the TWAVRPP reads:

(TWAVRPP):

minimize Z pw-(Zcr~z‘,"+ Z fck~v‘];’) 5.1

weQ re® KeK
S.t.
Z yaw=1 VseS (5.2)
weWw
D=1 VseS,weQ (5.3)
re®
Zd?’~x‘,‘§$z$’~qkr Vre®,weQ 5.4
seS
x5 < Zersw‘ysw Vre®,seS,we 5.5)
weW
Dwp=d Vre@”, weQ (5.6)

seS

g-wo <d? X% Vre@™ seS,we (5.7)
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W‘;;S Z Ersw " Ysw VreG)mP,SES,(UEQ (58)
wew

X%SZW% Vre@ seS,weQ (5.9)
s'esS
dy-xi, 2w +q- () —wi) Yre@", seS,weQ (5.10)

s'eS \{s}

Dy <V VweQweWw (5.11)

re®

X% ERY, yann 2w €{0,1}, v eNo. (5.12)

The objective function (5.1) minimizes the total fleet requirement and travelling costs
across all scenarios. Constraints (5.2) ensure that an endogenous time window is defined
for each service. Constraints (5.3) impose that all services are satisfied in each scenario.
Constraints (5.4) are vehicle capacity requirements. Constraints (5.5) ensure that a route
can only provide a service if its arrival time at the store is comprised within an assigned
endogenous time window of the service demand. Constraints (5.6) - (5.10) are dedicated to
multi-product routes. Multi-product routes impose the selection of main service to define
the service time window that will be used to perform the consolidated delivery. Constraints
(5.6) force the selection of a main service when a multi-product route is performed. After
selecting the main service, constraints (5.7) guarantee that the delivery quantity of the main
service is larger than g. Constraints (5.8) require the time window of the main service to
be compatible with the arrival time of the route. Constraints (5.9) allow a multi-product
route to perform a delivery in case its main service is selected. By definition, multi-product
routes deliver more than one product, as stated in constraints (5.10). Finally, expressions
(5.11) count the maximum number of active vehicles in each scenario. Additional con-
straints for adapting the model to common real-world applications are presented in 5.A.

5.3. Solution Method

Due to the complexity of the TWAVRP we chose to solve it with an heuristic approach.
Since we are interested in real-world applications of the TWAVRPP, solving large prob-
lem instances is just one of the challenges to be addressed by our solution method. In
business contexts, planners are often interested in a good trade-off between solution qual-
ity and computational time. Furthermore, new business constraints need to be considered
from time to time. Considering these requirements, we support that a mathematical pro-
gramming based matheuristic is a well-balanced choice. Our solution method is based on
a three-phase approach to be detailed in the following subsections of the paper. In the
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first phase data is pre-processed to create a set of routes to be used by the proposed set-
partitioning formulation. The set of routes comprises routes of different types, visiting one
or many locations and delivering one or many products. The second phase builds an initial
solution for the problem. The problem is solved considering one scenario at a time, fixing
the variables of previously optimized scenarios and relaxing variable integrality constraints
in the remaining scenarios. In the third phase, the algorithm improves the solution found
in phase two by iteratively solving a series of sub-problems which focus in smaller subsets
of decisions at a time. An overview of the solution method is depicted in Figure 5.2.

Phase 1 Phase 2 Phase 3
Route Generation r  Initial Solution Construction [ Improvement Matheuristic
Inputs: Inputs: Inputs:
Scenarios Locations Scenarios Routes ] sl
Q E Q nitial_Solution
‘__________v_._._*_._._._._.________‘ Lat ‘ La
i Generate Routes i Iteratively solve a series of sub-MIPs for each location to
; ; Iteratively sol series of sub-MIPs f ch scenari find improvements, integrating time window and routing
i Nearest Adaptive Large Historical Set of | | ehrf We{ sove a h,eE]es o su -l‘ s or ﬁaL scenario decisions (LOD)
; Neighbour Neighbourhood orical s ; w ile relaxing variable integrality on the r
; Heuristic Search (ALNS) outes : scenarlos. l
__________________________ l TITTTTTmm T | I each iteration, the values of the non-relaxed scenarios
are fixed for the next iterations. Solve a sub-MIP for each scenario to improve routing cost
‘ Replicate routes along exogenous time windows ‘ of the solution without changing time windows (SOD)
( Outputs: ] Outputs: A ( Outputs: A
Rétcs Initial Solution Final Solution
\ J \ J

Figure 5.2 — The proposed solution method comprises three phases which aim at decompos-
ing and providing good solutions for large TWAVRP instances. The first phase generates a
route set O that is used in the second phase to build the initial solution for the problem. Af-
terwards, in the third phase, location (LOD) and scenario-based (SOD) decompositions are
used to define subproblems that are iteratively solved to seek for solution improvements.

5.3.1 Route Generation

The route generation phase aims at preparing all the parameters related to the routes to
be used by the two remaining phases. Since we use a set-partitioning formulation, most
of the routing constraints are exogenous to the mathematical formulation. Therefore, the
procedure used in the route generation phase should ensure that all the generated routes are
feasible in the problem to be solved. The inputs to our route generation phase correspond
to data related to a set of demand scenarios 2 and the characteristics of the set of locations
L where the deliveries are to be made. In this phase, the developed procedure creates three
different types of routes:

e Direct Routes deliver only one product to one location, thus they serve only one
service.

e Multi-Location Routes deliver one product to many locations, serving different ser-
vices of the same product in different locations.

e Multi-Product Routes deliver many products to one location, serving different ser-
vices in the same location with a consolidated shipment composed of more than one
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product.

We do not consider routes delivering multiple products to multiple locations. Although
these may be the most flexible routes, reducing the number of drops while minimizing
travelled distance, they usually are undesired for adding complexity to the loading opera-
tion. Nonetheless, the approach can be adapted to consider this type of routes. Figure 5.3
depicts an example with the allowed routes.

| Time Window

-
HHE
Rl, f ‘ E B ‘ [ ] privingTime

Multi-Location Route (delivers product B in two different locations)
. Vehicle Unloading

‘ R3 H ‘ HH Vehicle Loading

Direct Route (delivers product A) Multi-Product Route (delivers product A and B)

Legend:

Time

Figure 5.3 — Route type and delivery possibilities example showing three time windows
being used to receive the deliveries of three routes. Route R1 visits two locations and
delivers product B to both locations. The route uses the time windows of services S2 and
S3 which are dedicated to product B. Route R2 is a direct route delivering product A in
the time window of service S1, dedicated to product A. Route R3 is a multi-product route
where a consolidated delivery is performed. The route delivers products A and B in the
time window of service S3. Despite being dedicated to product B, the time window of
service S3 allows deliveries of other products (in this case product A), as long as at least
some products of type B are delivered.

To create the set of routes, the generator uses mainly two different approaches. The first
approach generates routes based on the cheapest insertion heuristic. For each seed location,
subsets with 0 to nNearest nearest locations are defined. For each subset, we open a route
with the seed location and insert the other locations in the cheapest position. The selection
of the next location to enter each route is performed randomly. The second approach uses
demand scenarios as an input to create optimized delivery schedules by means of an Adap-
tive Large Neighbourhood Search (ALNS) procedure. By doing so, we build a diverse set
of routes that is able to cope with the demand patterns embedded in the scenarios. Note that
at this point, endogenous time windows have not been defined yet. Therefore, we use the
exogenous time windows to ensure the feasibility of the delivery schedules. Since we are
dealing with a set-partitioning formulation where path variables z represent entire routes,
it is also possible to use historical data provided by companies to correctly describe their
routing operations and derive less disruptive solutions.

The last step of the route generation process is to create copies of the same route along the
exogenous time windows. This procedure clones the routes and modifies the preparation
time, the departure time, and the arrival times at each location. Algorithm 1 provides the
pseudo-code describing the route generation phase.
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Algorithm 1 Route Generation

1: procedure ROUTEGENERATION(Q, L)

2: 0«0
3 foreach /€ L do
4 foreach p € P do
5: ® « Build routes by nearest neighbour heuristic using / as seed and exogenous time windows
6 ® « Build a direct route serving all products (for multiple product deliveries)
7 foreach w € Q do
8 © « Build routes for scenario w using ALNS considering exogenous time windows
9: © < Add external routes from historical data
10: ® « Create copies of each route along exogenous time windows
11: ® « Check feasibility and exclude infeasible routes

12: return ©

The generated routes need to satisfy the compatibility between the vehicle, service, and
each endogenous time window. This means that several combinations between tempera-
ture, vehicle capacity, and arrival times need to be generated for each sequence of retail
sites to be visited and added to the considered set of routes. Analysing this set in con-
junction with the exogenous time windows of each service results in a set of compatibility
matrix of routes and endogenous service time windows. Parameter e, (used in our formu-
lation) indicates whether route r is able to serve service s in an endogenous time window
starting in slot w.

Figure 5.4 represents an example of the rational behind the feasibility checker of the route
generator (line 11, Algorithm 1).
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33 Fresh  [07:00-08:00)|  R1 A=1h | X Route R1 Capacity exceeds store accessibility
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Endogenous Time Window Possibility 1 VAN e | 01:30h available to perfom Service $1
Endogenous Time Window Possibility 2 N | 01:00h available to perfom Service §1

Figure 5.4 — In the example there is one route, R4, compatible with the exogenous time
window for fresh products. Two endogenous time windows can be defined to allow route
R4 to be performed.

Service S1 has an exogenous time window spanning through the interval [01:30-08:30]. In
the example, four routes are analysed. The first three routes are rejected due to capacity,
temperature, and late arrival time constraints, respectively. The fourth route allows for
two compatible endogenous time windows, one starting at 05:00 (slot w = 11) and another
starting at 05:30 (slot w = 12). These are the only possible endogenous time windows for
serving service S1 using route R4 (considering 30-minute granularity). If the endogenous
time window possibility 1 would advance in time, it would go out of the exogenous time
window of the service. If the endogenous time window possibility 2 would be sooner, there
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would not be enough time to serve the service due to its expected duration.

The pre-processing rational to define service, route, and time window compatibility elimi-
nates infeasible routes taking into account the rules that should be followed by each deliv-
ery schedule. Therefore, our approach can be adapted to several operational models with
distinct constraints, as long as the route set is entirely feasible.

5.3.2 Initial Solution Construction

The initial solution is constructed aiming at defining delivery schedules for each scenario,
by solving a series of sub-problems sequentially, using the set of routes ® to satisfy the
demand of the set of scenarios Q. This procedure is based on the ideas of the Relax-and-
Fix heuristic proposed by Pochet and Wolsey [2006]. In each sub-problem, our routing
variables z¥ are partitioned into three groups: The first group, S7- Jix " contains routing
variables with fixed values, the second, S7°7, contains routing to be optimized, and the
third, 87", contains routing variables for which the integrality constraints are relaxed.
The procedure starts by choosing a scenario w € Q to be considered which is the one whose
routing variables will be optimized. All the combinations between route and scenario (r, @)
are added to S7°"'. To be able to change the variable bounds of the initial formulation, we
define a sub-problem TWAVRPP-INIT as follows:

(TWAVRPP - INIT): minimize objective function (5.1) subject to constraints (5.2) —
(5.11) and the additional constraints to define variable bounds:

x%ZO’ ySWE{O’l}’ VZ)ENO’ (513)
ef0,1} V(r,w)eST, (5.14)
2 el0,1] Y(rw)eST™, (5.15)

After being optimized, the variables in the set ST are transferred to the set ST/,
Additionally, to fix their values z%, the following constraints are added to the formulation:

=7 V(rw)eST'™ (5.16)

The whole process is repeated until all the routing variables are fixed. Therefore, variables
will pass from the set ST, then to the set S7"* , and finally they end up in the set
ST In each iteration, we define the routing schedule for a new scenario @, maintaining
the values of the previously optimized scenarios fixed. Algorithm 2 shows the procedure
of the initial solution construction phase.
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Algorithm 2 Initial Solution Construction

1: procedure INITIALSOLUTIONCONSTRUCTION(L2, ®)

2: w « 0; fractional_initial_solution « 0;initial_solution < 0

3 S77"!  Relax variable integrality on all routing variables z

4 while w < |Q| do

5: @ <« Define the current scenario as w

6 ST °P' « Enforce integrality on routing variables z% of current scenario &

7 fractional_initial_solution < Solve TWAVRP-INIT considering Q,®, S7 P, ST el and ST/™*

8: ST/* Update the set of fixed variables and fix their values in the model
9: initial_solution < Fix the values of the integer routing variables in ST/
10: we—w+l
11: return initial_solution

5.3.3 Improvement Matheuristic

To improve the solution of the TWAVRPP, we propose an improvement matheuristic that
is inspired by the fix-and-optimize (F&O) version of Helber and Sahling [2010]. Since the
number of integer variables determines the major portion of the computational burden, we
are interested in dealing with these variables by iteratively solving a series of sub-problems
derived from the TWAVRPP formulation. The resulting sub-problems may be solved to
optimality by a Mixed-Integer Program (MIP) solver. Given that the number of integer
variables in each sub-problem is reduced, the time spent in each iteration is also smaller.

5.3.3.1 Definition of Variable Subsets and Subproblems

In order to define a sub-problem TWAVRPP-SUB, we need to select combinations of ser-
vices s and scenarios w, (s,w) € S7". Each combination (s,w) € ST "' € ST indicates
that all the variables related to the pair (s,w) are to be optimized in the sub-problem. The
remaining variables, related to the pairs (s,w) € ST/™ = ST\ST "', are to be fixed with
their current values. For instance, if the pair (1, 1) is selected, it means that the time window
variables yy,, and the routing variables z! are freed and re-optimized in the sub-problem.
Note that modern solvers are able to detect and cut routes that are not useful to serve the
services that are able to be optimized in the set ST 7. A sub-problem TWAVRPP-SUB
can be stated as follows:

(TWAVRPP -SUB): minimize objective function (5.1) subject to constraints (5.2) —
(5.12) and the additional constraints:

Ysw = Vsw Vsl(s,w)eSTfix,weW (5.17)

=7 Vol(s,w)eST™ re® (5.18)

where ¥, and Z¥ are solution values that come from the previous solution.
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5.3.3.2 Decomposition Strategies

In order to define the subset S7 7" various decomposition strategies can be used, depend-
ing on the entities that are selected. Note that the structure of the TWAVRPP offers an
additional difficulty compared to non-integrated problems. In fact, in this case, decompo-
sition strategies are not very effective if they do not consider the tactical and operational
components at the same time. If the routing variables are not freed, it is unlikely to find
improvements solely by changing time window variables because these decisions are very
related to each other. Hence, first and second stage decisions need to be jointly addressed.
We follow two different decomposition strategies:

e Scenario-Oriented Decomposition (SOD): each sub-problem considers variables of
a single scenario w. All the routing and time window variables are freed for a single
scenario.

e Location-Oriented Decomposition (LOD): each sub-problem considers all the vari-
ables related to a single location v. This means that all the service time window
variables related to a certain location and all the routing variables visiting that loca-
tion to serve any service are freed for all scenarios.

5.3.3.3 Iterative Algorithm

The basic idea of our matheuristic approach is to iteratively solve a series of sub-problems
based on the aforementioned decomposition strategies. Since our objective is to define a
set of service time windows and the delivery schedules to be executed under those time
windows, we needed to define a strategy that is able to capture interactions between these
entities to explore sub-problems where the potential for finding improvements is high. For
instance, if the time windows of every service are fixed, the problem can be decomposed
in several Vehicle Routing Problems (VRPs), thus it makes no sense to consider more than
one scenario at a time in the optimization process because no further improvement would
be found.

The SOD focuses on a single scenario and will most likely work on routing variables, mak-
ing small adjustments in time window variables. The routes used in fixed scenarios will
trap most of the service time windows. Therefore, this type of decomposition is to be used
whenever we assume that for the current set of time windows, large improvements can
be obtained in the routing variables. On the other hand, LOD works on the time window
and routing variables of every scenario, focusing on a certain location (or a set of loca-
tions). Time windows can be changed so that new routes become possible for improving
the objective function.

Given the characteristics of each type of decomposition, we conclude that the SOD is
most useful in the beginning of the algorithm, after a certain number of iterations using
other decompositions, and in the end of the algorithm to ensure the best routing schedule
for considered set of time windows. LOD should be used in the majority of the running
time as it is not so easy to reach local optima by solving the sub-problems based on this
decomposition. Algorithm 3 shows the general steps of our F&O approach.
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Algorithm 3 Improvement Matheuristic

1: procedure FAO(initial_solution, noimpy,,y, tlimit)
2: stop « false,noimp « 0, solutionp,s < 0

3: solutionpes; < S OD(initial_solution)
4. while not stop do
5: r « select random route from @™
6: ST P!  select set of services and scenarios based on r
7: solution « LOD(solutionpegs, ST °P")
8: if noimp > % then
9: solution «— S OD(solution)
10: if solution < solutionp,s then
11: solutionpeg; < solution, noimp < 0
12: else
13: noimp «— noimp + 1
14: if noimp > noimp . or time > tlimit then
15: stop « true
16: solutionpeg < S OD(solutionp,g)
17: return solutionp,

We start by setting the best solution after applying SOD to the initial solution (line 3 of
Algorithm 3). Afterwards, the algorithm iteratively focuses on the decisions related to sub-
sets of locations. In order to select a subset of locations, the algorithm randomly selects a
route (line 5, Algorithm 3) from the set of multi-location routes @ C ®, which comprises
all routes visiting more than one location. Since they are comprised in the same route,
these locations are associated for proving good savings in the routing cost and should be
considered in the same sub-problem. Therefore, after selecting a route r € O™ the algo-
rithm selects the subset S7° (line 6 of Algorithm 3), containing all the combinations
(s,w) between scenarios and services related to the locations visited by the route r. The
LOD procedure solves a sub-problem (line 7 of Algorithm 3) where all the time window
and routing variables of the services contained in S7 7 are freed. Improvements can be
found both in the routing cost and in the cost of vehicle fleet since sub-problems based
on the LOD are able to simultaneously select new routes and slide the beginning of the
service time windows. Whenever the number of non-improvements noimp reaches half of
the maximum number of non-improvements noimp,,,,, we apply SOD (line 9, Algorithm
3). Solutions are accepted if their objective value is better than the one of the current best
solution solutionpes; (line 10 of Algorithm 3). The algorithm stops after noimp,,, itera-
tions without improving or when the time limit t/imit is reached. One last SOD procedure
is used to optimize the delivery schedules for the incumbent set of service time windows.

5.4. Computational Experiments

This section presents the numerical results of our matheuristic solution approach and pro-
vides managerial insights regarding the TWAVRPP. First, we quantify the additional sav-
ings obtained by considering the stochastic optimization problem relatively to the case
where a set of time windows is computed a priori, considering one scenario with average
demands. Afterwards, we test three different operational models providing information
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regarding the potential savings achieved in each one, compared to a baseline solution (pro-
vided by a large European food retailer). Furthermore, we analyse the structure of each
solution by providing various routing indicators, such as the average number of routes per-
formed, the average number of visited locations per route, the average number of product
segments delivered per route, and time window dispersion.

All numerical tests were conducted on Intel®Xeon®E5-2650 processing units at 2.00GHz
and 16GB memory. A single thread was used. The tests were implemented in C++ (Visual
Studio 2015) using CPLEX 12.6 solver.

5.4.1 Instance Set

The data to build our instance set was provided by a large food retailer operating in Europe.
The data set includes information related to the month of January of 2017 indicating the
number of pallets of each type of product that was delivered to each location, as well
as the set of all the routes that was used by the company during that scenario. Since
the food retailer owns two independent warehouses, that serve two different regions, we
create a set of instances related to context N and another one related to context S. For
each context, the data are divided in four instances of one week, totalling eight instances
with real-world data. The locations of each retail site were maintained and the distance
and time matrices were computed using Google Maps API. The instances consider three
product segments which have different exogenous time windows in each context. All the
endogenous time windows have an amplitude of 60 minutes. Retail sites have different
accessibility constraints and can only be visited by a compatible vehicle. Demand scenarios
occurrence is considered to be equal. The description of our instances is summarized in
Table 5.2.

Table 5.2 — Instance data set description

Demand Number of pallets delivered of each service in January 2017
Locations Real-world coordinates

Travel distances and times Google Maps API

Product segments {Fresh, Frozen, Ambient}

Exogenous time windows for Fresh products [1200,4801", [1200,4801°
Exogenous time windows for Frozen products [360, 14401, [360, 144015
Exogenous time windows for Ambient products [0, 14401V, [0, 1440]°

Endogenous time window width 60 minutes for every product segment
Vehicle and retail site capacities {16, 20,22, 33,24, 26}

Scenario distribution Equal probabilities of occurrence
Fixed cost per vehicle per scenario 191.32

Variable cost per Km 0.432

Contexts N and S are different in terms of retail site coordinates, demand quantities, and
average number of visits per retailer. In Table 5.3, we provide a brief description of a set
of relevant indicators for each context. The context S considers a set of retail sites that are
further away from the depot but it has a lower demand average per retail site. One of the
most important indicators is the lower bound on the average number of necessary visits to
each retail site. The lower bound on the necessary number of visits to satisfy a given retail
site / in a given scenario w is given by > s d¥/q; , where g; is the capacity of the largest
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vehicle that can access retail site /. Note that in the worst case, 6 visits (split deliveries)
may be necessary to satisfy the total demand of a certain retail site comprised in context S.

Table 5.3 — Data context description

Travel distance Travel time Demand (Pallets) Lower bound on

from depot (km) from depot (min) necessary Vvisits
Context Min Max Avg Min Max Avg Avg  AvgKmPerUnit Avg Max
N 23 2659 67.1 6.1 1563 458 43.1 3.1 1.9 5.0
S 0.5 3203 956 22 176.0 624 41.5 2.8 1.9 6.0

5.4.2 Stochastic Optimization versus Average Demand Scenario

One of the main factors driving the relevance of our approach lies in the fact that consider-
ing a set of demand scenarios to define time windows is likely to outperform an approach
considering only one scenario with average demands. For the single product case, Spliet
and Gabor [2015] state that adopting time windows obtained by average demand scenarios
results in 1.85% cost increase. We performed similar tests on our multiple product case.
The solutions for the Stochastic Optimization (SO) approach are obtained by applying our
solution approach to the instances comprising various demand scenarios. The solutions for
the Average Demand Scenario (AD) approach are obtained in two steps: (1) an instance
with average demands is created and solved (AVG approach), defining a set of time win-
dows; (2) the instances comprising various demand scenarios are solved with the set of
time windows defined in the first step (i.e., there is no time window assignment in the sec-
ond step). For this experiment, we generated 8 instances (4 for each context) by randomly
selecting seven demand scenarios amongst the available data set. The results are presented
in Table 5.4.

Table 5.4 — The AD approach was outperformed by the SO in every instance. The total
average improvement for considering the SO approach is 5.3%.

Context Instance AVG AD SO ALZ‘—DSO

N 1_N 13824 104395 98492 5.7%
2 N 13135 103376 98171 5.0%
3_N 13613 107868 99037 8.2%
4 N 13550 104548 98619 5.7%

NAvg 6.1%

S 17884 136973 131380 4.1%
S 17849 138244 133411 3.5%
S
S

17720 136539 130534 4.4%
18270 140847 132303 6.1%

SAvg  4.5%
Total Avg  5.3%

Legend:

AVG - Average Demand, free windows | AD - 7 Scenarios, AVG windows | SO - 7 Scenarios, free windows
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The results show that the SO approach always outperforms the AD approach. In context
N the SO approach yields an average improvement of 6.1%. In context S, the average
improvement achieved by the SO approach is 4.5%. The instances of context S are more
difficult to solve. We suspect that the smaller improvements found for this context are due
to a larger deviation from the optimal solution. Additionally, the AVG column shows that
obtaining a smaller cost in the first step of the AD approach (solving the average scenario)
does not necessarily mean a smaller cost in the second step (solving various VRPTW with
fixed time windows).

5.4.3 Operational Models and Change Levels

In real-world applications, introducing changes in the planning process is generally very
difficult due to a large change resistance that companies demonstrate. Very disruptive so-
lutions are usually impracticable for real-world implementation. Therefore, we perform
a sensitivity analysis on a few time window conditions. We test our algorithm consider-
ing three different operational models: baseline, increase window, and product flexibility
(model parametrization presented in Table 5.5).

(1) In the baseline operational model, the characteristics of each time window are main-
tained as in the data set provided by the company. Therefore, in this operational model
there is a time window for each service with a 60-minute amplitude and multi-product
routes need to deliver at least g units of the main product.

(2) In the increase window oi)erational model, the amplitude of each time window is in-
creased by 60 minutes (30 on each side) while maintaining the obligation of delivering at
least g units of the main product in multi-product routes.

3) In the product flexibility operational model, it is not necessary to deliver at least ¢
units of the main product in multi-product routes. Thus, time windows are only produc_t
dependent when a route visits more than one location. This operational model considers
the original amplitude of 60 minutes.

Table 5.5 — Parameters to define each operational model in the mathematical formulation

Operational Model Amplitude Increase (min) q
Baseline 0 1 -min{gylk € K}*
Increase Window 60 % -min{qilk € K}*

Product Flexibility 0 0

*Percentage of the smallest vehicle in the fleet

(i.e., If the smallest vehicle has a capacity of 16 pallets, at least 8 pallets of the main product need to be delivered)

Furthermore, for each operational model we test four retail site time window change levels:
0%, 25%, 50%, and 100%. The change level indicates the percentage of retail sites in which
at least one of the service time windows can be moved back or forth. This means that the
beginning of the time window is altered in relation to its original position in the delivery
plan.
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5.4.3.1 Sensitivity Analysis

The results of our sensitivity analysis are presented in Table 5.6. The first three columns
indicate the context, change level, and operational model considered, respectively. Since
our algorithm includes a non-deterministic selection of entities to define sub-problems,
each instance (considering one week) is run five times. Each row represents the average
values obtained for the four weeks of data, totalling 20 runs. Column Avg Runtime shows
the average runtime whereas column Avg Objective indicates the average values of the
objective function. To describe the deviation between runs, we show the average standard
deviation on column Avg StdDev. Column Avg Gap indicates the average gap relatively to
the best-known solution of each instance (obtained during our tests). The last four columns
represent different views of the savings that are obtained. Column Avg Savings (Change)
indicates the savings relatively to the baseline scenario of each change level. Column
Avg Savings (Global) indicates the savings relatively to the baseline operational model of
each context with a change level of 0%. Columns Avg FC Savings (Change) and Avg
FC Savings (Global) indicate the savings coming from the fixed cost term in the objective
function, which represents the fleet cost. For instance, in the second row of Table 5.6, 28%
of savings are achieved and 68% of these savings come from the fixed cost term.

Table 5.6 — Computational results for every combination of operational model and change
level. The best operational model in terms of savings is shown in bold.

Change . Avg Avg Avg Avg A\.,g Avg FC Ayg AVg. FC
Context Level Operational Model Runtime (s) Objective StdDev GAP* Savings Savings Savings Savings
) (Change) (Change)** (Global) (Global)**
N 0% Original 2491 247 680 681 0.00% - - - -
IncreaseWindow 2872 178 086 1357 0.01% 28% 68% 28% 68%
ProductFlexibility 2990 142051 774 0.00% 43% 59% 43% 59%
25% Original 13 241 151 385 2125 1.08% - - 39% 75%
IncreaseWindow 13312 133795 1330 1.31% 11% 56% 46% 72%
ProductFlexibility 4157 118 072 1944 1.02% 21% 43% 52% 67%
50% Original 9929 123238 1193 0.71% - - 50% 76%
IncreaseWindow 23395 111983 1840 1.78% 8% 47% 55% 73%
ProductFlexibility 4317 111590 1210 0.15% 9% -23% 55% 67%
100%  Original 9406 115398 1289 0.58% - - 53% 75%
IncreaseWindow 21448 107 320 2703 3.53% 6% 62% 57% 72%
ProductFlexibility 4138 111387 1392 0.15% 3% -206% 55% 67%
S 0% Original 11195 234014 47  0.00% - - - -
IncreaseWindow 14 381 195 394 2643 0.61% 17% 61% 17% 61%
ProductFlexibility 13 168 163 993 1504 0.00% 30% 53% 30% 53%
25% Original 12 605 182 819 2458 0.27% - - 22% 69%
IncreaseWindow 28 459 157 550 1283 1.02% 14% 66% 33% 67%
ProductFlexibility 13317 145 251 5345 3.46% 20% 64% 38% 69%
50% Original 27 091 146 180 2373 1.16% - - 38% 75%
IncreaseWindow 39 096 137 896 827 0.50% 5% 44% 41% 71%
ProductFlexibility 12 658 138 697 4600 3.31% 4% 25% 41% 69%
100%  Original 33838 137 558 1207 0.64% - - 41% 73%
IncreaseWindow 50271 132461 875 0.42% 3% 32% 43% 71%
ProductFlexibility 16876 1353591 2981 1.25% 1% -500% 2% 67%
* Relatively to the best-known solution (each instance is run 5 times)
ok Percentage of savings obtained in the fixed cost

(Change) Savings related to the best-known solution for the baseline operational model inside the change level group
(Global)  Savings related to the best-known solution for the baseline operational model and a change level of 0% inside the context
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The results show that it is possible to obtain large savings in both contexts, being slightly
larger savings in context N. However, there are plenty of combinations between operational
model and change level to achieve satisfactory savings across both contexts. Nonetheless,
it is important to note that changing time windows requires some implementation effort.
Table 5.6 is a useful instrument to trade-off the implementation efforts versus the potential
savings that can be achieved. In some cases, it may be easier to maintain the baseline
operational model and move some time windows back and forth whereas in other cases it
may be preferable to change the operational model without moving time windows.
Regarding the operational models that are tested, we conclude that widening time windows
amplitude or increasing the product flexibility of multi-product routes are very promising
alternatives. Even when the start of the time windows is maintained, the increase window
operational model achieves savings of 28% in context N and 17% in context S. The product
flexibility operational model achieves savings of 43% in N and 30% in context S. Thus,
increasing the product flexibility of multi-product routes may be the best decision when
the position of time windows cannot be changed in any retail site.

With respect to the change level parameter, large savings can be obtained even under the
baseline operational model. If the starting time of the windows of 25% of the retail sites
is allowed to be changed, the context N achieves average savings of 39% and the context
S 22%. For every operational model, no significant differences occur when the number of
retail sites changed is larger than 50%. Therefore, there is no need to change more than
50% of the retail sites to achieve the largest savings potential. Additionally, savings seem to
converge across every operational model when the change level parameter increases above
50%. However, the increase window and product flexibility operational models may obtain
better results in the long run as they offer increased flexibility to cope with more disruptive
demand scenarios. Figure 5.5 provides a summary of the savings that can be achieved for
each operational model and change level.

Savings Savings
60% 60%

50% . 50% 43%

40% 40% 0% o Y — ——J 1%

30%

30% 30%

20% 20% o

10% 10%

0% 0%
0% 25% 50% 100% 0% 25% 50% 100%
Change leve Change leve

-@-Baseline - Increase Window Product Flexibility -@-Baseline - Increase Window Product Flexibility

Figure 5.5 — Average savings (Y-axis) achieved in context N (left) and context S (right) for
each change level (X-axis) and operational model (compared to the baseline operational
model with 0% changes)

Finally, we need to emphasize the portion of the savings that comes from the fixed cost
term of the objective function. The last column of Table 5.6 shows that a large portion of
the savings is due to the minimization of the number of vehicles needed in each scenario.
For a visual representation of the role of our novel objective function, Figure 5.6 shows an
example of two different profiles describing the number of necessary vehicles in each time
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slot. Note that, vehicle requirement profiles can be very different depending on the delivery
schedule. In this case, although the problem is constrained by an exogenous time window
for fresh products, it is possible to smooth the peak that existed nearby. In terms of fixed
cost, the savings for a scenario with the profiles shown in Figure 5.6 are given by AV - fc,
where AV is the reduction on the number of vehicles and fc is the fixed cost associated
with each vehicle.

Fresh Products
#Vehicles Exogenous Time Windows

[av

_/\/\—W

—
Baseline ——TWAVRPP Time

Figure 5.6 — The figure shows the Baseline and the profile obtained after optimizing time
windows with our solution approach (TWAVRPP).

The effects caused by imposing exogenous time windows are generally translated into a
large number of overlapping time windows in some time slots. The worst case would re-
quire one vehicle to be arriving at each store in the same point in time. In the example,
the baseline solution shows a peak of vehicle needs during the exogenous time window for
fresh products. The idea of the new objective function is to smooth the peak while mini-
mizing the total travelled distance, complying with business constraints. Note that in this
case, the number of necessary vehicles decreases by AV. This issue has been addressed in
some works related to different problems (as in Bhusiri et al. [2014]), yet the time window
assignment literature ignores the fixed cost. For these reasons, we consider that this term
should not be ignored when approaching the TWAVRP.

5.4.3.2 Solution Structure Analysis

In order to further explore the differences between the structure of the solutions obtained
in each combination of operational model and change level, we analyse six dimensions
that are of utmost importance for deriving conclusions from problems with a strong rout-
ing component: (1) number of routes performed, (2) type of routes performed, (3) number
of drops per route, (4) vehicle occupation, (5) number of product segments delivered per
route, (6) number of stores with overlapping time window per time slot. We interpret the
interaction between each dimension with the savings obtained for each combination of op-
erational model and change level, providing a set of figures with operational indicators

To analyse dimensions (1) and (2), Figure 5.7 depicts the average number and type of
routes performed for every combination of operational model and change level (for both
contexts).
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Figure 5.7 — Average number of routes (Y-axis) performed in context N (left) and context
S (right) for each change level (X-axis) and operational model

As expected, one of the main reasons for obtaining the substantial savings described in Fig-
ure 5.5 is due to a large reduction in the number of routes. Figure 5.7 allows us to draw two
different conclusions that apply to both contexts, N and S. First, by providing additional
flexibility to change the beginning of a larger number of time windows, new routes become
available in every operational model. Therefore, for larger change levels, a smaller number
of routes is generally achieved. Second, for the same change level, increasing time win-
dow amplitude or adding product flexibility allows for a reduction in the number of routes,
relatively to the baseline operational model. However, in each operational model, we find
different reasons to achieve such reduction. When the amplitude of the time windows is
increased, the savings come from new multi-location routes that are performed, which are
more efficient than direct routes as they increase the number of drops per route (routes can
visit more locations). When product flexibility is given, the savings come from new multi-
product routes that are performed, which are more efficient than direct routes because they
reduce the number of drops to each location (loads are consolidated). These findings are
in-line with the research on consolidation presented by Mesa-Arango and Ukkusuri [2013].

Dimensions (3) and (4) are analysed with Figure 5.8, which provides information on the
number of drops per route, as well as the average vehicle occupation achieved for each
combination of operational model and change level.

Number of drops Number of drops
2.00 2.0 67%
67%
60% @ oo @ 65% '
1.80 s8% @ 5% @ 1.80 62% @ 62% @
53% : 58%
1.60 3% @ 53% @ 1.60 ® 56% @
51%
140 | 4% @ 46% @ 140 | ®
1.20 38% i ; 120 | 64% 64% 65% 64%
> 629 62%
62% 62% O 2% O 0 O
1.00 1.00
0% 25% 50% 100% 0% 25% 50% 100%
Change level Change level
® Baseline @ IncreaseWindow O ProductFlexibilit ® Baseline @ IncreaseWindow O ProductFlexibilit:

Figure 5.8 — Average number of drops (Y-axis) performed in context N (left) and con-
text S (right) for each change level (X-axis) and operational model (bubble size and label
represents average vehicle occupation)

The number of drops per route is intimately connected with the type of routes that is per-
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formed. In Figure 5.8, for each operational model and change level, we show the average
number drops per route as well as the average vehicle occupation. Savings in the base-
line and increase window operational models come from visiting more locations within the
same route. Note that as the number of locations increases, the vehicle occupation also
increases (even by performing routes delivering only one product segment). In the product
flexibility operational model, although the number of drops does not vary substantially, the
new routes allow for larger vehicle occupations. Since more product segments are consoli-
dated, the number of drops is reduced. In fact, in most cases, one drop is enough to deliver
the total demand of a certain retail site (regardless of the product segment).

Regarding dimension (5), the number of products per route, we present Figure 5.9.

Number of products
2.50

0% 25% 50% 100% 0% 25% 50% 100%

Change level

® Baseline M ncreaseWindow ProductFlexibilitv ®Baseline M ncreaseWindow ProductFlexibilitv

Figure 5.9 — Average number of product segments (Y-axis) delivered in each route in
context N (left) and context S (right) for each change level (X-axis) and operational model

Figure 5.9 allows us to confirm that in both contexts, the number of product segments deliv-
ered per route is larger in the product flexibility operational model. It seems that delivering
more product segments per route is the reason why the product flexibility operational model
achieves larger savings, even showing the smallest number of drops per route. Comparing
the baseline and increase window operational models, we show that the average number of
product segments delivered per route is the same. Therefore, the savings obtained in the
increase window operational model are mostly due to an increase in the number of drops
per route (as concluded from Figure 5.8). The change level parameter does not influence
the number of products per route.

Finally, Figure 5.10 analyses dimension (6) by trying to capture the dispersion of the time
windows assigned in the tactical problem.
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Figure 5.10 — Coefficient of variation of the number of active time windows per time
slot (Y-axis) in context N (left) and context S (right) for each change level (X-axis) and
operational model

Intuition tells us that having time window assignments with a large number of overlapping
time windows may induce delivery schedules with larger fleet requirements for certain
time slots. For instance, if the time window assignment defines a solution with all the time
windows for fresh products overlapped, this could mean that a vehicle is needed in each
store at the same time (number of vehicles ~ number of stores). For that reason, we try
to measure the dispersion of the stores with some active time window in each time slot
by computing the coefficient of variation of the number of stores with overlapping time
windows. Thus, vehicle profiles with large peaks are penalised with large coefficients of
variation. Figure 5.10 shows the referred coefficient of variation for every tested operational
model and change level. In general terms, we can conclude that for smaller coefficients
of variation (when time windows are sparser), larger gains are achieved. This impact gets
clearer when analysing the change level parameter. In case more retail sites can be changed,
smaller coefficients of variation are obtained, resulting in larger savings. Therefore, time
window dispersion is a characteristic that is inherent to good solutions for the TWAVRP.

5.5. Conclusion

This research proposes and explores an extension for the TWAVRP. We model it as a
two-stage stochastic optimization problem and propose a novel mathematical formulation
where product dependent time windows need to be assigned, while minimizing the total
cost incurred in travelled distance and fleet requirements. The latter term is usually ignored
in TWAVREP literature, however it is shown that it can assume a huge importance both in
terms of cost as well as in the type of routes that is used to satisfy demand. Indeed, it may
be beneficial to perform shorter routes outside the time slot in which the fleet requirement
is maximum, instead of performing better routes overlapping that time slot. Therefore,
smoothing the peak of vehicle needs may be beneficial even if the routing cost needs to
increase by a small amount to decrease the number of vehicles. For that reason, we propose
the inclusion of a new term in the objective function to capture the maximum number of
vehicles that is necessary in each scenario. Furthermore, we add realism to the TWAVRP
by proposing a set of constraints to handle routes delivering more than one product. The
developed formulation provides higher levels of flexibility as it is able to adapt to various
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operational models.

In order to tackle large realistic instances, we develop a three-phase solution approach that
relies on a pre-generated set of routes that can be adapted to a large number of routing mod-
els, including delivery time windows, heterogeneous fleet, multiple product split deliveries,
among other features. After building an initial solution, we improve the incumbent solution
by means of a matheuristic, which iteratively solves a series of sub-problems where retail
sites with large potential are jointly optimized. The solution approach is effective and can
solve real-world instances in reasonable time.

Our computational experiments are performed over a set of instances provided by a large
food retailer, considering two different business contexts. First, we assess the value of
considering a stochastic optimization approach compared to using an approach based on a
single scenario with average demand. In our multiple product context, the results show an
average cost decrease of 5.3% when various demand scenarios are used in the stochastic
optimization approach. Second, to validate the flexibility of the model and provide valu-
able managerial insights on the TWAVRP, we extend our computational experiments to
cover three different operational models crossed with a sensitivity analysis on the number
of retail site time windows allowed to be changed. The results show that widening the time
windows or relaxing the product dependency of each time window can result in large sav-
ings compared to the baseline operational model. Results indicate that it suffices to arrange
time windows on 25% of the retail sites to obtain interesting savings in both contexts. Ad-
ditionally, arranging time windows on more than 50% of the retail sites does not provide a
substantial increase in the potential savings. This is a valuable finding considering that the
change level can be seen as an indicator of the implementation effort. We summarize the
findings coming from our analysis on five managerial and operational insights:

1) In order to achieve substantial savings, conditions to reduce the number of routes need
to be created (such as some time windows that need to be moved to allow for more
efficient routes).

i1) It is possible to achieve substantial savings with a small number of drops per route if
the load is more consolidated (as more product segments are delivered per route).

iii) It is possible to achieve substantial savings by delivering a small number of product
segments per route if routes are longer (as more drops are performed per route).

iv) In the sensitivity analysis, increasing product-segment consolidation showed to be
superior to widening time window amplitude in terms of potential savings.

v) Time window dispersion (i.e., a measure for the number of overlapping time windows)
should be a goal while solving the tactical time window assignment.

Finally, we show the importance of including the fleet requirement cost in the objective
function. The majority of the savings obtained is related to the fixed cost incurred on the
number of vehicles to perform the routes of each scenario. However, as future work, and
based on the experience achieved during the implementation of our solutions, we consider
that it is very important to include other types of costs related to every stakeholder that is
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involved along the supply chain. For instance, the cost of human resources, infrastructure
development, and equipment have not been explicitly considered in this work but can have
a large impact on the solution space. Changing time windows impacts every link of the
supply chain. Therefore, to correctly assess the trade-offs associated with the TWAVRP and
implement solutions in the real-world, it is necessary to further develop and add realism to
the formulations that are proposed in the literature.

Acknowledgements

This research was partly supported by the PhD grant SFRH/BD/108251/2015, awarded
by the Portuguese Foundation for Science and Technology (FCT), and by the project
TEC4Growth - Pervasive Intelligence, Enhancers and Proofs of Concept with Industrial
Impact/NORTE-01-0145-FEDER-000020, financed by the North Portugal Regional Oper-
ational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement,
and through the European Regional Development Fund (ERDF). This support is gratefully
acknowledged.

Bibliography

Agatz, N., Campbell, a., Fleischmann, M., and Savelsbergh, M. (2011). Time slot manage-
ment in attended home delivery. Transportation Science, 45(3):435-449.

Baldacci, R., Mingozzi, A., and Roberti, R. (2012). Recent exact algorithms for solving the
vehicle routing problem under capacity and time window constraints. European Journal
of Operational Research, 218(1):1-6.

Bhusiri, N., Qureshi, A. G., and Taniguchi, E. (2014). The trade-off between fixed vehicle
costs and time-dependent arrival penalties in a routing problem. Transportation Research
Part E: Logistics and Transportation Review, 62(Supplement C):1 — 22.

Braekers, K. and Kovacs, A. A. (2016). A multi-period dial-a-ride problem with driver
consistency. Transportation Research Part B: Methodological, 94(Supplement C):355 —
377.

Cordeau, J. F., Laporte, G., and Mercier, A. (2001). A unified tabu search heuristic for
vehicle routing problems with time windows. The Journal of the Operational Research
Society, 52(8):928-936.

Deflorio, F., Gonzalez-Feliu, J., Perboli, G., and Tadei, R. (2012). The influence of time
windows on the costs of urban freight distribution services in city logistics applications.
European Journal of Transport and Infrastructure Research, 12(3):256-274.

Groér, C., Golden, B., and Wasil, E. (2009). The consistent vehicle routing problem.
Manufacturing & Service Operations Management, 11(4):630-643.



Bibliography 157

Helber, S. and Sahling, F. (2010). A fix-and-optimize approach for the multi-level capac-
itated lot sizing problem. International Journal of Production Economics, 123(2):247-
256.

Jabali, O., Leus, R., van Woensel, T., and de Kok, T. (2015). Self-imposed time windows
in vehicle routing problems. OR Spectrum, 37(2):331-352.

Kallehauge, B. (2008). Formulations and exact algorithms for the vehicle routing problem
with time windows. Computers and Operations Research, 35(7):2307-2330.

Kovacs, A. A., Golden, B. L., Hartl, R. F.,, and Parragh, S. N. (2015). The Generalized
Consistent Vehicle Routing Problem. Transportation Science, 49(4):796-816.

Mesa-Arango, R. and Ukkusuri, S. V. (2013). Benefits of in-vehicle consolidation in less
than truckload freight transportation operations. Procedia - Social and Behavioral Sci-
ences, 80(Supplement C):576 — 590.

Pochet, Y. and Wolsey, L. A. (20006). Production planning by mixed integer programming.
Springer Series in Operations Research and Financial Engineering. Springer, New York.

Salhi, S., Wassan, N., and Hajarat, M. (2013). The fleet size and mix vehicle routing prob-
lem with backhauls: Formulation and set partitioning-based heuristics. Transportation
Research Part E: Logistics and Transportation Review, 56(Supplement C):22 — 35.

Spliet, R., Dabia, S., and van Woensel, T. (2017). The time window assignment vehicle
routing problem with time-dependent travel times. Transportation Science, Articles in
Advance.

Spliet, R. and Desaulniers, G. (2015). The discrete time window assignment vehicle routing
problem. European Journal of Operational Research, 244(2):379-391.

Spliet, R. and Gabor, A. F. (2015). The Time Window Assignment Vehicle Routing Prob-
lem. Transportation Science, 49(4):721-731.

Sternbeck, M. G. and Kuhn, H. (2014). An integrative approach to determine store delivery
patterns in grocery retailing. Transportation Research Part E: Logistics and Transporta-
tion Review, 70(Supplement C):205 — 224.

Subramanyam, A. and Gounaris, C. E. (2016). A branch-and-cut framework for the
consistent traveling salesman problem. European Journal of Operational Research,
248(2):384-395.

Toth, P. and Vigo, D., editors (2001). The Vehicle Routing Problem. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA.



158 Chapter 5. Routing for time window assignment

Appendix 5.A  Other Operational and Business Constraints

We provide extensions to the proposed formulation so as to include additional operational
and business constraints related to the stakeholders involved in the time window assignment
process.

5.A.0.1 Docks Availability

Given that vehicles need to be loaded at the warehouse, the number of available docks
must be considered in the formulation. The number of docks available for loading vehicles
may differ between time slots, as the docks may perform other activities, such as unloading
goods from suppliers. In order to consider dock availability, we define two new parameters.
L, 1s one if route r is loading during time window w, zero otherwise. maxDocks,, refers
to the number of available docks during time window w. Constraints (5.19) are added to
ensure that the number of used docks in each time slot w is respected in each scenario w.

erw-zﬁ'ﬁmaxDocksw YweWweQ (5.19)
re®

5.A.0.2 Driver Shifts

Logistics providers define certain time periods for switching drivers assigned to vehicles
that are available 24 hours a day. This means that a smaller number of routes should be
active during time periods allowed for drivers’ changes. For that reason, we define H"*"¢¢
as the set of time slots w designated for changing drivers. Given the maximum number of
available drivers during time slot w (maxDrivers,,), constraints (5.20) are added to limit
the number of active routes in H""g¢,

Z hyw -2 < maxDrivers,, YweQ,we H¢hange (5.20)
re®

5.A.0.3 Refrigerated Products Time Window

Food retailers pay special attention to fresh products. Since fresh products demand delicate
reception operations, retail sites are interested in knowing the exact time at which they will
be delivered. This means that even in multi-product deliveries, fresh products must always
respect their time window. For that end, constraints (5.21) are added for the set of services
considering fresh products S F7¢s",

Crow X2 <voy YweEQre®weW,seshresh (5.21)
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5.A.0.4 Consolidated Deliveries at Smaller Stores

Some retail sites receive small quantities of goods and demand a single consolidated de-
livery for certain sets of products. For each store, we must force some time windows to
be overlapped in case they are within set S;, which comprises the services of retail site /
that should be served at the same time. Constraints (5.22) ensure that the time windows of
services that are to be consolidated begin in the same time slot.

Yow =Ysow Vsl,s2€S8,leLLweW (5.22)

5.A.0.5 Autonomous Deliveries

The infrastructure of some retail sites allows them to receive goods without the need of a
receptionist. Depending on the conditions available on the reception chamber, some prod-
ucts can be received with the store closed (i.e., during the night). Although these deliveries
provide a large flexibility while planning distribution, they require an assistant to help in
the unloading operation. Routes with autonomous deliveries need to incorporate the cost of
the assistant in their cost @4 where at least one autonomous delivery is performed and
a parameter a; indicating whether the route r is able to serve a certain service. Constraints
(5.23) forbid autonomous deliveries to retail sites without the necessary conditions.

X% < ag Vre @M seS wel (5.23)
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6.1. Introduction

Customer satisfaction is becoming one of the main drivers in competitive markets, and
therefore new factors need to be considered during the planning and execution of delivery
operations. In some markets, customers try to simultaneously decrease their overall stock
levels and increase response time in case of a stock-out. This puts pressure on distributors,
especially when faced with stiff competition, to increase the frequency of delivery and to
be more concerned about good service levels rather than directly reducing operating costs.
In this setting, the operational efficiency of the resources involved in this entire process is
crucial, as the line separating profit from loss is a fine one. From an Operations Research
point of view, these delivery operations often boil down to vehicle routing problems that
arise whenever goods need to be distributed to a series of delivery locations by more than
one vehicle. While this broad description fits a wide variety of applications, it is common
for several specific business characteristics to hamper the decision making process regard-
ing this problem, which in turn leads to the development of increasingly specific models
that relate more closely to practical issues faced by companies.

In the distribution business, it is common for service level agreements to include a maxi-
mum time span between ordering and delivering or multiple deliveries throughout the day.
While the existence of time windows is often the case in vehicle routing problems, the pres-
ence of multiple daily customer-specific shipping periods increases planning complexity as
it is not possible to aggregate orders from the same customer on the same route if they are
placed at different periods of the day. In this research we are concerned with a scenario in
which customers have different service level agreements. In this setting, customers have
different shipping periods, time-windows of varying length, and also different allowed time
spans between ordering and delivering.

These distribution systems are, of course, challenged by uncertainty, which makes planning
and execution even more difficult. Uncertainty arises from several sources such as demand,
service times and customers’ locations. To tackle it there are two main operational models
that may be used: flexible routes that are routed dynamically based on the current orders
that have to be delivered or consistent routes where the set of clients that are served per
route has been defined a priori. The first option could theoretically lead to better sizing of
the fleet and more optimized routes, but it ignores the fact that, upstream, the orders that
are known a couple of hours beforehand, have to be prepared and consigned to a given
delivery vehicle. On the other hand, the use of consistent routes increases driver familiar-
ity with their own routes and territories, which improves driver efficiency. Moreover, the
increased focus on customers makes driver recognition an even more important factor in
route planning. Consistent routes also provide an easier, more stable way to manage de-
livery schedules and enable the possibility of delivering to customers at approximately the
same time every day. The consistency of customer-route assignment may also be motivated
by operational level constraints when customer’ order placement deadlines are very close
to vehicle departure. In these situations, it may be necessary to start picking operations and
loading the vehicles before the full list of orders for the period is known. Finally, the as-
signment of each order to a vehicle is easier to manage and less error-prone with consistent
routes.
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Companies that use this type of consistent routes are fairly common in small package dis-
tribution industries faced with strong competition and highly demanding customers, with
pharmaceutical and automobile spare parts distribution being the best-known examples.
Other activities in which consistent routing is relevant include home care services, and also
the transportation of children, the elderly or the disabled.

The tactical challenge of these logistics systems is in the design of the best set of consistent
routes that result in the lowest operating costs. This problem is known in the literature
as the Consistent Vehicle Routing Problem (conVRP). In recent years, the conVRP has
been attracting the attention of the academic community as innovative and better solutions
are being requested by companies. In problems such as this, customers are assigned to
specific routes before any order has been placed during a tactical planning phase. On the
operational level, every order placed by a customer will be served by the same vehicle at
approximately the same time over multiple days. However, developing stable, consistent
route plans that perform well in practice while still being efficient is a difficult task that
many companies struggle with. Tools that assist decision-making in these conditions and
take business characteristics into consideration are therefore very useful and desired by
practitioners.

Several approaches have been proposed to address variants of the problem tackled in this
paper. Nevertheless, our contribution is two-fold. Firstly, to the best of our knowledge,
there is no literature that tackles the service level agreements often encountered in these
logistics systems, in which not only time windows are settled, but also the time between
ordering and receiving on the same day is defined as well as multiple shipping periods per
day. This drastically limits the number of clients to be paired and the flexibility of the
departure times of the vehicles. Secondly, although several formulations have been put
forward to solve conVRPs, they were never used to address real-world instances. In this
paper, we propose a solution method leveraged by a Fix-and-Optimize approach that fully
utilizes the mathematical model developed and aims to be well-suited for application in
real-life business situations. In order to test its validity and potential, the solution method
is used with historical data to plan the consistent routes of a pharmaceutical distribution
company with over 3,000 daily deliveries in an environment with both expected and unex-
pected customers with uncertain demand. The proposed plans are then simulated and their
performance is compared to real-world plans in a case study.

The remainder of this paper is organized as follows. Section 6.2 introduces a literature
review of the vehicle routing problem and some of its specific formulations with more
relevance to our problem. Section 6.3 presents the formulation of the problem and the
corresponding mathematical model, while Section 6.4 comprehensively describes the pro-
posed solution approach. The case study is then introduced in Section 6.5 with a brief
description of both the company’s operations and all the tools developed and used during
the analysis. In Section 6.6, the results of the proposed model in the real case study are
shown and analyzed. Finally, conclusions and improvement opportunities are discussed in
Section 6.7.
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6.2. Literature Review

Since its introduction by Dantzig and Ramser [1959], the research community has been ex-
tensively studying different VRP variants and applications. As expected, the complexity of
the challenges addressed also underwent a massive increase as the value of the optimization
techniques attracted the interest of most competitive logistics operators. The computational
power that is available nowadays enables the scientific community to further develop new
mathematical models as well as the necessary methods to solve them. This remarkable and
logical evolution is described by Laporte [2009].

Our main challenge is inspired in the real case of a pharmaceutical distributor which points
various reasons for adopting consistent routes over a reasonably long period of time. In
this case, the term consistent accounts both for drivers and delivery times of each route.
Thus, our routing plans need to define a set of routes that are driver and time consistent.
Since we consider these to be the main aspects of the problem we aim to solve, we position
the problem in the conVRP literature. Besides the consistency aspects, the conVRP is
intimately related with two other problems: the Period Vehicle Routing Problem (PVRP)
and the VRP with Time Windows (VRPTW). In fact, in the conVRP, after defining a set of
time windows, we still need to solve a PVRP which incorporates a VRPTW in each period.
Although this literature review resorts to the three aforementioned problems, the reader
is referred to the Rich Vehicle Routing Problem (RVRP) literature surveys provided by
Doerner and Schmid [2010], Caceres-Cruz et al. [2014], and Lahyani et al. [2015]. Indeed,
to adapt our formulation for the real-world application, various business-related constraints
need to be added so as to obtain company-compatible solutions.

6.2.1 Vehicle Routing Problem With Time Windows

Besides the consistency constraints regarding the number of drivers servicing each cus-
tomer, the problem we aim to tackle considers time-windows for each request. This feature
is usually necessary in real-world problems as customers need to be prepared to receive
shipments. This type of constraint is responsible for a significant increase in complexity
and most successful approaches are obtained with non-exact methods. Additionally, it is
worth mentioning that our challenge also considers release dates for each order, which is
a concept that was recently introduced by Cattaruzza et al. [2016]. Release dates are inti-
mately related with the VRPTW as they roughly change the bounds of the variables con-
trolling the beginning of each time window. For these reasons, we review related VRPTW
literature.

Solution approaches based on the Tabu Search (TS) metaheuristic have been proven to be
quite efficient. Taillard et al. [1997] propose a TS heuristic for a Vehicle Routing Prob-
lem (VRP) with soft time-windows. The vehicles are allowed to arrive late at customer
locations, although a penalty is incurred in the objective function. The algorithm uses a
stochastic insertion heuristic to construct different solutions. Then, the TS heuristic is ap-
plied to each solution and the resulting routes are stored in an adaptive memory, which
will be later used to construct other solutions. A post optimization procedure is applied
to each individual route. This methodology has produced the best-known solutions for
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VRPTW benchmark instances. Extending the work of Shaw [1998], Pisinger and Ropke
[2007] present a general heuristic for several VRPs, including the VRPTW. An Adaptive
Large Neighborhood Search (ALNS) metaheuristic is applied, improving 183 best-known
solutions out of 486 benchmark tests. In this metaheuristic, a number of simple algo-
rithms compete to modify the current solution. In each iteration, one algorithm destroys
and another algorithm repairs the solution. The choice of the algorithms to be used in each
iteration is made by an adaptive layer, which is biased according to the past performance of
each algorithm. The authors describe this methodology as a sequence of fix-and-optimize
operations. The fix operation selects a subset of variables that are fixed at their current
value whereas the optimize operation seeks to find a near-optimal solution by changing
non-fixed variables. This is one of the most successful methods among the VRP commu-
nity and therefore we consider that exploring different techniques to fix and optimize parts
of routing problems is a promising research direction. Cordeau et al. [2001] propose a
unified TS heuristic for the VRPTW where an initial solution is constructed, without guar-
anteeing feasibility. Afterwards, the TS algorithm generates a certain number of solutions
and chooses the best, feasible one. This solution is then post-optimized by applying a spe-
cialized heuristic for the Traveling Salesman Problem with Time Windows (TSPTW) to
each individual route. The computational experiments show that the proposed algorithm
may not be the best available for the VRPTW. Nevertheless, this weakness is compensated
by the flexibility, the speed of execution, and memory usage of the approach. The pro-
gram can run on any computer with minimal resources, solving instances with up to 100
customers. Recently, Vidal et al. [2015] uses different approximation methods to explore
the contribution of exploring infeasible solutions in heuristic searches for the VRPTW. All
tested relaxations introduce positive impacts in terms of solution quality, computational
time or scalability.

Purely exact methods are not as common in the literature as they are not able to solve
instances with a large number of customers. The survey presented by Kallehauge [2008]
reviews four different formulations for the VRPTW and describes two main lines of devel-
opment concerning exact algorithms. One focused on general decomposition approaches
and on the solution of dual problems associated with the VRP. The other is concerned with
the analysis of the polyhedral structure of the problem. Baldacci et al. [2012] review recent
exact methods for the VRPTW and report a comparison between different approaches. It
is interesting to observe that state-of-the-art approaches can only solve instances with less
than 100 customers.

6.2.2 Periodic Vehicle Routing Problem

The PVRP demands the definition of vehicle routes for several periods without considering
consistency constraints. Unlike the conVRP, the PVRP has been studied extensively for
more than forty years and its applications cover numerous contexts. Recently, many appli-
cations have been considering the classic PVRP as a basis to which additional constraints
or alternative objectives are added [Campbell and Wilson, 2014]. The conVRP is an appli-
cation of the PVRP considering consistency constraints and the two problems are closely
related. Therefore, it is worth reviewing the literature concerning this topic. The period-
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icity of VRP may be considered in three different ways: a) a predefined set of allowable
delivery schedule alternatives [Christofides and Beasley, 1984]; b) the intervals between
deliveries to each customer [Cordeau et al., 2001]; ¢) minimum and maximum required
spacing between deliveries [Gaudioso and Paletta, 1992]. In this paper, we are particularly
interested in the first and second cases, as they are closely related to our challenge in the
sense that service level agreements may be modeled with the help of these two concepts.
The PVRP has been tackled by numerous solution approaches. Cordeau et al. [1997] pro-
pose a TS metaheuristic for a PVRP with multiple depots, solving instances with up to 360
customers and 9 time periods. Hemmelmayr et al. [2009] present a VNS for a PVRP with
time-windows. The initial solution is constructed by solving a VRP for each day using the
Clarke and Wright savings algorithm [Clarke and Wright, 1964]. Afterwards, the algorithm
searches for better solutions by applying the ideas presented by Hansen and Mladenovié
[2001]. The algorithm finds new best solutions for instances containing up to 400 cus-
tomers and time periods. Vidal et al. [2012] tackle a PVRP by means of a hybrid GA. The
computational experiments for the PVRP, considering a set of instances with up to 400
customers, show that the method can identify either the best-known solutions or new best
solutions for all benchmark instances. Therefore, this is the state-of-the-art metaheuristic
for the problem.

Few exact approaches are available for the PVRP. Baldacci et al. [2011] present a math-
ematical formulation that is used in an exact approach. The effectiveness of the proposed
method is shown on benchmark and new sets of test instances. The paper provides the first
evaluation of the best-known solutions for the PVRP instances reported over the last 30
years.

Given that it is quite clear that exact methods are still unable to solve large instances, re-
searchers try to hybridize exact and approximate phases to enhance the algorithms for the
PVRP. Pirkwieser and Raidl [2009] propose a column generation where a mathematical
formulation selects a set of optimal routes (columns) to solve a PVRP. Recently, Cacchi-
ani et al. [2014] propose a hybrid optimization algorithm, which also relies on a column
generation approach to constrain the route set.

Although there are not many approaches based on this idea, using exact algorithms to
iteratively solve smaller sub-problems may be relevant. Indeed, there is evidence that ap-
proaches such as fix-and-Optimize [Helber and Sahling, 2010] can be quite efficient in
different optimization problems. The idea is to iteratively find improvements in a given
solution by fixing parts and optimizing the smaller sub-problems. This makes it possible
to solve larger instances, as one can fix as many variables as the solver needs.

6.2.3 Consistent Vehicle Routing Problem

Although we have particular interest in reviewing VRPTW and PVRP literature, this re-
search focuses mainly on a less studied VRP extension which is the conVRP. This opti-
mization problem demands the definition of vehicle routes for several periods, maintaining
a certain level of consistency on pre-selected metrics. The objective is to achieve mini-
mum cost routing plans satisfying the classical routing constraints as well as predefined
consistency requirements. Generally, customer-oriented routing considers two types of



6.2. Literature Review 167

consistency for customer satisfaction: driver consistency and time consistency [Kovacs
et al., 2014a]. Driver consistency is measured by the number of different drivers that visit
a customer, whereas time consistency is related to the maximum difference between the
earliest and the latest arrival times at each customer. Time window assignment problems,
as presented in Spliet and Gabor [2015] and Spliet and Desaulniers [2015], achieve time
consistency in a slightly different manner by setting a single time window with a constant
amplitude for each customer, thus delays are not allowed.

The conVRP arises in many industries where customer satisfaction is considered a dis-
tinctive factor in competitiveness. Particularly in industries transporting small packages,
providing a standard service with a single driver and approximately at the same time of
the day enables customers to be prepared for a delivery, strengthening supplier/customer
relationships [Kovacs et al., 2014c]. For further insights on VRPs where consistency is
important, the reader is referred to the survey provided by [Kovacs et al., 2014b].

Despite the advantages of adopting consistent routes, few papers have addressed the con-
VRP and most approaches resort to approximate methods. Groér et al. [2009] formulate the
conVRP as an MIP and improve the algorithm used by Li et al. [2005] to solve very large
VRP. The consistent routes obtained for a real-world data set are less than 10% longer
on average, compared to inconsistent routes. Tarantilis et al. [2012] propose a TS algo-
rithm to iteratively generate template routes improving the best reported results over all
conVRP benchmark instances. Kovacs et al. [2014c] construct template routes by means
of an ALNS. It is shown that solving daily VRPs may lead to inconsistent routes whereas
consistent long-term solutions can be generated by using historical template routes. Ko-
vacs et al. [2014a] state that by assigning one and only one driver to each customer and
bound the variation in the arrival times over a given planning horizon may be too restric-
tive in some applications. They propose the generalized conVRP in which a customer is
visited by a limited number of drivers and the variation in the arrival times is penalized in
the objective function. A Large Neighborhood Search (LNS) metaheuristic generates solu-
tions without using template routes. The computational results on different variants of the
conVRP prove the efficiency of the algorithm, as it outperforms all published algorithms.
Sungur et al. [2010] consider a real-world courier delivery problem where customers ap-
pear probabilistically. Although the authors do not call it a conVRP, their assumptions are
in line with problems such as this. The proposed approach generates master plans and
daily schedules with the objective of maximizing both the coverage of customers and the
similarity between the routes served each day. Braekers and Kovacs [2016] explore driver
consistency in a multi-period dial-a-ride problem. The authors propose different formula-
tions and assess their efficiency using a branch-and-cut scheme. Additionally, they propose
an ALNS that generates near optimal solutions.

The papers proposing a mathematical formulation to deal with consistency features are still
scarce in the literature. These formulations are only able to solve small instances (i.e. Ko-
vacs et al. [2014a] solves instances containing less than 12 customers). To the best of our
knowledge, no single approach is able to efficiently make use of a mathematical formula-
tion to solve conVRP instances with realistic size. However, hybrid solution approaches
combining exact and approximate methods have been very successful in providing a good
trade-off between solution quality and computational times Archetti and Speranza [2014].
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6.3. Problem Statement and Mathematical Formulation

In this section, the Consistent Vehicle Routing Problem with Service Level Agreements
(conVRPSLA) is formally expressed in terms of a Mixed Integer Programming (MIP)
model.

Let O be the set of days to be carried out, £ the set of distinct shipping periods of the depot,
and C the set of customers to be served. Each customer has a set of ordering windows
that, according to their SLA, may or may not have an associated time window [a;,b;], a
previously assigned shipping period p; and/or an order release date rd; (Figure 6.1). The
time window refers to the time at which the order should be delivered to the customer,
whereas the period specifies whether this order should be delivered via a certain route in a
specific shipping period. Finally, the order release date refers to the earliest time at which
that specific order can be ready for shipping.

Shipping period p;

Fixed picking and Delivery time-
shipping time window
V—A—\ I—A—V

S S, .
a; b; time
Order placement deadline Order release date rd;

Figure 6.1 — Parameters defining the service level agreements

Let N be the set of n nodes, each representing a pair customer-shipping period with ¢;
being the customer of node i. In this way, every different shipping period of each customer
is to be treated as a different node (Figure 6.2). Two additional fictitious nodes 0 and
n+ 1 are added to the set to represent the depot as the departure node and the return node,
respectively, with N¢ being the subset of all non-depot nodes. Let N7y be the subset of
nodes with a time window different from the depot’s time window, Np the subset of nodes
with a specific shipping period and Npp the subset of nodes with a relevant order release
date. On each day, customers may or may not place an order in any of the shipping periods.
As such, let O be the set of orders (i, f) placed by node i on day ¢, which are defined by their
service time st;; and quantity ordered g;;.

Furthermore, a set A of arcs connecting nodes i and j on day # is considered. Note that arc
(0,n+1,r) exists and will be used when a route is not to leave the depot on that day. Each
arc has an associated travel time f#;; and a travel distance td;;, which are both independent
of the day. These arcs may be pre-processed in order to eliminate combinations that will
never be used and are therefore unnecessary to use in the model. For each day ¢, in order
for an arc to exist connecting node i to node j, both need to be nodes with orders placed on
day ¢ or one of the depot nodes, O or n+ 1. If i and j are customer nodes, they must belong
to different customers (c; # ¢;) and their specific shipping periods, if any, must be the same.
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Figure 6.2 — Different nodes belonging to the same customer

A set of routes R is also considered, with each route r representing the departure of a
vehicle on a specific shipping period rp,. The routes are assumed to be performed by
the same driver on each day. This is the reason why driver consistency is needed. The
vehicles that will serve the routes are considered to be homogeneous with capacity Q.
In order to adjust the model to address labor related legal constraints, a maximum single
route duration M D is also considered in the model. A depot time window [aW,bW] is also
present, representing the operating hours of the depot and therefore defining the earliest
departure time and latest return time for all routes.

In this model, there are three main binary decision variables: Xl.’jt, which defines each arc
(i, j, 1) that is traveled by route r; Z7, which defines each node’s route assignment; ¥;, which
defines whether route r is active, i.e. if any customer is assigned to that route. Additionally,
three time related decision variables are also considered, with W, representing the arrival
time at customer i on day ¢, dW" the planned departure time of route r and rW, the time at
which route r arrives at the depot on day ¢. Moreover, since daily ordering patterns are un-
certain, service level, capacity and route duration constraints might not be fulfillable at all
times. As such, constraint softening decision variables were defined along with their asso-
ciated objective function weights. Early and late arrivals at node i on day ¢ are represented
as ¢, and ¢, respectively. Moreover, w; defines how much route r exceeds maximum
route duration L on day ¢ and 6; is the excess capacity on route r and day . A compact
description of all sets, parameters and decision variables may be found in 6.A.

6.3.1 Mathematical formulation

The conVRPSLA mixed integer linear formulation is as follows.

The objective function (6.1) primarily minimizes the total distance traveled since this is
usually the main cost driver in transportation operations. A penalty for the number of
routes is also included if there is a fixed cost associated with their execution. The remaining
parcels represent the different penalties for breaking constraints regarding customer arrival
times, route duration and vehicle overloads, respectively.

min )" N tdi X4 D @Yok D (aa-gpraz-gi)+ ) D (o) +as-6f) (6.1)
(i,j,H)EA reR reR ieN teD reR teD

Firstly, each node must be assigned to only one route (6.2). Also, each node must be visited
exactly once, but only when it has placed an order on that particular day and via the route
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it was assigned to (6.3). To ensure a correct flow, the same reasoning applies to the number
of departures from each node (6.4).

DZi=1 VieNc (6.2)
reR

ZXI.’].I =7} VjeNc,VreR (6.3)
ieN|(i,j1)eA teD

ZXirjt:Zir VYie Nc,VreR 6.4)
JENI(i,j,NEA €D

Each route must also depart from the depot exactly once every day (6.5). If no orders are
placed by the nodes on route r on a given day ¢, then the existence of arc (0,n+1,¢) allows
for the fulfillment of this constraint. The return of the route to the depot is already assured
by the basic flow constraints (6.3) and (6.4). When at least one customer is assigned to a
route r, then it is an active route (6.6).

D> Xpy=1 VieDreR (6.5)
JENI(O,j,1)eA
Z/ <Y, VieNc,reR (6.6)

As the several shipping periods for each customer are treated as different nodes, they have
to be forced to be shipped on different routes (6.7). Moreover, when an order has a specific
shipping period assigned to it, it can only be delivered by routes operating in that period
(6.8).

Z;+Z;Sl VrEﬂ,i,jENchiICj (6.7)

rpr+ M -Z)>pi>rp,—M(1-Z)) ieNp,reR (6.8)

In order to enable the existence of time windows in the model, the arrival time at all cus-
tomers must be traced. As such, the starting time of each service at a given node j must
be greater than or equal to the time at which the previous node i is served plus its service
time and the travel time between the two (6.9). Additionally, these constraints serve as
subtour elimination constraints. For each node, the arrival time at each day is compared to
its target time window (6.10) to capture the deviation from the window [a;,b;]. Therefore,
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these constraints are responsible for the time consistency of the solution.

Wi+ sty +tt;; < Wi+ M(1 —Xl.’j,) Y(i,jt)e Ai,je N.VreR (6.9)

ai—qﬁ;SW,-tsbﬁqS; Y(i,1) € 0,i € Ntw (6.10)
Both the depot departure and return times need to be coordinated with the first (6.11) and

last (6.12) deliveries, respectively.

dW’+ttoj$Wj,+M(1—X6jt) V0, j,t)e A, reR (6.11)

Wi+ st +ttio < W) + M(1 =X}, ) V(0,0 € AreR (6.12)

In addition, vehicles need to leave and return to the warehouse during operating hours (6.13,
6.14). Also, each route must depart only after all of its orders are ready to be shipped, as
stated in constraints (6.15).

dW">aW VYreR (6.13)
bW >rW; VteD,reR (6.14)
dW’Zrdi—M(l—Z{) Yie Nop,re R (6.15)

Furthermore, it is necessary to keep track of each vehicle’s total load (6.16) and daily
duration (6.17) in order to define the penalties for excesses on any day.

Zq,-,-z;sg+9; VreRteD (6.16)
ieNc

W[ —dW" < MD+w; VreRiteD (6.17)
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Finally, integrality, binary and non-negativity conditions are set by constraints (6.18).

.
Xii

ZIY, €{0,1); Wi, dW',rW!, ¢, 85, 00,6; > 0. (6.18)

6.4. Solution approach

As in most vehicle routing problems, the proposed model proved to be hard to solve using
exact methods comprised in most commercial solvers, as the instances considered are quite
large. Therefore, a Fix-and-optimize (FO) based approach was designed to tackle this
problem by attempting to make use of its structural characteristics. In this section, an
overview of the methodology is given along with a detailed explanation of the proposed
algorithm.

6.4.1 Methodology overview

In the conVRPSLA, the main driver for complexity is the number of nodes considered as
they increase the number of arcs and, consequently, the number of decision variables and
constraints, exponentially [Ordénez et al., 2005]. Hence, a solution method was devised
with the goal of (1) reducing the number of nodes, (2) iteratively exploring the solution
space, and (3) leveraging the developed mathematical model. This method includes a pre-
processing stage in which the dataset is treated in order to simplify the problem followed
by the actual problem solving stage.

The FO procedure fixes most of the nodes and arcs and optimizes smaller subproblems at
each iteration. This allows for the exploration of a high percentage of the solution space
without splitting the problem into different instances and while maintaining efficiency. This
method requires a feasible initial solution which can be very difficult to achieve with the
mathematical model, given the size of the instances. Therefore, an initial solution con-
struction algorithm was implemented to provide fast feasible solutions to be used in the FO
phase.

Since the subsets of variables (related to nodes and arcs) that are fixed and released in every
iteration can be built in many different ways and with different cardinalities, a systematic
approach is preferable. Indeed, our method combines the principles of FO and of the Vari-
able Neighborhood Decomposition Search (VNDS) — see Seeanner et al. [2013]. VNDS
is a variant of VNS to make it possible to tackle large-sized problems. It “decomposes”
the problem by only regarding different parts of the solution space (a result of a kind of
decomposition). The basic idea explored in this paper is to apply the concept of VNDS in
order to methodically adapt the variables sets for the FO.

6.4.2 Node grouping

The node grouping step is based on the algorithm proposed by Dondo and Cerd4 [2007]
with the intention of reducing the computational effort of subsequent phases. The goal is
to aggregate small groups of nodes with compatible time windows that are geographically
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very close to each other when compared to the global set. This significantly reduces the
number of variables and constraints in the model by assuming that these customers will
always be served by the same vehicle, which is most likely the case. In order not to limit
the ability of the model to allocate nodes to different periods, this stage is only performed
for nodes with the same shipping period.

The grouping algorithm (Algorithm 1) starts with a pool of all nodes from N ordered first
by a; and then by b; (Algorithm 1, line 3), while requiring a maximum inter-node distance
of maxD and a maximum vehicle waiting time of d,,4;;. Also, let N* be a set of grouped
nodes i* to be populated by the algorithm and N’ a temporary set of unassigned regular
nodes. Then, and until the original set NV is empty, groups of nodes i* will be created,
populated and then added to the final set of grouped nodes N*. Every time a new grouped
node i* is initialized, it is populated with the first node of AV, which is removed from the
original set. The temporary set N’ is then created as a copy of N and iterated for each
of its nodes i. Node i is added to group i* if they both share the same shipping period, if
the distance to its closest node is less than the maximum allowed, if the vehicle capacity is
respected, and if the time window is fulfillable (Algorithm 1, line 9). For this last condition
to be met, the time to serve all the nodes in the group needs to be traced. Every time a
new node joins the group, both its own service time and the travel duration between it and
the node of the group it is closest to are added to the previous group service time. The
latest time window in the node should then be fulfillable assuming service starts at the
beginning of the first node’s time window and that a maximum delay in the delivery to the
last customer of the grouped node of ¢,,,; is allowed. While 8,,,;; should be defined as a
relatively small period of time compared to expected route duration as it represents how late
it is acceptable to arrive at a customer in order for it to be grouped with nearby nodes, D
should vary according to the node density of each specific instance. In the end, all distances
td:. 7 and travel times 7r, j are recalculated respectively as tdj; j» and 1t;; j-, assuming that
the service of the new group of nodes starts at the first node and progresses according to
their placement order.

6.4.3 Initial solution construction

The initial solution construction stage is straightforward as its only purpose is to allow for
a quick start to the improvement phase when there is no initial solution provided. During
this step, it is important to evaluate how close one node is to another, but the simple concept
of distance is insufficient when dealing with different time windows. For this purpose, an
incompatibility score between nodes 7;; is introduced as shown in equation (6.19), attempt-
ing to measure the distance between nodes and penalizing them when their time windows
are not compatible.

T,‘j=ldij+

aj+b; a;+b; 2
( = ’—“’; ’—sz,-,)-v—td,-j] , (6.19)

with 7 being the average speed of the vehicles to convert time into distance. This speed can
be computed from an average of the ratio between each of the travel distances and travel



174 Chapter 6. Enforcing driver and time consistency in vehicle routing

Algorithm 1 Node grouping stage

1: function GRouPNODES(N, D,y x, Ovait)
2 N0
3 Order N by a;, then by b;
4: repeat
5: i < Firstie N
6 N — N «— N\ {i*[0]}
7 repeat
8 i — Firstie N’
9 if p; = p
and min{tdﬁ\v’j € l*} < Dyax
and g;- +q; < Q
and a;« + st + min{ttji\!j € i*} <max{b;, by} + O,4ir then
10: Add i to i* after closest node j
11: qir < qi* t qi
12: Stix <—max{st,-*+ttj,,-+sti,a,-+st,~—a,-*}
13: by« «— max{b;,b;}
14: Remove i from N’ and N
15: else
16: Remove i from N’
17: until N/ =0
18: Add i* to N*

19: until NV =0
20: return N*, td*, tt*

durations in the instance. In the special case in which some nodes are to be placed on
specific routes, a subset of nodes N’ and the corresponding list of node-route assignment
variables Z’ should also be provided. This can be especially useful if the algorithm is run
on a previously encountered solution as an improvement mechanism (section 6.4.4).

The constructive algorithm (Algorithm 2) is performed in several steps. Firstly, routes are
populated with the provided nodes N’, if any. Then, each of the remaining nodes i is
assigned the fixed route iy; which contains the closest node from all the period compatible
routes. With this information, the minimum incompatibility score found so far is traced by
minlncomp (Algorithm 2, line 5), while Boolean foundNode tracks whether any node was
found (Algorithm 2, line 12). The period-compatible route of the closest node found is then
selected as initial delivery route for node i as well. If no compatible node is found, which
happens when no previous route assignment is provided for the initial solution, the node is
assigned a random route from all the period compatible ones. The value of variables Z] are
then set accordingly, to 1 or 0, and an iteration through all the days and routes follows. In
this step, orders are sorted by their earliest time-window and variables Xl.’jt are set assuming
the route is performed in this sequence (Algorithm 2, line 20). As time windows are not
hard constraints, as long as no shipping period compatibility constraint is violated, every
partial solution constructed in this way is feasible.
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Algorithm 2 Constructive heuristic.

function BurpInitiaLSoruTion(Optional N, Optional Z”)

1:

2 forallieN’,reR:Z;’:Ido

3 Ifix € F

4 for all i € N\N’ do

5: minlncomp < 0

6 foundNode < false

7 foralreR:rp,=pi,jeN: jrix=rdo
8 if minIncomp = 0 or 7;; < minIncomp then
9: minlncomp « 7;;
10: " j
11: foundNode « true
12: if foundNode then
13: Ifix & i;;l.x

14: else
15: ifix < randomr € R: p; =rp,
16: forallre D,re Rdo

17: O; —(i,t')€0:ifiy=rand t' =t

18: Order O; by a;, then by b;

19: for k = 0 to size(O;) -2 do
20: Xorwoge < 1

6.4.4 Fix-and-Optimize algorithm

The last and main stage of the solution method is a neighborhood search improvement
matheuristic based on a FO approach and of the VNDS. The reasoning behind this approach
is grounded on the high computational burden of having a very large number of integer
variables and on how easy it is to define a neighborhood as a set of nodes that are very
close to one another. By defining a subset Ny as the set of all nodes which can change
their values from the current solution and subsequently limiting a very large portion of
the integer decision variables, the MIP becomes substantially easier to solve. Let a node
be labeled as fixed if the variables Z! are to maintain their values for every route r, and
released if these same variables will be able to change values. Furthermore, let a route r
be labeled as fixed if, for all nodes i € N, Z; is to remain equal to the incumbent solution
and released if the nodes are allowed to both join and leave this route. In practice, fixing a
binary variable means imposing its bounds to equal the value of the incumbent solution.

The FO algorithm (Algorithm 3) starts by setting a counter ny;y,, to keep track of the
number of iterations with no improvement to the incumbent solution and a time tracker w
to account for the time expended by the algorithm. Then, a loop with three main steps runs
until the time counter is over the limit w,,, or the current neighborhood size 7,,,4.5 reaches
maximum neighborhood size n,,,. Firstly, the list of nodes to release Ny is computed
according to the current neighborhood size. Then, both the node assignment variables Z;
and the arc usage variables Xl.’jt need to be either fixed to their current values or released.
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This is done according to the previously defined list of nodes to release and the relevant arc
releasing parameters.

After these pre-processing stages, the model is solved with a time limit of w,,,s and the
next procedure depends on the solution found. Let sol represent the new solution, with
sol,p; being its objective value and solv the full set of its variable values. If the incumbent
solution is not improved, i.e. the objective value is not better than the overall best 0b j;i,
the counter of non-improving iterations is updated. Then, when the counter reaches a pre-
established limit 7., the neighborhood size n,04e5 is increased by step. This process
increases the number of nodes that will be released in the next iteration, which allows
for a larger search space that helps escape local optima. This systematic increase of the
subsets (and therefore of the neighborhood structures) is inspired on the principles of the
Variable Neighborhood Decomposition Search [Hansen and Perez-Britos, 2011]. On the
other hand, if the best overall objective value is improved, the new solution is saved as the
new overall best by updating ob j,;, and the overall best set of variables V is set to current
variable values in order to be used in the next iterations until a new best solution is found.
In addition, if the current neighborhood size is larger than the initial one, ng, it is reset to
restrict the exploration space and therefore refocus the search on the newly found solution.

Algorithm 3 Fix and Optimize algorithm

I Rpoimp, W < 0
2! Npodes < No

3: repeat
4: Npoimp <= Nnoimp t 1
5: ip < Select a random node from N
6: Ny < Select the n,,4.5 most compatible with iy from N
7: sol « solve subproblem conVRPSLA fixing the variables according to V, Ng,é
8: if s0lyp;j < 0b jimin then
0: 0D jimin < S0lypj
10: Nnoimp < 0
11: V «— soly
12: Npodes <~ No
13: else
14: if 7,0imp = Nsrep then
15: Nnoimp < 0
16: Nnodes <= Nnodes + St€P

17: update w
18: until w > Wmax \Y Nyodes > Nmax

The first neighborhood definition stage deals with the selection of which nodes to release.
The first node to be released, iy (Algorithm 3, line 5), is selected randomly from all the
nodes in the set. Then, and until n,,4.s nodes have been selected, the most compatible
node i* with the first random node is also selected for release [Shaw, 1998]. By using the
incompatibility score (Equation (6.19)), the selection process considers both distance and
time-window compatibility. Nodes are only considered for selection when they share the
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shipping period with the previously released nodes or when they do not have a specific
period for delivery (Algorithm 3, line 6). In the end, all the routes containing the selected
nodes are released as well.

After selecting the routes and nodes to be fixed and released, this information needs to be
converted to set the actual binary variables of the model. Note that, as the time the model
will take to explore the solution space is extremely dependent on the number of binary vari-
ables it considers, this decision is of utmost importance to assure the algorithm performs
efficiently. Hence, a new concept of a connection node is introduced representing the nodes
that, on any of the days of the incumbent solution, are at a maximum of ¢ positions apart
from any of the released nodes on their route. All the arcs connecting each connection node
to released nodes or other connection nodes on its route will be released as well. By doing
this, released nodes will be able to move freely between routes, while the connection nodes
will remain on their current route. Therefore, this position buffer ¢ controls the trade-off
between the number of released variables and the size of the explored neighborhood. In
Figure 6.3, a representation of fixed (1), released (2) and connection nodes (3) shows how
the latter are defined based on the released nodes around them. Note that, on day 7+ 1 in
the example, non-ordering customers might not belong in that particular day’s route, which
creates additional connection nodes according to ¢.

Position buffer
§=1

(2) Released node

(3) Connection node

(1) Fixed node

Day t Day t+1

Figure 6.3 — Different types of nodes in a route

Let Nr be the subset of fixed nodes, N¢ the subset of connection nodes and Ny the subset
of nodes to be released. Also, let similar subsets be created for routes, with Ry being the
subset of fixed routes and Ry the subset of released routes. The first step is to define which
nodes are connection nodes. In order to achieve this, each order (i,7) is given an attribute,
posis, defining the sequential position on which it is fulfilled by its route during day ¢. Then,
for each route r on day ¢, if a node i is within ¢ positions of a released node, it is transferred
from the subset of fixed nodes N to the connection node subset N¢.

The next step is to set the binary variables of the model (Algorithm 3, line 7). Regarding
node-route assignment variables, Z7 is fixed to its current value if i € Nr U N and it is
released if i € Ng. As seen in Figure 6.4, an arc X{jt is released in one of three situations.
Firstly, if both i € Ng A j € N, the arc is released for all 1 € D, r € Rg (1), therefore allowing
these nodes to freely join any of the released routes in between other released nodes. In
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this stage, released routes may be from many different periods, which allows for nodes
that do not have a specific one to freely change the shipping period. However, when just
releasing these arcs, a node can only join another route if there are released nodes ordering
on every day of the horizon in which it has also placed orders. This makes it hard for nodes
to change routes unless the number of released nodes is very large, hence the connection
nodes were introduced.

Fixed arc
— — — —Released arc (X =1)

................... Released arc (X = 0) (1) Between R
nodes -

-7 ~— (2) Between R node
and C node of any
- Q/ released route
\
// \
(3) Between C nodes
from the same route

Route 2

Possible outcome

Figure 6.4 — Different types of released arcs to allow for changes in customer assignment

In order to allow for any released node to join routes in between connection nodes, all arcs
X{jt are released if either i € Ng A j € N¢ or j € Ngp Ai e N¢ for the connection node’s
current route for all r € D (2). Finally, the arcs between connection nodes are also released
for every t€ D if i € N¢ A j € N (3) to enable breaking their direct connection. This last
release is only done within route r: Z; = Z]’. = 1 because the purpose of connection nodes
is not for them to change routes but instead to make room for the addition of new nodes to
the route.

All the remaining arcs are fixed at their current values, effectively reducing the size of the
problem by decreasing not only the number of binary variables, but also the number of
constraints. This makes the MIP much faster to solve and suitable to apply in an iterative
solution method in which many significant subproblems are solved.

6.4.5 Validation of the solution approach

In order to validate the solution approach both a comparison to a commercial solver and a
sensitivity analysis on the key parameters of the algorithm are performed. The proposed
solution approach aims to solve instances of large size. Instances of different sizes (in terms
of number of customers) have been solved to prove the methodology is able to obtain close-
to-optimal solutions in reasonable time when optimal values are obtainable by commercial
solvers. The mathematical models and the matheuristic were solved using commercial
solver CPLEX 12.6 and a two 12-core Intel Xeon with 60GB RAM machine with a maxi-
mum time limit of one hour. Table 6.1 shows average results on achieved objective values
and time taken until reaching the best solution for randomly generated instances. Complete
results for the instances used in this comparison are provided in 6.B.
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Table 6.1 — Average results by number of customers

Solver Matheuristic

#Customers Objective  Optimality Runtime Objective Runtime Relative Obj.
Value Gap (%) (s) Value (s) Difference (%)

10 1845.90 0.00 5.45 1852.20 0.46 +0.34

15 2265.05 0.28 199.90 2265.05 1.75 0.00

20 2567.80 1.70 807.25 2567.80 46.62 0.00

35 4075.00 19.18 3616.53 4050.07 355.69 -0.61

50 6501.53 43.97 3544.80 5393.87 785.87 -17.04

Results indicate that the matheuristic is able to achieve very similar results to the com-
mercial solver for small size instances. For instances with more than 30 customers, the
approximate solution method clearly outperforms the commercial solver in terms of solu-
tion quality and time. Note that for instances with 50 customers the optimality gap of the
solver after one hour is close to 50%.

6.5. Case study in a pharmaceutical distribution company

6.5.1 Case study overview

The company targeted by the case study is a distributor that is part of a pharmaceutical
wholesaler operating mainly in Portugal. The pharmaceutical industry business is charac-
terized by its low margins for the distribution players, for being a highly regulated market,
and for being part of a well-established competitive environment. The company mainly
provides delivery services to a limited number of merchandise suppliers by specializing
in the transportation of pharmaceutical items. These suppliers consist of other businesses
belonging to the parent company, which need deliveries to pharmacies, supermarkets, per-
fume shops, and other large wholesalers.

The parent company’s final customers (referred to as internal) are well defined in the in-
formation system, place frequent orders, and their packages are sent in uniform containers
retrieved automatically from the company’s warehouse. They may or may not have sev-
eral deliveries in the different shipping periods and they may place orders until a deadline,
which is normally around 30 minutes before the assigned vehicle departure. On the other
hand, the deliveries made for other external companies (referred to as external) have fairly
uncertain customers, non-uniform containers and arrive at the warehouse at the beginning
of the day. As there is no unique identifier for the recipient of these orders, each package
comes with its own delivery address and is assigned to a route according to its zip code
prefix. Moreover, the types of service level agreements in place are different from cus-
tomer to customer, with some of them having a strict time windows, a specific period to
be shipped in and an order deadline just in time for the route departure, while others have
no restrictions at all (Table 6.2). These different delivery characteristics with distinct ser-
vice level agreements complicate the route planning process significantly, especially when
developing consistent routes.
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Table 6.2 — Main characteristics of the company’s different customers

Customer origin Container Frequency Time Order Route
window deadline allocation
Internal Uniform Several daily Strict Before route Consistent
deliveries departure routes plan
External Unpredictable Single Site- Beginning of Postal code
delivery dependent the day prefix

The quantity demanded by each customer is also uncertain, as is the possibility of not or-
dering at all. There is a very subtle seasonality effect over the course of the year, peaking in
the cold season, which is not very relevant to distribution. However, the main concern dur-
ing the planning stage is the beginning of each month, when the customers tend to increase
the amount ordered up to 10%, mostly due to increased budget availability and commercial
target resets, which increases upstream pressure on the warehouse and challenges vehicle
capacity.

Currently, the company operates from 5 different warehouses, to which customers have
been previously assigned based mainly on geographical factors. One of these warehouses
acts as the main distribution center by receiving from suppliers and stocking most of the
merchandise, transferring stock to the remaining warehouses on a daily basis. By using ex-
isting customer assignments, each warehouse ends up having routes which are independent
of the others, thus enabling the separation of the overall problem into warehouse-dependent
instances.

In order to find consistent routes for this case study the proposed solution method with real
data from a specific week was used. Afterwards, in order to validate the proposed routes
and to compare them with current operations, a simulation model was developed to evaluate
how the new plan would perform with real requests. The simulation used historical data
from all the weekdays of that month so that the results could be compared with the actual
company performance.

6.5.2 Route planning

The route planning stage is implemented by directly applying the conVRPSLA solution
method with real data from the time span of a week. Since seasonality only occurs within
each month and not so much over the year, with the peak happening in the first week, the
first five weekdays of the month were used as the planning horizon. The company decision
makers considered this period to be sufficient, as almost every internal customer is bound to
order at least once during a full week period. Also, by using the peak period, the resulting
routes should be more resilient and allow for better service levels, which is also one of the
main goals of the company. In case relevant seasonality patterns exist throughout the year,
additional weeks from different months or the peak month should be considered during
this planning stage. If any large customer changes occur meanwhile, the company should
adjust to them by making a new plan.

In order to speed up the solution procedure, the current customer routes, when a specific
assignment existed, were used during the initial solution building stage. Also service time



6.5. Case study in a pharmaceutical distribution company 181

in minutes (Equation (6.20)) was approximated according to a statistical study recently
performed by the planning team in which actual service times at many different destinations
were measured.

sty ~2.5+1.5- {%J (6.20)
There is a fixed component present at all deliveries which accounts for parking, picking,
walking time and paperwork and also a variable component which accounts for the need of
additional trips back and forth to the vehicle when the driver is not able to carry the whole
load at once. The quantity considered is the measure approximated from the number of
boards and boxes actually delivered. Finally, both the travel distance and travel duration
matrices were obtained using the Google Maps API.

6.5.3 Simulation model

The consistent routes plan and the historical data, along with some other parameters, are
the main inputs of the simulation model. The plan consists of simply allocating the main
customers considered during the route optimization phase to the routes. The data that will
be used during this stage consist of the demand in a month which was not used during
the previous route planning step. By using different days for each stage, the results of the
simulation are not influenced by having routes planned specifically for them and they are
therefore actually tested for their practical application (without over-fitting). The simula-
tion logic is presented in Algorithm 4, whose detailed description follows.

Algorithm 4 Simulation algorithm.

1: forallie N:i¢ Npj,, do

2 Look for closest node j € Npj,, in a compatible route r
3 Assign the route r to i

4: for all re Rdo

5: Define departure as the planned start time

6

7

8

Define the return depot node’s location

: forallreR,re Ddo
Run TSPTW model for day ¢ and route r

Since customers are uncertain, new destinations which have never ordered before are very
likely to appear. Hence, the first step of the simulation is to choose which route is going to
serve requests which do not have a specific allocation. A simple allocation was performed
by choosing, from all the routes that are able to fulfill its service level agreements, the one
with the node which it is closest to the new request. After the requests that each route will
have to serve on each day are known precisely, the next step is to actually calculate all
the parameters throughout the whole simulation horizon. The main decision to be made
in this stage concerns the order in which each request will be served and vehicle departure
time, as all the other relevant parameters are easily computed with this information. The
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distances and durations used during this stage will be the deterministic ones retrieved from
the Google Maps API. These parameters are optimized through a mathematical model
that solves the basic TSPTW problem [Gutin and Punnen, 2006] with the addition of the
two-commodity flow subtour elimination constraints, as described by Oncan et al. [2009].
Since routes have been planned by taking capacity constraints into account during peak
demand scenarios, overcapacity scenarios are fairly rare. Additionally, the company had
contingency plans in place in case a large order could not be fulfilled in which an additional
route was performed by a vacant vehicle or the order was delayed. As such, capacity
constraints are generally not relevant on a daily basis in the simulated scenarios.

6.6. Results

In this section, the results obtained from solving the case study are provided. Firstly, the
main characteristics of the solved instances are described, with the relevant parameters for
the intermediate steps also provided. The results of the application of the FO approach to
plan the routes of the company are then presented. Finally, the simulated results, which
evaluate the impact of the planned routes on the actual operational KPIs are shown and
discussed for each warehouse/depot and under a general scope as well.

6.6.1 Instance characteristics

As the model and solution method were tested as a tool to plan the routes of the company in
the case study, and since the warehouses operate independently from one another regarding
distribution, instances were created for each one of them. These instances were generated
from historical data from the company’s operations and the most relevant parameters are
shown in Table 6.3. The customers from the larger warehouses were split into geographical
clusters in order to improve the performance of the FO. The centroids of the routes in the
current company were used in a k-means clustering algorithm in order to determine the
clusters of customers to be routed separately.

The number of clusters was kept to a minimum value which allowed for the FO algorithm to
load the model in a matter of seconds during each iteration. The node grouping parameters
were then set for each depot, with the maximum inter-group node distance D,,,, being
defined according to the geographical density of the customers, whereas the maximum
deviation from the time window d,,4;; was set to the delay value considered to be acceptable
by the company. The depots situated in less dense areas have higher distances as, generally,
there are no different routes serving areas within a few kilometers of each other. The
different objective function weights were set based on discussions with the decision makers.
The weights of the delays are higher in areas where customers are more likely to complain
about late deliveries and the weight for the number of routes only exists in depots whose
fleet is partially owned by the company and where the drivers are company employees.
The instances were then generated for each cluster for every warehouse. The number of
nodes considered is effectively lower than the real number of customers due to not taking
non-recurring destinations into account in the planning stage and by applying the node
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Table 6.3 — Parameters used to define the instances

Warehouse Number of Dyaxlkm]  Oyaislmin] aq ) 3 ay as
clusters

A 1 5 15 0 0.5 1 2 1

B 1 3 15 0 0.5 1 2 1

C 2 1.5 15 0 0.5 2 2 1

D 5 0.5 15 100 0.5 2 2 1

E 2 1 15 250 0.5 1 2 1

grouping algorithm. All the characteristics that indicate the size of each of the solved
instances, specifying the results of each node reduction step, are shown in Table 6.4.

Table 6.4 — Main characteristics of the solved instances

Instance Total Recurring  Grouped Grouping % Days Routes  Orders
customers customers Nodes reduction

A 197 152 109 -28.3% 5 12 439
B 441 232 166 -28.4% 5 18 623
Cl 319 268 181 -32.5% 5 16 762
C2 445 321 253 -21.2% 5 19 905
D1 367 338 304 -10.1% 3 29 817
D2 257 220 166 -24.5% 3 12 446
D3 457 384 283 -26.3% 3 21 774
D4 453 376 274 -27.1% 3 23 707
D5 397 320 220 -31.3% 3 16 578
El 609 435 340 -21.8% 3 21 683
E2 445 295 259 -12.2% 3 14 521

The reduction algorithm is able to significantly reduce the size of the instances, achieving
a reduction of over 20% in most cases. The largest warehouse whose routes were planned
during this case study has over 1900 different customers, makes more than 5000 weekly
deliveries and operates with 101 daily routes.

6.6.2 conVRPSLA results

The FO was developed in C# using CPLEX 12.6 for solving sub-problems. The tests were
run on a personal computer with 12GB of random access memory and a i7-4710HQ 64-bit
processor with 8 threads and maximum frequency of 3.5GHz.

In order to run the solution approach, the FO parameters had to be defined in such a way
that the algorithm would be able to release as many nodes as possible while still having
time to perform enough iterations to explore the whole instance. The position buffer 6 was
kept with a value of 2 since nodes that are more positions apart are already quite far from
each other in most situations. The initial number of nodes in the released neighborhood,
ng, was set to 15 to allow for the selection of a few nodes from the whole daily horizon
in a small geographical area. The maximum number of iterations without improvement
before increasing the neighborhood size, n.,, was set to 20, with the neighborhood size
increasing by 10 nodes at a time. Finally, the time limit for each instance w,,,x was set to 3
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hours.

The total number of iterations, the objective value of the initial solution, that was defined
using the routes currently made by the company, and the best objective value found are
shown in Table 6.5. Note that both objective values represent the sum of all clusters for a
given depot. The total variation (Var) between these two objective values represents how
much the model would be able to improve the results if no uncertain element were present
in daily operations.

Table 6.5 — Results of the conVRPSLA applied with the developed matheuristic

Warehouse 7, Initial Best Objective Initial Best Distance
objective  objective value distance  distance Var
value value Var [km] [km]
A 398 10306.75  10038.62 -2.6% 10143 9838 -3.0%
B 303 16209.25 15258.5 -5.9% 14741 14020 -4.9%
C 695 3355525 31654.25 -5.7% 29382 28110 -4.3%
D 935 53712.0 51112.95 -4.8% 35999 34452 -4.3%
E 699  27469.0 23006.75 -16.2% 14818 12882 -13.1%
Total (avg) 3030 141252.3  131071.1 -7.2% 105083 99302 -5.5%

Overall, the model is able to improve the objective value by 7.2%, but with significant dif-
ferences between the warehouses. In warehouse A, customers have a very low geographical
density, hence the improvement is the lowest both in overall objective value and in distance
traveled. On the other hand, warehouse E has the biggest share of uncertain customers
being assigned to routes by their zip code prefix, which explains the much larger margin
for improvement by the model.

As this optimization stage served the purpose of defining the new route plan for the com-
pany, the final results come from the simulation of the proposed plans using historical data.

6.6.3 Simulation results

The routes defined by the conVRPSLA were tested under real operating conditions. Note
that, as the delivery locations of external customers are not known in advance by the com-
pany, it is operationally impossible to include them in the tactically defined route plans.
Hence, route plans originally consist of internal customers while external customers are
dynamically added to existing routes when their orders are actually placed as described on
the simulation process.

Results are simulated for three different configurations in each warehouse. Firstly, the
routes in the current plan are simulated in the same delivery order that was actually used by
the company. Then, the same plan is used but, for each route and day, a TSPTW instance
is created and solved to assure the optimum path is used. Finally, the routes proposed by
the conVRPSLA model are simulated using the TSPTW model as well. In this way, it is
possible to report two distinct results (Table 6.6), namely those obtained by optimizing the
sequence in which routes are served (A sequenced) and those that result from changing the
assignment of customers to routes while also optimizing their sequencing (A assignment).
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Table 6.6 — Simulation results for the different company’s warehouses

Depot Simulation Assignment Routes Total Total Estimated
type changes duration distance cost [€]
[h] [km]

A A sequenced - - -9.4% -1.2% -1.1%
Aassignment 11 0 -2.3% -4.0% -5.8%

B A sequenced - - -8.0% -9.4% -11.2%
Aassignment 9 0 -4.8% -17.1% -22.9%

C A sequenced - - -8.8% -7.9% -8.0%
Aassignment 100 -1 -5.9% -17.5% -14.5%

D A sequenced - - -4.4% -9.5% -7.9%
Aassignment 100 -2 -9.1% -16.0% -11.8%

E A sequenced - - -16.7% -19.1% -9.9%
Aassignment 48 0 -13.2% -25.6% -12.7%

Total / Average A sequenced - - -8.5% -10.5% -9.9%
Aassignment 268 -3 -8.4% -17.4% -12.7%

The simulation showed improvements in all warehouses. As expected, these results come
from different sources and the different configurations help to identify the major factors
explaining them. Warehouses A and B have very few nodes being reassigned, but they lead
to large estimated cost reductions due to having many external customers being delivered
to by better suited routes. Both warehouses C and D had many nodes changing routes
and this is the main cause for the improvements, along with the reduction in the total
number of routes. Warehouse E is very different from the others due to its large share of
external customers. As stated in the route optimization stage, there is a large margin for
improvement in reassigning the customers that are not present in the consistent routes plan,
and the simulation stage further reiterates this statement. This warehouse also has by far the
biggest improvements due to having better route sequencing, which was expectable since
many customers are uncertain, making the drivers’ decision regarding which sequence to
follow much harder.

Overall, all the proposed changes have an estimated impact on the influenceable costs of
operations of 12.7%, with benefits originating from both better route sequencing and an
optimized assignment of external customers. These improvements consist of an overall
expected reduction of 8.4% of total route durations and a decrease in total traveled distance
of 17.4%.

6.7. Conclusions and future work

This paper focused on further exploring the conVRP, which is an increasingly popular
problem both in literature and in practice as many businesses are shifting to a more service
level focused planning. An extension to this problem, the conVRPSLA, was proposed,
which considers different service level agreements that are very common in the pharma-
ceutical or spare parts distribution industry. Furthermore, in order to apply the model to
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larger instances a matheuristic based on a Fix-and-Optimize decomposition approach was
developed.

The solution approach was validated in a real case study of a Portuguese pharmaceutical
distribution company that serves pharmacies several times a dayas well as other external
customers with different service level agreements. The mathematical model and matheuris-
tic developed were used to plan the consistent routes of the company by using historical
data. In order to test the proposed routes and to analyze how different scenarios might
impact the operations of the company, a simulation model was developed.

The route optimization stage, which used the proposed matheuristic, found a new set of
routes that improved the overall objective value by 7.2% and reduced the total distance
traveled by 5.5% by assigning both types of customers to new routes. However, the op-
erating conditions require a consistent pre-defined schedule, so, in order to validate the
proposed consistent routes plan, the simulation model was used to test its performance
using different historical data. In addition, simulations were run with the current routes
so as to optimize the sequencing and thus evaluate whether the drivers are serving them
efficiently.

The simulation stage showed that better sequencing of the routes could reduce the total
duration of the routes by 8.5% and the distance traveled by 10.5%, which had an estimated
impact of 9.9% on the costs considered in the company studied. The routes proposed by the
optimization stage, which consisted of several assignment changes, and the elimination of 3
routes, had a small impact on the total duration after the optimized sequencing, but further
improved the reduction in the distance traveled to a total of 17.4%. Overall, all the proposed
changes had an estimated impact of 12.7% on the cost considered to be influenceable by
implementing better planning processes.

In order to further develop the proposed methodology, a better initial solution construc-
tion procedure could be developed so as to obtain consistent route plans from scratch in a
shorter period of time. Furthermore, an interesting additional analysis would be to com-
pare the performance of the proposed matheuristic to different solution methods, namely
metaheuristics which forego the use of the mathematical model and hence the flexibility to
easily integrate additional operational constraints. Finally, it would be interesting to use a
combination of lexicographical objectives and constraints instead of a weighted sum in the
objective function to improve the control of the decision maker.
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Appendix 6.A Nomenclature

Sets and subsets

A set of arcs

C set of customers
D set of days

N set of nodes

Nc¢ set of non-depot nodes

Nrw  subset of nodes with time windows
Np subset of nodes with shipping period
Nop subset of nodes with order deadlines
(0] set of orders

P set of shipping periods

Rr set of routes

Parameters
a; earliest limit of node i ’s time window
b; latest limit of node i ’s time window
Di mandatory shipping period of node i
rd; time at which orders from node i are available for shipping
n number of nodes representing customers
St service time of node i on day ¢

qit quantity ordered by node i on day ¢
td;; travel distance between node i and node j

1t;; travel time between node i and node j
rpy shipping period of route r

(0] vehicle capacity

L maximum allowed route duration

aw time at which the depot allows vehicles to leave

bw time until which vehicles may return to the depot

M big number

Qy weights of objective function components with w € {1,...,5}
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Decision variables

X7

ijt

zZ!

1

Y,
Wi
awr
rW/
bi

+

it
r

0}"

1 if arc (i, j,¢) is traveled by route r,
{ 0 otherwise.
1 if node i is part of route r,
{ 0 otherwise.
_ | 1 ifroute ris active,
{ 0 otherwise.

time at which node i is served on day ¢

time at which route r is set to departure from the depot
time at which route r arrives at the depot on day ¢
earliness at node i on day ¢

lateness at node i on day ¢

overduration of route r on day ¢

overcapacity of route » on day ¢
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Appendix 6.B Comparison between the solver and the matheuris-
tic

Table 6.7 — Detailed results presenting the relative difference between the objective values
of each approach (Matheuristic—S olver)

Solver
Solver Matheuristic
#Customers Objective  Relative = Runtime Objective  Runtime Relative Obj.
Value Gap (%) (s) Value (s) Difference (%)
10 2089 0.00 3 2089 0.00 0.0
10 1854 0.00 3 1854 0.00 0.0
10 2023 0.00 4 2023 0.00 0.0
10 1964 0.00 3 1964 0.20 0.0
10 1071 0.00 4 1197 1.90 11.8
10 2155 0.00 5 2155 0.00 0.0
10 1820 0.00 5 1820 0.30 0.0
10 2301 0.01 5 2301 0.30 0.0
10 1521 0.00 4 1521 0.40 0.0
10 1581 0.00 9 1581 0.00 0.0
10 1848 0.00 9 1848 0.00 0.0
10 2407 0.00 2 2407 0.00 0.0
10 1447 0.00 7 1447 0.40 0.0
10 1162 0.00 11 1162 0.60 0.0
10 1662 0.00 7 1662 0.50 0.0
10 2397 0.00 6 2397 0.00 0.0
10 2362 0.00 3 2362 0.00 0.0
10 1562 0.00 1 1562 0.50 0.0
10 2176 0.00 13 2176 0.00 0.0
10 1516 0.00 5 1516 4.10 0.0
15 2444 0.01 84 2444 3.00 0.0
15 2610 5.50 3604 2610 2.90 0.0
15 3246 0.01 60 3246 7.00 0.0
15 2203 0.00 18 2203 1.60 0.0
15 2214 0.00 10 2214 0.90 0.0
15 2272 0.00 12 2272 1.00 0.0
15 2291 0.00 11 2291 0.80 0.0
15 2455 0.00 19 2455 0.00 0.0
15 1864 0.00 10 1864 0.00 0.0
15 1803 0.00 3 1803 0.70 0.0
15 2298 0.01 23 2298 1.20 0.0
15 2059 0.01 14 2059 0.70 0.0
15 1982 0.00 28 1982 1.10 0.0
15 1417 0.01 35 1417 3.80 0.0
15 2327 0.00 9 2327 0.60 0.0
15 2980 0.00 35 2980 5.50 0.0
15 1790 0.00 3 1790 0.60 0.0
15 2188 0.01 4 2188 0.70 0.0
15 2120 0.01 12 2120 2.20 0.0
15 2738 0.00 4 2738 0.60 0.0
20 2680 0.01 741 2680 166.80 0.0
20 3140 0.01 161 3140 43.90 0.0

20 2264 0.01 66 2264 14.20 0.0
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Solver Matheuristic
#Customers Objective  Relative = Runtime Objective  Runtime Relative Obj.
Value Gap (%) (s) Value (s) Difference (%)

20 2524 9.52 3608 2524 41.40 0.0
20 1908 0.00 47 1908 1.20 0.0
20 2462 0.00 53 2462 2.00 0.0
20 3337 6.53 3609 3337 246.50 0.0
20 2689 0.00 93 2689 1.70 0.0
20 2468 0.01 76 2468 1.20 0.0
20 2135 0.01 53 2135 74.50 0.0
20 2549 0.01 56 2549 2.40 0.0
20 2450 2.20 3601 2450 17.10 0.0
20 2492 0.01 32 2492 3.20 0.0
20 2442 0.00 70 2442 2.00 0.0
20 1943 0.01 92 1943 3.40 0.0
20 1892 0.00 44 1892 4.30 0.0
20 2448 0.01 13 2448 7.20 0.0
20 2310 15.74 3608 2310 128.80 0.0
20 2725 0.01 85 2725 154.20 0.0
20 4498 0.01 37 4498 16.40 0.0
35 3587 20.81 3614 3984 536.60 11.1
35 4025 20.73 3602 4008 391.20 -0.4
35 3308 13.98 3600 3240 451.70 2.1
35 2694 25.83 3602 2623 533.00 -2.6
35 4513 19.30 3760 4708 268.80 43
35 4903 13.66 3602 4766 151.00 2.8
35 4687 33.29 3602 4310 616.80 -8.0
35 3998 19.03 3626 3956 307.40 -1.1
35 4856 21.48 3603 4767 207.20 -1.8
35 4810 30.53 3604 4038 314.10 -16.0
35 3950 32.05 3602 3646 318.70 217
35 4528 10.78 3610 4850 451.00 7.1
35 3702 9.10 3608 3702 240.80 0.0
35 4760 13.26 3609 4764 283.40 0.1
35 2804 393 3604 3389 263.70 20.9
50 5804 46.63 3615 4784 1118.00 -17.6
50 4326 37.72 3613 3733 603.60 -13.7
50 6242 45.01 3603 5141 1135.60 -17.6
50 9133 62.24 3603 6262 1149.50 -314
50 9875 64.50 3612 5709 858.20 -42.2
50 6287 45.81 3602 4902 866.60 -22.0
50 5997 30.17 3601 5929 757.30 -1.1
50 7080 38.30 3680 6244 693.10 -11.8
50 6150 48.48 3606 4622 757.20 -24.8
50 7171 42.45 3604 6416 725.80 -10.5
50 4456 40.85 3614 4456 973.10 0.0
50 6725 27.80 3620 6889 428.10 24
50 6938 47.74 1888 5611 595.70 -19.1
50 5214 37.81 3615 4715 422.20 -9.6
50 6125 43.97 4296 5495 704.00 -10.3
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