2,457 research outputs found

    CGAT: a comparative genome analysis tool for visualizing alignments in the analysis of complex evolutionary changes between closely related genomes

    Get PDF
    BACKGROUND: The recent accumulation of closely related genomic sequences provides a valuable resource for the elucidation of the evolutionary histories of various organisms. However, although numerous alignment calculation and visualization tools have been developed to date, the analysis of complex genomic changes, such as large insertions, deletions, inversions, translocations and duplications, still presents certain difficulties. RESULTS: We have developed a comparative genome analysis tool, named CGAT, which allows detailed comparisons of closely related bacteria-sized genomes mainly through visualizing middle-to-large-scale changes to infer underlying mechanisms. CGAT displays precomputed pairwise genome alignments on both dotplot and alignment viewers with scrolling and zooming functions, and allows users to move along the pre-identified orthologous alignments. Users can place several types of information on this alignment, such as the presence of tandem repeats or interspersed repetitive sequences and changes in G+C contents or codon usage bias, thereby facilitating the interpretation of the observed genomic changes. In addition to displaying precomputed alignments, the viewer can dynamically calculate the alignments between specified regions; this feature is especially useful for examining the alignment boundaries, as these boundaries are often obscure and can vary between programs. Besides the alignment browser functionalities, CGAT also contains an alignment data construction module, which contains various procedures that are commonly used for pre- and post-processing for large-scale alignment calculation, such as the split-and-merge protocol for calculating long alignments, chaining adjacent alignments, and ortholog identification. Indeed, CGAT provides a general framework for the calculation of genome-scale alignments using various existing programs as alignment engines, which allows users to compare the outputs of different alignment programs. Earlier versions of this program have been used successfully in our research to infer the evolutionary history of apparently complex genome changes between closely related eubacteria and archaea. CONCLUSION: CGAT is a practical tool for analyzing complex genomic changes between closely related genomes using existing alignment programs and other sequence analysis tools combined with extensive manual inspection

    AccuSyn: Using Simulated Annealing to Declutter Genome Visualizations

    Get PDF
    We apply Simulated Annealing, a well-known metaheuristic for obtaining near-optimal solutions to optimization problems, to discover conserved synteny relations (similar features) in genomes. The analysis of synteny gives biologists insights into the evolutionary history of species and the functional relationships between genes. However, as even simple organisms have huge numbers of genomic features, syntenic plots initially present an enormous clutter of connections, making the structure difficult to understand. We address this problem by using Simulated Annealing to minimize link crossings. Our interactive web-based synteny browser, AccuSyn, visualizes syntenic relations with circular plots of chromosomes and draws links between similar blocks of genes. It also brings together a huge amount of genomic data by integrating an adjacent view and additional tracks, to visualize the details of the blocks and accompanying genomic data, respectively. Our work shows multiple ways to manually declutter a synteny plot and then thoroughly explains how we integrated Simulated Annealing, along with human interventions as a human-in-the-loop approach, to achieve an accurate representation of conserved synteny relations for any genome. The goal of AccuSyn was to make a fairly complete tool combining ideas from four major areas: genetics, information visualization, heuristic search, and human-in-the-loop. Our results contribute to a better understanding of synteny plots and show the potential that decluttering algorithms have for syntenic analysis, adding more clues for evolutionary development. At this writing, AccuSyn is already actively used in the research being done at the University of Saskatchewan and has already produced a visualization of the recently-sequenced Wheat genome

    SynVisio: A Multiscale Tool to Explore Genomic Conservation

    Get PDF
    Comparative analysis of genomes is an important area in biological research that can shed light on an organism's internal functions and evolutionary history. It involves comparing two or more genomes to identify similar regions that can indicate shared ancestry and in turn conservation of genetic information. Due to rapid advancements in sequencing systems, high-resolution genome data is readily available for a wide range of species, and comparative analysis of this data can offer crucial evolutionary insights that can be applied in plant breeding and medical research. Visualizing the location, size, and orientation of conserved regions can assist biological researchers in comparative analysis as it is a tedious process that requires extensive manual interpretation and human judgement. However, visualization tools for the analysis of conserved regions have not kept pace with the increasing availability of information and are not designed to support the diverse use cases of researchers. To address this we gathered feedback from experts in the field, and designed improvements for these tools through novel interaction techniques and visual representations. We then developed SynVisio, a web-based tool for exploring conserved regions at multiple resolutions (genome, chromosome, or gene), with several visual representations and interactive features, to meet the diverse needs of genome researchers. SynVisio supports multi-resolution analysis and interactive filtering as researchers move deeper into the genome. It also supports revisitation to specific interface configurations, and enables loosely-coupled collaboration over the genomic data. An evaluation of the system with five researchers from three expert groups coupled with a longitudinal study of web traffic to the system provides evidence about the success of our system's novel features for interactive exploration of conservation

    Computational Molecular Coevolution

    Get PDF
    A major goal in computational biochemistry is to obtain three-dimensional structure information from protein sequence. Coevolution represents a biological mechanism through which structural information can be obtained from a family of protein sequences. Evolutionary relationships within a family of protein sequences are revealed through sequence alignment. Statistical analyses of these sequence alignments reveals positions in the protein family that covary, and thus appear to be dependent on one another throughout the evolution of the protein family. These covarying positions are inferred to be coevolving via one of two biological mechanisms, both of which imply that coevolution is facilitated by inter-residue contact. Thus, high-quality multiple sequence alignments and robust coevolution-inferring statistics can produce structural information from sequence alone. This work characterizes the relationship between coevolution statistics and sequence alignments and highlights the implicit assumptions and caveats associated with coevolutionary inference. An investigation of sequence alignment quality and coevolutionary-inference methods revealed that such methods are very sensitive to the systematic misalignments discovered in public databases. However, repairing the misalignments in such alignments restores the predictive power of coevolution statistics. To overcome the sensitivity to misalignments, two novel coevolution-inferring statistics were developed that show increased contact prediction accuracy, especially in alignments that contain misalignments. These new statistics were developed into a suite of coevolution tools, the MIpToolset. Because systematic misalignments produce a distinctive pattern when analyzed by coevolution-inferring statistics, a new method for detecting systematic misalignments was created to exploit this phenomenon. This new method called ``local covariation\u27\u27 was used to analyze publicly-available multiple sequence alignment databases. Local covariation detected putative misalignments in a database designed to benchmark sequence alignment software accuracy. Local covariation was incorporated into a new software tool, LoCo, which displays regions of potential misalignment during alignment editing assists in their correction. This work represents advances in multiple sequence alignment creation and coevolutionary inference

    Development Of Student Data Visualization Tool, Adaption Of Clostridium Difficile Toxin A Into Protein Delivery Vehicle, And Elucidation Of Tcdc Mechanism Of Toxin Control

    Get PDF
    Advancing student success in higher education is of paramount importance, and is in need for a tool that visualizes student data in a longitudinal manner. Student Circos plots achieve this by plotting student data in circular plots, depicting the timeline and grades for students selected by demographic or performance information. Cellular delivery of exogenous proteins is a bountiful area of research. However, most current systems have limited in vivo applications and most lack cellular specificity. By adapting Toxin A from Clostridium difficile, the goal was to create a cell specific protein delivery vehicle that would be robust in vivo. However, the chimeric constructs produced were unable to be isolated for study. Control of Toxin A and B in C. difficile has been linked to the protein TcdC. However , no clear mechanism has been developed and there is debate on whether TcdC truly plays a role in toxin production. The goal of this project was to identify DNA or RNA molecules within C. difficile that could behave as a protein sink, binding TcdC and preventing the native behavior. Recreation of TcdC binding DNA molecules that adopt a G-quartet structure was not successful and further analyses was not carried out

    Chromosomal-level assembly of the Asian Seabass genome using long sequence reads and multi-layered scaffolding

    Get PDF
    We report here the ~670 Mb genome assembly of the Asian seabass (Lates calcarifer), a tropical marine teleost. We used long-read sequencing augmented by transcriptomics, optical and genetic mapping along with shared synteny from closely related fish species to derive a chromosome-level assembly with a contig N50 size over 1 Mb and scaffold N50 size over 25 Mb that span ~90% of the genome. The population structure of L. calcarifer species complex was analyzed by re-sequencing 61 individuals representing various regions across the species' native range. SNP analyses identified high levels of genetic diversity and confirmed earlier indications of a population stratification comprising three clades with signs of admixture apparent in the South-East Asian population. The quality of the Asian seabass genome assembly far exceeds that of any other fish species, and will serve as a new standard for fish genomics

    A correspondence between solution-state dynamics of an individual protein and the sequence and conformational diversity of its family.

    Get PDF
    Conformational ensembles are increasingly recognized as a useful representation to describe fundamental relationships between protein structure, dynamics and function. Here we present an ensemble of ubiquitin in solution that is created by sampling conformational space without experimental information using "Backrub" motions inspired by alternative conformations observed in sub-Angstrom resolution crystal structures. Backrub-generated structures are then selected to produce an ensemble that optimizes agreement with nuclear magnetic resonance (NMR) Residual Dipolar Couplings (RDCs). Using this ensemble, we probe two proposed relationships between properties of protein ensembles: (i) a link between native-state dynamics and the conformational heterogeneity observed in crystal structures, and (ii) a relation between dynamics of an individual protein and the conformational variability explored by its natural family. We show that the Backrub motional mechanism can simultaneously explore protein native-state dynamics measured by RDCs, encompass the conformational variability present in ubiquitin complex structures and facilitate sampling of conformational and sequence variability matching those occurring in the ubiquitin protein family. Our results thus support an overall relation between protein dynamics and conformational changes enabling sequence changes in evolution. More practically, the presented method can be applied to improve protein design predictions by accounting for intrinsic native-state dynamics

    Data incongruence and the problem of avian louse phylogeny

    Get PDF
    Recent studies based on different types of data (i.e. morphological and molecular) have supported conflicting phylogenies for the genera of avian feather lice (Ischnocera: Phthiraptera). We analyse new and published data from morphology and from mitochondrial (12S rRNA and COI) and nuclear (EF1-) genes to explore the sources of this incongruence and explain these conflicts. Character convergence, multiple substitutions at high divergences, and ancient radiation over a short period of time have contributed to the problem of resolving louse phylogeny with the data currently available. We show that apparent incongruence between the molecular datasets is largely attributable to rate variation and nonstationarity of base composition. In contrast, highly significant character incongruence leads to topological incongruence between the molecular and morphological data. We consider ways in which biases in the sequence data could be misleading, using several maximum likelihood models and LogDet corrections. The hierarchical structure of the data is explored using likelihood mapping and SplitsTree methods. Ultimately, we concede there is strong discordance between the molecular and morphological data and apply the conditional combination approach in this case. We conclude that higher level phylogenetic relationships within avian Ischnocera remain extremely problematic. However, consensus between datasets is beginning to converge on a stable phylogeny for avian lice, at and below the familial rank

    Frustration in Biomolecules

    Get PDF
    Biomolecules are the prime information processing elements of living matter. Most of these inanimate systems are polymers that compute their structures and dynamics using as input seemingly random character strings of their sequence, following which they coalesce and perform integrated cellular functions. In large computational systems with a finite interaction-codes, the appearance of conflicting goals is inevitable. Simple conflicting forces can lead to quite complex structures and behaviors, leading to the concept of "frustration" in condensed matter. We present here some basic ideas about frustration in biomolecules and how the frustration concept leads to a better appreciation of many aspects of the architecture of biomolecules, and how structure connects to function. These ideas are simultaneously both seductively simple and perilously subtle to grasp completely. The energy landscape theory of protein folding provides a framework for quantifying frustration in large systems and has been implemented at many levels of description. We first review the notion of frustration from the areas of abstract logic and its uses in simple condensed matter systems. We discuss then how the frustration concept applies specifically to heteropolymers, testing folding landscape theory in computer simulations of protein models and in experimentally accessible systems. Studying the aspects of frustration averaged over many proteins provides ways to infer energy functions useful for reliable structure prediction. We discuss how frustration affects folding, how a large part of the biological functions of proteins are related to subtle local frustration effects and how frustration influences the appearance of metastable states, the nature of binding processes, catalysis and allosteric transitions. We hope to illustrate how Frustration is a fundamental concept in relating function to structural biology.Comment: 97 pages, 30 figure

    rKOMICS:An R package for processing mitochondrial minicircle assemblies in population-scale genome projects

    Get PDF
    Abstract Background The advent of population-scale genome projects has revolutionized our biological understanding of parasitic protozoa. However, while hundreds to thousands of nuclear genomes of parasitic protozoa have been generated and analyzed, information about the diversity, structure and evolution of their mitochondrial genomes remains fragmentary, mainly because of their extraordinary complexity. Indeed, unicellular flagellates of the order Kinetoplastida contain structurally the most complex mitochondrial genome of all eukaryotes, organized as a giant network of homogeneous maxicircles and heterogeneous minicircles. We recently developed KOMICS, an analysis toolkit that automates the assembly and circularization of the mitochondrial genomes of Kinetoplastid parasites. While this tool overcomes the limitation of extracting mitochondrial assemblies from Next-Generation Sequencing datasets, interpreting and visualizing the genetic (dis)similarity within and between samples remains a time-consuming process. Results Here, we present a new analysis toolkit—rKOMICS—to streamline the analyses of minicircle sequence diversity in population-scale genome projects. rKOMICS is a user-friendly R package that has simple installation requirements and that is applicable to all 27 trypanosomatid genera. Once minicircle sequence alignments are generated, rKOMICS allows to examine, summarize and visualize minicircle sequence diversity within and between samples through the analyses of minicircle sequence clusters. We showcase the functionalities of the (r)KOMICS tool suite using a whole-genome sequencing dataset from a recently published study on the history of diversification of the Leishmania braziliensis species complex in Peru. Analyses of population diversity and structure highlighted differences in minicircle sequence richness and composition between Leishmania subspecies, and between subpopulations within subspecies. Conclusion The rKOMICS package establishes a critical framework to manipulate, explore and extract biologically relevant information from mitochondrial minicircle assemblies in tens to hundreds of samples simultaneously and efficiently. This should facilitate research that aims to develop new molecular markers for identifying species-specific minicircles, or to study the ancestry of parasites for complementary insights into their evolutionary history
    corecore