679 research outputs found

    Hardware Trojan Detection Using Controlled Circuit Aging

    Get PDF
    This paper reports a novel approach that uses transistor aging in an integrated circuit (IC) to detect hardware Trojans. When a transistor is aged, it results in delays along several paths of the IC. This increase in delay results in timing violations that reveal as timing errors at the output of the IC during its operation. We present experiments using aging-aware standard cell libraries to illustrate the usefulness of the technique in detecting hardware Trojans. Combining IC aging with over-clocking produces a pattern of bit errors at the IC output by the induced timing violations. We use machine learning to learn the bit error distribution at the output of a clean IC. We differentiate the divergence in the pattern of bit errors because of a Trojan in the IC from this baseline distribution. We simulate the golden IC and show robustness to IC-to-IC manufacturing variations. The approach is effective and can detect a Trojan even if we place it far off the critical paths. Results on benchmarks from the Trust-hub show a detection accuracy of \geq99%.Comment: 21 pages, 34 figure

    CAD Tools for Synthesis of Sleep Convention Logic

    Get PDF
    This dissertation proposes an automated flow for the Sleep Convention Logic (SCL) asynchronous design style. The proposed flow synthesizes synchronous RTL into an SCL netlist. The flow utilizes commercial design tools, while supplementing missing functionality using custom tools. A method for determining the performance bottleneck in an SCL design is proposed. A constraint-driven method to increase the performance of linear SCL pipelines is proposed. Several enhancements to SCL are proposed, including techniques to reduce the number of registers and total sleep capacitance in an SCL design

    Securing Soft IPs against Hardware Trojan Insertion

    Get PDF
    Due to the increasing complexity of hardware designs, third-party hardware Intellectual Property (IP) blocks are often incorporated in order to alleviate the burden on hardware designers. However, the prevalence use of third-party IPs has raised security concerns such as Trojans inserted by attackers. Hardware Trojans in these soft IPs are extremely difficult to detect through functional testing and no single detection methodology has been able to completely address this issue. Based on a Register-Transfer Level (RTL) and gate-level soft IP analysis method named Structural Checking, this dissertation presents a hardware Trojan detection methodology and tool by detailing the implementation of a Golden Reference Library for matching an unknown IP to a functionally similar Golden Reference. The matching result is quantified in percentages so that two different IPs with similar functions have a high percentage match. A match of the unknown IP to a whitelisted IP advances it to be identified with a known functionality while a match to a blacklisted IP causes it to be detected with Trojan. Examples are given on how this methodology can successfully identify hardware Trojans inserted in unknown third-party IPs. In addition to soft IPs analysis, Structural Checking provides data flow tracking capability to help users discover vulnerable nodes of the soft IPs. Structural Checking is implemented with a graphical user interface, so it does not take users much time to use the tool

    Physical design of USB1.1

    Get PDF
    In earlier days, interfacing peripheral devices to host computer has a big problematic. There existed so many different kinds’ ports like serial port, parallel port, PS/2 etc. And their use restricts many situations, Such as no hot-pluggability and involuntary configuration. There are very less number of methods to connect the peripheral devices to host computer. The main reason that Universal Serial Bus was implemented to provide an additional benefits compared to earlier interfacing ports. USB is designed to allow many peripheral be connecting using single standardize interface. It provides an expandable fast, cost effective, hot-pluggable plug and play serial hardware interface that makes life of computer user easier allowing them to plug different devices to into USB port and have them configured automatically. In this thesis demonstrated the USB v1.1 architecture part in briefly and generated gate level net list form RTL code by applying the different constraints like timing, area and power. By applying the various types design constraints so that the performance was improved by 30%. And then it implemented in physically by using SoC encounter EDI system, estimation of chip size, power analysis and routing the clock signal to all flip-flops presented in the design. To reduce the clock switching power implemented register clustering algorithm (DBSCAN). In this design implementation TSMC 180nm technology library is used

    Low-cost error detection through high-level synthesis

    Get PDF
    System-on-chip design is becoming increasingly complex as technology scaling enables more and more functionality on a chip. This scaling and complexity has resulted in a variety of reliability and validation challenges including logic bugs, hot spots, wear-out, and soft errors. To make matters worse, as we reach the limits of Dennard scaling, efforts to improve system performance and energy efficiency have resulted in the integration of a wide variety of complex hardware accelerators in SoCs. Thus the challenge is to design complex, custom hardware that is efficient, but also correct and reliable. High-level synthesis shows promise to address the problem of complex hardware design by providing a bridge from the high-productivity software domain to the hardware design process. Much research has been done on high-level synthesis efficiency optimizations. This thesis shows that high-level synthesis also has the power to address validation and reliability challenges through two solutions. One solution for circuit reliability is modulo-3 shadow datapaths: performing lightweight shadow computations in modulo-3 space for each main computation. We leverage the binding and scheduling flexibility of high-level synthesis to detect control errors through diverse binding and minimize area cost through intelligent checkpoint scheduling and modulo-3 reducer sharing. We introduce logic and dataflow optimizations to further reduce cost. We evaluated our technique with 12 high-level synthesis benchmarks from the arithmetic-oriented PolyBench benchmark suite using FPGA emulated netlist-level error injection. We observe coverages of 99.1% for stuck-at faults, 99.5% for soft errors, and 99.6% for timing errors with a 25.7% area cost and negligible performance impact. Leveraging a mean error detection latency of 12.75 cycles (4150x faster than end result check) for soft errors, we also explore a rollback recovery method with an additional area cost of 28.0%, observing a 175x increase in reliability against soft errors. Another solution for rapid post-silicon validation of accelerator designs is Hybrid Quick Error Detection (H-QED): inserting signature generation logic in a hardware design to create a heavily compressed signature stream that captures the internal behavior of the design at a fine temporal and spatial granularity for comparison with a reference set of signatures generated by high-level simulation to detect bugs. Using H-QED, we demonstrate an improvement in error detection latency (time elapsed from when a bug is activated to when it manifests as an observable failure) of two orders of magnitude and a threefold improvement in bug coverage compared to traditional post-silicon validation techniques. H-QED also uncovered previously unknown bugs in the CHStone benchmark suite, which is widely used by the HLS community. H-QED incurs less than 10% area overhead for the accelerator it validates with negligible performance impact, and we also introduce techniques to minimize any possible intrusiveness introduced by H-QED
    corecore