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ABSTRACT

System-on-chip design is becoming increasingly complex as technology scal-

ing enables more and more functionality on a chip. This scaling and complex-

ity has resulted in a variety of reliability and validation challenges including

logic bugs, hot spots, wear-out, and soft errors. To make matters worse,

as we reach the limits of Dennard scaling, e↵orts to improve system perfor-

mance and energy e�ciency have resulted in the integration of a wide variety

of complex hardware accelerators in SoCs. Thus the challenge is to design

complex, custom hardware that is e�cient, but also correct and reliable.

High-level synthesis shows promise to address the problem of complex

hardware design by providing a bridge from the high-productivity software

domain to the hardware design process. Much research has been done on

high-level synthesis e�ciency optimizations. This thesis shows that high-level

synthesis also has the power to address validation and reliability challenges

through two solutions.

One solution for circuit reliability is modulo-3 shadow datapaths: per-

forming lightweight shadow computations in modulo-3 space for each main

computation. We leverage the binding and scheduling flexibility of high-level

synthesis to detect control errors through diverse binding and minimize area

cost through intelligent checkpoint scheduling and modulo-3 reducer shar-

ing. We introduce logic and dataflow optimizations to further reduce cost.

We evaluated our technique with 12 high-level synthesis benchmarks from

the arithmetic-oriented PolyBench benchmark suite using FPGA emulated

netlist-level error injection. We observe coverages of 99.1% for stuck-at faults,

99.5% for soft errors, and 99.6% for timing errors with a 25.7% area cost and

negligible performance impact. Leveraging a mean error detection latency

of 12.75 cycles (4150x faster than end result check) for soft errors, we also

explore a rollback recovery method with an additional area cost of 28.0%,

observing a 175x increase in reliability against soft errors.
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Another solution for rapid post-silicon validation of accelerator designs

is Hybrid Quick Error Detection (H-QED): inserting signature generation

logic in a hardware design to create a heavily compressed signature stream

that captures the internal behavior of the design at a fine temporal and

spatial granularity for comparison with a reference set of signatures gener-

ated by high-level simulation to detect bugs. Using H-QED, we demonstrate

an improvement in error detection latency (time elapsed from when a bug

is activated to when it manifests as an observable failure) of two orders of

magnitude and a threefold improvement in bug coverage compared to tradi-

tional post-silicon validation techniques. H-QED also uncovered previously

unknown bugs in the CHStone benchmark suite, which is widely used by the

HLS community. H-QED incurs less than 10% area overhead for the acceler-

ator it validates with negligible performance impact, and we also introduce

techniques to minimize any possible intrusiveness introduced by H-QED.
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CHAPTER 1

BACKGROUND

Designing hardware is hard. A system designer chooses a custom hardware

design when a pure software solution is inadequate for power consumption

and/or performance reasons. Thus problems that require a hardware solu-

tion already come with demanding power and performance constraints. With

the end of Dennard scaling, improvements in power consumption and perfor-

mance for CPU-based software platforms have slowed down, pushing more

and more system designers to custom hardware solutions.

The result is an explosion in system complexity with increasing e↵ort and

chip area dedicated to custom hardware on SoCs. To make matters worse,

designers often have additional constraints: limited time to get into a mar-

ket, complex functionality demanded by that market, and limited chip area

budgets due to fabrication costs.

As if this were not enough, the continuation of Moore’s law scaling has

resulted in new hardware reliability problems. Reliably operating billions of

transistors is not easy when power “brown outs” start occurring and ther-

mal hot spots start forming as transistors are packed closer together. Reli-

ably fabricating smaller wires and devices is also not easy, resulting in more

permanent defects. Smaller devices are more vulnerable to particle strikes,

which manifest as soft errors. Physical e↵ects cause smaller transistors to

wear out, resulting in longer gate propagation delays leading to timing errors

after prolonged use. All of this does not even consider that designers them-

selves, without needing any help from circuit physics, are more than capable

of creating their own logic bugs to trip over in their complex designs.

Clearly there is a need for e↵ective methods to manage the complexity of

hardware design. High-level synthesis, also known as behavioral synthesis,

is one such approach. HLS provides a bridge from the high-productivity

software world to the hardware design world, enabling hardware designers

to create behavioral specifications of their design in dialects of traditionally
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software languages. HLS frees hardware designers from the tedious details of

hardware resource allocation, scheduling, and binding, allowing them to focus

on meeting design requirements and designing e↵ective hardware algorithms.

From a research point of view, starting from a behavioral specification pro-

vides the synthesis engine with richer information about the behavior and

architecture of a design, enabling scheduling and binding optimization po-

tential not possible with RTL design entry, and giving the synthesis engine

more freedom to exploit this flexibility to meet multiple optimization goals.

In this thesis, I discuss my research to leverage this power of HLS to ad-

dress the aforementioned hardware reliability and validation problems. In

Chapter 3, I propose creating a redundant, but smaller “shadow” datapath

based on modulo arithmetic to detect reliability problems in a design’s main

datapath. HLS is critical here because it provides a clear picture of the

datapath of the design and enables e↵ective sharing of expensive checksum

computing resources. In Chapter 4, I propose the insertion of signature gen-

eration logic in a hardware design to create a heavily compressed signature

stream that captures the internal behavior of the design at a fine temporal

and spatial granularity. By comparing the generated sequence of signatures

to a reference set generated by high-level simulation, I can detect both logic

and electrical bugs in hardware designs. HLS also plays a critical role here

by identifying important variables to capture and enabling the sharing of ex-

pensive signature generation logic. Before these main chapters, I will provide

some background on the reliability and validation problems hardware design-

ers face in the rest of this chapter and discuss related work in Chapter 2.

This thesis is based on my two publications in DAC 2015: “High-Level

Synthesis of Error Detecting Cores through Low-Cost Modulo-3 Shadow

Datapaths” [1] and “Hybrid Quick Error Detection (H-QED): Accelerator

Validation and Debug using High-Level Synthesis Principles” [2].

1.1 Root Causes for Hardware Failure

Figure 1.1 provides an overview of the hardware engineering process, which

consists of the following steps:

1. The designer writes a Verilog and/or VHDL description of the design.
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Figure 1.1: The hazards inherent in designing custom hardware
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For improved productivity, the designer may also elect to specify design

blocks at the behavioral level in SystemC or his HLS-tool’s proprietary

C dialect.

2. The designer simulates behavioral design blocks using a software com-

piler.

3. The designer uses a high-level synthesis tool to generate an RTL im-

plementation of behavioral design blocks.

4. The test engineer runs the resulting RTL implementations through an

RTL simulation tool.

5. The designer runs the RTL blocks through logic synthesis to generate

a technology mapped gate netlist.

6. The test engineer may simulate the netlist with a netlist simulation

tool. Simulation at this stage is very slow.

7. The designer runs the gate netlist through a placement and routing

engine, which produces a physical design.

8. The test engineer may simulate the physical design with a chip simu-

lation that takes wire and gate delays into account. This simulation is

extremely slow.

9. The designer sends the physical design to a foundry, which fabricates

the chip.

10. Test engineers test the actual hardware to verify that it meets specifi-

cations and validate that it implements the correct design.

11. Hardware that passes post-silicon testing is sent to end-users who de-

ploy it in their systems.

Figure 1.1 also shows what can go wrong during the hardware engineering

process, which we now discuss in the following subsections.
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1.1.1 Logic Bugs

Logic bugs are mistakes that the hardware designer makes in writing the

C or RTL version of a design that cause it to function in violation of the

design specification. Most of these bugs are caught in high-level simulation

or RTL simulation. Due to the complexities of system design it is di�cult to

design these tests such that they exercise every possible interaction between

a design block under test and other design blocks around it. Thus some logic

bugs escape high-level and RTL simulation and can make it into the physical

design. Some of those bugs evade detection in post-silicon testing and survive

all the way to deployment. We define two primary classes of logic bugs:

• Deterministic logic bugs have well defined behavior that is not com-

piler or synthesis tool dependent. For input languages with well defined

standards, semantics that are defined in the standard are deterministic

for tools that conform to the standard. An example of a deterministic

logic bug is a memory copy operation for input data that simultane-

ously (for faster performance) copies the first half of an input array

to both halves of an output array when the programmer intended to

copy corresponding halves of the whole input array to the whole output

array.

• Nondeterministic logic bugs do not have well defined behavior; the

behavior can depend on the compiler or synthesis tool used, how the

tool was configured, what environment the tool was run in or the design

was tested in, and even other parts of the design that are seemingly un-

related; the behavior of these bugs can depend on almost anything! For

input languages with well defined standards, nondeterministic seman-

tics may be specified as resulting in “undefined behavior.” An example

of a nondeterministic logic bug is a read from uninitialized memory.

1.1.2 Hot Spots

Hot spots are regions on a chip that exceed local heat dissipation capacity

and/or power supply capacity under certain operating conditions. Hot spots

happen when a large amount of transistor switching activity is concentrated

in a small region of a chip. An excess current demand that lasts long enough
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causes voltage drops on power supply wires, resulting in longer than expected

transistor delays. High power consumption exceeding the thermal dissipation

capability of a region of a chip that lasts long enough results in excess heat

that causes the transistors in that region, which are not designed to operate

at high temperature, to slow down. The net e↵ect is that signal propagation

delays increase, leading to timing errors (defined in Section 1.2.1).

1.1.3 Fabrication Defects

Fabrication defects result in gates implementing the wrong logic function (or

being permanently bypassed) due to wire or transistor fabrication failures.

These permanent defects typically manifest as stuck-at faults: wires that are

supposed to be the output of a logic gate are stuck at logic 0 or logic 1 and

never change regardless of circuit input.

1.1.4 Soft Errors

Soft errors are caused by a particle striking a transistor with enough energy

and the right timing to cause bit-flips in storage elements including flip-

flops, SRAM cells, and DRAM cells. The victim transistor can be part of

the storage element, or an upstream gate that propagates a resulting logic

glitch. These particles are typically part of a shower of particles that results

when a cosmic ray strikes the Earth’s atmosphere. Thus these events are

random and unpredictable in nature.

1.1.5 Wear Out

Like mechanical systems, MOSFETs can wear out from prolonged, heavy use.

High-energy charge carriers can build up over time in a MOSFET’s insulating

dielectric, increasing the threshold voltage which causes the transistor to

switch more slowly. Bias temperature instability (BTI) is another e↵ect that

can charge the insulating dielectric over time, although some of its e↵ects

are temporary [3]. Like hot spots, both of these problems can lead to timing

errors (defined in Section 1.2.1). Unlike hot spots, these aging e↵ects can

take years to develop.
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Worse problems can occur when the dielectric layer breaks down, which

can result in a short that causes a permanent failure of a transistor. An-

other e↵ect called electromigration causes atoms in wires to slowly “flow”

downstream, thinning the wire upstream until it becomes a permanent open

circuit defect [3].

1.2 Root Cause E↵ects

The e↵ects of many of the above root causes are predictable enough that

they can be modeled. For each e↵ect, there are activation conditions, or

conditions required for the e↵ect to occur. More precisely, an activation

condition is the condition required for an error, fault, or bug to change the

internal behavior of a design. Thus if an error, fault, or bug is not activated,

then it is undetectable even with perfect observability of the internal behavior

of a design.

1.2.1 Timing Errors

Power and thermal hot spots, charge carrier injection, and bias temperature

instability all result in transistors switching more slowly than they normally

would. The result is that signal propagation delays along chains of gates

increase, resulting in a signal taking so long to propagate from a launch flip-

flop to a latch flip-flop that it misses the latch window. The result is that

the wrong value can be latched at the latch flip-flop; when this occurs it is

known as a timing error.

We can model this timing error as a bit flip at the latch flip-flop, given

these four activation conditions for a timing error to occur along a given

combinational path at a given cycle from a launch flip-flop to a latch flip-

flop:

1. The sum of the arrival time of the launch flip-flop output and delays

of each gate along the path must exceed the required arrival time for

the latch flip-flop input.

2. The path must be sensitized, meaning that all logic values are such that

a flip in the logic value of the launch flip-flop results in a flip along each
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segment of the path up to and including the latch flip-flop.

3. The launch flip-flop toggles at the given cycle.

4. The latch flip-flop latches the wrong value. Favorable glitches may

cause the latch flip-flop to latch an intermediate value that happens to

be correct even though the final value arrives too late.

1.2.2 Stuck-at Faults

Fabrication defects result in gate outputs being stuck at either a 0 or a 1. The

more dramatic wear-out problems that cause permanent defects can also have

this e↵ect. Modeling these faults is straightforward: disconnect a net from

its original driver and connect it to a constant logic 0 or 1 instead. Stuck-at

0 (1) faults have one activation condition, which is that the input logic values

to the gate with the stuck-at fault are such that the output should be 1 (0).

The result is an internally detectable deviation in the behavior of a design.

1.2.3 Soft Errors

Soft errors cause random logic values to be injected into storage elements

of a design, overwriting the previous value. For this event to be internally

observable, the activation condition is that the value injected must di↵er

from the value that would otherwise be latched at the storage element at

the time of injection. Thus we model these events as random bit-flips at

random cycles in randomly selected storage elements, using the value that

would normally be latched as the reference for the flip.

1.2.4 Logic Bugs

While logic bug activation conditions and e↵ects are in general more di�cult

to pin down than the above electrical bug scenarios, they still exist. Logic

bugs have activation conditions, which are the conditions under which the

internal behavior of a design deviates from what the designer expects, and

e↵ects, which are the actual behavior of the bug as compared to a designer’s

expectations.
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1.3 Error Propagation

When an error, fault, or bug is activated, it has by definition begun to

change the internal behavior of a circuit. This change in behavior is not

necessarily externally observable, however. Errors that are activated have

multiple possible outcomes:

• The error e↵ects are masked before they a↵ect any output of the cir-

cuit. This means the error changes the internal behavior of the circuit

temporarily, but that eventually the circuit reverts to behaving as if

the error had never activated. Externally (i.e. observing the circuit

outputs), there is no way to know a masked error has activated. An

example of a masked error is a value that is computed incorrectly, but

is then ignored because it is not selected by a multiplexer.

• The error e↵ects change the output of the circuit. In this case we say

that the error is unmasked.

• For e↵ects that are not quickly masked or unmasked but instead make

it to internal storage elements, there can be a third “limbo” state known

as silent data corruption. In this state, the error has changed the in-

ternal behavior of the circuit, but whether the error will be masked

or unmasked depends on the next access to the corrupted storage el-

ements. For example, the corrupted elements may be overwritten, in

which case the error becomes masked or the corrupted elements may be

read and outputted, in which case the error becomes unmasked. Since

data can be stored in memory indefinitely, there is no limit to how long

silent data corruption can last.

While unmasked errors are clearly the most problematic, one should be care-

ful about considering masked errors to be benign. In the same way that

errors have activation conditions, errors are also sensitive to masking con-

ditions that can turn a masked error into an unmasked one. A particularly

insidious case is a masking condition that cause an error to be masked in test-

ing mode, but unmasked in production mode. Thus for circuit validation,

increasing observability to detect masked errors is also important.
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1.4 Modulo Arithmetic

Modulo-b arithmetic is arithmetic defined in a finite field with b possible

values, where each possible value corresponds to a remainder when an in-

teger is divided by b (using Euclidean division so that remainders are al-

ways positive). Addition, subtraction, and multiplication are defined with

“wraparound” arithmetic where the result is immediately divided by b and

the remainder taken as the result.

For example, in modulo-3 space the possible values are {0, 1, 2} and 2+2 =

1 since in integer space (2 + 2) mod 3 = 1 where a mod b is the remainder

after dividing a by b. Table 1.1 shows the mapping from integer space to

modulo-3 space and Table 1.2 provides the modulo-3 addition, subtraction,

and multiplication tables.

1.4.1 Properties

Since equivalent lightweight computations can be performed in modulo-b

space as in integer space, modulo-b arithmetic can be used as a way to

independently check integer computation. This works because we have de-

fined a homomorphism from integer arithmetic to modulo-b arithmetic. In

other words, given integers {x, y, z} and corresponding modulo-b variables

{x0, y0, z0} = {x, y, z} mod b we observe the following properties:

x+ y = z =) x0 + y0 = z0 (mod b) (1.1)

x� y = z =) x0 � y0 = z0 (mod b) (1.2)

xy = z =) x0y0 = z0 (mod b) (1.3)

where (mod b) next to an equation indicates that the arithmetic is performed

in modulo-b space. Thus for Equations (1.1), (1.2), (1.3), z0 can be indepen-

dently computed two ways: by mapping z to modulo-b space or by mapping

x0 and y0 to modulo-b space and performing the “shadow computation” in

each equation.

Note that this “shadow computation” property holds for arbitrarily com-
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Table 1.1: Integer to Modulo-3 Space Mapping

Integer value -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
Modulo-3 value 0 1 2 0 1 2 0 1 2 0 1 2 0

Table 1.2: Modulo-3 Addition, Subtraction and Multiplication Tables

+ 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

� 0 1 2

0 0 2 1
1 1 0 2
2 2 1 0

⇥ 0 1 2

0 0 0 0
1 0 1 2
2 0 2 1

plex integer arithmetic involving addition, subtraction, and multiplication.

For example, x2�4xy+2y2 = z =) x02�x0y0+2y02 = z0 (mod b). Exploit-

ing the ability of homomorphisms such as this integer to modulo-b mapping

to scale to arbitrarily complex expressions is the key to implementing cost-

e↵ective error detection.

1.4.2 Aliasing

When using modulo-b arithmetic as an error detection technique, aliasing

occurs when the integer result of an erroneous computation corresponds to

the same modulo-b checksum as the correct result. For example, for modulo-3

arithmetic, if the correct integer result of a computation is 5, but the value -4

is produced instead, since both values map to 2 in modulo-3 space (Table 1.1)

the error may not be detected since the correct “checksum” was produced.

One should be particularly wary of the aliasing that can occur when mul-

tiplying by a multiple of b. For example, for modulo-3 arithmetic, if any er-

roneous integer value is multiplied by 6, then the result will be 0 in modulo-3

space (Tables 1.1 and 1.2). Thus, in my application of modulo-3 arithmetic,

I pay special attention to multiplication operations (see Section 3.1.2).

1.4.3 Modular Base

To use modulo-b arithmetic to detect errors e↵ectively in binary logic, I

choose b such that z0 = z mod b is a function of all of the bits in z. For

example, b = 4 would fail this test because now z0 is just the last two bits of

z, ignoring the higher order bits (and any errors in those bits). I also want
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each bit in z to have the ability to a↵ect any bit in z0 to reduce to probability

of aliasing. For example, b = 6 would fail this test because the last bit of z0

would only be a↵ected by the last bit of z. The choice of b will pass both of

these tests if b is odd and b � 3. In this thesis, I choose b = 3 to minimize

the hardware cost, as only two bits are needed to represent the three possible

modulo-3 values.

1.5 Execution Signatures

A software program contains variables that will have dynamic values during

the program execution. Similarly, a hardware design has storage elements

such as flip-flops that will have dynamic values during hardware execution.

An execution signature is a hashed trace of the dynamic value of variables

during software or hardware execution. Comparing the trace of hardware to

be validated with a reference execution trace is a useful way to catch bugs.

As one might imagine, tracing all variables at all times during software or

hardware execution is expensive. We can use the following complementary

techniques to reduce that cost:

1. Select a subset of all variables to trace. This reduces overhead, but also

observability.

2. Create a diverse tracing schedule (i.e. di↵erent variables are traced in

di↵erent execution states). This allows tracing resources such as bu↵ers

and I/O ports to be shared, reducing overhead.

3. Hash some of the traced variables. In order for the hash to be re-

producible to detect errors, the values of the traced variable must be

known (i.e. if there is an unknown or “x” value, then the hash cannot

be reproduced and false bug detection positives will occur).

4. Compute a running hash to combine variables across cycles. Again all

of the values that go into this running hash must be known.

In Chapter 4, I use all four of these techniques, and hash all of the traced

variables to detect errors, using the high-level synthesis binding solution to

identify when register values are known.
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1.5.1 Catching Logic Bugs

If a design contains a nondeterministic logic bug and is run in a reference sim-

ulation and in hardware, the dynamic trace of the variable values will likely

be di↵erent. The simulation would involve a di↵erent process (e.g. compi-

lation by a high-level C compiler) than the hardware synthesis process, so

the undefined behavior would likely manifest itself di↵erently. For example,

the values stored in uninitialized memory in hardware could be the device

physics dependent power-on state, while uninitialized memory in a reference

simulation might contain values from when it was used by another software

process.

If a design only contains deterministic logic bugs and the simulation and

synthesis tools correctly interpret the input code, the dynamic hardware

and reference trace of the variable values will be identical. Thus hybrid

tracing techniques will not catch deterministic logic bugs. The good news is

that due to their deterministic nature, these bugs are easily reproducible in

both hardware and reference executions. Furthermore, for hardware designs

written in software input languages, we can leverage traditional software

debugging techniques to debug hardware designs.

1.5.2 Hash Functions

In order to minimize hardware cost, I select the following xor-based hash

functions:

H(x1, x2, ..., xn

) = x1 � x2 � ...� x
n

(1.4)

S
n

=

8
<

:
H0 � C if n = 0

H
n

� rotate(S
n�1, r) if n > 0

(1.5)

where H is the reduction function that reduces a set of multi-bit variable

values (technique 3 above) to a single hash. Similarly, S
n

is my running hash

that combines the values of H across execution cycles (technique 4 above) (H

in cycle n is denoted H
n

). The function rotate(v, r) denotes bit rotation to

the left of the bit vector v by r bits. C and r are constants. In Section 4.1.2,

I refer to the hardware that implements these hash functions as an XOR tree

and an LFSR, respectively.
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Both of these functions have the desirable property that a change in any bit

of the input variables will result in a change in at least one bit of the output.

Equation (1.5) has the additional desirable property that S
n

depends on the

number of cycles that have passed, n, even if all H
n

= 0.

1.6 High-Level Synthesis

High-level synthesis, also known as behavioral synthesis, is a process that

turns a software behavioral specification with an architectural description

into hardware that implements that specification. The input to a high-level

synthesis tool is typically a C language dialect with language extensions (e.g.

pragmas and directives) and libraries to annotate the behavioral description

with architectural specifications. The output is a hardware description, typ-

ically specified in Verilog or VHDL. A typical synthesis engine will perform

the following steps:

1. Compilation: The synthesis engine parses the input code and converts

it to an intermediate representation (IR).

2. Transformation and Optimization: The synthesis engine runs the

IR through a series of optimization passes, similar to software compiler

optimizations. The engine also does architectural transformations such

as loop unrolling and pipelining.

3. Allocation: For each hardware resource—memories, ports, registers,

and functional units—the synthesis engine determines what kind and

how many of each to use. Larger allocations usually increase perfor-

mance at the cost of area.

4. Scheduling: The engine creates a state machine corresponding to the

control flow of the software specification. For each state, the engine

determines what operations—computations, memory access, and/or

I/Os—will occur in that state. The engine may insert extra states

to provide su�cient cycles to complete complex chains of operations.

5. Binding: For each operation, the engine determines which hardware

resource(s) will be involved in performing the operation. Operations
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that can never occur at the same time can share a common hardware

resource. The engine inserts multiplexers at this stage to facilitate such

sharing.

6. RTL Generation: The engine generates a complete RTL description

of the final state machine and datapath solution.
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CHAPTER 2

RELATED WORK

2.1 Hardware Reliability

A traditional approach to error detection in hardware designs is by duplicat-

ing each component, also called dual modular redundancy (DMR) [4]. But

this approach comes with a 2x area cost that eliminates the area and power

reduction benefits of Moore’s law scaling. DIVA [5] is another popular tech-

nique which uses an extra checker core to verify the correctness of the main

core computation and commit only non-faulty results. Concurrent error de-

tection (CED) [6] uses HLS to introduce redundancy at the functional unit

level. Although each component is fully duplicated, this technique aims at

reducing area and performance overhead through resource sharing. But this

technique can incur at least 75% area cost for simple and small datapaths.

Another approach is time-redundancy, where we re-compute results using

the same hardware units to detect errors. [7] uses a time redundancy-based

concurrent error detection scheme with diverse binding solutions in its re-

computation stage but has performance overheads even though it incurs low

area cost. Argus [8] is a prototype processor with a modulo-3 arithmetic

checker that can detect up to 98.0% and 98.8% of unmasked transient and

permanent errors respectively. Argus has low area (17%) and performance

(4%) costs but it is limited to the Von Neumann processor architecture and,

to the best of our knowledge, there is no similar work in high-level synthesis

that targets application-specific custom logic and accelerator designs.

The traditional approach to reliable hardware is triple modular redundancy

(TMR) [9] where two additional units are added to the main unit and a ma-

jority voting unit. The three units perform the same computation and if any

of the three units fail, the other two units can correct and mask the fault. Al-

though TMR has a high fault coverage, it has a 3x area cost. [10] integrated
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modular redundancy into high-level synthesis and presented techniques to

increase reliability with cost and performance constraints and decrease cost

given reliability constraints, but not both together. New approaches to mod-

ular redundancy such as statistical error compensation (SEC) involving pair-

ing an estimator module with unreliable hardware still come with high (50-

100%) area cost [11]. Razor [12] is a gate level transformation that adds a

shadow latch for each flip-flop to detect timing errors. Although it has a

low area and performance overhead (<3%), it is limited to only detecting

timing errors. [13] proposes a technique to recover from soft errors but does

not perform any error injection experiments and has a passive approach to

masking errors whereas we actively detect and correct errors.

Compared to our reliability solution in Chapter 3, the techniques men-

tioned above have one or more of the following limitations:

1. Not automated;

2. Does not protect state machine and control logic;

3. Limited to a single fault model;

4. Has significant performance cost;

5. Has area costs approaching 2x or more.

2.2 Post-Silicon Validation

The inspiration for my H-QED PSV solution (Chapter 4) is QED [14, 15,

16, 17], which is a software technique for the post-silicon validation of pro-

grammable microprocessors. In general, PSV techniques that target proces-

sors (e.g., [18, 19] and others) are inadequate for bugs inside accelerators.

Although H-QED may appear to be similar to tracing techniques used in

PSV (e.g., using trace bu↵ers or system memory [20, 21, 22, 23]), there are

important di↵erences:

1. H-QED systematically collects signatures, unlike tracing techniques

that are often ad-hoc or based on heuristics;

2. H-QED does not require extensive low-level (e.g., RTL) simulation;
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3. H-QED does not require designer-crafted assertions;

4. H-QED enables very short error detection latencies and high bug cover-

age, unlike tracing techniques that become ine↵ective for di�cult bugs

with long error detection latencies.

H-QED is distinct from fault-tolerant computing techniques for processors

(e.g., using watchdog processors, DIVA, multi-threading and signature tech-

niques for duplex systems [5, 24, 25, 26, 27, 28]). Many of these techniques

only check the register values as defined by the Instruction Set Architecture

(ISA). In contrast, H-QED is e↵ective for arbitrary hardware accelerators cre-

ated using HLS and automatically identifies signals to check in the resulting

designs. Unlike time redundancy and cycle stealing techniques for enhancing

reliability of designs created using HLS [29, 30, 31], H-QED utilizes unique

aspects of the PSV environment (where the generation of software signatures

after a PSV run is acceptable vs. reliability techniques that focus on quick

error recovery) to minimize area/performance costs and intrusiveness.

Given a high-level specification and a design produced by HLS (referred

to as an implementation), there is a large class of techniques that check if

the implementation is equivalent to the high-level specification, often relying

on formal techniques [32, 33, 34]. The goal is to detect bugs in the imple-

mentation that are caused by the HLS tool. However, equivalence checking

techniques cannot detect bugs that are in the high-level specification itself.

In contrast, H-QED detects bugs in the high-level specification (e.g., the C

source code in this paper) as well as bugs in the implementation caused by

the HLS tool.

18



CHAPTER 3

ERROR DETECTION THROUGH
MODULO-3 SHADOW DATAPATHS

In this chapter, I propose creating a redundant, but smaller “shadow” dat-

apath based on modulo arithmetic to detect reliability problems in an HLS

design’s main datapath. I automate the creation of this “shadow” datapath

through a series of modulo-3 shadow datapath HLS transformations. Our

main innovations are:

1. Intelligent scheduling of intermediate register consistency checks for

maximum coverage with minimum checker allocation;

2. Support for mixed arithmetic/non-arithmetic data paths;

3. A register-duplication based checkpointing technique to demonstrate

the error correction potential of our approach;

4. An FPGA accelerated, fully automated error injection framework using

a gate-netlist transformation to enable accelerated injection for three

fault models;

5. Error detection latencies three orders of magnitude faster than an end

result check;

6. Unmasked error detection coverage of 99.42% for an assortment of three

di↵erent kinds of fault models.

The rest of this chapter is organized as follows: Section 3.1 explains the

method we use to perform our error detection and correction transformations

and Section 3.2 discusses our experimental setup and results.
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3.1 Method

Our approach to protecting a hardware design is a series of modulo-3 shadow

datapath HLS transformations. An overview of how these transformations

fit into the HLS process is illustrated in Figure 3.1a. We use the LegUp

HLS scheduling engine [35] to schedule the original datapath, and perform

binding with our in-house binding engine. Our transformations involve some

additional scheduling steps (see Section 3.1.2). We perform our error detec-

tion transformations after scheduling but before binding to insure that the

latency of the hardware function does not increase.

Front-end (clang+LLVM)

Scheduler (LegUp)

Modulo-3 Transform

Shadow Datapath 
Optimization Passes

Binder (in-house)

Verilog RTL

C source code

LLVM-IR

Scheduled CDFG

Scheduled CDFG

Scheduled CDFG

(a) HLS Overview

+ 

+
+

+ + + 

%3

%
3

= 

%
3

= 

Input 
Reducers

Register
Checkers

Output
Checkers

Shadow 
Functional 
Units

error

error

Shadow
Registers

(b) Modulo-3 Transform

Figure 3.1: Overview of our method. (a) Integration of our reliability
transformations into the high-level synthesis process. (b) Illustration of our
core mod-3 transform. The original datapath is colored black/white and
the shadow datapath is in blue.

Figure 3.1b provides an overview of our basic modulo-3 shadow datapath

transformation. For each input port, we add a mod-3 reducer to compute

the input value mod-3 residue, e↵ectively creating a shadow mod-3 input.

For each arithmetic functional unit (e.g. add, subtract, multiply), we add
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a corresponding shadow mod-3 functional unit. For each datapath flip-flop,

we add a corresponding 2-bit flip-flop to store and propagate the mod-3

checksum in a parallel datapath. For each output port, we add a mod-3

checker which consists of a reducer and 2-bit equality comparator, which

then drives shared error ports. The result is that each main computation

is independently performed in mod-3 space, and the two results are checked

for consistency. In the following two subsections, we discuss the design of

these mod-3 functional units and the transformation that inserts them into

high-level synthesized designs.

3.1.1 Modulo-3 Functional Units

Basic Functional Units

Mod-3 functional units represent the types of functional units which operate

in the mod-3 space. Since only two bits are required to encode three possible

values in mod-3 space, a simple approach is to use two representations for

0: 00 and 11, which is the approach taken for previous designs of mod-3

functional units. Our key innovation is to ignore the 11 encoding (we name

it the U value) and optimize it as a don’t care.

Table 3.1: Modulo-3 Adder Functional Specification Table

value encoding

0 00
1 01
2 10
U 11

+3 0 1 2 U

0 0 1 2 X
1 1 2 0 X
2 2 0 1 X
U X X X X

Table 3.2: Optimization Results for Shadow Mod-3 Units

Function
32-bit unit naive shadow optimized shadow
area delay area delay area delay

Add 163 1.30 17.6 0.15 9.30 0.08
Multiply 2381 2.05 10.9 0.08 5.75 0.05

Thus if either input is the U value, then the output does not matter as the

U case will never occur in normal operation. As illustrated in Table 3.1
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for the mod-3 adder, there are 9 fixed output cases and 7 don’t care output

cases for each two-input mod-3 unit. Through the use of Karnaugh maps, we

optimally exploited these don’t cares to find a low area cost design expressed

as a sum of products. We verified the optimality of our sum of products

solution through exhaustive search of all 47 possible don’t care assignments

(i.e. to check for better solutions involving compound gates). Table 3.2

shows the e↵ects of our optimization. For logic synthesis, we implemented

our designs in Verilog, used Synopsys Design Compiler 2013-12.sp4 with an

ARM 45nm standard cell library, and optimized for minimum area. We

measure area in square micrometers and delay in nanoseconds.

Constant Functional Units

We also consider an additional class of constant operation units generated by

high-level synthesis, units that have a constant as one input. We can think

of this constant as “baked-in” to the logic of the unit so that structurally the

unit has a single input and a single output. For example, a “+10” constant

operation unit takes some value x as input and outputs x+ 10.

Table 3.3: Shadow Unit Metrics for Operation with Constant c

Function
c = 0 c = 1 c = 2

area delay area delay area delay
Add c 0 0 0.96 0.02 0.96 0.02

Multiply by c 0 0 0 0 0 0

Table 3.3 shows the cost of the constant operation versions of our mod-3

units. Since we can reduce each constant to its mod-3 residue at compile

time, there are only three versions of each constant unit. We observe that

the operations +0 and x1 have no area cost since they lower to the identity

function and x0 lowers to the constant zero for multiplication. As discussed

in Section 3.1.2, such operations are optimized out by our high-level synthesis

optimization passes.

With such functional unit optimizations, our method has an even greater

area-cost advantage over double or triple modular redundancy for arithmetic

datapaths.
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Modulo-3 Reducers

Mod-3 reducers are our modulo-3 residue computing units. They are imple-

mented as a tree of dlog n/2e stages of modulo-3 adders where n is the input

width, similar to the tree approach in [36]. An example reducer for n = 16

is illustrated in Figure 3.2. The design works by grouping the input bits into

pairs and e↵ectively constructing a base 22 = 4 representation of the input

value. Since 4n mod 3 = 1 for all n � 0, each base 4 digit has the same

weight in mod-3 space and thus we can compute the mod-3 sum of all of the

digits in a straightforward tree reduction.

+3 +3 +3 +3

+3 +3
+3

16

22 22 2222

2

x

x mod 3

Figure 3.2: Optimized mod-3 reducer topology for a 16-bit unsigned
reducer. Optimized mod-3 adders are colored blue.

Table 3.4: Optimization Results for 32-bit Mod-3 Reducer

Reducer Type
[36] ours

area delay area delay
Unsigned 263 0.62 203 0.46

Signed 267 0.66 207 0.51

Since the first stage adders must take all possible values (0, 1, 2, and 3)

as inputs, we cannot perform don’t care optimizations for those units. But

since we design the first stage adders to normalize their output to be 0, 1, or

2, all subsequent stages can optimize the fourth (“3” or U) value as a don’t

care. To the best of our knowledge, this optimization was not previously

explored. With this optimization, we observe a 22-23% area cost reduction

and a 23-26% delay reduction compared to [36].
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Thus far, we have assumed that the original datapath uses an unsigned

bit encoding for all variables. To modify our reducers to handle a signed

(2s complement) variable, we leverage that the only di↵erence between the

unsigned and signed (2s complement) encodings is the weight of the most

significant bit (MSB). In the unsigned encoding, the MSB has a weight of

2n�1 while in the signed encoding, it has a weight of �2n�1 where n is the

number of bits. Without loss of generality, if we assume n is even, then

2n�1 mod 3 = 2 and �2n�1 mod 3 = 1. Since the second most significant

bit always has a weight of 1, the insertion of a half-adder is su�cient to

normalize the two most significant bits for a signed reducer. Table 3.4 shows

the small cost of this extra half-adder.

3.1.2 High Level Synthesis Transformations

Our HLS transformations, as illustrated in Figure 3.1 on page 20, consist

of a core mod-3 transform that generates the shadow datapath as well as

some dataflow-level optimization passes on the generated mod-3 logic. Our

transformations operate on a scheduled control/data flow graph.

By leveraging the state machine and data flow graph information avail-

able in this HLS stage, we can perform transformations and optimizations

not possible at the RTL or gate-level stage. In the following subsections,

we discuss how we handle mixed arithmetic-nonarithmetic datapaths, the

scheduling of intermediate register consistency checks for maximum coverage

with optimized sharing, pipelining for deferred shadow datapath scheduling

to eliminate clock period overhead and lower area cost, and binding diversity

between the main and shadow datapaths for improved fault coverage.

Handling Non-arithmetic Components

HLS generated designs involve non-arithmetic components including state

machine logic, bitwise operations, and comparators that have single bit out-

puts. Each non-arithmetic component is duplicated such that each com-

ponent has a redundant counterpart. However, such units have low area

overhead. For example, bitwise operations have very low area cost and shifts

by a constant have zero area cost. We also observe low overheads for dupli-

cation of non-arithmetic units (Area and Delay overheads are mentioned in
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(b) non ! arith

+ + 

(c) arith ! non
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(d) arith ! arith

Figure 3.3: Shadow/duplicate connection cases. For each subfigure, the
original graph is on the left and the redundant logic is on the right. For the
redundant logic, nonarithmetic components (“non”) are duplicated with the
duplicates in grey. Arithmetic components (“arith”) are mod-3 shadowed
with the shadows in blue. The unit labeled “%3” is a mod-3 reducer.

Table 3.5 on page 32).

There are a number of cases to deal with when we generate shadow con-

nections for arithmetic and non-arithmetic components, which are illustrated

in Figure 3.3. Connections between two duplicate components and between

two mod-3 components are straightforward: just make connections corre-

sponding to those in the original datapath (Figures 3.3a and 3.3d). We can

connect a duplicate component output (full bit width) to a mod-3 component

input (2 bit) through a mod-3 reducer (Figure 3.3b). Connecting a mod-3

component output to a duplicate component input is not possible since infor-

mation lost in the mod-3 reduction cannot be recovered. Thus the duplicate

component input is connected to the same output as the original component

(Figure 3.3c).

Making connections this way can leave some mod-3 components with out-

puts unconnected, which we call mod-3 sinks. For example, the mod-3 adder

in Figure 3.3c may not have a mod-3 component to connect to in its fanout.

Such mod-3 sinks may output an inconsistent mod-3 checksum due to an er-

ror that occurred in the main datapath, but there would be no way to detect

it. Thus we add a mod-3 checker for each mod-3 sink to insure such errors
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are detected.

We deal with constant multiplication by multiples of three in a similar

way since the mod-3 result is always zero (Section 1.4.2). Our optimization

passes will replace such a shadow multiplier with a constant, leaving no pin

to connect its original input to. Thus we treat constant multiplication by a

multiple of three as an additional shadow datapath barrier: if it results in a

mod-3 sink then we add a mod-3 checker.

Register Consistency Check Scheduling

Some errors may be masked in the main datapath (and thus masked in the

shadow datapath) before they reach the primary output. Other errors may be

unmasked, but undetected due to aliasing (see Section 1.4.2) that occurs in

the shadow datapath. To maximize our chances of detecting such errors, we

insert checkers on the output of datapath registers, using strategic scheduling

of check operations to share as many mod-3 reducers as possible.

Compared to the rest of the shadow datapath, reducers are expensive

(Compare Tables 3.2 and 3.4). Reducers are scheduled in fixed states for

use at output ports and mod-3 sinks to produce residues for checkers as

well as at input ports to provide shadow inputs (Figure 3.1b). Intermediate

register checkpoints, on the other hand, have flexible scheduling constraints

corresponding to their liveness state machine subgraph.

To exploit this flexibility and minimize reducer allocation, we select register

liveness intervals that are more than one cycle long and that extend across

a basic block boundary (control flow divergence or convergence). For each

liveness interval, we attempt to schedule a checkpoint at each use (read) of

the corresponding SSA variable1 with the constraint that we cannot schedule

more reducers at a state than have been allocated. The intuition behind this

method is that we want to catch errors right before they leave a register

to go through functional units where they may be masked or aliased. If the

checkpoint cannot be scheduled at a state, we attempt to recursively schedule

it at each of the state’s predecessors.

The core recursive algorithm is listed in Algorithm 1. In the event of a

scheduling failure, we allocate an additional reducer and try again until check

1Single-static assignment variable which is written only once and thus corresponds to
one liveness interval for a variable.
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Algorithm 1 Core recursive scheduling algorithm

function schedule(var, state)
if (var, state) has not been visited or scheduled then

if reducer count[state] = max reducers then
preds  state predecessors that var is live in
if preds = ; then

increment max reducers
restart scheduling process

end if
for each pred in preds do

schedule(var, pred)
end for

else
schedule check for (var, state)
increment reducer count[state]

end if
end if

end function

scheduling succeeds.

Pipelining for Deferred Shadow Datapath Scheduling

While our mod-3 shadow functional units have low latency (Tables 3.2 and

3.3), our mod-3 reducers have high latency (Table 3.4). In addition, the in-

sertion of a mod-3 checker on a mod-3 sink’s corresponding main component

can cause severe timing violations if the main component is part of an oper-

ation chain. Even if the timing violations are corrected through gate sizing,

the area cost can be quite large as 1x transistors are replaced with 4x and 8x

transistors to meet timing requirements. Ideally, we want all of the mod-3

components to be mapped to 1x gates for minimum area overhead.

Thus our solution is to insert pipeline flip-flops both in front of and behind

each mod-3 reducer. The shadow datapath schedule is then deferred by two

cycles, adding two cycles of error detection latency in exchange for reduced

area cost.
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Shadow Datapath Optimization Passes

Our mod-3 transformation can create no-op identity operations and redun-

dant components. This superfluousness motivated us to add a shadow dat-

apath optimization pass to eliminate them as shown in Figure 3.1a which

consists of two components:

1. Constant propagation and identity elimination: A +6 adder

results in the generation of a +0 mod-3 component, which is an identity.

A x6 multiplier evaluates to a constant 0 in mod-3 space, which could

then propagate to other operations and make their result evaluable at

compile time.

2. Redundant component elimination: A x8 and a x11 multiplier

both result in the generation of a x2 mod-3 component. If both multi-

pliers are connected to the same input, the second x2 mod-3 component

is redundant and can be removed.

Diverse Binding

We perform binding of our optimized and scheduled control and data flow

graph with our in-house binding engine, which creates diverse (di↵erent)

binding solutions between the original and duplicate / mod-3 datapaths.

Such diverse binding makes it di�cult for control errors and stuck-at faults

to a↵ect both redundant datapaths in the same way. Further state machine

checking is enabled by comparing the state registers of the redundant state

machines and using one state machine to control the main datapath and an-

other one to control the duplicate and shadow datapaths. Both the shadow

datapath and the duplicate state machine run two cycles behind the main

computation, so synchronization is not an issue. The binding engine’s pri-

mary goal is to maximize sharing where profitable for area cost, minimizing

the number of reducers allocated.

3.1.3 Recovery

To enable error recovery for soft errors, we use a checkpoint and recovery

register transformation, illustrated in Figure 3.4. For each state and datapath
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register, we add a duplicate register to store checkpoint data. At regular

intervals (configurable), we assert the “save” signal to take a snapshot of

the state of each datapath and state register in a corresponding duplicate.

Error detection triggers a “restore” signal which recovers the state from the

previously recorded checkpoint, i.e. the cycle where the “save” signal was

asserted.

data in data out

(a) Original flop

data in
data out

restore

save

0
1

0
1

(b) Transformed flop

Figure 3.4: Flip-flop transformation for soft error recovery.

Our error recovery technique will work for soft errors as long as the error has

not made it into the checkpoint snapshot. A checkpoint is corrupted when an

error is activated before, but detected after the checkpoint. We consider an

error to be masked if it does not a↵ect the primary outputs of the generated

core or the timing of those outputs. Otherwise, it is an unmasked error.

The probability of checkpoint corruption, P
CC

, is defined as in Equation

(3.1), where l is the unmasked error detection latency, P
l

is the probability

of that particular latency (i.e.
P

l

P
l

= 1) and CI is the checkpoint interval

(configurable). An error is removed if either it is masked to begin with

or it is unmasked, detected, and successfully recovered by rolling back to

an uncorrupted checkpoint; we formally define the error removal rate as the

number of removed errors divided by number of total errors, as formalized

in Equation (3.2). In this equation, E is the error removal rate; M is the

error masking rate (defined as number of masked errors divided by number of

total errors); and U is the unmasked error detection rate (defined as number

of unmasked errors detected divided by number of total errors). An error is

detected (ED) in a given cycle if an error occurred in that cycle and it was

detected by our detection logic, as formalized in Equation (3.3), where P
error
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stands for the probability of error activation in each cycle and det stands for

total error detection rate given error activation. Avg.rollback is the number

of cycles, on average, that we would rollback on detection of an error. Since

the rollback length distribution is uniform, the average is approximately half

the checkpoint interval (Equation (3.4)). Thus, the average rollback cycle

overhead is the product of the average rollback length and the probability of

an error being detected in a given cycle (Equation (3.5)).

PCC =
X

l

P
l

min(l,CI)

CI
 lavg

CI
(3.1)

E = M+U(1� PCC) (3.2)

ED = Perror ⇥ det. (3.3)

Avg. Rollback =
CIX

r=1

r

CI
=

CI + 1

2
(3.4)

Cycle Overhead = ED⇥ Avg. Rollback (3.5)

3.2 Experimental Results

3.2.1 Setup

Our experimental setup is illustrated in Figure 3.5. We performed logic

synthesis with Synopsys Design Compiler 2013-12.sp1 with an ARM 45nm

standard cell library, and optimized for maximum clock frequency. We eval-

uated the detection coverage of our approach with error injection enabling

netlist transformations which support stuck-at, transient, and timing errors.

To inject stuck-at faults, the netlist transform inserts AND (for stuck-at

0) or OR (for stuck-at 1) gates at randomly selected gate outputs. To inject

transient errors, we insert XOR gates at the “D” inputs of randomly selected

flip-flops. For timing errors, we induce setup time violations by performing

timing simulations with a fast clock to collect flop-cycle pairs where timing

errors are activated while continuing error-free execution with the use of a

razor flip-flop like transformation, similar to the activation detection method

of [37]. Then we pass these flop-cycle pairs as a subset of transient errors to

our error injection enabling netlist transformation.
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Figure 3.5: Our error detection coverage evaluation framework. Our
“reliability-centric” high-level synthesis process is elaborated in Figure 3.1a.
Our customized steps are highlighted in yellow.

To accelerate fault e↵ect evaluation, we map the ASIC netlist to an Altera

Stratix III FPGA for emulation. A hardware test driver module mapped

to the FPGA communicates with the host system to facilitate thousands

of rapid (<1 second each) back-to-back full runs of the design under test,

injecting one error from the sample list at a time. As one would expect,

stuck-at faults are activated for the duration of the design execution, while

transient errors are activated for one cycle.

3.2.2 Results

We used benchmarks from the PolyBench/C 3.2 benchmark suite [38] and

modified the benchmarks to use fixed-point encodings for originally floating-

point encoded values as our transformations currently do not support floating-

point operations. We implemented fixed point arithmetic with C integer

arithmetic operations with shifts for binary point alignment. “Matrix 4x4”

is a tiled version of the matrix multiply benchmark that completely unrolls

4⇥ 4 tiles to explore performance/area tradeo↵. We synthesized our bench-

marks using our method (Section 3.1.2) and used our experimental setup

(Section 3.2.1).

To determine the area cost of our error detection approach, we compare
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Table 3.5: Area and Clock Period Overhead Results

Benchmark
Baseline Detection Total

area
(µm2)

period
(ns)

area
ov.(%)

period
ov.(%)

area
ov.(%)

period
ov.(%)

Atax 13 434 0.89 28.3 �2.4 52.7 2.0
Bicg 13 923 0.90 27.4 �5.2 57.6 �0.9

Floyd-Warsh 12 764 0.70 26.9 0.3 57.4 5.8
Gemm 13 380 0.84 30.3 1.7 56.4 6.3

Gemver 18 855 1.00 26.8 1.5 55.4 5.4
Gesummv 13 230 0.84 30.0 1.9 57.1 6.6

Matrix 4⇥ 4 65 258 1.03 5.7 8.8 29.5 12.6
Matrix 11 151 0.80 22.1 1.0 55.6 5.9

Mvt 16 212 0.88 40.2 �1.1 67.9 3.3
Symm 16 943 0.84 24.9 2.9 57.2 7.5
Syr2k 15 183 0.85 23.0 1.2 48.9 5.8
Syrk 13 975 0.89 23.1 0.1 48.9 4.5

Median 13 949 0.86 26.8 1.1 56.0 5.8
Mean 18 763 0.87 25.7 0.9 53.7 5.4

the core area of an unprotected baseline benchmark synthesized without our

mod-3 shadow datapath transformations against our experimental version

synthesized with the mod-3 transforms. Table 3.5 shows the area and clock

period overhead for both the detection logic and estimated overhead (through

characterization of the hardware in Figure 3.4) for the total logic which in-

cludes both detection and recovery. We observe on average an area cost of

25.7% for detection and estimate 53.7% for both detection and recovery. In-

terestingly, we observe a 5.7% detection area cost for the highly parallelized

“Matrix 4x4” benchmark, suggesting that lower overheads are achievable in

large high-throughput accelerator designs.

To observe fault coverage, we injected a sampling of 2,000 stuck-at, 10,000

transient and 10,000 timing errors into each synthesized core. The outcome

of our fault injection experiments is shown in Table 3.6.

For unmasked errors, we observe an average stuck-at fault coverage of

99.1%, soft error coverage of 99.5%, and timing error coverage of 99.6%. To

provide some context, Argus, which we consider to be a state-of-the-art error

detecting microprocessor, can detect 98.0% of transient errors and 98.8% of

stuck-at faults [8].

It is di�cult to make a direct comparison with previous HLS work since
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Table 3.6: Fault Coverage

Benchmark
Unmasked (%) Masked (%)

stuck trans. timing stuck trans. timing
Atax 99.7 99.8 99.8 68.6 28.3 65.0
Bicg 98.9 97.1 100 73.9 31.1 57.4

Floyd-Warsh 99.9 100 100 64.8 40.9 73.4
Gemm 98.5 100 100 100 31.8 77.2

Gemver 99.5 99.9 100 78.0 18.8 77.5
Gesummv 99.9 99.3 100 67.6 38.4 56.1

Matrix 4X4 98.8 98.7 99.5 67.7 48.9 76.5
Matrix 100 100 100 76.1 25.9 54.1

Mvt 96.7 100 100 73.4 17.0 66.9
Symm 99.6 99.0 97.7 76.8 36.4 47.7
Syr2k 99.5 99.7 98.9 73.5 33.5 81.7
Syrk 98.5 100 100 71.4 31.9 73.2

Median 99.5 99.9 100 72.8 31.8 70.0
Mean 99.1 99.5 99.6 72.0 31.9 67.2

high-level synthesis benchmarks with experimental error injection and area

cost are quite limited. For reference, Concurrent Error Detection [6] uses

HLS to fully duplicate each component but attempts to compensate for area

cost through resource sharing and has around 75% area cost for a simple,

fully arithmetic datapath which in theory is not susceptible to aliasing.

Figure 3.6 shows the estimated soft error removal rate and rollback cycle

overhead for our error recovery method with checkpoint intervals ranging

from 10 to 100k cycles calculated through Equations (3.1)-(3.5).

The baseline average masking rate of the unmodified designs is 70.2%

(indicated by the lower dotted line), and we achieve an total error removal

rate (indicated by the “Error Removal Rate” curve) arbitrarily close to the

theoretical upper bound (all errors detected are corrected) which is 99.83%

(indicated by the upper dotted line).

We cannot achieve an error removal rate of 100% as we have a small per-

centage of undetected, unmasked errors. The 4 parallel lines represent roll-

back cycle overheads for di↵erent soft error rates. For reference, [39] reports

a worst case error rate of around 10�16 errors / cycle for a space environment

assuming a clock frequency of 1GHz.

What is interesting to observe is the tradeo↵ between the error removal

rate and rollback cycle overhead. Larger checkpoint intervals reduce the
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Figure 3.6: Error removal rate and rollback cycle overhead

chance of checkpoint corruption, resulting in higher error removal rates. At

the same time large checkpoint intervals result in larger jumps back in time

for each error detection triggered rollback, resulting in larger cycle overheads.

To pick a number, 1000 cycles is a reasonable tradeo↵ as we are at the point

of diminishing returns for the error removal rate (98.6%).

Figure 3.7 shows the soft error detection latency distribution for unmasked

errors, masked errors and both. “End Result Check” (ERC) is a basic er-

ror detection method involving comparing the benchmark’s output with its

expected output once execution is complete. We observe mean latencies of

8.72, 17.14, 12.75, and 36.2k cycles for unmasked, masked, both and ERC

respectively, for an error detection latency improvement of 4150x over the

ERC.
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Figure 3.7: Soft error detection latency distribution
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CHAPTER 4

VALIDATION THROUGH HYBRID
SIGNATURE GENERATION

In this chapter, I present the Hybrid Quick Error Detection (H-QED) tech-

nique to overcome PSV challenges for non-programmable hardware accel-

erators in SoCs. Such accelerators implement a pre-defined set of functions

and are not programmable using software (unlike processor cores or software-

programmable accelerators such as GPUs). H-QED is inspired by the QED

technique for PSV [14, 15, 16, 17]. Since QED is (mostly) implemented in

software, the error detection latencies of bugs inside hardware accelerators

can be very long (e.g., bounded by long execution times of hardware acceler-

ators). H-QED builds on advances in high-level synthesis (HLS) [40, 41] to

overcome this challenge by automatically embedding small hardware struc-

tures inside hardware accelerators. H-QED simultaneously improves error

detection latencies and coverage of logic and electrical bugs inside hardware

accelerators. H-QED is compatible with QED. By combining H-QED with

QED, we provide a systematic solution for PSV of SoCs consisting of pro-

cessor cores, uncore components, software-programmable accelerators, and

hardware accelerators.

To the best of our knowledge, H-QED presents the first work that inte-

grates HLS to overcome PSV challenges of SoCs. The input to H-QED is a

specification of the hardware accelerator using a high-level language (C/C++

in this paper). H-QED then automatically creates an accelerator with built-

in features for hybrid checking using hardware and software techniques. The

checking techniques operate in a highly coordinated manner as follows:

1. During design, our H-QED-aware HLS engine automatically creates

an H-QED-enabled accelerator from the input specification. Each H-

QED-enabled accelerator contains small hardware structures for special

hardware signatures that capture the execution behavior of the accel-

erator during PSV.
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2. During design, our H-QED-aware HLS engine also creates a software

version of the accelerator by inserting additional instructions in the

specification of the accelerator (C/C++ source code in this paper).

When this software version is executed on a processor (not necessarily

on the same SoC being validated), the additional instructions capture

the execution behavior of the software version using special software

signatures.

3. During PSV, the hardware signatures generated by the hardware accel-

erator are stored in dedicated on-chip memory.1 At the end of a PSV

run, these signatures are compared against the software signatures ob-

tained from the execution of the software version. We guarantee that,

under bug-free situations, the hardware signatures exactly match the

software signatures (for the same inputs). Thus, a mismatch indicates

detection of errors (caused by bugs). Note that the execution of the

software version is decoupled from the PSV run.

We demonstrate the e↵ectiveness and practicality of H-QED by showing that:

1. H-QED enables two orders of magnitude improvement in error detec-

tion latencies for both electrical bugs and logic bugs vs. PSV techniques

using end result checks that compare accelerator outputs against known

correct outputs;

2. H-QED improves electrical bug (timing error) coverage by up to 3X

compared to PSV techniques using end result checks;

3. H-QED uncovered four previously unknown logic bugs in the widely

used CHStone HLS benchmark suite [42];

4. H-QED incurs less than 10% overhead for the accelerator it validates,

and negligible performance costs;

5. H-QED does not require any failure reproduction2 or low-level simula-

tion (e.g., RTL or netlist) to detect bugs;

1It is possible to stream out the signatures to o↵-chip memory using on-chip memory
interfaces or JTAG ports.

2Failure reproduction involves returning the system to an error-free state and re-running
the system with the exact input stimuli (e.g., test instructions; test inputs; and operating
conditions such as voltage, temperature, and frequency), and is di�cult due to Heisenbug
e↵ects [43].
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6. By operating hardware accelerators in native mode (similar to normal

system operation) and by using dedicated on-chip memory to store

hardware signatures during PSV, H-QED minimizes intrusiveness (i.e.,

incorporation of H-QED continues to detect bugs that are detected by

traditional PSV techniques).

The rest of this chapter is organized as follows: Section 4.1.1 presents our

H-QED technique and Section 4.2 presents our experimental results.

4.1 Method

4.1.1 H-QED Overview

Figure 4.1 shows an SoC-level view of our H-QED-enabled accelerators. The

SoC typically consists of processor core(s), accelerator(s) (H-QED-enabled in

our case), and uncore components. The inputs and outputs of the H-QED-

enabled accelerators are supplied by the processor cores inside the SoC. Dur-

ing PSV, the H-QED-enabled accelerators generate hardware signatures that

are saved in dedicated on-chip memories (Figure 4.1(a)). Figure 4.2 shows

the overall H-QED flow. It takes as input the high-level design of a hard-

ware accelerator (C/C++ source code in this paper) and produces the RTL

implementation of the H-QED-enabled accelerator. This H-QED-enabled ac-

celerator contains embedded hardware structures (Hardware Signature Gen-

eration in Figure 4.2) that generate a sequence of hardware signatures during

a PSV run. Care must be taken to ensure that the hardware signatures in-

side the accelerator do not cause excessive intrusiveness during PSV, e.g.,

by stalling the accelerator or by interfering with its input and output data

tra�c. Excessive intrusiveness can prevent activation of bugs inside the ac-

celerator during PSV. In an e↵ort to minimize intrusiveness, H-QED stores

hardware signatures in dedicated on-chip memory with dedicated communi-

cation channels (Figure 4.1(a)). The costs associated with this storage are

reported as part of H-QED area costs. It may be possible to minimize sig-

nature storage costs (while controlling intrusiveness) by streaming hardware

signatures to o↵-chip memory using JTAG ports. The H-QED flow also gen-

erates a functionally equivalent software version of the hardware accelerator.
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This software version is compiled from the same C/C++ source code as the

hardware accelerator. It is augmented with instructions to generate software

signatures when the software version is executed on a processor (Software

Signature Generation in Figure 4.2).

Figure 4.1: H-QED-enabled accelerators inside an SoC. (a) SoC-level view,
and (b) block diagram of an H-QED-enabled accelerator showing the
accelerator and the signature generator.

During PSV, the sequence of hardware signatures (stored in on-chip mem-

ory) is collected at the end of a PSV run. Note that during the PSV run,

the hardware accelerator (and the overall SoC) operates in its native mode.

Bugs inside the accelerator are thus expected to be activated during the PSV

run. Next, the software version is executed on a processor; strategies to pro-

vide the same inputs to the software version as the hardware accelerator are

discussed later in this section. The software version generates a sequence

of software signatures during its execution. Bugs may or may not be acti-

vated during the execution of the software version. Hence, the execution of

the software version can be totally decoupled from the PSV run. For ex-

ample, the user may choose to execute the software version on a di↵erent

hardware platform vs. the PSV run. The sequence of hardware signatures

obtained from the PSV run is compared with the sequence of software sig-

natures obtained from the execution of the software version; any mismatch

indicates bug detection. Since the execution of the software version and the

subsequent signature comparisons are totally decoupled from the PSV run,
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we minimize possible intrusiveness introduced by H-QED. In order to ensure

that the hardware signatures match the software signatures (under bug-free

conditions), we must ensure that the software version receives the same in-

puts as the hardware accelerator. This can be accomplished in several ways.

Two examples include:

1. After a test is executed during a PSV run (in native mode), the SoC

may be configured so that the hardware accelerator is disabled and the

software version is swapped in. Next, the same test can be executed

to generate software signatures. Note that this is di↵erent from fail-

ure reproduction because we do not require bugs to be activated (or

reproduced) during the second run.

2. After a test is executed during a PSV run (in native mode), the same

test may be run again with the SoC (and the test) configured to cap-

ture (and store) accelerator inputs at pre-defined memory locations.

Using these captured accelerator inputs, the software version can then

be executed either on the embedded processor core of the SoC being

validated, or on some other processors to generate software signatures.

Similar to earlier discussions, we do not require bugs to be activated

(or reproduced) after the first PSV run.

We built our framework on top of LLVM [44, 45] using a common LLVM
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Internal Representation (LLVM-IR) to drive the generation of the H-QED-

enabled hardware accelerator and the corresponding software version.

4.1.2 Hardware Signature Generation

Consider the input pseudo-code shown in Listing 4.1. It defines two arrays Z

and B with element addresses z ptr and b ptr. It also defines a single basic

block bb1 (a basic block is a basic building block in LLVM-IR representing a

piece of code with only one control entry point and only one exit point) that

has already been scheduled to execute in hardware across three consecutive

clock cycles (bb1.0, bb1.1, bb1.2). Hardware corresponding to this code is

shown in Figure 4.3. The datapath is controlled by an FSM, where each

scheduled clock cycle corresponds to one state in the FSM, and cycle tran-

sitions are controlled by the FSM state transitions. In this example, bb1.0,

bb1.1, and bb1.2 represent three di↵erent FSM states.

Listing 4.1: Input Pseudo-code Example

int Z [ 1 0 0 ] , B [ 2 0 0 ] ;

z p t r = add r e s s o f (Z [ 1 ] )

b pt r = add r e s s o f (B[ 1 0 ] )

bb1 . 0 : z = load mem( z p t r )

bb1 . 1 : a = x + y

b = a ⇥ z

bb1 . 2 : s t o r e b ! mem( b ptr )

The first step in hardware signature generation is to determine the probe

schedule: for each clock cycle, we determine which variables should be probed

so that these variables contribute to the hardware signature. We perform

probing for three kinds of hardware components: memory inputs/outputs,

data registers (registers that store intermediate data, such as x and y in Fig-

ure 4.3), and control state registers storing FSM states. These components

then provide probe signals that drive the hardware signature generation logic

(consisting of an XOR function and an LFSR). We refer to the physical wires

carrying these probe signals as probe ports (Figure 4.3).

Since the number of data register bits can be high, we use two strategies to

minimize register probe ports: ignore “temporary” variables, and share ports

through multiplexers. Both strategies start with variable lifetime analysis:
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Figure 4.3: H-QED-enabled accelerator with hardware signature generation

for each variable in the input code, we determine the states in which it is

alive. We define non-temporary lifetime as one that crosses more than one

state transition, at least one of which is a basic block boundary (i.e., the

variable is alive across more than one basic block). Any variable that does

not satisfy these criteria is not probed. In our example, variables x and y

meet our criteria, while z, a, and b do not (assuming they are not used in a

subsequent basic block).

Our scheduler attempts to schedule a probe for a variable in its use state.

For example, state bb1.1 is a use state of variables x, y, and z because these

variables are accessed (“used”) in this state. To allocate a minimum number

of register probe ports, our algorithm attempts to create a feasible probe

schedule using a single register probe initially starting from the first use

state. For example, we first schedule y to be probed in state bb1.1; as a

result, we are unable to schedule a probe for x in that same state (since there

is only a single register probe). To resolve this problem, we probe x in the

predecessor state bb1.0 where it is alive as well, generating a multiplexer to

share the register probe port. If scheduling fails, we attempt to schedule

again with an additional register probe.

We connect each control state register to its own dedicated probe port,

allowing us to generate signatures from the control FSM. We also probe

memory inputs and outputs in all states where they are alive and used; i.e.,

they are used to transfer valid data. In our example, we perform a load in
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state bb1.0 and a store in state bb1.2. Hence, the memory “data out” port

is probed in state bb1.0 and the memory “data in” port is probed in state

bb1.2 as annotated in Figure 4.3. The memory address port is probed in

both bb1.0 and bb1.2.

Every annotated probe port in Figure 4.3 has a MUX associated with it.

The MUX output drives the port to logic 0 when it is not probed. The select

signals of the MUX are derived from the corresponding states annotated in

Figure 4.3. All probe ports are fed into an XOR function, which reduces the

number of input bits and produces outputs that match the size of the LFSR.

We design the XOR function as an XOR tree so it can reduce n inputs down

to m outputs through partitioning n inputs into m groups and reducing each

group into a single bit. The LFSR can output one-bit of hardware signature

periodically (the number of cycles in the period can be configured using a

counter).

To avoid clock period overhead, we register each probe port output. This

e↵ectively pipelines the signature generation logic, adding a cycle delay in

exchange for avoiding gate upsizing (and thus minimizing the area cost) of

our signature generation logic. Since memory addresses are included in H-

QED signatures, we must ensure that the signatures of memory addresses

produced by the hardware accelerator match that of the software version

(details in Section 4.1.3).

4.1.3 Software Signature Generation

For H-QED software signature generation, our HLS engine generates a probe

schedule file together with hardware memory addresses assigned by the HLS

engine, shown in Listing 4.2 for our earlier example. For each state, the

probe schedule provides a state encoding (e.g., 1 for state bb1.0, 2 for bb1.1)

as well as a list of variables that are probed in that state. The hardware

memory address section provides the statically assigned address for each

memory variable.

Listing 4.2: Probe schedule and hardware memory addresses

// s i gna tu r e output s chedu l e

bb1 . 0 : 1 , z pt r , z , x

bb1 . 1 : 2 , y
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bb1 . 2 : 3 , b ptr , b

// hardware memory addre s se s

Z : hardware base address : 0x1000

B: hardware base address : 0x2000

Given a probe schedule and hardware memory addresses, software signature

generation works as follows. For each state (e.g., bb1.0, bb1.1, bb1.2), we

look up the variables probed in that state, and insert into the software an

XOR function of the probed variables and the state encoding, emulating the

hardware XOR function (e.g., the one in Figure 4.3).

The memory addresses used by the hardware accelerator are not the same

as that of the software version. On the hardware side, the address space is

mapped by HLS into memory blocks, one for each statically allocated array.

It is desirable to partition the address such that one partition of bits selects

the memory block; the remaining bits then select a word within the memory

block. Each memory block can also have customized word size to optimize

throughput and minimize area cost. On the software side, the statically

allocated variables are packed by a compiler into a static memory segment

of the generated executable, typically with the goal of minimizing memory

usage. Moreover, all of the variables have the same word size.

For software signatures to match the hardware ones, we implemented a

conversion function. This function converts each address used in the soft-

ware version to the corresponding hardware address before being fed to the

XOR function for software signature generation. This is possible because our

HLS tool produces a mapping to indicate how the variables are mapped to

memory addresses on the hardware side (shown in Listing 4.2). The addi-

tional code for this address conversion on the software side does no harm

to bug detection; this is because bugs are not required to be activated or

reproduced during the execution of the software version.

For an address variable addr (e.g., z ptr or b ptr) in the software address

space, we pass it through the software to hardware address conversion func-

tion. First, this conversion function determines which variable addr points

to (in this case, Z or B) and the address o↵set into that variable (e.g., 1 for Z

and 10 for B). Next, the converter looks up the variable (Z or B) in the hard-

ware memory addresses section of the probe schedule file, and returns the

corresponding hardware address with the appropriate o↵sets. This hardware
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address drives the XOR function.

The outputs of the XOR function are passed to an LFSR function, which

imitates the hardware LFSR. The LFSR function also mimics exactly the

signature output interval of the hardware LFSR, enabling the software to

generate signatures that match the hardware. Listing 4.3 shows the resulting

H-QED-enabled software version for our example.

Listing 4.3: H-QED enabled software version

z = load z p t r

s o f t w a r e l f s r (1 � addr convert ( z p t r ) � z � x )

a = x + y

b = a ⇥ z

s o f t w a r e l f s r (2 � y )

s t o r e b ! b ptr

s o f t w a r e l f s r (3 � addr convert ( b ptr ) � b)

4.1.4 Binding to Minimize Area

E�cient operator and data register sharing is crucial for minimizing H-QED

area costs. We implemented a binding engine which aggressively shares op-

erators among instructions and registers among variables, as long as their

lifetimes do not overlap, in order to minimize area costs. However, such shar-

ing introduces MUXes. Therefore, we developed heuristics to optimize mux

widths for binding by reusing hardware components, wires, and correspond-

ing mux inputs that have already been allocated (we call it zero-cost binding).

We use a greedy heuristic to exploit zero cost binding opportunities. Instruc-

tions and variables are bound to hardware components iteratively. During

each iteration for instruction or variable binding, we choose the binding so-

lution with the lowest area cost. We also attempt to share existing probe

ports at the register outputs through zero cost binding solutions.

4.2 Experimental Results

To demonstrate the e↵ectiveness and practicality of H-QED, we ran a se-

ries of simulation and FPGA-based emulation experiments to collect data
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for area and clock period overheads, error detection latencies, and coverage

estimates for logic and electrical bugs. We used all 12 benchmarks from CH-

Stone [42] and 15 benchmarks from the PolyBench [38] benchmark suites.

The benchmarks we selected from PolyBench are ones that can be imple-

mented with fixed-point operations because our framework does not support

floating-point operations yet.

We used a 16-bit LFSR and outputted the least significant bit from the

LFSR as a signature at a regular interval. We fixed the signature output in-

terval of each benchmark at 100 cycles or the interval that would result in 5%

signature storage area cost, whichever interval is larger. While aliasing will

occur with 50% probability in the single-bit signatures, the LFSR maintains

a running hash (see Section 1.5.2) that captures the internal behavior of the

accelerator with negligible aliasing probability. If the software and hardware

LFSRs mismatch, a single-bit signature mismatch will soon follow. At the

end of benchmark execution, we dump the full contents of both LFSRs as

signatures to insure that any late mismatch in the LSFRs is detected.

4.2.1 Hardware Area and Delay Costs

To determine the area and delay costs of adding H-QED signature generation

logic to an accelerator, we performed HLS with and without H-QED. We

then performed logic synthesis using Synopsys Design Compiler 2013-12.sp1,

mapping to the 45nm ARM standard cell library, and targeting maximum

clock frequency. The area and clock period overheads for each accelerator

core are shown in Figure 4.4. Results show a mean accelerator-level area cost

of 8.3%. We observe no clock period overhead on average.

4.2.2 Logic Bugs

To evaluate the e↵ectiveness of H-QED in detecting logic bugs, we considered

bugs in the current and past versions of CHStone [42], as well as bugs in our

HLS engine itself.
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clock period area clock period area sig bits bits + end 
lfsr dump

SRAM 
area

area w/
SRAM

zero 
padding

clock 
period area area w/ 

SRAM area area w/
SRAM

adpcm 1.277 92,374 1.30 95,335 219 235 74 95,409 0.000 0.016 0.032 0.033 0.007 0.007

aes 0.688 64,923 0.658 69,430 38 54 17 69,447 0.000 -0.044 0.069 0.070 0.015 0.015

atax 0.892 13,434 0.861 15,027 105 121 38 15,065 0.000 -0.035 0.119 0.121 0.025 0.026

bicg 0.903 13,923 0.829 16,047 66 82 26 16,072 0.000 -0.082 0.153 0.154 0.033 0.033

blowfish 0.597 57,418 0.571 59,295 1,792 1,808 570 59,864 0.000 -0.044 0.033 0.043 0.007 0.009

dfadd 0.749 36,348 0.765 39,058 6 22 7 39,065 0.000 0.021 0.075 0.075 0.016 0.016

dfdiv 0.89 94,928 0.865 100,390 19 35 11 100,401 0.000 -0.028 0.058 0.058 0.012 0.012

dfmul 0.691 49,835 0.695 54,172 2 18 6 54,178 0.000 0.006 0.087 0.087 0.019 0.019

dfsin 0.898 163,386 0.889 178,041 545 561 177 178,218 0.000 -0.010 0.090 0.091 0.019 0.020

doitgen 0.847 16,434 0.850 18,062 2,609 2,625 827 18,888 0.000 0.004 0.099 0.149 0.021 0.032

floyd-warsh 0.701 12,764 0.698 13,775 1,712 1,728 544 14,319 0.000 -0.004 0.079 0.122 0.017 0.026

gemm 0.844 13,830 0.856 15,188 1,457 1,473 464 15,652 0.000 0.014 0.098 0.132 0.021 0.028

gemvar 0.998 18,855 1.031 20,220 161 177 56 20,276 0.000 0.033 0.072 0.075 0.016 0.016

gesummv
0.836 13,230 0.844 14,080 64 80 25 14,105 0.000 0.010 0.064 0.066 0.014 0.014

gsm
1.094 109,914 1.111 113,575 52 68 21 113,597 0.000 0.016 0.033 0.034 0.007 0.007

jpeg
1.199 172,344 1.166 179,705 8,605 8,621 2,716 182,421 0.000 -0.028 0.043 0.058 0.009 0.013

matrix4x4 1.03 65,258 1.017 64,355 34 50 16 64,371 0.000 -0.013 -0.014 -0.014 -0.003 -0.003

matrix 0.801 11,551 0.8 12,860 328 344 108 12,968 0.000 0.015 0.113 0.123 0.024 0.026

mips 0.912 32,586 0.901 33,698 54 70 22 33,720 0.000 -0.012 0.034 0.035 0.007 0.007

motion 0.643 32,979 0.636 36,081 63 79 25 36,106 0.000 -0.011 0.094 0.095 0.020 0.020

mvt 0.875 16,212 0.878 17,757 86 102 32 17,790 0.000 0.003 0.095 0.097 0.021 0.021

reg-detect 0.931 45,131 0.923 44,993 7,164 7,180 2,262 47,255 0.000 -0.009 -0.003 0.047 -0.001 0.010

sha 0.917 54,017 0.970 57,048 2,559 2,575 811 57,859 0.000 0.058 0.056 0.071 0.012 0.015

symm 0.837 16,943 0.842 18,039 751 767 242 18,281 0.000 0.006 0.065 0.079 0.014 0.017

syr2k 0.848 15,183 0.840 16,469 1,795 1,811 570 17,040 0.000 -0.009 0.085 0.122 0.018 0.026

syrk 0.894 13,975 0.899 15,212 1,467 1,483 467 15,680 0.000 0.006 0.089 0.122 0.019 0.026

trmm 0.834 20,312 0.817 22,442 12 28 9 22,451 0.000 -0.020 0.105 0.105 0.023 0.023

median 0.875 32,586 0.856 33,698 161 177 56 33,720 0.000 -0.004 0.075 0.079 0.016 0.017

mean 0.875 46,966 0.871 49,643 1,176 1,192 376 50,018 0.000 -0.005 0.071 0.083 0.015 0.018

Clock period Signature generation area
Signature storage area

�1

Figure 4.4: Area and performance overheads

CHStone Bugs

For CHStone bugs, we identified all of the bug fixes in the version history

and confirmed those bugs with the CHStone authors. For each bug found,

we isolated it by fixing all of the other bugs in the last version of CHStone

with that bug, creating bug benchmarks containing one known bug each.

We ran each buggy benchmark through our H-QED process (Figure 4.2 on

page 39), producing hardware and software versions for the same buggy code

that we executed to produce signatures for internal behavior and benchmark

outputs. We also maintained a third, known correct result for each CHStone

benchmark that we used as an additional check for the results of the hardware

execution. Table 4.1 enumerates the results of our logic bug experiments.

The columns are as follows:

• Benchmark indicates the CHStone benchmark containing the bug.

• Version indicates the versions of CHStone in which the bug is present.

• File and Line denote the location of the bug in the last version of the

source code that contains the bug.
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Table 4.1: Evaluation of H-QED against Logic Bugs in CHStone
(previously unknown bugs highlighted in bold)

Bench Vers. File Lines Type ND ERC HQ Both

adpcm 1.1-1.8 adpcm.c 686-690 MLU no 21.8k - 21.8k

jpeg 1.6-1.9 decode.c
206 *++ unact
207 *++ unact
211 *++ unact

gsm 1.1-1.4 lpc.c
87-88 OOB C only - - -
150-151 OOB C only - - -
157-158 OOB yes - 77 77

mips
1.1-1.10 mips.c 255 INIT yes - 23 23
1.11 mips.c 132-135 OOB yes - 110 110

motion

1.1-1.2 mpeg2.c 225-226 OOB yes 90 10 10

1.1-1.4

getbits.c 113 SHFT C only 100 - 100

motion.c
155 SHFT C only - - -
160 SHFT yes 45 45 45
166 SHFT unact

1.1-1.10 getbits.c
134 SHFT yes - 105 105
144 SHFT yes - 91 91
155 SHFT unact
Counts 17 11 4 7 9

MLU = Manual loop unrolling omits one iteration

*++ = Wrongly assuming postincrement (++) has lower precedence than dereference (*)

OOB = Out-of-bounds array access

INIT = Read of uninitialized variable

SHFT = Bit shift by out-of-bounds amount

• Type provides information about the nature of the bug.

• ND indicates if the bug is nondeterministic. Some bugs are nondeter-

ministic at the C-level, but not at the LLVM level. Others are never

activated during benchmark execution.

• ERC denotes the result of comparing the hardware result with the

known correct result. If the bug is caught (i.e. the results do not

match), this column notes the latency (in cycles) from bug activation

to the end of benchmark execution.

• HQ indicates the error detection latency (in cycles) from comparing

hardware and software executions through the H-QED process.

• Both provides the result of combining (i.e. taking the better of) the

ERC and HQ columns.
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Of the seventeen bugs we identified in CHStone, only twelve were activated

during benchmark execution. Unactivated bugs, by definition, are unde-

tectable. Some unactivated bugs correspond to code that is not used or not

needed, in which case such code should be removed since it adds overhead

to the hardware accelerator. Other unactivated bugs are the result of cover-

age limits of the existing test vectors in CHStone. For both cases, traditional

code coverage evaluation techniques will allow the hardware designer to iden-

tify uncovered code or operand ranges and either remove the functionality

or improve the test vectors for full coverage so that all bugs in the code are

activated.

Of the twelve activated bugs, one bug involving the omission of an itera-

tion in loop unrolling was deterministic, resulting in identical hardware and

software behavior. Comparing the benchmark output with the known cor-

rect result catches the bug. As mentioned in Section 1.5.1, this bug could be

isolated with traditional software debugging techniques.

For the remaining eleven bugs, all are non-deterministic according to stan-

dard C semantics, but for four of these bugs, our compiler infrastructure

performed optimization transforms that made the behavior deterministic at

the LLVM-IR level. In some cases, compiler transformations actually “fixed”

the bug, producing LLVM-IR isomorphic to that generated by the bug-free

version of the benchmark. In other cases, the compiler transform replaced the

nondeterministic bug with a deterministic variant. In both cases, the com-

piler identified an undefined operation, and silently, arbitrarily assigned the

result (which is legal because the behavior is undefined). Whether the bug

is “fixed” or made deterministic is a matter of whether the arbitrary choice

the compiler makes happens to correspond to the behavior the programmer

intended. Bugs of this nature could be isolated if the compiler optimization

passes emitted warnings when they identify nondeterminism. Since the four

bugs in question are deterministic at the LLVM level, the hardware and soft-

ware execution are identical and thus signature comparison does not detect

these bugs. One of the bugs in “getbits.c” that was made deterministic,

however, was caught by the end result comparison. Provided that the com-

piler transformations can be reproduced, this bug can also be isolated with

traditional software debugging techniques using an LLVM debugger.

The remaining seven bugs are nondeterministic at the LLVM-level and

all are caught by H-QED. Of these seven bugs, five are masked, rendering
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the end result check unable to detect those bugs. Recall from Section 1.3

that masked bugs are not necessarily benign in validation testing as mask-

ing conditions can be a↵ected by the testing environment. Of those five

bugs, four (highlighted in bold) were previously unknown bugs in the CH-

Stone benchmark suite that we discovered by using H-QED, suggesting that

these nondeterministic, masked bugs are the most di�cult bugs to find. We

confirmed these new bugs with the CHStone authors.

Overall, in our CHStone bug experiments we observe that of the twelve

activated bugs, the end result check catches four of the bugs, H-QED catches

seven of the bugs, and that combining the two techniques results in a coverage

of nine out of twelve.

HLS Engine Bugs

For HLS engine bugs, we considered bugs that we fixed during the develop-

ment of our HLS engine. The bugs involve initialization errors for global vari-

ables in the JPEG benchmark (mapped to hardware memory). We injected

each bug, one at a time, into our hardware design for the JPEG benchmark

by modifying the memory initialization procedure for the corresponding vari-

able. Table 4.2 enumerates the bugs and detection results. The “variable”

column indicates the global variable a↵ected by the bug. The other columns

have the same meaning as Table 4.1.

Table 4.2: Evaluation of H-QED against HLS Engine Logic Bugs

Bench Vers. Variable Type ERC HQ Both

jpeg

1.1-1.11 read position ZERO 838k 179 179

1.1-1.4
p dhtbl maxcode NOINIT - 249 249
p dhtbl mincode NOINIT - 349 349
p dhtbl valptr NOINIT - 349 349
Counts 4 1 4 4

ZERO = Global variable initialized to zero, ignoring nonzero initializer
NOINIT = Global variable not initialized, ignoring implicit zero initializer

Our experiments show that for the “ZERO” bug, H-QED error detection

latency is over three orders of magnitude faster than the end result check. The

“NOINIT” bugs are masked, so the end result check is unable to detect them,

but H-QED does. Overall, H-QED dominates in error detection coverage
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and latency for HLS engine bugs because an HLS engine bug results in a

hardware design with di↵erent internal behavior, but does not a↵ect the

software version. Di↵erences in internal behavior between the hardware and

software versions are quickly caught by H-QED.

4.2.3 Electrical Bugs

In this section, we present a study of timing errors as representative electrical

bugs. To evaluate the e↵ectiveness of H-QED for detecting such electrical

bugs, we injected timing errors into each of our benchmark designs. Such

a process begins with running each benchmark through HLS with H-QED,

feeding the output RTL code to Design Compiler, and compiling for tim-

ing optimization. To identify timing error activations, we use an approach

similar to the “ground truth” method in [37]: for each flip-flop in the logic

netlist, add a duplicate flip-flop connected to the same “D” input, but with

an additional half-cycle delay on the input. This flip-flop’s “Q” output is left

unconnected as it is used only to trigger reports of timing violations (by a

timing simulator) while the original flip-flops maintain the error free execu-

tion of the benchmark. We ran timing simulations with the modified netlist

and compiled the timing violations reported into a set of (flip-flop, cycle)

pair, referred to as “injection candidates.” We selected a random subset of

these candidates with size n (we set n = 500) to use in our error injection

experiments. Starting again from the original netlist, we applied another

netlist transform, which inserts XOR gates at the “D” input of flip-flops cor-

responding to the selected injection candidates. We added additional logic

to control each XOR gate, enabling error injection at a specific cycle. We

mapped the transformed netlist to an FPGA (Altera Stratix III) for emu-

lation purposes, and performed n full execution runs for each benchmark,

injecting one error from the selected “injection candidates” during each run

(bit flip at the input of the given flip-flop at the given cycle).

Timing error coverage (number of errors detected divided by the number of

errors injected) is presented in Figure 4.5, including both masked (errors that

do not propagate to accelerator outputs so they are invisible externally) and

unmasked errors (errors that propagate to the primary outputs and a↵ect

accelerator results). Note that the unmasked timing error detection coverage
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unmasked masked coverage

unactivated undetected detected undetected detected samples ERC H-QED

adpcm 0 2 245 33 220 500 0.494 0.440 0.934

aes 0 2 300 99 99 500 0.604 0.198 0.802

atax 0 0 349 86 65 500 0.698 0.130 0.828

bicg 0 0 324 75 101 500 0.648 0.202 0.850

blowfish 0 1 335 45 119 500 0.672 0.238 0.910

dfadd 0 31 149 145 175 500 0.360 0.350 0.710

dfdiv 0 16 202 168 114 500 0.436 0.228 0.664

dfmul 0 27 129 205 139 500 0.312 0.278 0.590

dfsin 0 1 258 149 92 500 0.518 0.184 0.702

doitgen 0 0 314 18 168 500 0.628 0.336 0.964

floyd-warsh 0 0 255 68 177 500 0.510 0.354 0.864

gemm 0 0 340 13 147 500 0.680 0.294 0.974

gemver 0 0 275 52 173 500 0.550 0.346 0.896

gesummv 0 0 362 14 124 500 0.724 0.248 0.972

gsm 0 2 225 37 236 500 0.454 0.472 0.926

jpeg 0 3 284 59 154 500 0.574 0.308 0.882

matrix 0 0 252 178 70 500 0.504 0.140 0.644

matrix4x4 0 0 391 29 80 500 0.782 0.160 0.942

mips 0 2 173 146 179 500 0.350 0.358 0.708

motion 0 1 80 79 340 500 0.162 0.680 0.842

mvt 0 1 334 19 146 500 0.670 0.292 0.962

reg-detect 0 0 266 50 184 500 0.532 0.368 0.900

sha 0 1 273 58 168 500 0.548 0.336 0.884

symm 0 0 383 15 102 500 0.766 0.204 0.970

syr2k 0 0 314 21 165 500 0.628 0.330 0.958

syrk 0 0 332 17 151 500 0.664 0.302 0.966

trmm 0 1 304 38 157 500 0.610 0.314 0.924

median 0.0 1.0 284.0 52.0 151.0 500.0 0.574 0.302 0.896

mean 0.0 3.4 275.9 71.0 149.8 500.0 0.558 0.300 0.858
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Figure 4.5: Timing error detection coverage

H-QED End Result Check

latency coverage latency coverage

1 0.000000 1 0.0000

2 0.002889 2 0.0000

3 0.006222 3 0.0003

4 0.010444 4 0.0003

5 0.013556 5 0.0004

6 0.017037 6 0.0004

7 0.021185 7 0.0007

8 0.024741 8 0.0009

9 0.029111 9 0.0010

10 0.032222 10 0.0012

11 0.036815 11 0.0015

12 0.040148 12 0.0015

13 0.043778 13 0.0016

14 0.046889 14 0.0017

15 0.050148 15 0.0019

16 0.057778 16 0.0023

18 0.065481 18 0.0024

20 0.073037 20 0.0024

22 0.080000 22 0.0030

24 0.086815 24 0.0036

26 0.094074 26 0.0042

28 0.102741 28 0.0044

30 0.109185 30 0.0047

32 0.123630 32 0.0053

36 0.140296 36 0.0059

40 0.155111 40 0.0065

44 0.170296 44 0.0068

48 0.185556 48 0.0070

52 0.202593 52 0.0077

56 0.217704 56 0.0084

60 0.232000 60 0.0090

64 0.263926 64 0.0101

72 0.293556 72 0.0106

80 0.325778 80 0.0115

88 0.358000 88 0.0126

96 0.387704 96 0.0139
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Figure 4.6: Overall timing error coverage as a function of error detection
latency

is 100% with H-QED (i.e., we detect all unmasked errors). The overall error

detection latency distribution is shown in Figure 4.6. We observed mean

timing error detection coverage for H-QED of 85.8% compared to 55.8%

for the end result check, resulting in 3.1x improvement (i.e., reduction) in

undetected timing errors. We also observed a mean error detection latency

of 705 cycles for H-QED, compared to 124,490 cycles for end result check,

resulting in 176x improvement (i.e., reduction) in error detection latency.

51



CHAPTER 5

CONCLUSIONS

In our modulo-3 shadow datapath work, we have designed and implemented

a fully automated high-level synthesis process to create error detecting cores

capable of detecting an average of 99.42% of unmasked errors for an assort-

ment of three di↵erent kinds of fault models with negligible delay cost, 25.7%

area cost, and a detection latency 4150x faster than an end result check. We

have taken the first step towards the fully automated generation of low area

cost, low development cost reliable hardware through high-level synthesis.

We also explored a rollback recovery method for soft errors with an addi-

tional area cost of 28% through which we achieve up to a 175x increase

in reliability against soft errors. Future directions related to this research

include:

1. adding support for floating-point operations;

2. exploring other modular bases (5,7,9, etc.);

3. fixing timing errors through rollback combined with frequency-voltage

scaling.

H-QED utilizes HLS principles for quickly detecting bugs inside hardware

accelerators in SoCs. Our results demonstrate the e↵ectiveness and prac-

ticality of H-QED: up to two orders of magnitude improvement in error

detection latency, up to threefold improvement in coverage, less than 10%

accelerator-level overhead, and with negligible performance overhead. Fur-

thermore, H-QED also discovered previously unknown bugs in the widely

used CHStone HLS benchmark suite. Through hybrid hardware/software

signatures, H-QED minimizes intrusiveness during PSV. Thus, the combina-

tion of QED and H-QED provides a systematic approach to PSV of complex

SoCs consisting of processor cores, uncore components, programmable ac-
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celerators, and hardware accelerators. Future directions related to H-QED

include:

1. Use of H-QED for a wide variety of high-level descriptions beyond C

and C++ (e.g., various domain-specific languages);

2. Use of H-QED for programmable accelerators;

3. Integration of H-QED with formal analysis tools for automatic debug.
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