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Abstract

In earlier days, interfacing peripheral devices to host computer has a big problematic. There
existed so many different kinds’ ports like serial port, parallel port, PS/2 etc. And their use
restricts many situations, Such as no hot-pluggability and involuntary configuration. There are
very less number of methods to connect the peripheral devices to host computer. The main
reason that Universal Serial Bus was implemented to provide an additional benefits compared

to earlier interfacing ports.

USB is designed to allow many peripherals to be connected using a single standardized
interface. It provides an expandable, fast, bi-directional, cost effective, hot-pluggable Plug
and Play serial hardware interface that makes the life of the computer users easier allowing
them to plug different peripheral devices into a USB port and have them automatically

configured and ready to use.

In this thesis demonstrated the USB v1.1 architecture part in briefly and generated gate level
netlist form RTL code by applying the different constraints like timing, area and power. By
applying the various types design constraints so that the performance was improved by 30%.
And then it implemented in physically by using SoC encounter EDI system, estimation of chip
size, power analysis and routing the clock signal to all flip-flops presented in the design. To
reduce the clock switching power implemented register clustering algorithm (DBSCAN). In
this design implementation TSMC 180nm technology library is used.
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Chapter 1

1. Introduction



1.1 Background
VLSI technology is the process of making integrated circuits by merging the billions of

transistor in a single chip. In modern VVLSI is more challenging thing because the day by day
device dimensions are shrinking, so that there are so many other effects has to be consider like
leakage current, power reduction, noise effects due to coupling and manufacturing effects.
Actually the ASIC design is a twostep process, the first one is frontend design and other second
is backend design or physical design. In frontend design the designer will write HDL coding
and then will verify the functionality of design. Then next step is synthesis, in which generation
of technology dependent gates and interconnection among them by considering the design
constraints like area, timing, and power. The generated netlist and constraints will give input
to the PnR tools that is backend design tool. In physical design the designer has to fix the chip
dimensions and shape of the chip, placing hard macros in proper region in the core area, supply
the power for all standard cells i.e. power grind creation, routing the clock signal for all flip-
flops in design, routing the signal nets and the extraction of parasitics for whole design so that
noise analysis can perform easily. And the final phase of physical design is sign off analysis
with extracted parasites. In above all stages has to be taken care of setup and hold
vioations.Then the final stage is generation GDS I file.

1.2 Motivation
In olden days, connecting different peripherals to computer was a great challenge. There were

different types of connecting ports available (serial port, parallel port, PS/2 etc.) and but their
utilization has limited with no hot pluggability and autonomus configuration. There are ery
less options to have these peripheral devices connected in  the original IBM PC
implementation due to the limitation with respect to nonshareable IRQ lines and 1/0O address
space. The important reason for USB implementation is to provide a replacement for those
legacy ports in a computer to provide the addition of the devices with quick and easy user

interface.

USB is designed in such a manner which provides different peripherals to be connected using
a standardized interface It also gives an expandable, fast, bi-directional, low-cost, hot-
pluggable Plug and Play serial hardware interface. This makes the life of the computer users
comfortable and allow them to plug many peripheral devices with a USB port and have them

automatically configured and ready to use. Using a single connector type, USB allows the user
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to connect to a wide variety of external devices, which includes keyboards, mice, printers,
scanners, mass storage devices, telephones, modems, digital still-image cameras, video
cameras, audio devices to a computer. USB devices does not consume system resources
directly. They are neither mapped into I/O address space, nor do they use IRQ lines
or DMA channels. The very important system resource required by a USB system are the
memory buffers which are built in with the USB system software. Due to its successful and
widespread acceptance, USB became the most widely used industry standard for connecting
any device to PCs or laptops.

1.3 proposed idea
In physical design flow the clock routing to all sequential flip-flops is challenging task because

the switching power is depends on the clock newt work. In this thesis proposed an idea of
register clustering algorithm that is DBSCAN. This algorithm is based on density of the flip-
flops and also clock pin capacitance. There are so many register clustering algorithms are
present like multibit flip-flop but this algorithm will reduce the clock network capacitance

largely compared to others, so that the clock switching power will reduce.

1.4 Thesis organization
This thesis will explain the architecture, synthesis, physical design flow and register clustering

algorithm. The background, motivation and proposed idea explained in chapter 1. The brief
architecture part of the USB explained in chapter 2. The chapter 3 explained synthesis process
by using RTL compiler. In chapter 4 explained some of basic static timing analysis concepts.
In chapter 5 physical design flow and timing closure by considering the onchip variation. In
chapter 6, implemented register clustering algorithm to reduce the clock network capacitance.
Finally the conclusion and future scope are explained in chapter 7.



Chapter 2
2. Architecture of USB



2.1 Architecture of USB

USB supports data exchange between ahost computer system and a wide range of parallel
accessible peripherals or devices. The interfaced module share USB bandwidth through a host
scheduled token based protocol. A USB system is described by three definitional areas namely,
USB interconnect, USB devices and USB host. USB does not provide a mechanism for
attached devices to arbitrate for use of the bus, as a result host is the master on the bus and
totally controls all the bus activity.

The OHCI specification defines the software and hardware interface to the host controller in
order to provide a common industry standard interface to the USB bus. The OHCI divides the
USB host controller implementation into a software component called Host Controller Driver
(HCD) and a hardware component termed as HC. The USB host is required to generate the
required traffic on the USB cable as per the demands put forward by the client software. The
data transfer demands put by different applications (client software) from time to time are
analysed by HCD and data transfer scheduling lists are generated. The HC executes the
schedule list generated by HCD by way of sending different tokens on the USB bus as per the
protocol. The OHCI defines two levels of arbitration to select among the endpoints. In the first
level of arbitration each endpoint requiring a different type of service is put in a list and host
controller selects which list to service based on predefined protocol and parameters. In the
second level all endpoints among the list are given equal priority and equal service

opportunities.

2.2 System Overview
The Fig 1: V90900OCP USB Host Controller in a USB System below shows a megacell and

its context. The responsibility of HC is to generate the traffic on USB bus by traversing through
the EDs and TDs provided by HCD. The megacell has OCP interface on application side which
can be easily migrated to any type of bus by having a wrapper around it. The other side of the
megacell is USB PHY Transceiver interface. The megacell interacts with HCD through the
PCI Bus with the use of PCI to OCP bridge in a typical PC environment. The Host controller
can also be used in an embedded application with OCP to system Bus Bridge
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Figure 1: V90900CP USB Host Controller in a USB System
2.3 Hardware Overview

e OCP compatible slave configuration Bus interface for read or write transactions
to internal configuration and operational registers.

e OCP compatible Master bus with Simple Extension interface. This interface is
used for performing write and reads from the system memory.

e Frame Management logic for generating SOF token on USB.

e FIFO is implemented to store the data to bridge between application interface
and USB.

e Root Hub with configurable number of downstream ports.

e USB 1.1 complaint SIE

2.4 Features of USB
The HC has the following features

e Open HCI Rev 1.0a compatible

e USB Rev 1.1 compatible

e Number of downstream ports for Root Hub is user configurable
e Standard OCP interface on application side

e Supports both Full speed and Low speed devices

e Legacy support for Keyboard and Mouse.



2.5 USB States
This following Fig 2: USB States shows all the possible states in USB HC
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Figure 2: USB States

2.5.1 UsbOperational

In a USBOPERATIONAL state, the Host Controller starts to generate SOF Tokens. The
USBOPERATIONAL state can have entry to USBRESUME or SBRESET states. This also
lead to operate the USBRESET or USBSUSPEND states. While it transits from USBRESET
or USBRESUME to USBOPERATIONAL, the Host Controller is taken control for terminating
the USB reset or resume states. A transformation to the USBOPERATIONAL state has it
affects on the frame management registers by the Host Controller. Also the Host Controllers
state is to OPERATIONAL, the FrameRemaining field of HcCFmRemaining is built with the
corresponding value of the Frame Interval field in HcFminterval.

2.5.2 UsbReset

In this state, the Host Controller forces the reset signalling to the bus. The Host Controllers and
SOF Token used to generate which disabled while in USBRESET. This leads to , the
FrameNumber field of HcFmNumber, does not consistently increment while the Host
Controller is in the USBRESET state. The Host Controller defaults to the USBRESET state
following a hardware reset. The HCD has an important role for USB Reset signalling.

2.5.3 UsbSuspend

This USBSUSPEND state explains the USB Suspend state. Here, Host Controllers lists

processing and SOF Token generation has been disabled. However, the Host Controllers



remote walk-up logic has to monitor the USB walk-up action. The FrameNumber field of
HcFmNumber has no implication in increment of the Host Controller in the USBSUSPEND
state. This transition leads to the conflicts between the Host Controller Driver which initiates a
transition for the USBRESET state.

2.5.4 UsbResume

USBRESUME state holds the Host Controller to force resume signalling on the bus. While in
USBRESUME, the Root Hub takes the responsiblity for propagating the USB Resume signal
to downstream ports as given by the USB Specification. The Host Controller’s list is ude to
process and SOF Token are disabled while the USBRESUME. Also, the FrameNumber field
of HcFmNumber does not increment with the Host Controller. The transition to USBRESUME
is started initially with the Host Controller Driver or by a USB remote walk-up signalled with
theRootHub.Legal state transitions from USBRESUME are to USBRESET and to
USBOPERATIONAL.

2.4 Data Structures:

The basic building blocks for communication across the interface are the Endpoint Descriptor
(ED) and Transfer Descriptor (TD).The Host Controller Driver assigns an Endpoint Descriptor
to each endpoint in the system The Endpoint Descriptor contains the information necessary for
the Host Controller to communicate with the endpoint. The fields include the maximum packet
size, the endpoint address, the speed of the endpoint, and the direction of data flow. Endpoint
Descriptors are linked in a list. A series of Transfer Descriptors is linked to the Endpoint
Descriptor for the specific endpoint.  The  Transfer  Descriptor contains the information
necessary  to describe the data packetsto  beransferred.  The fields include data toggle
information, shared memory buffer location, and completion status codes. The descriptor
explains about the information contained in it. The head pointers to the bulk and control
Endpoint Descriptor lists are maintained within the operational registers in the HC. The Host
Controller Driver initializes these pointers prior to the Host Controller gaining access to them
Should these pointers need to be updated.
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The  head pointers to the interrupt Endpoint Descriptor lists are maintained within the
HCCA. There is no separate head pointer for isochronous transfers.  The first isochronous
Endpoint Descriptor simply links to the last interrupt Endpoint Descriptor. There are 32
interrupt head pointers.  The head pointer used for a particular frame is determined by using

the last 5 bits of the Frame Counter as an offset into the interrupt array within the HCCA.

2.7 Root hub and SIE

Basically, the Root Hub performs the following functions:
* Enabling the Downstream ports and detection of full-speed and low-speed devices.
* Controlling the Downstream ports.
* Packet framing and transmission on USB.
* Packet reception and content extraction.

* Suspend and resume signalling.

The Root Hub USB reset and resume signalling are controlled by the Host Controller
Functional State bits. The HCD is responsible for all timing associated with these operations.
The port reset and resume signal timing is controlled by the hardware.
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Figure 4: Root Hub & SIE Block Diagram

2.7.1 Hub controller
The Root Hub operational registers are implemented in the hub controller. These registers can

be accessed through Root Hub register interface. These registers are implemented such that
they are writable regardless of the HC USB state. These are must be writable only during the
UsbOperational state. The hub controller interfaces with all the downstream ports. It controls
each downstream port by setting power, enabling the ports, suspending and resuming the port.

2.7.2 USB packet controller
This block interacts with the FIFO, USB state block, frame controller, and list processor.

Basically it initiates the packet transfers on USB on getting the requests from frame controller
and list processor. If USB state is in operational state, the SOF packet will be transmitted for
every 1ms. Similarly, while processing the nonperiodic and periodic lists by list processor,
various types of command, data, and handshake packets will be encrypted and transmitted to
the USB.

2.7.3SIE
The serial interface engine performs the following functions:

* NRZ encoding and decoding

* Bit stuffing and destuffing

* Sbit and 11bit CRC calculation and check

» USB protocolisation and deprotocolisation

* Parallel to serial and serial to parallel conversion
The SIE sits between USB packet controller and repeater. During packet transmission, it takes
the inputs from USB packet controller in terms of bytes, converts into serial form, add the

protocol overheads, perform bit stuffing and NRZ encoding, and send to the repeater. During
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reception it just performs the reverse function of transmission and gives the byte aligned data

to the USB packet controller.

2.7.4 Repeater
The repeater handles the connectivity between the USB packet controller and the downstream

ports. It performs the function of multiplexing and demultiplexing for the downstream ports.
During packet transmission it broadcasts the USB format serial data to all the enabled
downstream ports. During packet reception, it detects the SOP from a particular port and
forwards the received packet to the USB packet controller. It also takes care of the conflicts

when more than one downstream port device tries to drive the USB.
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Chapter 3

3. Synthesis of USB
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3.1 Introduction
VLSI technology is wide use in modern digital systems and it is allows hundreds of thousands

of transistors in a single ASIC and level of integration is increasing at drastically. This trend
stressed the ability of designer to keep pace with the advances in technology. VLSI design
proceeds through a number of different phases. The design begins with understanding the
purpose of circuit behaviour i.e., the inputs and outputs of design and how they are related. The
design representation at this level is communicated using the hardware description languages,
timing diagrams and block diagrams. The foremost design phase is RTL (register transfer
language) design. A RTL representation for design describes the registers and the operations
which are performed on the values stored in the registers and control conditions which
sequences these operations. The next phase is logic design which means converting registers
controllers and computational blocks from register transfer language description into a logic
level representation using the technology dependent blocks (standard cells) which are available
in technology library. Then the last design phase is backend design, in this interconnection of
technology dependent blocks are translated into a integrated circuit. The integrated circuit
design, a wide range of CAD (computer aided design) analysis tools are used to measure the

quality of correctness of system before fabrication.

Synthesiss is the process of mapping the high level description of a design into optimized
gate level Netlist by considering the constraints like area, power and timing. Synthesis uses
the standard cell library which has simple cells like AND, OR, INVERTER, NAND, NOR, and
macro cells like MUX, ADDER, Flip-Flop and Memory elements etc. and technology is TSMC
180nm . Here for synthesis RC (RTL Compiler) is used which is efficient and easy to use. The
circuit (USB) description written in HDL (hardware description language) Verilog language.
Synthesis is a repetitive process and starts with stating the timing related constraints for each
and every block in the design. These timing related constraints defines relationship of
signals with respect to clock input.

13
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Here search paths are the main directory path names that RC either explicitly or implicitly
searches.

3.2 Specifying Search Paths
We can specify search paths for the standard cell libraries, Verilog files, and tcl scripts.
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Lib_ search _path
This attribute is used to search the technology library path in which directory .lib file
contained.
Script_search_path
This attribute is used to search the .tcl (tool command language) file in which directory it
contains.
hdl_search_path
This attribute is used to search the HDL files (.v or .vhd) in which directory it contains.
To set the above search paths, type the below set attribute commands.
set_attribute lib_search_path .... /path
set_attribute script_search_path ... /path
set_attribute hdl_search_ path .... /path
3.3 Loading HDL Files
HDL (Verilog or VHDL) files contains the actual functionality of the design,
such as structural code or register transfer language implementations . Use read_hdl
attribute to read the Verilog files into RC. When we issue a read_hdl attribute, RC reads
the respected files and performs syntax checks.
If the design is described by multiple verilog files, we can read them in using the below
List the filenames of all the Verilog files and use the read_hdl attribute once to read these set
of files simultaneously .
read hdl top.v blkl.v blk2.v
(Cr)
set file list {top.v blkl.v blk2.v}
read_hdl $file list

The host directory searched where the HDL files are specified using the hdl_ search _path
root attribute.
The following attribute reads two Verilog files into a library.

read _hdl —v -library slow .lib {expl. vexp2. v}

Use the read_hdl attribute multiple times to read the Verilog files sequentially.
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read hdl top.wv
read hdl {expl.v expZ.v}

(or)

read hdl top.v

read hdl expl.wv

read hdl expzZ.wv

3.4 Specifying the. HDL Language. Mode
To specify the default HDL language version and to read these design files use the below

attribute

set_attribute hdl_language { v1995 | v2001 | sv | vhdl}

Default : v1995

Table: Specifying the Language Mode

Language Mode

Command

Verilog-1995

read_hdl
or
set_attr

read_hdl

-wv1985 design.wv

hdl_language w1995

-wv1995 design.v

Verilog-2001

read hdl
or
set_attr

read hdl

—-wv2001 design.wv

hdl_ language v2001

design.wv

SystemVerilog

3.5 Elaboration

read hdl
or
set_attr

read_hdl

-sv design.v

hdl language sv

design.wv

The elaboration involves various design checking and optimizations and is a necessary step

to proceed with synthesis.

design and all

following tasks:

e Builds

of its submodules. During elaboration,

data structures.

e Infers registers in the design.

The elaborate command automatically elaborates the top-level

RTL Compiler performs the

e Performs higher- level HDL optimization, such as dead code removal.

e Checks semantics.
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After elaboration, (RC) RTL Compiler will create the generic level netlist for the total design
and then we can apply design constraints and perform other operations.
Syntax: elaborate top_module.v
3.6 Applyingtiming Constraints
In RTL Compiler, a clock signal waveform is a periodic signal with one rising edge and
one falling edge per period.  Clock waveforms may be appliedto  design objects such as
input ports, clock pins of sequential cells, external clocks (also known as virtual clocks ),
mapped cells, or hierarchical boundary pins.
To define clocks use the define clock command
We can group more than one clock that are synchronous to each other, allowing timing
analysis to be performed between these clocks. This group is called a clock domain. If a
clock domain is not specified, RTL Compiler will assume all the clocks are in the same
domain. By default, RTL Compiler assigns clocks to domain_1, but we can create our own
domain name with the -domain argument in define_clock command.
The below two different clocks are created and then these two clocks assigned to separate
clock domains:
define_clock -domain Siva -name sys_clk -period 445 [find / -port sys_clk]
define_clock -domain Sudha -name osc_clk_i -period 900 [find / -port osc_clk_i]
To remove clocks, use the rm command. If we have defined a clock and saved the object
variable, for example as sync, we can remove the clock object as shown in the following.

rm $sync.

3.7 Applying Design Rule Constraints
When optimizing the design,RTL Compiler tries to satisfy all design rule constraints (DRCs)

Some of DRCs include maximum transition, maximum fan-out, and capacitance limits;
operating conditions; and wire -load models. These constraints are specified using attributes
on a module or port, or from the technology library. However, even without user-specified
constraints, rules may still be inferred from the technology library.

e To specify a maximum transition limit for all nets in a design or on a port, use the
Max_transition attribute on a top-level block or port:
Set_attribute max_transition value [ design | port ]
e To specify a maximum fan-out limit for all nets in a design or on a port, use the
max_fanout attribute on a top-level block or port:

Set_attribute max_fan-out value [ design | port ]
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e To specify a maximum capacitance limit for all nets in a design or on a port, use the
max_capacitance attribute on a top-level block or port :
Set_attribute max_capacitance value [ design | port ]
To specify a specific wire- load model to be used during synthesis , use the
force_wireload attribute. The below one specifies the 1x1 wire-load model on a design
named top.
set_attribute force_wireload 1x1 top
3.8 Defining Optimization Settings
By default, RTL Compiler will perform optimizations that can result in logic changes to any
object in the design. We can prevent any logic changes in a design or block while still
allowing mapping optimizations in the surrounding logic, by using the preserve attribute.
e To preserve hierarchical instances, use the below command:
Set_attribute preserve true object
Where object is a hierarchical instance name.
e To preserve primitive instances, use the below command:
Set_attribute preserve true object
Where object is a primitive instance name.
e To preserve modules or submodules, use the below command:
Set_attribute preserve true object

Where object is a module or submodule name

3.9 Setting Boundary Optimization
RTL Compiler performs boundary optimization for all hierarchical instances in the design

during synthesis. Examples of boundary optimizations include:

e Constant propagation across hierarchies

This includes constant propagation through both input ports and output ports.

e Removing undriven or unloaded logic connected.

e Collapsing equal and opposite pins
Two hierarchical boundary pins are considered equal (opposite), if RTL Compiler
determines that these pins always have the same (opposite or inverse) logic value.

e Hierarchical pin inversion
RTL Compiler (RC) might invert the polarity Of a hierarchical boundary pin to improve

QoR. However it is not guaranteed, That QoR improved globally by this local optimization.
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e Rewiring of equivalent signals across hierarchy
Hierarchical boundary pins are feedthrough pins, if output pins always have the same (or
inverted) logic value as an input pin. Such feedthrough pins can be routed around the
Subdesign and no connections or logic is needed inside the sub-design for these pins.
e RTL Compiler can disconnect if more than one input is identical and then one of
them and use the other output to drive the fan-out logic for both.
3.10 Performing Synthesis
Synthesis is the process by which it transforms the HDL (Verilog or VHDL) design into a
real gates and interconnection among them, given that all the stipulated constraints and
optimization settings.
During the synthesis stage RC will do below four processes :
e RTL Optimization
e Global Focus Mapping
e Global Incremental Optimization

e Incremental Optimization (IOPT).

3.10.1 RTL Optimization
During RTL optimization, RC effectively performs optimizations like data path synthesis,

speculation, multiplexer optimization, and carry save arithmetic (CSA) optimizations,
resource sharing. After this phase, RC performs logic optimizations like structuring and

redundancy removal.

3.10.2 Global Focus Mapping
In this phase RC does global mapping at the end of the RTL technology independent

optimizations( during the synthesize —to_mapped command).Inthis step mapping,
restructuring and the design concurrently, and also optimizations like splitting, pin swapping,

buffering, pattern matching, and isolation .

3.10.3 Global Incremental Optimization
After global mapping, RC does the synthesis global incremental Optimization. In this phase

mainly targeted at area optimization and power optimization. Optimizations performed at this
stage include global sizing of cells and Optimization of buffer trees.

3.9.4 Incremental Optimization (IOPT)

This is the final stage of optimization RC does incremental optimization. Optimizations
performed during IOPT improve timing and area and fix DRC violations.Optimizations
performed during this phase include multibit cell mapping, incremental clock Gating,

incremental retiming, tie cell insertion, and assign removal.
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Synthesize command is executed the below two steps .

e Synthesizing the design into generic logic gates  (RTL optimizations are performed
in this step).

e Mapping to these generic gates to technology library and performing incremental
optimization.

e Table 2: Actions Performed by the synthesize Command

Specified
Option Current Design State
RTL Generic Mapped
No Option m  RTL Optimization |m Mapping m  Unmapping
Specified ;
Incremental m Mapping

Optimizations
Incremental

Optimizations

-to_generic m RTL Optimization |m  Mothing | Unmapping
-to_mapped |m RTL Optimization |m  Mapping m  Unmapping
m  Mapping m Incremental m  Mapping
Optimizations
m  Incremental m Incremental
Optimizations Optimizations
-to_placed m RTL Optimization |m  Mapping m  Placement
m  Mapping m Placement m Post-placement
PI t t-ol i incremental
] acemen m  rost-placemen optimizations
incremental
m  posi-placement

; optimizations
incremental

optimizations

3.10.4 Setting Effort Levels
We can specify the three effort levels with the -effort {low | medium |high } preference

in the synthesize command. The probable values for this effort option areas follows.
Low : The design is mapped to gates, but RC will very little RTL optimization,

incremental clean up, DRC fixing, or redundancy identification and removal. The

low effort is generally not endorsed.

Medium (default setting): RC performs enhanced timing driven structuring, incremental

synthesis, and redundancy identification and removal on the design

High : RC make sures the timingdriven structuring on bigger segments of logic and

spends considerable time to makes the incremental clean up. This high effort level

encompasses forceful redundancy identification and removal.

3.10.5 Generating Reports
Timing Reports

By using report timing command we can produce reports on the timing of the present
working design.The evasion timing report generates the in depth view of the

maximum dangerous path in the present design.
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The timing report gives the ensuing data:
e kind of standard cell (flop-flop, nand, or, inverter etc.)
e The standard cells fan-out and timing features (output load, input slew, and the

propagation delay).

e Arrival time for each point on the most dangerous timing path.
Area Reports
The area report provides the summary of the area of each standard cell in the
present design. The report gives the number of standard cells and the area of

each cell based on the definite technology library.

3.11 ILM model
This ILM timing model is very useful in hierarchical design, it is a gate level model or partial

netlist of a actual physical design. In this having the connections between inputs to first stage
of the flip-flops and output side from the output of flip-flop to final output pin. That means it
containing the timing information of only interface logic, there is no information of middle
flip-flips. The main advantage of this model is reduces the time for timing closure. And the

other advantage of this model is

— -
= ; [ o
; =
=
Lg; 55N
Figure 7: Original netlist Figure 8: ILM model for USB
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Chapter 4

4. Brief Review on STA concepts
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4.1 Introduction
STA is a method of validating the timing of the present design under vilest case condition. In

recent digital Integrated circuit design flow, static timing analysis is vital to validate the timing
of critical paths for consequent optimization, to estimate the possible clock frequencies, to
avoid over-design, and to reach timing closure for the design in stringent timing constraints.
Static timing analysis is static since the analysis of the design is carried out statically and does
not depend upon the data values being applied at the input. ~ This is in contrast to simulation
based timing analysis where a stimulus is applied on input signals, resulting behavior is
observed at the output and verified. ~ Rapid growing design complexities and increasing on-
chip variations, however, complicate this analysis for nanometer design.  These on-chip
variations, including manufacturing process, voltage and temperature variations, affect wire
delays and gate delays in different portions of a chip. Although statistical timing analysis and
multi-corner timing analysis have been proposed to handle these variations, not all sources of

variability are accurately modeled.

External environment
of design
(including clock definitions)

Design
under

analysis
y ¥
Static Timing Analysis
(STA)

Timing reports
(include violating
paths. if any)

Figure 10: Static timing analysis

A STA of a design typically provides a profile of the design’s performance by

measuring the timing propagation from inputs to outputs . Timing analysis computes the

24



amount of time signals propagate in a circuit from its primary inputs to its primary outputs
through various circuit elements and interconnect.Signals arriving at an input of an element
will be available at its output at some time later. Each element introduces a delay during
signal propagation a signal transition is characterized by it inputslew and output slew, which
is defined as the amount of time required for a signalto transition from high to low or low to-
high .To account for timing modeling limitations in considering design and electrical
complexities ,as well as multiple sources of variability , such as manufacturing variations,
temperature fluctuation and voltage drops, timing analysis is typically done using an early-
late split ,where each circuit node has an early(lower) bound and a late (Upper) bound on its
time. By convention, if the mode is not explicitly specified, both late and early modesshould
be considered. Both delay and slew are computed separately on each modes .  Suppose, in
early mode , an output slew is computed using the input slew takenfrom the early mode, and

similarly, in late mode , the output slew is computed using input slew.

4.2 CMOS digital design flow

In the design flow the STA can be performed at different stages of implementations. Static
timing analysis israrely done at RTL level, at this stage more important to verify the
functionality of the design as opposed to timing because at this all blocks are implemented in
behavioral level. After verifying the functionality of the design, RTL has been to synthesize to
gate level, then at this stage STA is performed with the timing information. We can perform
STA before the logic optimization to find out the worst case or critical timing paths. And after
logic optimization also we can run the STA, still there are failing paths are optimized. Then
next phase is physical design, at this clock trees are considered as ideal, i.e the wire is

considered as zero. Once clock tree built then STA can perform with actual wire delays.
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Figure 11: CMOS digital design flow

In the physical design (backend design) have to perform STA at each and every step to verify
any failure paths (setup or hold violations) are present or not. In physical implantation the
standard cells are connected by metal wires. The RC parasites ( Resistance and capacitance )
of a metal wire impact the path delay. In a deep submicron technology these RC parasites are
the major effected to delay of the path and power dissipation of design. The performance
(speed and power) of the design depends on the impact of interconnect parasites.At the logic
design stage, the interconnect is assumed as idle because there is no placement information of
standard cells. And wire load models are used to estimate the wire delay of particular
interconnect, this wireload models provides RC parasites values based on the fan-out of
standard cells which are driving.

Before the routing of metal traces finalized, the CAD tools estimate the routing distance to
obtain the parasitics for the route. Since routing is not fixed, the phase is called global route
to distinguish it from detail route.  In the global route stage estimated routes are used to
determine the RC values that are necessary to find out wire delays . During in this stage tools
can not consider the effect of coupling noise. Then the final stage | s detailed route, in this
stage have to consider the effect of coupling noise, because after detail route all the standard
cells are fixed in a particular position. After routing an extraction tools are used to extract the

parasitics (RC values ). Such an extractor may took less runtime to obtain parasitics with less
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accuracy. By iterative optimization accurate resistance and capacitance values extracted with

a longer runtime.

To summarize, the STA can be performed on a gate-level netlist depending on:

How interconnect is modeled - ideal interconnect , wire load model , global routes
with approximate RCs, or real routes with accurate RCs.

How clocks are modeled whether clocks are ideal (zero delay) or propagated (real
Whether the coupling between signals is included whether any crosstalk noise is

analyzed .

4.3 Limitations of STA

Reset sequence:
Reset sequence means after synchronous reset or asynchronous reset all flip-flops are
should be reset. This cannot be checked during STA, because the initial values are not
synthesized.

X handling:

The static timing analysis deals with only logic-0 or logic-1. This is in determine value,
so this type checks are not verified in STA. X means logic value in between logic-1
and logic-0,that means this is noise or glitch. In STA glitch analysis can be done but
this is different from unknown value X.

PLL settings:

Mostly PLL is outside, configurations may not be loaded or set properly during STA.
Asynchronous clock domain crossings:
STA will not check asynchronous clock domain crossing, for this type of check other
tools are required.

IO interface timing:

During STA the 10 interfacing timing constraints checks not possible to check.

4.4 STA concepts
4.3.1 Switching Waveform

The excitation to RC network below shown in figure, when the sw0 activates the output goes

to a high and when sw1 switch activates the output goes to low. The output response equation

is given like

t

Rdh * Cload}]

v= vdd* [1—exp{—
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Where product of Rdh and Cload is called as time constant , which is related to transition on the
output signal.
When output signal goes from logic-high to logic-low, caused by activating SW1, the output
signal transition shown in Figure (c). The output capacitance discharges through the SW1
switch which is on. The output voltage transition given by the equation:

V =Vdd * e-t/(Rdl * Cload)

In a CMOS inverter, the output charging and discharging waveforms do not appear like the
RC charging and discharging waveforms of given figure since the PMOS pull-up and the

NMOS pull-down transistors are both on simultaneously for a small amount of time.

-—T— Wdd
STRO
Fudh

Output

Rdl Cload
S5W1 :
WVss

(a) ®)

Figure 12: RC charging and discharging waveforms

4.4.2 Propagation Delay
The propagation delay of a CMOS inverter is defined with respect to some threshold points on

switching waveform. It is the delay between 50% of input to 50% of output. There two

propagation delays are present which are output fall delay(Tf) and output rise delay (Tr).

I
_______ ____ 50%
threshold point

Figure 13: Propagation delays of CMOS inverter.
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4.4.3 Slew of a Waveform
In STA the slew of waveform is measured with respect to rise or fall transition. And these

transition levels are defined with respect some threshold values. And these transition values
are specified in the percent of VVdd. In the below figure the rise transition is in between 30% to
70% and fall transition is in between 70% to 30% of Vdd.

Vdd / logie-1
________ ?l}'?,h_ﬂ.'id_ L
| R — evdd
I
PN —__ |
- Fall Vss / logic-0 IL‘RlTxl
slew slew

Figure 14: Rise and fall transition times.

4.4 .4 Skew between Signals
Skew is defined as the time difference between arrival and required time of a signal at the sink

points i.e sequential flip-flops. In the below figure shown clock latency and clock skew.
Normally the starting point of clock tree is a node which is called as clock root point. Clock
latency is defined as the total time taken from clock root to all respective sequential sink

points in the design.

D qQl—
Clock
definitiop | Le
( | —1p Q—
PLL _I‘j > } ,_[>_,
3 v N CK
1 \\ el Q_.
I Clock source Clock skew
: = s CK
L
|

I
I

=

Clock latency \

Figure 15: Clock tree clock latency and clock skew.

4.4.5 Timing Arcs and Unateness
These timing arc are useful to calculate the path delay from one point to another point. And

these timing arcs of a cell from each input to each output. The timing arc has specific sense i.e

how the output transition changes for change input transition. In the following figure shown
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each cell and timing arc of a cell. Unateness is defined with respect to timing arc only that is if
rise transition on input of the cell causes rise transition on the output of the cell then we can
call it as positive unate. Similarly negative unate is the opposite transitions on input and output
of a cell. In the below figure(c) the output of OR gate is cannot expect the output signal

transition if having the one signal transition this is called Non-unate arc.

=

(a) Positive unate arc.

— T L

(b) Negative unate arc.
—3 TN

(c) Non-unate arc.

7

Figure 16: Timing sense of arcs

4.4.6 Minimum and Maximum Timing Paths
The entire delay taken for the signal to reach from start point to endpoint is called path delay.

This path delay is summation of standard cell delay, wire delay along the path. Normally, many
number of paths from one point to another point in logic path. The paths related to the
maximum timing and minimum timing are referred to as the max path and min path

respectively. The max path also called as longest path and min path as shortest path.

UFF1 UOR4__
— e e TR O Min path
— 1D Q— ] /
P K |
. ! ' UNANDG
— BCK | N ! UFF3

- UBUF2 . ¥ -
N - j D Ql—

UNANDO == —
UFF2
— 1D Q '

UOR2 Max path

Figure 17: Max and min timing paths
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4.4.7 Clock Domains
Now away days most of the designs are synchronous designs that means clock signal should

arrive to all flip- flops so that all flip-flop outputs changes with respect to clock signal.
Normally clock feeds many number of flip-flops. The bunch of register driven by one clock is
known as clock domain. In the below figure shows two clock domains one is USBCLK clock
and another is MEMCLK clock signal.

USBCLK MEMCLK |/

Figure 18: Two clock domains

4.4.8 Operating Conditions
STA is usually executed at a particular operating condition. An operating condition is the

mixture of PVT. Standard cell delays and metal wire delays are calculated based on the
particular PVT condition. Normally three varieties of process models available in TSMC
180nm technology library. They are slow, typical and fast. The slow and fast signify the
extreme corners of the manufacturing process of a foundry . For the robust design,
the design is validated at the extreme corners of the manufacturing process as well as
environment extremes conditions for temperature and power supply . The below Figure (a)
shows a cell delay variation with respect to process corners. Figure (b) shows standard cell
delays variation with power supply , and Figure (c) cell delays variation with temperature .
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(a) Delay vs process. (b) Delay vs voltage.
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(c) Delay vs temperature.
Figure 19: Delay variations with PVT.

Three PVT conditions described below:

e WCS (Worst Case Slow ): Process is slow , temperature is highest (say 125C) and

voltage is lowest (say 1.62v, that is1.8V minus 10% for 180nm technology).

e TYP (Typical ): Process is typical , temperature is nominal (say 25C i.e. ambient

temperature) and voltage is nominal ( say 1.8V).
e BCF (Best Case Fast): Process is fast, temperature is lowest (say 0C)

and voltage is highest (say 1.98v, that is 1.8V plus 10% for 180nm TSMC
technology).

4.5 Standard Cell Library

Standard cell library provides to the designer which contains the information of a cell such as

timing, area and functionality of a cell. And the information in the format of liberty syntax.

4.5.1 Pin Capacitance

In the technology library each cell can specify the input and output capacitance but most of

library characterized only input pin capacitance and output capacitance is zero.
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Pin (INP1) {

Capacitance: 0.4;

rise capacitance: 0.4;

rise_capacitance range: (0.38, 0.45);

fall capacitance: 0.45;

fall capacitance range: (0.435, 0.46);

3
The above rise_capacitance means when signal transition is rising then the tool will take this
capacitance while calculating the path delay. And similarly fall capacitance is taken when the

signal transition from high to low.

4.5.2 Timing Modeling
The standard cell timing models given by the foundry which are provides to the designer exact

timing information of standard cells present in the design. Normally the timing information’s
are extracted from SPICE circuit simulations.
The delay for the standard cell is reliant on below factors:

e The input slew of standard cell.

e The output load capacitance
If the input slew is more, that means transition time is less, so that the output put capacitance
charging and discharging phenomenon is very fast, there by the delay of standard cell
decreases. And the other scenario is, if the output load is large more time took to charge,

there by the delay will increases.

4.5.3 NLDM Models
Normally most of standard cell libraries characterized in the form of NLDM table because

which are accurate timing models. And some advance timing models which current source
based (CCS and ECSM). This NLDM table models capture standard cell delay through
different combinations of input slew and output load. The NLDM model is represented in the
form of two dimensional matrix as shown below.

In the below lookup table specifies that the first variable is the input slew and the next variable
is the output load. In the below table index_1 is input slew and index_2 is output load, it is in
the form of 3x3 matrix. There are 9 combinations for the 3 input slew values and 3 output load
values. And in the matrix the values are the standard cell delays. Here the input max input slew
is 0.7, if the slew exceeds this value then cell will not provides accurate delay values. Normally

if input slew exceeds this max limit, then the tool will put buffer so that slew value decreases.
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pin (OUT) {
max transition : 1.0;
timing() {
related pin : "INP1";
timing sense : negative unate;
cell rise(delay template 3x3) {

index 1 ("0.1, 0.3, 0.7"); /* Input transiticn */
index 2 ("0.16, 0.35, 1.43"); /* Output capacitance */
values ( /* 0.1¢ 0.35 1.43 */ %
/0.1 * "0.0513, 0.1537, 0.5280", \
f*0.3%* "0.1018, 0.2327, 0.e478", N\
f* 0.7 */ "0.1334, 0.2973, 0.7252");
1
cell fall(delay template 3x3)
index 1 ("0.1, 0.3, 0.7"); /* Input transition */
index 2 ("0.16, 0.35, 1.43"); /* Output capacitance */
values ( /* 0.1¢ 0.35 1.43 %/ %
f*0.1*/ "0.0e17, 0.1537, 0.5280", \
/*0.3*f "0.0918, 0.2027, 0.56876", \
f* 0.7+ "0.1034, 0.2273, 0.6452");

Among the synchronous clock and asynchronous clr or set, the asynchronous signals are
dominated on the standard cell operation. When asynchronous signals are inactive then the
synchronous clock signal comes in picture so that the data will latch in circuit by clock edges.
There are two asynchronous constraints checks are available which are called removal and
recovery checks. The recovery check is the minimum amount of time that an asynchronous
signal is stable after being de-asserted before the next active clock edge. Similarly, the removal
check is the minimum amount time after a clock edge that the asynchronous signal must remain
active before it can be de-asserted. And the other than this asynchronous checks there are
minimum pulse width checks, which is due to unequal rise and fall delay of standard cell. This

minimum pulse width checks are relevant to both synchronous and asynchronous signals.
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pin (CON) {
direction : input;

capacitance : 0.002236;

timing ()
related pin : "CDN";
t:i_ming_Eype : min pulse width;
fall constraint (width_template 3xl) { /*low pulse check*/

index 1 ("0.032, 0.504, 0.788"); /* Input transition */
values ( /* 0.032 0.504 0.788 */ \
"0.034, 0.0e0, 0.377") ;
1
}
timing() {

related pin : "CE";
timing type : recovery rising;
rise constraint (recovery template 3xz3) { /* CDN rising */

index 1 ("0.032, 0.504, 0.788"); /* Data transition */
index 2 ("0.03Z, 0.504, 0.788"); /* Clock transition */
values( /* 0.032 0.504 0.788 */ \

J*0.032 %/ ™-0.1%98, -0.122, 0.187", \

J* 0,504 */ "-0.2a8, -0.157, 0.124", \

J* 0.788 */ "-0.4%0, -0.219, -0.069");

4.6 Timing Verification
In STA there are two most important checks (setup check and hold check) should be verified

for the synchronous flip-flop. Once the clock defined at the flip-flop clock input, these two
checks are automatically inferred to flip-flop. Generally these timing checks are performed at
the multiple scenarios like worst case slow and best case fast conditions. Typically setup check
of a flip-flop is checked worst case slow condition and hold check is at best case fast condition.

4.6.1 Setup Check
This check verifies timing correlation between the clock and data pin of the flip-flop such that
setup requirement is met. In other words setup check is, datashould be stable atthe D pin of
flip-flop before clock reaches at the clock pin of flip-flop .
In general there are two flip-flops, one is launch flip-flop and another is capture flip-flop . This
launch flip-flop launches the data at one clock edge and the capture flip-flop capture the data at
next clock edge such that the capture flip-flop should satisfy the setup requirements at this
point. The setup equation is given below.

Tiaunch * Tcqu + po < Tbapture + TEy - T

;
cle

setup
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Figure 20: For setup check lock and data signals

4.6.2 Hold Check
This hold check ensures that the flip-flop output should not change certain time after clock

edge so that it will not overwrite the previous data which is latched to this flip-flop. This hold
check verifies with best case fast condition. The hold check very critical compared to setup
check, if any hold violations in we can’t do anything in our hand, if setup violation is present
in the design if you increase the time period then setup violation will resolve. Finally setup
check is dependent on time period but not hold time. The hold time equation will be given as

follows.

T1aunch t T.cqu + po > Tcapture t Thold
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Figure 21: For hold check the clock and data signal

4.6.3 Multicycle Paths
In STA this multicycle paths are timing exceptions, in cases the combinational data path will

take more time cycles to pass the logic from input to output. In this cases combinational path
declared as multicycle path. We can specify that after certain number of clock cycles the data
should be captured. The below figure shows that the combinational logic has taken three cycles
to propagate the logic from Q pin of UFFO to D pin of UFF1 without considering the wire
delays

UFFO0 UFF1

Upto L
—pe >

D b CK N CK
CLKM I~ "
|
UFFO/CK .
. : . -
Hold Default~.__ New
check capture edge capture edge
e T [
UFFI/CK '
Istedge 2nd edge 3rd edge

>< >< >< >< iy )( )( )

Figure 22: A three-cycle multicycle path.
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4.6.4 False Paths
In STA certain paths are ignored that is those paths are not real in the functional operation of

the design, such paths are treated as false paths so that time required to analyze the path will
be decreased. The best example for false path is, if two asynchronous clock domains are
crossing then we can set those are the false path, so that tool will not take account in timing

verification.
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Chapter 5

5.  Physical design of USB

39



5.1 Floor-Planning
Floor-planning is the process of placing the hard macros on the die or within other block,

thereby defining routing areas between them. Floor-plan is mapping the logical netlist into
physical model in the layout. Because floor-planning significantly affects circuit timing and
performance, especially for complicated hierarchical designs, the quality of your floor-plan
directly affects the quality of final design

* Calculation of Core, Die size and Aspect Ratio.

* 70% of the core utilization is reasonable so that, design can be timing closure

* Aspect ratio is 1 for square shape

* Initializing the Core

* Rows are flipped, double backed and made channel less.
Aspect Ratio defined as the ratio between the horizontal resources to vertical resources.

Core Utilization= Standard Cell Area/ (Row Area + Channel Area).

Uh M) S B A A A i i £ P A 44 s §- i A s L N 4 e 44 St &)

Figure 23: floor-plan view and module interconnection

5.2 partitioning the design
This is the process of dividing the whole core area into small and manageable blocks. This step

is very advantage because by partitioning the design we can estimate the different functional
block and also the standard cells can be placed easier with less routing distance. Partitioning
can be done at RTL stage and then design each module or block separately. This type of

partitioning called as logical partitioning.
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Figure 24: Partitioning the of USB design in SoC encounter GUI

5.3 Power Planning
In this stage we have to create power grid to supply the current to standard cells and macros in

the design. Normally for power supply nets have to use higher metal layers so that they allow
more current. Here the power supply nets are VDD and VSS. For supply power to core cells
have to create power ring around core area. The cells in middle of core may not sufficient
power because the voltage drop occurs while current passes through the metal layers. To avoid
this problem power stripes will create in vertical direction with higher metals. Here to avoid IR
drop and electro migration we need to calculate the power supply net widths such they can
supply sufficient power. The calculation of power ring width as follows

"CALCULATION OF CORE RING WIDTH"

a) The width and height of the core area is obtained from estimation sheet
b) Current at the top/bottom and left/right is determined by the following equations
Ttop = Ibottom = {Ict * [ Wc / (Wc + Hc)]/ 2}
lieft = Iright = {Ict * [ Hc / (Wc + Hc)] / 2}
Ict = Total core current
We = Width of core
Hc= height of core
Depending on the EM limit the total width of the stripe of metal required is calculated.

Total width of top and bottom = ltop/EM limit
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Total width of left and right = liet/ EM limit
Width determined by IR drop
It is required that the IR drop should be less than 5% VDD
IR drop = I*R
R =RO*(L/2)/W
W= [RO*(L/2)]/R= [RO*(L/2)]*(1/0.05VDD)
L/2 is chosen because the drop is maximum here
Hence W=1 {*R0*(L/2)}/0.05*VDD

Whichever width is limiting that is taken as the core ring width.
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Figure 25: power ring and power stripes for standard cells

Total Power

Total Internal Power: 72.54087259 60.6429%
Total Switching Power: 47.66841406 39.3484%
Total Leakage Power: 0.01036949 0.0087%
Total Power: 119.61965610
Group Internal  Switching Leakage Total Percentage
Power Power Power Power (%)
Sequential 49.68 15.86  0.005529 65.54 54.79
Macro 0 [ 0 [ 3
10 0 0 0 0 o
Combinational 18.81 26.52  0.004081 45.33 37.9
Clock (Combinational) 4.057 4.688  ©.0007598 8.746 7.312
Clock (Sequential) ] 0 o [ 3
Total 72.54 47.07 0.01037 119.6 100
Rail Voltage Internal Switching Leakage Total Percentage
ower Power Power Power (%)
Default 1.62 72.54 47.07 0.01037 119.6 100
Clock Internal  Switching Leakage Total Percentage
Power Power Power Power (%)
osc_clk i 1.319 1.606  ©.0001397 2.925 2.445
sys_clk 2.738 3.083  0.0006201 5.821 4.866
Total 4.057 4.688 ©.0007598 8.746 7.312

Figure 26: power report
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5.4 Placement of standard cells
This placement stage is after the floor-planning and power grid creation for standard cells. In

this stage the placement of cells is done based on connectivity of netlist. After placing the
standard cells we need to check the global route congestion map, it will provide the density
regions based pin density and cell density. This congestion map is very useful, by using this we
can estimate the design is routable or not in further stage like CTS and routing. Placement stage
the tool will divide the total core area into grid cells (Gcells) and each grid cells again divided
into bins for routing. The tool will assigns the routing tracks to grid cells, basically the grid cell
has a capacity the number of routing tracks it can allow without any shorts and DRC violations.
If the number routing tracks is more than the required then it will called as congestion. While
placing the standard cells the tool will remove the wire load models (WLM) and uses (virtual
route) VR to calculate the RC values for the timing information. Here VR is shortest distance
between two points, this is called as Manhattan distance. Here the RC values are more accurate

than the wire load model RC parasitcs.
Placement of standard cells is done in 4 optimization stages.

(@). Pre-placement Optimization

In this phase the tool will optimizes the netlist before placement, in design some signals like
reset, scan enable are high fan-out nets. If these nets are in data path there by the delay will
increase and causes setup violations, so avoid that problem HFNs are collapsed. It can also
downsize the cells.

(b).In-placement optimization

In this phase it re-optimizes of the netlist based on VR. Re-optimization like cell sizing, cell
moving, cell bypassing, net splitting, gate duplication, buffer insertion, area, cell downsizing
recovery.Optimization performs several times to fix the setup , incremental timing and
congestion driven placement.

(c).Post placement optimization

After the standard cell CTS will do netlist optimization with ideal clocks before the real clock
tree built. It can fix setup, hold, max transition and maximum capacitance violations.in this
optimization phase the placement engine will do placement optimization based on global
routing. And also it will do HFN synthesis again for better timing. High fan-out synthesis is
also called as bufferTreesynthesis.

(d).Post placement optimization after CTS
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Here it will optimizes timing with propagated clock means the real clock which having parasitic

information. And also it maintains the some clock skew.

5.5 Congestion how to avoid congestion
There some techniques are present to avoid the congestion.

Macro padding:

Normally in a design along with standard cells some hard macros also present, it will create
placement halo around the macro so that no standard cell will place around that.by doing this
pin connection between standard cells and macro pins is easy.

Placement blockage

This is useful in hierarchical design, if in particular area we avoid the placement of standard
cells by creating this placement blockage.

Maximum utilization constraint:

By changing the core utilization factor can maintain the congestion should be small.

Gen

Figure 27: endcap cells Figure 28: well tap cells in checkerboard fashion
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Figure 30: Vertical congestion Figure 31: Horizontal congestion

Total length: 7.318e+05um, number of vias: 120312
M1(H) length: ©.000e+00um, number of vias: 57921
M2(V) length: 2.142e+05um, number of vias: 48704
M3(H) length: 2.868e+05um, number of vias: 11593
M4(V) length: 1.642e+05um, number of vias: 1651
M5(H) length: 5.304e+04um, number of vias: 443
M6(V) length: 1.352e+04um

Peak Memory Usage was 425.1M
*** Finished trialRoute (cpu=0:00:01.8 mem=421.1M) ***

End of congRepair (cpu=0:00:20.1, real=0:00:21.0)
#%% Finishing placeDesign concurrent flow ***
*#*¥¥* Total cpu 0:10:43
**++x Total real time 0:10:46
**placeDesign ... cpu = 0:10:43, real = 0:10:46, mem = 421.1M **
encounter 4> query
queryDensityInBox queryPlaceDensity
queryFPlanObject  query objects
encounter 4> queryPlaceDensity
Average module density = 0.754.
Density for the design = 0.754.
= stdcell area 113569 sites (377776 um™2) / alloc_area 150617 sites (5010
12 um™2).
Pin Density

0.518.
total # of pins 59749 / total Instance area 115373.

Figure 32: placement density
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5.6 Clock Tree Synthesis
This CTS phase will do after placement of the standard cells in the core area of the chip.CTS

is a process of balancing clock skew and minimizing insertion delay in order to meet timing,

power requirements and other constraints. After placement we will have the positions of

standard cells and hard macros, but the clock network will be ideal. In this CTS the actual

propagated clock comes in picture i.e this is real routing of clock network. In this the CTS

engine will insert clock buffers and clock inverters such the setup and hold violations will be

fixed. If the data path delay is more compared to clock time period there will be setup violation

will occurs, to fix this we have to minimize the data path delay. For minimizing the data path

delay the CTS engine will insert clock buffers and also put higher drive strength gate so that it

passes more current and there by the delay will decrees. And Clock tree synthesis provides the

following features to achieve timing closure:

o

(@]

o

Global skew clock tree synthesis

skew clock tree synthesis

Real clock useful skew clock tree synthesis

Interclock delay balance

Splitting a clock net to replicate the clock gating cells

Clock tree optimization

High-fan out net synthesis.

Concurrent multiple corners (worst-case and best-case) clock tree synthesis.
We can do skew grouping to minimize the skew between the flip-flops which

are having same insertion delay.

Figure 33: clock tree and sinks of sys_clk
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INFO (EXTHPY-184) = T78%
INFO (EXTHPY-184) = 83%
INFO (EXTHPY-184) = 8%
INFO (EXTHPY-184) = 9%

INFO (EXTHPY-184) @ 96%

Extraction of Geometries DONE (NETS: 13331 CPU Tine: :09:33.2 Real Tine: 6:00:33.0 NEM: 572.69%H)

Parasitic Network Creation STARTED

Creating parasitic data file *./uoh 7674 kAK6d5. rcdb.d/header.da' in memory efficient access node for storing RC.
Nurber of Extracted Resistors 187937

Nurber of Extracted Ground Caps  : 201785

Nurber of Extracted Coupling Caps : 311460

Parasitic Network Creation DONE (Nets: 13331 CPU Tine: 0:08:01.5 Real Tine: 6:08:62.0 NEM: 582.568H)

T0RC Extraction engine is being closed...

Opening parasitic data file './uoh 7674 kiK6d5. redb.d/header.da for reading.
TORC Fullchip Extraction DONE (CPU Tine: 0:60:37.5 Real Tine: 0:08:38.0 NEM: 580.564)

Figure 36: extracted parasitics

Figure 37: clock routing to all sinks
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Figure 38: timing slack histogram
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Figure 39: Max and min clock routing distance
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Chapter 6

6. Register clustering algorithm
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6.1 Introduction.
The idea behind group the registers which having similar characteristics, so that that clock

network capacitance greatly reduced, thus switching power of the clock network should be
minimized. In previous so many techniques are present to do register clustering at the
postplacement phase. There are some techniques based on Euclidian distance grouping of same
leaf cluster. This type of algorithm iteratively calculates the Euclidian distance and forms the
clusters. By grouping the registers we can minimize the local clock tree capacitance.

propose a novel latch placement methodology to minimize local clock-tree capacitance as
technology development improves the driving strength of inverters inside registers, it is now
possible to share common inverters in several flip-flops (FFs), resulting in the multibit flip-
flop (MBFF). The MBFF clustering problem is to effectively and efficiently merge several
single-bit flip-flops (SBFFs) into an MBFF. Compared with traditional register-clustering
techniques, the emerging MBFF technique leads to better power reduction. MBFF reduces the
clock load by having a single clock input pin, reducing the corresponding wire load. In addition,
shared clock inverters within an MBFF further reduce power consumption compared with
SBFF.

Logic Synthesis Placement .def
(Synopsys DC) (Cadence SOC)

| SBFF

Post-placement
Register Clustering

MBFF /
Routing Clock Tree Synthesis .def Artificial Register Cluster
(Cadence SOC) (Cadence SOC)

Figure 40: Post placement register clustering flow

There are two ways we can do register clustering at the post placement stage of physical
design

1. MBFF (Multibit flip flop) register clustering

2. Artificial Register clustering (DBSCAN algorithm).
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6.2 MBFF register clustering
The device variations can be reduced effectively by replacing the minor flip-flop into bigger

multibit flip-flop. By reconciliation the 1-bit flip-flop into multibit flip-flop it avoids the
inverters. In a specified time interval the rising and falling, the least sized inverter is enough
the to measure the driving capability of clock buffer in Multibit flip-flop configuration. In
below Figure clearly explained the highest number of least-sized inverters that can be driven
by a clock buffer in different processes . For this reason that of, several flip-flops and shares a
common clock buffer to avoid unnecessary power waste. The right figure shows the outlook
of 1 and 2-bit flip-flops. If we replace the two 1-bit flip-flops as shown in left side figure by
the 2-bit flip-flop as shown in right side figure, the total power consumption can be reduced

because the two 1-bit flip-flops can share the same clock buffer.

1-bit EF
Ch—p C#E C, 2-bit FF
4C# 4C 4JC# ,C |
Mast Sk
D1 aten jatch |12 D Naten [ faten @
o Cx i® fca
ChPeCH L, ,C# e
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'C C#
(a) (b)

Figure 41: lllustration of mergingstwos1-bitsflip-flopssintosones2-bitsflip-flop.

(a)The flip-flops before merging

(b) the flip-flops after merging.

Lexicographical order: <1,100,100>, <2,172,192>, <4,312,285>

Bit NO Power Area Normalized MNormalized
power per bit .
area per bit
1 100 100 1.00 1.00
2 172 192 0.86 0.96
4 312 285 0.78 0.71

Table 3: Illustration advantage of MBFF
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6.3 DBSCAN algorithm
This is data clustering algorithm proposed by Martin Ester, HansPeter Kriegel, Jérg Sander

and Xiaowei Xu in 1996. It is a density based clustering algorithm given a set of points in
some space, it groups together points that are closely packed together  (points with many
nearby neighbours), marking as outliers points that lie alone in low density regions (whose
nearest neighbours are too far away). DBSCAN is one of the most common clustering
Algorithms.

This algorithm needs two parameters € (eps) and radius of the cluster (r). Here eps means that
the least number of points to form a cluster (dense area) that is grouping of registers in core
area. And r value is the required to form a big cluster or small cluster that means if the register
or flip-flop inside the specified radius then that flip-flop is a part of the cluster. In this algorithm
the software will select the randomly one flip-flop and calculate Euclidian distance from that
point to nearest neibouring registers, if the nearest register is within radius then the random
selected point consider as core point. Like this iteratively will calculate the Euclidian distance
and forms a clusters which are similar characters. Here | implemented this algorithm in python
software and the input are given in the form of excel sheet, the inputs are the placement location
a flip-flop and the pin capacitance of specified registers. So that the load capacitance will
balance there by skew minimization, clock network capacitance will reduce. The switching
power is mainly depends on the clock capacitance. From this algorithm we can minimize the
power, area and skew. In recent technology advancement the skew affects the dominantly, if
skew will be more there the circuit performance will degrades. This algorithm implemented at
the postplacement stage. After placing the standard cells we will extract the placement
coordinates of the registers from the .def file and the pin capacitances from the library (.lib),
here TSMC 180nm technology library is used. And the tool is used for physical design is SoC

encounter from cadence.

Algorithm:

= Inputdata S={x1,x2...........cciiiinn... xn}€ R

= Choose values for r>0,Eps>0.

= Ai={x € S:d(x1,x) <Eps};i=1,2,3........... n

= If |Ai| <r, we shall not involve this Ai in our calculations.
= Take union of Ai and Aj if AiNAj=¢
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= Repeat step 4 till no union takes place.

| | | |
[ [ | [
+ + + +
| Clock Gating Setup | 143 | 143 (100%) | © (6%) | © (6%) |
| ExternalDelay (Late) | 204 | 186 (91%) | © (0%) | 18 (8%) |
| Pulsewidth | 6713 | 6713 (100%) | © (0%) | © (6%) |
| Setup | 5743 | 5609 (97%) | © (0%) | 134 (2%) |
| TimeBorrow | 143 | 143 (100%) | © (0%) | © (6%) |
R e e PP L P E L +
encounter 2> report analysis coverage
# Generated by: Cadence Encounter 14.20-p0e4 1
# 0S: Linux x86 64(Host ID vlsi-1l.nitr.in)
# Generated on: Sun May 22 17:49:58 2016
# Design: uoh
# Command: report_analysis_coverage

| | | |

| | | |

A T o 8 T
| Clock Gating Setup | 143 | 143 (100%) | © (6%) | 0 (0%) |
| ExternalDelay (Late) | 204 | 186 (91%) | 0 (0%) | 18 (8%) |
| Pulselidth | 6713 | 6713 (100%) | © (6%) | © (0%) |
| Setup | 5743 | 5609 (97%) | © (0%) | 134 (2%) |
| TimeBorrow | 143 | 143 (100%) | 0 (6%) | O (0%) |
i e e R L L R R ., 1 . +

Figure 43: report coverage analysis
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e L L L LR e Rt oo et et do-mmmeee- +
| Hold mode | all | reg2reg | in2reg | reg2out | in2out | clkgate |
R R R EEEEEEEEEE e e doemmmeee- e L EEEEEE T +
| WNS (ns):| ©.130 | 0.130 | 1.548 | 2.130 | 4.523 | N/A |
| TNS (ns):| ©.000 | ©.000 | ©.000 | ©0.000 | 0.000 | N/A |
| Violating Paths: | 0 | 0 | 0 | 0 | 0 | N/A

| ALl Paths:| 4945 | 4751 | 1409 | 186 | 3 | N/A

R R LR EEEEEE T e Fe-meeee-- EEEEEEEEEE - EEEEEE T +

Density: 73.518%
Routing Overflow: 0.00% H and 0.31% V

Figure 44: summary of timing report
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Chapter 7

/. Conclusion and future scope
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7.1 Conclusion

In this we applied different synopsis design constraints to the design at the synthesis stage itself
there by generated gate level netlist and output constraints by considering the area, power and
timing. For synthesis we used RTL compiler and the technology library was TSMC 180nm.
And also optimized the gate level netlist by boundary optimization, grouping the instances.

In this stage estimated the chip area and done power analysis by considering the
elecrtomigration and IR drop effects. And analysed the congestion effects and applied various
techniques to reduce the congestion. Proposed register clustering algorithm to reduce the clock
network capacitance there by switching power reduced. Timing closure is achieved by
considering the on chip variations and PVT conditions up to routing.

7.2 Future scope

After detailed routing achieving the timing closure by considering the cross talk noise and
fixing the any design rule violations. Exploring the Post layout simulation, DFT and scan
insertion in the design. Finally generation of GDSII file for fabrication of chip.
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