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Abstract 
 

In earlier days, interfacing peripheral devices to host computer has a big problematic. There 

existed so many different kinds’ ports like serial port, parallel port, PS/2 etc. And their use 

restricts many situations, Such as no hot-pluggability and involuntary configuration. There are 

very less number of methods to connect the peripheral devices to host computer. The main 

reason that Universal Serial Bus was implemented to provide an additional benefits compared 

to earlier interfacing ports. 

USB issdesignedstosallowsmanysperipheralsstosbesconnectedsusing a single standardized 

interface. It provides an expandable, fast,sbi-directional, scostseffective, shot-pluggablesPlug 

andsPlaysserialshardwaresinterfacesthatsmakesstheslifesofsthescomputersusersseasiersallowing 

themstosplugsdifferentsperipheralsdevicessintosasUSBsportsandshavesthemsautomatically 

configured and ready to use. 

In this thesis demonstrated the USB v1.1 architecture part in briefly and generated gate level 

netlist form RTL code by applying the different constraints like timing, area and power. By 

applying the various types design constraints so that the performance was improved by 30%. 

And then it implemented in physically by using SoC encounter EDI system, estimation of chip 

size, power analysis and routing the clock signal to all flip-flops presented in the design. To 

reduce the clock switching power implemented register clustering algorithm (DBSCAN). In 

this design implementation TSMC 180nm technology library is used. 
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1.1 Background 

VLSI technology is the process of making integrated circuits by merging the billions of 

transistor in a single chip. In modern VLSI is more challenging thing because the day by day 

device dimensions are shrinking, so that there are so many other effects has to be consider like 

leakage current, power reduction, noise effects due to coupling and manufacturing effects. 

Actually the ASIC design is a twostep process, the first one is frontend design and other second 

is backend design or physical design. In frontend design the designer will write HDL coding 

and then will verify the functionality of design. Then next step is synthesis, in which generation 

of technology dependent gates and interconnection among them by considering the design 

constraints like area, timing, and power. The generated netlist and constraints will give input 

to the PnR tools that is backend design tool. In physical design the designer has to fix the chip 

dimensions and shape of the chip, placing hard macros in proper region in the core area, supply 

the power for all standard cells i.e. power grind creation, routing the clock signal for all flip-

flops in design, routing the signal nets and the extraction of parasitics for whole design so that 

noise analysis can perform easily. And the final phase of physical design is sign off analysis 

with extracted parasites. In above all stages has to be taken care of setup and hold 

vioations.Then the final stage is generation GDS II file. 

1.2 Motivation 

In olden days, connecting different peripherals to computer was a great challenge. There were 

different types of connecting ports available (serialsport, sparallelsport, sPS/2 etc.) and  but their 

utilization has limited with  noshotspluggabilitysandsautonomussconfiguration. sTheresaresery  

lesss0options to have these.peripheral.devices.connected in thesoriginalsIBMsPC 

implementationsduestostheslimitationswithsrespectsto.nonshareablesIRQslinessandsI/Osaddress.

space. sThe important reason for USB implementation isstosprovidesasreplacementsforsthose 

legacysportssinsascomputerstosprovidesthesadditionsofsthesdevicesswithsquicksandseasysuser 

interface. 

USBsissdesignedsinssuchsasmannerswhichsprovidessdifferentsperipherals.to.besconnectedsusing 

asstandardizedsinterfaces. .Itsalsosgivessansexpandable, sfast, sbi-directional, slow-cost, shot-

pluggablesPlugsandsPlaysserialshardwaresinterface. Thissmakesstheslifesofsthescomputersusers 

comfortablesandsallowsthemstosplugsmanysperipheralsdevicesswithsasUSBsportsandshavesthem 

automaticallysconfiguredsandsreadystosuse. Using a single connector type, USB allows the user 
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to connect to a wide variety of external devices, which includes keyboards, mice, printers, 

scanners, mass storage devices, telephones, modems, digital still-image cameras, video 

cameras, audio devices to a computer. USB.devices.does.not.consume.system.resources 

directly. They are neither mapped.into.I/O.address.space,.nor.do.they.use.IRQ.lines 

or DMA channels. The very important system resource required by a USB system are the 

memory buffers which are built in with the USB system software. Due to its successful and 

widespread acceptance, USB became the most widely used industry standard for connecting 

any device to PCs or laptops. 

1.3 proposed idea 

In physical design flow the clock routing to all sequential flip-flops is challenging task because 

the switching power is depends on the clock newt work. In this thesis proposed an idea of 

register clustering algorithm that is DBSCAN. This algorithm is based on density of the flip-

flops and also clock pin capacitance. There are so many register clustering algorithms are 

present like multibit flip-flop but this algorithm will reduce the clock network  capacitance 

largely compared to others, so that the clock switching power will reduce. 

 

1.4 Thesis organization   

This thesis will explain the architecture, synthesis, physical design flow and register clustering 

algorithm. The background, motivation and proposed idea explained in chapter 1. The brief 

architecture part of the USB explained in chapter 2. The chapter 3 explained synthesis process 

by using RTL compiler. In chapter 4 explained some of basic static timing analysis concepts. 

In chapter 5 physical design flow and timing closure by considering the onchip variation. In 

chapter 6, implemented register clustering algorithm to reduce the clock network capacitance. 

Finally the conclusion and future scope are explained in chapter 7. 
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Chapter 2 

2. Architecture of USB 
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2.1 Architecture of USB  

 

USBssupportssdatasexchangesbetweensahostscomputerssystemsandsaswidesrangesof parallel 

accessiblesperipherals or devices. The interfaced module share USB bandwidth through a host 

scheduledstokensbasedsprotocol. A USB system is described by three definitional areas namely, 

USB interconnect, USB devices and USB host. USB does not provide a mechanism for 

attached devices to arbitrate for use of the bus, as a result host is the master on the bus and 

totally controls all the bus activity. 

The OHCI specification defines the software and hardware interface to the host controller in 

order to provide a common industry standard interface to the USB bus. The OHCI divides the 

USB host controller implementation into a software component called Host Controller Driver 

(HCD) and a hardware component termed as HC. The USB host is required to generate the 

required traffic on the USB cable as per the demands put forward by the client software. The 

data transfer demands put by different applications (client software) from time to time are 

analysed by HCD and data transfer scheduling lists are generated. The HC executes the 

schedule list generated by HCD by way of sending different tokens on the USB bus as per the 

protocol. The OHCI defines two levels of arbitration to select among the endpoints. In the first 

level of arbitration each endpoint requiring a different type of service is put    in a list and host 

controller selects which list to service based on predefined protocol and parameters. In the 

second level all endpoints among the list are given equal priority and equal service 

opportunities. 

 

2.2 System Overview 

The Fig 1: V9090OCP USB Host Controller in a USB System below shows a  megacell and 

its context. The responsibility of HC is to generate the traffic on USB bus by traversing through 

the EDs and TDs provided by HCD. The megacell has OCP interface on application side which 

can be easily migrated to any type of bus by having a wrapper around it. The other side of the 

megacell is USB PHY Transceiver interface. The megacell interacts with HCD through the 

PCI Bus with the use of PCI to OCP bridge in a typical PC environment. The Host controller 

can also be used in an embedded application with OCP to system Bus Bridge 
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Figure 1:  V9090OCP USB Host Controller in a USB System 

2.3 Hardware Overview 

 OCP compatible slave configuration Bus interface for read or write transactions 

to internal configuration and operational registers. 

 OCP compatible Master bus with Simple Extension interface. This interface is 

used for performing write and reads from the system memory. 

 Frame Management logic for generating SOF token on USB. 

 FIFO is implemented to store the data to bridge between application interface 

and USB. 

 Root Hub with configurable number of downstream ports. 

 USB 1.1 complaint SIE 

 

2.4 Features of USB 

The HC has the followingsfeatures 

 OpensHCIsRevs1.0ascompatible 

 USBsRevs1.1scompatible 

 Number of downstream ports for Root Hub is user configurable 

 Standard OCP interface on application side 

 SupportssbothsFullsspeedsandsLowsspeedsdevices 

 Legacy support for Keyboard and Mouse. 
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2.5 USB States 

This following Fig 2: USB States shows all the possible states in USB HC 

 

 

Figure 2:  USB States 

2.5.1 UsbOperational 

In a USBOPERATIONAL state, the Host Controller starts to generate SOF Tokens. The 

USBOPERATIONAL state can have entry to USBRESUME or SBRESET states. This also 

lead to operate the USBRESET or USBSUSPEND states. While it transits from USBRESET 

or USBRESUME to USBOPERATIONAL, the Host Controller is taken control for terminating 

the USB reset or resume states. A transformation to the USBOPERATIONAL state has it 

affects on the frame management registers by the Host Controller. Also the Host Controllers 

state is to OPERATIONAL, the FrameRemaining field of HcFmRemaining is built with the 

corresponding value of the Frame Interval field in HcFmInterval.  

2.5.2 UsbReset 

In this state, thesHostsControllersforcessthesreset signalling to the bus. The Host Controllers and 

SOF Token used to generate whichsdisabledswhilesinsUSBRESET.  This leads to , the 

FrameNumber field of HcFmNumber, does not consistentlysincrementswhilesthesHost 

Controller is in the USBRESET state. The Host Controller defaults to the USBRESET state 

following a hardware reset. The HCD has an important role for USB Reset signalling. 

2.5.3 UsbSuspend 

This USBSUSPEND state explains the USB Suspend state. Here, Host Controllers lists 

processingsandsSOFsTokensgenerationshassbeensdisabled. However, the Host Controllers 



 

8 
 

remote walk-up logic has to monitor the USB walk-up action. The FrameNumber field of 

HcFmNumber has no implication in increment of the Host Controller in the USBSUSPEND 

state. This transition leads to the conflicts between the Host Controller Driver which initiates a 

transition for the USBRESET state.  

 

2.5.4 UsbResume 

USBRESUME state holds the Host Controller to force resume signalling on the bus. While in 

USBRESUME, the Root Hub takes the responsiblitysforspropagatingsthesUSBsResumessignal 

tosdownstreamsportssassgiven by the USB Specification. The Host Controller’s list is ude to 

process andsSOFsTokensaresdisabledswhilesthesUSBRESUME. Also, the FrameNumber field 

of HcFmNumber does not increment with the Host Controller. The transition to USBRESUME 

is started initially with the Host Controller Driver or by a USB remote walk-up signalled with 

theRootHub.LegalsstatestransitionssfromsUSBRESUMEsarestosUSBRESETsandsto 

USBOPERATIONAL. 
 

2.4 Data Structures: 

The basicsbuildingsblockssforscommunicationsacrosssthesinterfacesare the Endpoint Descriptor 

(ED) and Transfer Descriptor (TD).The Host ControllersDriversassignssansEndpointsDescriptor 

toseachsendpointsinsthessystemsThesEndpoint Descriptorscontainssthesinformationsnecessarysfor 

the Host Controller toscommunicateswithsthesendpoint. Thesfieldssincludesthe maximumspacket 

size, sthesendpointsaddress, sthesspeedsofsthesendpoint, sand the directionsof data flow. sEndpoint 

Descriptorssareslinkedsinsaslist.A series sof sTransfersDescriptors isslinkedstosthesEndpoint 

Descriptorsforsthesspecificsendpoint. The Transfer Descriptorscontainssthesinformation 

necessary tosdescribesthesdataspacketssto betransferred. sThesfieldssincludesdatastoggle 

information, ssharedsmemorysbufferslocation, sandscompletionsstatusscodes. The descriptor 

explains about the information contained in it. Thesheadspointersstosthesbulksandscontrol 

EndpointsDescriptorslistssaresmaintainedswithinsthesoperationalsregisterssinsthesHC. sThesHost 

ControllersDriversinitializessthesespointersspriorsto.thesHostsControllersgainingsaccessstosthem 

Shouldsthesespointerssneedstosbesupdated. 
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Figure 3: Typical List Structure 

. The headspointersstosthesinterruptsEndpointsDescriptorslistssaresmaintainedswithinsthe 

HCCA. sTheresissnosseparatesheadspointersforsisochronousstransfers. sThesfirst.isochronous 

EndpointsDescriptorssimplyslinksstostheslastsinterruptsEndpointsDescriptor..Theresares32 

interruptsheadspointers. sThesheadspointersusedsforsasparticularsframesissdeterminedsbysusing 

theslasts5sbitssofsthesFramesCountersassansoffsetsintosthesinterruptsarrayswithinsthesHCCA. 

 

2.7 Root hub and SIE 

  

Basically, the Root Hub performs the following functions: 

• Enabling the Downstream ports and detection of full-speed and low-speed devices. 

• Controlling the Downstream ports. 

• Packet framing and transmission on USB. 

• Packet reception and content extraction. 

• Suspend and resume signalling. 

 

The Root Hub USBsresetsandsresumessignallingsarescontrolledsbysthesHost Controller 

Functional State bits. The.HCDsissresponsiblesforsallstiming associatedswithsthesesoperations. 

Thesportsresetsandsresumessignalstimingsisscontrolledsbystheshardware. 
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Figure 4:  Root Hub & SIE Block Diagram 

2.7.1 Hub controller 

The Root Hub operational registers are implemented in the hub controller. These registers can 

be accessed through Root Hub register interface. These registers aresimplementedssuchsthat 

theysareswritablesregardlesssofsthesHCsUSB state. These are must be writable only during the 

UsbOperational state. The hub controller interfaces with all the downstream ports. It controls 

each downstream port by setting power, enabling the ports, suspending and resuming the port. 

2.7.2 USB packet controller 

This block interacts with the FIFO, USB state block, frame controller, and list processor. 

Basically it initiates the packet transfers on USB on getting the requests from frame controller 

and list processor. If USB state is in operational state, the SOF packet will be transmitted for 

every 1ms. Similarly, while processing the nonperiodic and periodic lists by list processor, 

various types of command, data, and handshake packets will be encrypted and transmitted to 

the USB. 

2.7.3 SIE 

The serial interface engine performs the following functions: 

• NRZ encoding and decoding 

• Bit stuffing and destuffing 

• 5bit and 11bit CRC calculation and check 

• USB protocolisation and deprotocolisation 

• Parallel to serial and serial to parallel conversion 

The SIE sits between USB packet controller and repeater. During packet transmission, it takes 

the inputs from USB packet controller in terms of bytes, converts into serial form, add the 

protocol overheads, perform bit stuffing and NRZ encoding, and send to the repeater. During 
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reception it just performs the reverse function of transmission and gives the byte aligned data 

to the USB packet controller. 

 

2.7.4 Repeater 

The repeater handles the connectivity between the USB packet controller and the downstream 

ports. It performs the function of multiplexing and demultiplexing for the downstream ports. 

During packet transmission it broadcasts the USB format serial data to all the enabled 

downstream ports. During packet reception, it detects the SOP from a particular port and 

forwards the received packet to the USB packet controller. It also takes care of the conflicts 

when more than one downstream port device tries to drive the USB. 
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Chapter 3 

3. Synthesis of USB 
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3.1 Introduction  

VLSI technology is wide use in modern digital systems and it is allows hundreds of thousands 

of transistors in a single ASIC and level of integration is increasing at drastically. This trend 

stressed the ability of designer to keep pace with the advances in technology. VLSI design 

proceeds through a number of different phases. The design begins with understanding the 

purpose of circuit behaviour i.e., the inputs and outputs of design and how they are related. The 

design representation at this level is communicated using the hardware description languages, 

timing diagrams and block diagrams. The foremost design phase is RTL (register transfer 

language) design. A RTL representation for design describes the registers and the operations 

which are performed on the values stored in the registers and control conditions which 

sequences these operations. The next phase is logic design which means converting registers 

controllers and computational blocks from register transfer language description into a logic 

level representation using the technology dependent blocks (standard cells) which are available 

in technology library. Then the last design phase is backend design, in this interconnection of 

technology dependent blocks are translated into a integrated circuit. The integrated circuit 

design, a wide range of CAD (computer aided design) analysis tools are used to measure the 

quality of correctness of system before fabrication. 

Synthesisssiss.thesprocesssofsmappingstheshighs.levelsdescriptionsofsasdesignsintosoptimized 

gate level. Netlist by considering the constraints like area, power and timing. Synthesis uses 

the standard cell library which has simple cells like AND, OR, INVERTER, NAND, NOR, and 

macro cells like MUX, ADDER, Flip-Flop and Memory elements etc. and technology is TSMC 

180nm . Here for synthesis RC (RTL Compiler) is used which is efficient and easy to use. The 

circuit (USB) description written in HDL (hardware description language) Verilog language. 

Synthesis is a repetitive .process and starts with .stating the .timing related constraints .for each 

and every block in .the design. Thesesstiming related constraints .defines .relationship of 

.signals with. respect. to .clock. input. 
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Figure 5: RTL compiler inputs and outputs 

 

Figure 6: generic synthesis flow 

 

Here search paths. are the main directory path .names that RC either explicitly .or implicitly 

searches. 

3.2 Specifying Search Paths 

Wekcankspecifyksearchkpathskfor the standard cellklibraries, Verilog files, kandktcl scripts. 
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Lib_ksearchk_path 

Thiskattributekis used to search thektechnologyklibrarykpath in which directory .lib file 

contained. 

Script_search_path 

This attribute is used to search the .tcl (tool command language) file in which directory it 

contains. 

hdl_search_path 

This attribute is used to search the HDL files (.v or .vhd) in which directory it contains. 

Toksetkthekaboveksearchkpaths, ktypekthekbelowksetkattributekcommands. 

kset_attributek lib_search_pathk  k….k/pathk 

kset_attributek script_search_pathk  k…k/pathk 

set_kattributek  khdl_ksearch_kpathk k ….k/pathk 

3.3 Loading HDL Files 

HDL (Verilog or VHDL) files contains the actual functionality of the design, 

ksuchkaskstructuralkcode or register transfer languagekimplementationsk. kUsekread_hdl 

attributektokreadkthe VerilogkfileskintokRC. kWhenkwekissuekakread_hdlkattribute, kRC reads 

the respectedkfileskandkperformsksyntaxkchecks. 

Ifsthesdesignsissdescribedsbysmultiplesverilogsfiles, swescansreadsthemsinsusingsthesbelow 

ListsthesfilenamessofsallsthesVerilogsfilessandsusesthesread_hdlsattributesoncestosreadsthesessets 

ofsfilesssimultaneouslys. 

 

The hostsdirectoryssearchedswheresthe. sHDLsfilessaresspecifiedsusingstheshdl_ssearchs_path  

rootsattribute. 

The following attribute reads two Verilog files into a library. 

                            reads_hdlss–vss-librarys slows.lib ss{exp1. sv exp2. svs}s 

Use the read_hdl attribute multiple times .to .read the Verilog files sequentially.  

 



 

16 
 

 

3.4 Specifying the. HDL Language. Mode 

To specify the .default HDL language version and to read these design files use the below 

attribute 

                        set_attribute. hdl_language {.v1995 | .v2001 |. sv | .vhdl} 

Default.: v1995 

Table: . Specifying the .Language Mode 

 

3.5 Elaboration 

The selaborationsinvolvessvarioussdesignscheckingsandsoptimizationssandsissa necessarysstep 

tosproceedswithssynthesis. sTheselaboratescommandsautomaticallyselaborates the .top-level 

design .and all .of its. submodules. During .elaboration, sRTL Compiler sperformssthe 

following .tasks: 

 Buildssdatasstructures. 

 Infers sregisterssin thesdesign. 

 Performsshigher-slevelsHDLsoptimization, ssuch assdeadscodesremoval. 

 sChecksssemantics. 
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After elaboration, (RC) RTL Compiler will create the generic level netlist for the .total design 

and. then we .can apply .design constraints. and. perform .other operations. 

Syntax: selaborate .top_module.v 

3.6 sApplying timingsConstraints 

In RTL sCompiler, sa clockssignalswaveformsissasperiodicssignalswithsonesrising. sedgesand. 

onesfallingsedgespersperiod. sClockswaveformssmaysbes.appliedsto sdesignsobjectsssuchsas 

inputsports, sclockspinssof sequentialscells, sexternalsclockss (also knownsassvirtualsclocks.), 

mappedscells, sorshierarchicalsboundaryspins. 

To definesclockssusesthesdefinesclockscommand 

We can group more than onesclocksthatsaressynchronousstoseachsother, sallowingstiming 

analysisstosbe sperformedsbetweensthesesclocks. sThissgroupsisscalledsasclocksdomain. sIfsa 

clocksdomainsissnotsspecified, RTL Compilerswillsassume. sallsthesclockssaresinsthessame 

.domain. sBysdefault, sRTLsCompilersassignssclocks stosdomain_1, sbutswescanscreatesoursown 

domainsnameswithsthe -domainsargumentsinsdefine_clockscommand. 

The belowstwosdifferentsclockssarescreatedsandsthensthesestwosclockssassignedstosseparate 

clocksdomains: 

         define_clocks-domainsSivas-namessys_clks-periods445s [find /s-portssys_clk] 

         define_clocks-domainsSudhas-namesosc_clk_is-periods900s [find /s-portsosc_clk_i] 

Tosremovesclocks, susesthesrmscommand. sIf weshavesdefinedsa clocksand .savedsthesobject 

variable, sforsexamplesasssync, swescan removesthesclocksobjectsas shownsinsthesfollowing. 

         rm $sync. 

 

3.7 Applying Design Rule Constraints 

Whensoptimizingsthesdesign,RTLsCompilerstriesstossatisfysallsdesignsrulesconstraintss (DRCs) 

. SomesofsDRCssincludesmaximumstransition, smaximumsfan-out, sandscapacitanceslimits; 

operatingsconditions; sandswire.-loadsmodels. sThesesconstraintssaresspecifiedsusingsattributes 

onsa modulesorsport, sorsfromsthestechnologyslibrary. sHowever, sevenswithoutsuser-specified 

sconstraints, rulessmaysstillsbesinferredsfromsthestechnologyslibrary. 

 To specifysasmaximumstransitionslimitsforsallsnetssinsasdesignsorsonsasport, susesthe 

             Max_transitionsattributesonsastop-levelsblocksorsport: 

 sSet_attributesmax_transitionsvalues [sdesigns|sports] s 

 sTosspecifysasmaximumsfan-outslimitsforsallsnetssin asdesignsorson asport, susesthe 

max_fanoutsattributesonsastop-levelsblocksorsport: 

 sSet_attributesmax_fan-outsvalues [sdesigns|sports] 



 

18 
 

 sTosspecifysasmaximumscapacitanceslimitsfor allsnetssinsasdesignsorsonsa port, susesthe. 

max_capacitancesattributesonsa top-levelsblocksorsports: 

sSet_attributesmax_capacitancesvalues [sdesigns|sports] 

ssTosspecifysasspecificswire-sloadsmodelstosbesusedsduringssynthesiss, susesthe . 

sforce_wireloadsattribute. sThesbelowsonesspecifiessthes1x1swire-loadsmodelsonsasdesign 

snamedstop. 

                            sset_attributesforce_wireloads1x1stop 

3.8 Defining Optimization Settings 

sBysdefault, sRTLsCompilerswillsperformsoptimizationssthatscansresultsinslogicschangesstosany 

objectsinsthesdesign. sWescanspreventsanyslogicschangessinsasdesignsorsblockswhilesstill 

sallowingsmappingsoptimizationssinsthessurroundingslogic, sby usingsthespreservesattribute. 

 Tospreserveshierarchicalsinstances, susesthesbelowscommand: 

sSet_attributespreservestruesobjects 

sWheresobjectsissashierarchicalsinstancesname. 

 Tospreservesprimitivesinstances, susesthesbelowscommand: 

sSet_attributespreservestruesobjects 

Wheresobjectsissasprimitivesinstancesname. 

 Tospreservesmodulessorssubmodules, susesthesbelowscommand: 

sSet_attributespreservestruesobjects 

Wheresobject .is a module .or submodule .name 

 

3.9 sSettingsBoundarysOptimization 

RTLsCompilersperformssboundarysoptimizationsforsallshierarchicalsinstancessin the design 

.during synthesis. sExamplessof sboundarysoptimizationssinclude: 

 sConstantspropagationsacrossshierarchiess 

             sThissincludessconstant propagationsthroughsbothsinputsportssandsoutputsports. 

 Removing .undriven .or .unloaded. logic connected. 

 Collapsing .equal and .opposite pins 

Two hierarchical. boundary pins are considered .equal (opposite), if RTL Compiler 

determines that.these. pins always have..the same (opposite or inverse) logic value. 

 Hierarchical pin inversion 

RTL Compiler (RC) .might invert .the polarity. Of .a hierarchical .boundary .pin.to improve 

QoR. .However it is not guaranteed,. That QoR improved globally by this local .optimization. 
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 Rewiring of .equivalent signals .across hierarchy 

Hierarchical boundary pins are feedthrough pins, if output pins always have the same (or 

inverted) logic value as an input pin. Such feedthrough pins can be routed around the 

Subdesign and no connections or logic is needed inside the sub-design for these pins. 

 RTL .Compiler can .disconnect if more than one input is identical and thensonesof . 

sthemsandsusesthesothersoutputstosdrivesthesfan-outslogicsforsboth. 

3.10 Performing Synthesis 

Synthesis is the process by which it transforms the HDL (Verilog or VHDL) design into a 

real gates and interconnection among them, given that all the stipulated. constraints and 

.optimization. settings. 

During the synthesis stage RC will do below sfoursprocessess: 

 sRTLsOptimizations 

 sGlobalsFocussMapping  

 GlobalsIncrementalsOptimization  

 IncrementalsOptimizations (IOPT). 

3.10.1sRTLsOptimization 

sDuringsRTLsoptimization, sRCseffectivelysperformssoptimizations likesdataspathssynthesis, 

speculation, smultiplexersoptimization, sandscarryssavesarithmetics (CSA) soptimizations, 

resource sharing. sAftersthissphase, RCsperformsslogicsoptimizationsslikesstructuringsand 

sredundancysremoval. 

3.10.2 GlobalsFocussMapping 

S   In thissphasesRCsdoessglobalsmappingsatsthesendsofsthesRTLstechnologysindependent 

optimizations(sduringsthessynthesizes–to_mappedscommand).Inthissstepsmapping, 

restructuringsandsthesdesignsconcurrently, andsalsosoptimizationsslikessplitting, spinsswapping, 

.buffering, spatternsmatching, sandsisolations. 

3.10.3 Global Incremental Optimization 

After global. mapping, RC does the synthesis global incremental .Optimization. In this phase 

mainly targeted at area optimization and power optimization. Optimizations performed at this 

stage include global sizing of cells and Optimization of buffer .trees. 

3.9.4 Incremental .Optimization (IOPT) 

This is the final stage of optimization RCsdoessincrementalsoptimization. sOptimizations 

sperformedsduringsIOPTsimprovestimingsandsareasandsfixsDRCsviolations.Optimizations 

performed during this phase include multibit cell mapping, incremental clock Gating, 

incremental retiming, tie cell insertion, and assign removal. 
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Synthesize command is executed the belowstwosstepss. 

 sSynthesizingsthesdesignsintosgenericslogicsgatess (RTLsoptimizationssaresperformed 

sinsthissstep). 

 sMappingsto these generic gates to technology library .and .performing .incremental 

optimization. 

 Table 2: Actions Performed by the synthesize Command 

 

 

3.10.4 Setting Effort Levels  

We can specify. the three effort levels with the s-effort s {low s | s medium s | high s } s preference 

in s the s synthesize s command. s The s probable s values s for s this s effort s option sare as sfollows. 

s Low s: s The s design s is s mapped s to s gates, s but RC s will s very s little s RTL s optimization, 

incremental s clean s up, s DRC s fixing, s or s redundancy s identification s and removal. sThe s 

low s effort s is s generally s not s endorsed. 

 Medium s (default setting): RC sperforms enhanced s timing s driven s structuring, incremental 

synthesis, s and redundancy s identification s and s removal s on s the s design 

sHigh s: s RC make sures s the s timingdriven s structuring s on s bigger s segments s of s logic s and 

spends s considerable s time s to s makes s the s incremental s clean s up. s This high effort level 

encompasses s forceful s redundancy s identification s and s removal. 

3.10.5 Generating Reports 

Timing Reports 

By using report timing .command we can produce s reports s on s the s timing s of s the s present 

s working s design . The s evasion s timing s report s generates s the s in s depth s view s of the s 

maximum dangerous path in the s present s design. 



 

21 
 

The timing report gives the ensuing data: 

 kind of standard cell (flop-flop, nand, or, inverter etc.) 

 The standard cells fan-out and timing features (output load, input slew, and the 

propagation delay). 

 Arrival s time s for s each s point s on s the s most s dangerous s timing s path. 

 Area s Reports 

The s area s report s provides s the s summary s of s the s area s of s each s standard s cell s in s the 

present s design.  The s report s gives s the s number s of s standard s cells s and s the s area s of s 

each cell s based s on s the s definite s technology s library. 

3.11 ILM model 

This ILM timing model is very useful in hierarchical design, it is a gate level model or partial 

netlist of a actual physical design. In this having the connections between inputs to first stage 

of the flip-flops and output side from the output of flip-flop to final output pin. That means it 

containing the timing information of only interface logic, there is no information of middle 

flip-flips. The main advantage of this model is reduces the time for timing closure. And the 

other advantage of this model is  

 

                               

             Figure 7: Original netlist           Figure 8: ILM model for USB 
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Figure 9: qor report for USB 
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Chapter 4 

4. Brief Review on STA concepts 
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4.1 Introduction 

STA is a method of validating the timingsofsthespresent design under vilest.casescondition. In 

recent digital Integrated circuit design flow, static timing analysis is vital to validate the timing 

ofscriticalspaths for consequentsoptimizations, to estimate the possible clock frequencies, to 

avoid over-design, and to reach timing .closure for the design in stringent timing constraints. 

Static timing analysis issstaticssincesthesanalysissofsthesdesignsis carriedsoutsstaticallysand.does 

notsdependsuponsthesdatasvaluessbeingsappliedsatsthesinput. sThis.issinscontraststossimulation 

basedstimingsanalysisswheresasstimulussissappliedsonsinputssignals, s.resultingsbehaviorsis 

observedsatsthe.output.and.verified. Rapid.growing.design.complexities.and.increasing.on-

chip.variations, however, .complicate.this.analysis.for.nanometer.design. .These.on-chip 

variations, .including.manufacturing process, .voltage.and.temperature variations, .affect.wire 

delays.and.gate.delays.in.different.portions.of.a.chip. .Although.statistical.timing.analysis.and 

multi-corner.timing.analysis.have.been.proposed.to.handle.these.variations, .not.all.sources.of 

variability.are.accurately.modeled. 

 

 

Figure 10: Static timing analysis 

A STA.of.asdesignstypicallysprovidessasprofilesofsthesdesign’ssperformancesby 

measuringsthe.timingspropagationsfromsinputsstosoutputss. sTimingsanalysisscomputessthe  
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amountsofstimessignalsspropagatesin.a.circuitsfromsitssprimarysinputsstositssprimarysoutputss 

throughsvariousscircuitselementssandsinterconnect.Signalssarrivingsatsansinputsofsanselement 

swillsbesavailablesatsitssoutput. satssomestimeslater. sEachselementsintroducessa delay during 

signal propagation assignalstransitionsisscharacterizedsbysits.inputslewsandsoutputsslew, .which 

issdefinedsassthesamountsofstimesrequiredsforsassignaltostransitionsfromshighstoslowsorslowsto- 

highs.Tosaccountsforstiming.modeling.limitations.insconsideringsdesignsandselectricals 

complexitiess,asswellsassmultiplessourcessofsvariabilitys, s.such.assmanufacturingsvariations, 

temperaturesfluctuationsandsvoltagesdropss, stimingsanalysississtypicallysdonesusingsansearly-

latessplits,whereseachscircuitsnodeshassansearly(lower) sboundsandsaslates (Upper) sbound.onsits 

time. sBysconvention, sifsthe modesis notsexplicitlysspecified, sboth.late.and.early modesshould 

besconsidered. .Both.delay.and.slew.arescomputedsseparatelysonseachsmodess. .Suppose,.in 

earlysmodes, sansoutputsslewsisscomputed usingsthesinputsslewstakenfromsthesearlysmode, sand 

similarly, sinslatesmodes, sthesoutputsslewsisscomputedsusingsinputsslew. 

 

4.2 CMOS digital design flow 

 

In the design flow the STAscansbesperformedsatsdifferentsstagessofsimplementations. sStatic 

timing analysis issrarelysdonesatsRTLslevel, satsthissstagesmoresimportantstosverifysthe 

functionalitysofsthesdesignsassopposedstostimingsbecausesatsthissallsblockssaresimplemented in 

behavioral level. After verifying the functionality of the design, RTL has been to synthesize to 

gate level, then at this stage STA is performed with the timing information. We can perform 

STA before the logic optimization to find out the worst case or critical timing paths. And after 

logic optimization also we can run the STA, still there are failing paths are optimized. Then 

next phase is physical design, at this clock trees are considered as ideal, i.e the wire is 

considered as zero. Once clock tree built then STA can perform with actual wire delays. 
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Figure 11: CMOS digital design flow 

In the physical design (backend design) have to perform STA at each and every step to verify 

any failure paths (setup or hold violations) are present or not. In physical implantation the 

standardscellssaresconnectedsbysmetalswires. sThesRCsparasites (sResistancesandscapacitancess) 

ofsasmetal wire impact the path delay. In a deep submicron technology these RC parasites are 

the major effected to delay of the path and power dissipation of design.  The performance 

(speed and power) sofsthesdesignsdependssonsthesimpactsofsinterconnectsparasites.At the logic 

design stage, the interconnect is assumed as idle because there is no placement information of 

standard cells. And wire load models are used to estimate the wire delay of particular 

interconnect, this wireload models provides RC parasites values based on the fan-out of 

standard cells which are driving. 

Beforesthesroutingsofsmetalstracessfinalized,sthesCADstoolssestimatesthesroutingsdistancesto 

obtainsthesparasiticssforsthesroute. sSincesroutingsissnotsfixed, sthesphasesisscalledsglobalsroute 

tosdistinguishsitsfromsdetailsroute. Insthesglobalsroutesstage estimated routessaresusedsto 

determinesthe RCsvaluessthat aresnecessary to findsout wiresdelayss. During in this stage tools 

scansnotsconsider the effectsofscouplingsnoise. Then the final stage I s detailed route, in this 

stage have to consider the effect of coupling noise, because after detail route all the standard 

cells are fixed in a particular position. After routing an extraction toolssaresusedstosextractsthe 

parasitics (RCsvaluess).  Suchsansextractorsmaystook less runtime tosobtainsparasiticsswith less 
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accuracy. By iterative optimization accurate resistance and capacitance values extracted with 

a longer runtime. 

To summarize, the STAscansbesperformedsonsasgate-levelsnetlistsdependingson: 

 Howsinterconnectsissmodeleds- idealsinterconnects, swiresloadsmodels, globalsroutes 

withsapproximatesRCs, sorsrealsroutesswithsaccuratesRCs. 

 Howsclockssaresmodeled s whethersclockssaresideals (zero delay) sorspropagateds (real 

 Whethersthescouplingsbetweenssignalssissincludeds whethersanyscrosstalksnoisesis 

analyzeds. 

 

4.3 sLimitationssof sSTA 

 Resetssequence:  

Reset sequence means after synchronous reset or asynchronous reset all flip-flops are 

should be reset. This cannot be checked during STA, because the initial values are not 

synthesized. 

 Xs-handling:  

The static timing analysis deals with only logic-0 or logic-1. This is in determine value, 

so this type checks are not verified in STA. X means logic value in between logic-1 

and logic-0,that means this is noise or glitch. In STA glitch analysis can be done but 

this is different from unknown value X. 

 sPLLssettings:  

Mostly PLL is outside, configurationssmaysnotsbesloadedsorssetsproperlysduring STA. 

 Asynchronoussclocksdomainscrossings:  

STA will not check asynchronoussclocksdomainscrossing, for this type of check other 

tools are required. 

 sIOsinterfacestiming: 

During STA the IOsinterfacingstimingsconstraintsschecks not possible to check. 

4.4 STA concepts 

4.3.1 Switching Waveform 

The excitation tosRCsnetwork below shownsinsfigure, when the sw0 activates the output goes 

to a high and when sw1 switch activates the output goes to low. The output response equation 

is given like  

𝑣 = s𝑣𝑑𝑑 ∗ s[1 − 𝑒𝑥𝑝⁡{−
𝑡

𝑅𝑑ℎ ∗ 𝐶𝑙𝑜𝑎𝑑
}⁡] 
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Where product of Rdh andsCloadsis called asstimesconstants, which is related tostransitionson the 

soutputssignal. 

When output signalsgoessfromslogic-high to logic-low, caused by activating SW1, the output 

signal transition shown in Figures (c). sThesoutputscapacitancesdischargessthroughsthesSW1 

switchswhichsisson. sThesoutputsvoltagestransitionsgivensbysthesequation: 

V = Vdd * e-t/(Rdl * Cload) 

 

InsasCMOSsinverter, sthesoutputschargingsandsdischargingswaveformssdosnotsappearslikesthe 

RCschargingsandsdischargingswaveformssofsgivensfiguressincesthesPMOSspull-upsandsthe 

NMOSspull-downstransistorssaresbothsonssimultaneouslysforsassmallsamountsofstime.  

 

 

 

Figure 12: RC charging and discharging waveforms. 

4.4.2 Propagation Delay 

The propagation delay of a CMOS inverter issdefinedswithsrespectstossomesthresholdspoints on 

switching waveform. It is the delay between 50% of input to 50% of output. There two 

propagation delays are present which are output fall delay(Tf) and output rise delay (Tr). 

 

Figure 13: Propagation delays of CMOS inverter. 
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4.4.3 Slew of a Waveform 

In STA the slew of waveform is measured with respect to rise or fall transition. And these 

transition levels are defined with respect some threshold values. And these transition values 

are specified in the percent of Vdd. In the below figure the rise transition is in between 30% to 

70% and fall transition is in between 70% to 30% of Vdd. 

 

 

Figure 14: Rise and fall transition times. 

 

4.4 .4 Skew between Signals 

Skew is defined as the time difference between arrival and required time of a signal at the sink 

points i.e sequential flip-flops. In the below figure shown clock latency and clock skew. 

Normally the startingspointsofsclockstreesissasnodeswhich is called as clock root point. sClock 

slatencysis defined assthestotalstimestakensfromsclocksroot to all respective sequential sink 

points in the design. 

 

Figure 15: Clock tree clock latency and clock skew. 

4.4.5 Timing Arcs and Unateness  

These timing arc are useful to calculate the path delay from one point to another point. And 

these timing arcs of a cell from each input to each output. The timing arc has specific sense i.e 

how the output transition changes for change input transition. In the following figure shown 



 

30 
 

each cell and timing arc of a cell. Unateness is defined with respect to timing arc only that is if 

rise transition on input of the cell causes rise transition on the output of the cell then we can 

call it as positive unate. Similarly negative unate is the opposite transitions on input and output 

of a cell. In the below figure(c) the output of OR gate is cannot expect the output signal 

transition if having the one signal transition this is called Non-unate arc. 

 

 

 

 

Figure 16: Timing sense of arcs 

4.4.6 Minimum and Maximum Timing Paths 

The entire delay taken for the signal to reach from start point to endpoint is called path delay. 

This path delay is summation of standard cell delay, wire delay along the path. Normally, many 

number of paths from one point to another point in logic path. The paths relatedstosthe 

maximumstimingsandsminimumstimingsaresreferredstosassthesmaxspathsandsminspath 

respectively. The max path also called as longest path and min path as shortest path. 

 

Figure 17: Max and min timing paths. 



 

31 
 

4.4.7 Clock Domains 

Now away days most of the designs are synchronous designs that means clock signal should 

arrive to all flip- flops so that all flip-flop outputs changes with respect to clock signal. 

Normally clock feeds many number of flip-flops. The bunch of register driven by one clock is 

known as clock domain. In the below figure shows two clock domains one is USBCLK clock 

and another is MEMCLK clock signal. 

 

 

Figure 18: Two clock domains 

4.4.8 Operating Conditions 

STA is usually executed at a particular operating condition. An operating condition is the 

mixture of PVT. Standardscellsdelayssand metalswiresdelayssare calculatedsbasedson the 

particular PVT condition. sNormallysthreesvarietiessofsprocesssmodelssavailable in TSMC 

180nm technology library. They are slow, typical and fast. The slow and fast signify the 

sextremescornerssofsthesmanufacturingsprocesssofsasfoundrys. For thesrobustsdesign, 

sthesdesign issvalidatedsatsthesextremescornerssofsthesmanufacturingsprocesssasswellsas 

senvironmentsextremessconditionssforstemperaturesandspowerssupplys. The belowsFigures (a) 

showssascellsdelaysvariationswith respect tosprocessscorners. sFigures (b) sshowssstandardscell 

sdelayssvariationswithspowerssupplys, andsFigures (c) scellsdelayssvariationswithstemperatures. 
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Figure 19: Delay variations with PVT. 

Three PVT conditions described below: 

 WCSs (WorstsCasesSlows): sProcesssissslows, stemperaturesisshighests (say 125C) sand 

voltagesisslowests (say 1.62v, that is1.8V minus 10% for 180nm technology). 

  sTYPs (sTypicals): sProcesssisstypicals, stemperaturesissnominals (say 25C i.e. ambient 

temperature) andsvoltagesissnominals (ssays1.8V). 

 s BCFs (sBestsCasesFasts): sProcesssissfast, stemperaturesisslowests (says 0C) 

sandsvoltagesisshighests (say 1.98v, that is 1.8V plus 10% for 180nm TSMC 

technology). 

 

4.5 Standard Cell Library 

Standard cell library provides to the designer which contains the information of a cell such as 

timing, area and functionality of a cell. And the information in the format of liberty syntax. 

4.5.1 Pin Capacitance 

In the technology library each cell can specify the input and output capacitance but most of 

library characterized only input pin capacitance and output capacitance is zero. 
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The above rise_capacitance means when signal transition is rising then the tool will take this 

capacitance while calculating the path delay. And similarly fall capacitance is taken when the 

signal transition from high to low. 

4.5.2 Timing Modeling 

The standard cell timing models given by the foundry which are provides to the designer exact 

timing information of standard cells present in the design. Normally the timing information’s 

are extracted from SPICE circuit simulations. 

The delay for the standard cell is reliant on below factors: 

 The input slew of standard cell. 

 The output load capacitance 

If the input slew is more, that means transition time is less, so that the output put capacitance 

charging and discharging phenomenon is very fast, there by the delay of standard cell 

decreases. And the other scenario is, if the output load is large more time took to charge, 

there by the delay will increases. 

4.5.3 sNLDM Models 

Normally most of standard cell libraries characterized in the form of NLDM table because 

which are accurate timing models. And some advance timing models which current source 

based (CCS and ECSM). This NLDM table models capture standard cell delay through 

different combinations of input slew and output load. The NLDM model is represented in the 

form of two dimensional matrix as shown below. 

In the below lookup table specifies that the first variable is the input slew and the next variable 

is the output load. In the below table index_1 is input slew and index_2 is output load, it is in 

the form of 3x3 matrix. There are 9 combinations for the 3 input slew values and 3 output load 

values. And in the matrix the values are the standard cell delays. Here the input max input slew 

is 0.7, if the slew exceeds this value then cell will not provides accurate delay values. Normally 

if input slew exceeds this max limit, then the tool will put buffer so that slew value decreases. 



 

34 
 

 

 

Among the synchronous clock and asynchronous clr or set, the asynchronous signals are 

dominated on the standard cell operation. When asynchronous signals are inactive then the 

synchronous clock signal comes in picture so that the data will latch in circuit by clock edges. 

There are two asynchronous constraints checks are available which are called removal and 

recovery checks. The recovery check is the minimum amount of time that an asynchronous 

signal is stable after being de-asserted before the next active clock edge. Similarly, the removal 

check is the minimum amount time after a clock edge that the asynchronous signal must remain 

active before it can be de-asserted. And the other than this asynchronous checks there are 

minimum pulse width checks, which is due to unequal rise and fall delay of standard cell. This 

minimum pulse width checks are relevant to both synchronous and asynchronous signals.  
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4.6 sTimingsVerification 

In STA there are two most important checks (setup check and hold check) should be verified 

for the synchronous flip-flop. Once the clock defined at the flip-flop clock input, these two 

scheckssaresautomaticallysinferredsto flip-flop. Generally thesestimingscheckssaresperformedsat 

the multiple scenarios likesworstscasesslowsandsbestscasesfastsconditions. Typicallyssetupscheck 

ofsasflip-flopsisschecked worst case slow condition and holdschecksissatsbestscasesfastscondition. 

 

4.6.1 Setup Check 

Thisschecksverifiesstimingscorrelationsbetween thesclocksandsdataspinsofsthesflip-flopssuch that 

setupsrequirementsissmet. sInsotherswordsssetupschecksis, sdatasshould be stablesatsthe D pin of 

flip-flopsbeforesclock reaches at thesclockspinsofsflip-flops. 

Insgeneralstheresarestwosflip-flops, one isslaunchsflip-flopsand another isscapturesflip-flops. This 

slaunchsflip-flopslaunches thesdatasat onesclocksedgesand thescapturesflip-flopscapturesthesdatasat 

nextsclocksedgessuch that the capture flip-flop should satisfy the setup requirements at this 

point. The setup equation is given below. 
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Figure 20: For setup check lock and data signals. 

 

4.6.2 Hold Check 

Thissholdschecksensuressthat thesflip-flopsoutput should not change certain time after clock 

edge so that it will not overwrite the previous data which is latched to this flip-flop. This hold 

check verifies with best case fast condition. The hold check very critical compared to setup 

check, if any hold violations in we can’t do anything in our hand, if setup violation is present 

in the design if you increase the time period then setup violation will resolve. Finally setup 

check is dependent on time period but not hold time. The hold time equation will be given as 

follows. 
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Figure 21: For hold check thesclocksandsdatassignal 

4.6.3 Multicycle Paths 

In STA this multicycle paths are timing exceptions, in cases the combinational data path will 

take more time cycles to pass the logic from input to output. In this cases combinational path 

declared as multicycle path. We can specify that after certain number of clock cycles the data 

should be captured. The below figure shows that the combinational logic has taken three cycles 

to propagate the logic from Q pin of UFF0 to D pin of UFF1 without considering the wire 

delays 

 

 

Figure 22: A three-cycle multicycle path. 
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4.6.4 False Paths 

In STA certain paths are ignored that is those pathssaresnotsrealsinsthesfunctionalsoperationsof 

thesdesign, ssuchspathssare treated as false paths so that time required to analyze the path will 

be decreased. The best example for false path is, if two asynchronous clock domains are 

crossing then we can set those are the false path, so that tool will not take account in timing 

verification.  
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Chapter 5 

5. Physical design of USB 
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5.1 Floor-Planning 

Floor-planningsissthesprocesssofsplacing the hard macros onsthesdiesorswithinsothersblock, 

therebysdefiningsroutingsareassbetweensthem. Floor-plan is mapping the logical netlist into 

physical model in the layout. sBecausesfloor-planningssignificantlysaffectsscircuitstimingsand 

sperformance, sespeciallysfor complicated hierarchical designs, the quality of your floor-plan 

directlysaffectssthesqualitysofsfinalsdesign 

• Calculation of Core, Die size and Aspect Ratio. 

• 70% of the core utilization is reasonable so that, design can be timing closure  

• Aspect ratio is 1 for square shape 

• Initializing the Core 

• Rows are flipped, double backed and made channel less. 

Aspect Ratio defined as the ratio between the horizontal resources to vertical resources. 

CoresUtilization=sStandardsCellsAreas/ (RowsAreas +sChannelsArea). 

 

Figure 23: floor-plan view and module interconnection 

5.2 partitioning the design 

This is the process of dividing the whole core area into small and manageable blocks. This step 

is very advantage because by partitioning the design we can estimate the different functional 

block and also the standard cells can be placed easier with less routing distance. Partitioning 

can be done at RTL stage and then design each module or block separately. This type of 

partitioning called as logical partitioning. 
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Figure 24: Partitioning the of USB design in SoC encounter GUI 

5.3 Power Planning 

In this stage we have to create power grid to supply the current to standard cells and macros in 

the design. Normally for power supply nets have to use higher metal layers so that they allow 

more current. Here the power supply nets are VDD and VSS. For supply power to core cells 

have to create power ring around core area. The cells in middle of core may not sufficient 

power because the voltage drop occurs while current passes through the metal layers. To avoid 

this problem power stripes will create in vertical direction with higher metals. Here to avoid IR 

drop and electro migration we need to calculate the power supply net widths such they can 

supply sufficient power. The calculation of power ring width as follows 

"CALCULATION OF CORE RING WIDTH" 

a) The width and height of the core area is obtained from estimation sheet 

b) Current at the top/bottom and left/right is determined by the following equations 

Itop = Ibottom = {Ict * [ Wc / (Wc + Hc)] / 2} 

Ileft = Iright = {Ict * [ Hc / (Wc + Hc)] / 2} 

Ict = Total core current 

Wc = Width of core 

Hc= height of core 

Depending on the EM limit the total width of the stripe of metal required is calculated. 

Total width of top and bottom = Itop/EM limit  
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Total width of left and right = Ileft/EM limit 

Width determined by IR drop 

It is required that the IR drop should be less than 5% VDD 

IR drop = I*R 

R =R0*(L/2)/W 

W= [R0*(L/2)]/R= [R0*(L/2)]*(I/0.05VDD) 

L/2 is chosen because the drop is maximum here 

Hence W= I {*R0*(L/2)}/0.05*VDD 

Whichever width is limiting that is taken as the core ring width. 

 

Figure 25: power ring and power stripes for standard cells 

 

Figure 26: power report 
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5.4 Placement of standard cells 

This placement stage is after the floor-planning and power grid creation for standard cells. In 

this stage the placement of cells is done based on connectivity of netlist. After placing the 

standard cells we need to check the global route congestion map, it will provide the density 

regions based pin density and cell density. This congestion map is very useful, by using this we 

can estimate the design is routable or not in further stage like CTS and routing. Placement stage 

the tool will divide the total core area into grid cells (Gcells) and each grid cells again divided 

into bins for routing. The tool will assigns the routing tracks to grid cells, basically the grid cell 

has a capacity the number of routing tracks it can allow without any shorts and DRC violations. 

If the number routing tracks is more than the required then it will called as congestion. While 

placing the standard cells the tool will remove the wire load models (WLM) and uses (virtual 

route) VR to calculate the RC values for the timing information. Here VR is shortest distance 

between two points, this is called as Manhattan distance. Here the RC values are more accurate 

than the wire load model RC parasitcs. 

Placement of standard cells is done in 4 optimization stages. 

(a). sPre-placements Optimization  

In this phase the tool will optimizes the netlist before placement, in design some signals like 

reset, scan enable are high fan-out nets. If these nets are in data path there by the delay will 

increase and causes setup violations, so avoid that problem HFNs are collapsed. It can also 

downsize the cells. 

(b).In-placement optimization  

In this phase it re-optimizes of the netlist based on VR. Re-optimization like cell sizing, cell 

moving, cell bypassing, net splitting, gate duplication, buffer insertion, area, cell downsizing 

recovery.Optimization performs several times to fix the setup , incremental timing and 

congestion driven placement. 

(c).Post placement optimization 

After the standard cell CTS will do netlist optimization with ideal clocks before the real clock 

tree built. It can fix setup, hold, max transition and maximum capacitance violations.in this 

optimization phase the placement engine will do placement optimization based on global 

routing. And also it will do HFN synthesis again for better timing. High fan-out synthesis is 

also called as bufferTreesynthesis. 

(d).Post placement optimization after CTS  
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Here it will optimizes timing with propagated clock means the real clock which having parasitic 

information. And also it maintains the some clock skew. 

 

5.5 Congestion how to avoid congestion 

There some techniques are present to avoid the congestion. 

Macro padding: 

Normally in a design along with standard cells some hard macros also present, it will create 

placement halo around the macro so that no standard cell will place around that.by doing this 

pin connection between standard cells and macro pins is easy. 

Placement blockage  

This is useful in hierarchical design, if in particular area we avoid the placement of standard 

cells by creating this placement blockage. 

Maximum utilization constraint: 

By changing the core utilization factor can maintain the congestion should be small. 

 

                       

     Figure 27: endcap cells                            Figure 28: well tap cells in checkerboard fashion 
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Figure 29: placement of a standard cells 

                          

     Figure 30: Vertical congestion                            Figure 31: Horizontal congestion 

 

 

 

 

 
Figure 32: placement density 



 

46 
 

5.6 sClocksTreesSynthesis 

This CTS phase will do after placement of the standard cells in the core area of the chip.CTS 

is asprocesssofsbalancingsclocksskewsandsminimizing insertion delay in order to meet timing, 

power requirements and other constraints. After placement we will have the positions of 

standard cells and hard macros, but the clock network will be ideal. In this CTS the actual 

propagated clock comes in picture i.e this is real routing of clock network. In this the CTS 

engine will insert clock buffers and clock inverters such the setup and hold violations will be 

fixed. If the data path delay is more compared to clock time period there will be setup violation 

will occurs, to fix this we have to minimize the data path delay. For minimizing the data path 

delay the CTS engine will insert clock buffers and also put higher drive strength gate so that it 

passes more current and there by the delay will decrees. And Clock tree synthesis provides the 

following features to achieve timing closure: 

o Globalsskewsclockstreessynthesis 

o skewsclockstreessynthesis 

o Real clock useful skew clock tree synthesis 

o Interclock delay balance 

o Splitting a clock net to replicate the clock gating cells 

o Clock tree optimization 

o High-fan out net synthesis. 

o Concurrent multiple corners (worst-case and best-case) clock tree synthesis. 

o We can do skew grouping to minimize the skew between the flip-flops which 

are having same insertion delay. 

 

 

Figure 33: clock tree and sinks of sys_clk 
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Figure 34: clock tree and sinks of osc_clk_i 

 

 

                                      

Figure 35 :   Clock shielding   Figure 36:  extracted parasitics 

 

 

 

Figure 37: clock routing to all sinks 
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Figure 38: timing slack histogram 

 
 

Figure 39: Max and min clock routing distance 
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Chapter 6 

6. Register clustering algorithm 
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6.1 Introduction.  

The idea behind group the registers which having similar characteristics, so that that clock 

network capacitance greatly reduced, thus switching power of the clock network should be 

minimized. In previous so many techniques are present to do register clustering at the 

postplacement phase. There are some techniques based on Euclidian distance grouping of same 

leaf cluster. This type of algorithm iteratively calculates the Euclidian distance and forms the 

clusters. By grouping the registers we can minimize the local clock tree capacitance. 

propose a novel latch placement methodology to minimize local clock-tree capacitance as 

technology development improves the driving strength of inverters inside registers, it is now 

possible to share common inverters in several flip-flops (FFs), resulting in the multibit flip-

flop (MBFF). The MBFF clustering problem is to effectively and efficiently merge several 

single-bit flip-flops (SBFFs) into an MBFF. Compared with traditional register-clustering 

techniques, the emerging MBFF technique leads to better power reduction. MBFF reduces the 

clock load by having a single clock input pin, reducing the corresponding wire load. In addition, 

shared clock inverters within an MBFF further reduce power consumption compared with 

SBFF. 

 

 

Figure 40: Post placement register clustering flow 

 

There are two ways we can do register clustering at the post placement stage of physical 

design  

 1. MBFF (Multibit flip flop) register clustering 

 2. Artificial Register clustering (DBSCAN algorithm). 
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6.2 MBFF register clustering 

The device variations can be reduced effectively by replacing the minor flip-flop into bigger 

multibit flip-flop. By reconciliation thes1-bitsflip-flopsinto multibit flip-flop it avoids the 

inverters. In a specified time interval the rising and falling, the least sized inverter is enough 

the to measure the driving capability of clock buffer in Multibit flip-flop configuration. In 

below Figure clearly explained the highest number of least-sizedsinverterssthatscansbesdriven 

bysasclocksbuffersinsdifferentsprocessess. For this reason that of, sseveralsflip-flopssandssharessa 

commonsclocksbufferstosavoidsunnecessaryspowerswaste. The right figure shows the outlook 

ofs1sands2-bitsflip-flops. sIfswesreplacesthe twos1-bitsflip-flopssassshownsin left side figuresby 

thes2-bitsflip-flopsassshownsin right side figure, thestotalspowersconsumptionscansbesreduced 

becausesthestwos1-bitsflip-flopsscanssharesthessamesclocksbuffer. 

 

Figure 41: Illustration of mergingstwos1-bitsflip-flopssintosones2-bitsflip-flop. 

             (a)Thesflip-flopssbeforesmergings      (b) thesflip-flopssaftersmerging. 

 

Lexicographicals sorders: s <1,100,100>,s <2,172,192>,s <4,312,285>s 

Ta 

 

 

Table 3: Illustration advantage of MBFF 
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6.3 DBSCAN algorithm  

This issdatasclusteringsalgorithmsproposedsbysMartinsEster, sHansPetersKriegel, JörgsSander 

andsXiaowei Xu in 1996. sIt is asdensitysbasedsclusteringsalgorithmsgivensassetsofspointssin 

somesspace, sitsgroupsstogetherspointssthatsarescloselyspackedstogethers (pointsswithsmany 

nearbysneighbours), smarkingsassoutliersspointssthatsliesalonesinslowsdensitysregionss (whose 

nearestsneighbourssarestoosfarsaway).sDBSCANsissonesofsthesmostscommonsclustering 

Algorithms. 

This algorithm needs two parameters ε (eps) and radius of the cluster (r). Here eps means that 

the least number of points to form a cluster (dense area) that is grouping of registers in core 

area. And r value is the required to form a big cluster or small cluster that means if the register 

or flip-flop inside the specified radius then that flip-flop is a part of the cluster. In this algorithm 

the software will select the randomly one flip-flop and calculate Euclidian distance from that 

point to nearest neibouring registers, if the nearest register is within radius then the random 

selected point consider as core point. Like this iteratively will calculate the Euclidian distance 

and forms a clusters which are similar characters. Here I implemented this algorithm in python 

software and the input are given in the form of excel sheet, the inputs are the placement location 

a flip-flop and the pin capacitance of specified registers. So that the load capacitance will 

balance there by skew minimization, clock network capacitance will reduce. The switching 

power is mainly depends on the clock capacitance. From this algorithm we can minimize the 

power, area and skew. In recent technology advancement the skew affects the dominantly, if 

skew will be more there the circuit performance will degrades. This algorithm implemented at 

the postplacement stage. After placing the standard cells we will extract the placement 

coordinates of the registers from the .def file and the pin capacitances from the library (.lib), 

here TSMC 180nm technology library is used. And the tool is used for physical design is SoC 

encounter from cadence. 

 

 

Algorithm: 

 

 Input data S={x1,x2…………………….xn}€ R 

 Choose values for r>0,Eps>0. 

 Ai={x € S:d(xi,x) <Eps};i=1,2,3………..n 

 If |Ai| <r, we shall not involve this Ai in our calculations. 

 Take union of Ai and Aj if Ai∩Aj=ᶲ 



 

53 
 

 Repeat step 4 till no union takes place. 

 

Figure 42: Register clustering 

 

Figure 43: report coverage analysis 
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Figure 44: summary of timing report 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

55 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 7 

7. Conclusion and future scope 
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7.1 Conclusion 

 

In this we applied different synopsis design constraints to the design at the synthesis stage itself 

there by generated gate level netlist and output constraints by considering the area, power and 

timing. For synthesis we used RTL compiler and the technology library was TSMC 180nm. 

And also optimized the gate level netlist by boundary optimization, grouping the instances. 

 

In this stage estimated the chip area and done power analysis by considering the 

elecrtomigration and IR drop effects. And analysed the congestion effects and applied various 

techniques to reduce the congestion. Proposed register clustering algorithm to reduce the clock 

network capacitance there by switching power reduced. Timing closure is achieved by 

considering the on chip variations and PVT conditions up to routing.  

 

7.2 Future scope 

 After detailed routing achieving the timing closure by considering the cross talk noise and 

fixing the any design rule violations. Exploring the Post layout simulation, DFT and scan 

insertion in the design. Finally generation of GDSII file for fabrication of chip.  
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