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ABSTRACT This paper reports a novel approach that uses transistor aging in an integrated circuit (IC) to
detect hardware Trojans. When a transistor is aged, it results in delays along several paths of the IC. This
increase in delay results in timing violations that reveal as timing errors at the output of the IC during its
operation. We present experiments using aging-aware standard cell libraries to illustrate the usefulness of
the technique in detecting hardware Trojans. Combining IC aging with over-clocking produces a pattern of
bit errors at the IC output by the induced timing violations. We use machine learning to learn the bit error
distribution at the output of a clean IC. We differentiate the divergence in the pattern of bit errors because of
a Trojan in the IC from this baseline distribution. We simulate the golden IC and show robustness to IC-to-IC
manufacturing variations. The approach is effective and can detect a Trojan even if we place it far off the
critical paths. Results on benchmarks from the Trust-hub show a detection accuracy of ≥99%.

INDEX TERMS Hardware Trojan detection, machine learning, over-clocking, transistor aging.

I. INTRODUCTION
Manufacturing of ICs is expensive and requires special fab-
rication equipment that becomes outdated in a short time.
To reduce the cost of IC manufacturing, this task is typ-
ically outsourced to offshore IC foundries. In a related
trend, embedded systems source specialized intellectual
property (IP) cores from different vendors. Design and assem-
bly of the IP cores is done using third party computer aided
design, integration, and test tools. As an IC design trav-
els through the complicated supply chain, the IC could be
corrupted at one of the stages. Example threats due to the
corruption include passing off low quality ICs as good, infil-
trating the supply chain with imitation ICs, and insertion
of Hardware Trojans in ICs. Hardware Trojans, which are
typically triggered by rare events, may alter function, deny
service, or leak information. Such infected ICs affect the crit-
ical information systems in finance, military, and health care.
Functional and structural tests to weed out manufacture-time
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defects are ineffective against Trojans for the following
reasons:

1) Structural tests produced by automatic test pattern gen-
eration (ATPG) may not detect a Trojan, since the
behaviour of the Trojan may not be in the fault list [1].

2) Functional tests do not uncover Trojans since they trig-
ger on rare events.

3) A brute force application of all inputs does not scale.
For example, a 64-bit circuit will need 264 inputs.

Reverse engineering can authenticate the IC but it does not
guarantee that the unchecked ICs do not have Trojans [2].

There are different types of Trojans, depending on their
functionality. Some leak information, some change function,
and some discharge power, etc. Therefore, a robust approach
is needed to detect Trojans. Prior work [3]–[7] has considered
side channel and ATPG test pattern analysis. Power side
channel fingerprinting is not a reliable method for detecting
Trojans within a large circuit. In classic VLSI test, even if
the test patterns cover all corner cases, they may not trigger
a Trojan. For example, the trigger could be inputs applied

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 77415

https://orcid.org/0000-0002-8320-0045
https://orcid.org/0000-0001-8264-7972
https://orcid.org/0000-0002-5649-3102
https://orcid.org/0000-0002-6431-7512
https://orcid.org/0000-0001-9602-2922
https://orcid.org/0000-0001-7989-5617
https://orcid.org/0000-0002-8418-004X
https://orcid.org/0000-0003-2208-5853


V. R. Surabhi et al.: Hardware Trojan Detection Using Controlled Circuit Aging

in a particular sequence, which is extremely challenging to
replicate. We explore aging for Trojan detection. In transistor
aging, we do not need the Trojan to be triggered because the
underlying aging mechanism will naturally occur during the
circuit’s operation. From results (see Section VII), aging can
detect small Trojans (occupying 0.22% of the circuit) and
even if it is about 4000 paths far from critical path.

In this work, transistor aging along with over-clocking is
used to expose the Trojan effects on various circuit prop-
erties. When aging and over-clocking are jointly applied to
an IC, they produce a pattern of bit errors at the output.
The output bit error patterns for clean IC are used train a
Support Vector Machine to learn the clean IC output pat-
tern distribution to determine presence of Trojan at the test
time. The efficacy of our approach is shown on gate-level
simulations on Advanced Encryption Standard (AES) and
Rivest-Shamir-Adleman (RSA) crypto circuits with different
Trojans that show different challenges using aging-induced
standard cell libraries. This method applies to any circuit but
the crypto circuits are used for secure data transmission and
hence are subject to attacks. The Trojans appear at different
locations corresponding to the rank of the critical path. The
experimental results show an accuracy of over 99% on all the
circuits when considered with varying number of inputs.

The paper is organized as follows. Section II discusses
prior work on Trojans. Section III describes transistor
aging and its effects. Section IV overviews the creation of
aging-aware standard cell libraries. Section V introduces our
approach and Sections VI and VII outline the experimental
setup and results. Section VIII draws the conclusions.

II. RELATED WORK
A. HARDWARE TROJANS
Globalization has led to a distributed IC manufacturing
environment. The globally-distributed IC design cycle has
led to a lot of vulnerabilities, including Hardware Trojans.
A Hardware Trojan is a malicious modification to the circuit,
which is unknown to the designer and can have consequences
like incorrect functionality, loss of secret information, etc.
Hardware Trojans are critical threats to military, finance,
transportation and corporate or consumer electronics [8].
A Hardware Trojan has two parts – trigger and payload.
Trigger signal activates the Trojan. Payload is the effect
of the Trojan. A trigger is a signal in the circuit which is
rarely activated. As a result, the payload is dormant during
normal function of the circuit. Hence, the Trojan is difficult
to detect. Trojans can be classified based on five attributes:
insertion phase, abstraction level, location, trigger and
payload [9], [10].

Trojans can be inserted in various stages of a design
flow. Semiconductor companies use third party EDA tools,
third party IPs (3PIPs), and untrusted foundries. Insertion
of Trojans at various stages of EDA design flow has been
demonstrated by [11]. Insertion of Trojans during High-level
Synthesis was proposed by [12]. [13] designed a malicious
processor by modifying the open source Leon processor.

The Trojans allow a user to violate Operating System
exceptions and execute a malicious firmware. Don’t care
states in a design were utilized to trigger Hardware Trojans
by [14]. [15] triggers Trojans by exploiting silicon wear-out.

B. TROJAN DETECTION
Trojan detection methods are usually applied either at the
design stage or post-manufacturing stage to verify them [16].
Pre-silicon detection approaches are used to validate 3PIP
cores before integrating them to a design. Pre-silicon verifica-
tion is performed using functional validation, structural anal-
ysis or formal verification. Functional validation methods use
functional tests to activate a Trojan and validate the response
against a ‘‘golden’’ Trojan-free circuit response. Since Tro-
jan triggers are rarely turned on, researchers have devel-
oped test generation techniques that can activate those rare
triggers [3], [4]. However, functional tests fail to detect a
non-functional Trojan which does not alter the function of the
circuit and transmits secret data. Structural analysis involves
identifying redundant statements and circuits in the HDL
code [15], [17].

Post-silicon Trojan detection involves either destruc-
tive or non-destructive testing. Destructive testing implies
reverse-engineering and de-layering to detect the presence
of malicious circuitry [16]. Although this approach is costly,
time consuming and renders the IC useless, it guarantees
Trojan detection in the single IC. Non-destructive methods
use functional testing (similar to pre-silicon Trojan detec-
tion) and side-channel analysis. The value of a side-channel
parameter will differ between a Trojan activated circuit and
a ‘‘golden’’ circuit. In [18], path delay information of the IC
at each output is considered to generate a path delay finger-
print. The path delay fingerprints help distinguish between
clean IC and Trojaned IC. There are millions of paths in ICs
nowadays, it is not practical to measure the delay for all the
paths. Also, the method does not work well for the Trojans
that leak information through side channels. Temperature
tracking using on-chip thermal sensors during run-time is an
option [6], [19], [20]. However, if the Trojan activity lasts
for a short duration, the slow rate of thermal variation can-
not detect the Trojan. Furthermore, adversary can place the
Trojan in an active area of the chip. This makes the Tro-
jan detection difficult. In [5], leakage current measurement
detects Trojans since additional gates consume extra leakage
power. In [7], Picosecond Imaging Circuit Analysis (PICA)
is used to measure optical emissions of the ICs and compare
them with a trusted emission image of a ‘‘golden’’ IC. In both
themethods (i.e., power and radiation), access to ‘‘golden IC’’
is required and as the feature size of IC shrinks, the devi-
ation from ‘‘golden’’ IC due to process variations become
pronounced, compensating for the deviations introduced by
the Trojans. Our method does not need a ‘‘golden IC’’.
We simulate the circuit for the golden IC and show robustness
of the technique to IC-to-IC manufacturing variations. The
approach is aging-based, non-destructive and can detect a
Trojan even if it is dormant, removing the above limitations.
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III. TRANSISTOR AGING
Semiconductor technology has advanced to the nanometer
regime wherein electric fields are stronger with every new
generation to allow the transistor to switch faster. When
an IC is turned ON, the Bias Temperature Instability (BTI)
effect comes into play and increases the threshold voltage
(1Vth) of transistors. The magnitude of (1Vth) depends on
the supply voltage (Vdd ). High Vdd causes a large increase in
Vth, thus increasing the delay of paths of circuit leading to
a noticeable performance degradation. Modern ICs use fast
voltage regulator (switching between voltage levels in less
than a micro second) to implement effective power manage-
ment schemes in which the overhead of voltage scaling is
minimized. The high frequency of voltage switching does
not allow for degradation accumulated at high Vdd to settle
down (i.e. to recover) at low Vdd . This causes transient
timing errors due to aging until the transient state disappears
in which generated defects, caused by BTI aging at the
high Vdd , partially or fully recover. This is known as
short-term aging [21]. Switching voltage from low Vdd to
high Vdd does not cause aging effects as the degradation at
low Vdd is less and the circuits get more robust at high Vdd .

A. EFFECTS OF TRANSISTOR AGING
Technology scaling is approaching its limits displacing a few
atoms in a transistor during operation is akin to aging and can
endanger their key electrical properties. The key aging phe-
nomena are Negative and Positive Bias Temperature Instabil-
ities (NBTI and PBTI), with a potential to degrade the switch-
ing speed of pMOS and nMOS transistors. BTI occurs when
the vertical electric field is applied to the transistor in which
some of the minority carriers –that are being attracted to form
the transistor’s channel– may combine with the available
Si-H bonds at the Si-SiO2 interface layer resulting in interface
traps. Some of these carriers may move to the transistor’s
dielectric due to quantum tunneling and captured by the oxide
vacancies resulting in oxide traps. These defects interfere
with the applied electric field and weaken it due to Coulomb
scattering. As a result, the transistor can switch from OFF to
ON state only at a higher gate voltage than the fresh device
(i.e. in the absence of aging). Hence, the threshold voltage
(Vth) of the transistor increases. In addition, the generated
interface traps reduce the mobility of carriers (µ) as they
move from source to drain due to Coulomb scattering.

1) AGING-INDUCED TIMING ERRORS
The delay of a transistor is proportional to its current in the
ON state (ION ). ION is a function of the threshold voltage
and the carrier mobility as in Eq. 1 [22]. An increase in Vth
plus a decrease in µ due to aging reduces ION and increases
transistor delay.

Transistor delay td =
1
ION

;

ION ≈
µ

2
· Cox ·

W
L
· (Vdd − Vth)2 (1)

where,Cox ,W and L are oxide capacitance, width, and length
of transistor. Vdd , Vth, and µ are operating voltage, threshold
voltage, and carrier mobility, respectively.

Aged transistors slowdown increasing the likelihood of
timing violations and errors in circuits, as shown in Eq. 2,
if no (or in-sufficient) timing guard band is included. This
is because the switching frequency is unsustainable causing
timing violations in critical paths and these.propagate to out-
puts manifesting as errors.

tCP =
∑
di∈CP

tdi , tCP(aging) > tclock ⇒ timing errors !

2) THE HIDDEN IMPACT OF VOLTAGE SCALING
From Eq. 1, the impact of aging-induced 1Vth largely
depends on the operating voltage (Vdd ). Therefore, the same
increase in Vth due to aging (e.g., 25mV) can result in a
much larger degradation in ION and thus in the transistor
speed when Vdd is scaled down. The timing errors that the
circuit will exhibit, under aging effects, are subject to aging-
induced degradation (Vth, µ) and operating voltage (Vdd ).
The combination magnifies the impact of aging and shifts
the aging problem from a sole long-term degradation (i.e. a
degradation that may take months to cause timing errors in
circuits) to a short-term degradation (i.e. a degradation that
might need merely hours to cause timing errors). Such a
magnification in the impact of aging can point to using this
as a knob to detect Trojans. In this study, we consider the
relatively longer-term aging (at multiple controllable levels
of aging) that can be induced by the various aging effects
discussed above.

B. COMBINING CIRCUIT AGING WITH OVER-CLOCKING
Aging alone does not create sufficient delay in a circuit path
for the timing errors to propagate to the output. To check
this hypothesis, we generated the outputs for the clean and
Trojan-inserted IC using a nominal clock (i.e., without over-
clocking) with different states of aging (i.e with different
aging-induced 1Vth). The difference in outputs for both the
cases is insufficient to detect a Trojan.

Similarly, over-clocking alone does not create significant
bit-error patterns at the output. When the Trojan is placed
far from the critical path, over-clocking does not generate a
distinguishable signature of errors.We apply anML classifier
on over-clocking only data to see if it can detect a Trojan on
the critical path. The results show a false negative rate≥50%.
Windowing over multiple input vectors and majority voting
during testing does not help. False negative rate increases
when multiple input vectors are used to test.
Combining transistor aging with over-clocking generates

a distinguishable signature of timing errors at the IC output
and this can be used to detect Trojans with a high accuracy.
Implementing and demonstrating this idea is the key novel
contribution of this paper.

In a nutshell, the delay caused due to aging alone is insuf-
ficient to produce bit errors at the output of an IC. Also, ICs
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include a timing guard band to ensure reliability. By over-
clocking, we either narrow or remove the timing guard band.
Over-clocking in combination with aging creates a robust
signature of bit-error patterns at the output.

IV. AGING-AWARE CELL LIBRARIES: BRIDGING THE
GAP BETWEEN PHYSICS AND SYSTEM LEVEL
Aging is ‘‘driven’’ by different underlying mechanisms of
defect generation that occur at the atomic level. In order to
investigate and quantify how such defects may propagate
all the way up to the system level, where they manifest
as timing errors, the intervening abstraction layers must be
carefully traversed. In addition, real digital circuits typically
consist of numerous paths, which are all similar to each other
with respect to overall delay. Therefore, when aging-induced
degradation takes place, it is challenging to accurately quan-
tify how the timing paths will be violated and how such
violations will translate into errors at the circuit outputs. This
necessitates an accurate modeling of how standard cells will
behave in the presence of aging degradations. Any investi-
gation in this direction requires that we use commercial tool
flows for static timing analysis in order to rely on their under-
lying mature algorithms evolved over decades. Otherwise,
the impact of aging-induced degradation on the delay of paths
cannot be accurately captured and, more importantly, any
proposed techniquewould not be compilable with the existing
standard design flow of circuits.

To address these challenges, we create ‘‘aging-aware cell
libraries’’ in which the delay of standard cells are charac-
terized by considering the effects that aging-induced defects
have on the electrical properties of pMOS and nMOS tran-
sistors, similar to [22], [23]. We start from the lowest level of
abstraction where we employ state-of-the art physics-based
BTI agingmodels to estimate the defects in pMOS and nMOS
transistor and how they result in shifts in the transistor’s
parameters (i.e. Vth and µ) [24]. Then, we employ SPICE
simulation to estimate the delay and power of every standard
cell considering the effects that1Vth and1µ on the delay of
the nMOS and pMOS transistors. We analyze every standard
cell with 7 × 7 input signal slews and output load capaci-
tances.1 All the generated data is stored using the ‘‘liberty’’
format, which is the standard format for existing commercial
EDA tool flows (e.g., Synopsys and Cadence). To cover a
wide range of aging effects, we create the aging-aware cell
libraries for a various aging stress conditions (i.e. various duty
cycles 2). We start from 0% representing no aging all the way
to 100% representing the maximum aging that considers a
continuous aging stress without any recovery, in steps of 10%.
These standard cell libraries are compatible with EDA tool
flows like Synopsys and Cadence. Hence, designers can plug
them directly within the commercial static timing analysis
tools for accurate timing analysis.

1This is how it is done in commercial standard cell libraries.
2Duty cycle is the % of operation time for which the transistor is ON.

Implementation Details: We target the 45nm technology
node. The methodology and implementation is not limited
and applies to advance technology nodes. We employ state-
of-the-art physics-based aging model [24], which were val-
idated against semiconductor measurements. They capture
the defect generation of BTI aging under any stress condi-
tion. The physics models support all technology nodes and
different transistor structures such as FinFETs. To create the
standard cell library, we used the open-source 45nm nangate
library [25]. The library provides SPICE netlist for sequential
and combinational standard cells. For SPICE simulations we
use open-source Predictive Transistor Model (PTM) [26].

V. PROPOSED METHODOLOGY
Consider an IC that performs a function f at a nominal operat-
ing clock.When an input x is applied to the IC, it generates an
expected output f (x) as long as the IC is operating normally
(i.e., operating without timing errors). If the IC is run on
a faster clock (higher frequency), it alters its functionality
causing mis-matches (e.g., bit errors, longer settling times)
in the observed outputs due to the induced timing violations.
If the logic gates of the IC age and slow down, the results
take more time to propagate and reach the output bus and
the observed output behavior will be different from expected
because of timing errors. Aging induces a delay increase
in the IC, which then results in transient timing errors.
If the clock period is small enough to propagate the errors
to the output, the output bits will differ from the expected
outputs. This change in the output bit patterns helps detect
extra circuits such as Hardware Trojan. Timing guard band
is not used in this study. It is used during the operation of a
chip and is not a consideration for the detection mechanism.
The maximum clock frequency is purposefully violated by
overclocking the circuit.

To validate this hypothesis using simulations, we create
standard cell libraries as described in Section IV that consider
aging effects by using the degradation of threshold voltage
(Vth) and carrier mobility (µ) in nMOS and pMOS transistors.
We created standard cell libraries for different stresses of duty
cycle from 0% - 100% in steps of 10%. A duty cycle of 100%
refers to 100% aging stress and 0 refers to no aging.

We consider attacks pre-synthesis (RTL) and post-synthesis
(gate-level netlist). In the case of post-synthesis Trojan inser-
tion, the attacker can be either the designer or the fabrication
company. For the RTL attack, we assume that we have
access to the genuine RTL that is corrupted before proceeding
to synthesis. For Trojan insertion post synthesis, the RTL
without the Trojan is synthesized to produce a gate-level
netlist and the Trojan is inserted within the netlist to get a
corrupted, Trojaned netlist. We use the aging-aware standard
cell libraries and the (clean and corrupted) gate-level netlists
as inputs to a static timing analysis tool to generate the
standard delay format (SDF) files for the different aging
states. The SDF file reports the exact delay of every logic
gate in the netlist. We generate a set of inputs and their
outputs for the baseline IC using gate-level simulations.
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FIGURE 1. Stages in the IC design flow where a Hardware Trojan can be inserted.

This set of inputs includes randomly generated inputs as well
as input test patterns generated by Synopsys Tetramax Auto-
matic Test Pattern Generator (ATPG) [27] tool. We generate
these input-output pairs for combinations of aging states and
clock frequencies using gate-level simulations (with SDF
annotations). We then develop a machine learning approach
(discussed in Sections V-A, V-B) to compare the observed
bit error patterns at the circuit output with the expected bit
error patterns trained from a known-good device/simulation.
Figure 1 shows the stages where a hardware Trojan can be
inserted. Our ML classifier detects all the Trojans. We obtain
the maximum clock period for an IC using static timing
analysis and generate input/output dataset for smaller clock
periods that create pronounced output bit-error patterns.

A. FEATURE EXTRACTION FOR MACHINE LEARNING
The Hardware Trojan detection methodology is based on
applying inputs to the IC, observing the outputs for several
clock periods and aging states, and comparing the observed
output variations with ‘‘baseline’’ characteristics to detect
anomalies that indicate presence of Trojans. A one-class
classifier based on an auto-encoder and a one-class Support
Vector Machine (SVM) is proposed as shown in Figure 2.
To train a model using the baseline characteristics, we con-

sider a set of inputs xT . For each input x ∈ xT , the output
is recorded3 for a range of clock periods and aging states.
Denoting clock periods by t1, . . . , tnC and aging states by
a1, . . . , anA , the output for ith clock period and jth aging
state is denoted as hij(x). The clock periods t1, . . . , tnC , span
significantly lower than the highest sustainable clock period
under normal conditions4 While the higher number of bit
errors are expected at a higher clock, some bit errors are
possible at higher than nominal clock in high-aging states.
Given input x, the expected output is denoted by y0 = f (x).
Given an input x, the expected output f (x) is deterministic,

while the measured outputs hij(x) are stochastic, when the

3After a number of cycles sufficient to read output in normal operation.
4Nominal clock derived from slack analysis by Synopsys Primetime.

FIGURE 2. ML-based detection of ICs with a Trojan.

IC is over-clocked and aged. IC-to-IC variations add to the
variability of hij(x). To account for variability and achieve
robust anomaly detection, we do not simply learn mappings
from inputs to expected outputs. Rather, we learn a deeper
model of how the observed outputs (i.e., observed bit error
patterns) vary with over-clocking and aging. The trained
classifier does not compare measured with expected outputs.
It uses the variation in patterns of bit errors as a signature
for the IC and learns a model of the characteristics of these
variations (independent of the applied inputs). Hence, inputs
used during testing of an IC are independent of inputs used in
training (see Section VII).

Given an input x, the expected output y0 = f (x), and a
measured output y = hij(x) for the ith clock period and the
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FIGURE 3. Visualization of features for different aging states (duty cycle 0% H⇒ no aging and a duty cycle 100% H⇒ maximum aging) and
clock periods for clean IC (left) and Trojaned IC (right) for RSA (when Trojan is inserted into the netlist).

jth aging state, the mismatch between y and y0 is measured
by a set of four features: number of 0→1 bit flips, 1→0 bit
flips and weighted combinations of 0→1 and 1→0 bit flips
considering their bit locations. Denote the bit length of the
output (i.e., y or y0) as m and given any binary number a of
bit length m, define the ‘‘bit indicator functions’’ 1(a) and
0(a) as the subsets ofM = {0, . . . ,m− 1}, given by

1(a) = {r ∈M|a&2r > 0} (2)

0(a) = {r ∈M|a&2r = 0} (3)

where & is the bit-wise AND. 1(a) and 0(a) capture subsets
of bit locations in {0, . . . ,m− 1} corresponding to 1 or 0 bits
in a. Given y, y0, the feature vector is defined as

f1(y, y0) =
∑

r∈(0(y0)∩1(y))

1 (4)

f2(y, y0) =
∑

r∈(1(y0)∩0(y))

1 (5)

f3(y, y0) =
∑

r∈(0(y0)∩1(y))

2r (6)

f4(y, y0) =
∑

r∈(1(y0)∩0(y))

2r (7)

F(y, y0) = [f1(y, y0), f2(y, y0),

f3(y, y0), f4(y, y0)]T ∈ RnF ; nF = 4 (8)

Using the feature vector F(., .), a three-dimension feature
tensor is defined to characterize variations of bit errors over
the set of clock periods and aging states. Given input x,
expected output y0 = f (x), and measured outputs {hij(x), i =
1, . . . , nC ; j = 1, . . . , nA}, the three-dimensional tensor F(x)
of dimension nC × nA × nF is defined where its (i, j, k)th

element is the k th element of F(hij(x), y0).
Figure 3 visualizes the feature tensor computation across

clock periods and aging states for RSA circuit (Trojan
inserted in the nelist). The figure shows the features extracted
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at the different clock periods and aging states for an input
as a heat map. Although the feature values for clean and
Trojaned ICs look similar, the classifier can distinguish a
clean IC from a Trojaned one (see Section VII). From left
to right in each of the plots, the aging stress increases from
0% to 100% and the Y-axis represents different clock peri-
ods and the over-clocking is more towards the bottom. The
four plots in each column show the four types of features
as discussed above. They correspond to (from the top) the
number of 0→1 bit flips, number of 1→0 bit flips, weighted
combinations of 0→1 and 1→0 bit flips considering their bit
locations, respectively. The heat map shows how the features
are varying with aging stress and clock periods as well as the
difference between a clean IC and Trojaned IC. Lighter colour
indicates that the particular kind of feature at the given clock
period and aging stress is more pronounced.

B. MACHINE LEARNING FOR TROJAN DETECTION
To train the anomaly detector, the feature tensors F(x) are
generated for each input x in the training set xT . We com-
bine features from multiple inputs by taking a window of
size 1 during training for better accuracy in detecting Trojans.
From the set {F(x), x ∈ xT }, we train a one-class classifier
for outlier detection. Given a feature tensor computed from
outputs measured from an IC under test, the trained classifier
determines if the feature tensor is ‘‘different (outlier)’’ from
that for a Trojan-free IC. A one-class classifier based on an
autoencoder and a one-class SVM is used (Figure 2). From
the feature tensor of dimension nC × nA × nF , a compact
feature representation is computed using a four-layer autoen-
coder having a two-layer encoder and a two-layer decoder
with ReLU activations. The feature vector from the hidden
layer of autoencoder is input to a one-class SVM.

When testing an IC, inputs x̃ in a test set x̃T are applied to
the IC and the outputs yij = hij(x̃) are measured for the ith

clock period and jth aging state. Feature vectors F(yij, f (x̃))
and the feature tensor F(x̃) are extracted. The feature ten-
sor is passed through the trained autoencoder to extract a
low-dimensional feature vector which is then passed through
a one-class SVM. The test set x̃T can be disjoint from or
overlap with the training set xT . In either case, the anomaly
detector is input-independent and does not rely on matching
actual values of outputs, but on feature patterns of bit error
variations across clock periods and aging states. Since the
detector operates on a feature tensor extracted from outputs
measured for a single input, applying one input x̃ is suffi-
cient for inlier/outlier determination. However, to improve
accuracy, multiple inputs x̃ plus majority voting is used to
generate the inlier/outlier estimate. Section VII shows that
≥ 95% accuracy of inlier/outlier determinations of clean vs.
Trojan-inserted ICs) are obtained with a single input. Major-
ity voting with multiple inputs improves it to 100%.

In summary, the approach implemented is as follows:

• Training: A simulated model of the baseline (Trojan-
free) IC is used to train using a set of inputs which is

FIGURE 4. Gate-level circuit of synthesized Trojan-infected RSA circuit.
The Trojan is contained in the red area of Figure.

a combination of random and ATPG-generated inputs
and a predefined set of operating condition tuples (e.g.
clock frequency, aging state) are applied to the IC. For
each of the conditions, inputs are applied and outputs
are measured. The feature vectors are generated from
each of the measured output to train the SVM. The
feature vectors for challenging Trojans are enhanced by
collecting the features over a set of inputs (called a bin).

• The testing procedure is similar to the training.
We collect input-output measurements at different clock
frequencies and aging states. Testing is done on the
baseline and Trojan ICs to measure accuracy of the clas-
sifier. To improve accuracy for the challenging Trojans,
the number of bins (called a batch) used for testing at
a time is increased. We use a batch of 5 bins during
training.

• Implementation: In the deployment site, same procedure
as during testing is used. Different clock frequencies and
aging states (i.e., operating condition) can be applied to
the IC under test and input-output measurements with
a batch of inputs at each operating condition can be
collected. The extracted features are run through the
classifier to determine if the IC is Trojaned or not.

VI. EXPERIMENTAL SETUP
A. TROJAN BENCHMARKS USED IN THE STUDY
Weuse the following 32-bit RSA and the 128-bit AES circuits
from the Trust-Hub [28].
• The Basic RSA-T100 benchmark implements a Shift-
and-Add algorithm for modular multiplication. The trig-
ger checks for an input and activates the Trojanwhen this
is found on the input bus. The Trojan leaks the secret key
(private exponent) through output bus. Figure 4 shows
the gate-level netlist of the synthesized RSA circuit with
a Trojan (the Trojan is inserted at the RTL). The Trojan
occupies 0.75% of the IC area.

• The AES-T100 uses a 128-bit key. In the baseline AES,
the plaintext goes through 10 rounds of substitution,
mix column, and shift rows. The AES-T100 Trojan is
always on. The Trojan leaks bits from the secret key.
The eight least significant bits are leaked through power
side channel before which they are XORed with the bits
generated from Linear-Feedback Shift Register (LFSR).
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FIGURE 5. The CAD tool flow. The CAD tools used are in blue background.
The RTL design stage where the attack can happen is in red. The steps
used to create aging-aware SDF files are in purple. The simulation steps
are in green.

This modification to the key obfuscates the power read-
ings which allows only the adversary to recover the key.

• The AES-T1000 benchmark uses a 128-bit key and has
a trigger similar to Basic RSA-T100. The Trojan leaks
the key using the technique similar to AES-T100. The
difference is that the AES-T1000 has a Trojan trigger.

B. SYNTHESIS AND SIMULATION
We use Synopsys Design Compiler [29] and a 45 nm tech-
nology library operating at 1.1V, 25 ◦C (see Section IV)
without aging to synthesize the baseline and the Trojan circuit
(RTL from Trust-Hub) to produce gate-level netlists. The
netlist of the baseline circuit and the Trojan are combined
to produce a netlist with a Trojan so as to keep the original
circuit unchanged. Synopsys Primetime [30] is used along
with 45 nm technology with different percentages of aging
stress to create SDF files, each for a case of aging stress, using
the netlists created for Trojan-free and Trojaned circuits. The
gate-level simulations at different clock periods is performed
using Synopsys VCS [31]. Figure 5 shows the tool flow.

C. SVM-BASED MACHINE LEARNING
A one-class SVM is trained to learn bit error patterns pro-
duced at the outputs (details in Section 2); therefore, detecting
Trojans. Features are extracted for one input at a time to train
the classifier in Experiment 1. The number of input vectors
used for windowing over features is denoted by k (size of bin)
and we will empirically show that k = 5 provides improved
accuracy to detect the more challenging Trojans.

D. MODELING IC-TO-IC VARIATIONS
IC-to-IC delay variations due to temperature, pressure dif-
ferences during manufacturing of ICs is also considered and
addressed. These variations are modeled by altering the delay
parameters of the gates in the SDF files that are caused by
each of the aging states. There are two types of variations in
ICs - 1) IC-to-IC variation and 2) on-chip variation (die-to-
die). The variations in delay from IC to IC can be typically
5% or more [32]. The change that we applied to the SDF files
is as follows: 1) 5% change in each parameter to model IC-to-
IC variation, and 2) Gaussian random variations of zero mean
and 4% standard deviation (σ ) to model on-chip variations.
The combined effect corresponds to variations of up to 17%
(considering 3σ plus 5% as in the first case). At advanced
technology nodes, the percentage variation in delay due to
manufacturing process increases and aging effects become
pronounced, as has been demonstrated in Intel measurements
for the 14nm FinFET technology [33].

VII. EXPERIMENTAL RESULTS
We show the efficacy of our approach on three Tro-
janed circuits from the Trust-Hub [28]: 1) BasicRSA-T100
(Experiments 1 and 2), 2) AES-T100 (Experiment 3), and
3) AES-T1000 (Experiment 4). The Trojan sits on the critical
path for BasicRSA-T100 and about 4209 paths (rank of the
path) off of the critical path for the AES-T100 and 2753 paths
(rank of the path) off the critical path for the AES-T1000.
Therefore, the detection of the Trojan in the AES circuit
is much more challenging. To train and test the classifiers,
we build a corpus of datasets with overclocking and aging.
To show that overclocking is insufficient on its own even on
the simplest circuit with Trojan on the critical path, we collect
data for the BasicRSA-T100 using overclocking only as well.
We also show results for BasicRSA-T100 when the Trojan is
inserted at the RTL and netlist. This is due to the fact that
the synthesized circuit changes considerably when insertion
is performed at the RTL level; therefore, the Trojan detection
will be easier. However, in AES-T100 and AES-T1000, only
a side channel Trojan (no feedback to the original circuit)
is included and therefore injection of the Trojan into RTL
will not change the original circuit once synthesized. In all
these cases, we use the data from Trojan-free ICs to train
and the data from the Trojaned ICs to test. The inputs used
during training are not re-used for testing tomake sure that the
classifier indeed learns useful patterns. Trojans in the training
and testing dataset are kept dormant (except in Experiment
3 but the Trojan does not affect the output bits in Experiment
3) to make the problem challenging. The training and testing
(which are offline) phases require larger dataset than dur-
ing deployment (i.e., inference). The number of input-output
pairs of data collected for each of the circuits is between
4000 and 4300 which takes a few kilo bytes to store. The
features collected over the data also is not more than a few
hundred kilo bytes. The training is offline and needs to be
done only once per circuit. It takes roughly five minutes to
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FIGURE 6. Bit flips induced by over-clocking for BasicRSA-T100 without the aging effects.

FIGURE 7. Bit flips induced by over-clocking for BasicRSA-T100 when aging is maximum.

train each of the circuits. For testing and inference phases,
the computations are not complex and does not takemore than
a few seconds.

A. EXPERIMENT 1: BASIC RSA-T100 TROJAN INSERTED
INTO RTL
The baseline RSA circuit when synthesized has a clock period
of 2.17 ns. The Trojan occupies 0.75% of the circuit. For the
Trojaned and baseline ICs, we collect two sets of data:

1) Overclocking with aging: We over-clock the RSA
circuit and collect data by sweeping the overclocking
in the range 1.125 ns - 1.4 ns with a step of 0.005 ns for
Trojan and Trojan-Free cases and for all aging states.

2) Overclocking without aging:We over-clock the RSA
circuit and collect input/output data in the range 0.9 ns
– 1.4 ns in steps of 0.005 ns without considering the
aging effects for clean and Trojaned ICs.

The data set is generated for 4226 inputs. Of these, 4096 are
random patterns and 130 are ATPG patterns for the clean
RSA circuit. We extracted four types of features (details in
Section V-A). Figures 6(a), 6(b) show the histograms of bit
flips at the outputs for the no-aging case of RSA circuit
with Trojan inserted at RTL. Figures 7(a), 7(b) show the
histograms for the maximum aging case. The bit flips largely
depend on the inputs and the key used in RSA algorithm.
Depending on the positions of bits in the inputs and the key
used by the algorithm, each bit will have a different path
from the input port to the output port. Additionally, when
aging is applied to the circuit, it induces more delay in several
paths that leads to an increase in number of bit flips. This

is evident from the figures in which the histograms shifted
towards right when aging is applied. Figures 8(a), 8(b) and
Figures 9(a), 9(b) show the bar charts of the weighted location
of bit flips for no and maximum aging, respectively. The
locations of bit flips has changed from no aging case to worst
aging case and from no Trojan case to the Trojan inserted
case as discussed. These figures show that the chosen features
provide a discernible difference when a Trojan is inserted.

In case of overclocking with aging, we use half
of 4226 inputs for training and the other half for testing.
When a single input is used for training, the accuracy is
99.3% on a clean IC and 100% for a Trojaned IC as shown
in Figures 10(a), 10(b). False positive rate is 1.4% and false
negative rate is 0%. When a 3-input batch is used, the accu-
racy improves to 99.95% for the clean IC and 100% for
IC with Trojan as seen in Figures 11(a), 11(b). The false
positive rate is 0.09% and the false negative rate is 0%.
A larger batch size is required for challenging Trojans. During
deployment, only 1 input or 3 inputs are sufficient. When
IC-to-IC variations are considered and one input is used to
test, the false negative rate for data from the clean IC is
2.73% and for Trojaned IC is 0%. A 3-input batch yields
100% accuracy. Figures 12(a), 12(b) show the time series
of anomaly detection for random variations in ICs for a
single input. The accuracy decreases slightly when process
variations are considered. The perturbations introduced to the
IC to simulate are random and may fall more in the baseline
increasing the accuracy.

We over-clocked the circuit by to 4× the frequency
of the Trojan-free circuit without aging and tested the
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FIGURE 8. Weighted locations of bit flips without the aging effects in RSA circuit.

FIGURE 9. Weighted locations of bit flips when the aging is maximum in RSA circuit.

FIGURE 10. Time series of anomaly detection using a single input for RSA circuit.

FIGURE 11. Time series of anomaly detection using a batch of 3 inputs in RSA circuit.

classifier. Figures 13(a), 13(b) show performance of classifier
on over-clocked data. False positive rate from clean IC is
1.14% and the false negative rate for the Trojaned IC is
73.69%. Batch of 3 inputs increases the false negative rate
to 81.42%. The high accuracy obtained for Trojan detection

can be attributed to aging and not just over-clocking. Table 1
provides accuracy, precision, recall, and F1 on BasicRSA-
T100 (RTL Trojan) and BasicRSA-T100 (netlist Trojan).
The definitions for the accuracy metrics Accuracy, Precision,
Recall and F1 are given by Equations 9, 10, 11, and 12,
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FIGURE 12. Anomaly detection for IC-to-IC variation using single input in RSA circuit.

FIGURE 13. Anomaly detection for pure over-clocking using single input in RSA circuit.

TABLE 1. Classifier performance on Experiments 1 and 2.

respectively:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(9)

Precision =
TP

TP+ FP
(10)

Recall =
TP

TP+ FN
(11)

F1 =
2 ∗ (Recall ∗ Precision)
Recall + Precision

. (12)

where TP = TruePositives, FP = FalsePositives, TN =
TrueNegatives, FN = FalseNegatives.

B. EXPERIMENT 2: BASIC RSA-T100 TROJAN INSERTED
INTO NETLIST
We make Trojan detection challenging by inserting the Tro-
jan into the synthesized netlist. This makes minimal alter-
ations to the original design and hence difficult to detect.
The Trojan in this experiment occupies 0.22% of the cir-
cuit area. We collect data in the clock range 0.71 ns –
0.84 ns with a step of 0.005 ns. This range is lower than the

RTL inserted one since the synthesized circuit is similar
to the original Trojan-free circuit. Aggressive over-clocking
is to get discernible patterns of bit errors at the outputs.
Figures 14(a), 14(b) show the histograms of bit flips at
output for no aging and Figures 15(a), 15(b) show the his-
tograms for maximum aging. Figures 16(a), 16(b) show the
bar charts of weighted location of bit flips for no aging and
Figures 17(a) and 17(b) show the same for maximum aging.
These figures show that the features provide a discernible
difference when the Trojan is inserted in the circuit. As the
Trojan is inserted into the netlist, the overall netlist will now
be different from the previous case (Experiment 1). The num-
ber of gates involved and the structure of the netlist changes.
Thus, the bit flip distribution changes from the previous case.

The features are collected using a bin of 5 inputs at a
time for training the classifier. When a single bin is used for
testing, the accuracy of correctly classifying the Trojan-free
case is 89.47% and for the Trojan case is 100%, as shown
in Figure 18(a) and Figure 18(b), respectively. When 16 bins
are used for testing, the accuracy for the clean IC increases
to 99.47% and that for Trojaned IC remains 100%. When IC-
to-IC variations are considered and single bin input is used to
test, the false negative rate for data from clean IC is 13.45%
and for Trojan inserted IC, it is 0%. A 16-bin input yields
99.57% accuracy. For random variations in ICs, the number
of inputs in the test data set is 4226. Figures 20(a), 20(b) show
the time series of anomaly detection for random variations in
ICs for single input. Table 1 summarizes the results. Using
smaller number of bins yields more false positives.
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FIGURE 14. Bit flips induced by over clocking without the aging effects in RSA circuit.

FIGURE 15. Bit flips exacerbated by over clocking when the aging is maximum in the RSA circuit.

FIGURE 16. Weighted locations of bit flips without the aging effects in RSA circuit.

FIGURE 17. Weighted locations of bit flips when the aging is maximum in RSA circuit.

C. EXPERIMENT 3: AES-T100 TROJAN INSERTED
INTO RTL AND NETLIST
The Trojan in this experiment occupies 0.23% of the circuit
area. The netlist generated by inserting Trojan at the RTL is

same as the one obtained after inserting Trojans in the netlist.
So we will show the results for one case. Since this Trojan
is harder to detect (4209 paths away from the critical path)
and the circuit is complex, the performance decreases when
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FIGURE 18. Time series of anomaly detection using a single bin for RSA circuit.

FIGURE 19. Time series of anomaly detection using a batch of 16-bins for RSA circuit.

FIGURE 20. Anomaly detection for IC-to-IC variation using single bin for RSA circuit.

FIGURE 21. Bit flips induced by over-clocking for AES-T100 with no aging.

a single input is used for testing. Therefore, we enhance the
features and use several bins containing different number of
inputs at a time (during training and inference). For the AES
circuit, the maximum clock that the circuit can be synthesized

is 0.57 ns. We collect data in the clock range of 0.45 ns
- 0.55 ns in steps of 0.005 ns. The data is generated for
4340 inputs. Figures 21(a) and 21(b) show the histograms
of bit flips for no aging and Figures 22(a), 22(b) show the
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FIGURE 22. Bit flips induced by over-clocking for AES-T100 with maximum aging.

FIGURE 23. Distribution of bit flip locations for AES-T100 without the aging effects.

FIGURE 24. Distribution of bit flip locations for AES-T100 when maximum aging is considered.

FIGURE 25. Time series of anomaly detection using a single bin for AES-T100.

histograms for maximum aging. The number of bit flips have
been increased from the no aging case to the worst aging
case as can be seen by the shift in the histogram towards

right. Figures 23(a), 23(b) show the bar charts of weighted
locations of bit flips at outputs for no aging. Whereas,
Figures 24(a) and 24(b) show the bar charts for maximum
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FIGURE 26. Time series of anomaly detection using a batch of 32 bins for AES-T100.

FIGURE 27. Anomaly detection for IC-to-IC variation with a single bin for AES-T100.

FIGURE 28. Bit flips induced by over-clocking for AES-T1000 without aging effects.

FIGURE 29. Bit flips induced by over-clocking for AES-T1000 when aging is maximum.

aging. The location of bit flips is concentrated on the least
significant bits of the output. In each round of AES algo-
rithm, ‘‘Shift Rows’’ operation rotates the bits by an amount

that depends on their position. This induces more operations
on most significant bits than that of least significant bits.
Thus, the bit flips are more concentrated towards the end.
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FIGURE 30. AES-T1000 bit flip distribution for no aging (top) and max. aging (bottom).

Additionally, there is a change in bit-flip distribution and
locations of bit flips from no aging to the worst aging case
and the Trojan free circuit to the Trojaned circuit. These fig-
ures show that these features provide a discernible difference
when a Trojan is inserted.

With a single bin input (bin size = 5), the accuracy of
correctly classifying a Trojan-free IC is 75.77% and that for
a Trojaned IC is 98.98% (Figures 25(a) and 25(b), respec-
tively). To reduce the false positive rate, we use amultiple-bin
input. Using a batch of 32-bins increases the accuracy to
99.71% for classifying a Trojan-free IC and 100% accuracy
when detecting a Trojaned IC (Figures 26(a) and 26(b)).
When IC-to-IC variations are considered and a single
bin input is used, the false negative rate for data from
clean IC is 24.91% and for Trojan-infected IC is 0.87%
(Figures 27(a) 27(b)). A 32-bin input yields 99.29% and
100% accuracy for clean and Trojan-infected IC. The result-
ing precision for the classifier is presented in Table 2.

D. EXPERIMENT 4: AES-T1000 TROJAN INSERTED INTO
RTL AND NETLIST
The Trojan in this experiment occupies roughly 0.3% of the
circuit area. Figures 28(a), 28(b) show the histograms of
bit flips for no aging case and Figures 29(a), 29(b) show
the histograms for maximum aging. The number of bit flips
have been increased from the no aging case to the worst
aging case as can be seen by the shift in the histogram
towards right. Figures 30(a), 30(b) show the bit flips of
weighted location at outputs for no aging case. Whereas,
Figures 30(c), 30(d) show the bar charts for maximum aging.
As explained in the previous section (Experiment 3), the

TABLE 2. Precision on AES T100, T1000 for different values of k
(size of bin).

locations of bit flips are concentrated more towards the end.
The bit flips and their locations vary from no aging case to
worst aging case as well as Trojan free case to Trojan inserted
case. These figures show that the chosen features provide a
discernible differencewhen the Trojan is inserted.With single
bin as input (bin size of 5), the accuracy for correctly classi-
fying Trojan-free IC is 75.72% and that for Trojaned IC is
99.16% as shown in Figures 31(a), 31(b), respectively. When
a batch of 32-bins is used, accuracy increases to 99.85%
for classifying Trojan-free IC and an accuracy of 100% for
detecting Trojan IC as in Figure 32(a), Figure 32(b), respec-
tively. Table 2 summarizes the precision of the model on
AES-T100 and AES-T1000 when using single or multiple
inputs. Figures 33(a), 33(b) show the ROC curves (true vs
false positives at different thresholds). Considering IC-to-IC
variations and a single bin as input, the false negative rate for
data from clean IC is 20.33% and 0.87% for a Trojaned IC
as in Figures 34(a), 34(b). A batch of 32-bins yields 99.15%
accuracy for clean and 100% accuracy for Trojaned IC.

E. EFFECTS OF HIGHER IC-TO-IC VARIATIONS
To study the robustness of our proposed Trojan detection
method to stochastic process variations, we considered the
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FIGURE 31. Time series of anomaly detection using a single input for AES-T1000.

FIGURE 32. Time series of anomaly detection using 32 bins input for AES-T1000.

FIGURE 33. ROC curves for different thresholds using a single input and with a bin size of k = 5.

FIGURE 34. Anomaly detection for IC-to-IC variation with a single bin for AES-T1000.

rather large IC-to-IC and on-chip variations summarized in
Section VI-D. It is to be noted that the typical variations in
manufacturing process with 45 nm technology are substan-

tially lower than the variations considered in Section VI-D.
It was noted in Sections VII-A–VII-D that accurate Trojan
detection is attained even with these large variations (note
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TABLE 3. Precision values for two settings of IC-to-IC Variations.

that the training of the classifier does not consider any IC-
to-IC and on-chip variations; these variations are consid-
ered only during testing to evaluate the robustness of the
trained classifier to these variations). With advancement in
technology nodes (i.e., smaller transistors), more variations
are observed. Hence, to further study the robustness of our
approach to stochastic variations and evaluate the applicabil-
ity of our approach to lower technology nodes, we explore
even higher variations. For this purpose, we considered one
more set of parameters for stochastic variations: 6% change
in each parameter to model IC-to-IC variation, Gaussian
random variations of zero mean and 5% standard devia-
tion (σ ) to model on-chip variations. The combined effect
corresponds to an effective 21% variation (3σ plus 6%).
A comparison of the performance of the classifier on the
original setting of stochastic variations (Setting-1) and the
new setting (Setting-2) are summarized in Table 3. As could
be expected, the attained performance reduces with higher
variations (again, the variations are considered only during
testing and not during the training of the classifier). The
performance can however be regained by considering higher
bin size or higher batch size. Using a bin size of 10 inputs
and a batch size of 128 increases the precision on AES-
T100 to 0.9763 and AES-T1000 to 0.9874. The decrease
in performance on BasicRSA-T100 is relatively less when
compared to AES-T100 and AES-T1000. This is because the
Trojan in BasicRSA-T100 is on the critical path which is not
the case for the other two benchmarks.

VIII. CONCLUSION
This study shows effectiveness of controlled aging in detect-
ing Trojans. A machine learning classifier and feature
selection distinguishes genuine ICs from the ICs in which
Trojans are far off the critical path. Over-clocking alone
does not distinguish genuine ICs from Trojan-inserted ones.
Over-clocking plus aging provides sufficient patterns of out-
put bit errors to detect Trojans. A high detection accuracy is
achieved with 32-bins as input with a bin size of 5 in case of
AES circuits. We will study detection of the smallest Trojan
on and off the critical path. We will consider cell libraries at
different voltages so that aging is better approximated using
fast voltage switching. While this is a detailed simulation
study, it is interesting to demonstrate the method on complex
circuits and Trojans and on real ICs.
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