
University of Arkansas, Fayetteville
ScholarWorks@UARK

Theses and Dissertations

5-2013

CAD Tools for Synthesis of Sleep Convention
Logic
Parviz Palangpour
University of Arkansas, Fayetteville

Follow this and additional works at: http://scholarworks.uark.edu/etd

Part of the Digital Circuits Commons, and the VLSI and Circuits, Embedded and Hardware
Systems Commons

This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by
an authorized administrator of ScholarWorks@UARK. For more information, please contact scholar@uark.edu, ccmiddle@uark.edu.

Recommended Citation
Palangpour, Parviz, "CAD Tools for Synthesis of Sleep Convention Logic" (2013). Theses and Dissertations. 755.
http://scholarworks.uark.edu/etd/755

http://scholarworks.uark.edu?utm_source=scholarworks.uark.edu%2Fetd%2F755&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F755&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F755&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/260?utm_source=scholarworks.uark.edu%2Fetd%2F755&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=scholarworks.uark.edu%2Fetd%2F755&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=scholarworks.uark.edu%2Fetd%2F755&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd/755?utm_source=scholarworks.uark.edu%2Fetd%2F755&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu,%20ccmiddle@uark.edu

CAD TOOLS FOR SYNTHESIS OF SLEEP CONVENTION LOGIC

CAD TOOLS FOR SYNTHESIS OF SLEEP CONVENTION LOGIC

A dissertation submitted in partial fullfillment
of the requirements for the degree of

Doctor of Philosophy in Electrical Engineering

By

Parviz M Palangpour
Missouri University of Science and Technology

Bachelor of Science in Computer Engineering, 2007
Missouri University of Science and Technology

Master of Science in Computer Engineering, 2010

May 2013
University of Arkansas

ABSTRACT

This dissertation proposes an automated flow for the Sleep Convention Logic (SCL) asyn-

chronous design style. The proposed flow synthesizes synchronous RTL into an SCL netlist. The

flow utilizes commercial design tools, while supplementing missing functionality using custom

tools. A method for determining the performance bottleneck in an SCL design is proposed. A

constraint-driven method to increase the performance of linear SCL pipelines is proposed. Several

enhancements to SCL are proposed, including techniques to reduce the number of registers and

total sleep capacitance in an SCL design.

This dissertation is approved for recommendation
to the Graduate Council.

Dissertation Director:

Dr. Scott C. Smith

Dissertation Committee:

Dr. Jia Di

Dr. Alan Mantooth

Dr. Jingxian Wu

DISSERTATION DUPLICATION RELEASE

I hereby authorize the University of Arkansas Libraries to duplicate this dissertation when
needed for research and/or scholarship.

Agreed
Parviz M Palangpour

Refused
Parviz M Palangpour

ACKNOWLEDGMENTS

I am deeply grateful to my advisor Dr. Scott C. Smith, who introduced me to the world of

digital asynchronous design and has provided me with guidance, knowledge and financial support

throughout the research and preparation of this dissertation. I would also like to thank my defense

committee members, Dr. Di, Dr. Mantooth and Dr. Wu. Most importantly, I would like to thank my

wife, Winnie, and my parents for their unconditional support and encouragement towards reaching

my goals.

TABLE OF CONTENTS

1 INTRODUCTION 1
1.1 Objectives . 1
1.2 Design Challenges . 1

2 BACKGROUND 4
2.1 Introduction . 4
2.2 Synchronous Clocking Schemes . 4
2.3 Asynchronous Handshaking . 5
2.4 Asynchronous Data Encoding . 7

2.4.1 Bundled-Data Channels . 8
2.4.2 One-Hot Encoded Channels . 8

2.5 Slack Elasticity . 10
2.6 Timing Models . 10
2.7 Petri Networks . 11
2.8 Asynchronous Design Styles . 13

2.8.1 NULL Convention Logic . 13
2.9 Asynchronous Synthesis Tools . 16

3 MTCMOS POWER-GATING 20

4 SLEEP CONVENTION LOGIC 22
4.1 Introduction to SCL . 22
4.2 SCL Function Block . 22
4.3 SCL Register . 23
4.4 SCL Completion Detector . 26
4.5 SCL Final Completion Gate . 26
4.6 SCL Pipeline Initialization . 26
4.7 SCL Performance and Timing Assumptions . 27

5 SYNCHRONOUS TO SCL CONVERSION 35
5.1 Synchronous and SCL Equivalence . 35
5.2 Extracting Connectivity Information from Netlists 37
5.3 Determining Acknowledge and Sleep Networks 42
5.4 Determining Pipeline Stages . 44
5.5 Combining Pipeline Stages . 45

6 SCL Performance Analysis 52

7 SCL OPTIMIZATION TECHNIQUES 55
7.1 SCL Embedded Registration . 55
7.2 SCL Partially Slept Function Blocks . 55
7.3 SCL Pipeline Standby Detection . 57
7.4 SCL Pipelining . 59

8 AUTOMATED SCL CONVERSION FLOW 63
8.1 Generating the Single-Rail Netlist . 63
8.2 Generating the Dual-Rail Netlist . 63
8.3 Optimizing the Dual-Rail Netlist . 65
8.4 Completing the SCL Netlist . 66
8.5 Validating the SCL Netlist Equivalance . 66
8.6 Experimental Results . 66

9 CONCLUSION 68

10 REFERENCES 69

LIST OF FIGURES

1 Timing waveform for flip-flop. 5
2 Timing waveform for latch. 6
3 The 4-phase handshaking protocol. 7
4 Two asynchronous blocks communicating via a channel. 7
5 The 4-phase handshaking protocol using one-hot encoding. 9
6 Two asynchronous blocks communicating via a channel. 10
7 NCL linear pipeline of three registers. 15
8 A marked graph model of the NCL pipeline with critical paths highlighted. 15
9 NCL EC linear pipeline of three registers. 16
10 A marked graph model of the NCL EC pipeline with first race condition highlighted. 16
11 A marked graph model of the NCL EC pipeline with second race condition high-

lighted. 17
12 MTCMOS power-gating architecture [32]. 21
13 Basic architecture of SCL linear pipelines. 23
14 Transistor-level diagram of SCL threshold gate [37]. 24
15 Transistor-level diagram of SCL register [37]. 25
16 SCL linear pipeline with no combinational logic. 28
17 SCL pipeline with sleep buffers. 30
18 Marked graph model of SCL pipeline. 33
19 Marked graph model of SCL pipeline with race paths indicated by thick lines. . . . 33
20 Signals for SCL pipeline with critical cycle indicated by dotted path. 34
21 Signals for SCL pipeline with race indicated by dashed and dotted paths. 34
22 Synchronous design with flip-flops. 38
23 Output trace of synchronous pipeline. 38
24 SCL pipeline translated from synchronous pipeline. 39
25 Output trace of 2-stage SCL pipeline. 39
26 SCL pipeline translated from synchronous pipeline. 39
27 Output trace of 3-stage SCL pipeline. 40
28 Synchronous pipeline with direct feedback on register. 40
29 SCL pipeline stage. 43
30 Abstract SCL datapath. 46
31 Abstract data path with each register partitioned into unique pipeline stages. 46
32 Acknowledgement network for partitioning in Figure 31 47
33 Sleep networks for partitioning in Figure 31 . 48
34 Acknowledgement network for merged partitioning. 49
35 Sleep networks for merged partitioning. 50
36 Abstract SCL pipeline with datapath loop. 50
37 Sleep networks for abstract data path in Figure 36. 51
38 A three stage SCL pipeline represented as a MG. 53
39 A three stage MG SCL with the second stage initialized to DATA. 54
40 Delay-dependent algorithm for partitioning slept and non-slept gates in Fi. 57
41 Greedy vertex coloring for partitioning slept and non-slept gates in Fi. 58
42 A three-stage SCL pipeline with standby-detection logic. 59

43 Pipeline configurations for 4x4 unsigned multiplier. 62
44 Efficient pipelining algorithm for linear SCL pipeline. 62
45 The flow for automated synchronous to SCL conversion. 64

LIST OF TABLES

1 Pipelining partitions for 4x4 unsigned multiplier. 61
2 Area of ISCAS’89 Designs . 67

1 INTRODUCTION

1.1 Objectives

The objective of this Ph.D. dissertation is to develop tools that support an automated flow

from a synchronous Register-Transfer Level (RTL) description to a gate-level netlist for Sleep

Convention Logic (SCL). The tools developed in this dissertation leverage commercial software for

logic synthesis while providing custom tools for implementing SCL handshaking and performance

analysis. Experimental results are presented to validate the proposed design tools.

1.2 Design Challenges

Synchronous design methods have dominated the digital VLSI industry for the last several

decades. However, as the industry moves towards smaller process geometries, achieving timing

closure in synchronous designs has become increasingly challenging. To reach timing closure,

the design must be verified to operate reliably across all expected operating conditions at the de-

sired clock frequency. Specifically, as wire delays and process variation become more significant,

distributing the global clock signal on complex ICs (integrated circuits) while meeting the clock-

related timing constraints is becoming an increasingly difficult task. In order to account for varying

delays, designers typically increase the timing margins in the clock period, which results in reduced

performance.

Another rising issue in IC design is the growing dynamic and static power consumption.

The switching of large clock distribution networks is responsible for a significant amount of dy-

namic power consumption in modern digital ICs. This has resulted in the industry adopting com-

1

plicated clocking schemes to reduce the power wasted by the clock distribution network. More

recently, with semiconductor devices scaling deep into the submicron region, static power has now

become a primary concern as well [12][6]. Several circuit-level techniques have been adopted to

lower static power consumption; however, these techniques reduce static power at the expense of

design complexity, area, and/or performance. While there are several techniques to reduce the

dynamic and static power dissipation in synchronous circuits, as the design complexity increases

timing closure can become even more difficult. Asynchronous circuits, specifically Sleep Con-

vention Logic (SCL)[32], can address many of these synchronous design issues. Asynchronous

circuits eliminate the clock signal and hence eliminate the large effort required to distribute the

clock signal and verify the complicated clock-related timing constraints. In addition, the power

wasted in the clock distribution network is eliminated and SCL has a built-in sleep mechanism that

drastically reduces static power consumption. Many asynchronous styles, including SCL, utilize

completion detection in order to adapt to varying delays. This means designers don’t have to add

any explicit timing margins to allow for variation in delay; the circuit simply adapts to the current

operating conditions and operates at the fastest performance possible.

While asynchronous circuits offer many advantages, they have not seen widespread use in

the VLSI industry. Synchronous design flows based on commercial automated design tools have

been heavily used and improved over the course of the last twenty years. However, due to the lack

of automated asynchronous design tools, asynchronous design flows have mainly been restricted

to custom designs, which require substantially more design effort [9][21]. Without the support of

automated design flows the time and costs associated with custom asynchronous designs are too

2

high for broad adoption by VLSI companies. The motivation behind this work is to develop an

automated flow for the SCL asynchronous design style. Using the automated tools developed in

this work, the advantages of asynchronous designs can be achieved at a much lower design effort

than by a custom asynchronous design flow. In an effort to reduce the barrier to adoption, the flow

leverages proven commercial synchronous design tools that are widely used in industry.

3

2 BACKGROUND

2.1 Introduction

Digital systems are typically composed of combinational logic blocks, which are separated

by sequential elements. The sequential elements are used to safely synchronize the transfer of

data between one combinational stage and the next. Synchronous designs utilize one or more

periodic clock signals to control when the sequential elements pass the input data to the next stage.

While the synchronization between sequential elements in a synchronous circuit is achieved using

periodic clock signals, asynchronous circuits achieve synchronization through local handshaking

signals between stages.

2.2 Synchronous Clocking Schemes

The large majority of the digital systems designed today are synchronous and utilize the

edge-triggered flip-flop as the sequential element. Timing for a typical positive-edge-triggered

flip-flop pipeline is shown in Figure 1. The clock signal is used to indicate when the sequential

elements can safely sample their inputs. The clock period (tc) indicates how often the flip-flops will

sample their inputs and propagate the values to the next stage. Due to an inherent race condition

in flip-flops, two timing constraints known as setup (tsu) and hold (thold) times must be satisfied.

The setup time constraint requires that the input signal to a flip-flop does not change less than tsu

before the active edge of the clock. The hold time constraint requires that the input signal to the

flip-flop does not change less than thold after the active edge of the clock. Failure to satisfy these

constraints can result in a disastrous condition known as metastability [10].

4

Figure 1: Timing waveform for flip-flop.

Flip-flops are often constructed from a pair of sequential elements known as latches. Latches

have similar setup and hold time constraints to those discussed for flip-flops. However, latches are

level-sensitive, which means the output of a latch follows the input as long as the clock input is

high. Each of the latches inside the flip-flop is transparent for a different phase of the clock signal.

The flip-flops can essentially be split into two separate latches, which are each controlled by a

separate clock signal. The two clocks, φ1 and φ2 are inverted with respect to each other. A single

clock cycle tc now consists of two adjacent stages as opposed to a single stage in a flip-flop-based

system, as illustrated in Figure 2.

2.3 Asynchronous Handshaking

The most commonly used handshaking protocol in asynchronous circuits is the 4-phase

protocol, illustrated in Figure 3. When the sender has generated stable data it asserts the request

5

Figure 2: Timing waveform for latch.

(REQ) signal. The receiver can now sample the data and assert the acknowledge (ACK) signal.

The sender can now reset the request signal, which is followed by the receiver resetting the ac-

knowledge signal. The 4-phase handshaking protocol has now reset and is ready to transfer the

next data token. The 4-phase protocol requires four transitions per data transfer, thus the name.

One arrangement of two communicating blocks, F1 and F2 is shown in Figure 4. Note that the

blocks F1 and F2 could be as low-level as two adjacent pipeline stages or as high-level as two

communicating processors. As long as the two blocks communicate with a standard asynchronous

handshaking scheme, no additional effort is required to match their communication rates. If one

block attempts to communicate at a faster rate than the receiving block can tolerate, the handshak-

ing protocol will ensure no data is lost. This is in contrast to synchronous design where additional

6

Figure 3: The 4-phase handshaking protocol.

Figure 4: Two asynchronous blocks communicating via a channel.

design and verification effort is required to interface blocks that operate at different clock speeds.

A data bus and its associated handshaking signals grouped together are referred to as a channel.

The channel-based interfaces that form the input and outputs of asynchronous blocks make them

modular, allowing simpler integration of blocks to form a complete system.

2.4 Asynchronous Data Encoding

A variety of different data encodings can be used in asynchronous circuits; a single asyn-

chronous circuit may utilize multiple encodings. The most commonly used encoding in syn-

chronous and asynchronous designs is single-rail. Here, single-rail encoding refers to binary en-

7

coded data where 2n distinct symbols can be represented by the Boolean symbols ‘0’ and ‘1’ using

n wires. In single-rail encoding, all possible combinations of ‘0’ and ‘1’ can represent valid data.

2.4.1 Bundled-Data Channels

Bundled-data is the most similar to synchronous data transfer and is the most popular data

encoding used in asynchronous circuit design [35][8]. Bundled-data channels are simply a single-

rail encoded data bus bundled with two additional signals representing the request and acknowl-

edge handshaking signals. Hence, a channel that can transmit n-bits per transfer requires (n+2)

physical wires. This is in contrast to a synchronous design, which requires only a single additional

signal, the clock. Bundled-data asynchronous designs utilize the same flip-flop and latches used in

synchronous designs. As a result, use of bundled-data dictates strict timing constraints similar to

those found in synchronous design. The timing of the request signal in relation to the data becom-

ing valid must be verified in the physical design; this results in complicated delay-matching that

must be performed on each individual bundled-data channel.

2.4.2 One-Hot Encoded Channels

Instead of using separate signals for data and request, an alternative data encoding is to

encode the validity of the data into the data signal. Consider a one-hot encoded signal of n-wires,

which can represent n distinct symbols. A single wire can be asserted at one time while the others

must remain low. The state where all n wires are low can be used to represent the absence of

a symbol, referred to as the NULL state. This allows the validity of the data to be physically

combined with the data itself. The assertion of a single wire indicates both the transmitted symbol

8

Figure 5: The 4-phase handshaking protocol using one-hot encoding.

as well as the fact that the symbol is valid and ready to be sampled. An OR gate can be used to

detect the validity of data on a one-hot encoded channel. The component that accomplishes the

detection of data is referred to as a completion detector. Since the validity of the data is encoded

in the data, the request signal can be eliminated. The 4-phase handshaking protocol using a one-

hot encoded channel is shown in Figure 5. Two asynchronous blocks communicating using a

one-hot encoded channel is shown in Figure 6. This data-encoding scheme is the basis for delay-

insensitive asynchronous communication. The most commonly used one-hot codes are 1-of-2 and

1-of-4, referred to as dual-rail and quad-rail, respectively. Dual-rail encoding is more widely used

than quad-rail due to simplicity. However, quad-rail encoding has a power advantage due to the

fact that it requires half the number of signal transitions compared to dual-rail. Transmitting a pair

of Boolean values using dual-rail will require two dual-rail channels that each must switch a signal

high to become valid data, while a single quad-rail channel only needs to switch a single wire to

transmit the two Boolean values.

9

Figure 6: Two asynchronous blocks communicating via a channel.

2.5 Slack Elasticity

Synchronous designs lacking handshaking must anticipate the arrival of data after a fixed

number of clock cycles. For instance, a path with three registers will result in a latency of three

clock cycles. Increasing the number of registers on a path in a synchronous pipeline changes

the behavior of the pipeline. However, due to the inherent handshaking in asynchronous circuits,

additional registers can be inserted on a path and still maintain observational equivalence with the

original pipeline. This property is referred to as slack elasticity [4].

2.6 Timing Models

The most distinctive attribute of any design style is the assumptions made with respect to the

timing characteristics of signals. In synchronous and bundled-data asynchronous design, timing

assumptions are made on the arrival of the clock or control signal relative to the arrival of data at

each sequential element. These assumptions make the logical design straightforward while making

the physical design more difficult. Ensuring the timing relationships between all related sequential

elements and the respective combinational delays and wires in older CMOS processes was far

less challenging. However, as device geometries shrink, the manufacturing variation increases.

10

The increasing delay uncertainty of wires and transistors poses a critical problem to the design

of synchronous circuits due to the inherent assumption on delays. It’s important to note that the

timing failure of a single flip-flop in a fabricated multi-million-gate design can cause the entire

design to be non-functional. As a result, the clock rates are reduced to increase the timing window

in which the data or clock signals may arrive.

In contrast to the delay-dependent synchronous and bundled-data schemes, the most robust

circuits are those that adhere to the Delay-Insensitive (DI) timing model. The devices and wires

in DI circuits can take on any value and the circuit will still function correctly. However, it has

been shown that the DI timing model is too restrictive to design practical circuits [17]. A slightly

more relaxed delay model, referred to as Quasi Delay Insensitive (QDI), is similar to DI except it

requires that all wire forks be isochronic, which means that wire delays within basic components,

such as a full adder, are much less than the delay through a logic gate. Designs that adhere to the

QDI timing model utilize one-hot encoded channels.

2.7 Petri Networks

Petri networks are a mathematical modeling language for distributed systems. A Petri net is

a directed bipartite graph, in which vertexes can be either a transition or a place. A transition, often

symbolized by a vertical bar or square, represents events that occur. Places, often symbolized by

circles, represent conditions. Each place can contain zero or more tokens, represented by black dots

inside the place, at any given moment. A place is said to be marked if it contains a token. Directed

edges connect places to transitions and transitions to places. In this dissertation, a compressed

format for illustrating Petri nets is used. The Petri net in Figure 8 uses text labels for transitions.

11

In addition, places are not explicitly shown unless initialized with a token, which is illustrated by

a filled black circle; an edge between two transitions is assumed to represent two edges, separated

by a place.

For the application of asynchronous performance modeling, a specific type of Petri net

known as a Marked Graph (MG) is used. In a MG, every place can only have a single incoming

edge from a transition and a single outgoing edge to a transition. Each transition can have multiple

incoming and outgoing edges from and to places. For each transition the set of incoming places

is called the preset while the set of outgoing places is called the postset. When all of the places

in a transition’s preset contain at least one token, the transition is said to fire, and one token will

be removed from each place in the transition’s preset and one token will be added to each place in

the transition’s postset. For the modeling of asynchronous circuits, a fixed time delay is assigned

to each transition. The transitions only fire after their preset is satisfied and their fixed delay has

elapsed. While MGs are a restricted form of Petri Nets, using MGs to model the performance of

asynchronous circuits is appealing because the cycle-time of a MG is known to be:

max
ci∈CMG

(∑
vi∈ci d(vi)∑
vi∈ci m(vi)

)
(1)

where a cycle, ci, is a sequence of nodes that start and end at the same node; CMG is the set of all

simple cycles in MG; d(vi) is the delay of node vi; and m(vi) is the number of tokens initialized in

node vi [24]. In other words, the cycle time for a cycle is the sum of the delays of the transitions

along the cycle, divided by the number of tokens in the cycle. The cycle time for the entire MG is

equal to the largest cycle time of any cycle in the MG. This cycle time is the performance metric

12

for asynchronous circuits. However, enumerating over all the cycles in a MG is computationally

expensive. The cycle time can be found using efficient algorithms for the maximum cycle mean

problem; Karps algorithm has O(|V | ∗ |E|) time complexity, where V is the set of nodes and E is

the set of edges in the MG. This provides a means for determining both the worst-case throughput

and the critical cycle for an asynchronous design. The critical cycle is analogous to the critical

path in a synchronous design.

2.8 Asynchronous Design Styles

There are several different asynchronous design styles, utilizing different data-encodings

and timing assumptions, which make each design style advantageous for different applications.

The most popular asynchronous design styles are the Pre-Charge Half Buffer (PCHB) [26], which

is used in high-performance applications, and NULL Convention Logic (NCL) [7], which is used

in lower performance applications.

2.8.1 NULL Convention Logic

NCL is a QDI (Quasi-Delay-Insensitive) asynchronous design style [7]. Each pair of adja-

cent registers communicates using the common 4-phase handshaking protocol. All combinational

logic and registers in NCL are built using special threshold gates with hysteresis. An NCL THmn

gate refers to a threshold gate that is asserted when at least m of the n inputs are asserted. NCL

gates have hysteresis, such that once the gate is asserted it will remain asserted until all the inputs

are de-asserted. The first condition required for an NCL circuit to be QDI is that the combinational

logic between registers must be input-complete. Input-complete logic will only allow all outputs to

13

transition to DATA (NULL) after all inputs have transitioned to DATA (NULL). This often results

in an area, performance, and/or power overhead but is crucial to achieve a QDI implementation in

NCL. NCL gates must have hysteresis to enforce input-completeness with respect to NULL, such

that a circuit’s outputs cannot transition back to NULL until all inputs have become NULL. The

second condition for an NCL circuit to be QDI is that the signal transitions in the combinational

logic are observable, such that each gate that transitions during a DATA/NULL wavefront must

contribute to a transition on an output of the combinational logic. This ensures that every gate

output is returned to logical 0 before the circuit output is NULL, such that the circuit is ready to

receive the next DATA wavefront.

A simple linear pipeline of NCL registers is shown in Figure 7. The registers consist of

a pair of TH22 gates, also known as C-elements [23]. The NOR2 gates function as comple-

tion detectors and acknowledge the previous stage. The cycle time of the NCL pipeline can

be derived from the marked graph model in Figure 8. As can be seen from the marked graph

model, there are two critical cycles of events: QD
1 , F

D
1 , Q

D
2 , F

D
2 , Q

D
3 , Ko

RFN
3 , QN

2 , Ko
RFD
2 and

QD
1 , F

D
1 , Q

D
2 , Ko

RFN
2 , QN

1 , F
N
1 , Q

N
2 , Ko

RFD
2 . The cycle with the largest total delay determines the

throughput for the NCL pipeline.

Early Completion is an enhancement that can increase throughput of a conventional NCL

pipeline [31]. Early completion increases throughput by moving the completion detectors to in

front of the registers and adds control logic which anticipates the latching of DATA or NULL. The

speculation control logic is implemented by a final c-element. However, two race conditions are

introduced by early completion [31]. The two race conditions are illustrated by the petri net models

14

Figure 7: NCL linear pipeline of three registers.

Figure 8: A marked graph model of the NCL pipeline with critical paths highlighted.

15

Figure 9: NCL EC linear pipeline of three registers.

Figure 10: A marked graph model of the NCL EC pipeline with first race condition high-
lighted.

in Figures 10 and 11. The first condition is violated if a stage can transition its final completion

gate before the preceding stage’s final completion gate; in other words, the events QD
i , FD

i , and

KoRFN
i+1 can occur before the final completion gate transitions, KoRFN

i . The second condition is

violated if a stage’s data output can transition before the following stage can register it; in other

words, the events KoRFN
i , QN

i−1, and FN
i−1 can occur before the register latches the DATA, QD

i .

Each condition is symmetric with respect to DATA/NULL.

2.9 Asynchronous Synthesis Tools

Several different asynchronous synthesis systems have been developed so far; some of the

more complete efforts include the Cal-Tech Asynchronous Synthesis Tool (CAST)[18][19][20],
16

Figure 11: A marked graph model of the NCL EC pipeline with second race condition high-
lighted.

Balsa [1][2], NCL-X [14], Phased-Logic [16], De-synchronization [5], Weaver [29], Proteus [3],

and the Unified NCL Environment (UNCLE)[27]. Each of these tools is designed to generate

asynchronous circuits; however the approaches have some significant differences.

One of the fundamental differences in the tools is the choice of language for the design

specification. Both CAST and Balsa utilize custom languages based on the CSP (Communicating

Sequential Processes) language. The use of CSP-based design specifications has some advantages

and disadvantages; while CSP-based languages allow for very elegant and concise descriptions of

asynchronous channel-based systems, they require designers to use an entirely different language

than used for synchronous design. This presents a serious barrier to adoption by synchronous

design companies. Experienced synchronous designers who have been using VHDL and Verilog

for decades must now become proficient in a new language. In addition, legacy designs written

in VHDL or Verilog will need to be re-written in the appropriate language before they can be

synthesized by CHP or Balsa. Although academic simulation tools have been developed for CHP

and Balsa, the tools are fairly primitive compared to the commercial simulation tools that are

available for VHDL and Verilog.

17

Commercial synchronous design tools have been developed and improved by companies

for over twenty years. Developing competitive asynchronous design tools from scratch would

require a very large effort. The more practical approach is to utilize as many commercial syn-

chronous designs tools as possible. While the CAST and Balsa flows utilize entirely custom tools,

NCL-X, Phased-Logic, Weaver, Proteus, and UNCLE use synchronous design tools for RTL syn-

thesis and technology mapping, while using custom tools to supplement the missing procedures

for asynchronous design. The end result is an asynchronous design that has been translated from a

synchronous design.

Theseus Logic was the first to develop a partially automated flow from synchronous RTL to

their NULL Convention Logic asynchronous design style. While the synchronous datapath logic

was automatically translated to NCL, the designers had to manually instantiate NCL registers and

connect their handshaking signals [30][15][22]. The NCL-X flow can be viewed as a the fully

automated successor to Theseus Logic’s initial flow. UNCLE is a more powerful set of tools,

allowing designers to develop NCL/Balsa hybrid designs using synchronous RTL and providing

automated acknowledgment network merging. However, the use of Balsa-like primitives must be

manually instantiated in the RTL by a designer familiar with asynchronous design.

While the other QDI flows discussed here utilize dual-rail encoding, Phased Logic utilizes

a unique data encoding such that each code-word corresponds to a data and a phase. Each encoded

value alternates phase, making successive DATA encodings distinguishable without the need for

a NULL spacer. The principle idea is that by removing the NULL spacer, unnecessary switching

can be removed, resulting in reduced dynamic power. However, the Phased Logic flow requires

18

the use of complicated custom gates and a complicated conversion procedure.

The De-synchronization approach uses conventional synchronous design tools as well as

conventional synchronous standard cell libraries. The approach is based on first translating a flip-

flop based synchronous design to a latch-based synchronous design as discussed in Section 2.2.

Each flip-flop is then split into a pair of latches and control logic is added to implement asyn-

chronous channels between adjacent latches. Unlike the QDI flows which utilize multi-rail encod-

ings, De-synchronization uses the bundled-data channels which are more area efficient. However,

the synthesis procedure requires carful implementation of a matched delay line which may require

a significant amount of analysis.

Both Weaver and Proteus translate a synchronous design into a high-performance PCHB

asynchronous design. While the previously discussed conversion flows retain the same pipeline

granularity of the original synchronous design, Weaver and Proteus translate the synchronous de-

sign into fine-grained pipelines. While the resulting PCHB designs are often significantly faster

than the original synchronous design, the area of the PCHB design could be over ten times higher

than the original synchronous design.

19

3 MTCMOS POWER-GATING

MTCMOS processes provide multiple transistors with different threshold voltages (Vth).

Transistors with higher Vth are slower and have lower leakage current, while lower Vth transistors

are faster but suffer from higher leakage current. MTCMOS can be utilized to reduce leakage

power by disconnecting the power supply from portions of the circuit that are idle [25]. This

power-gating is implemented using low-leakage high-Vth transistors, while the switching logic

is implemented using faster low-Vth transistors. A high-Vth PFET transistor used to disconnect

the circuit from the supply is referred to as a ’header’, while a high-Vth NFET transistor used to

disconnect the circuit from ground is referred to as a footer. The signal that is used to power-up

or power-down a block is referred to as the sleep signal. A block-level diagram of power-gating

using both a header and footer is illustrated in Figure 12. The control logic that generates the sleep

signal is generally application-dependent.

20

Figure 12: MTCMOS power-gating architecture [32].

21

4 SLEEP CONVENTION LOGIC

Sleep Convention Logic (SCL) was originally developed in [32], as summarized below,

with the addition of analysis of the performance and timing assumptions in Section 4.7.

4.1 Introduction to SCL

SCL is a self-timed asynchronous pipeline style that offers inherent power-gating, resulting

in ultra-low power consumption while idle. SCL combines the ideas of NCL with early completion

and MTCMOS power-gating. The basic architecture of an SCL pipeline is shown in Figure 13. A

single stage i of an SCL pipeline is composed of a register (Ri), a function block (Fi), a completion

detector (CDi) and a final completion gate (Ci). The MTCMOS power-gating sleep input of

a block is denoted by s. Each stage communicates with the adjacent stages using the 4-phase

handshaking protocol discussed in Section 2.4.2. Much like NCL, each pipeline stage in SCL

undergoes alternating cycles of DATA evaluation and reset to NULL.

4.2 SCL Function Block

The SCL function block is implemented using SCL threshold gates to perform the required

logic function. An SCL function block has 1-of-M encoded data inputs and outputs; the logic

implemented by the function block must be strictly unate and thus free of any logical inversions.

The low static power consumption in SCL is achieved by utilizing MTCMOS power-gating. Each

SCL threshold gate utilizes high-Vth sleep transistors to provide gate-level power-gating. When

the sleep signal of an SCL gate is asserted, the power is disconnected through the sleep transistor

22

Figure 13: Basic architecture of SCL linear pipelines.

and the output of the gate is pulled to logical 0. Conversely, the gate cannot evaluate to a logical 1

until both sleep is de-asserted and the input values satisfy the threshold of the gate. An example of

an SCL TH23 is shown in Figure 14, where the high-Vth transistors are circled.

4.3 SCL Register

The SCL register plays a similar role to a synchronous latch. Each M-rail SCL register

has M input rails and M output rails. The transistor-level diagram of a dual-rail SCL register is

shown in Figure 15. When the sleep input is asserted the register goes into a power-gated state

and the outputs are pulled to logical 0. After the sleep signal is released the register comes out of

the power-gated state and is ready for one of the input rails to be asserted. Once an input rail is

asserted the corresponding output rail will be asserted and remain asserted until the sleep signal is

asserted. Note the latching behavior that results in the output rails remaining asserted regardless of

the input rails is distinguished from the strictly combinational SCL threshold gates.

23

Figure 14: Transistor-level diagram of SCL threshold gate [37].

24

Figure 15: Transistor-level diagram of SCL register [37].

25

4.4 SCL Completion Detector

As SCL is derived from NCL with early completion, the completion detector CDi checks

for the presence or absence of DATA at the input to registers in stage i. The first level of logic in the

completion detectors consists of NOR gates that generate logical 0 when the input has transitioned

to DATA and logical 1 when the input has transitioned to NULL. A fan-in tree consisting of C-

elements is used to combine the outputs of the NOR gates and generate a single acknowledge

output.

4.5 SCL Final Completion Gate

A final completion gate, Ci, is needed, which is simply a C-element that implements the

control logic that acknowledges stage i− 1 and puts the pipeline stage i in the sleep state. Stage i

will exit the sleep state as soon as CDi has detected that the inputs are DATA and stage i + 1 has

acknowledged NULL. As stage i exits the sleep state, Ri will latch the DATA present at the input

and Fi will generate DATA at the stage output. Stage i will then enter the sleep state as soon as

CDi has detected that the inputs are NULL and stage i+1 has acknowledged the generated DATA.

Observe that the stages will only exit (enter) sleep after all the inputs have become DATA (NULL).

4.6 SCL Pipeline Initialization

Similar to NCL, each pipeline stage in an SCL system must be initialized to a specific state

to function correctly. A global reset signal is used to force the components of each pipeline stage

into the desired initial state. The registers in each SCL pipeline stage can be initialized to a NULL

26

or DATA state. The initialization overhead for the reset-to-NULL pipeline stages is low because

only the completion final gates need to be initialized; by initializing the completion final gates to

a logical 1, the registers and threshold gates in the stage will be forced to sleep upon reset, which

cause the pipeline stage to generate a NULL. However, the reset-to-DATA pipeline stages require

that each of the registers in the stage be initialized to DATA0 or DATA1. In order for the DATA to

be able to propagate through the threshold gates of a reset-to-DATA pipeline stage, the completion

final gate must be initialized to a logical 0. It is possible to initialize adjacent pipeline stages to

NULL; however, it’s not possible to initialize adjacent pipeline stages to DATA. If two adjacent

pipeline stages are initialized to DATA, the first DATA will attempt to overwrite the second DATA.

The two DATA wavefronts will become joined in a single DATA wavefront since there is not a

NULL wavefront to separate them.

4.7 SCL Performance and Timing Assumptions

It is important to determine the analytical cycle time of an SCL pipeline as well as the

relative timing assumptions (RTAs) needed to guarantee correct operation [34]. In order to analyze

the performance and timing assumptions of SCL we have to consider how multiple pipeline stages

interact. The interaction between pipeline stages can be analyzed by observing how a DATA

propagates through an initially empty pipeline. Consider the generic three stage SCL pipeline

illustrated in Figure 16. Assume all of the pipeline stages are initialized to NULL, which means

each Ci is initialized to logical 1. The input to the first stage, X , is driven by an ideal source that

can generate a DATA immediately after C1 is asserted and generate a NULL immediately after

C1 is de-asserted. A marked graph model of the pipeline is given in Figure 18, and the timing

27

Figure 16: SCL linear pipeline with no combinational logic.

waveforms are given in Figure 20.

The operation for the i-th SCL pipeline stage can be summarized as follows. When a

DATA reaches the input of the stage it causes the output of the completion detector to be de-

asserted (CDi ↓). Once stage i + 1 has entered the sleep state, stage i can exit the sleep state,

simultaneously acknowledging the DATA from its predecessor and starting the evaluation phase

(Ci ↓). The evaluation phase begins with the register latching the DATA (Ri ↑). After stage i − 1

has generated NULL, causing (CDi ↑), and stage i+ 1 has acknowledged the DATA generated by

stage i (Ci+1 ↓), stage i can enter the sleep state, simultaneously acknowledging the NULL from

its predecessor and starting the reset phase (Ci ↑). As stage i enters the reset phase, the register is

reset to NULL (Ri ↓). Due to the acknowledgment of DATA (Ci ↓) before the DATA is actually

latched (Ri ↑) there is a race condition, as illustrated in Figures 19 and 21. The proceeding stage

must maintain the DATA long enough for the register to be able to latch it.

Ri ↑≺ Ri−1 ↓ (2)

28

The relative timing assumption between two adjacent stages can be expressed as

TRi,DATA < TCi−1
+ TRi−1,NULL (3)

where TRi,DATA (TRi,NULL) is the delay for register Ri to propagate DATA (NULL) upon de-

assertion (assertion) of sleep. If RTA 2 is not satisfied for all pairs of adjacent pipeline stages,

DATA can be lost. The forward latency of stage i (Tlatencyi) is

Tlatencyi = TCDi
+ TCi

+ TRi
(4)

The cycle time of the pipeline can be derived from either the marked graph model or the

timing waveforms. The critical cycle of events for the pipeline is

C1 ↓, R1 ↑, CD2 ↓, C2 ↓, R2 ↑, CD3 ↓, C3 ↓, C2 ↓ (5)

It can be observed from the marked graph model that a symmetric critical loop exists that

involves the registers transitioning to NULL. However, due to the design of the SCL registers

and threshold gates, the delay for propagating DATA is significantly larger than the delay for

transitioning to NULL. Therefore, the cycle time (Tcycle) for the pipeline is given by

Tcycle = 4 ∗ TC−element + 2 ∗ TCD + 2 ∗ TR,DATA (6)

The discussion has focused on a simple SCL pipeline, however a more complete pipeline is

29

Figure 17: SCL pipeline with sleep buffers.

illustrated in Figure 17. This SCL pipeline has two additional components, functional blocks (Fi)

and sleep buffers (si). Due to the combined capacitance presented by the sleep pins of registers

and function blocks, sleep buffers are often needed for each pipeline stage. These sleep buffers

introduce additional delay that must be considered. While RTA 2 is still valid, RTA 3 becomes

Tsi + TRi,DATA < TCi−1
+ Tsi−1

+ TRi−1,NULL (7)

In the previous pipeline, CDi+1 will directly monitor when Ri transitions to NULL. While

NULL is strictly propagated through the threshold gates in NCL, NULL is generated by a sleep

signal in SCL. Often, the function blocks contain multiple levels of threshold gates. The threshold

gates in a multi-level function block, Fi, can be partitioned into the set of final gates that drive the

next stage, FFi
, and the set of remaining internal gates, FIi . In SCL pipelines, only the threshold

gates in the final level of logic FFi
, can be directly observed by CDi+1. As a result, the set of

internal gates FIi are unobservable. Consider the scenario where a single threshold gate suffers

from a slower then expected transition to logical 0. Assume the slow threshold gate is in the first

30

level of a multi-level function block, Fi. If DATA(t) causes the slow gate to transition to logical

1 and the gate remains logical 1 during the subsequent evaluation phase of DATA(t+1), Fi can

produce an incorrect result. This is possible because during the reset phase of stage i, CDi+1 is

unable to determine that the slow gate has not yet transitioned back to logical 0. Thus, the addition

of any level of logic beyond the registers results in a race condition

(gk ↓) ∈ FIi ≺ Ci ↓ (8)

which states that every internal threshold gate in function block Fi should transition back to logical

0 before the next evaluation phase of stage i begins. In order to place timing bounds on this RTA

we need to determine how quickly stage i, once the reset phase has begun, can begin the next

evaluation phase. The slower of two events will cause stage i to begin the next evaluation phase,

the acknowledgement of NULL by Ci+1 ↑ or the detection of DATA by CDi ↓. The delay of the

fastest path from Ci ↑, to Ci+1 ↑ is defined as min(TCi↑,Ci+1↑). The delay of the fastest path from

Ci ↑, to CDi ↓ is defined as min(TCi↑,CDi↓). The delay of the slowest path from Ci ↑, to gk ↓ is

defined as max(TCi↑,gk↓). Therefore, RTA 8 can be expressed as

max(TCi↑,gk↓) < max(min(TCi↑,Ci+1↑,min(TCi↑,CDi↓)) (9)

which must be satisfied for each gate, gk, in FIi . Observe that min(TCi↑,CDi↓) can be increased by

decreasing the rate at which DATA is inserted into the pipeline. By artificially slowing down the

rate that DATA is inserted into an SCL pipeline, RTA 9 can be satisfied, just as the clock period can

31

be increased to satisfy setup constraints in a synchronous design. Now that a pipeline with function

blocks is being analyzed, the forward latency and cycle time must be revisited. The forward latency

of stage i becomes

Tlatencyi = TCDi
+ TCi

+ Tsi + TRi
+ TFi

(10)

The delay for the evaluation phase of pipeline stage i, which begins after Ci ↓, can be

expressed as

Tevali = Tsi + TRi,DATA + TFi,DATA (11)

where Tsi is the delay through the sleep buffer, si, and TFi,DATA is the delay through the function

block, Fi. Conversely, the delay for the reset phase of pipeline stage i, which begins after Ci ↑,

can be expressed as

Treseti = Tsi + TFi,NULL (12)

where TFi,NULL is the delay of the threshold gates in Fi, which directly drive CDi+1. Note that

while Tevali is a function of the delay through the whole function block, Fi, Treseti is only a function

of the delay of the final threshold gates in Fi. The complete SCL cycle time can be written as

Tcycle = 4 ∗ TC−element + 2 ∗ Teval + 2 ∗ TCD (13)

32

Figure 18: Marked graph model of SCL pipeline.

Figure 19: Marked graph model of SCL pipeline with race paths indicated by thick lines.

33

Figure 20: Signals for SCL pipeline with critical cycle indicated by dotted path.

Figure 21: Signals for SCL pipeline with race indicated by dashed and dotted paths.

34

5 SYNCHRONOUS TO SCL CONVERSION

As most digital systems designed today utilize flip-flops this dissertation will focus on

translating flip-flop based synchronous blocks to an equivalent SCL block. The synchronous block

is assumed to utilize a single clock, and every flip-flop is assumed to operate on the same active

edge. It is important to first discuss how equivalence between the synchronous and SCL block is

defined.

5.1 Synchronous and SCL Equivalence

In this work a synchronous circuit and its translated SCL circuit are considered to be equiv-

alent if the two circuits are observationally equivalent. Two systems are said to be observationally

equivalent if an external agent cannot differentiate them by comparing their observable traces [4].

The synchronous and SCL circuits have a sequencing event that signals the validity of data between

one pipeline stage and the next. The sequencing event for a synchronous circuit is defined as the

active clock edge and the sequencing event for an SCL circuit is defined as the transition of a 1-

of-M encoded signal from NULL to DATA. The observable trace for SCL circuits can be obtained

by simply removing the NULL wavefronts generated at the outputs. In other words, given the

same input vector, the values clocked out of the synchronous block must be identical to the DATA

values generated by the SCL block. Consider the simple two-stage synchronous block illustrated

in Figure 22. The timing behavior of the synchronous block is illustrated in Figure 23. Given an

input vector of bits, I, one bit will be consumed at the input of the synchronous block and one bit

will be generated at the output of the synchronous block at each sequencing event. As shown in

35

Figure 23, an input vector I = {I0, I1} results in an output vector Osync = {0, 0, I0, I1}. The first

two elements in Osync are the values initialized in the first and second flip-flop. If each flip-flip in

the synchronous design were to be substituted for a reset-to-NULL SCL register, the resulting SCL

pipeline would be that in Figure 24. The timing behavior of the SCL pipeline is show in Figure

25. The flow of DATA wavefronts through the SCL block is straightforward since the SCL pipeline

acts as a FIFO: the i-th DATA inserted into the block is the i-th DATA generated at the output of the

block. Therefore, the same input vector, I, results in an output vector OSCL = {I0, I1}. As Osync

is not equal to OSCL the proposed SCL block in Figure 24 is not equivalent to the synchronous

block in Figure 22. In order to create an equivalent SCL block we must emulate the values that

are initialized in the synchronous block’s flip-flops. This can be accomplished by replacing the

original flip-flops in the synchronous block with an equivalent reset-to-DATA register in the SCL

block. Since the flip-flops in Figure 22 are initialized to a logic 0 we must replace them with SCL

registers that are initialized to DATA0. As discussed in Section 4.6, pipeline stages that are initial-

ized to DATA cannot be adjacent to other pipeline stages that are initialized to DATA. As a result,

we must insert an additional reset-to-NULL register between the two reset-to-DATA registers. The

resulting pipeline is shown in Figure 26. The SCL block in Figure 26 is now said to be equivalent,

since Osync = OSCL. The resulting SCL block has three pipeline stages, which is the minimum

number of pipeline stages required for the SCL block to be equivalent to the synchronous block in

Figure 22.

In bundled-delay asynchronous circuits, flip-flop-based synchronous designs can be trans-

lated into latch-based asynchronous designs via the de-synchronization method. The de-synchronization

36

method proposed splitting each flip-flop in the synchronous design into a pair of latches, one of

which is initialized to DATA [5]. In the case of the two-stage synchronous design presented ear-

lier, and any linear pipeline, it would be sufficient to replace each flip-flop in the synchronous

design with a reset-to-NULL followed by a reset-to-DATA register; however, this mapping is in-

sufficient for synchronous circuits with feedback. Consider the simple finite-state machine (FSM)

in Figure 28. If each flip-flop is replaced by a reset-to-NULL and reset-to-DATA SCL register,

the resulting design will contain a data-path cycle consisting of only two pipeline stages. Any

data-path loop in a SCL pipeline must contain at least three pipeline stages or the pipeline will

dead-lock [32]. Therefore, an additional reset-to-NULL register must be inserted into the feedback

path. One observation from this example is to simply replace each flip-flop in the synchronous

design with a triplet of SCL registers with the middle register being reset-to-DATA. While this

scheme is simple and results in an SCL design that is equivalent to the synchronous design, it may

insert unnecessary registers. To reduce register overhead, the method proposed in this work inserts

a third additional reset-to-NULL SCL register only on feedback paths.

5.2 Extracting Connectivity Information from Netlists

In this work, a netlist-graph is a directed graph Gn = (V,E), where V is the set of nodes

in the netlist and E is the set of directed edges connecting the cells. Here, V = PI ∪ PO ∪CC ∪

SC, where PI is the set of primary inputs, PO is the set of primary outputs, CC is the set of

combinational cells and SC is the set of sequential cells. The four sets PI , PO, CC, and SC are

mutually disjoint. A path pi,j is defined as a sequence of edges in E, starting from node vi and

ending at node vj . The set of all paths that exist inG is defined as PG. The combinational transitive

37

Figure 22: Synchronous design with flip-flops.

Figure 23: Output trace of synchronous pipeline.

38

Figure 24: SCL pipeline translated from synchronous pipeline.

Figure 25: Output trace of 2-stage SCL pipeline.

Figure 26: SCL pipeline translated from synchronous pipeline.

39

Figure 27: Output trace of 3-stage SCL pipeline.

Figure 28: Synchronous pipeline with direct feedback on register.

40

fanout of a node, CTFO(vi), is defined as the set of nodes reachable from vi through a path that

does not go through a sequential cell. The combinational transitive fanin of a node, CTFI(vi), is

defined as the set of nodes that can reach vi through a path that does not go through a sequential

cell. Note that a path that does not go through a sequential cell may begin and end with a sequential

cell.

In this work a register-graph is a directed graph Gr = (V,E). While the netlist-graph

contains nodes that represent registers and gates, each node in the register-graph represents a single

SCL pipeline stage. The function R is defined as R : V → {vi, vj}, which maps a pipeline stage

node to a set of registers. The function r is defined as r : V → {0, 1}, which maps a pipeline

stage node to 0 if the pipeline stage is reset-to-NULL and 1 if the pipeline stage is reset-to-DATA.

An edge ei,j = (psi, psj) in Gr represents a combinational path from pipeline stage psi to pipeline

stage psj . A register-graph is initially extracted from the synchronous netlist Gn.

The initial register-graph contains a vertex for every register in the synchronous netlist,

which are all reset-to-DATA. Any datapath that forms a closed loop must contain at least three

pipeline stages. In addition, two adjacent pipeline stages cannot be initialized to DATA. These

two rules are satisfied by first inserting a reset-to-NULL register directly on the output of any

reset-to-DATA register that has a combinational feedback path. The pipeline stage vi can be easily

determined to have a combinational feedback path from the register-graph by checking if the edge

ei,i exists.

Since all datapath loops in synchronous designs must contain a flip-flop, this guarantees

all loops consist of at least one reset-to-DATA stage and one reset-to-NULL stage. Now, a reset-

41

to-NULL register is inserted directly on the input of any reset-to-DATA register. Thus, a reset-to-

NULL pipeline stage is guaranteed to be inserted between adjacent reset-to-DATA pipeline stages,

and all loops now consist of at least one reset-to-DATA stage and two reset-to-NULL stages.

5.3 Determining Acknowledge and Sleep Networks

As discussed in Section 4.5, each SCL pipeline stage contains a completion final gate that

receives an acknowledgment signal. A complete pipeline stage is shown in Figure 29. In this

section the completion detectors and final C-elements will not be included in pipeline diagrams; the

acknowledgement signal entering a pipeline stage, Ki, is assumed to be connected to the inverted

input of the final C-element, and the acknowledge signal exiting the pipeline stage, Ko, is assumed

to be the output of the final C-element, as shown in Figure 29.

The logic network that generates the acknowledgement signal that enters the pipeline stage

is referred to as an acknowledgement network. Recall that each SCL register must belong to a

single pipeline stage and the set of registers that belong to pipeline stage psi has been defined as

R(psi). Each SCL pipeline stage must receive a combined acknowledgment from all the pipeline

stages it directly contributes to. The set of pipeline stages that are driven by stage psi is defined as

ACK(psi), which can be derived from the register-graph:

ACK(psi) = {psj : ∃ei,j ∈ E} (14)

Each SCL threshold gate must receive a sleep signal that indicates when the gate should

enter and exit the sleep state. The logic network that generates this sleep signal is referred to as

42

Figure 29: SCL pipeline stage.

43

a sleep network. A single SCL threshold gate may be driven by registers in one or more pipeline

stages. The sleep network combines the acknowledge signals from all the pipeline stages that drive

the gate. The set of pipeline stages that drive the threshold gate vi is defined as SLEEP (vi):

SFI(vi) = {vj : vj ∈ CTFI(vi) ∧ vj ∈ SC} (15)

SLEEP (vi) = {R−1(vj) : vj ∈ SFI(vi)} (16)

where R−1(vj) maps the register, vi, to the pipeline stage, psi, it belongs to. If SLEEP (vi) =

SLEEP (vj), then SCL threshold gates vi and vj belong to the same sleep domain and share the

same sleep network.

5.4 Determining Pipeline Stages

For a given design there are multiple ways to group registers into SCL pipeline stages. One

approach is to group each register into a unique pipeline stage. This was the approach used in the

Weaver project [29]; however, this results in a large area overhead for acknowledgement networks.

Recall that each SCL pipeline stage must receive a combined acknowledgement signal, which

satisfies expression 14, as well as generate a single acknowledgement output via the completion

final gate. Consider the abstract datapath shown in Figure 30. Each register can be grouped into a

separate pipeline stage, resulting in five pipeline stages, shown in Figure 31. This approach results

in the following acknowledge and sleep networks, illustrated in Figures 32 and 33, respectively.

Note that each of the gates, v2, v3 and v4 belong to a different sleep domain.

ACK(ps0) = {ps2, ps3}
44

ACK(ps1) = {ps3, ps4}

SLEEP (v2) = {ps0}

SLEEP (v3) = {ps0, ps1}

SLEEP (v4) = {ps1}

One alternative approach is to merge the first pair of registers into a single pipeline stage,

such thatR(ps0) = {v0, v1}. The new acknowledge networks can be derived from the acknowledge

networks in the first approach. This merged approach results in the following acknowledge and

sleep networks, illustrated in Figures 34 and 35, respectively.

ACKmerged(ps0) = ACK(ps0) ∪ ACK(ps1) = {ps2, ps3, ps4}

SLEEPmerged(v2) = SLEEPmerged(v3) = SLEEPmerged(v4) = {ps0}

The merged approach generally results in less area overhead because as the number of pipeline

stages are reduced, the number of acknowledge and sleep networks are also reduced. In NCL,

the first approach is typically preferred when performance is critical because while there are more

acknowledge networks, each acknowledge network is smaller, which generally results in less delay.

However, in SCL, increasing the number of pipeline stages that drive a single threshold gate results

in a larger sleep network, which generally increases delay.

5.5 Combining Pipeline Stages

The SCL pipeline stages can be iteratively merged to reduce the number of pipeline stages,

which reduces the overhead discussed in the previous section. Pairs of pipeline stages that share

a common driven pipeline stage are considered for merging, similar to [27]. For initialization

45

Figure 30: Abstract SCL datapath.

Figure 31: Abstract data path with each register partitioned into unique pipeline stages.

46

Figure 32: Acknowledgement network for partitioning in Figure 31

purposes, reset-to-DATA and reset-to-NULL pipeline stages are not merged together. Similarly,

merges that would result in a pipeline stage driving a combination of both reset-to-DATA and reset-

to-NULL stages are not allowed. In addition to these initialization-related merges, it is important to

prevent other merges that can result in dead-lock. Consider the pipeline configuration in Figure 36.

Register v8 is reset-to-DATA while registers v0 and v1 are reset-to-NULL. The pipeline stages ps0

and ps1 both drive the pipeline stage ps2, thus they are candidates for being merged. However, the

merging of pipeline stage ps0 and ps1 results in the configuration shown in Figure 37, which results

in dead-lock. There are two issues illustrated in this example. While the pre-merged configuration

had a cycle of three pipeline stages (ps0, ps1, ps3), the merged configuration has a cycle of only

two pipeline stages (ps0, ps3). This merge can be prevented by not allowing merges that result in

a stage driven by the merged stage to also drive the merged stage. The second issue is illustrated

47

Figure 33: Sleep networks for partitioning in Figure 31

48

Figure 34: Acknowledgement network for merged partitioning.

in the sleep-network for the merged-configuration, shown in Figure 37. Observe that registers v0

and v1 will exit sleep when the stage ps0 acknowledges DATA. However, both registers in the

stage can only receive DATA after v2 has exited sleep and propagated DATA, resulting in a cyclic

dependency. This condition is avoided by not merging any two stages if a combinational path

49

Figure 35: Sleep networks for merged partitioning.

Figure 36: Abstract SCL pipeline with datapath loop.

50

Figure 37: Sleep networks for abstract data path in Figure 36.

exists between the stages.

51

6 SCL Performance Analysis

Typically, simulation is used to determine the performance of an asynchronous circuit.

However, the data-dependent delays make it difficult to determine worst-case performance us-

ing simulation. In synchronous designs, determining the performance of a synthesized netlist is

straightforward; static timing analysis is used to determine the critical path and the maximum clock

frequency. Only analyzing the paths between adjacent registers is needed to determine the critical

path for synchronous circuits. However, determining the critical path of an asynchronous design is

more difficult because the critical path may be through as few as two adjacent registers or as many

as every register in the design. Using Petri nets is a common way of modeling the performance

of asynchronous circuits, and can be used to determine the critical path, and hence, the worst-case

performance.

The MG representation of an SCL circuit will be similar to a Signal Transition Graph

(STG). In a STG each signal is represented by two transitions, one to represent the rising of the

signal and one to represent the falling of the signal. The SCL MG will be more abstract, modeling

the SCL circuit at the pipeline stage level. The components of the SCL pipeline stages in Figure 17

will be represented by a pair of transitions. Thus, each SCL pipeline stage i will be represented

by eight transitions: RD
i , R

N
i , F

D
i , F

N
i , CD

D
i , CD

N
i , C

0
i , C

1
i . Each transition is annotated with the

delay expected from its circuit counterpart. To complete the SCL MG model, an ideal source

and sink must be added. The ideal source provides a DATA/NULL token as soon as the input

register requests DATA/NULL. The ideal sink requests DATA/NULL as soon as the output register

generates a NULL/DATA token. A complete MG of a three-stage, reset-to-NULL SCL pipeline is

52

Figure 38: A three stage SCL pipeline represented as a MG.

shown in Figure 38.

A MG can be extracted from the register-graph discussed in Section 5.2. However, it is vital

to initialize the tokens in the MG correctly to get an accurate model of the SCL pipeline. A MG

for a three-stage SCL pipeline, which has the second stage, reset-to-DATA, is shown in Figure 39.

If stage i is reset-to-NULL and drives a reset-to-NULL stage i + 1, a token is initialized in the

place between transitions C+
i+1 and C−i . If stage i is reset-to-NULL and drives a reset-to-DATA

stage i + 1, tokens are inserted on all places in the postset of transition FN
i . Lastly, if a reset-to-

DATA stage i drives a reset-to-NULL stage i+1, tokens are inserted on all places in the postset of

transition FD
i .

Linear SCL pipelines are not very interesting because they only contain the simple local

cycles between pairs of adjacent stages shown in Figure 18. Hence, the performance of a linear

SCL pipeline is determined by the slowest local cycle, of any pair of adjacent stages. However,

SCL pipelines with cycles in the datapath can result in more complicated performance bottlenecks.

53

XD

XN

C−
1

CDD
2

C+
1

CDN
2

RD
1

RN
1

FD
1

FN
1

CDD
1

CDN
1

C−
2

CDD
3

C+
2

CDN
3

RD
2

RN
2

FD
2

FN
2

C−
3

ZD

C+
3

ZN

RD
3

RN
3

FD
3

FN
3

Figure 39: A three stage MG SCL with the second stage initialized to DATA.

A ring is simply a linear pipeline where the output of the last stage drives the input of the first

stage. To avoid deadlock at least one stage in the ring must be reset-to-DATA. Ring structures are

common to almost all practical designs; a finite state machine implemented in SCL is an example

of a ring. Williams studied the performance of asynchronous rings extensively and found three

different modes of operation: DATA-limited, bubble-limited, and cycle-limited [36]. If the ring

has too few stages it will operate in the bubble-limited region until more stages are added and the

ring reaches the cycle-limited mode. The cycle-limited mode will bound the performance of the

ring until the slowest cycle is broken into multiple faster cycles. As the number of stages increases

the ring eventually becomes performance bound by the lack of DATA tokens in the DATA-limited

mode. Similar to the linear pipeline, the performance is bounded by the worst local cycle; however,

a ring can also be bounded by loops in the datapath that result in DATA starvation or bubble

starvation. The SCL MG model can be used to determine the performance bottleneck for any

mode of operation, DATA-limited, bubble-limited, or cycle-limited.

54

7 SCL OPTIMIZATION TECHNIQUES

7.1 SCL Embedded Registration

The distinction between the SCL registers and SCL threshold gates was discussed in Sec-

tion 4; the SCL registers are required to latch DATA, while their sleep pin is de-asserted, while the

SCL threshold gates do not have hysteresis. The SCL latching behavior can be integrated into the

SCL threshold gates [37], referred to here as SCL p1 threshold gates. If the threshold gates in Fi

that directly receive input from stage i− 1 are SCL p1 threshold gates, registers are not necessary.

An SCL register in stage i can be eliminated if the output of the register only drives threshold gates

in Fi. However, if the register in stage i directly drives a register in stage i+ 1, the register cannot

be eliminated.

7.2 SCL Partially Slept Function Blocks

As discussed in Section 4, SCL achieves ultra-low standby power consumption by power-

gating all the function blocks when idle. During operation, each SCL pipeline stage must wakeup

and go to sleep for each DATA. The power-gating high-Vt PFET is on the critical path of the SCL

threshold gates. Due to the sizing of the power-gating PFET transistor, the capacitance presented

by the sleep input of the SCL threshold gates cannot be ignored. As a result of the aggregate

sleep capacitance, for each pipeline stage, there is an energy overhead for waking and sleeping the

pipeline stages. Thus, for applications with little to no idle time, the power overhead to wake and

sleep the SCL pipeline stages can outweigh the reduction in standby power. This tradeoff between

standby power savings and the cost of sleeping has been studied for synchronous circuits [11]; the

55

sleep capacitance of an SCL pipeline stage is functionally equivalent to the clock capacitance of a

synchronous pipeline stage. The alternative to sleeping the whole SCL function block is to partition

the threshold gates in each function block into gates that are slept each cycle and gates that remain

powered on. By partially sleeping the SCL function blocks, the aggregate sleep capacitance can

be reduced. However, any changes to the sleep mechanism require the timing assumptions from

Section 4.7 to be analyzed again. Consider the case where only the SCL registers are slept, while

the function blocks remain powered. Rather than the threshold gates in Fi being de-asserted due

to the assertion of sleep, the gates will be de-asserted due to the propagation of NULL. Due to

differences in path delays within Fi, CDi+1 ↑ can occur before all gates have been de-asserted.

The delay of the slowest path from Ri ↓, to gj ↓ is defined as max(TRi↓,gj↓). The delay of the

fastest path from Ri ↓, to CDi+1 ↑ is defined as min(TRi↓,CDi+1↑). Note that RTA8 must still be

satisfied, however RTA9 becomes

TCi↑,Ri↓ +max(TRi↓,gj↓) < max(min(TCi↑,Ci+1↑, TCi↑,Ri↓ +min(TRi↓,CDi+1↑)) (17)

It is not likely that RTA17 can be easily satisfied in practice. As a result, it is necessary to

force a subset of the gates in Fi, which are on slow paths to transition to logical 0, using sleep,

rather than waiting for NULL to propagate. The threshold gates in Fi are determined to be either

a SCL threshold gate or a non-slept combinational gate. Assume that a threshold gate that is slept

will become logical 0 after TCi↑ + Ts, which can be bounded. The pseudo-code for this approach

is given in Figure 40.

Another approach is to partition the threshold gates in Fi based on interleaving slept and

56

1: for gi ∈ topo sort(Fi) do
2: max reset(gi)←T(Ci ↑, Ri ↓) + reset delay(gi)
3: for gj ∈ in neighbors(gi) do
4: if max reset(gj) + reset delay(gi) > max reset(gi) then
5: max reset(gi) = max reset(gj) + reset delay(gi)
6: end if
7: end for
8: if max reset(gi) > max(min(TCi↑,Ci+1↑, TCi↑,Ri↓ + min(TRi↓,CDi+1↑)) then
9: sleep(gi)← True

10: max reset(gi)← TCi↑ + Ts
11: else
12: sleep(gi)← False
13: end if
14: end for

Figure 40: Delay-dependent algorithm for partitioning slept and non-slept gates in Fi.

non-slept gates rather than analyzing the maximum delays of paths. In this approach the threshold

gates in Fi are either SCL p1 threshold gates or non-slept threshold gates. Once again, all slept

gates will become logical 0 after TCi↑ + Ts. If a non-slept gate gi is only driven by slept gates,

the output will become logical 0 after TCi↑ + Ts + Tgi . This can be satisfied by first performing

vertex coloring on the gates in Fi. Vertex coloring will assign each gate a color such that no gate

will be driven by a gate with the same color. A single color can be assigned to be the non-slept

class, while the remaining colors are assigned to the slept class; to minimize sleep capacitance the

coloring with the largest number of gates is selected to be the non-slept coloring. The pseudo-code

for this approach is given in Figure 41.

7.3 SCL Pipeline Standby Detection

Using partially slept function blocks results in a reduction of aggregate sleep capacitance

but the SCL threshold gates partitioned into the non-slept class are not power-gated. Since the non-

slept gates are not power-gated, they remain powered on regardless of pipeline activity. However,

57

1: for gi ∈ reversed(topo sort(Fi)) do
2: color(gi)← 0
3: count← 1
4: conflict← False
5: while color(gi) = 0 do
6: for gj ∈ out neighbors(gi) do
7: if color(gj) = count then
8: conflict← True
9: end if

10: end for
11: if conflict = False then
12: color(gi)← count
13: else
14: count← count + 1
15: conflict← False
16: end if
17: end while
18: end for

Figure 41: Greedy vertex coloring for partitioning slept and non-slept gates in Fi.

the gates partitioned in the non-slept class can still be power-gated during periods of no activity by

detecting when the SCL pipeline is in the standby state. Consider a n-stage linear SCL pipeline,

which is known to contain no DATA during periods of no activity. This standby state can be easily

detected by logically ANDing the outputs of the final completion gates. As DATA propagates

through the stages, at least one final C-element will be logical 0. A three-stage SCL pipeline

with standby-detection is shown in Figure 42. This standby detection signal, s0, can be used to

power-gate the SCL threshold gates partitioned into the non-slept group. Thus, during periods of

no activity, all of the SCL threshold gates will be power-gated. Determining the standby state of an

SCL pipeline is application dependent; however, every pipeline’s standby state can be characterized

by some combination of values for the final C-elements of each stage.

58

Figure 42: A three-stage SCL pipeline with standby-detection logic.

7.4 SCL Pipelining

As asynchronous circuits are slack elastic, it is possible to insert additional pipeline stages

to increase performance without altering the observable behavior of the circuit. This is a useful

property that allows designers to trade increased area for increased performance at a late stage

in the design process. However, the complexity of determining the minimum pipelining needed

to achieve a given performance for an asynchronous circuit has been shown to be NP-complete

[13]. Due to the high complexity of solving for the optimum pipelining, an efficient algorithm

for pipelining linear NCL pipelines was presented in [28]. Each pipeline stage of a NCL circuit

typically has symmetric to-DATA and to-NULL delays, which means the performance of a linear

pipeline can be determined by the performance of the single slowest stage [33]. However, the

performance of linear SCL pipelines is always a function of adjacent pipeline stages as discussed

in Section 4.7.

The pipelining procedure begins with a combinational block bounded by registers on the

inputs and outputs. The goal is to partition this initial single pipeline stage into multiple smaller

59

pipeline stages, such that the new pipelined configuration satisfies a target performance TDDtarget,

where TDD is defined as the period between successive DATA. The combinational block Fi is first

partitioned into levels, in a top-down fashion. Specifically, each gate is assigned a level l, such that

it can only receive signals generated by gates in level k, where k < l. If a combinational block is

partitioned into n-levels, the inputs are registered in level 0 and the outputs are registered in level

n. For example, an unsigned 4x4 multiplier results in the following partitioning given in Table 1.

Now that the partitioning for a combinational block has been determined, each pipelining

configuration can be represented by a binary vector. The un-pipelined multiplier shown in Table

1 can be represented by the binary vector [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], where a 1 indicates that the

outputs of a level are registered; the number of registers required ranges from 16 to 110. For a

given pipelining configuration we must also determine the resulting TDD. As was discussed in

Section 4.7, the performance of an SCL linear pipeline is the slowest cycle of any pair of adjacent

pipeline stages. Therefore, the performance of a pipeline configuration can be found by evaluating

every pair of adjacent stages and applying the equation

Tcycle = 4 ∗ TC−element + TRi
+ TFi

+ TCDi
+ TRi

+ TFi+1
+ TCDi+1

(18)

where TCDi
is TC−element ∗ log4(width(i)). Using this sliding-window approach, the performance

of each pipelining configuration can be found exhaustively. The performance and number of regis-

ters required of each pipeline configuration for the unsigned 4x4 multiplier is illustrated in Figure

43. Despite the large number of possible configurations, the only valuable ones are the pareto-

optimal configurations. For example, if TDDtarget = 25, the configuration requiring 78 registers

60

Table 1: Pipelining partitions for 4x4 unsigned multiplier.

Level Width Delay
0 8 0
1 22 2
2 16 2
3 13 4
4 12 4
5 11 4
6 10 4
7 10 2
8 8 2
9 8 0

and providing a TDD of 22 would be selected, since the other seven feasible configurations either

require more registers or result in lower performance.

As the number of pipelining configurations is 2n for a n-level partitioning, enumerating all

possible configurations is impractical for large designs. A variation on the approach in [32] is used,

which starts with the pipeline configuration with all levels registered, then attempts to remove any

registered level that does not cause the TDD to become larger than TDDtarget. The pseudo-code

for the pipelining algorithm is given in Figure 44. Note that while the previous approaches for

NCL [28][32] considered a single stage, this approach for SCL considers pairs of adjacent stages.

61

Figure 43: Pipeline configurations for 4x4 unsigned multiplier.

1: for li ∈ levels do
2: level registered(li)← True
3: end for
4: for li ∈ levels do
5: if level registered(li) = True then
6: level registered(li)← False
7: new TDD← estimate TDD(level registered)
8: if new TDD > target TDD then
9: level registered(li)← True

10: end if
11: end if
12: end for

Figure 44: Efficient pipelining algorithm for linear SCL pipeline.

62

8 AUTOMATED SCL CONVERSION FLOW

The SCL design flow consists of three main stages, illustrated in Figure 45.

8.1 Generating the Single-Rail Netlist

The first stage begins very similar to the synthesis of any synchronous design. Synopsys

Design Compiler R© is used to synthesize the original synchronous RTL (VHDL/Verilog). There are

some restrictions on the synchronous design: the design must have a single clock domain and no

gating logic can be used in the clock or asynchronous reset paths. The target library used for syn-

thesis is a virtual library containing typical standard cell components. This virtual library contains

single-rail versions of the dual-rail library components used in the following stage. The area, de-

lay, and power models for the virtual library components should reflect their dual-rail counterparts

to aid the synthesis tool during technology mapping. In this work the combinational components

of the virtual library consist of basic gates, a full adder, and a 2:1 multiplexer. However, any

hand-designed components can be easily added. Both asynchronous resettable and non-resettable

D flip-flops are included in the virtual library.

8.2 Generating the Dual-Rail Netlist

Once the synchronous netlist of virtual cells has been generated, the tools extract a netlist-

graph as discussed in Section 5.2. The virtual flip-flops are now replaced with the corresponding

reset-to-DATA SCL register; a flip-flop with no reset becomes a reset-to-DATA0 SCL register,

while a flip-flop with an asynchronous reset becomes a reset-to-DATA0/1 SCL register. The clock

63

Figure 45: The flow for automated synchronous to SCL conversion.

64

network is removed. A register-graph is then extracted from the netlist-graph, as discussed in

Section 5.2. Reset-to-NULL SCL registers are then inserted to satisfy the conditions discussed in

Section 5.2. Each SCL register is first grouped into a unique pipeline stage and then iteratively

merged until no more stages can be merged. The acknowledge networks are then extracted from

the register-graph as discussed in Section 5.2. Finally, the remaining virtual cells are replaced

with their threshold gate counterparts and the single-rail signals are expanded to dual-rail signals.

Several pieces of information are stored for each stage, including the register grouping R(psi),

the acknowledge set ACK(psi), and the sleep set SLEEP (psi). In addition, the SCL MG model

discussed in Section 6 is extracted for the design, and the performance bottleneck is stored.

8.3 Optimizing the Dual-Rail Netlist

After the dual-rail SCL netlist has been produced, a second technology-mapping pass takes

place. While NCL requires that dual-rail functions satisfy input-completeness and observability

criteria, the dual-rail functions in SCL can be logically optimized by Design Compiler R© to reduce

area, power and delay, since SCL does not require input-completeness or observability [32]. The

dont touch attribute is enabled for SCL register instances to prevent DC from modifying them.

For this pass, a Liberty file with data for the SCL threshold gates is utilized; however, the cells

described in the Liberty file lack the sleep input. The resulting dual-rail SCL netlist still lacks the

completion detectors, final C-elements, and acknowledge and sleep networks.

65

8.4 Completing the SCL Netlist

In this final stage, the SCL pipeline stages are completed and the necessary handshaking

signals are generated. While the acknowledge and sleep network information was extracted earlier,

the acknowledge and sleep networks are now implemented in the SCL netlist. For each SCL

pipeline stage a completion detector network and a final C-element are generated, as shown in

Figure 29. The resulting netlist represents a complete and functional SCL design.

8.5 Validating the SCL Netlist Equivalance

A testbench is now automatically generated for the SCL netlist. The testbench instanti-

ates both the original synchronous design as well as the SCL design. Both the synchronous and

SCL blocks are provided with the same random input vectors, and the outputs are verified to be

consistent, as discussed in Section 5.1.

8.6 Experimental Results

The procedure presented in this work was implemented in a combination of Python, C++

and TCL scripts. The implemented flow was tested against sequential designs from the ISCAS’89

benchmark suite. The approaches using both triplet register replacement and intelligent register

replacement were considered, as well as un-merged and merged acknowledgement networks. The

resulting areas are shown in Table 2. The merging of acknowledgment networks clearly results

in significant area reductions for the ISCAS benchmark designs. Recall that intelligent register

replacement seeks to reduce the number of registers needed, which can be as low as two-thirds

66

Table 2: Area of ISCAS’89 Designs

Triplet Register Replacement Intelligent Register Replacement
Un-Merged Merged Un-Merged Merged

Design Area (um2) Area (um2) Reduction (%) Area (um2) Area (um2) Reduction (%)
s208 1 1292.4 713.9 45 1292.4 713.9 45
s27 354.2 251.3 29 354.2 251.3 29
s298 1740.6 1077.1 38 1740.6 1077.1 38
s344 2307.2 1331.3 42 2307.2 1331.3 42
s349 2308.3 1332.4 42 2308.3 1332.4 42
s382 2596.7 1468.1 43 2495.2 1401.1 44
s386 1807.9 942.5 48 1807.9 942.5 48
s400 2635.9 1472.4 44 2534.4 1405.4 45
s420 1 3373.9 1354 60 3373.9 1354 60
s444 2541.6 1458.7 43 2440.1 1391.8 43
s510 2885.4 1566 46 2885.4 1566 46
s526 2770.6 1508.8 46 2770.6 1508.8 46
s526n 2762.3 1507.3 45 2762.3 1507.3 45
s641 4037.8 1897.6 53 4003.9 1863.7 53
s713 4039.2 1899 53 4005.4 1865.2 53
s820 4045.3 1841.8 54 4045.3 1841.8 54
s832 4045.3 1841.8 54 4045.3 1841.8 54
s838 1 9756 2647.8 73 9756 2647.8 73
s1238 7045.9 3288.6 53 6741.4 3166.6 53
s1488 5897.5 3164 46 5897.5 3164 46
s1494 6287 3224.5 49 6287 3224.5 49
s1423 21591.4 5121.4 76 21540.6 5123.5 76

the number of registers compared to triplet register replacement. However, the use of intelligent

register replacement offers little area reduction for the ISCAS sequential benchmarks; this is due

to the fact that many of the designs are control-oriented and have feedback paths from one pipeline

stage to a previous stage. As a result of these feedback paths, the tools must insert a third register on

these paths bringing the total number of registers up to parity with the triplet register replacement

method.

67

9 CONCLUSION

In this dissertation, a flow utilizing commercial synchronous design software and custom

tools to convert synchronous RTL to an SCL netlist was presented. The performance and timing

assumptions were derived for SCL in Chapter 4. The detailed procedure for converting a syn-

chronous design to SCL while maintaining equivalence was discussed in Chapter 5. A method to

determine the bottleneck in any SCL design was presented in Chapter 6. A number of SCL opti-

mizations, including embedded registration, partially slept function blocks, standby detection and

automated constraint-driven pipelining were presented in Chapter 7. The integration of the flow

with Synopsys Design Compiler and experimental results for the ISCAS ’89 benchmark designs

was discussed in Chapter 8.

68

10 REFERENCES

[1] A. Bardsley and D. Edwards. Compiling the language Balsa to delay-insensitive hardware. In
C. D. Kloos and E. Cerny, editors, Hardware Description Languages and their Applications
(CHDL), pages 89–91, April 1997.

[2] A. Bardsley and D. A. Edwards. The Balsa asynchronous circuit synthesis system. In Forum
on Design Languages, September 2000.

[3] P.A. Beerel, G.D. Dimou, and A.M. Lines. Proteus: An asic flow for ghz asynchronous
designs. Design Test of Computers, IEEE, 28(5):36–51, Sept.-Oct.

[4] J. Carmona, J. Cortadella, M. Kishinevsky, and A. Taubin. Elastic circuits. Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on, 28(10):1437–1455, Oct.

[5] J. Cortadella, A. Kondratyev, L. Lavagno, and C.P. Sotiriou. Desynchronization: Synthesis
of asynchronous circuits from synchronous specifications. Computer-Aided Design of Inte-
grated Circuits and Systems, IEEE Transactions on, 25(10):1904–1921, Oct.

[6] W.M. Elgharbawy and M.A. Bayoumi. Leakage sources and possible solutions in nanometer
cmos technologies. Circuits and Systems Magazine, IEEE, 5(4):6–17, Quarter.

[7] Karl Fant. Logically Determined Design: Clockless System Design with NULL Convention
Logic. Wiley-Interscience, 2005.

[8] S.B. Furber and P. Day. Four-phase micropipeline latch control circuits. Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on, 4(2):247–253, June.

[9] J.D. Garside, W.J. Bainbridge, A. Bardsley, D.M. Clark, D.A. Edwards, S.B. Furber, J. Liu,
D.W. Lloyd, S. Mohammadi, J.S. Pepper, O. Petlin, S. Temple, and J.V. Woods. Amulet3i-an
asynchronous system-on-chip. In Advanced Research in Asynchronous Circuits and Systems,
2000. (ASYNC 2000) Proceedings. Sixth International Symposium on, pages 162–175.

[10] R. Ginosar. Metastability and synchronizers: A tutorial. Design Test of Computers, IEEE,
28(5):23–35, Sept.-Oct.

[11] Zhigang Hu, A. Buyuktosunoglu, V. Srinivasan, V. Zyuban, H. Jacobson, and P. Bose. Mi-
croarchitectural techniques for power gating of execution units. In Low Power Electronics
and Design, 2004. ISLPED ’04. Proceedings of the 2004 International Symposium on, pages
32–37, 2004.

[12] N.S. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J.S. Hu, M.J. Irwin, M. Kandemir, and
V. Narayanan. Leakage current: Moore’s law meets static power. Computer, 36(12):68–75,
Dec.

[13] Sangyun Kim and P.A. Beerel. Pipeline optimization for asynchronous circuits: complexity
analysis and an efficient optimal algorithm. Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, 25(3):389–402, March.

69

[14] A. Kondratyev and K. Lwin. Design of asynchronous circuits using synchronous cad tools.
Design Test of Computers, IEEE, 19(4):107–117, Jul/Aug.

[15] M. Ligthart, K. Fant, R. Smith, A. Taubin, and A. Kondratyev. Asynchronous design using
commercial hdl synthesis tools. In Advanced Research in Asynchronous Circuits and Systems,
2000. (ASYNC 2000) Proceedings. Sixth International Symposium on, pages 114–125.

[16] D.H. Linder and J.C. Harden. Phased logic: supporting the synchronous design paradigm
with delay-insensitive circuitry. Computers, IEEE Transactions on, 45(9):1031–1044, 1996.

[17] Rajit Manohar and Alain J. Martin. Quasi-delay-insensitive circuits are turing-complete.
Technical report, Pasadena, CA, USA, 1995.

[18] Alain J. Martin. Compiling communicating processes into delay-insensitive vlsi circuits.
Distributed Computing, 1(4):226–234, 1986.

[19] Alain J. Martin. The design of a delay-insensitive microprocessor: An example of circuit
synthesis by program transformation. In Hardware Specification, Verification and Synthesis,
pages 244–259, 1989.

[20] Alain J. Martin. A program transformation approach to asynchronous vlsi design. In NATO
ASI DPD, pages 441–467, 1996.

[21] Alain J. Martin, Andrew Lines, Rajit Manohar, Mika Nystrom, Paul Penzes, Robert South-
worth, Uri Cummings, and Tak Kwan Lee. The design of an asynchronous mips r3000
microprocessor. In in Advanced Research in VLSI, pages 164–181, 1997.

[22] S. Masteller and L. Sorenson. Cycle decomposition in ncl. Design Test of Computers, IEEE,
20(6):38–43, Nov.-Dec.

[23] D. E. Muller and W. S. Bartky. A theory of asynchronous circuits. Theory of Switching,
Proceedings of the International Symposium, pages 204–243, 1959.

[24] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE,
77(4):541–580, Apr.

[25] S. Mutoh, T. Douseki, Y. Matsuya, T. Aoki, S. Shigematsu, and J. Yamada. 1-v power supply
high-speed digital circuit technology with multithreshold-voltage cmos. Solid-State Circuits,
IEEE Journal of, 30(8):847–854, Aug.

[26] R.O. Ozdag and P.A. Beerel. High-speed qdi asynchronous pipelines. In Asynchronous
Circuits and Systems, 2002. Proceedings. Eighth International Symposium on, pages 13–22,
April.

[27] R.B. Reese, S.C. Smith, and M.A. Thornton. Uncle - an rtl approach to asynchronous design.
In Asynchronous Circuits and Systems (ASYNC), 2012 18th IEEE International Symposium
on, pages 65–72, May.

70

[28] V. Satagopan. Automated Pipelining Optimization, Energy Estimation, and DFT Techniques
for Asynchronous NULL Convention Circuits using Industry-Standard CAD Tools. Ph.D.
dissertation, University of Missouri-Rolla, 2007.

[29] A. Smirnov, A. Taubin, Ming Su, and M. Karpovsky. An automated fine-grain pipelining
using domino style asynchronous library. In Application of Concurrency to System Design,
2005. ACSD 2005. Fifth International Conference on, pages 68–76, June.

[30] R. Smith and M. Ligthart. High-level design for asynchronous logic. In Design Automation
Conference, 2001. Proceedings of the ASP-DAC 2001. Asia and South Pacific, pages 431–
436.

[31] S.C. Smith. Speedup of self-timed digital systems using early completion. In VLSI, 2002.
Proceedings. IEEE Computer Society Annual Symposium on, pages 98–104.

[32] Scott Smith and Jia Di. Designing Asynchronous Circuits using NULL Convention Logic
(NCL). Morgan & Claypool, 2009.

[33] Scott C. Smith, Ronald F. DeMara, Jiann S. Yuan, M. Hagedorn, and D. Ferguson. Delay-
insensitive gate-level pipelining. Integration, 30(2):103–131, 2001.

[34] K.S. Stevens, Yang Xu, and V. Vij. Characterization of asynchronous templates for integra-
tion into clocked cad flows. In Asynchronous Circuits and Systems, 2009. ASYNC ’09. 15th
IEEE Symposium on, pages 151–161, May.

[35] S. Tugsiriavisut and P.A. Beerel. Control circuit templates for asynchronous bundled-data
pipelines. In Design, Automation and Test in Europe Conference and Exhibition, 2002. Pro-
ceedings, pages 1098–.

[36] Ted E. Williams. Performance of iterative computation in self-timed rings. J. VLSI Signal
Process. Syst., 7(1-2):17–31, February 1994.

[37] Liang Zhou. ULTRA-LOW POWER AND RADIATION HARDENED ASYNCHRONOUS
CIRCUIT DESIGN. Ph.D. dissertation, University of Arkansas, 2012.

71

	University of Arkansas, Fayetteville
	ScholarWorks@UARK
	5-2013

	CAD Tools for Synthesis of Sleep Convention Logic
	Parviz Palangpour
	Recommended Citation

	INTRODUCTION
	Objectives
	Design Challenges

	BACKGROUND
	Introduction
	Synchronous Clocking Schemes
	Asynchronous Handshaking
	Asynchronous Data Encoding
	Bundled-Data Channels
	One-Hot Encoded Channels

	Slack Elasticity
	Timing Models
	Petri Networks
	Asynchronous Design Styles
	NULL Convention Logic

	Asynchronous Synthesis Tools

	MTCMOS POWER-GATING
	SLEEP CONVENTION LOGIC
	Introduction to SCL
	SCL Function Block
	SCL Register
	SCL Completion Detector
	SCL Final Completion Gate
	SCL Pipeline Initialization
	SCL Performance and Timing Assumptions

	SYNCHRONOUS TO SCL CONVERSION
	Synchronous and SCL Equivalence
	Extracting Connectivity Information from Netlists
	Determining Acknowledge and Sleep Networks
	Determining Pipeline Stages
	Combining Pipeline Stages

	SCL Performance Analysis
	SCL OPTIMIZATION TECHNIQUES
	SCL Embedded Registration
	SCL Partially Slept Function Blocks
	SCL Pipeline Standby Detection
	SCL Pipelining

	AUTOMATED SCL CONVERSION FLOW
	Generating the Single-Rail Netlist
	Generating the Dual-Rail Netlist
	Optimizing the Dual-Rail Netlist
	Completing the SCL Netlist
	Validating the SCL Netlist Equivalance
	Experimental Results

	CONCLUSION
	REFERENCES

