21 research outputs found

    An Examination of Some Signi cant Approaches to Statistical Deconvolution

    No full text
    We examine statistical approaches to two significant areas of deconvolution - Blind Deconvolution (BD) and Robust Deconvolution (RD) for stochastic stationary signals. For BD, we review some major classical and new methods in a unified framework of nonGaussian signals. The first class of algorithms we look at falls into the class of Minimum Entropy Deconvolution (MED) algorithms. We discuss the similarities between them despite differences in origins and motivations. We give new theoretical results concerning the behaviour and generality of these algorithms and give evidence of scenarios where they may fail. In some cases, we present new modifications to the algorithms to overcome these shortfalls. Following our discussion on the MED algorithms, we next look at a recently proposed BD algorithm based on the correntropy function, a function defined as a combination of the autocorrelation and the entropy functiosn. We examine its BD performance when compared with MED algorithms. We find that the BD carried out via correntropy-matching cannot be straightforwardly interpreted as simultaneous moment-matching due to the breakdown of the correntropy expansion in terms of moments. Other issues such as maximum/minimum phase ambiguity and computational complexity suggest that careful attention is required before establishing the correntropy algorithm as a superior alternative to the existing BD techniques. For the problem of RD, we give a categorisation of different kinds of uncertainties encountered in estimation and discuss techniques required to solve each individual case. Primarily, we tackle the overlooked cases of robustification of deconvolution filters based on estimated blurring response or estimated signal spectrum. We do this by utilising existing methods derived from criteria such as minimax MSE with imposed uncertainty bands and penalised MSE. In particular, we revisit the Modified Wiener Filter (MWF) which offers simplicity and flexibility in giving improved RDs to the standard plug-in Wiener Filter (WF)

    Synthetic Aperture Techniques for Sonar Systems

    Get PDF
    Today a good percentage of our planet is known and well mapped. Synthetic aperture techniques used in space and airborne systems has greatly aided to obtain this information. Nevertheless our planet is mostly covered by water and the level of detail of knowledge about this segment is still very far away from that of the land segment

    Friction, Vibration and Dynamic Properties of Transmission System under Wear Progression

    Get PDF
    This reprint focuses on wear and fatigue analysis, the dynamic properties of coating surfaces in transmission systems, and non-destructive condition monitoring for the health management of transmission systems. Transmission systems play a vital role in various types of industrial structure, including wind turbines, vehicles, mining and material-handling equipment, offshore vessels, and aircrafts. Surface wear is an inevitable phenomenon during the service life of transmission systems (such as on gearboxes, bearings, and shafts), and wear propagation can reduce the durability of the contact coating surface. As a result, the performance of the transmission system can degrade significantly, which can cause sudden shutdown of the whole system and lead to unexpected economic loss and accidents. Therefore, to ensure adequate health management of the transmission system, it is necessary to investigate the friction, vibration, and dynamic properties of its contact coating surface and monitor its operating conditions

    Interferometric synthetic aperture sonar system supported by satellite

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 200

    Plasma Physics Computations on Emerging Hardware Architectures

    Get PDF
    This thesis explores the potential of emerging hardware architectures to increase the impact of high performance computing in fusion plasma physics research. For next generation tokamaks like ITER, realistic simulations and data-processing tasks will become significantly more demanding of computational resources than current facilities. It is therefore essential to investigate how emerging hardware such as the graphics processing unit (GPU) and field-programmable gate array (FPGA) can provide the required computing power for large data-processing tasks and large scale simulations in plasma physics specific computations. The use of emerging technology is investigated in three areas relevant to nuclear fusion: (i) a GPU is used to process the large amount of raw data produced by the synthetic aperture microwave imaging (SAMI) plasma diagnostic, (ii) the use of a GPU to accelerate the solution of the Bateman equations which model the evolution of nuclide number densities when subjected to neutron irradiation in tokamaks, and (iii) an FPGA-based dataflow engine is applied to compute massive matrix multiplications, a feature of many computational problems in fusion and more generally in scientific computing. The GPU data processing code for SAMI provides a 60x acceleration over the previous IDL-based code, enabling inter-shot analysis in future campaigns and the data-mining (and therefore analysis) of stored raw data from previous MAST campaigns. The feasibility of porting the whole Bateman solver to a GPU system is demonstrated and verified against the industry standard FISPACT code. Finally a dataflow approach to matrix multiplication is shown to provide a substantial acceleration compared to CPU-based approaches and, whilst not performing as well as a GPU for this particular problem, is shown to be much more energy efficient. Emerging hardware technologies will no doubt continue to provide a positive contribution in terms of performance to many areas of fusion research and several exciting new developments are on the horizon with tighter integration of GPUs and FPGAs with their host central processor units. This should not only improve performance and reduce data transfer bottlenecks, but also allow more user-friendly programming tools to be developed. All of this has implications for ITER and beyond where emerging hardware technologies will no doubt provide the key to delivering the computing power required to handle the large amounts of data and more realistic simulations demanded by these complex systems

    Machine Learning And Image Processing For Noise Removal And Robust Edge Detection In The Presence Of Mixed Noise

    Get PDF
    The central goal of this dissertation is to design and model a smoothing filter based on the random single and mixed noise distribution that would attenuate the effect of noise while preserving edge details. Only then could robust, integrated and resilient edge detection methods be deployed to overcome the ubiquitous presence of random noise in images. Random noise effects are modeled as those that could emanate from impulse noise, Gaussian noise and speckle noise. In the first step, evaluation of methods is performed based on an exhaustive review on the different types of denoising methods which focus on impulse noise, Gaussian noise and their related denoising filters. These include spatial filters (linear, non-linear and a combination of them), transform domain filters, neural network-based filters, numerical-based filters, fuzzy based filters, morphological filters, statistical filters, and supervised learning-based filters. In the second step, switching adaptive median and fixed weighted mean filter (SAMFWMF) which is a combination of linear and non-linear filters, is introduced in order to detect and remove impulse noise. Then, a robust edge detection method is applied which relies on an integrated process including non-maximum suppression, maximum sequence, thresholding and morphological operations. The results are obtained on MRI and natural images. In the third step, a combination of transform domain-based filter which is a combination of dual tree – complex wavelet transform (DT-CWT) and total variation, is introduced in order to detect and remove Gaussian noise as well as mixed Gaussian and Speckle noise. Then, a robust edge detection is applied in order to track the true edges. The results are obtained on medical ultrasound and natural images. In the fourth step, a smoothing filter, which is a feed-forward convolutional network (CNN) is introduced to assume a deep architecture, and supported through a specific learning algorithm, l2 loss function minimization, a regularization method, and batch normalization all integrated in order to detect and remove impulse noise as well as mixed impulse and Gaussian noise. Then, a robust edge detection is applied in order to track the true edges. The results are obtained on natural images for both specific and non-specific noise-level

    Deep Learning-Based Machinery Fault Diagnostics

    Get PDF
    This book offers a compilation for experts, scholars, and researchers to present the most recent advancements, from theoretical methods to the applications of sophisticated fault diagnosis techniques. The deep learning methods for analyzing and testing complex mechanical systems are of particular interest. Special attention is given to the representation and analysis of system information, operating condition monitoring, the establishment of technical standards, and scientific support of machinery fault diagnosis

    Deep Learning Techniques for Power System Operation: Modeling and Implementation

    Get PDF
    The fast development of the deep learning (DL) techniques in the most recent years has drawn attention from both academia and industry. And there have been increasing applications of the DL techniques in many complex real-world situations, including computer vision, medical diagnosis, and natural language processing. The great power and flexibility of DL can be attributed to its hierarchical learning structure that automatically extract features from mass amounts of data. In addition, DL applies an end-to-end solving mechanism, and directly generates the output from the input, where the traditional machine learning methods usually break down the problem and combine the results. The end-to-end mechanism considerably improve the computational efficiency of the DL.The power system is one of the most complex artificial infrastructures, and many power system control and operation problems share the same features as the above mentioned real-world applications, such as time variability and uncertainty, partial observability, which impedes the performance of the conventional model-based methods. On the other hand, with the wide spread implementation of Advanced Metering Infrastructures (AMI), the SCADA, the Wide Area Monitoring Systems (WAMS), and many other measuring system providing massive data from the field, the data-driven deep learning technique is becoming an intriguing alternative method to enable the future development and success of the smart grid. This dissertation aims to explore the potential of utilizing the deep-learning-based approaches to solve a broad range of power system modeling and operation problems. First, a comprehensive literature review is conducted to summarize the existing applications of deep learning techniques in power system area. Second, the prospective application of deep learning techniques in several scenarios in power systems, including contingency screening, cascading outage search, multi-microgrid energy management, residential HVAC system control, and electricity market bidding are discussed in detail in the following 2-6 chapters. The problem formulation, the specific deep learning approaches in use, and the simulation results are all presented, and also compared with the currently used model-based method as a verification of the advantage of deep learning. Finally, the conclusions are provided in the last chapter, as well as the directions for future researches. It’s hoped that this dissertation can work as a single spark of fire to enlighten more innovative ideas and original studies, widening and deepening the application of deep learning technique in the field of power system, and eventually bring some positive impacts to the real-world bulk grid resilient and economic control and operation
    corecore