
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Doctoral Dissertations Graduate School

8-2020

Deep Learning Techniques for Power System Operation: Modeling Deep Learning Techniques for Power System Operation: Modeling

and Implementation and Implementation

Yan Du
University of Tennessee, ydu15@vols.utk.edu

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss

Recommended Citation Recommended Citation
Du, Yan, "Deep Learning Techniques for Power System Operation: Modeling and Implementation. " PhD
diss., University of Tennessee, 2020.
https://trace.tennessee.edu/utk_graddiss/6798

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact
trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F6798&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by Yan Du entitled "Deep Learning Techniques

for Power System Operation: Modeling and Implementation." I have examined the final

electronic copy of this dissertation for form and content and recommend that it be accepted in

partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in

Electrical Engineering.

Yilu Liu,, Major Professor

We have read this dissertation and recommend its acceptance:

Hairong Qi, James Ostrowski

Accepted for the Council:

Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

Deep Learning Techniques for Power System

Operation: Modeling and Implementation

A Dissertation Presented for the

Doctor of Philosophy

Degree

The University of Tennessee, Knoxville

Yan Du

August 2020

ii

Acknowledgement

This dissertation was completed under the guidance of my Ph.D. advisor, Dr. Fangxing (Fran)

Li. I would like to express my sincerest gratitude to Dr. Li for his consistent and patient mentoring

through my years of Ph.D. studies. I’m deeply impressed by his erudition and expertise, as well as

his amiable and humorous nature. I attribute much of my academic progress and professional

development to Dr. Li, for his wise instructions and inspiring encouragement. I regard working

with Dr. Li as a great honor, and my Ph.D. study experience at UTK will remain a cherished

treasure during the rest of my life.

My special thanks go to my committee members, Dr. Yilu Liu, Dr. Hairong Qi, and Dr. James

Ostrowski for devoting time to my dissertation defense and for their instructive suggestions to

improve the quality of my dissertation.

I would also like to thank my group mates, Dr. Hantao Cui, Dr. Qingxin Shi, Xiao Kou, Wei

Feng, Qiwei Zhang, Xiaofei Wang, Haoyuan Sun, Buxin She, Mariana Kamel, Cody Rooks, Evan

McKee, and Ian Schomer, for their help during my studies and for all the pleasant time we have

spent together in off-hours. I am also grateful for the support from all the faculty, staff and students

at the Center for Ultra-Wide-Area Resilient Electric Energy Transmission (CURENT). The

openness, inclusiveness and creativity at the center has made the journey of study even more

enjoyable.

Finally, my deepest gratitude goes to my parents, for their years of priceless love, care, and

support for my study and growth. The invaluable care from my family can never be repaid. I will

carry on with their blessings and expectations to write the next chapter of my life.

iii

Abstract

The fast development of deep learning techniques in recent years has drawn attention from both

academia and industry. And there have been increasing applications of the DL techniques in many

complex real-world problems, including computer vision, medical diagnosis, and natural language

processing. The great power and flexibility of deep learning can be attributed to its hierarchical

learning structure that automatically extracts features from mass amounts of data, as well as its

end-to-end solving mechanism that directly generates the output from the input, which

considerably improve the computational efficiency.

The power system is one of the most complex artificial infrastructures, and many power system

control and operation problems share features with the real-world applications mentioned above,

such as time variability and uncertainty, and partial observability, which impedes the performance

of conventional model-based methods. On the other hand, with the wide spread implementation of

measuring systems providing massive data from the field, the data-driven deep learning technique

is becoming an intriguing alternative method to enable the future development and success of the

smart grid.

This dissertation explores the potential of utilizing deep-learning-based approaches to solve a

broad range of power system modeling and operation problems. First, a comprehensive literature

review summarizing the existing applications of deep learning techniques in power systems is

presented. Second, the prospective application of deep learning techniques in several scenarios in

power systems, including contingency screening, cascading outage search, multi-microgrid energy

management, residential HVAC system control, and electricity market bidding are discussed in

detail in the following chapters. The problem formulation, the specific deep learning approaches

in use, the simulation results, and comparisons with the model-based methods are all presented.

Finally, the conclusions and future directions are provided in the last chapter. It’s hoped that this

dissertation will work as a single spark that can generate more innovative ideas and original studies,

iv

widening and deepening the application of deep learning techniques in the field of power systems,

and eventually bring about some positive impacts on the resilient and economic control and

operation of the real-world bulk grid.

v

Contents

Chapter 1 Introduction ... 1

1.1 Deep Learning: Motivation and Development .. 1

1.2 Classification and Application of Deep Learning ... 4

1.3 Applications of Deep Learning in Power Systems .. 6

1.3.1 Supervised learning in power system control and operation6

1.3.2 Unsupervised learning in power system control and operation9

1.3.3 Reinforcement learning in power system control and operation10

1.4 Summary...11

Chapter 2 N-1 Contingency Screening with Deep Convolutional Neural Network 13

2.1 Introduction ... 13

2.2 Composite Security Index of Power System Security Assessment 15

2.3 Deep CNN-based N-1 Contingency Screening ... 17

2.3.1 A brief on deep CNN ...17

2.3.2 Mapping power system data to deep CNN input data ...18

2.3.3 Constructing deep convolutional neural network ..20

2.4 Case Study ... 25

2.5 Conclusions ... 28

2.6 Acknowledgement ... 28

Chapter 3 Fast Cascading Outage Screening based on Deep CNN and Depth-First Search

... 29

3.1 Introduction ... 29

3.1.1 Motivation ...29

3.1.2 Literature review ..30

3.1.3 Contributions ...32

3.2 Deep CNN-based Security Assessment ... 33

3.2.1 Mapping power grid data to deep CNN input data ..33

3.2.2 Constructing deep convolutional neural network ..35

3.2.3 Training sample generation ...38

3.3 Cascading Outage Screening based on Depth-First Search Algorithm 39

vi

3.4 Simulation Analysis ... 43

3.4.1 Deep CNN regression of ACOPF model ...43

3.4.2 Identifying cascading outage path with DFS algorithm ..47

3.5 Conclusions ... 50

3.6 Acknowledgement ... 51

Chapter 4 Multi-microgrid Energy Management with Deep Learning and Reinforcement

Learning ... 52

4.1 Introduction ... 52

4.2 Modeling of Multi-microgrid Energy Management .. 56

4.3 Multi-microgrid Operation Simulation with Deep Neural Network 59

4.3.1 Deep neural network structure ...60

4.3.2 DNN training algorithm ...62

4.4 Monte Carlo Reinforcement Learning Method for DSO Decision-making 63

4.4.1 A brief overview of reinforcement learning ..64

4.4.2 Mapping multi-microgrid energy management problem to reinforcement learning .65

4.4.3 Model-free Monte Carlo method ...66

4.5 Simulation Analysis ... 68

4.5.1 Simulating multi-microgrid Operation with DNN ..69

4.5.2 Monte Carlo method for optimizing DSO pricing strategy74

4.6 Conclusions ... 79

4.7 Acknowledgement ... 80

Chapter 5 Multi-zone Residential HVAC Control using Deep Reinforcement Learning 81

5.1 Introduction ... 81

5.2 Multi-zone Residential HVAC System Control Problem Formulation 85

5.2.1 A brief introduction of the multi-zone HVAC system control problem85

5.2.2 Mapping HVAC control problem to Markov Decision Process85

5.3 DDPG-based Control Strategy for Multi-zone HVAC System 88

5.3.1 A brief review of deep reinforcement learning methods ...88

5.3.2 Understanding the basic principles behind typical deep RL methods90

5.3.3 Realizing the continuous control of HVAC system with DDPG91

5.4 Case Study ... 95

vii

5.4.1 Simulation environment ..95

5.4.2 Design of the DNN structure in Deep RL ...96

5.4.3 Performance of the continuous HVAC control method ...97

5.5 Conclusions ..110

5.6 Acknowledgement .. 111

Chapter 6 Solving Markov Game in Day-ahead Electricity Market with Multi-Agent Deep

RL .. 112

6.1 Introduction ..112

6.2 Multi-agent Market Bidding Problem Formulation ...115

6.2.1 A brief on electricity market and bidding strategies .. 115

6.2.2 Mathematical formulation of day-ahead electricity market clearing 117

6.2.3 Markov game model of day-ahead electricity market bidding 118

6.3 MADDPG Method for Day-ahead Electricity Market Bidding 120

6.3.1 An overview of reinforcement learning method ..120

6.3.2 Deep deterministic policy gradient method for continuous control121

6.3.3 MADDPG for solving Markov game in day-ahead electricity market bidding122

6.3.4 Baseline cases for evaluating the learning performance of MADDPG125

6.4 Simulation Analysis ... 125

6.4.1 Test system description ..125

6.4.2 Design of neural network and simulation platform ...127

6.4.3 Nash Equilibrium strategy from MADDPG: uncongested case128

6.4.4 Solving Markov game with MADDPG: congested case ...131

6.5 Conclusions ... 135

6.6 Acknowledgement ... 135

Chapter 7 Conclusions and Future Works ... 136

7.1 Summary of Current Progress ... 136

7.2 Future Works ... 138

References .. 141

Appendix .. 153

Vita ... 155

viii

List of Tables

Table 2.1. AC power flow results based on deep CNN ... 26

Table 2.2. Test time comparison .. 27

Table 2.3. AC power flow results of ANN .. 27

Table 3.1. Summary of training/test set generation ... 44

Table 3.2. Sample set size for deep CNN training and testing .. 44

Table 3.3. ACOPF regression results based on deep CNN .. 45

Table 3.4. Test time comparison .. 46

Table 3.5. ACOPF regression based on traditional ANN .. 47

Table 3.6. Time efficiency of DFS algorithm .. 48

Table 3.7. Cascading outage screening results .. 49

Table 3.8. Index of most frequently tripped lines in each cascading outage stage 50

Table 4.1 Microgrid composition .. 69

Table 4.2. Parameters of distributed energy resources .. 70

Table 4.3 Summary of DNN training settings ... 72

Table 4.4. Computation time for DNN and Monte Carlo method ... 76

Table 5.1. Daily user comfort level ... 96

Table 5.2. DNN structure applied in DDPG and DQN algorithm ... 96

Table 5.3. Test results of different HVAC control methods ... 99

Table 5.4. Comparison of optimization results for different building models......................... 106

Table 5.5. Test results of different control methods (under PJM price) 106

Table 6.1 GENCO generation cost function .. 127

Table 6.2. Design of DNNs in deep RL ... 127

Table 6.3. Comparison of MADDPG with baseline: uncongested case 131

Table 6.4 Comparison of MADDPG with baselines: congested case...................................... 132

ix

 List of Figures

Figure 1.1. Relationships of deep learning to machine learning and AI technology 1

Figure 1.2. Output from each layer in a well-trained convnet ... 3

Figure 2.1. The principle of deep CNN feature extraction .. 18

Figure 2.2. Illustration of convolution operation ... 21

Figure 2.3. Deep CNN structure for N-1 contingency screening .. 25

Figure 3.1. Deep CNN structure for security assessment .. 37

Figure 3.2. Flowchart of generating cascading outage training samples................................... 39

Figure 3.3. Multi-scenario tree for cascading outage screening .. 40

Figure 3.4. Flow chart of depth-first search algorithm .. 42

Figure 3.5. ANN structure for security assessment ... 46

Figure 4.1. Multi-microgrid energy management under DSO pricing control 57

Figure 4.2. Multi-layer structure of the Deep Neural Network ... 60

Figure 4.3. Illustration of reinforcement learning ... 65

Figure 4.4. Simulation framework for multi-microgrid energy management 72

Figure 4.5. Disturbance of retail price ... 74

Figure 4.6. Disturbance of microgrid load .. 74

Figure 4.7. Optimal price setting under different weight factors .. 76

Figure 4.8. Total profit and final PAR under different weight factors 77

Figure 4.9. Comparison of Monte Carlo method and intuitive method 78

Figure 5.1. DNN structure for function approximation in RL... 89

Figure 5.2. Multi-zone HVAC control framework with DDPG .. 95

Figure 5.3. Convergence of different deep RL methods .. 98

Figure 5.4. Setpoint control strategy based on DDPG for 10 test days (top: zone 1; bottom: zone2)

... 101

x

Figure 5.5. Setpoint control strategy based on DQN for 10 test days (top: zone 1; bottom: zone2)

... 102

Figure 5.6. Setpoint control strategy from the rule-based case for 10 test days (top: zone 1;

bottom: zone2) .. 103

Figure 5.7. Setpoint control strategy from the fixed setpoint case for 10 test days (top: zone 1;

bottom: zone2) .. 104

Figure 5.8. Illustration of the comparison results .. 105

Figure 5.9. Setpoint control strategy based on DDPG under PJM price for 10 test days (top: zone

1; bottom: zone2) .. 108

Figure 5.10. Setpoint control strategy based on DQN under PJM price for 10 test days (top: zone

1; bottom: zoomed part of zone 1) .. 109

Figure 5.11. Setpoint control strategy in the fixed setpoint case under PJM price for 10 test days

(top: zone 1; bottom: zoomed part of zone 1) ..110

Figure 6.1 MADDPG algorithm for solving Markov game in day-ahead electricity market . 126

Figure 6.2. Topology of the IEEE 30-bus system .. 126

Figure 6.3. Load profile in June and July of year 2019 ... 130

Figure 6.4. Convergence of MADDPG in the uncongested case .. 130

Figure 6.5. Bidding strategy of three GENCOs with MADDPG: uncongested case 130

Figure 6.6. Convergence of MADDPG in the congested case .. 131

Figure 6.7. Bidding strategy of three GENCOs with MADDPG: congested case 132

Figure 6.8. Hourly market clearing price under MADDPG bidding strategy 132

Figure 6.9. Convergence of DQN in the congested case ... 134

Figure 6.10. Bidding strategy of three GENCOs with DQN: congested case 134

1

Chapter 1 Introduction

This chapter gives a brief introduction to deep learning techniques and their various applications

in both academia and industry, specifically in the area of power systems. Equation Chapter (Next) Section 1

1.1 Deep Learning: Motivation and Development

The debut of AlphaGo in year 2016 drew worldwide attention to the evolutionary deep learning

(DL) technique, which has continued developing at a fantastic speed [1]. Deep learning is a subset

of machine learning. The relationship of deep learning to machine learning and AI technology is

shown in Figure 1.1 [2]:

AI

Example:

Knowledge

bases

Machine

learning

Example:

Logistic

regression

Representation

learning

Example:

Shallow

autoencoders
Deep

learning

Example:

MLP

Figure 1.1. Relationships of deep learning to machine learning and AI technology

2

The origins of deep learning can be dated back to the 1940s. However, deep learning has only

recently caught the public attention because it remained unpopular during the time it was proposed,

and also because it has gone through many different names before it is finally called “deep

learning”, which started in 2006 [2]. The core idea of deep learning is the successive layers of

representation. A representation means a way to encode the data. For example, a color image can

be represented by the RGB matrices; a figure can be represented by its binary format. Deep

learning intends to find a meaningful representation of the input data so that the expected output

can be achieved [3]. The term “deep” refers to the multiple layers that are connected end to end to

learn the data representations. The idea of multi-layer representation is based on the assumption

that the data in the real-world can all be regarded as composition of features. The authors in [4]

have developed sophisticated experiments and detailed explanations for how multiple layers work

in a hierarchical way to capture local features and gradually form the high-level concept, and also

a vivid visualization example of the output from each layer, as shown in Figure 1.2 [4]:

The goal of the convnet model in Figure 1.2 is to classify a large number of 2-D color images

based on their contents. As shown in the figure, the output from the first layer are simply edges

and colors; the output from the second layer begins to show corners and other edge/color

conjunctions; the output from the third layer has more invariance and captures similar textures;

layer 4 begins to show class-specific features like the dog faces and bird legs; finally, layer 5

outputs the entire objects with significant pose variation, like the dogs and keyboards, which is

obvious enough for the computer to differentiate the various types of the objects. In summary, the

shallow layers first capture the more general and simple local patterns such as lines and shapes.

As the layers go deeper, features from the previous layers will be combined and form larger and

more complicated patterns that are closer to the expected output.

3

Figure 1.2. Output from each layer in a well-trained convnet

The multiple layers for data representation are embedded within the neural network models,

which are almost always used in the deep learning studies. In the traditional machine learning

methods, the neural network usually only has one hidden layer. This simple structure leads to two

major challenges that inflicts the generalization of the traditional machine learning algorithms [2].

The first challenge is the curse of dimensionality, which means that the input data has multiple

dimensions, and the traditional machine learning method cannot fully capture the spatial or

temporal correlations crossing the different dimensions with its limited representation ability. In

4

addition, many machine learning algorithms are built upon prior beliefs that the target function has

smoothness or local constancy, which means the function does not change much within a small

region. This is a very strict assumption and it does not apply to statistical challenges involved in

solving AI-level tasks. The deep learning method, however, replaces this assumption with a much

milder one that the data to learn is generated by the composition of features, from simple to abstract,

following a hierarchical structure, as has been mentioned above. The relaxed assumption allows

the deep learning method to fit to more complex and high-dimensional functions, and to obtain

better generalization than the traditional machine learning method.

Today, with the improvement of the computer hardware and software infrastructure, as well as

the accessibility to massive amount of data as training samples, it becomes possible to build and

train neural networks with growing depth for solving increasingly complicated real-world

problems, and their accuracy improves over time as available computation resources increase.

Some current exemplary breakthroughs of the deep learning technique include near-human level

image classification/speech recognition/autonomous driving, superhuman go playing, etc.[3]. With

the explosion of data and the continuous advancement of the hardware and cloud-based

computation resources, deep learning technology will undoubtedly be applied across more and

more potential fields and serve societal well being in this information era.

1.2 Classification and Application of Deep Learning

There are three important branches in the field of machine learning: supervised learning,

unsupervised learning, and reinforcement learning. Supervised learning is a type of machine

learning with labeled data as training samples. The algorithm aims to formulate a mapping between

the input and the output based on the large numbers of correct samples. The labeled samples can

be regarded as the “supervisor” to provide guidelines for tuning the parameters of the learning

model and to lead it toward the more accurate formulation. There are two main subgroups of

supervised learning, the classification and the regression. With regard to the former, computer

5

vision, handwriting recognition, and medical diagnosis are its real-world realizations. As for the

latter, regression is the problem of estimating or predicting a continuous quantity. Stock price

forecasting, speech recognition, and machine translation are all in essence a supervised regression

learning process.

Unsupervised learning is a completely different class from supervised learning. In unsupervised

learning, there are no labeled samples as the correct answers for the machine to learn. A typical

example of unsupervised learning is the clustering problem, such as grouping customers with

similar purchasing inclinations, identifying fake news and spam emails, and document

classification based on tags and contents. Another example of unsupervised learning is the

autoencoder. An autoencoder consists of two parts, the encoder and the decoder. The encoder

develops a proper way to represent the input data and the decoder transforms the representation

back to the input space. The autoencoder belongs to unsupervised learning because there is no

labeled data used during the learning and the neural network only builds reconstructions of the

input. Some useful applications of autoencoder include data denoising and dimensionality

reduction, where the autoencoder extracts the most meaningful features from the input data and

formulate a compact representation.

Reinforcement learning is a third type of machine learning problem that aims at optimizing the

time-sequential decision strategies via learning. Unlike the above two types of learning,

reinforcement learning does not rely on large quantities of data, and its performance is evaluated

by a reward signal. In reinforcement learning, an agent is placed in an unknown environment. At

each time step, the agent takes an action, and is transferred to the next state following a transition

probability. The agent will get a reward from the environment as feedback of taking a certain action.

The goal of the agent is to maximize the total reward after reaching the end state.

There have been a broad range of applications of reinforcement learning, from playing video

games to training self-driving cars. The independence of reinforcement learning from exact models

and data gives it high flexibility to adapt to problems that are unobservable or partially observable,

6

or have enormous or infinite solution spaces.

All three types of machine learning methods have been revitalized in combination with the deep

neural network, which is the hard core behind the deep learning technique. In the field of power

systems, studies applying the deep learning techniques for power system control and operation

have just begun, but they have already covered a wide range of topics. In the following subsections,

a comprehensive review of the most recent related research works will be presented.

1.3 Applications of Deep Learning in Power Systems

The power system is a highly complex, multi-dimensional artificial infrastructure that shares

many features with the above-mentioned real-world tasks, such as time variability, partial

observability, and random uncertainty. Conventional model-based methods encounter difficulty

when analyzing the stable and transient operation features of power systems, especially with the

increasing penetration of renewable energy, demand response resources, as well as the fusion with

the information, communication, and transportation networks. The deep learning technique

provides a brand-new way to overcome the issue with high-dimensional data mining and feature

extraction, and to compensate for the training data insufficiency and low generalization ability that

inflicts the traditional shallow machine learning methods. The following sections present the

existing power system researches in all the three machine learning categories.

1.3.1 Supervised learning in power system control and operation

1) Forecasting

One major application of supervised learning in power systems is the forecasting, where large

quantities of historical data are available for algorithm training. The newly developed deep neural

network can capture the temporal or spatial correlations between the inputs with its hierarchical

structure, and to provide a more accurate forecast result for time series data.

The most commonly used deep neural network in forecasting is called the long-short-term-

memory (LSTM) recurrent neural network. It is different from the conventional feedforward neural

7

network due to the fact that it not only has connections between different layers, but also has

connections between neurons in the same layer, which makes it possible to capture the temporal

correlations of the inputs at different time steps, and an ideal fit for time sequential data. Ref. [5]-

[6] apply the LSTM for short-term residential load forecasting, and they compare it with a series

of traditional machine learning methods including space vector machine (SVM) and K nearest

neighbor (KNN) to demonstrate the improved accuracy of the method. Ref. [7] further considers

the impact of fluctuated PV generation on the net load forecast, and proposes a Bayesian deep

learning, which combines Bayesian probability theory with the LSTM. Instead of outputting the

deterministic net load forecast, the model generates the estimated probability distribution of the

net load to cover uncertain scenarios. Authors in [8]-[9] focus on short-term wind speed forecasting,

where the LSTM is applied to capture the temporal features of the wind data, and convolutional

neural network (CNN) is applied to capture the spatial features of the wind data. The combination

of the two methods considerably improves the forecast accuracy. Ref. [10] proposes a bidirectional

LSTM to forecast day-ahead load, wind and PV to help virtual power plants to optimize their

bidding strategy in the day-ahead wholesale market. Apart from LSTM, other deep neural networks,

such as deep residual networks [11] and quantile regression neural network [12] have also been

used for load forecasting.

2) Load monitoring and identification.

Another important application of supervised learning in power systems is load monitoring and

load identification. Load monitoring is a technology to disaggregate the cumulative energy

consumption of a customer into appliance-level consumptions. Load identification is to analyze

some characteristics of customer energy consumption based on the smart meter data. Both studies

make way for more advanced smart grid applications such as load forecast for individuals,

customized demand response programs, and energy-efficient appliance utilization. In [13], the

deep convolutional neural network (deep CNN) is designed as a classifier to detect Type II

appliances, i.e., the appliances that have multiple operation modes, such as washing machines and

8

dish washers. Deep CNN is applied to capture the local dependencies of the appliance power

consumption patterns. In [14], the authors further consider the simultaneous detection of multiple

appliances, and they propose a deep dictionary learning method to solve the multi-label

classification. In [15], the LSTM neural network is applied to identify the parameters of the time-

varying ZIP load model and time-varying induction motor model under the random impacts of

weather conditions and customer behaviors. In [16], the authors apply deep CNN to extract

features from massive load profiles and use a support vector machine to identify socio-

demographic information of the customers form the extracted features, such as age and social class.

In [17], a wide and deep CNN is designed to capture the periodicity of the customer electricity

consumption and to further detect the potential electricity theft.

3) Security assessment and fault diagnosis

Supervised learning has also been adopted as a monitoring tool to identify the power system

potential vulnerability and risks for the sake of safe and reliable operation. In [20], a hierarchical

deep domain adaptation (HDDA) approach is proposed as a system fault classifier. With its layered

feature learning framework, the well-trained HDDA model can be transferred to detect faults under

different loading conditions, which cracks the obstacle of training data insufficiency. In [21], the

deep convolutional neural network and PMU measurements are combined for faulted line

localization and transient stability monitoring, respectively. In [22], the deep neural network is

applied for real-time event classification under renewable penetration. The deep autoencoder is

applied in [23]-[25] for system security assessment and system islanding detection, due to its

automatic feature extraction ability. In [26], the deep CNN is applied to predict the transient

stability to provide an early termination for time-domain simulation based on existing simulation

results.

4) Other applications

Some other applications of supervised learning include optimizing the charging schedule of

electric vehicles [18], predicting AGC control signal [19], identifying false data injection [27], and

9

state estimation [28], etc.

In summary, data acquisition is key to supervised learning. For problems where massive amounts

of data are easily accessible, such as the forecast problem, deep learning methods outshine

traditional machine learning methods because their multi-layer hierarchical structures allow for

more delicate feature extraction and more complex model regression. However, in some real-world

scenarios, when the training data is not readily available, the performance of supervised learning

can be seriously limited. In such cases, the deep reinforcement learning, introduced in the

following section, will work more efficiently.

1.3.2 Unsupervised learning in power system control and operation

As has mentioned before, one representative unsupervised learning model is the deep

autoencoder (DAE). The learning process of the DAE usually consists of two stages: the

unsupervised pre-training stage and the supervised fine-tuning stage. In the pre-training stage, a

DAE is trained to extract features from the input for reconstruction. The goal at this stage is to

generate the output that is as close as possible to the input data with nonredundant features. The

pre-training provides a good network parameter initialization and avoids the model to get stuck in

the local optimum. In the fine-tuning stage, only the well-trained encoder part of a DAE is kept to

efficiently extract features from the labeled data, and the network parameters are further updated

via backpropagation until the target output is achieved.

In [30]-[34], DAE is applied for forecasting uncertain factors including electricity price, wind

generation, and solar irradiance. In [29], DAE is applied as a cluster tool to categorize a vast

number of daily load profiles to better analyze customer responsiveness to dynamic price signals.

In [35], DAE is proposed as a novel cyber attack tool, where it is trained using the normal

measurements, and the anomalies will result in large reconstruction error. In [36], a Monte Carlo

tree search method is applied for fast generator start-up after large-scale blackout, where DAE is

built as the value network to evaluate the current generator start-up scheme at each search step.

Generative adversarial networks (GANs) is another representative of unsupervised learning. As

10

can be inferred from the name, GAN is mostly applied for generating data samples. This function

is especially desired in the cases when there is no easy access to available historical data, or when

generating the training data using the conventional analytic method is too costly. GAN consists of

two deep neural networks, the generator and the discriminator. The function of the generator is to

produce data samples that follows the distribution of the historical data, and the function of the

discriminator is to discriminate the generated data from the actual historical data. By training the

two neural networks simultaneously, the model will eventually reach an equilibrium where the

discriminator can no longer tell the generated data from the actual data, which means that the

generator can produce data that is realistic enough for further analysis. Authors in [37] propose to

apply GAN to create renewable scenarios to cover the full diversity of the uncertainties. The

generated scenarios can be used for further power system planning and operation. In [38], GAN is

applied to make up for missing PMU measurement data for dynamic security assessment.

1.3.3 Reinforcement learning in power system control and operation

Reinforcement learning utilizes a reward mechanism instead of the labeled samples to guide the

learning behavior. In power system studies, reinforcement learning has been applied to a wide

range of time-sequential optimal decision-making problems. Deep reinforcement learning (deep

RL) is a combination of the deep neural network (DNN) with reinforcement learning. The DNN is

utilized to estimate the Q value or the possibility for each state-action pair during the learning. In

the conventional reinforcement learning, a tabular method is applied, where all the states and

actions are listed as a 2-D table, and the Q-values of each pair are filled in. The tabular method can

only be applied for discrete action space. And once the state space changes, the table needs to be

rebuilt. By contrast, the data-driven DNN gives deep RL high generalization to adapt to new

environments. There are also certain types of deep RL methods that can deal with continuous action

spaces, which will be introduced in the following section.

In [39], a deep Q learning method is developed to control a cluster of thermostatically controlled

loads (TCLs), where the deep CNN is utilized to estimate the Q value of the on/off action of the

11

TCL. The simulation results show that the proposed method can reduce the electricity cost based

merely on the observation of the air temperatures of TCLs. In [40], both the deep Q network (DQN)

and the deep policy gradient (DPG) methods are applied to optimize the scheduling of residential

loads including air conditioners, electrical vehicles, and dishwashers. The difference between the

two methods is that the former estimates the Q value of the action, while the latter estimates the

probability of the action. Both methods have higher scalability to adapt to larger state spaces than

the conventional heuristic method due to the generalization of the DNN. In [41]-[42], deep Q

learning is applied to decide the daily optimal operation schedule of the microgrid with multiple

distributed generators and energy storages. In [43], deep Q network is applied to optimize the

charging schedule of electric vehicles with the combination of LSTM for predicting price signals

as the input state. In [44], a deep deterministic policy gradient (DDPG) method is applied to

optimize the joint bidding strategy of the load serving entity in both the wholesale and retail market.

The advantage of DDPG over DPG and DQN is that the former can deal with a continuous action

space. In [45] , DDPG is applied to determine the generation command to maintain a steady local

frequency.

1.4 Summary

In this chapter, a detailed overview of the existing researches regarding deep learning techniques

in power systems is provided to give the readers a conceptual perception of the tremendous

potentials of deep learning in solving complicated real-world problems, both theoretically and

practically. In the next several chapters, some of the most complex power system operation

problems are presented, along with the initial attempts of applying deep learning techniques to

solving these problems. The feasibility of applying deep learning in real-world applications will

also be discussed.

In Chapter 2, a novel data-driven contingency screening method for power system operation

under uncertain scenarios is introduced, which is based on deep CNN. Following that, in Chapter

12

3, a fast cascading outage screening method is proposed, which considers the sequential spread of

the outages within the entire system. The method is a combination of both deep CNN and depth-

first-search (DFS) method, where the former is utilized to estimate the system security status, and

the latter is utilized to identify the contingency path with highest severity. The method is also

compared with conventional model-based power flow methods to verify its accuracy and

computational efficiency. In Chapter 4, a model-free RL method combined with DNN is presented

for realizing the economic energy management of multi-microgrid system in connection to the

distribution system. In Chapter 5, the DDPG method is applied to optimize the setpoint of a multi-

zone residential HVAC system. In Chapter 6, a multi-agent DDPG method is employed for solving

the Markov game at the day-ahead electricity market to optimize the bidding strategies of each

generation company (GENCO) bidder. Finally, Chapter 7 summarizes the current researches and

provides directions for future works.

13

Chapter 2 N-1 Contingency Screening with Deep

Convolutional Neural Network

The increasing penetration of renewable energy makes the traditional N-1 contingency screening

highly challenging when a large number of uncertain scenarios need to be combined with

contingency screening. In this chapter, a novel data-driven method, which is similar to the image-

processing technique, is proposed for accelerating N-1 contingency screening of power systems

based on the deep convolutional neural network (CNN) method. Once the deep CNN is well trained,

it has high generalization and works in a nearly computation-free fashion for unseen instances such

as topological changes in the N-1 cases and uncertain renewable scenarios. The proposed deep

CNN is implemented on several standard IEEE test systems to verify its accuracy and

computational efficiency. The proposed study constitutes a solid demonstration of the considerable

potential of the data-driven deep CNN in future online applications. Equation Chapter (Next) Section 1

2.1 Introduction

The increasing penetration of renewable energy into the bulk power system has brought the issue

of uncertainty, which leads to higher requirement on system operation security. Security

assessment decides whether the system is operating safely, critically, or unsafely based on a series

of criteria including voltage level, power flows, islanding, etc. [46] Security assessment can be

used as a reference for system operators to take preventive measures against operation risks.

The N-1 contingency screening is a crucial part of security assessment. The N-1 contingency

refers to the loss of any single element, e.g., a transmission line or a generator, in the power system.

The main challenge for N-1 contingency screening under uncertainty is the extreme model

complexity in the case of large-scale power systems, combined with many uncertain scenarios. For

instance, a traditional contingency screening for an N-branch system requires N power flow runs;

however, once this is combined with M independent wind plants with 10 uncertain scenarios in

14

each plant, contingency screening needs to be performed for N×10M power flow runs [47]. Even

though it is well known that a traditional full-fledged N-1 contingency screening in the actual ISO

operation takes only tens of seconds to complete, it will be unmanageable if many wind scenarios

must be combined.

Tremendous research efforts have been dedicated to accelerating computation speed for N-1

contingency screening in the literature. In [48], a mixed integer linear programming model is

formulated to calculate system reserve margin with renewable and load uncertainties involved. To

reduce model complexity for large-scale power systems, a fast security assessment approach is

proposed in [49] by removing redundant constraints from the original model, while keeping the

same feasible region. Similarly, in [50], an iterative methodology is proposed for filtering only the

active N-1 congestion constraints with the utilization of a line outage distribution factor in order

to reduce the computational burden. A multi-level filtering algorithm for operation scenario

selection is proposed in [51] to decrease the number of constraints in stochastic transmission

planning with N-1 contingency analysis.

All of the above methods can be summarized as the model-based method, where a large set of

algebraic equations needs to be solved for security assessment. However, the model-based method

faces the problem of identification inaccuracy and computational inefficiency, which constitutes a

major impediment for its online application. In contrast to the model-based method, the data-driven

approach relies on raw data for direct system analysis to avoid identification error, and with

generalization to unseen inputs, it reduces computational burden. The above features make the

data-driven method a fast and reliable alternative tool for security assessment in real-time scenarios.

In terms of the data-driven approach for security assessment, some machine learning methods,

including decision tree, artificial neural network (ANN), and support vector machine, have been

introduced in [52]-[54]. In these studies, the algorithm relies on state variables, e.g., voltage

magnitude and voltage angle, to quantify system security level. In such cases, the power flow needs

to be calculated first to obtain the required state variables, which can be computationally costly in

15

the case of large-scale systems with multiple scenarios involved.

To address the above issues with both the model-based and data-driven method for security

assessment, a novel data-driven approach for static security assessment with N-1 contingency

based on deep CNN is presented in this chapter. If compared with other data-driven approaches,

the major highlight of the method is that the proposed deep CNN only depends on the known

parameters, i.e. system topology and bus power injection, instead of system state variables, for

evaluating system security status. Hence, once the model is well-trained, it can be readily applied

to new test cases with little computation effort. This nearly computation-free feature of deep CNN

makes it a desirable tool for online applications.

The rest of the chapter is organized as follows: section 2.2 briefly introduces the composite

security index for system security assessment; section 2.3 explains the basic idea of deep

convolutional neural network and the design of the proposed deep CNN model; section 2.4 verifies

the deep CNN performance on IEEE standard test cases; finally, section 2.5 concludes the chapter.

2.2 Composite Security Index of Power System Security Assessment

To accurately evaluate the security status of the power system under N-1 contingency, a

composite security index is first introduced, which measures both bus voltage limit violation and

line flow violation. For each measurement, two types of limits are defined, the security limit and

the alarm limit. Security limit refers to the maximum allowed range for the bus voltage and line

flow, and alarm limit indicates the closeness of the system to the limit violation. Accordingly, the

system security status can be categorized into three types: secure, alarm, and insecure. A system is

in the alarm state if at least one of the measurements violates the alarm limit but is still within the

security limit. A system is insecure if at least one of the measurements violates the security limit

[55]. Several other measures need to be defined before proceeding to calculate the composite

security index.

For bus voltage, the normalized deviation of bus voltage from the alarm limits is defined as

16

follows:

 , ,

, ,

0, 0,

u l

i i i iu l

u li i i ib b
v i v ii i

u l

i i i i

v A A v
if v A if v A

d dV V

if v A if v A

 (2.1)

In Eq. (2.1), vi is the voltage magnitude of the ith bus; V
b

i is the base voltage magnitude; A
u

i and

A
l

i are the upper and lower boundary of the voltage alarm limit. The normalized deviation of the

alarm limit from the secure limit is defined as follows:

 ,

u u l l

i i i iu l

i ib b

i i

S A S A
g g

V V

 (2.2)

In Eq. (2.2), S
u

i and S
l

i are the upper and lower boundaries of the voltage security limit. For line

flow, only the upper boundary of alarm limit and secure limit is needed. The normalized line flow

violation of the alarm limit is defined as follows:

,

, ,

, ,

,

0,

l p l

p l l p l

p l l p l

P A
d if P A

Base MVA

d if P A

 (2.3)

In Eq. (2.3), Pl is the power flow of the lth line; Ap,l is the alarm limit of the line flow. The

normalized deviation of the alarm limit from the security limit is defined as follows:

, ,

,

p l p l

p l

S A
g

Base MVA

 (2.4)

In Eq. (2.4), Sp,l is the security limit of the line flow. Based on the above definitions, the

composite security index (SI) for the system is defined as follows [53]:

1

2
,, ,2 2 2

, , ,

() () ()

u l m
p lv i v im m m

u l
i i lv i v i p l

dd d
SI

g g g

 (2.5)

Eq. (2.5) is based on the concept of a hyper-ellipse inscribed within the hyper-box for measuring

limit violation [56], where m is the exponent used in the hyper ellipse equation. In this study, m is

set to be 1. A higher value of SI means that the system is at a higher risk level. For example, if both

17

voltage magnitudes and line flows are within the alarm limit, which means that the system is

operating within the secure region, then d
u

v,i, d
l

v,i, and dp,l are all zeroes, which leads to a zero SI; if

any voltage magnitude or line flow is out of the alarm limit but still within the security limit, which

means that the system can maintain the operation for a short time, then d is smaller than g, which

leads to a value of SI that is larger than 0, but mostly below 1; last, if any voltage magnitude or

line flow is above the security limit, which means that the system is close to collapse, then d will

be larger than g, which will definitely leads to an SI larger than 1.

2.3 Deep CNN-based N-1 Contingency Screening

2.3.1 A brief on deep CNN

Deep CNN is a type of ANN with multiple hidden layers. Deep CNN is known for its strong

capability in processing data that has a grid-like topology, e.g., image data. Each image can be

represented by a 2-D matrix with pixels filled in. The key of deep CNN lies in that it formulates a

hierarchical structure that mimics the visual cortex of humans. According to visual neuroscience,

in image recognition, our brain first perceives the color and brightness of the observed object, then

the edges, angles, lines, and other local details, followed by the shape, texture and more abstract

information, and finally the entire image.

The CNN follows the same logic of the visual cortex. It consists of multiple convolutional layers,

each of which contains several convolution kernels. Each convolution kernel scans the entire input

to capture the detailed local features. All of the captured features will formulate a feature map for

the neural network to identify. As the convolutional layer goes deeper, more high-order, and

abstract features will be captured, which preserves the most useful information for image

recognition. The principle of deep CNN feature extraction is shown in Figure 2.1:

18

original image RGB parameter feature
map

inputConvolution

kernel

Deep CNN
feature extraction

x

y

identification

Daisy: 1

Rose: 0

Lily: 0

output

Figure 2.1. The principle of deep CNN feature extraction

Deep CNN has an important feature, which is sparse connectivity [2]. In conventional neural

networks, usually every output unit is connected to every input unit. The number of connection

parameters that need to be trained can be tremendous. In the case of deep CNN, each output unit

in the feature map is only connected to a square patch, named as field of review, from the input

that is closest to its location, instead of the entire input. This is called sparse connectivity. The

reason of using sparse connectivity is that in one image, one pixel is closely related to its

neighboring pixels, but is less related to more distant pixels. Hence, connections between the less

related units are removed. With sparse connectivity, the number of parameters for training is

greatly reduced, which improves computational efficiency.

2.3.2 Mapping power system data to deep CNN input data

Deep CNN is a natural fit for solving power system problems for two reasons. First, the power

system topology has a grid-like structure, and can be fully described by matrices, e.g. nodal

admittance matrix, element-bus incidence matrix, branch-path incidence matrix, etc. Second, the

power system also possesses the feature of sparse connectivity. The voltage level at one bus is

closely related to its neighboring buses, and it is less affected by the buses that are far away.

Therefore, a hierarchical deep CNN can learn the element-bus relationship, the line connection, and

the entire topology layer by layer based on power system raw data.

19

In the case of static security assessment, the idea is to apply deep CNN as a classifier for fast

system security status classification. The input to the deep CNN will be the power system raw data,

including system control variables and system topology, and the output will be the system security

status. To realize this function, the first step is to map power system raw data to a grid-like structure

for the CNN to read. Following the composition of 2-D image data, an n-bus power system can be

represented by four 2-D matrices as shown below:

11 12 1 11 12 1

21 22 2 21 22 2

1 2 1 2

n n

n n

n n nn n n nnn n n n

g g g b b b

g g g b b b

g g g b b b

G B (2.6)

,1 ,1

,2 ,2

, ,

0 0 0 0

0 0 0 0

0 0 0 0

inj inj

inj inj

inj n inj nn n n n

p q

p q

p q

P Q (2.7)

In Eq. (2.6)-(2.7), matrices G and B are the bus conductance matrix and bus susceptance matrix,

respectively; matrices P and Q are the bus active power injection and bus reactive power injection,

respectively. Hence, the input data to the deep CNN will have the size of n×n×4.

Notice that in Eq. (2.7), the two bus power injection matrices are sparse since only diagonal

elements are occupied. To reduce the data size for efficient network training, the bus power injection

matrices are further replaced by the following two 1×n vectors:

,1 ,2 , 1

,1 ,2 , 1

,

,

inj inj inj n n

inj inj inj n n

p p p

q q q

P

Q
 (2.8)

In addition, the bus admittance matrices G and B can also be simplified. The aim of inputting

the bus admittance matrix is to indicate whether there is a change in system topology during N-1

contingency. In this study, we mainly consider N-1 line outage. Whenever there is a line outage,

the self-susceptance element in B matrix will have a different value, but not necessarily the self-

conductance element, since some lines have zero resistance. Hence, we can eliminate the G matrix

20

and the non-diagonal elements in B matrix, and only keep its diagonal elements to represent the

system topology, as shown in Eq.(2.9):

 11 22 1
, nn n

b b b

B (2.9)

In this fashion, the original n-bus power system can be equivalently represented by three 1×n

vectors, and the dimension of input data becomes 1×n×3. Compared with the original size n×n×4,

the volume of input data is greatly decreased, which saves both storage space and computation

efforts.

2.3.3 Constructing deep convolutional neural network

1) An illustration of convolution operation

In a CNN, the core component is the convolutional layer. A convolutional layer is composed of

trainable convolution kernels, or the filter. The function of the filter is to extract features from the

input to generate feature maps that are representatives of the input. The feature extraction can be

mathematically expressed as follows:

1 1

0 0

(,) (,) (,)
c c

new

u v

I i j I u i v j u v b

 (2.10)

In Eq. (2.10), Inew(i,j) is a single unit in the newly generated feature map I from the convolutional

layer; I(u,v) is a single unit in the original input; ω(u,v) is a single unit in the filter, which is also

called the weight parameter; c is the size of the filter; b is the bias. Figure 2.2 gives an illustrative

example of the above convolution operation:

21

input I

filter

feature map
Inew

feature map
Inew

input I

filter

padding

 (a) no padding (b) with padding

Figure 2.2. Illustration of convolution operation

In Figure 2.2(a), the size of the input is 5×5, the size of the filter is 3×3. Each unit in the feature

map is the weighted sum of 9 units in the input. The filter scans the input with a step size of 1, hence

the size of the feature map is 3×3. The feature map thus contains the aggregated information from

the input. If we want to keep the size of the input, a padding method can be used, as shown in Figure

2.2(b). Two additional rows and columns are added to the input with 0 filled, this is called zero-

padding. Then after the convolution operation, the feature map will have the same size as the input.

From the above explanation, it can be observed that the feature extraction function of the

convolutional layer refers to adding different weights to the inputs. In conventional machine

learning, usually the features of the input have to be computed and selected manually to feed to the

neural network for the algorithm to learn. In the case of deep CNN, because of the existence of

multiple hidden layers and multiple filters in each layer, the features of the input can be

automatically captured by the filters through changing the weights. After the deep CNN is well

trained, the weights of the filters will have been properly selected so that the most obvious features

from the input will have larger weights, while the less important features are neglected. In this way,

the desired output can be obtained. In a convolutional layer, there usually exists multiple filters, and

each filter will generate a different feature map. The purpose of utilizing multiple filters is to observe

the input from different perspectives, i.e. assigning different weights to the same input unit, so that

a comprehensive feature extraction can be obtained. The above explains the automatic feature

22

extraction ability of the deep CNN.

2) Back propagation algorithm

Before training the neural network, a loss function is defined to describe the accuracy of the deep

CNN output. A lower loss indicates higher accuracy of the model. In the N-1 contingency screening

problem, we would like deep CNN to realize two goals: as an AC power flow (ACPF) regression

tool to generate power system state parameters, i.e., voltage magnitude and voltage angle, and as a

classifier for categorizing system security status, which is a multi-task learning model. The loss

function for this multi-task learning model is defined as follows:

* 2 * 2 *

, , , ,

1 1 1

1 1
((() ()) log())

SN n n

i s i s i s i s s s

s i iS

L v v y y
N n

 (2.11)

In Eq. (2.11), Ns is the number of training samples, and n is the number of buses. The first two

terms are the mean square error (MSE) of the bus voltage variables, where θi,s and vi,s are the deep

CNN estimated voltage values, and θ
*

i,s and v
*

i,s are the actual voltage values. The third term is called

the cross-entropy, where ys is the deep CNN estimated security classification, and y
*

s is the actual

security classification. The cross-entropy is the most widely used loss function for multi-

classification problems. In statistics, minimizing cross-entropy is equivalent to maximizing the

maximum likelihood. One advantage of applying cross-entropy as loss function is that it barely

experiences gradient saturation, which facilitates algorithm convergence

Furthermore, to avoid the issue of overfitting, which is a common problem in regression analysis

due to the existence of abnormal values, we add L2 regularization to the loss function (2.11).

Generalization means that the well-trained neural network can be effective across a wide range of

inputs, not just the training data that has been fed to the neural network for learning. Sometimes a

deep CNN can grow very complex with large values as its weights and biases, where instead of

understanding the data, the deep CNN will memorize the one-to-one mapping between the input

and the output, which leads to the result that the deep CNN fits well on the training set, but it has

poor performance on the test set. This is because all the data in the test set are unseen by deep

23

CNN, and it has no memorized information for the new samples. The above problem is called

overfitting.

 L2 regularization is a common method to overcome the issue of overfitting. L2 regularization

refers to a norm-2 penalty of weight parameters, as shown in Eq. (2.12):

* 2 * 2 *

, , , ,

1 1 1

1 1
((() ()) log())

2

SN n n
T

i s i s i s i s s s

s i iS

L v v y y
N n

 ω ω (2.12)

In Eq. (2.12), α is called the regularization parameter, which is a positive number. The penalty

term ωTω/2 stands for model complexity. An overfitted model that intends to match all the input

samples, including abnormal values and noises, will have higher model complexity. By adding the

penalty term to the loss function, the value of weight parameters will be decreased, and the model

will evolve toward low complexity and high generalization.

Upon the definition of loss function, the network weights and biases are updated via a back-

propagation algorithm, which is shown as follows:

() ()
1(1) ()

() () ()

1 2

L

L L

k k
Nk k l

l l k k k

N N l

J JL

J J

 (2.13)

() ()
1(1) ()

() () ()

1 2

L

L L

k k
Nk k l

l l k k k

N N l

J JL
b b

J J b

 (2.14)

In Eq. (2.13)-(2.14), k is the index of iteration; l is the index of convolutional layer; NL is the

total number of convolutional layer; J
(k)

l is the output of the lth layer; η is called the learning rate.

Since the deep CNN has multiple convolutional layers, the chain rule is applied to calculate the

partial derivative of the parameters at each layer. As can be observed, the back-propagation

algorithm is essentially a gradient search method. Once the derivative is calculated, the weights

and biases can be manipulated to decrease the loss function to its minimum and to obtain the

optimal training results.

3) Design of deep CNN structure

The structure of deep CNN for voltage angle calculation is illustrated in Figure 2.3. It consists

24

of two convolutional (Conv) layers and three fully-connected (FC) layer. The function of the

convolutional layers is to extract features from the input power system raw data. Each

convolutional layer is composed of a number of learnable convolution kernels, which are shown

as purple squares in Figure 2.3.

In the constructed deep CNN, the convolution kernel size for the two layers are [3, 3, 1, 12] and

[3, 3, 12, 24]. The first two figures are the height and the width of the convolution kernel, the third

figure is the depth of the kernel, and the last figure is the number of kernels. Zero padding is

applied here to maintain the width and the height of the input. The generated feature maps further

go through an activation function. The activation function will bring nonlinearity to the regression

model. This is because the original mathematical relationship between bus power injection and

bus voltage is not linear, and cannot be fully represented by the linear convolution operation in

(2.10). The limitation of linear transformations will be overcome by the activation function.

In this study, rectified linear unit (ReLU) is applied as the activation function. The ReLU

function has the form of f(x) = max(x,0), which is a quasi-linear function. This feature allows it to

preserve high generalization ability as a linear model, but also avoids the issue of saturation as in

the case of other activation functions, such as sigmoid and tanh function.

The output from the second convolutional layer will go through two separate fully-connected

layers, FC1 and FC2. This is because in the designed deep CNN, two types of output will be

generated. The first output is the system state variables, i.e., the bus voltage angles and bus voltage

magnitudes. The second output is the system security status.

In Figure 2.3, the function of the fully-connected layers, FC1, FC2 and FC3, is to transform all

the extracted features from the power system raw data into the desired output via matrix

multiplication. For FC3, since its output is the classification of the system security status, the

softmax function is used as the activation function. The softmax function has the following

expression:

25

1
2

5 7

3 4 6

28

8

13
12 16

119

17

10

27

14

15

18

19

20

2122

23 24 25

26

29
30

Power system test case

P= [pinj,1,pinj,2, ,pinj,n]1×n

Q= [qinj,1,qinj,2, ,qinj,n]1×n

B= [b11,b22, ,bnn]1×n

Matrix representation and simplification

G
n×n

B
n×n

P
n×n

Q
n×n

1 2 Security assessment based on deep CNN3

[3,n] 12

Conv1

[3×n×24,2×n]

Output:
voltage

ReLU
+

3×3×1×12
3×3×12×24

3×n×24 1×1Input: [B;P;Q]

Conv2

ReLU
+

Reshape
+

FC1

[3,n]

[2,n]

FC2

[3×n×24,n]

FC3

ReLU
+

Softmax

+
Output:
system
security
status

secure

alarm

insecure

[1,3]

θ1 θ2 θnθi

v1 v2 vnvi

...

...

...

...

[n,3]

Figure 2.3. Deep CNN structure for N-1 contingency screening

exp()

softmax()
exp()

i
i

jj

x
x

x

 (2.15)

The softmax function in Eq.(2.15) normalizes each input element by getting their exponential

value divided by the sum of all exponential values. In this way, the difference between any two

input elements is enlarged. For example, if xi ≥ xj, then exp(xi) will be much larger than exp(xj).

This higher differentiation among the input can lead to more accurate classification results. The

security status with the highest probability is taken as the status for the current system operation.

2.4 Case Study

The proposed image-processing-like, deep CNN model for ACPF calculation under N-1

contingency is tested on the IEEE 9, 30, 57, 118, and 300-bus systems, WECC 181-bus system,

and European 1354-bus system to verify its accuracy and computational efficiency. To include

multi-scenario uncertainty, Monte Carlo simulation is used to create load and renewable energy

variations in training samples. For load uncertainty, we assume that the bus active load follows a

uniform distribution within the range of [0.8, 1.2] of the base case, and the bus reactive load is

calculated by multiplying the bus active power consumption with a factor uniformly drawn from

the range [0.15, 0.25]. For renewable energy uncertainty, we change 40% of the conventional

generators in the original test cases into wind generators, and the forecast error of wind generation

follows a normal distribution with zero mean and a standard deviation of 0.05. For N-1 contingency,

26

one line is randomly tripped in each training sample. The hardware environment for deep CNN

training is an Nvidia GeForce GTX 1080 Ti Graphic Card with 11 GB memory and 1.582 GHz

core clock. The software environment is the open-source deep learning platform TensorFlow for

the proposed approach and MATPOWER [57] for the traditional model-based approach. The

regression and classification results are shown in Table 2.1.

In Table 2.1, the errors of and v are the per unit mean absolute value over the test set compared

with the results from model-based ACPF calculation. The classification accuracy is the ratio

between the number of test samples that have been correctly classified and the total number of test

samples. As the table shows, deep CNN model possesses considerably high accuracy for ACPF

calculation, even for large-scale power systems. Also, the training time is within an acceptable

range given that the training is completed off-line.

To validate the computational efficiency of deep CNN regression, we compare calculation time

of the AC power flow with N-1 contingency using both deep CNN and model-based AC power

flow methods, as shown in Table 2.2.

Table 2.1. AC power flow results based on deep CNN

Case
No. of samples Errors Training

time(s)

Classification

Accuracy Training Test v

9 3292 1412 6.1e-3 7.2e-4 11.42 97.24%

30 4262 1066 1.5e-3 5.4e-4 23.06 96.25%

57 3360 1440 4.9e-3 1.6e-3 31.59 99.24%

118 3027 1298 7.5e-3 2.9e-4 57.88 100%

181(WECC) 2530 1085 5.7e-2 3.8e-3 65.04 97.70%

300 3445 1477 6.9e-2 2.3e-3 148.91 99.05%

1354 (Eu.) 3981 1707 1.1e-2 1.9e-3 1548.94 96.84%

27

 Table 2.2. Test time comparison

Case Test size
Test time (s)

(deep CNN)

Test time (s)

(model-based)

Acceleration

ratio

9 1412 0.017 3.500 206

30 1066 0.016 3.303 206

57 1440 0.018 4.323 240

118 1298 0.021 4.905 234

181 (WECC) 1085 0.025 4.655 186

300 1477 0.044 10.15 231

1354 (Eu.) 1707 0.264 34.13 129

In Table 2.2, the last column shows the acceleration based on the computing time of deep CNN

and the model-based ACPF method. The deep CNN approach is from 129 to 240 times faster than

the latter, with an average of 205 times faster. This is because the well-trained deep CNN has high

generalization to unseen test cases, and it can automatically generate AC power flow results and

classify system security status under the new given input without any iterative calculation of power

flows.

To further demonstrate the superiority of the proposed deep CNN over traditional ANNs, we

design an ANN model with only one hidden layer. The size of the hidden layer is [3×n, 3×n×24],

which extracts the same number of features as the deep CNN. Hence the two neural networks are

comparable. The regression and classification results of ANN are shown in Table 2.3:

Table 2.3. AC power flow results of ANN

Case
No. of samples Errors Training

time(s)
Test time (s)

Classification

Accuracy Training Test v

9 3292 1412 2.0e-2 2.3e-3 6.52 0.011 91.64%

30 4262 1066 9.0e-3 2.4e-3 10.29 0.008 87.43%

57 3360 1440 2.7e-2 9.0e-3 14.88 0.009 92.43%

118 3027 1298 2.7e-2 9.0e-4 36.28 0.017 98.54%

181 2530 1085 1.8e-1 1.3e-2 47.31 0.019 75.94%

300 3445 1477 2.0e-1 5.7e-3 139.04 0.036 78.00%

1354 3981 1707 - - - - -

28

The results of the 1354-bus system are not available for ANN because the large-scale training

data cause memory overflow. For all the other systems, deep CNN provides more accurate

classification and regression results than the traditional shallow ANN. This is because the multiple

convolutional layers within the deep CNN can extract better features for classification and

regression, and this is the key contributing factor to the recent success of CNN in other applications.

In addition, the traditional ANN is composed of fully-connected layers, where each neuron is

connected to all of the subsequent neurons. This requires more neural parameters and computation.

While in deep CNN, the sparse connectivity reduces both redundancy and computation to achieve

better accuracy and computational efficiency. Note, although the deep CNN requires longer

training time, it is of less importance since training is done offline.

2.5 Conclusions

In this chapter, a data-driven method based on deep CNN is applied for fast N-1 contingency

screening. The deep CNN is constructed as both a regression tool and a classifier to evaluate

system security status based on power system raw data. With the proposed deep CNN, no power

flow calculation is required, which greatly spares computational effort. The simulation results on

IEEE test cases verify the classification accuracy of the deep CNN. In addition, comparison with

the model-based ACPF substantiates its high computational efficiency in dealing with unseen

instances. Therefore, the proposed deep CNN can be a promising tool for online security

assessment as well as other related power system researches.

2.6 Acknowledgement

This work was supported in part by the CURENT research center, in part by the ISO New

England, and in part by the NSF under Grant ECCS-1809458.

29

Chapter 3 Fast Cascading Outage Screening based on Deep

CNN and Depth-First Search

In this chapter, a data-driven method is proposed for fast cascading outage screening in power

systems. The proposed method is a combination of deep convolutional neural network (deep CNN)

and depth-first search (DFS) algorithm. First, deep CNN is constructed as a security assessment

tool to evaluate system security status based on observable information. With its automatic feature

extraction ability and high generalization, a well-trained deep CNN can estimate AC optimal

power flow (ACOPF) results for various uncertain operation scenarios, i.e. fluctuated load and

system topology change, in a nearly computation-free manner. Second, a scenario tree is built to

represent the potential operation scenarios and the associated cascading outages. The DFS

algorithm is developed as a fast screening tool to calculate the expected security index value for

each cascading outage path along the entire tree, which can be a reference for system operators to

take predictive measures against system collapse. The simulation results of applying the proposed

deep CNN and the DFS algorithm on standard test cases verify their accuracy and that their

computational efficiency is thousands of times faster than the model-based traditional approach,

which implies the great potentials of the proposed algorithm for online applications.

Equation Chapter (Next) Section 1

3.1 Introduction

3.1.1 Motivation

Protecting the bulk power system against cascading outages is crucial to enhancing the system-

wide operation economy and resilience. According to the definition of NERC [58], the cascading

outage refers to the situation where the system uncontrollably and successively loses elements

triggered by an initial incident at any location. Cascading outage will result in widespread electric

service interruption, which cannot be restrained from sequentially spreading beyond an area

predetermined by studies. However, the recently growing penetration of uncertainties into the bulk

30

power system has increased the system vulnerability, as well as the chance for cascading outages.

Although the probability for cascading outage to induce blackouts is tiny, the consequences can be

catastrophic, resulting in tremendous economic losses and social impacts.

There have been several large-scale blackouts caused by cascading outages in recent years, such

as the western U.S. blackout in 1996 [59], the U.S.-Canadian blackout in 2003 [60] and the

Arizona-California. blackout in 2011 [61]. Given the costly effects of the cascading outages,

NERC has required that each Transmission Planner and Planning Coordinator shall define the

criteria or methodology used in the analysis to identify system instability for cascading or

uncontrolled islanding during planning assessment studies [62].

Based on the above context, both research communities and the industries have devoted

substantial endeavors on cascading outage studies. However, the majority of the existing studies

are founded on the conventional model-based method for cascading outage analysis, which suffers

from certain computational limitations. Motivated by this consideration, in this chapter we propose

a data-driven method that combines the deep CNN with DFS algorithm for a fast cascading outage

screening and risk assessment, which aims at potential online applications under uncertain

scenarios. More detailed literature review and contributions of this chapter will be presented in the

following subsections.

3.1.2 Literature review

The existing research works regarding cascading outage can be mainly classified into three

categories: cascading outage simulation and pattern recognition, system vulnerability detection

and risk assessment, and post-outage recovery.

In regard to the first category, simulation models have been developed to study the impact of

cascading outages, such models include OPA model and its multiple improved versions [63]-[64],

Manchester model [65], and CASCADE model [66]. Refs. [67]-[68] further develop multi-

timescale cascading outage models to study both slow dynamics like thermal transient and fast

dynamics like electrical instability. Ref. [69] proposes a sequential importance sampling strategy

31

to reduce the number of cascading failures, while still capturing very rare events. To gain better

statistic insights into the pattern of the cascading outages propagation, refs. [70]-[71] apply a

Markov chain approach, where transition probabilities are estimated from historical data; while

refs. [72]-[73] utilize the expectation maximization method, in which the parameters of the

probability function are their maximum likelihood estimates.

With respect to system vulnerability detection and risk assessment, a forward-backward

Markovian tree search algorithm is introduced in [74], where the risk of the current outage is the

expected risk of all its following outages. Based on this work, ref. [75] further considers weather

impacts on the line outage probabilities and the system risks, and it develops the associated

analytical probability model. Ref. [76] studies the quantitative relationship between the component

failure probability and the blackout risks during cascading outages, which can be used as an

effective risk assessment tool under the system components change. Ref. [77] shows that the

cascading outage risk can be underestimated if not considering the multiple solutions of DC

optimal power flow (DCOPF) models, and then proposes remedial measures. Ref. [78] proposes a

fast screening method for vulnerable transmission lines based on PageRank algorithm, where a

vulnerability degree of each line is calculated based on its post-contingency flow under the N-1

contingency of all the other lines. Ref. [79] defines a branch loading assessment index and designs

a cascading fault graph based on the proposed index to demonstrate the vulnerability of each

transmission line.

For post-outage recovery measures, simulation-based optimization method [80], multi-agent

system method [81], and Markovian tree search method [82] are introduced to reduce the risk

mitigation cost through generator re-dispatch and transmission capacity allocation.

The above concern motivates the development of the data-driven method as a meaningful

alternative for fast cascading outage screening. As opposite to the model-based method, the data-

driven method formulates an approximate mapping between the input and the output. And once

the algorithm is well-trained, it is a generalized model that can automatically produce outputs from

32

unseen new inputs, without a massive amount of analytical computation. Therefore, the data-

driven method can be promising for future online cascading outage analysis with real-time data

input.

The application of the data-driven method in cascading outage analysis is still at its initial stage

in literature. Although some works have been dedicated to utilizing machine learning methods,

e.g., ANN [56], CNN [23] and deep autoencoder [24], for security assessment under contingency,

few of them has considered the risk of the following cascading outages, which may cause the

violation of NERC security standards. In [83], a three-stage decision tree method is proposed to

classify the severity level of the cascading blackout. The system states obtained from wide area

measurement system (WAMS) are used to train the decision trees, which proves to have a high

classification accuracy. In [84], the authors propose a Monte Carlo cascading failure simulation

method utilizing the existing model-based software package and a risk assessment method of

cascade path based on decorrelated neural network ensembles. However, in this last work, the line

flow is used as input to the neural network for system risk evaluation, which implies that the power

flow calculation is still needed for new test cases. The ultimate goal of the data-driven method is

to utilize the direct system observations, i.e. topologies, as the input to the algorithm without any

additional analytical calculation for indirect measurements (such as line flow) to realize a nearly

computation-free manner. Otherwise, the data-driven method can still be computation-inefficient

for online applications under uncertainties.

3.1.3 Contributions

Based on the previous works, in this chapter, we propose a novel data-driven method for fast

cascading outage screening and risk assessment. The proposed method is a combination of deep

CNN and DFS algorithm. First, the deep CNN is constructed as a regression tool of the AC optimal

power flow (ACOPF) model to quickly obtain the system state variables. The state variables are

then utilized to calculate a security index for evaluating outage severity. Secondly, a scenario tree

is built to represent all the potential cascading paths in real-time uncertain scenarios. Also, a DFS

33

algorithm is utilized to screen all the cascading outage paths in the scenario tree to detect the

severest path. The detection is based on the estimated security index value from deep CNN. The

screening results can serve as a reference for system operators to take corrective measures against

system collapse. The main contributions of this chapter are summarized as follows:

1) We propose the deep CNN as an efficient regression method for approximating ACOPF

calculation. Unlike other data-driven methods that rely on system state variables as input, a well-

trained deep CNN only needs direct observations, e.g., system topology and bus power injection,

and will automatically generate the state variables for evaluating outage severity. Hence, it can be

directly applied to new test cases without the computationally intensive power flow calculation.

2) We establish a multi-scenario tree as an efficient representation of all the potential cascading

outage paths with uncertainties involved. Furthermore, we apply DFS method for a fast cascading

outage screening over the entire tree. The DFS method aims to calculate the expected accumulative

security index of each cascading outage path for evaluating their severity. With a proper screening

order of all the cascading outages, the proposed DFS can complete the traversal with extremely

low elapsed time, which is highly applicable in the case of large-scale power system cascading

outage screening.

The rest of this chapter is organized as follows: section 3.2 demonstrates the design of the

proposed deep CNN for ACOPF regression; section 3.3 explains the construction of the scenario

tree and the details of the DFS algorithm; section 3.4 verifies the proposed deep CNN and DFS

algorithm for cascading outage screening on standard test cases; finally, section 3.5 concludes the

chapter.

3.2 Deep CNN-based Security Assessment

3.2.1 Mapping power grid data to deep CNN input data

In the case of system security assessment, the function of deep CNN is to approximate ACOPF

calculation and to obtain the system state variables. The state variables can then be used to calculate

the security index to evaluate system security status. To achieve this function, the first step is to

34

map power system raw data to a grid-like structure for the CNN to analyze.

The ACOPF model is shown as follows:

1

min () ()
gN

P g Q g

g

C P C Q

 (3.1)

 . . (cos sin)g d i j ij ij ij ij

g i d i j i

s t P P v v g b

 (3.2)

 . . (sin cos)g d i j ij ij ij ij

g i d i j i

s t Q Q v v g b

 (3.3)

 ,max ,maxij ij ijF F F (3.4)

,min ,maxi i iv v v (3.5)

,min ,max ,min ,max,g g g g g gP P P Q Q Q (3.6)

In Eq. (3.1)-(3.6), the known parameters are the bus active/reactive load Pd, Qd, and system

topology gij, bij, which will be the input to the deep CNN; and the unknowns are the bus

active/reactive generation, Pg, Qg, bus voltage magnitude vi, and bus voltage angle i. Given that

we only need bus voltage for security index calculation, the deep CNN will only output vi and i in

this case. However, notice that the input parameters differ in their dimension. Given an n-bus power

system, the Pd and Qd will both be 1×n vectors, while gij and bij are both n×n matrices. Deep CNN

requires that the input known quantities should have the same dimensions. For example, for the

image data, each image has the following dimensions: w (width) ×h (height) ×c (number of color

channels), where the dimensions for each color channel are the same. To reach this requirement, we

utilize the following 1× n vector to represent system topology:

 11 22diag(imag(Y)) diag(B) = , nnb b b (3.7)

In Eq. (3.7), Y is the bus admittance matrix, and B is the bus susceptance matrix. The reason for

utilizing the bus self-susceptance elements to represent system topology change is that whenever

there is a line outage, the self-susceptance elements will definitely change, but not necessarily the

self-conductance elements, since some lines have zero resistance. By removing the non-diagonal

35

elements in the B matrix, we only keep the most dominant elements as an efficient representation

of system topology. Since deep CNN regression is a data-driven method, the regression error

caused by the missing data in the G matrix and the B matrix will be automatically made up via

iterative training based on existing data samples. With the above simplification, a deep-CNN

regression for ACOPF calculation only requires three 1×n vectors as the input. The volume of

training data is acceptable even in case of large-scale power systems.

In the above static security assessment problem, mean square error (MSE) is used as the loss

function:

* 2 * 2 * 2

, , , ,

1 1 1

1 1 1
(() () ())

2

SN n n
T

i s i s i s i s s s

s i iS

L v v SI SI
N n n

 ω ω (3.8)

In Eq. (3.8), NS is the number of training samples, n is the number of power system buses, θ
*

i,s

and v
*

i,s are the desired output from the deep CNN, i.e., the actual bus voltage angle and bus voltage

magnitude, θi,s and vi,s are the estimated bus voltage angle and bus voltage magnitude. Since we

need to evaluate the system security status, a third term is added to the loss function, which is the

difference between the actual security index value SI
*

s and the estimated security index value SIs.

The objective of deep CNN is to minimize the deviation between the estimation and the ground

truth to formulate an accurate enough ACOPF regression model. The last item in Eq. (3.8) is the

L2 regularization, which is to avoid the issue of overfitting.

3.2.2 Constructing deep convolutional neural network

The structure of the deep CNN is demonstrated in Figure 3.1. It consists of two convolutional

(Conv) layers and five fully-connected (FC) layers. The functions of these deep CNN layers are

explained in detail as follows:

a) The input data is a 3×n matrix, where n is the number of buses. These 3×n data corresponds

to three 1×n vectors, i.e., the real loads of n buses, the reactive loads of n buses, and the n diagonal

elements of the B matrix.

The first convolutional layer has a filter with the size of [3,3,1,12], where the first three numbers

36

are the height, width, and the depth of the filter. The last figure is the number of filters. In this

layer, 12 filters will be sampling the input data. As a result, the input data is deepened after scanned

by the filter. In addition, the zero-padding is applied to maintain the original size of the input data.

Hence the output of the first convolutional layer has the size of [3,n,12].

The filter has the size of 3×3, which means that it assumes the three neighboring buses have

strong interrelations, e.g., bus 2-4, bus 3-5, since each time the filter samples a size of 3×3 from the

input. This is in accordance with physical laws because the bus voltage angle is most affected by

its closest neighboring buses. The size of the filter can also be increased to include more

neighboring buses, but this comes with a larger quantity of parameters that need to be trained.

b) The output from the first convolutional layer will go through an activation function. The

activation function will add nonlinearity to the feature extraction. This is because Eq. (2.10) is a

linear transformation. However, the ACOPF model (3.1)-(3.6) is nonlinear and nonconvex.

Introducing the activation function to feature extraction can remove the limitation of linear

representation. The ReLU is used as the activation function.

c) The output from the ReLU function will go through the next convolutional layer, which has

filters with the size of [3,3,12,24]. More features are extracted by the second convolutional layer.

d) The output from the second convolutional layer has the size of [3, n, 24], which is a 3-D tensor.

It is further flattened as a 1×(3×n×24) vector and goes through a fully-connected layer. In the fully-

connected layer, there is a connection between each neuron and each element in the input. In this

case, the size of the weight parameters in the fully-connected layer is [3×n×24, 2×n], and the size

of the bias is 2×n. So that after the matrix multiplication, the output will become a vector with the

size of [1, 2×n], which is a combination of n bus voltage magnitudes and n bus voltage angles.

e) Because we need to evaluate the system security status, the obtained voltage variables will

further go through the next four FC layers to calculate the security index, which is a regression of

Eq. (2.5). Before sending the voltage variables to the FC layer, the diagonal elements of B matrix

are added to the voltage tensor to reflect the system topology change. This is because in Eq. (2.5),

37

the line flow is related to system topology.

The four following FC layers have the size of [3×n, 12×n], [12×n, 6×n], [6×n, n], and [n, 1],

respectively. After the matrix multiplication, the final output will be a 1×1 scalar, which is the

security index value.

Via the above deep CNN, both the system state variables and system security index can be

obtained. Some may argue that since we only need the security index to evaluate system status,

there is no need to output the bus voltage variable, which may result in a less complicated neural

network structure. However, the security index value only shows the system security status as a

whole, and it cannot reflect the local weakness and vulnerability. With system state variables, we

can gain insights into the local voltage margin and line flow margin. In summary, the state variables

cover more detailed information of system operation than the security index value.

[3,n] 12

Conv1

[3×n×24,2×n]

Output:
Bus voltage angle
And bus voltage
magnitudeReLU

+

3×3×1×12 3×3×12×24

3×n×24 1×1 [1,2×n]Input: [Pd;Qd;Bii]

Conv2

ReLU
+

Reshape
+

FC1

[3,n]

θ = [θ1,θ2, ,θn]

v = [v1,v2, ,vn]

Adding diag(B)
to the voltage
vector to
represent the
topology change

[3×n, 12×n]

FC2

[12×n, 6×n][n,1]

ReLU
+

FC5Output:
Security

index
value

SI

FC3

ReLU
+

[1,3×n]

FC4

ReLU
+

[6×n, n]

Figure 3.1. Deep CNN structure for security assessment

38

3.2.3 Training sample generation

In the training phase of the deep CNN, large quantities of training samples are required for fine-

tuning the neural network parameter. Since the proposed deep CNN is designed for cascading

outage analysis, in the training sample, power flow results for k outage stages are included, where

k indicates the number of electrical components that are out of service. In this study, we mainly

consider line outage contingency. During power system operation, once a transmission line is

tripped, it may cause overloading of other transmission lines and induces cascading line outages.

The probability of the lth transmission line failure is calculated as follows [84]:

,

,

, ,

, ,

1, | |

| |
, | |

l p l

l p ll

p l l p l

p l p l

P S

P Ap
A P S

S A

 (3.9)

At each outage stage, based on Eq. (3.9), the line with the highest failure probability is selected

as the tripped line. The whole process of generating cascading contingency training samples is

shown in Figure 3.2, and is explained as follows:

1) To begin with, an operation scenario is randomly generated based on Monte-Carlo simulation

to represent real-time uncertainties. In this study, we mainly consider the load variations;

2) Under the generated scenario, the model-based ACOPF is conducted to evaluate system

security status; the system parameters and power flow results are stored for future training of deep

CNN;

3) Based on the obtained power flow results, the tripped line is selected according to Eq. (3.9).

If there are several lines that are out of limit, the line with the highest probability is selected as the

tripped line;

4) Since we consider cascading outages in this study, if the number of line outage stages reaches

k, then go to step 5); else go back to steps 2)-3) to repeat the above process;

5) If enough operation scenarios have been generated, then the whole process is complete; else

go back to step 1) to regenerate operation scenarios and repeat the above cascading outage process.

39

start

Monte-Carlo based
scenario generation

Line outage selection
based on probability

Meet the number
of operation
scenarios?

end

j = j + 1

i = i + 1
No

Yes

No

Yes

Generator redispatch
via ACOPF

Calculate SI based on
power flow results

Store Pd,
Qd ,Bii,v,θ,

and SI

Initialize scenario
index i = 1

Initialize outage
stage index j = 0

Meet the number
of outage
stages?

Figure 3.2. Flowchart of generating cascading outage training samples

3.3 Cascading Outage Screening based on Depth-First Search Algorithm

In the previous section, deep CNN is constructed to approximate ACOPF for evaluating system

security status. In this section, we will demonstrate how to apply the calculated security index in

cascading outage screening under multiple real-time scenarios.

Given that the cascading outage is a time sequential process, we construct a scenario tree to

represent the continuous dynamic changes of the system operation scenarios, which is shown in

Figure 3.3 [47].

40

Operation
scenario

Initial
stage

.

.

.

p1

s1

sw

s2

T(1)
11

.

.

.

.

.

.

T(1)
12

T(1)
1e

T(2)
11

.

.

.

T(2)
1e

T(w)
11

.

.

.

T(w)
12

T(w)
1e

T(1,1)
21

T(1,1)
2h

.

.

.

.

.

.

T(1,e)
21

T(1,e)
2h

...
...

.

.

.

T(2,e)
21

T(2,e)
2h

T(w,1)
21

T(w,1)
2h

.

.

.

.

.

.

T(w,e)
21

T(w,e)
2h

...

...
...

...
...

...
...

...
...

...
...

T(1,1, ,1)
k1

T(1,1, ,1)
km

.

.

.

.

.

.

T(1,e, ,p)
k1

T(1,e, ,p)
km

.

.

.

...
...

...
...

...
...

...
...

...
...

.

.

.

.

.

.
.
.
.T(w,1, ,q)

k1

T(w,1, ,q)
km

.

.

.

.

.

.T(w,e, ,r)
k1

T(w,e, ,r)
km

.

.

.

.

.

.

.

.

.

Stage 1
outage

p2

pk

Stage 2
outage

Stage k
outage

Figure 3.3. Multi-scenario tree for cascading outage screening

Figure 3.3 corresponds with the process of training sample generation shown in Figure 3.2. In

Figure 3.3, beginning at the initial stage, different operation scenarios are first generated to

represent the real-time uncertainties using Monte Carlo simulation. The uncertainties are regarded

as a disturbance to trigger the following cascading line outages. At each tree node, i.e., at each

outage stage, T stands for system topology, the superscript records all the previous stages, and the

subscript indicates the current stage. Take T
(1,1)

21 as an example, in the superscript “(1,1)” , the first

“1” indicates the operation scenario 1, and the second “1” indicates the first line outage scenario

in the 1st outage stage; in the subscript “21” , the “2” indicates the 2nd outage stage, and the “1”

indicates the first line outage scenario in the 2nd outage stage.

On each branch that connects two tree nodes, pk is the line failure probability, which can be

calculated by Eq. (3.9). A cascading outage path is defined as a path that starts from the initial

stage and terminates at the kth outage stage. A value is assigned to each node along the path, namely

41

the security index SI. The goal of cascading outage screening is to evaluate the severity of each

cascading outage path based on SI.

We define the following accumulative security index for severity measurement:

() ()

exp

(1) (1) ()

exp 1 exp(), , 2,..., 2

k k

k

i i i

i

SI p SI

SI p SI SI for i k k

 (3.10)

In Eq. (3.10), starting from the kth outage stage, the accumulative security index is calculated in

a recursive manner. For example, for the cascading outage path s1→T
(1)

11 →T
(1,1)

21 →……→T
(1,1,…,1)

k1 ,

the accumulative security index is calculated as follows:

(1,1,...,1) () ()

1 exp

(1,...,1) (1) (1) ()

(1)1 exp 1 exp

(1,1) (2) (2) (3)

21 exp 2 exp

(1) (1) (1) (2)

11 exp 1 exp

:

: ()

: ()

: ()

k k

k k

k k k

k k

T SI p SI

T SI p SI SI

T SI p SI SI

T SI p SI SI

 (3.11)

Finally, SI
(1)

exp is taken as the final accumulative value of the entire cascading outage path.

Based on Eq.(3.10), we design the following DFS algorithm for calculating the accumulative

security index for each cascading outage path, as shown in Figure 3.4. The main idea of the DFS

algorithm is to first explore the cascading outage stages along one path as deep as possible until

reaching the last outage stage, while storing the order of line outages and the associated security

index; then backtrack to the previous outage stages and update their expected security index. If all

line outages at one outage stage have been scanned, then go back to the previous outage stage and

switch to another line outage as the source node and repeat the above process, until all the

cascading outage paths are screened. The DFS algorithm is a natural fit for the cascading outage

screening because its forward-backward propagation corresponds with the recursive calculation of

SI
(k)

exp in Eq.(3.10).

Note that in the above process, the original security index at each outage stage has already been

calculated by deep CNN. Once the deep CNN is well-trained, it can be directly applied to new test

cases in the multi-scenario tree and automatically generates ACOPF results and the associated

security index, which greatly reduces computational burden. In the next section, the simulation

42

studies prove that the combination of the deep CNN and the above DFS algorithm makes it possible

to scan a large-scale multi-scenario tree with extremely low time cost, while maintaining the

desired accuracy.

start

Initialize scenario
index i = 1

Initialize outage
stage index j = 1

end

Yes

No

Yes

Store the line failure
probability and SI

Reach the
kth stage?

Search upward to the previous
stages and calculate SIexp

Search
downward to
the next stage

Traverse all the
possible line

outages?

Yes

No

Select the
next possible
line outage

Traverse all the
operation
scenarios?

No Select the
next scenario

Traverse all the
possible line outages

at the previous
stages?

Yes

No

Select the
next possible
line outage

Figure 3.4. Flow chart of depth-first search algorithm

43

3.4 Simulation Analysis

In this section, we test the proposed deep CNN and DFS method for cascading outage screening

on IEEE 57-bus system and European 1354-bus system. Deep CNN is first implemented as a

regression model of ACOPF. Then, the scenario tree and DFS algorithm are deployed for fast

cascading outage path screening.

3.4.1 Deep CNN regression of ACOPF model

The structure of the proposed deep CNN has been demonstrated in Figure 3.1. For scenario

uncertainties, we assume that the variation of load forecast error follows a normal distribution with

zero mean and a standard deviation of 0.1. In this study, we consider at most three cascading outage

stages, i.e. k = 3. The number of operation scenarios and possible line outage scenarios considered

in generating the training set and test set are summarized in Table 3.1:

Table 3.1 is explained as follows: taking the IEEE 57-bus system as an example, for the training

set, we have 33 different load scenarios at the initial stage. At each outage stage, 10 possible line

outage selections are considered based on their failure probability. As such, the total number of

training samples will be Ns + Ns × N+ Ns × N2 + ……+ Ns × Nk = Ns× (N (k + 1) – 1)/(N – 1) =

33×(104–1)/(10–1) = 36,663, where Ns is the number of load scenarios, in this case it is 33; and N

is the number of possible line outages, in this case it is 10. However, under some circumstances,

the ACOPF does not converge. Such samples are removed from the above samples. The same

explanation applies for other figures in the table.

Note that part of the training set is used as the validation set. For both systems, 20% of the training

samples are used as the validation set. The difference between the validation set and the test set is

that the validation set has load scenarios that are also included in the training set, while the test set

has different load scenarios from those in the training set (but follows the same probability

distribution). The deep CNN accuracy is verified by both sets to prove its generalization under

different instances.

44

Table 3.1. Summary of training/test set generation

Test case

Training set Test set

No. of

scenarios
Stage 1 Stage 2 Stage 3

No. of

scenario
Stage 1 Stage 2 Stage 3

57-bus 33 10 10 10 7 10 10 10

1354-bus 61 20 20 20 14 20 20 20

All the samples are generated by the MATLAB toolbox MATPOWER [57]. The hardware

environment is an Nvidia GeForce GTX 1080 Ti Graphic Card with 11 GB memory and 1.582

GHz core clock. The software environment is the open-source deep learning platform TensorFlow.

The learning rate is set to 1e-3, and the number of training epochs is set to 500. To improve the

deep CNN regression accuracy, a repeated training process is conducted. For example, with the

57-bus system, the training process for deep CNN is repeated for 3 times. Each time the learning

rate is scaled down 10 times from its previous value. This means that the deep CNN is first trained

for 500 epochs with the learning rate 1e-3, and the trained model is saved. Then the deep CNN is

trained for another 500 epochs with the saved model as the initial value and a learning rate of 1e-

4. And the new trained model is saved. The above process repeats for 3 times. For the 1354-bus

system, the process repeats for 4 times. With the repeated training, the algorithm can fine search

within the local area with a smaller learning rate to avoid the overshooting. The final training

results and the test results are shown in Table 3.2-Table 3.3:

Table 3.2. Sample set size for deep CNN training and testing

Case
Training

set size

Validation

set size

Test set

size

57-bus 24,620 6,155 5,497

1354-bus 18,680 4,670 5,278

45

Table 3.3. ACOPF regression results based on deep CNN

Case
Validation set error Test set error

v SI(%) v SI(%)

57-bus 5.3e-4 9.5e-4 0.65 6.2e-4 1.8e-3 2.80

1354-bus 2.8e-4 2.6e-4 0.09 1.6e-4 2.4e-4 0.15

In Table 3.3, the error of v and is the mean absolute difference between the actual value and

the estimated value produced by deep CNN, and the error of SI is the mean relative percentage

error. As shown in the table, the error measurement is considerably small for both systems, which

demonstrates the accuracy of deep CNN regression.

To illustrate the high computational efficiency of the deep CNN, we compare ACOPF runtime

of the 5,497 and 5,278 test samples between deep CNN regression and the model-based method in

MATPOWER, and the results are summarized in Table 3.4:

As shown in Table 3.4, the computation speed of deep CNN is thousands of times faster than

that of the traditional model-based ACOPF. This is because once the deep CNN is well-trained, it

has formulated a high dimensional mapping between the input and the output, and it can directly

generate optimal power flow results for new instances with different loading conditions and system

topology changes, without incurring the iterative calculation. This computation-free feature makes

deep CNN an advantageous tool for solving highly complex large-scale power system planning

and operation problems, where the model-based method can be excessively time-consuming and

resource-consuming. In addition, the training time for both test cases is within an acceptable range,

given that the training for deep CNN is completed off-line.

46

Table 3.4. Test time comparison

Case Training time(s)
Test time (s)

(deep CNN)

Test time (s)

(model-based)
Acceleration ratio

57-bus 906 0.16 225.85 1,412

1354-bus 24,692 5.7 8,185 1,436

[1,3×n]

[3×n×24,2×n]

Output:
θ = [θ1,θ2, ,θn]
v = [v1,v2, ,vn]

[1,2×n]

Input: [Pd;Qd;Bii]

FC2

Adding diag(B) to
the voltage vector
to represent the
topology change

[3×n, 12×n]

FC3

[12×n, 1]

+

Output:
Security

index value
SI

[1,3×n]

FC1

Sigmoid
+

[3×n, 3×n×24]

Sigmoid

FC4
+

Sigmoid

Figure 3.5. ANN structure for security assessment

To further validate the high learning ability of the proposed deep CNN, we design a traditional

ANN with fully-connected layers as comparison for cascading outage screening. The configuration

of the proposed ANN is shown in Figure 3.5.

The difference between the proposed deep CNN model and the traditional ANN is that the

former utilizes the convolutional layers to extract features, while the latter utilizes the fully

connected layers. In addition, the deep CNN has multiple hidden layers for sufficient feature

extraction, while in ANN, there is only one hidden layer between the input and the output, e.g.,

FC1 and FC3 are the hidden layers in Fig. 6. The same training set, validation set, and test set are

used for ANN training and testing. The ANN is also trained repeatedly for the same number of

epochs for fair comparison. The final regression results of ANN are shown in Table 3.5:

47

Table 3.5. ACOPF regression based on traditional ANN

Case
Validation set error Test set error

v SI(%) v SI(%)

57-bus 8.3e-4 1.9e-3 4.62 1.0e-3 3.0e-3 8.78

1354-bus (Eu.) - - - - - -

The results of the 1354-bus system are not available for ANN because the large-scale system

causes the size of the FC layer parameters exceeds the memory limit. For the 57-bus system, it can

be seen that deep CNN provides more accurate results than the traditional shallow ANN. This is

because the convolutional kernels within the deep CNN utilizes the sparse connectivity to extract

better features for model regression. In addition, the number of parameters in the convolutional

layers is much lower than that of the FC layers, which spares both computation source and storage

source.

3.4.2 Identifying cascading outage path with DFS algorithm

The function of deep CNN is to evaluate system security status for each operation scenario

during cascading outages. In this subsection, a scenario tree is first constructed to represent the

multiple realizations of real-time uncertainties. Then the security index of each node in the scenario

tree is calculated based on the estimated results from deep CNN. Finally, the DFS algorithm is

applied to evaluate the severity of each cascading outage path along the entire scenario tree.

Two scenario trees for the IEEE-57 bus system and European 1354-bus system are constructed

based on their respective test set. For the 57-bus system, because no line capacity data is given,

the alarm limit is set as 1.35 times of the line flow under normal conditions, and the security limit

is set as 1.4 times of the line capacity, which follows [84]; for 1354-bus system, the alarm limit is

set as 1.35 times of the original line capacity, and the security limit is set as 1.4 times of the line

capacity. The results of cascading outage screening are shown in Table 3.6-Table 3.8.

48

Table 3.6. Time efficiency of DFS algorithm

Case No. of paths Time(s)
Average SI

(1)

exp

error (%)

57-bus 4,856 0.019 1.06

1354-bus 4,424 0.010 0.16

In Table 3.6, the fourth column is the average relative error of the accumulative security index

SI
(1)

exp based on the estimated results from deep CNN compared with the actual ACOPF results for

all the cascading outage paths. It can be seen that the average errors for the two test cases are

considerably small, which further indicates that the deep CNN regression results can be utilized as

a reliable index for cascading outage severity evaluation.

The DFS algorithm is written in MATLAB R2017b, and the hardware environment is an Nvidia

GeForce GTX 1080 Ti Graphic Card with 11 GB memory and 1.582 GHz core clock. As shown

in the third column of Table 3.7, the calculation time of SI
(1)

exp exp for all the cascading outage

paths in both test cases takes no more than 0.02 second, which demonstrates the high

computational efficiency of the DFS algorithm.

Table 3.7 presents the cascading outage path with the highest SI
(1)

exp in the two test cases, which

indicates their highest severity. “Actual” means the result is based on the real SI value for

calculating SI
(1)

exp, and “Estimated” means that the result is based on the value from deep CNN for

calculating SI
(1)

exp. In the third column, eload stands for the load forecast error. For example, in the

57-bus system, the severest cascading outage path is the 7th scenario with a load forecast error of

0.0725, with line 9-11 tripped at the 1st outage stage, line 9-13 tripped at the 2nd outage stage, and

line 3-15 tripped at the 3rd outage stage. As shown in the table, in the 57-bus system, the actual

cascading outage path is the same as the estimated cascading outage path; in the 1354-bus system,

the estimated path is different from the actual path in the third outage stage. However, the estimated

path has the third highest SI
(1)

exp if using the actual SI for calculating, which is only 0.0025% smaller

than the highest SI
(1)

exp. Therefore, it can be safely concluded that the computation-free deep CNN is

49

accurate enough to serve as a highly efficient tool for fast cascading outage screening in

combination with the DFS algorithm, especially in the case of large-scale power systems with

multiple uncertain scenarios.

Some further insights can be gained from the cascading outage screening results. In Table 3.8,

we analyze the transmission lines that are most frequently tripped at each cascading outage stage

in the first 100 cascading outage paths with the highest estimated SI
(1)

exp value, and also compare

with the results based on actual SI
(1)

exp value. The line indices marked in blue are the lines that are

missed in the estimated line set. As shown in the table, almost all of the lines in the actual line set

are detected in the estimated line set, which again proves the accuracy of deep CNN regression.

The information revealed in the table can be used as a reference for system operators to take

predictive measures for line capacity expansion or load shedding in advance to improve system

operation security against cascading risks.

Table 3.7. Cascading outage screening results

Case Scenario Stage 1 Stage 2 Stage 3

57-bus
Actual 7 (eload: 0.0725) L 9-11 L 9-13 L 3-15

Estimated 7 (eload: 0.0725) L 9-11 L 9-13 L 3-15

1354-bus
Actual 13 (eload: -0.0865) L 2426-8961 L 1146-7945 L 6806-1609

Estimated 13 (eload: -0.0865) L 2426-8961 L 1146-7945 L 3248-7309

50

Table 3.8. Index of most frequently tripped lines in each cascading outage stage

Case 57

Stage 1

Actual

lines

L 9-12, L 12-13, L 11-13, L 9-13, L 4-6, L 9-11

Estimated

lines

L 9-12, L 12-13, L 11-13, L 9-13, L 4-6, L 9-11

Stage 2

Actual

lines

L 5-6, L 3-15, L 9-10, L 12-13, L 9-12, L 11-13, L 4-

6, L 9-11, L 9-13

Estimated

lines

L 5-6, L 3-15, L 9-10, L 12-13, L 9-12, L 11-13, L 4-

6, L 9-11, L 9-13

Stage 3

Actual

lines

L 24-26, L 26-27, L 19-20, L 9-11, L 12-13, L 11-13,

L 48-49, L 13-14, L 23-24, L 4-6, L 3-15, L 9-13, L

9-10, L 5-6,

L 9-12

Estimated

lines

L 24-26, L 26-27, L 19-20, L 9-11, L 12-13, L 11-13,

L 48-49, L 13-14, L 23-24, L 4-6, L 3-15, L 9-13, L

9-10, L 5-6,

L 9-12

Case 1354

Stage 1

Actual

lines

L 3248-7309, L 4689-4936, L 6629-7309, L 1146-

7945, L 2426-8961

Estimated

lines

L 3248-7309, L 4689-4936, L 6629-7309, L 1146-

7945, L 2426-8961

Stage 2

Actual

lines

L 2426-6888, L 6629-7309, L 3248 – 7309, L 4689-

4936, L 1146-7945, L 2426-8961

Estimated

lines

L 2426-6888, L 6629-7309, L 3248 – 7309, L 4689-

4936, L 1146-7945, L 2426-8961

Stage 3

Actual

lines

L 2426-6888, L 1146-7945, L 6629-7309, L 3248-

7309, L 4689-4936, L 2426-8961, L 6806-1609

Estimated

lines

L 2426-6888, L 1146-7945, L 6629-7309, L 3248-

7309, L 4689-4936, L 2426-8961, L 6806-1609

3.5 Conclusions

In this chapter, a data-driven fast cascading outage screening approach is proposed based on

deep CNN and DFS algorithm. The deep CNN is constructed as a regression tool to estimate the

ACOPF results under different contingencies and also the system security index. The DFS

51

algorithm is applied to scan the scenario tree to detect the most severe cascading outage path based

on the estimated security index value provided by deep CNN. Simulation results on the IEEE 57-

bus and European 1354-bus systems verify the high accuracy and high computational efficiency

of the proposed method. The practical implications of the study are summarized as follows:

1) With the increasing penetrations of uncertainties into the bulk power system, the number of

operation scenarios needed to be examined for system security assessment will grow exponentially,

which will result in an unbearable computational cost to the conventional model-based methods.

The proposed data-driven method with its nearly computation-free fashion can quickly detect the

system vulnerability under multiple scenarios. The high accuracy and computational efficiency

make the proposed method a desirable choice for real-time system screening.

2) With the historical cascading outage data provided as the training set, the proposed data-

driven method can be easily adapted to power systems with different scales and multiple outage

stages. The flexibility and scalability give the proposed method the potential to be developed as a

general cascading outage screening tool in real-world applications.

3) The screening results of the deep CNN and the DFS method can serve as a reference for power

system operators to take preventive measures against the latent outages, and to reduce the system

risk management cost such as load shedding and generator redispatch. The screening results can

also be used as guidelines for future power system planning to efficiently allocate the investment

to the most vulnerable transmission devices.

3.6 Acknowledgement

This work was supported in part by the CURENT research center, ISO New England, and NSF

under Grant ECCS-1809458.

52

Chapter 4 Multi-microgrid Energy Management with Deep

Learning and Reinforcement Learning

In this chapter, an intelligent multi-microgrid (MMG) energy management method will be

proposed based on deep neural network (DNN) and model-free reinforcement learning (RL)

techniques. In the studied problem, multiple microgrids are connected to a main distribution

system and they purchase power from the distribution system to maintain local consumption. From

the perspective of the distribution system operator (DSO), the target is to decrease the demand-

side peak-to-average ratio (PAR), and to maximize the profit from selling energy. To protect user

privacy, DSO learns the MMG response by implementing a DNN without direct access to user’s

information. Further, the DSO selects its retail pricing strategy via a Monte Carlo method from

RL, which optimizes the decision based on prediction. The simulation results from the proposed

data-driven deep learning method, as well as comparisons with conventional model-based methods,

substantiate the effectiveness of the proposed approach in solving power system problems with

partial or uncertain information.

 Equation Chapter (Next) Section 1

4.1 Introduction

The latest advancement of deep learning has opened the door of new AI-driven approaches to

solve a broad range of power system problems [85]. Demand-side resource management is one of

such problems. In recent years, emerging demand-side resources are playing an increasingly

important role in maintaining the economy and security of bulk power system operation [86]-[88].

Many existing research works have been dedicated to exploring the function of multifarious

demand-side resources, e.g., distributed generators, plug-in electric vehicles, demand response

programs, and microgrids, in providing energy and ancillary services to the utility grid in both

normal and emergent status [89]. Compared with conventional stand-by units, the demand-side

53

resources hold the merit of high flexibility because they are free from ramping constraints. Their

diversity in type adds additional reliability for serving as alternative power and frequency support

to the bulk power system in case of contingency.

The increasing penetration of demand-side resources into the power system calls for demand-

side energy management, which aims to enable a coordinated and mutually beneficial interaction

between the main grid and the local resources. One of the primary goals of demand-side

management is to reduce the PAR of the load. A low PAR indicates a smooth load profile, which

avoids overloading or underloading the system. Local consumers also benefit from a low PAR by

shifting their energy consumption to off-peak hours with lower prices.

There have been substantial efforts to investigate the optimal scheduling of demand-side

resources in the literature. The concept of autonomous demand-side management is first

introduced in [90], in which a non-cooperative game is formulated between the utility company

and local customers. Iteratively, the utility provides dynamic pricing signals according to the

aggregated consumer response, and the customers optimize their energy consumption schedules

under the given price in a distributed manner. At the point of Nash Equilibrium, the minimum total

energy cost and the decreased PAR is achieved. In [91], the temporally coupled constraints of the

local consumer’s energy scheduling problem are included, and the coupled-constrained game

model is tackled by dual decomposition. In [92], the authors prove that the non-cooperative game

between the users and the utility provider is the general case of the minimum PAR ratio problem.

In [93]-[94], the gradient method is utilized for solving a local consumption schedule problem with

fast convergence. In [95], an online learning algorithm is developed, where each user learns

through past experience to approximate other users’ decisions, and to optimize its own energy

scheduling.

All of the above methods can be categorized as model-based methods, where the mathematical

equations are formulated to describe local users’ energy scheduling. Because the demand-side

management problem is usually a partially observable problem, i.e., unknown or uncertain

54

information exists, the models are generally solved in an iterative way. There are two deficiencies

of the iterative algorithm: 1) the convergence of the algorithm cannot always be guaranteed. The

convergence can only be achieved under some strict prerequisites, e.g., convex payoff functions,

which require certain assumptions and simplifications of the problem; 2) applying an iterative

algorithm in the real-world can be impractical, especially in real-time scenarios. In real-world

practices, it is more likely that the utility provider releases the price signal, and the consumers

schedule their consumption accordingly, which tends to be a one-step process. The iterative

interaction between the two sides can be both time-consuming and resource-consuming with the

potential challenge of divergence.

Based on the above challenges and motivations, we propose a data-driven method in this chapter

for optimizing demand-side energy management. Specifically, we propose the combination of two

techniques, the DNN and the RL method to overcome the complexity and inefficiency of model-

based methods. The recent years have witnessed the rapid advancement of DNN in a variety of

applications, e.g., computer vision, machine translation, and remote sensing. In the field of power

system, the DNN has been applied for prediction of uncertain factors [96], smart meter data

identification [16], modeling of renewable energy [37], and energy storage dispatch [41]. The

DNN is a data-driven method that does not rely on any analytical equations, but it utilizes

voluminous existing data to formulate the mathematical problem and to approximate the solutions.

The multiple hidden layers and the large number of neurons within the DNN can automatically

extract features for data analysis to achieve an accurate model regression or classification. Once

the DNN is well trained, it will develop high generalization and can be directly applied to new

instances without costly numerical computation. Compared to the conventional model-based

method, the DNN is highly computational efficient while maintaining considerable accuracy.

The RL method is well known for its applicability in solving problems with hidden information.

RL focuses on providing the optimal time-sequential decisions within an unknown environment.

This is realized via continuous interactions between the decision-maker, which is called the agent,

55

and the environment. Through this learning process, the agent is able to gain knowledge of the

environment and to take actions that affect the environment in order to reach its objective.

Currently, RL has been widely spotted in areas including robotics and automation, computer games,

auto pilot, and dialog system.

There have also been significant efforts to implement RL method in solving complex power

system problems. The utilization of RL to optimize the residential demand response schedule is

first discussed in [97]. The method is later decomposed to the device-level to achieve higher

computational efficiency [98]. The research in [99] further includes the smart energy hub to the

residential DR management to initiate a real-time energy monitoring and to boost the learning

process. In [39]-[40], both a DNN and RL are leveraged for an economically efficient residential

load control. DNN is used to estimate the potential reward of each move of the consumer, and RL

is used to coordinate the actions from a long-term perspective. This combination is called deep

reinforcement learning (deep RL). The authors in [43] proposed the application of deep RL to

optimize the real-time electric vehicle charging schedule with the consideration of future electricity

price. The feasibility of applying deep RL to load frequency control with stochastic renewable

energy penetration is investigated in [45]. More potential applications of deep RL in power system

studies have been discussed in [47].

Inspired by the previous works, in this chapter, we propose the utilization of both DNN and RL

method to solve the problem of MMG energy management. Different from the load control model

in the previous works, a microgrid contains both generation and consumption units, leading to

more variables and constraints with higher model complexity. In such cases, the conventional

model-based method may become inapplicable due to the computational burden, which makes the

data-driven method a more desirable and efficient alternative solution. The main contributions are

summarized as follows:

 1) A data-driven DNN is constructed to model the MMG response under dynamic retail price

signals. The DNN is trained based on historical data and without requiring the user information

56

from local microgrid operators. Uncertain factors within the microgrid system are also included in

the training set. The well-trained DNN has high generalization and can automatically generate

MMG power exchange under the new given input.

2) A model-free RL technique is applied for the distribution system operator (DSO) to optimize

the retail pricing for local microgrids. The RL method aims to maximize the profit of selling power

while reducing the PAR ratio. The DSO is able to achieve a near-optimal pricing strategy with the

substantial exploration ability of the proposed RL method.

 3) A comprehensive performance evaluation of the proposed method is provided through

various simulations to verify its feasibility in practical scenarios. A comparison with model-based

method is also presented to demonstrate the superiority of the proposed data-driven method.

The rest of this chapter is organized as follows: section 4.2 presents the mathematical model of

the MMG energy management problem; section 4.3 demonstrates the detailed design of the

proposed DNN and the training process; section 4.4 elucidates the model-free RL algorithm for

retail price setting of DSO; section 4.5 provides the simulation results of the proposed algorithm

as well as observations and analysis; finally, section 4.6 concludes the chapter.

4.2 Modeling of Multi-microgrid Energy Management

In this section, we first introduce the mathematical model of the proposed MMG energy

management problem. The interaction between the MMG and distribution system is shown in

Figure 4.1. In the figure, a bi-directional communication channel is constructed between the

microgrids and the DSO, where the DSO releases its retail price to the microgrids, and the

microgrids send back the amount of power to purchase. The goal of MMG energy management is

to smooth the hourly power exchange profile of the MMG with proper retail price setting strategies.

57

Figure 4.1. Multi-microgrid energy management under DSO pricing control

From the perspective of an individual microgrid, each microgrid operator attempts to minimize

its operation cost under the given retail price, which leads to the following microgrid economic

dispatch (ED) model:

1 1

((()) () () () () | () (1) |)
TN Z

P DG grid z z z

DG k m m m m m es es es

t k m z

Min C P t t P t ec q t u t SOC t SOC t

 (4.1)

2(()) () (())

k

P DG p p DG p DG

DG k k k k kC P t a b P t c P t (4.2)

The objective function (4.1) represents the operation cost of the mth microgrid over dispatch

cycle NT, which is usually 24 hours. The first term in (4.1) is the generation cost of the kth

dispatchable generator, which has a quadratic form of the generation quantity P
DG

k (t), as shown in

(4.2). The second term in (4.1) is the power exchange cost, where λ(t) is the retail price at the point

of common coupling (PCC), and ηm is a factor to represent network losses. P
grid

m (t) is the power

purchased by the microgrid. Note that ηm can differ among different microgrids, because the

locations of the microgrids within the distribution network may vary. Thus, each microgrid bears

different network losses and receives different retail prices, which is also known as distribution

locational marginal price (DLMP). The third term in (4.1) is the cost of dispatching DR resources

that reside in the microgrid, where u
z

m (t) is a 0-1 binary variable indicating whether the zth demand

58

response block q
z

m(t) is dispatched or not, and ec
z

m is the unit price [100]. And the last term is the

degradation cost of energy storage. The change between two consecutive states of charge (SOC)

is measured as the energy storage life degradation caused by charging or discharging [101].

Microgrid economic dispatch should also satisfy the following constraints:

 ,min ,max()DG DG DG

k k kP P t P (4.3)

1

0 () () ()
Z

z z Load

m m m

z

q t u t P t

 (4.4)

 1() (), 2,...,z z

m mu t u t for z Z (4.5)

 ,max ,max0 () ,0 ()ch ch dis dis

es es es esP t P P t P (4.6)

es es() (1)+ () () /ch dis

es es es esSOC t SOC t P t P t (4.7)

 min max()es es esSOC SOC t SOC (4.8)

1

() () () (() ()) () () 0
Z

Load grid DG dis ch z z

m m k es es m m

k m es m z

P t P t P t P t P t q t u t

 (4.9)

Constraint (4.3) is the generator capacity constraint of distributed generators (DGs) in the mth

microgrid; constraints (4.4)-(4.5) mean that the total demand response dispatched should not

exceed the load P
Load

m (t), and the demand response blocks are dispatched in an increasing order;

constraint (4.6) is the charge/discharge rate limit of the energy storage, where P
ch

es (t) and P
dis

es (t) are

the charging and discharging quantity of the energy storage; constraint (4.7) calculates the energy

level of energy storage, which is SOCes(t), where ƞes is its efficiency and ∆ is the length of the time

interval; constraint (4.8) is the capacity limit of energy storage; and finally, constraint (4.9) is the

power balance constraint of the microgrid.

The DSO decides the retail price by solving the following optimization problem:

 max

1 1

(() ()) / (1) /
mT NN

grid grid grid

m m base avg

t m

Max t P t profit P P

 (4.10)

 max

1

(), 1,...,
mN

grid grid

m m T

m

P P t for t N

 (4.11)

59

1 1

() /
mT NN

grid grid

avg m m T

t m

P P t N

 (4.12)

In (4.10), the first term is the DSO’s profit from selling energy to the microgrids, where Nm is

the total number of microgrids. m is a conversion factor. This is because P
grid

m (t) is calculated by

the local microgrid operators and does not include the network losses, hence cannot reflect the real

amount of power exchange at PCC. The function m is to transform the local power exchange to

the power exchange at PCC. For the sake of simplicity, we do not consider the detailed distribution

network topology for a full-fledge DLMP model and assume that m is a known value in the

following simulations.

The second term in (4.10) is the PAR over the entire dispatch cycle, which is the ratio between

the maximum power exchange and the average power exchange of MMG. Since PAR is unitless,

the first term is divided by a constant base profitbase value to remove its unit. The DSO intends to

find the optimal retail price λ (t) that maintains a balance between the two objectives, hence there

is a weighting factor α added before the two terms.

The difficulty of solving (4.10) is that the individual microgrid power exchange P
grid

m (t) varies

with the retail price λ(t), hence it cannot be solved directly. In the following sections, we will

introduce two data-driven techniques, the DNN and RL, to crack the above problem with high

computational efficiency.

4.3 Multi-microgrid Operation Simulation with Deep Neural Network

In this section, a DNN is applied to simulate MMG operation under given price signals, i.e., to

solve (4.1)-(4.9). There are two main advantages of utilizing the DNN:

1) The neural network is readily available as a toolbox. Once the parameters are well-trained, it

has high generalization and can automatically generate the estimated amount of power exchange

between the MMG and DSO under the new retail price. Given that the individual microgrid

economic dispatch model is a nonconvex problem and that the number of microgrids can be large,

solving the MMG power exchange using the conventional analytical method can be highly time-

60

consuming. The data-driven DNN has much higher computational efficiency with considerable

accuracy;

2) The individual microgrids do not need to expose their generation or consumption information

to the DSO, given that the DNN is trained using the historical retail price data and power exchange

data. Therefore, the user privacy of microgrid owners is well protected.

4.3.1 Deep neural network structure

The ANN has long been recognized as an efficient regression tool for handling problems that are

difficult to accurately model or with high computational complexity. MMG energy management

fits this category. Hence, a DNN is constructed in Figure 4.2:

λ(1) λ(2) λ(NT)

x

y

x

y

x

y

x

y

x

y

x

y

x

y

 ...

x

y

x

y

x

y

x

y

x

y

x

y

x

y

 ...

 ...

 ...

 ...

 ...
Input:

price signal

Hidden layer 1

Activation
function

Hidden layer NL

Activation
function

Output:
Power exchange

1

(1)
mN

grid

m

m

P

1

(2)
mN

grid

m

m

P

1

()
mN

grid

m T

m

P N

 ...

Figure 4.2. Multi-layer structure of the Deep Neural Network

61

As shown in Figure 4.2, the input to the DNN is the retail price, and the output is the aggregated

MMG power exchange with the distribution system under the given price signal. The goal of the

DNN is to generate a simulated power exchange that is as close as possible to the actual MMG

response.

Before sending the raw training data to the DNN for regression analysis, data preprocessing is

implemented. The function of data preprocessing is to minimize the deviation of the training data

for improving the regression accuracy and computational efficiency.

The data preprocessing for MMG response raw data includes two steps: firstly, all the sample

input data and output data are transformed into the per unit value. By utilizing the per unit value,

different features of the sample data become comparable with each other. For the retail price

sample, given that they are at the scale of 10$/MWh, 100$/MWh is set as the base value; for the

aggregated MMG power exchange, given that they are at the scale of 100 kW, 1000 kW is set as

the base value.

Secondly, a min_max_scaler transformation is applied for further normalization, as shown below:

(() min ())

()
(max () min ())

snew s
s

ss

t t
t

t t

 (4.13)

In (4.13), s is the index of training samples, maxsλ(t) and minsλ(t) are the maximum and

minimum values of the retail price at the tth interval among the entire training set. Through the

above normalization, the values of the retail price samples will lie within the range of [0,1]. The

above data preprocessing helps create a more regular search region for faster algorithm convergence.

In the DNN structure, between the input layer and the output layer are numerous hidden layers.

The term “deep” refers to the multiplicity of hidden layers. Each hidden layer is composed of

neurons that complete the following affine transformation of the input:

() () () ()

1

l l l l

sk sj jk kj
y x b

 (4.14)

The calculation of the output of the lth hidden layer is shown by (4.14), where s is the index of

62

the sample, j is the index of the features of the sample, and k is the index of neurons. Also, ω
(l)

jk is

the weight assigned to the jth feature of the input, and b
(l)

k is the bias. As can be observed, the output

y
(l)

sk is the weighted aggregation of all the features of the input x
(l)

s captured by the kth neuron. The

function of the hidden layer is to extract sufficient features from the input data and to construct the

mapping between the input and the output.

Notice that (4.14) is a linear transformation. However, the microgrid ED model (4.1) is

nonlinear, and cannot be handled by a mere linear transformation. The ReLU function is thus added

to the hidden layer to delinearize the model, as shown in Figure 4.2.

4.3.2 DNN training algorithm

In the DNN, the network parameters ω
(l)

jk and b
(l)

k are the unknown variables that need to be

calculated. The back-propagation algorithm is applied for this cause. Before the implementation

of the algorithm, a loss function is defined as the objective of the DNN training. The loss function

implies the accuracy of the output from the DNN. In the MMG energy management problem, mean

square error (MSE) is utilized as the loss function:

* 2

, ,

1 1

1
(,) (() ())

S TN N
grid grid

total s total s

s tS T

L b P t P t
N N

 (4.15)

* *

, , , ,

1 1

() (), () ()
m mN N

grid grid grid grid

total s m m s total s m m s

m m

P t P t P t P t

 (4.16)

In (4.15), NS is the number of training samples, P
grid*

total,s (t) is the actual MMG power exchange at

the tth time interval of the sth sample, P
grid

total,s(t) is the estimated MMG power exchange. The loss

function tries to minimize the deviation between the ground truth and the estimated value to obtain

an accurate enough approximation of the MMG response.

In the studied MMG system, there exist uncertainties, e.g., distributed renewable generation

fluctuation, load variations. These uncertainties may cause extremely large or small power

exchanges. The existence of such abnormal values in the training set can lead to the issue of

overfitting, where the DNN attempts to fit to all the training samples and loses its generalization.

63

To overcome the overfitting problem, we introduce L2 regularization to the loss function (4.15),

which is shown as follows:

* 2

, ,

1 1

1
(,) (() ())

2

S TN N
grid grid T

total s total s

s tS T

L b P t P t ω ω
N N

 (4.17)

Once the loss function is calculated, the first partial derivatives of the loss function to the weights

and biases can be obtained and used to update the variables.

4.4 Monte Carlo Reinforcement Learning Method for DSO Decision-making

In section 4.3, the DNN is constructed to simulate the MMG operation under the given price. As

such, the DSO can obtain a reliable estimation of the aggregated MMG power exchange without

much computation. Next, the DSO will decide the optimal retail price setting with the goal of

maximizing the profit of selling power and minimizing the PAR, as shown by (4.10).

Note that the PAR in (4.10) is not an explicit expression of the decision variable, which is the

retail price λ (t), hence (4.10) is difficult to solve. In previous literature, similar problems are

usually solved in a distributed and iterative manner, where the utility provider first releases the

retail prices, and each local user sends back their power consumption under the given price. The

utility provider then evaluates the current PAR and adjusts the price accordingly. The above

process repeats until no power consumption change or price change happens.

The iterative method is not applicable to MMG energy management problem for the following

two reasons: 1) in previous studies, the local users are only consumers and are only allowed to

shift their load. In this way, the total energy demand becomes constant and the average hourly load

can be calculated, which only leaves P
grid

max unknown, as is the case in [90],[93]. However, in the

MMG case, since each microgrid is a prosumer, their final energy consumption cannot be predicted,

hence both P
grid

max and P
grid

avg are unknown terms, and the division leads to a nonconvex problem, the

iterative algorithm cannot guarantee to converge in a nonconvex case; 2) The iterative algorithm

can be time-consuming and resource-consuming, and not applicable for real-time applications.

64

Motivated by the above considerations, the RL method is applied in this study to crack the

intractability of the DSO pricing problem. The RL method is well-known for its applicability to

problems with unknown search spaces. For example, in the MMG energy management problem,

both maximum power exchange P
grid

max and average power exchange P
grid

avg remain unknown to the

decision-maker DSO, and they are also not analytically expressed as functions of the retail price.

The RL method has strong exploration abilities through continuous interactions with the unknown

environment and constantly updates the agent’s experience in order to make the optimal decision.

In this section, we will discuss how to implement the RL method to optimize the retail pricing

strategy of DSO.

4.4.1 A brief overview of reinforcement learning

RL is a type of machine learning approach focusing on how agents take actions within an

unknown environment with the goal of maximizing reward [102]. Briefly speaking, in a provided

environment, at each state, the agent randomly takes an action, and receives an immediate reward

from the environment. Then the agent moves to the next state with a certain probability and repeats

the above process, as shown in Figure 4.3:

In the beginning, the agent has no knowledge of what reward and next state are linked to each

action. To maximize the accumulative reward, the agent must learn the above knowledge by

continuously interacting with the environment. In most cases, the action taken at the current state

not only affects the immediate reward, but also the next state and all the future rewards. Hence, it

can be concluded that RL is a decision-making process with trial-and-error-search and delayed

reward.

65

State 0Environ-
ment

State 1

Agent Action a0

Reward r0

State s

Action a1

Reward r1

Action as-1

Reward rs-1

p(s0,a0,s1) p(s1,a1,s2) p(ss-1,as-1,ss)

Figure 4.3. Illustration of reinforcement learning

4.4.2 Mapping multi-microgrid energy management problem to reinforcement learning

RL assumes that the problem under study is a Markovian Decision Process (MDP), which is

composed of four fundamental elements: 1) a series of environment states S; 2) a set of actions A;

3) a sequence of rewards R; and 4) the probability P that describes the transition from state s and

action a to state s' and reward r.

In the MMG energy management problem, the fundamental elements of the RL are defined as

follows:

 The agent: DSO

 State: current time step t

 Action: hourly retail price λ (t), for t = 1…, NT

 Reward: Hourly profit of selling power, λ (t) ∑
Nm

m=1 mP
grid

m (t)

The ultimate objective of DSO is to maximize the total profit of selling power over the entire

dispatch cycle, plus weighted PAR, as shown in (4.10). Since both the accumulative profit and

PAR are decided by the power exchange through the entire dispatch cycle instead of a single time

step, the DSO has to be farsighted to predict the future MMG power exchange when deciding the

retail price for the current time step. This corresponds with the delayed-reward feature of RL, and

makes RL a natural fit for the MMG energy management problem.

Note that the transition function is not given in the above definitions. This is because the reward

in this problem is related to the hourly total power exchange of MMG, which is difficult to predict.

The hourly power exchange of microgrids is related to various uncertain factors within the

66

microgrid system, e.g., load variations and distributed renewable energy. In the next subsection,

we will introduce a model-free method to overcome the barrier of lacking transition function.

4.4.3 Model-free Monte Carlo method

There are two types of RL methods: the model-based method and the model-free method. The

former assumes that the problem is a known MDP with full knowledge of state transition

probabilities. In this way, the problem can be solved analytically via dynamic programming or

other iteration methods. However, for some RL problems, obtaining the transition probabilities is

not a trivial task. In such occasions, the agent has to estimate the transitions and rewards from the

interactive experiences with the environment. This is called the model-free method, since no state

transition model can be constructed in advance due to the lack of information.

The Monte Carlo method is a type of model-free method. To obtain the state and the reward

information, the Monte Carlo method deploys the simplest possible policy. It utilizes the averaged

sample reward for a certain action as its reward value. According to the law of large numbers,

when there are enough simulations and enough samples of reward, the averaged value is

approximately equal to the actual value, which proves the reasonability of the Monte Carlo method.

As mentioned previously, it is very difficult to obtain the transition probability of the state and

reward, which involves the hourly total power exchange of MMG, mainly due to the microgrid

uncertainties. Therefore, in the MMG energy management problem, we also adopt the model-free

Monte Carlo method to optimize the retail pricing strategy of the DSO. The Monte Carlo method

is displayed in Algorithm 1 [102]:

67

Algorithm 1: Monte Carlo Method for DSO decision-making

1: Generate daily retail price sequence samples NS

2: Input the price samples to the DNN to obtain the MMG power

exchange profile

3: for t in 1 to NT do

4: Choose retail price λ(s)(t) from price samples NS

5: Initialize the counter n(s) →0

6: for s’ in 1 to NS do

7: if λ(s’)(t) equals λ(s)(t)

8: do n(s) →n(s) + 1

9: end if

10: end for

11: Evaluate λ(s)(t) based on average weighted reward:

r(λ(s)(t)) = 1/n(s) ·(α∑profit(λ(s)(t)) - (1-α) ∑PAR(λ(s)(t)))

12: Select λ (t) = argmax r (λ(s)(t)), for all s∈ NS

13: end for

Algorithm 1 is explained as follows: to begin with, the DSO randomly generates large quantities

of retail price sequence samples. The price samples are then sent into the DNN to obtain the

estimated aggregated MMG power exchange. After the generation of all the price samples and the

power exchange samples, the DSO selects the optimal hourly retail price based on the procedure

as follows:

First, at each time step t, the DSO randomly picks a retail price λ(s)(t) from the sample set, then

counts the number of price samples that contains λ(s)(t) and records it as n(s).

Then, the DSO evaluates λ(s)(t) based on its average profit and average PAR. The profit(λ(s)(t)) is

calculated as follows:

() () ,(()) () () /

TNs k t s grid s

m m basek t
profit t k P k profit

 (4.18)

It can be seen from (4.18) that the profit of λ(s)(t) is the discounted accumulated profit of selling

power from t to NT , where the discount factor γ is between 0 and 1. When γ is zero, it implies that

the decision-maker focuses only on the current profit and is totally myopic; when γ is greater than

68

zero, it means that the decision-maker is farsighted by evaluating the current pricing with the

consideration of potential future profit. In this study, γ is set to 0.9 to ensure that the DSO has a

more robust pricing strategy to avoid future risks.

Next, for a single price λ(s)(t), the PAR under the price sequence [λ(s)(1), …, λ(s)(t),...., λ(s)(NT)] is

taken as PAR(λ(s)(t)). Each price is then evaluated based on the weighted sum of average

profit(λ(s)(t)) and average PAR(λ(s)(t)), as shown in line 11 of Algorithm 1. The weight factor α

represents the tradeoff between maximizing profit and minimizing PAR.

Finally, all the prices are compared and the price with the maximum weighted reward is selected

as the price for time step t, as shown in line 12. The above process is repeated for all the time steps

until the whole optimal retail price sequence is decided.

The above algorithm is a Monte Carlo method because the DSO selects the optimal price

sequences from a randomly generated sample set. Note that in the above algorithm, the price for

each time step is selected separately, i.e., the price selection process (line 6-line 10) repeats for NT

times to obtain a complete price sequence. A more intuitive way is to directly select the price

sequence with the maximum weighted reward from the sample set. However, this intuitive method

cannot guarantee to reach global optimization when the possible realizations of the price sequence

are huge. For instance, if there are NT time steps in a dispatch cycle, and for each hour, there are

Np possible prices, then the total number of candidate price sequences will be Np^(NT), which can

be an enormous figure even for small Np and NT, and cannot be completely represented by a limited

sample set. By using the average value to evaluate each hourly price and regrouping them, the

algorithm can explore beyond the given sample set and discover solutions better than the existing

combinations. This judgement will be verified in the simulation part in next section.

4.5 Simulation Analysis

In this section, we first reveal the detailed structural design of the DNN for simulating MMG

operation. Then the testing performance of the DNN is presented. Next, based on the simulated

69

results from the DNN, the model-free Monte Carlo method is applied for the DSO to decide the

optimal pricing strategy. The results are evaluated and compared with a conventional model-based

method to demonstrate the advantages of the proposed data-driven method.

4.5.1 Simulating multi-microgrid Operation with DNN

1) MMG system setup

A test case where 10 microgrids are connected to one DSO is considered here. For simplicity,

we assume that microgrids with greater serial number are farther away from PCC, hence suffer

from more network losses and receive a higher retail price. The ηm for the 10 microgrids are

assumed to be in the range of 1.01-1.1, with an incremental size of 0.01. The setting of ηm is aligned

with the results of distributional locational marginal price (DLMP) in [103], in which the DLMP

range is around 100% to 110% of the price at PCC. The m is assumed to be the same as ηm. The

compositions of each microgrid are summarized in Table 4.1:

Table 4.1 Microgrid composition

No. Compositions No. Compositions

1 WT, DE, DE, ES, DR 2 WT, DE MT, FC,ES,DR

3 WT, MT,MT,FC, ES,DR 4 WT, MT, FC,ES,DR

5 WT, DE, MT, MT,ES 6 WT, DE, FC, FC,ES,DR

7 WT, DE, DE, FC, ES, DR 8 WT, FC, FC, ES, DR

9 WT, DE, MT, FC, FC, ES, DR 10 WT, MT, MT, MT,ES,DR

WT: wind turbine; DE: diesel generation; MT: micro turbine; FC: fuel cell; ES: energy storage;

DR: demand response

70

Table 4.2. Parameters of distributed energy resources

DG type
P

DG,min

k

(kW)

 P
DG,max

k

(kW)

Quadratic coefficients

a
p

k ($/h)
b

p

k

($/kWh)

c
p

k

($/kW2h)

Micro turbine 0 30 0.4 0.0397 0.00051

Fuel cell 0 30 0.38 0.0267 0.00024

Diesel generator 0 60 1.3 0.0304 0.00104

Energy

 storage

SOC
min

es

(kWh)

SOC
max

es

(kWh)

P
ch,max

es

(kW)

P
dis,max

es

(kW)
ηes

ρes

($/MW)

20 50 25 25 0.9 100

DR quantity
33% of

 total DR

66% of

total DR

100% of

total DR

DR unit price ($/kWh) 0.44 0.46 0.48

2) Design of DNN regression model

We design a DNN with 3 hidden layers for simulating MMG operation under the given retail

price. The number of neurons in each layer is 1000. The number of inputs and outputs are both 24,

since there are 24 hourly prices with 24 hourly power exchanges (i.e., the dispatch cycle considered

here is 1 day). The number of neurons in each hidden layer is decided via repeated trial and error.

The selection of the number of neurons is a trade-off between the regression accuracy and

computational efficiency. The self-adaptive Adam Optimizer is applied with an initial learning rate

of 1e-2 [104]. In addition, the exponential decay of learning rate is applied to stabilize the training.

The initial values of the weights and biases of the DNN are obtained from Xavier initialization

[105]. Furthermore, to guarantee that the output from each hidden layer is regularized within a

certain range, batch normalization is applied to avoid algorithm divergence [106].

In this case study, 12,000 samples of retail price and power exchange are generated for the neural

network training. In the first place, the daily retail price is randomly generated as 1 to 1.5 times

higher than the wholesale market price, with a step size of 0.1. The wholesale market price can be

obtained from historical market data. Then the generated retail price data is sent to model (4.1)-

(4.9) to calculate the hourly power exchange of each participating microgrid. In addition, there

exist uncertain factors with the microgrid, e.g., the output of wind turbine, and the demand

71

variation. To make the DNN regression model more robust against uncertainties, we assume that

the forecast error of load and wind generation follows a normal distribution with zero mean and a

standard deviation of 0.1 and 0.05, respectively. Because a large number of training samples are

generated to cover enough uncertain scenarios, the well-trained DNN has high generalization to

unseen microgrid uncertainties and can provide regression results with high accuracy.

3) DNN training and testing results

The conventional model-based method is used at this stage to solve model (4.1)-(4.9). In this

study, we use GAMS/CPLEX software package to solve the model. The ratio of training samples

to testing samples is 8:2. The total number of iterations is 2,000. The hardware environment is a

Nvidia GeForce GTX 1080 Ti Graphic Card with 11 GB memory and 1.582 GHz core clock. The

software environment is the online open-source deep learning platform TensorFlow, which is

implemented on Python. The whole simulation framework is shown in Figure 4.4.

Table 4.3 shows the detailed settings of DNN training. The training result is summarized as

follows: for the 2,400 test samples, the average relative error of estimated power exchange is

0.96%, which indicates the considerable accuracy of DNN regression. The training loss (MSE plus

L2 weighted penalty) for 9,600 training samples is 0.0034, which is small enough as an indicator

of the training convergence. The time for completing 2,000 iterations is 91.05 s, which is

acceptable since the training is completed off-line.

72

Figure 4.4. Simulation framework for multi-microgrid energy management

Table 4.3 Summary of DNN training settings

Item Value

No. of hidden layers 3

No. of neurons in each

hidden layer
1000

Activation function ReLU

Loss function MSE plus L2 regularization

Learning rate 1e-2

Exponential decay rate 0.96

Exponential decay step 50

Optimizer Adam Optimizer

No. of training samples 9,600

No. of test samples 2,400

Iteration steps 2,000

Data preprocessing min_max_scaler

4) Sensitivity analysis

To further verify the high generalization of the well-trained DNN to unseen inputs, we conduct

the following sensitivity analysis of the DNN regression accuracy.

First, the effect of price disturbance is discussed. As previously discussed, for the training set

generation, the daily retail price is randomly generated as 1 to 1.5 times higher than the wholesale

73

market price. To include the price disturbance, in the test set generation, we manually create a price

peak at hours 10-11. Note that this disturbance is not included in the training set. The comparison

of price samples for training and testing is shown in Figure 4.5.

Note that there appear to be only six lines in Figure 4.5, because some price samples overlap

with others. A test set with the size of 500 based on the above price disturbance is generated and

input to the DNN. The average relative error of estimated power exchange is 1.65%. Note that this

error is slightly higher than the above 0.96%, given that the price disturbance is not included in

the training set. Still, this average relative error is low enough to verify the robustness of DNN

regression under price disturbance.

We further explore the effect of microgrid load variation to the DNN regression accuracy. Similar

to retail price disturbance, we manually create a load valley for hours 13-14 on the original

microgrid load profile for the test set generation. The comparison of the microgrid load for training

and test is shown in Figure 4.6. A test set with the size of 500 based on the microgrid load

disturbance is generated and input to the DNN. The average relative error of estimated power

exchange is 1.60%. This further verifies the robustness of DNN regression under load profile

disturbance.

Based on the above observations, it can be safely concluded that the DNN has formulated a

considerably accurate regression model between the input, which is the retail price, and the output,

which is the MMG power exchange, and is immune to the unseen disturbance in the input data.

This is due to the strong automatic feature extraction ability of the large number of neurons

embedded within the DNN. As a result, the DNN has tremendous potential in solving problems

with unclear or complex mathematical formulations.

74

Figure 4.5. Disturbance of retail price

Figure 4.6. Disturbance of microgrid load

4.5.2 Monte Carlo method for optimizing DSO pricing strategy

Once the DNN is well trained, the fine-tuned parameters can be properly stored for repeated use.

The DSO can now apply the Monte Carlo method to search for the optimal retail price for the

75

MMG. Since the Monte Carlo method is based on the law of large numbers, the more samples are

generated, the closer the obtained solution is to the actual global optimum. As previously

mentioned, each hourly retail price falls within 1 to 1.5 times of the wholesale market price, with

a step size of 0.1. Then the total number of all possible price sequences is 524 ≈ 5.96 × 1016, which

is far beyond the hardware’s computation capabilities. Instead, we generate 104, 2×104, 5×104, and

8×104 price samples respectively, to observe the effect of sample sizes on the performance of the

Monte Carlo method.

In the first place, the computation time for using the DNN to calculate an MMG power exchange,

and for the Monte Carlo method to scan all the generated samples for price setting are shown in

Table 4.4. The DNN calculation and Monte Carlo method are implemented on Matlab R2017b

plus Python, and the hardware environment is a laptop with Intel®Core™ i7-7600U 2.8 GHz CPU,

and 16.00 GB RAM. As seen from Table 4.4, using the well-trained parameters of the DNN to

calculate the approximated MMG power exchange is fast enough to generate large numbers of

samples for the Monte Carlo method. Also, the proposed Monte Carlo method is able to scan

through large quantities of candidate retail price sequences with an acceptable time elapse.

In addition, we also test the computing time for solving (4.1)-(4.9) using a conventional model-

based method. The software solver is GAMS/CPLEX, and the hardware environment is the same

as previously mentioned. The computational efficiency is shown in the last row in Table 4.4. The

acceleration ratio is the ratio between the computation time of model-based method and the DNN

regression. The latter is thousands of times faster than the former, thus the high computational

efficiency of the data-driven DNN is verified.

Note that in Algorithm 1, each price is evaluated by a weighted reward. The value of the weight

factor α will affect the eventual price selection. Figure 4.7 demonstrates the optimal price setting

obtained by the Monte Carlo method with different weight factors. Figure 4.8 compares the total

profit and PAR under different weight factors. More detailed explanations of Figure 4.7- Figure

4.8 are shown as follows.

76

Table 4.4. Computation time for DNN and Monte Carlo method

No. of

samples

Calculation time(s)

DNN Monte Carlo

10,000 2.67 31.35

20,000 3.84 35.25

50,000 7.90 41.82

80,000 12.51 51.44

No. of

samples

Calculation time(s)

(model-based method)

Acceleration

ratio of DNN

10,000 28,301 10,600

 (a) 10,000 samples (b) 20,000 samples (c) 50,000 samples (d) 80,000 samples

Figure 4.7. Optimal price setting under different weight factors

In Figure 4.7, it can be observed that with a larger weight factor, the DSO intends to increase the

hourly retail price. For example, in all the subfigures at hour 20, as α increases from 0 to 1, the

hourly retail price goes from green, which stands for a lower price value, to bright yellow, which

stands for a higher price value. This is because an increasing weight factor implies that the DSO

weighs the profit of selling power more than the PAR, as shown in (4.10). The DSO intends to

raise the price to achieve a higher profit.

Figure 4.8 demonstrates the DSO’s profit of selling power and the PAR under the specific weight

factor. The profit and PAR shown in the figures are obtained by sending the selected price sequence

to the individual microgrid model (4.1)-(4.9), and to calculate their aggregated power exchange.

The DNN is not used here because we only need to test the selected price sequence, and the

conventional model will provide an accurate result. As seen in the figures, a growing weight

77

parameter leads to higher profit and higher PAR. For example, when α is 0.1, the optimal profits

of selling power obtained based on 10,000, 20,000, 50,000, and 80,000 samples are $609, $626,

$663, and $651, respectively, and the optimal PARs are 1.0686,1.0744,1.0744,1.0744; when α is

0.7, the optimal profits of selling power obtained based on 10,000, 20,000, 50,000, and 80,000

samples are $681,$679,$682, and $682, respectively, and the optimal PARs are

1.082,1.0777,1.0840, and 1.0840, respectively. This is because with an increasing weight factor,

the DSO values the total profit more than PAR, and tends to increase the hourly retail price, which

has already been discussed in Figure 4.7. An increasing price level drives microgrids to shift more

of their load to hours with relatively lower prices, which exacerbates the peak to valley distance,

and increases PAR. Therefore, the DSO needs to make a trade-off between gaining more profit and

maintaining a smooth load profile.

It can also be observed from Figure 4.7-Figure 4.8 that the results based on larger sizes of

samples (i.e., 5×104 and 8×104) don’t show much difference. Hence, we can assume that such

sample sizes are large enough for the Monte Carlo method to find the optimal solution.

 (a) Total profit (b) Final PAR

Figure 4.8. Total profit and final PAR under different weight factors

78

A final conclusion that can be drawn from Figure 4.8 concerns the optimal value of the weight

factor. It can be observed from Figure 4.8(b) that as α increases from 0 to 0.7, the PAR increases

considerably slow, while the profit of selling power keeps growing. When α is greater than 0.7, the

PAR shows an obvious increase. Hence, the DSO is recommended to set the weight factor to 0.7

to maximize the profit of selling power, while maintaining a considerably low PAR.

(a) 10,000 samples (b) 20,000 samples

(c) 50,000 samples (d) 80,000 samples

Figure 4.9. Comparison of Monte Carlo method and intuitive method

79

As stated in section 4.4.3, the Monte Carlo method regroups the prices from different price

sequence samples instead of intuitively choosing the price sequence with the largest weighted

reward. To verify the merit of the Monte Carlo method, a comparison with the intuitive method is

shown in Figure 4.9. As can be observed in the figure, with the change of weight factor, the Monte

Carlo method is able to achieve a higher profit of selling power and lower PAR than the intuitive

method. For example, in subfigure (d), when α is 0.6, the profits of selling power obtained from

the Monte Carlo method and the intuitive method are $675 and $658, respectively; and the PARs

are 1.0705 and 1.1003, respectively. This is because the Monte Carlo method has a strong

exploration ability to discover new price sequences by regrouping the existing price samples,

which can lead to better solutions; while the intuitive method only relies on the existing samples,

which can be stuck to local optimum.

4.6 Conclusions

In this chapter, a novel data-driven method is proposed for the MMG energy management

problem. First, a DNN is constructed to simulate MMG operation under dynamic retail price

signals, with no requirement of local generation or consumption information, which protects

customer privacy. Second, the DSO applies a model-free Monte Carlo RL method to optimize its

pricing strategy, with the aim of maximizing the profit of selling power and minimizing PAR.

Simulation results demonstrate that the DNN regression model has considerable accuracy and

computational efficiency due to its automatic feature extraction ability and its high generalization.

Compared with an intuitive selection method, the Monte Carlo method proves to have strong

exploration ability in problems with no explicit mathematical formulations or with high

computational complexity. The combination of the proposed data-driven DNN and the Monte

Carlo method can be a promising tool for studying power system problems with hidden

information or vast search spaces in future researches.

80

4.7 Acknowledgement

This work was supported in part by NSF Award under Grant ECCS-1809458, and in part by

CURENT, a NSF/DOE Engineering Research Center through NSF Award under Grant EEC-

1041877.

81

Chapter 5 Multi-zone Residential HVAC Control using Deep

Reinforcement Learning

Residential heating, ventilation, and air conditioning (HVAC) is considered to be an important

demand response (DR) resource. Homeowners can greatly reduce their energy cost while

maintaining their desired comfort level by optimizing their HVAC control strategy. However, the

optimization of the residential HVAC control is not a trivial task due to the complex building

thermal dynamics and uncertainty associated with both occupant-driven heat loads and weather

forecasts. In this chapter, we apply a novel data-driven multi-zone residential HVAC control

method, the deep deterministic policy gradient (DDPG), which belongs to the category of deep

reinforcement learning (deep RL), to generate an optimal control strategy of the residential HVAC

without referring to any complex modeling formulation or time-costly analytic solving process.

The applied deep RL-based method can learn the optimal control strategy through the continuous

interaction with the simulated building environment. Simulation results of DDPG on real-world

use cases and comparisons with the deep Q network (DQN) as well as with the benchmark cases

demonstrate the effectiveness and the generalization ability of DDPG in saving energy cost while

maintaining the occupant comfort, which proves its feasibility in solving real-world high

dimensional control problems with hidden information or vast solution spaces.

Equation Chapter (Next) Section 1

5.1 Introduction

In the worldwide scope, buildings account for 40% of the total primary energy consumption and

30% of all CO2 emissions, among which a large portion can be attributed to thermal comfort

overhead [107]-[108]. Therefore, it is important to study the effective energy management of the

building demand to achieve economic and environmental benefits.

The HVAC system is currently the most widely used device for maintaining building thermal

82

comfort. It also serves as an important DR resource for peak load reduction and stabilizing system-

wide operation via proper demand-side energy management strategies [109]. In literature, there

are many studies focusing on optimizing HVAC control strategies for improving energy efficiency.

In [110], the energy management of HVAC systems is modelled under load forecast errors, where

a primal-dual algorithm is applied to seek the optimal operating states of HVAC for the consumer,

and the pricing strategy for the energy provider. In another work, a regression approach is applied

for temperature forecast for day-ahead scheduling of responsive residential HVAC demand [111].

The authors in [112],[113] discuss the potential of using the HVAC system to provide primary

frequency regulation to the bulk system via a hierarchical control strategy. A Lyapunov

optimization technique is introduced in [114] for HVAC load control without the need of

estimating system’s uncertain factors like price and temperature. A distributed transactive control

market mechanism for commercial building HVAC systems is presented in [115] to demonstrate

the effectiveness of HVAC at peak shaving and load shifting.

All of the above methods can be categorized as model-based methods, where the detailed thermal

dynamics of the HVAC with consideration of ambient environmental effects need to be modelled,

along with the requirement of analytical solution toolboxes for practical runtime control. The

model-based methods may suffer from measurement errors (e.g., building model inaccuracy), as

well as computational inefficiency, since the building and equipment models must be tailored to a

specific building to achieve accurate results. This represents a serious challenge for widespread

deployment of model-based methods.

The smart meter and related technology innovations over the past decade have built a large data

repository that enables the application of the data-driven deep learning approaches [116]. The

automatic feature extraction ability and generalization ability of deep learning makes it possible to

overcome the modeling and computing limitations of the conventional model-based method. In

the most recent years, the deep RL, which is a combination of DNN and RL, has attracted broad

attention in solving high-dimensional control and optimization problems with tremendous

83

complexity. Both academia and industry have witnessed the near-human or superhuman

performance achieved by the deep RL agent in problems like game of Go [1] and Atari [117]. In

the field of power and energy, a double Q learning method [118] and a continuous DDPG method

[119] have been applied for optimizing the energy management strategies of hybrid electrical

vehicles (HEVs), respectively. In [120], the asynchronous advantage actor-critic (A3C) is

employed to find the economic operation schedules of multiple distributed energy resources (DER)

within an energy Internet. In [121], a deep Q learning method is designed for supporting the

maintenance decision-making of the bulk power system. Given the potential operation constraints

encountered during the implementation of deep RL-based control actions, a safe deep RL method

is explored in [122] to obtain the optimal control scheme of active distribution network (ADN)

with the consideration of voltage level limits, which introduces a safe layer on top of the

conventional actor network to avoid any possible violations of the voltage constraints.

With specific respect to the HVAC system control problem, there have also been some

pioneering works in the literature focusing on utilizing the powerful deep RL approach to achieve

higher energy efficiency and economic efficiency. In [123], a DQN is constructed for coordinated

control of joint datacenter and HVAC load, in which the neural network is utilized to estimate the

Q value of state-action pair. In [39], a CNN is deployed as the approximator of the state-action

value function to better capture the spatial and temporal correlations within the input state data

with its convolutional operation. A deep policy gradient (DPG) method is investigated in [40] for

controlling multiple responsive demand including ACs, electrical vehicles and dish washers. In

[124], an actor-critic method is applied for optimizing the thermal comfort and energy

consumption of HVAC.

All of the above existing research works have demonstrated the effectiveness of the applied deep

RL methods in optimizing the HVAC thermal control strategy comparing with the designed

benchmarks. However, one common deficiency of the above methods is that they cannot handle

continuous control actions, like HVAC setpoint or air flow rate. In such cases, the discretization is

84

mostly applied to partition the continuous action space. Discretization can achieve satisfying

performance when the granularity is low or without combination of action spaces. However, it

encounters the issue of exponential explosion when the action space is high-dimensional, for

example, multiple room zones in the case of HVAC control. As a result, more simulations are

needed for training the deep RL methods and the algorithm performance can decrease.

In [125], the authors adopt the DDPG method to realize the continuous thermal control of HVAC

without discretization. However, this research work still focuses on single-zone HVAC control,

which has been previously addressed by the above-mentioned discretion methods. In addition, the

method applied is only compared with other RL methods, and no benchmark cases are designed to

verify the optimality and the generalization of the obtained control strategy.

Motivated by such concerns, in this chapter, we also apply the DDPG method for optimizing the

continuous thermal control strategy of residential HVAC. The main contributions of this work, if

compared with the existing researches, are summarized as follows:

• We apply the DDPG RL method to optimize the continuous control of multi-zone residential

HVAC. The multi-zone residential HVAC control involves more complex thermal dynamics

and environmental uncertainties, and a high-dimensional action space, which requires more

delicate problem formulation including the definitions of state, action, and reward during the

learning process;

• We conduct a comprehensive comparison between the applied DDPG method and the widely-

used DQN method to demonstrate the effectiveness of the former in dealing with the

continuous action space, which is a more common case in many real-world situations; we also

design benchmark cases without RL to prove that the applied DDPG can achieve higher

economic benefits while maintaining user comfort;

• We verify that the well-trained deep RL method has obtained high generalization and

robustness, and is able to adapt to new environment with different price signals and physical

conditions to provide the optimal HVAC control strategy.

85

The rest of the chapter is organized as follows. The HVAC control problem formulation is

introduced in section 5.2; in section 5.3, the two representative deep RL methods, the DQN and

DPG methods are first briefly reviewed, followed by a detailed explanation of the DDPG method,

which is an extension of the former two; the simulation results of the DDPG method are presented

in section 5.4, plus comparison with DQN and benchmark cases; finally, section 5.5 concludes the

chapter.

5.2 Multi-zone Residential HVAC System Control Problem Formulation

5.2.1 A brief introduction of the multi-zone HVAC system control problem

In this study, we consider a residential building with multiple zones and the indoor temperature

of each zone can be controlled by adjusting the setpoint of the HVAC system. The HVAC system

can work in various modes including “Cooling”, “Heating” and “Auto”. The “Auto” model means

that the HVAC system can automatically switch between cooling and heating according to the

indoor temperature and the assigned setpoint. Whenever there is a difference between the indoor

temperature and the setpoint, the HVAC system will be automatically turned on to push the indoor

temperature near to the setpoint to maintain the user comfort. Without loss of generality, in this

work, we will focus on the case when all zones need heating. The goal of controlling the HVAC

system is to minimize the energy cost while keeping the indoor temperature within the user comfort

band.

5.2.2 Mapping HVAC control problem to Markov Decision Process

In this subsection, we will formulate the above multi-zone residential HVAC control problem as

an MDP, which will later be solved by a model-free deep RL-based algorithm in section 5.3.

According to the simplified thermal dynamics model of HVAC in [126], the indoor temperature at

the current time interval is only related to the previous state parameters such as the indoor

temperature at the previous time interval, and is not affected by indoor temperature at any other

time intervals. Therefore, the HVAC control problem can be regarded as a finite Markov process

and be solved using the RL method.

86

An MDP is composed of four essential elements: state (s), action (a), state transition probability

(p), and reward(r). In the context of multi-zone residential HVAC control problem, the four

elements are defined as follows:

 State: 1) current outdoor temperature Tout(t); 2) current indoor temperature Tin,z(t) for the all

the zones z; 3) the lower bound of the user comfort level Tlower(t); 4) retail price λretail(t),

where t is the current time step.

Note that the state parameters include the lower bound of the user comfort level, which

changes along the time. This is because we assume that the HVAC users have a time-

variable comfort preference. This is reasonable since during the daily work hours when no

one is at home, the comfort range of the indoor temperature can be lowered to save the

energy cost. The comfort range can be brought back during the off-work hours when the

house is occupied.

The state parameters also include the current retail price to realize the pre-heating effect of

HVAC. Pre-heating means to set the setpoint of HVAC at a relatively high value when the

retail price is low to heat up the indoor temperature in advance, to avoid excessive energy

consumption when the outdoor cold occurs at a high retail price.

 Action: the setpoint Setptz(t) for the zone z;

The setpoint of HVAC in each zone is a continuous variable. Given the setpoint, the on/off

status of the HVAC unit with a thermostat at each zone obeys the following control logic:

1, T ()

0, T ()

,

in

in

if t setpoint deadband

HVAC status if t setpoint

remain at the current status elsewise

 (5.1)

The HVAC model considered in this paper is only utilized for heating. In Eq.(5.1), the

deadband is a small temperature span, in which the thermostat will not change its on/off

status to prevent short cycles. It can be observed in Eq. (5.1) that if the indoor temperature

is above the setpoint, the HVAC will remain off; otherwise, the HVAC will be automatically

started to heat up the room to maintain the user comfort.

87

 Reward: the cumulative energy consumption cost for the control interval, which is defined

as follows:

' '

() (') (') (')
t t

retail penalty

c HVAC p

t t t t t t

r t t E t c t

 (5.2)

In Eq. (5.2), the first term is the energy cost of the HVAC system, where λretail(t’) is the

retail price, EHAVC(t’) is the power consumption, and Δt is the control interval; the second

term is the penalty for user comfort violation, which is calculated as follows:

 1, (') (')
(')

0,
penalty in lower thfor T t T t T

c t
elsewise

 (5.3)

In Eq.(5.3), Tth is a threshold with a small value. The temperature violation is not counted if

the magnitude of the violation is smaller than Tth. Given the existence of the deadband within

the HVAC system, it is not possible to always keep the indoor temperature at the exact

setpoint. The threshold allows for some deviations of the indoor temperature.

Because the reward encloses both the energy cost and the penalty, which leads to a multi-

objective function, weight factors are added to the two objectives, which are represented by

ωc and ωp in Eq. (5.2). The final objective of HVAC thermal control is to minimize the total

energy consumption cost plus the penalty over the entire control cycle, which can be written

as the cumulative sum of r(t): ∑
NT

t=1 r(t). Therefore, a far-sighted control strategy is needed to

prevent against uncertain future circumstances, which leads to a multi-stage decision making

problem.

Notice that the state transition probability p is not defined for the above MDP. The state

transition probability refers to the probability of transferring to a certain next state after taking

action Setptz(t). With a known state transition probability, the MDP is fully observed and the

cumulative reward can be analytically solved via model-based dynamic programming or other

iterative methods. However, in the HVAC control problem, to obtain an accurate probability model

of the state transitions is not a trivial task, because it is difficult to formulate the exact thermal-

dynamic model of HVAC buildings. The heat transfer within the building is related to multiple

88

resistance (R) and capacitor (C) from different building components like the exterior walls, the

interior walls and furnishings, as well as the attic, the values of which requires estimation and

validation through experimenting. All of these factors can have a significant impact on the

temperature response of the indoor air [127]. Furthermore, the indoor temperature is also affected

by uncertain external factors such as outdoor temperature, solar irradiance, and wind, which calls

for additional modelling and computational efforts. As a consequence, a model-based method is

not a robust or adaptive solution for HVAC system optimization.

Driven by the above considerations, in this paper the model-free deep RL method is leveraged

to overcome the unobservability in the multi-zone residential HVAC control problem. The model-

free RL method does not require any knowledge of the environment or the state transitions in

advance. It gradually improves its decision-making strategy by continuously interacting with the

environment and receiving feedback. In this way, the forecast errors of uncertain factors, as well

as the measurement errors of building thermal mass, can be avoided. More details of the deep RL

method will be revealed in the next section.

5.3 DDPG-based Control Strategy for Multi-zone HVAC System

5.3.1 A brief review of deep reinforcement learning methods

The RL method is a type of machine learning method that optimizes the decision-making

strategy in MDP. In the RL algorithm, the reward defined in MDP is served as the guideline for

algorithm evolution. A large, positive reward will encourage the algorithm to search deep in the

current direction, and vice versa. The RL method is especially suitable for handling decision-

making problems with temporal constraints or with hidden state space.

There are two main types of RL method: the value-based RL method and the policy-based RL

method. The difference between the two methods lies in their action evaluation strategies. The

value-based method estimates the Q value of a state-action pair (s,a), which is the cumulative

discounted reward starting from taking action a at state s, and selects the action with the highest Q

89

value; the policy-based RL method generates the probabilities of all the feasible actions at the

current state, and selects the action with the highest probability.

The combination of RL with DNN is called the deep RL method. In deep RL, the DNN is utilized

as a regression tool to estimate either the Q value, as in the value-based RL method; or the action

probability, as in the policy-based RL method. A general DNN structure for regression in RL is

shown in Figure 5.1.

The main advantage of the deep RL method over the conventional RL method is that the

application of the DNN makes it possible to achieve high level control for extremely complex

problems, such as with continuous state space or action space, without the tabular constraints.

Since in the deep RL, a more generalized regression model is established instead of maintaining a

concrete Q table to store all the possible action values, as in the case of traditional Q learning. This

generalized regression model offers more robust and flexible strategies against unseen states in the

case of continuous control. In the following section, we will first introduce the DQN, as a

representative of the valued-based deep RL methods; and the DPG method, as a representative of

the policy-based deep RL methods. Then, a continuous control method, DDPG, which is a

combination of the above two methods, will be explained in detail for solving the optimal multi-

zone residential HVAC control problem.

Weather

information,

price

information

π(a1,t|st,θ)

Input: state
variables

DNN Training
Output

.

.

.

π(a2,t|st,θ)

π(an,t|st,θ)

.

.

.
Indoor/

outdoor

temperature

Q(a1,t,st,θ)

Action probabilities
(policy-based)

Q(a2,t,st,θ)

Q(an,t,st,θ)

.

.

.
.
.
.

Q value
(value-based)

Figure 5.1. DNN structure for function approximation in RL

90

5.3.2 Understanding the basic principles behind typical deep RL methods

1) Deep Q Network (DQN)

The DQN is a combination of Q-learning and DNN. In the DQN, the input is the current state,

and the output is the Q value for each potential action at the current state. The advantage of DQN

over the tabular Q-learning method is that once the state and action are slightly changed, the DQN

can still estimate the associated Q value without re-training, which is highly time-efficient.

Unlike supervised learning algorithm, in deep RL there are no labeled samples for the DNN to

learn. To handle this issue, two DNN are designed for the DQN algorithm: one is called the target

network, and the other is called the behavior network. The function of the target network is to

serve as a reference, similar to the ground truth in supervised learning, to guide the evolution of

the algorithm.

Both networks are initialized with the same parameters and the same structure. As the training

proceeds, the behavior network is updated at a faster speed than the target network. The loss

function in DQN is defined as the MSE between the target Q value and the behavior Q value. Once

the loss function is calculated, the parameters of the behavior network will be updated based on its

gradient to the loss function. The algorithm will continue updating until the output from the target

network and the behavior network are close to each other, which indicates the convergence of the

learning. More details of DQN method can be found in [128].

2) Deep Policy Gradient (DPG)

The DPG method utilizes a strategy different from the DQN for control optimization. The output

from the DNN is the probabilities of each potential action at the current state, or the policy. The

policy refers to the probability of selecting action a(t) at state s(t), and can be written as π(a|s,) =

Pr{a(t)= a|s(t)= s, (t) = }. stands for the parameters of the probability function. The loss

function of the DPG method is also different from that of DQN, which intends to maximize the

expected total reward under the policy π(a|s,), and can be expressed as follows:

91

 (| ,)

1

max () (()) () ()
TN

a s

t

J E r t R

 (5.4)

In Eq. (5.4), τ is called an episode generated under the policy π(a|s,): τ={s(1), a(1), s(2),

a(2),…, s(NT), a(NT)}. R(τ) = ∑NT

t=1 r(t), which is the total reward of the episode. The goal of the

DPG method is to get the parameters of the policy π that leads to the maximum value of the

expected total reward. More details of DPG algorithm can be found in [40].

5.3.3 Realizing the continuous control of HVAC system with DDPG

1) An introduction to DDPG

The DDPG method is specially designed for solving problems with continuous variables. Unlike

DQN or DPG, where the Q values or action probabilities of all feasible actions are generated by

the DNN for the agent to select, the term “deterministic” in DDPG refers to the fact that there is

only one output from the DNN, which is determined. In this way, the action space can be

continuous since there is only one output unit.

Another advantage of DDPG over DQN and DPG is that it is a combination of the two methods.

In the DDPG, there are two types of neural networks applied: the actor network, which assembles

DPG, and the critic network, which assembles DQN. Their functions are explained as follows.

The input to the actor network is the current state, and the output is a deterministic action; the

input to the critic network is the current state plus the action generated by the actor network, and

the output is the Q value of the state-action pair. This Q value will be further used to update the

parameters of the actor network. The loss function of the actor network is defined to maximize the

Q value with the current policy, which follows the logic of the DPG method; and the loss function

of the critic network is the MSE of the Q value, which follows the logic of the DQN method. In

summary, the function of the actor network is to select actions, and the function of the critic

network is to evaluate the selected action.

In addition, similar to the DQN algorithm, for both actor network and critic network in DDPG,

two neural networks are designed, a behavior network and a target network. Hence there are four

92

neural networks in total. The reason for applying a target network is to stabilize the algorithm

convergence. More details of the DDPG algorithm are presented in the next subsection.

2) DDPG algorithm for developing optimal HVAC control strategy

The details of the proposed DDPG algorithm are shown in Algorithm 1, which is customized

from a general DDPG algorithm in [129]. The DDPG algorithm follows a process similar to that

of the DQN, except that an actor network is built to select a deterministic action. The proposed

DDPG algorithm is further explained as follows:

To begin with, two neural networks, i.e., the actor network and the critic network are randomly

initialized, and their associated target networks are initialized with the same set of parameters, as

shown in line 1-2. Starting from line 3, for each iteration, the system state is first initialized, then

an HVAC control action, i.e. the setpoint, is chosen based on the current actor network (s;), as

shown by line 7. A noise is added to the selected action to boost the exploration of the algorithm.

Next, in lines 8-9, the selected action is executed in the environment for the entire control

interval Δt, and the received reward and the next state are observed. The transition (s(t), Setptz(t),

r(t), s(t + Δt)) is stored in a replay buffer to be further used for algorithm training. When a

sufficient number of transitions are collected, a mini-batch of transitions is randomly selected to

update the parameters of the actor network and the behavior network, as shown by line 11. The

random selection can cut off the temporal correlations among the transitions, which will maintain

the independent, identically distributed (IID) assumption in the learning model. Also, the

transitions can be sampled multiple times, which increases their utilization efficiency.

The neural network parameters Q and are updated according to the loss functions. The loss

function of the critic network is defined as the MSE between the target Q value and the current Q

value from the behavior critic network, as shown by line 12. The temporal-difference (TD) error

is used to update Q value, where the target Q value is the sum of the current reward plus a

discounted Q value from the target critic network Q’ for the next control interval t + Δt. γ is called

93

the discount factor. Once the loss function is calculated, the parameters of the behavior critic

network Q are updated based on the gradient, as shown by line 13. ηQ is called the learning rate.

The loss function of the actor network is defined to maximize the Q value:

 () () () ()

1

1
max ((), ();)| () (();)

M
i i Q i i

i

Q s t a t a t s t
M

 (5.5)

In Eq.(5.5), a(i)(t) is generated from the actor network (s;). Hence, the chain rule is applied

in line 14 to calculate the gradient of the Q value to the . In line 16, the parameters of the target

critic network and the target actor network, Q’ and ’, are updated at a slower rate than the

behavior network, where τ is a number between 0 and 1 and close to 1. The function of this slower

update is to increase the stability of the learning. The complete deep RL-based control framework

of multi-zone HVAC system is shown in Figure 5.2.

94

Algorithm 1: DDPG method for multi-zone HVAC control

1: Initialize the parameters of the critic network Q(s,a;Q) and the actor network (s;)

2: Initialize the target networks Q(s,a;Q’) and (s;’) with Q and

3: for episode = 1 to arbitrary number do

4: Initialize system state s(Tout(0), Tin,z(0), Tlower(0), λretail(0))

5: for t = 1 to NT do

6: if t == kΔt, where k is an integer, do

7: Select the multi-zone HVAC control action Setptz(t) with (s;) plus noise

8: Execute Setptz(t), receives the immediate reward r(t) and the next state s(t + Δt)

9: Store the transition (s(t), Setptz(t), r(t), s(t + Δt)) in the replay buffer

10: end if

11: Collect a mini-batch of transitions (s(i)(t), Setpt
(i)

z (t), r(i)(t), s(i)(t + Δt)) with the size M from the

replay buffer

12: Calculate the MSE of the Q value:

 qtarget(i) (t) = r(i)(t)+ γQ(s(i)(t + Δt), (s(i)(t + Δt);’);Q’)

 L(Q) =1/M∑
M

i=1 (q
target(i)(t) - Q(s(i)(t),(s(i)(t););Q)

13: Update the parameters of the critic network:

 Q = Q - ηQ▽
Q L(Q)

14: Calculate the gradient of the Q value to the actor network parameter :

 ▽
J≈1/M∑

M

i=1▽Q(s(i)(t),(s(i)(t););Q)▽
(s(i)(t);)

15: Update the parameters of the actor network:

 = - η▽J

16: Update the parameters of the target network with a smaller step:

 Q’ = (1 – τ)Q + τ Q’

 ’ = (1 – τ) + τ ’

17: end for

18: end for

95

Figure 5.2. Multi-zone HVAC control framework with DDPG

5.4 Case Study

In this section, the effectiveness of the applied DDPG-based continuous control method for

multi-zone residential HVAC is demonstrated through simulations with real-world data, as well as

by comparison with the DQN-based discrete control method and the benchmark cases.

5.4.1 Simulation environment

A two-zone residential HVAC model [130] is implemented for training and testing the applied

deep RL method, with real-world weather data during 2019-2020 obtained from [131]. For price

signals, a simulated retail price sequence is generated, which include a high price value and a low

price value. The price is regularly switched between the two values every three hours. The reason

for applying such a frequently changing price sequence is to find if the deep RL agent can identify

the effect of price signals on the reward function and to properly adjust its control strategies. It is

further assumed that the lower bound of the user comfort level changes four times during the daily

cycle, as shown in Table 5.1:

96

Table 5.1. Daily user comfort level

Time period 0:00 – 6 :00 6:00 – 12 :00 12:00 – 18 :00 18:00 – 24 :00

Tlower(oC) 18 17 18 19

The control interval of the RL agent is set to 60 minutes, i.e., Δt = 60. Since we only focus on

the heating effect of the HVAC system, the November weather data is used as the training data.

During the training, one episode is defined as 24 hours. In this way, 24 (s(i)(t), Setpt
(i)

z (t), r(i)(t), s(i)(t

+ Δt)) transitions will be generated from each episode. In total 300 episodes are simulated for the

RL agent to learn. After the training, the RL agent will be applied to new test days with different

weather conditions to examine its generalization and adaptability.

5.4.2 Design of the DNN structure in Deep RL

The detailed design of the actor and critic network in DDPG is shown in Table 5.2. The design

of DQN is also listed for comparison. The designs of both DDPG and DQN are obtained via a

trial-and-error process, and the current configurations provide the best possible results among all

the trials.

Table 5.2. DNN structure applied in DDPG and DQN algorithm

Algorithm
DDPG

DQN
critic network actor network

Size of input [1,7] [1,5] [1,5]

No. of hidden layers 2 2 2

Size of each hidden layer [7,20], [20,10] [5,20],[20,10] [5,20],[20,10]

Size of output [1] [2] [25]

Activation function for the

hidden layer
ReLU ReLU ReLU

Optimizer Adam Adam Adam

Learning rate(η) 0.001 0.01 0.01

Discount factor(γ) 0.99 - 0.99

Batch size 48

Weights of the reward ωc : 10, ωp : 1

97

For the DDPG method, the input to the critic network is a vector containing both state variables

and action variables, and the output is the estimated Q value, which is a scalar; the input to the

actor network is a vector containing only state variables, and the output is a vector containing the

setpoint for each zone. Although the setpoint is a continuous variable, in reality there is always a

range of the setpoint for maintaining user comfort. Therefore, the output layer from the actor

network utilizes tanh as the activation function, which confines the output with a range of [-1,1].

The actual setpoint is calculated as Setptz = Tlower + ΔT·(yout + 1), where yout is the output from the

actor network, and ΔT is the upper range of the setpoint. In the simulation, ΔT is set to 2oC.

Therefore, the setpoint selected by the DDPG lies within the range of [Tlower, Tlower + 2].

For the DQN method, the input is also the state variables. Since DQN requires a discrete action

space, we discretize the range of setpoint with a step size of 0.5 oC. As a result, there are 5 actions

for each zone and 25 combinations of actions for the 2-zone HVAC. The output from DQN is a

vector containing 25 Q values, with each corresponding to one combination of actions.

5.4.3 Performance of the continuous HVAC control method

1) Convergence of the DDPG

In Figure 5.3, the average returns gained after each episode during the training process in the

DDPG and DQN are presented. Notice that the average return in the first few episodes appears to

be higher than that of the last few episodes. This is because for each episode, one training day is

randomly chosen. Some training days may have moderate outdoor temperature, which can lead to

lower energy cost and lower penalty, and vice versa. However, as the training proceeds, the number

of episodes grows, and the average return is neutralized. Both curves gradually become steady as

the training evolves. However, the average return gained by DDPG method is higher than that of

the DQN method. This is because the size of the output from DQN is larger than that of DDPG,

and the combination of actions have not been fully explored after 300 episodes, leading to a lower

average return.

98

Figure 5.3. Convergence of different deep RL methods

2) Computational efficiency

After the training process, the DDPG RL agent is applied to 10 test days in January 2020 from

the real-world data in [132] to generate the optimal HVAC control strategy. The time cost is around

19 seconds for testing, which is highly time-efficient. The code is written in Python 3.6 with the

open-source deep learning platform TensorFlow [133] . The hardware environment is a laptop with

Intel®CoreTM i7-7600U 2.8 GHz CPU, and 16.00 GM RAM.

3) Comparison of DDPG with DQN and the benchmark cases

In this study, the well-trained deep RL agents from both DDPG and DQN are run on new test

days to verify their learning performance. We also design two benchmark cases without the RL

agent as comparisons. The benchmark cases are described as follows: a) Rule-based case: the

setpoint is set at the lowest value at the peak price hours, and the highest value at the off-peak price

hours, to realize the pre-heating effect to save energy cost; b) Fixed setpoint case: the setpoint is

always at the highest value of the setpoint range to avoid any temperature violation.

The final optimized results of the RL methods and the benchmark cases are shown in Table 5.3:

99

Table 5.3. Test results of different HVAC control methods

Control method DDPG DQN Rule-based Fixed setpoint

Total cost ($) 55.21 65.03 39.08 71.48

Temperature violation (minutes) 48 230 2617 0

Average temperature violation (oC) 0.13 0.93 1.85 0

In Table 5.3, the well-trained deep RL agents are applied to generate the HVAC control strategies

for the first 10 days in January 2020. The weather conditions of the test days are different from

that of the training days, since the outdoor temperature is much lower in January than in November.

The total cost in the table refers to the total energy cost over the 10 days, and the temperature

violation in the table refers to the total number of minutes that the indoor temperature falls below

Tlower - Tth, as shown by Eq. (3). Tth is set to 0.3 oC. The average temperature violation indicates

on average by how many degrees the indoor temperature is lower than the setpoint. As shown in

the table, the control strategy derived from DDPG method has both lower energy cost and fewer

temperature violations than that of the DQN. With regard to the benchmark cases, in the rule-based

case, because the pre-heating logic is applied based on the price structure, it obtained the lowest

cost among all four cases. However, by always setting the setpoint to the lowest value at peak price

hours, this control strategy results in severe temperature violation. In the fixed setpoint case, since

the setpoint is always set at the highest value, there is no temperature violation. However, the

energy cost is also the highest among the four cases. The control strategy and the indoor

temperature in the four cases are further illustrated in Figure 5.4.-Figure 5.6.

In all the figures, the yellow rectangular area represents the feasible region of the setpoint [Tlower,

Tlower + 2 oC]. As can be observed, the setpoint range changes at a daily cycle. In addition, the

indoor temperature in zone 1 is lower than that of zone 2, this is because in the building model,

zone 1 is on the 1st floor and zone 2 is on the 2nd floor, and the warmer air goes to upper floors.

In Figure 5.4., the DDPG RL agent develops a setpoint control strategy that when the outdoor

temperature is relatively high, i.e. in the first 4,000 minutes, the setpoint will be set at the lowest

100

value at the peak price hour, and at the highest value at the off-peak hour, to realize the pre-heating

effect and to reduce energy cost, which is similar to the control logic of the rule-based case. When

the outdoor temperature is low, i.e., in the last 2,000 minutes, the setpoint is always set at the

highest value to avoid the indoor temperature violation. On the contrary, in the rule-based case,

the control strategy still follows the price structure even when the outdoor temperature is extremely

low, which results in severe indoor temperature violation, as shown in Figure 5.6. Such

comparisons indicate that after the training, the DDPG RL agent has acquired the knowledge that

the price signal and the outdoor temperature has a significant impact on the reward, and it learns

to intelligently set the setpoint based on this state information to reach a higher reward value.

The control strategy of DQN RL agent is shown in Figure 5.5. When the outdoor temperature is

relatively high, i.e. in the first 4,000 minutes, the setpoint is set at a relatively high value, and it

does not follow the change of retail price. When the outdoor temperature is extremely low, i.e.,

around 12,000 minutes, the setpoint is set at the lower bound, which results in temperature

violation. The DQN RL agent has not successfully capture the impacts of the state variables on the

reward function. This can be attributed to the large number of action combinations encountered by

the Q network. In such a case, the DQN RL agent has not fully explored all of the possible action

combinations to maximize the reward, thus obtains a control strategy with higher energy cost and

more temperature violations.

Finally, in Figure 5.7, the fixed setpoint case, since the setpoint is always set at the highest value,

the indoor temperature for both zones also remain at the highest level among the four test cases.

However, this fixed setpoint case results in the highest energy cost.

101

Figure 5.4. Setpoint control strategy based on DDPG for 10 test days (top: zone 1; bottom:

zone2)

102

Figure 5.5. Setpoint control strategy based on DQN for 10 test days (top: zone 1; bottom: zone2)

103

Figure 5.6. Setpoint control strategy from the rule-based case for 10 test days (top: zone 1;

bottom: zone2)

104

Figure 5.7. Setpoint control strategy from the fixed setpoint case for 10 test days (top: zone 1;

bottom: zone2)

4) Generalization of DDPG Algorithm

a) Extending DDPG RL agent to different residential buildings

The well-trained DDPG RL agent is further tested in new residential building models with

HVAC system to fully validate its generalization and robustness. Ten building models are

generated with different thermal mass parameters, the variation of which follows a normal

distribution. The same 10 test days in January 2020 are applied in this case. The energy cost and

the temperature violation for the 10 building models under the DDPG control strategy and under

105

the two benchmark cases are compared in Table 5.4 and Figure 5.8. . As shown in the table, similar

to the results in Table 5.3, the rule-based control strategy provides the lowest energy cost, while

the fixed setpoint control strategy provides the lowest violation. The well-trained DDPG RL

agent can obtain an HVAC control strategy that properly weigh the two objectives, resulting in a

relatively lower energy cost and fewer temperature violations for different test building models.

Therefore, it can be safely concluded that the DDPG RL agent can flexibly adapt to unseen

physical environments and provides an economic HVAC control strategy after its offline training

within the fixed environment.

Figure 5.8. Illustration of the comparison results

106

Table 5.4. Comparison of optimization results for different building models

Building

index

DDPG Rule-based Fixed setpoint

Cost ($)

Temperature

violation

(minutes)

Cost ($)

Temperature

violation

(minutes)

Cost ($)

Temperature

violation

(minutes)

1 42.22 31 27.78 1296 57.98 0

2 44.13 41 29.22 1586 60.13 0

3 52.14 45 36.51 2347 68.52 0

4 59.66 101 43.94 3364 75.61 0

5 45.84 41 31.30 1879 62.91 0

6 42.49 39 27.68 1398 59.06 0

7 37.47 24 23.51 1012 53.42 0

8 61.21 81 45.42 3520 76.44 0

9 35.34 25 21.98 818 49.90 0

10 43.19 59 28.41 1323 58.46 0

b) DDPG performance under different retail price signals

In the above simulations, a simulated retail price sequence is generated for training and testing

the deep RL agent, which is simply composed of only two price signals. To demonstrate that the

well-trained DDPG RL agent has developed high generalization to an unseen environment without

additional training, the DDPG RL agent is further tested with the PJM wholesale real-time hourly

locational marginal price (LMP) data [133]. The retail price is set at 3 times of the wholesale

market price. The PJM price changes hourly and fluctuates within a large range. The final

optimized results of the two deep RL methods and the benchmark case are shown in Table 5.5:

Table 5.5. Test results of different control methods (under PJM price)

Control method DDPG DQN Fixed setpoint

Total cost ($) 32.90 31.80 32.71

Temperature violation (minutes) 0 222 31

Average temperature violation (oC) 0 1.00 0.27

107

In Table 5.5, the fixed setpoint case applies a control strategy where the setpoint is always set

at the middle of the setpoint range. This is because the PJM price sequence contains more than just

two values, and it cannot be simply divided into two groups as high price and low price. As a result,

the setpoint is set at the middle point to avoid possible temperature violations while minimizing

the energy cost.

The control strategy and the associated indoor temperature in the three cases are further

illustrated by Figure 5.9-Figure 5.11. As can be observed in the figure, the PJM price demonstrates

a very different pattern from the simulated price sequence. For most of the time the price remains

at a relatively low level, with some occasional spikes and fluctuations. However, the well-trained

DDPG RL agent still attempts to follow the price tendency, and intelligently sets the setpoint to

realize the pre-heating effect. For example, a price spike appears around 12,500 minutes, the

DDPG RL agent catches this sudden change, and lowers the setpoint. Around 13,500 minutes the

retail price sequence demonstrates some fluctuations, and the DDPG RL agent also adjusts the

setpoint accordingly. It should be pointed out that under the price signals that are more time-variant

like the PJM market price, it is difficult to develop a simple rule-based control strategy, because

the price range is uncertain. However, the well-trained DDPG RL agent can still work intelligently

under such uncertain environment, and obtain satisfying economic benefits. Therefore, the

adaptability of the DDPG algorithm is proved, which makes it feasible for real-world online

applications.

In Figure 5.10, the HVAC control strategy developed by the DQN RL agent also intends to

follow the retail price tendency. However, at the price pike period (12,500 minutes) and the price

variation period (13,500 minutes), the DQN RL agent chooses the lowest setpoint values, which

results in temperature violation in zone 1, as shown in the bottom figure.

Finally, in Figure 5.11, the fixed setpoint case also leads to some temperature violations in zone

1 when the outdoor temperature is extremely low (after 10,000 minutes).

108

Figure 5.9. Setpoint control strategy based on DDPG under PJM price for 10 test days (top: zone

1; bottom: zone2)

109

Figure 5.10. Setpoint control strategy based on DQN under PJM price for 10 test days (top: zone

1; bottom: zoomed part of zone 1)

110

Figure 5.11. Setpoint control strategy in the fixed setpoint case under PJM price for 10 test days

(top: zone 1; bottom: zoomed part of zone 1)

5.5 Conclusions

In this paper, a deep RL method, the DDPG is applied for controlling the multi-zone residential

HVAC system to minimize the energy consumption cost while maintaining the user comfort. The

DDPG can realize a continuous control of the HVAC setpoint due to its application of the DNNs.

Simulation results demonstrate that the well-trained DDPG RL agent is able to adapt to the

unknown environment and intelligently decides its setpoint control strategy to maximize the

economic benefit. The training efficiency and high generalization ability of the DDPG algorithm

111

makes it a potential tool for future online applications in solving MDP problems with hidden

information or with continuous search space.

For future works, one interesting direction is to let the deep RL agent automatically switch

between different operation modes, i.e. cooling and heating, to adapt to different seasoning

scenarios. In this way, once the deep RL is well-trained, it can be directly applied to a longer

control period, i.e. one year, to provide economic control strategies for HVAC users. Another

exploratory direction is to let the deep RL agent learn a more variant setpoint schedule customized

by users, given that different HVAC users can have different comfort level. By investigating these

two directions, the deep RL agent will become more generalized and robust against uncertainties

in real-world operation scenarios.

5.6 Acknowledgement

This work is funded by the Department of Energy, Energy Efficiency and Renewable Energy

Office under the Buildings Technologies Program.

112

Chapter 6 Solving Markov Game in Day-ahead Electricity

Market with Multi-Agent Deep RL

In this chapter, the day-ahead electricity market bidding problem with multiple strategic GENCO

bidders is studied. The problem is formulated as a Markov game model, where GENCO bidders

interacts with each other to develop their optimal day-ahead bidding strategies. Given the

uncertainties and unobservable information embedded within the problem, a model-free, data-

driven approach for solving the above Markov game is presented in this paper based on the latest

DL technique called multi-agent deep deterministic policy gradient (MADDPG) algorithm. The

MADDPG algorithm is a type of deep RL method designed for continuous control within a multi-

agent competitive environment, where DNNs are combined with reinforcement learning to capture

the intricate environmental variations and to optimize decisions. The applied MADDPG method

is implemented on the IEEE 30-bus system, with three RL agents to prove its feasibility and the

computational efficiency in solving the multi-agent decision-making problem. The obtained

bidding strategies for each GENCO bidder are further examined from the viewpoint of executing

market power to provide insights for market participants. Equation Chapter (Next) Section 1

6.1 Introduction

In power systems, the strategic market bidding problem of generation companies (GENCOs) is

a complex real-world multi-stage decision optimization process. The topic remains interesting ever

since the deregulation of electricity market. The problem is investigable because there are many

unknowns in the electricity market, e.g. the offers of other bidders. Also, the problem of executing

market power is intriguing, where market bidders with large capacity can manipulate the market

clearing results for his own benefits.

In the literature, many research efforts are dedicated to cracking the problem of strategic market

bidding. The non-cooperative game model is initially introduced in [134],[135] to solve the

113

problem of pricing electricity in a deregulated energy marketplace, where the unknown

information of opponent bidders’ costs is equivalently represented by probabilities, and a game

with complete but imperfect information can be formed and solved analytically to obtain Nash

Equilibrium (NE). The authors in [136] further consider the probability of forming coalitions

among generators under the non-cooperative game framework, where coalition members

coordinate their bidding strategies to maximize the common profit. In ref. [137], an iterative

simulation method is presented to obtain the desired NE, where each GENCO constantly updates

their bidding curves based on the latest market clearing results until there is no increase in their

gains. To fully capture the uncertainty of the rivals’ bids, robust optimization is implemented in

[138], which formulates the bidding problem as a bi-level max-min model to obtain the feasible

region of the desired bidding strategies.

All of the above works can be categorized as model-based methods, where the uncertainties of

the electricity market are overcome either by forecasted model or via iterative interactions. The

model-based method can provide analytical insights into market equilibrium. However, achieving

convergence with model-based methods generally requires strict prerequisites, e.g., linear or

convex objective functions. In addition, the real-world market structure is not normally designed

for iterative negotiations among the participants, which can be both time-consuming and resource-

consuming.

The data-driven RL method stands out as an efficient alternative to the conventional model-

based method. Contrary to the latter, the RL method does not assume the knowledge of the exact

mathematical model, but it approximates the model through continuous interactions with the actual

environment. The RL method is well known for handling multi-stage decision-making problems,

where game theory may fail due to its limitations in solving time-dependent models. The RL

method can also adapt to new changes in the environment, where the solutions to the model-based

method are fixed to the pre-defined model.

The RL algorithm for the GENCO optimal bidding problem is first introduced in [139], where

114

the day-ahead market bidding for the next 24 hours is formulated as a Markov decision process

(MDP), and an actor-critic RL method is applied for GENCO decision making. The actor is used

for selecting an action from an existing bidding policy, and the critic is used to evaluate the selected

action based on temporal difference error. The Q-learning method is applied in [140] in a repeated

Cournot game to maximize the accumulative payoff of a GENCO in day-ahead market bidding.

The learned bid proves to converge near the desired Nash-Cournot equilibrium point. Authors in

[141] propose the fuzzy Q-learning method to handle the variations of renewable power

penetration in hour-ahead market bidding, which demonstrates higher computational efficiency

than the conventional Q-learning method. The authors in [142] discuss the effects of risk aversion

on Q-learning performance and the bidding strategies of GENCOs. In [143], a multi-agent Q

learning method is designed to achieve bidding strategies for multiple competitive generators.

Popularized by the AI computer program AlphaGo, the deep RL represents the latest

development for the data-driven RL method for solving time-sequential decision-making problem

with partial or hidden information. Deep RL is a combination of a DNN and RL. The highlight of

the deep RL method, compared to other learning-based methods discussed above, is that it can

build a generalized model with DNN that can adapt to continuous environmental variations. The

success of deep RL has been witnessed in the fields of computer games, robotics and industrial

automation, etc. In power systems, the potentials of implementing deep RL for demand-side energy

management and electric vehicle charging/discharging scheduling are shown in [40],[43]. The

deep deterministic policy gradient (DDPG) algorithm is applied to solve the bidding problem of a

load serving entity and a single producer in [44], [144]. The authors in [145] further explore the

market equilibrium with multiple strategic GENCO bidders using both deep policy gradient

method and long-short-term (LSTM) memory neural network.

Motivated by the above researches, in this chapter we also focus on jointly optimizing the

bidding strategies of multiple GENCOs in the day-ahead market with multi-agent deep RL method.

The main contributions of the chapter are summarized as follows:

115

• A Markov game is formulated to describe the strategic day-ahead market bidding process of

multiple GENCOs as price makers. Under such situation, each GENCO acts intelligently to

maximize its own benefits with the consideration of bidding policies from other rivals.

• A novel MADDPG method is applied to solve the above Markov game. Compared with the

existing approaches, the method implements a centralized training and decentralized execution

mechanism, which can deal with non-stationary environments where the rational players

constantly change their strategies, as well as high-dimensional continuous state and action

spaces.

• A comprehensive simulation analysis is presented to prove that the applied MADDPG method

can achieve the optimal bidding strategy with the absence of market power, and it also has high

generalization to perform intelligently under unseen market environment. The superiority of

the method is further verified by comparing with baseline cases.

The rest of the chapter is organized as follows: section 6.2 provides the formulation of the multi-

agent day-ahead market bidding problem under the context of Markov game; section 6.3

introduces the MADDPG method for multi-agent decision-making process within non-stationary

environment; the simulation results and analysis are shown in section 6.4; finally, section 6.5

concludes the chapter.

6.2 Multi-agent Market Bidding Problem Formulation

6.2.1 A brief on electricity market and bidding strategies

A deregulated electricity market is usually composed of two stages, a day-ahead market and a

real-time market. In the day-ahead market, GENCOs submit the amount of energy they are willing

to sell for the next 24 hours, and the associated offer price, and consumers submit the amount of

energy they are willing to buy and the associated bid price. The market operator clears the market

by running an optimal power flow (OPF) calculation and releases the market clearing prices and

quantities to the supply side and the demand side.

GENCOs with large capacities can execute market power through the following two ways:

116

physical withholding, which means that they submit generation quantities that are less than their

capacity; or economic withholding, which means that they offer prices that are higher than their

marginal cost. However, executing market power can also be risky since GENCO bidders have

incomplete information about their rivals.

There are two market settlement methods: 1) the marginal price principle, where all suppliers

receive the same market clearing price which is the cost of the marginal bidding block; and 2) the

pay-as-bid principle, where each winning supplier receive a price based on their respective bidding

prices, and it can be different from one to another. The marginal price principle is applied in almost

all the organized wholesale markets in the United States, while the pay-as-bid principle is mostly

seen in European countries like France and Britain.

 In terms of auction theory, pay-as-bid principle is a variation of the sealed first-price auction

and marginal price principle is a variation of the sealed second-price auction. It has been proved

that in the sealed second-price auction, truthful bidding, which means no economic withholding,

is a dominant strategy. While in the sealed first-price auction, truthful bidding is a necessary but

not sufficient condition for reaching NE.

In this study, we assume that the day-ahead electricity market is cleared based on the marginal

price principle, and GENCOs are allowed to execute economic withholding to maximize their

profits. Under such condition, a NE bidding strategy of the GENCO g should satisfy the following

two conditions:

(i) maxg’≠g vg’≥bg; (ii) maxg’≠g bg’≥vg

In the above two conditions, vg is GENCO g’s valuation for the sold generation, bg is the bidding

price of GENCO g. The profit of GENCO g will be bg – vg. Condition (i) means that GENCO g

bids at a sufficiently low price in order to win the bid, and condition (ii) means that the valuation

of GENCO g is sufficiently low. In section 6.4, we will demonstrate that the applied deep RL

method is able to achieve a NE strategy that corresponds with the above two conditions through

truthful bidding.

117

6.2.2 Mathematical formulation of day-ahead electricity market clearing

The day-ahead electricity market clearing model is shown as the following DCOPF model:

 , ,

1 1 1

min () ()
bT NN N

bid cleared

g b g b

t g b

t P t

 (6.1)

 ,

1 ()

() ()
. . () ()

bN
i jcleared load

g b l

g i b l i j n i ij

t t
s t P t P t

x

 (6.2)

 ,max

() ()
| | , ,

i j

ij F

ij

t t
F i j N

x

 (6.3)

 , ,0 () (), ,cleared bid

g b g bP t P t g b (6.4)

In Eq. (6.1), NT is the number of time intervals, Nb is the number of bidding blocks submitted

by the gth GENCO, λ
bid

g,b (t) and P
cleared

g,b (t) are the bidding price and the cleared quantity of the bth

bidding block. Eq. (6.2) is the power balance constraint at the ith bus, where P
load

l (t) is the load at

bus i. i and j are the head and tail bus voltage angles at the transmission line ij. n(i) is the set of

buses that are connected to bus i. xij is the line reactance. Eq. (6.3) is the transmission line capacity

constraint, where NF is the set of transmission lines. Eq. (6.4) ensure that the cleared quantity does

not exceed the bidding quantity submitted by the GENCO bidders.

In the DCOPF model (6.1)-(6.4), λ
bid

g,b (t) and P
bid

g,b (t) are known values submitted by GENCO

bidders. They should satisfy the following constraints:

 min max

,

1

()
bN

bid

g g b g

b

P P t P

 (6.5)

 , ,() () ()bid cost

g b g g bt t t (6.6)

Eq. (6.5) is the capacity limit of the bidding block, where P
min

g and P
max

g are the lower and upper

limit of the generation. Eq. (6.6) indicates the economic withholding of the GENCO bidder, where

λ
cost

g,b (t) is the marginal cost of the bth bidding block. g(t) is a bidding factor between 1 and an upper

limit g,max, which indicates that the GENCO bidder can deliberately submit a higher marginal cost

118

to increase its profit.

From the above DCOPF model, the cleared P
cleared

g,b (t) and cleared price λ
cleared

g (t) for each GENCO

bidder can be obtained. The λ
cleared

g (t) is the locational marginal price (LMP). The GENCO bidder

then calculates its profit according to Eq. (6.7).

, ,

1 1 1

(() () (()))
b bT N NN

cleared cleared cleared

g b g g g b

t b b

P t t C P t

 (6.8)

, , ,

1 1

(()) ()
b bN N

cleared cost cleared

g g b g b g b

b b

C P t P t

 (6.9)

In Eq.(6.8), the first item is the income of selling power at the day-ahead market; the second

item is the generation cost, which has a linear expression as shown in Eq. (6.9).

From the above mathematical models, it can be observed that the decision variable for the

GENCO bidders is the bidding factor g(t), and the decision variable for the market operator is the

cleared quantity P
cleared

g,b (t). Deciding the optimal bidding factor is an involved task for GENCO

bidders because the bidding information of their rivals remains unknown. The conventional model-

based method can fail due to this unobservability. In the following sections, the multi-agent day-

ahead market bidding problem will be transformed into a Markov game, and a model-free deep

RL method will be introduced as a solution.

6.2.3 Markov game model of day-ahead electricity market bidding

Before building the Markov game model, we propose the following assumptions regarding the

day-ahead market bidding problem [146]:

1) The GENCOs submit hourly bidding blocks for the next 24 hours in the day-ahead market.

The bidding quantities are their true generation capacities, only the bidding price is allowed to

change.

2) The bidding price for the same bidding block is allowed to vary from hour to hour. However,

the ratio of the highest bidding price to the lowest bidding price for the same bidding block should

not exceed a threshold th1.

119

3) For any two consecutive hours, the ratio of the bidding prices for the same bidding block

should not exceed a threshold th2.

From assumption 3), it can be discovered that the bidding price for the current hour is related to

the bidding price in the previous hour, which leads to a finite MDP with discrete time steps.

When multiple agents are considered in the day-ahead market bidding, the MDP is extended to

a partially observable Markov game. A Markov game for N agents consists of a set of states s, a

set of observations made by each agent at the current state, o1,o2,…,oN, and a set of actions a1,

a2,…, aN taken by each agent based on their respective observations. After the execution of the

actions, the environment will transfer to the next state following a transition probability p:

s×a1×a2×…× aN×s→[0,1]. Each agent will receive a reward ri : s×ai → R and a private observation

for the next state oi: s→ oi. The objective of each agent is to maximize the total discounted reward

for the finite time steps: Ri = ∑
NT

t=1 γt-1ri,t, where γ is a discount factor to convert future rewards to

the present value.

In the day-ahead market bidding problem, under the context of a Markov game, the agent is each

independent GENCO bidder; the private observation for each GENCO is the demand quantity for

the current hour, and its bidding price at the previous hour; the state is simply defined as the

summation of the observations of all GENCOs; the action is the bidding price for the current hour;

and the reward is the hourly profit. The day-ahead market bidding process is a sequential decision-

making problem with multiple decision makers involved, which requires that each GENCO bidder

be farsighted enough to consider potential future outcomes in order to maximize the total profit.

Note that in the general day-ahead market bidding, the GENCO bidders are required to submit

their bidding blocks for the next 24 hours in one shot; while in the above Markov game, the bidding

decision process is decomposed to discrete time steps and the bidding price for each time step is

decided sequentially. This decomposition is acceptable because at each time step, the private

observation only includes the current hourly load and the bidding price at the previous hour, and

does not involve any market clearing results. Hence, after the applied deep RL algorithm is well-

120

trained for solving the above Markov game model, it will only need the load data for the next 24

hours as input and can generate the bidding prices for the next day in one shot (given an initial

bidding price) during the test process. Therefore, the algorithm can be physically implemented

without violating market rules.

6.3 MADDPG Method for Day-ahead Electricity Market Bidding

6.3.1 An overview of reinforcement learning method

The RL method aims to solve the MDP process with the objective of maximizing the total

discounted reward Ri = ∑
NT

t=1 γt-1ri,t. An action-value function is further defined in RL as an

estimation of the total discounted reward:

 1

0

(,) [| ,]
TN

k

t t t k t t

k

Q s a E r s a

 (6.10)

In Eq. (6.10), the action-value function Q (st,at) is equal to the expected return starting from

state st, taking action at, and thereafter following policy . The goal of RL is to find the optimal

policy * that maximizes the action-value function:

*(,) max (,)t t t tQ s a Q s a

 (6.11)

One typical way for solving Eq. (6.11) is to update the action value based on the temporal

difference (TD) error:

1

(1) ()

1 1(,) max (,)
t

k k

t t t t t
a

Q s a r Q s a

 (6.12)

In conventional RL methods such as Q-learning, a look-up table is established to store the action

values of all the possible state-action pairs and it is updated iteratively according to (6.12) until

convergence. However, the method encounters the curse of dimensionality when the state or action

space becomes continuous. The deep RL method is developed to overcome the drawbacks of the

tabular-based RL method. In deep RL, a neural network is designed to estimate the action-value

function and it can form a continuous mapping between the state-action pair and the action value.

In this way, more complex control or optimization problem with high dimensionality can be solved

121

through tweaking the neural network model.

6.3.2 Deep deterministic policy gradient method for continuous control

In this subsection, we will briefly introduce a deep RL method, DDPG, for solving continuous

control problems.

In DDPG, there are two types of neural network: the critic network, and the actor network. The

function of the critic network is to estimate the action value, as has been mentioned above. The

input to the critic network is the current state and the action taken, and the output is the associated

action value. The MSE is used as the loss function for updating the parameters of the critic network,

as shown below:

 arg () () () () '

(1)

() () max ((1), (1);)
j

t et j j j j Q

a t

Q t r t Q s t a t

 (6.13)

arg () () () 2

1

() 1/ (() ((), ();))
sN

Q t et j j j Q

s

j

L N Q t Q s t a t

 (6.14)

Two critic networks are involved for calculating the MSE in (6.14), the target critic network,

whose weights are noted as Q’; and the behavior critic network, whose weights are noted as Q.

In Eq. (6.13), the target action value at time step t is the sum of the current reward r(t) and the

discounted value of the maximum action value at the next time step t+1, generated by the target

critic network. The superscript j is the index of state-action pair samples. Then, the target action

value is sent to (6.14) for calculating the loss. The output from the target critic network is served

as the “labelled” data for the behavior network to learn. During the training, the target critic

network is updated at a slower speed than the behavior critic network, which helps stabilize the

learning process.

The actor network is designed to utilize the estimated action value to obtain the optimal policy,

i.e. π(s(t)) = argmaxa(t) Q(s(t), a(t)) for all time step t. The input to the actor network is the current

state s(t), and the output is the action a(t) that results in the maximum Q(s(t), a(t)). To achieve this

goal, the loss function for the actor network is designed as follows:

122

 ()

()

() (();)
1

1
max () ((), ();) |

s

j j

N
j j Q

a t s t
js

J Q s t a t
N

 (6.15)

In Eq. (6.15), (s(t);) is the current policy generated by the actor network, where is the

network weights. is updated in the direction of maximizing the Q value using a gradient:

() ()

1

1
() ((), ();) (();)

sN
j j Q j

js

J Q s t a t s t
N

 (6.16)

 ()J

 (6.17)

In Eq.(6.16), the chain rule is applied to calculate the gradient of the action value to the weights

of the actor network. In Eq.(6.17), η is the learning rate.

The above introduction covers the basic idea behind the DDPG algorithm. Note that in the above

actor and critic network, only the action and the Q value at the current state is generated, and

there’s no need to store all the possible state-action pairs and their action values. The relationship

between the state-action pair and the action value is encoded in the weights of the neural network.

Therefore, DDPG can be applied for optimizing continuous control strategies without suffering

from the dimensionality explosion.

6.3.3 MADDPG for solving Markov game in day-ahead electricity market bidding

Section 6.3.2 introduces the DDPG method for continuous control, which can be applied for

optimizing the single agent decision-making process. However, in the case of day-ahead electricity

market bidding, where multiple strategic GENCO bidders are involved, directly applying the

above DDPG method for each GENCO cannot achieve the ideal results. This is because when

multiple agents are optimizing their decisions simultaneously, the environment becomes dynamic,

and the reward received at the same state with the same action can constantly change due to the

changing policies of other agents. This issue invalidates the experience learnt by the target critic

network and can result in incorrect target value settings and algorithm divergence.

Driven by the above concerns, there have been some recent research works in AI that include

123

multi-agent (MA) learning as an extension of the DDPG method to form MADDPG [147]. The

main idea of MADDPG is to implement a centralized training, where the input to the critic network

includes not only the state and action of the current agent, but also the actions of other agents. This

assumption is acceptable because the critic network is only required during the training process.

Once the algorithm is well-trained, only the actor network is needed for testing in new

environments, and the actions of other agents are no longer required.

In this paper, the general-purposed MADDPG algorithm is applied and customized for solving

the Markov game in day-ahead market bidding. The proposed customized MADDPG algorithm

flow is shown in Algorithm 1 below.

124

Algorithm 1: MADDPG algorithm for day-ahead market bidding with N GENCO bidders

1: Initialize the parameters of the critic network Q(s,a; Q) and the actor network (o;) for

each GENCO bidder

2: Initialize the target networks with Q and

3: for episode = 1 to M do

4: Initialize the market bidding from a random day

5: for t = 1 to NT do

6: Observe the current state s(t) = [Pload(t), λ
bid

1 (t-1), λ
bid

2 (t-1), …, λ
bid

g (t-1), …, λ
bid

N (t-1)]

7: For each GENCO bidder g, select the bidding price λ
bid

g (t) = g(og(t);), where og(t) =

[Pload(t), λ
bid

g (t-1)]

8: Run DCOPF (1)-(5) to complete the market clearing, obtain the cleared quantity P
cleared

g (t),

cleared price λ
cleared

g (t), and the reward rg(t) for each GENCO, and observe the next state

[Pload(t + 1), λ
bid

g (t)]

9: Store the transition (s(t), λ
bid

g (t), λ
bid-

g (t), rg(t), s(t+1)) for each GENCO

10: for GENCO g = 1 to N do

11: Randomly sample a minibatch of S samples (s(j)(t), λ
bid

g
(j)(t), λ

bid-

g
(j)(t), rg

(j)(t), s(j)(t+1)) from

the stored transitions

12: Set Q
target(j)

g (t) = rg
(j)(t) + γQg(s

(j)(t+1), λ
bid

g
(j)(t+1), λ

bid-

g
(j)(t+1);Q’), for λ

bid

g
(j)(t+1)=

 g (o
(j)

g (t+1); ’)

13: Update the critic network by minimizing the MSE:

14: Lg(Q) =1/Ns∑j(Q
target(j)

g (t) - γQg(s
(j)(t), λ

bid

g
(j)(t), λ

bid-

g
(j)(t);Q)

15: Q = Q - ηQ▽Q Lg(Q)

16: Update the actor network by maximizing the expected Q value:

17: ▽Jg()=1/Ns∑j▽gQg(s
(j)(t), λ

bid

g
(j)(t), λ

bid-

g
(j)(t);Q) ▽ g (o

(j)

g (t);)

18: = - η▽Jg()

19: end for

20: Update the target network parameters for each GENCO:

21: Q’ = (1 – τ)Q + τ Q’

22: ’ = (1 – τ) + τ ’

23: end for

24:end for

In algorithm 1, the state is defined as the hourly load and the bidding prices of all the agents in

the previous hour; the private observation of each agent is defined as the hourly load and its bidding

price at the previous hour, as shown by line 6-7. The reward rg(t) is the hourly power selling profit:

125

, ,

1 1

() () () (())
b bN N

cleared cleared cleared

g g b g g g b

b b

r t P t t C P t

 (6.18)

The state is sent to the critic network for calculating the target action value, as shown by line 12.

λ
bid-

g
(j)(t+1) represents the bidding prices of all GENCOs except for the gth GENCO. Note that the

bidding price for the next time step t+1 is generated by g (’) instead of g () in line 12. Like

the target critic network, g (’) represents the target actor network, which also aims to stabilize

the training process.

After the weights of the behavior critic network and the behavior actor network are updated, as

shown by line 15 and 18, the weights of the target critic network and the target actor network are

updated accordingly at a slower speed, as shown by line 21-22, where τ has a value close to 1. The

reason for this slow update is also to increase the stability of the learning.

To help readers achieve an easy and clear understanding of the MADDPG algorithm for a multi-

agent day-ahead market bidding problem, an illustration of the algorithm is shown in Figure 6.1:

6.3.4 Baseline cases for evaluating the learning performance of MADDPG

Two baseline cases are designed as a comparison with MADDPG algorithm. In the first baseline

case, all the generators will bid truthfully by submitting their true marginal cost. In the second

baseline case, a value-based deep RL method, the DQN, is applied for optimizing the GENCOs’

bidding strategies. In DQN, discretization of the continuous action domain is required to estimate

the Q value of each possible action, which can limit the search space and may not lead to the

optimal action. The following section will present the simulation results from both MADDPG and

the two baselines for comparison and analysis.

6.4 Simulation Analysis

6.4.1 Test system description

The IEEE 30-bus system with 9 generators is applied as the transmission-level electricity market.

The topology of the system is shown in Figure 6.2:

126

Day-ahead wholesale
market biddingGENCO 1

GENCO 2

 ...

GENCO g

behavior
network(θμ)

()bid

g t

target
network(θμ)

Update θ
μ

behavior
network(θQ)

target
network(θQ)

Qg(θ
Q
)

μ (θμ)

arg ()t et

gQ t Update
 θ

Q

()cleared

gP t

Actor Critic

GENCO N

 ...
()cleared

g t

Figure 6.1 MADDPG algorithm for solving Markov game in day-ahead electricity market

1
2

5 7

3 4 6

28

8

13
12 16

119

17

10

27

14

15

18

19

20

2122

23 24 25

26

29
30

GENCO 1

GENCO 2

GENCO 3

Figure 6.2. Topology of the IEEE 30-bus system

The generators at bus 27, bus 23, and bus 13 are considered as strategic bidders that will conduct

economic withholding to maximize their profits. All other generators will submit their true

marginal cost. In addition, the transmission lines 4-12 and 23-24 have a capacity limit of 10 MW.

This capacity limit will give the nearby GENCOs, GENCO 2 and GENCO 3, the market power to

manipulate the clearing price, which will later be shown in the simulation results.

The generation cost function of GENCOs is assumed to be a piecewise linear function, which

include three segments. The parameters of the cost function are shown in Table 6.1:

127

Table 6.1 GENCO generation cost function

Segment
Marginal price

($/MWh)

Generation

range (MW)

1 20 [0-12]

2 40 [12-36]

3 50 [36-60]

It is assumed that at each hour, only one bidding block is submitted by each GENCO. The

bidding quantity is 60 MW, which is their capacity. For GENCO 1-3, their bidding price is λ
bid

g (t)

= g(t) λ
cost

g (t); for other GENCOs, their bidding price is λ
cost

g (t). In this case, λ
cost

g (t) is 50$/MWh.

Following the assumptions presented at section 6.2.3, the value of the bidding price thresholds,

th1 and th2, are set to 1.5 and 1.1, respectively, which means λ
bid

g (t) should comply with the

following condition:

max () ()

1.5, 0.9 1.1, , 1,2,3
min () (1)

bid bid

g g

bid bid

g g

t t
t for g

t t

 (6.19)

6.4.2 Design of neural network and simulation platform

The detailed structures of actor network and critic network in the proposed MADDPG, as well

as the structure of DQN are shown in Table 6.2:

Table 6.2. Design of DNNs in deep RL
Neural Network Actor Critic DQN

Input [Pload(t), λ
bid

g (t-1)]
[Pload(t), λ

bid

g (t-1),
λ

bid-

g (t-1), λ
bid

g (t), λ
bid-

g (t)]
[Pload(t), λ

bid

g (t-1)]

No. of hidden layers 2 2 2

No. of neurons [2,64],[64,64] [7,64],[64,64] [2,64]

Output δ ∈ [0,1] Qg(s (t), λ
bid

g (t), λ
bid-

g (t)) Qg(s (t), λ
bid

g (t))

Activation function
ReLU

(hidden layer); sigmoid
(output layer)

ReLU
(hidden layer)

ReLU
(hidden layer)

Learning
rate(η)

0.001 0.002 0.001

τ 0.99 0.99 0.99
Optimizer Adam Adam Adam

128

The output from the actor network is a value δ between 0 and 1. The bidding price λ
bid

g (t) is

calculated as follows:

 () (0.9 (1.1 0.9)) (1)bid bid

g gt t (6.20)

The value of λ
bid

g (t) will be further adjusted to be within the range of 1~1.5 λ
cost

g (t):

1.5 (), () 1.5 ()
()

(), () ()

()
(0.9) / 0.2

(1)

cost bid cost

g g gbid

g cost bid cost

g g g

bid

g

bid

g

t if t t
t

t if t t

t

t

 (6.21)

For DQN, since the action λ
bid

g (t) is within the continuous interval 1~1.5 λ
cost

g (t), a step size of 0.1

is applied to discretize the action space: [1,1.1,1.2,1.3,1.4,1.5]×λ
cost

g (t). Hence, the output from

DQN is a vector of size 1×6, which includes the Q value for each potential λ
bid

g (t).

The neural network model is built and trained by the open-source deep learning platform

TensorFlow. The day-ahead market clearing process is completed by the smart market module in

MATPOWER toolbox [57] . The hardware environment is a laptop with Intel®CoreTM i7-7600U

2.8 GHz CPU, and 16.00 GB RAM.

6.4.3 Nash Equilibrium strategy from MADDPG: uncongested case

In this subsection, we first study the bidding strategies of the three GENCOs under marginal

pricing mechanism in an uncongested case, where the capacity limit on line 4-12 and 23-24 are

removed. The goal is to show that MADDPG algorithm is able to achieve the NE strategies that

satisfy the two conditions as introduced in section 6.2.1, when no GENCO bidder has access to

market power.

The load profile in June, 2019 from PJM wholesale market [133] is used to train the deep RL

method. The load data in the 31 days in July, 2019 from PJM market is used to test the deep RL

method after training. The load profile of the training days and the test days is shown in Figure 6.3,

which shows the differences between the load levels in the two months. However, since the deep

129

RL is a generalized model, it can adapt to the changes in the environment and produces optimal

strategies, which will be shown in the following test results.

Figure 6.4 presents the change of average reward over 500 training episode as a sign of algorithm

convergence. As shown in the figure, the average rewards for the three GENCOs gradually

stabilize as the training proceeds, which indicates the convergence of the MADDPG algorithm.

The test results of MADDPG with July data are shown in Figure 6.5 and are also compared with

the truthful bidding baseline case in Table 6.3, where the 3 GENCOs always bids truthfully. In

Figure 6.5, the y axis is the bidding parameter g(t) in Eq. (6.6). The red curve is the system load

level. One thing should be pointed out is that since the state of GENCO bidder requires the bidding

price at the previous hour, we assume that the bidding price at hour zero is always the true marginal

cost. It can be observed that in the uncongested case, all GENCOs bid at their true marginal cost,

regardless of the system load level. This is because when the capacity limit is removed, GENCO

2-3 cannot manipulate the market clearing price. Since all other GENCOs are bidding at their true

marginal cost, the optimal bidding strategy for GENCO 1-3 is also truthful bidding. According to

the NE conditions in section 6.2.1, vg and bg are λ
cost

g (t) and λ
bid

g (t), respectively. It can be seen that

the truthful bidding, where λ
bid

g (t) = λ
cost

g (t), satisfies the equality constraint in condition (i) and (ii).

In Table 6.3, the total profit from MADDPG is the same as the baseline, since they both bid

truthfully. Therefore, it can be safely concluded that the well-trained MADDPG algorithm can find

the optimal bidding strategy of the three GENCO bidders in a constraint-free market environment.

130

Figure 6.3. Load profile in June and July of year 2019

Figure 6.4. Convergence of MADDPG in the uncongested case

Figure 6.5. Bidding strategy of three GENCOs with MADDPG: uncongested case

131

Table 6.3. Comparison of MADDPG with baseline: uncongested case

GENCO
Total profit (104 $)

MADDPG Truthful bidding

1 44.64 44.64

2 44.64 44.64

3 40.26 40.26

6.4.4 Solving Markov game with MADDPG: congested case

In this subsection, the MADDPG algorithm is applied to solve the Markov game in day-ahead

electricity market bidding with congestions. The same training data is used and the training results

are shown in Figure 6.6: The algorithm is trained for 200 episodes. As shown in the figure, the

average reward converges for all three GENCO bidders. The well-trained RL agents are then tested

with the July data, and are also compared with the truthful bidding case, as shown in Figure 6.7-

Figure 6.8, and Table 6.4.

Figure 6.6. Convergence of MADDPG in the congested case

132

Figure 6.7. Bidding strategy of three GENCOs with MADDPG: congested case

Figure 6.8. Hourly market clearing price under MADDPG bidding strategy

Table 6.4 Comparison of MADDPG with baselines: congested case

GENCO
Total profit (104 $)

MADDPG Truthful bidding DQN

1 57.24 50.01 63.30

2 131.36 88.96 119.56

3 184.37 114.34 142.01

133

Figure 6.7 shows that GENCO 2 always bids at the highest price, which is 1.5 λ
cost

g (t), at the peak

hours when congestions are most likely to happen. Since GENCO 1 does not have market power,

it always bids at the true marginal cost, where g(t) is 1. GENCO 3 also bids at the true marginal

cost. However, because the marginal price principle is applied for clearing the market, GENCOs

1 and 3 still benefit from the high bidding price offered by GENCO 2. As shown in Figure 6.8, the

cleared prices for all three GENCOs are higher than their marginal generation cost 50$/MWh. In

Table 6.4, all three GENCOs obtain higher total profits than in the truthful bidding case. This

phenomenon is called “free riding” in game theory, where GENCOs 1 and 3 can bid at a lower

price to get more of their quantity cleared at the high marginal price.

The above bidding strategies form one NE and the reason is provided as follows: according to

the definition of NE, no player can benefit by changing its strategy while the strategies of other

players remain unchanged. First, since GENCO 1 has no market power, increasing its bidding price

will only reduce its cleared quantity and profit. GENCO 1 will not bid higher than the true marginal

cost; secondly, if GENCO 2 decreases the bidding price to the marginal cost, then all three

GENCOs will bid truthfully like the baseline case, and all of them will receive a lower profit; lastly,

if GENCO 3 also adopts a similar strategy like GENCO 2, which is to bid high at peak hours, then

the amount of its cleared power will be greatly reduced, which results in a lower profit (this has

been tested through simulation). Therefore, no GENCO will be willing to change its bidding

strategy alone while the other two remain unchanged, which indicates a NE status.

The last column in Table 6.4 lists the total profit obtained by DQN-based bidding strategies. The

average reward curve of DQN algorithm is shown in Figure 6.9. In DQN, an individual Q network

is designed for each GENCO bidder, and there is no centralized training mechanism like the critic

network in MADDPG. Therefore, it takes a longer time for the algorithm to converge. Figure 6.10

shows the bidding strategies derived from DQN for the test days. As shown, because of the limited

search space and a lack of centralized training, the DQN algorithm generated a less profitable

bidding strategy than the MADDPG algorithm. Note that although the profit of GENCO 1 is higher

134

with DQN, this is not a NE since GENCO 2 and GENCO 3 have the motivation to change their

bidding strategies to obtain higher profits.

Figure 6.9. Convergence of DQN in the congested case

Figure 6.10. Bidding strategy of three GENCOs with DQN: congested case

135

6.5 Conclusions

This chapter presents an MADDPG algorithm for solving the Markov game in the day-ahead

electricity market. The MADDPG algorithm can learn a profitable bidding strategy for multiple

GENCO bidders through centralized training and decentralized execution. Simulation results

verify the learning efficiency and computational efficiency of the MADDPG algorithm, which

indicates that the algorithm can be a promising tool for solving power system problems that have

multiple decision makers and high unobservability.

For future works, one potential direction is to study the sequential market bidding problem,

where the bidding will take place in several market stages, including the day-ahead, intra-day, and

real-time market. In such cases, MADDPG can still be applied to solve the associated Markov

game through continuous interaction with the environment.

6.6 Acknowledgement

This work was supported in part by NSF Award under Grant ECCS-1809458, and in part by

CURENT, a NSF/DOE Engineering Research Center through NSF Award under Grant EEC-

1041877.

136

Chapter 7 Conclusions and Future Works

7.1 Summary of Current Progress

Deep learning technology has become a heated topic in both academia and industry. The rapid

development of hardware platform provides a solid support for the realization of deep learning

models in various application fields. It is foreseeable that with the ongoing acceleration of

hardware processors, the performance of deep learning methods will be continuously improved

and get adapted to more complex and intractable real-world situations and produce fruitful results.

 In this dissertation, the implications and advancements of deep learning technology are first

reviewed. Then, the current applications of deep learning technologies in the field of power

systems are categorized and summarized. Based on the current research works, in this dissertation,

several types of power system problems, that are either suffering from high computational burden,

or mathematically difficult to model, are introduced, and the potential of applying deep learning

methods for solving these problems is discussed.

In Chapter 2, a data-driven N-1 contingency screening method is applied for identifying the

system security status under N-1 contingency with multiple uncertain operation scenarios. The

deep CNN is utilized as a multi-task learning tool, which generates both system state variables and

system security classification. Because of its high generalization ability, once the deep CNN is

well trained, it can be directly applied to new operation scenarios and quickly estimates the system

security status, without the iterative power flow calculation. The applied method can serve as an

ancillary tool for power system security assessment in real-time operation.

Following the above work, in Chapter 3, a fast cascading outage screening method is applied for

identifying the severest cascading outage path in the power system, which considers the sequential

contingencies taking place. The method is a combination of deep CNN and DFS method. The deep

CNN can estimate the value of the system security index via the training process. Then, based on

the estimated value, the DFS method quickly scans all the potential cascading outage paths within

137

the system and identifies the paths with highest severity. The simulation results based on standard

IEEE test cases verify the computational efficiency and the accuracy of the above data-driven

method, which can provide reference for power system operators to take corrective measures to

prevent system collapse in advance during real-time operation.

In Chapter 4, the DNN is applied for optimizing MMG energy management at the distribution

system level. Due to the protection of user privacy, the microgrid is modeled as a black box, and

the DNN is utilized to simulate the behavior of multiple microgrids under real-time prices. Then,

with the well-trained DNN as a representative of MMG, Monte Carlo RL method is applied for

the DSO to decide the optimal real-time price sequences so that the system PAR can be minimized,

while maintaining a high profit of selling power for DSO. Case studies demonstrate that the applied

data-driven method is highly computationally efficient compared with the conventional model-

based method for solving microgrid economic operation, which proves its feasibility in real-world

applications.

In Chapter 5, a data-driven, continuous control strategy for multi-zone residential HVAC system

is proposed based on deep RL method. The DDPG algorithm is applied to explore the optimal

selection of setpoints of the HVAC system to maintain the indoor temperature within the user’s

comfort level while minimizing the energy consumption cost. Within such a data-driven

framework, the algorithm requires no detailed formulation of the complex thermal dynamic model

within the HVAC system, but gradually learns the optimal control policy through continuous

interaction with the environment. Comparisons with benchmark baseline cases verify that the

applied deep RL based control algorithm is able to find a more economic HVAC control strategy

while maintaining user’s comfort. The well-trained deep RL agent has also gained considerable

generalization and can be adapted to unseen environments with different physical conditions.

In Chapter 6, a multi-agent deep RL method is applied to solve the Markov game at the day-

ahead electricity bidding market. The objective is to obtain an optimal bidding strategy for each

intelligent GENCO bidder that will result in the largest individual profit, hence no player will

138

change its bidding strategy when other players remain unchanged, which leads to a NE. The

MADDPG method is implemented for obtaining the NE status. The advantage of MADDPG over

the DDPG is that the latter leverages a centralized-training, decentralized testing framework that

considers the interactions among different decision-makers within a non-stationary environment.

The simulation results on the IEEE 30-bus system in both an uncongested case and a congested

case demonstrate that the applied MADDPG method is able to find a more economic bidding

strategy for each GENCO bidder compared with a truthful bidding baseline case and also the

widely applied DQN algorithm. It can be safely concluded that the MADDPG algorithm has

substantial potential for solving complex decision-making problems with multiple decision-

makers or hidden information.

7.2 Future Works

One major bottleneck of the current developed deep learning algorithms is the adaptability.

Adaptability means that a well-trained deep learning algorithm can get quickly adapted to new

tasks based on its past learning experience with the least retraining efforts, and generates results

with guaranteed accuracy. This type of effective learning is a key capability of human beings, yet

machine learning methods are still a long way from realization of such capability. It is crucial for

deep learning algorithms to develop the adaptability in order for their continuous flourishing

because under certain real-world situations there is no access to a large amount of training data for

the algorithm to learn, which can lead to the failure of heavily data-dependent methods like

supervised learning. In addition, training a machine learning algorithm can be tremendously time-

consuming and resource-consuming, yet new tasks keep streaming in with different optimization

objectives. As a consequence, it becomes unpractical to train a brand-new model for each

individual task starting from scratch.

There have been extensive research efforts in literature dedicating to enhancing the adaptability

of machine learning algorithms within the context of multi-task learning. Transfer learning and

139

Meta-learning are two of the latest research hot spots. Transfer learning focuses on how to utilize

the knowledge from a source task to accelerate the learning process when solving a target task,

which is different but related to the source task. Meta learning applies a more simple philosophy,

which is known as learning to learn. In traditional machine learnings, the algorithm can formulate

a mapping between the input data and the desired output after thousands of rounds of iterations

such as back propagation. Then a new task comes and the above process has to be repeated to

achieve a desired model. What if instead of simply learning the extracted features from the given

data, we let the machine learning model learn how this mapping is achieved, for example, how the

neural networks are initialized (normal distribution, Xavier initialization, etc.), and how the

parameters of the neural network are updated (back-propagation). These key issues are like a

general tool for solving any data-driven related task. If the machine learning algorithm can

understand these core ideas, it will become possible to quickly adapt to unseen tasks by applying

the same idea with reduced retraining efforts. There is an old Chinese saying that goes “Give a

man a fish, and you feed him for a day. Teach a man to fish, and you feed him for a lifetime.” Meta

learning adopts a similar principle: teaching the machine the generalized learning skills instead of

simply offering the specific answers.

It is foreseeable that more complicated real-world tasks with high dimension or model

inaccessibility will grow explosively in the near future, and the functionality of the heavily data-

dependent machine learning methods will become more limited under such scenarios. It is highly

imperative to make the best of deep learning techniques like transfer learning and meta-learning

to design algorithms with enhanced robustness and extended adaptability, to fully prepare for

unpredicted learning tasks within a perplexing environment. The exploration of the potential

applications of transfer learning and meta-learning in the field of power system control and

operation will be the key future research directions. Some potentially interesting research topics

include:

1) Development of a more generalized contingency screening tool with deep CNN and transfer

140

learning that can be adapted to different types of contingencies and power systems at different

scales, with least amount of retraining efforts;

2) Applying deep RL for power system emergency control under cascading outages to restore

system security; further combining with transfer learning to learn a more robust control strategy

that can be adapted to various fault scenarios;

3) Design of a multi-task learning framework based on deep RL and meta-learning that can

optimally control a multi-zone residential HVAC system in both heating scenarios and cooling

scenarios with high learning efficiency;

4) Utilization of deep learning and transfer learning to estimate power system transient stability

under different system topologies and operation scenarios to accelerate the simulation process.

141

References

142

[1] D. Silver, A Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser, I.

Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I.

Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu,T Graepel, and D. Hassabis, “Mastering the game

of Go with deep neural networks and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[2] I. Goodfellow, Y. Bengio, and A. Courville, “Deep Learning,” Cambridge: MIT press, 2016, pp. 9-12.

[3] F. Chollet, “Deep Learning with Python,” Manning Publications Co., 2017, pp. 6.

[4] M. D. Zeiler, R. Fergus, “Visualizing and Understanding Convolutional Networks,” arXiv: 1311. 2901,

2013.

[5] H. Shi, M. Xu, and R. Li. “Deep learning for household load forecasting—A novel pooling deep RNN,”

IEEE Trans. Smart Grid. vol. 9, no. 5, pp. 5271-5280, Sep. 2018.

[6] W. Kong, Z. Y. Dong, D. J. Hill, F. Luo, and Y. Xu, “Short-Term Residential Load Forecasting based

on Resident Behaviour Learning,” IEEE Trans. Power Syst., vol. 33, no. 1, pp. 1087-1088, Jan. 2018.

[7] M. Sun, T. Zhang, Y. Wang, G. Strbac, and C. Kang, “Using Bayesian Deep Learning to Capture

Uncertainty for Residential Net Load Forecasting,” IEEE Trans. Power Syst., 2019, early access.

[8] M. Khodayar, and J. Wang, “Spatio-temporal graph deep neural network for short-term wind speed

forecasting,” IEEE Trans. Sustainable Energy, vol. 10, no. 2, pp. 670-681, Apr. 2019.

[9] Q. Zhu, J. Chen, D. Shi, L. Zhu, X. Bai, X. Duan, and Y. Liu, “Learning Temporal and Spatial

Correlations Jointly: A Unified Framework for Wind Speed Prediction,”. IEEE Trans. Sustainable

Energy, 2019, early access.

[10]J. F. Toubeau, J. Bottieau, F. Vallée, and Z. De Grève, “Deep learning-based multivariate probabilistic

forecasting for short-term scheduling in power markets,” IEEE Trans. Power Syst., vol. 34, no. 2, pp.

1203-1215, Mar. 2019.

[11]K. Chen, K. Chen, Q. Wang, Z. He, J. Hu, J. He, “Short-term load forecasting with deep residual

networks,”.IEEE Trans. Smart Grid, vol. 10, no. 4, pp. 3943-3952, Jul. 2019.

[12]W. Zhang, H. Quan, and D. Srinivasan, “An improved quantile regression neural network for

probabilistic load forecasting,” IEEE Trans. Smart Grid, vol. 10, no. 4, pp. 4425-4434, Jul. 2019.

[13]W. Kong, Z. Dong, B. Wang, J. Zhao, and J. Huang, “A Practical Solution for Non-Intrusive Type II

Load Monitoring based on Deep Learning and Post-Processing,” IEEE Trans. Smart Grid, 2019, early

access.

[14]V. Singhal, J. Maggu, and A. Majumdar, “Simultaneous detection of multiple appliances from smart-

meter measurements via multi-label consistent deep dictionary learning and deep transform learning,”

IEEE Trans. Smart Grid, vol. 10, no. 3, pp. 2969-2978, May 2019.

[15]M. Cui, M. Khodayar, C. Chen, X. Wang, Y. Zhang, and M. E. Khodayar, “Deep Learning Based Time-

Varying Parameter Identification for System-Wide Load Modeling,” IEEE Trans. Smart Grid, vol. 10,

no. 6, pp 6102-6114, Nov. 2019.

143

[16]Y. Wang, Q. Chen, D. Gan, J. Yang, D. S. Kirschen, C. Kang, “Deep learning-based socio-demographic

information identification from smart meter data,” IEEE Trans. Smart Grid, vol. 10, no. 3, pp. 2593-

2602, May 2019.

[17]Z. Zheng, Y. Yang, X. Niu, H. Dai, and Y. Zhou, “Wide and deep convolutional neural networks for

electricity-theft detection to secure smart grids,” IEEE Trans. Industrial Informatics, vol. 14, no. 4, pp.

1606-1615, Apr. 2018.

[18]K. L. López, C. Gagné, and M. A. Gardner, “Demand-side management using deep learning for smart

charging of electric vehicles,” IEEE Trans. Smart Grid, vol. 10, no. 3, pp. 2683-2691, May 2019.

[19]S. Wen, Y. Wang, Y. Tang, Y. Xu, P. Li, and T. Zhao, “Real-Time Identification of Power Fluctuations

based on LSTM Recurrent Neural Network: A Case Study on Singapore Power System,” IEEE Trans.

Industrial Informatics, vol. 15, no. 9, pp. 5266-5275, Sep. 2019.

[20]X. Wang, H. He, and L. Li, “A Hierarchical Deep Domain Adaptation Approach for Fault Diagnosis of

Power Plant Thermal System,” IEEE Trans. Industrial Informatics, vol. 15, no. 9, pp. 5139-5148, Sep.

2019.

[21]W. Li, D. Deka, M. Chertkov, and M. Wang, “Real-time Faulted Line Localization and PMU Placement

in Power Systems through Convolutional Neural Networks,” IEEE Trans. Power Syst., vol. 34, no. 6,

pp. 4640-4651, Nov. 2019.

[22]R. Yadav, S. Raj, and A. K. Pradhan,“Real-time Event Classification in Power System with Renewables

using Kernel Density Estimation and Deep Neural Network,” IEEE Trans. Smart Grid, vol. 10, no. 6,

pp. 6849-6859, Nov. 2019.

[23]A. Gupta, G. Gurrala, and P. S. Sastry, “A Deep Learning-Based Feature Extraction Framework for

System Security Assessment,” IEEE Trans. Power Syst., vol. 34, no. 2, pp. 864-872, Mar. 2019.

[24]M. Sun, I. Konstantelos, and G. Strbac, “A deep learning-based feature extraction framework for

system security assessment,” IEEE Trans. Smart Grid, vol. 10, no. 5, pp. 5007-5020, Sep. 2019.

[25]X. Kong, X. Xu, Z. Yan, S. Chen, H. Yang, and D. Han, “Deep learning hybrid method for islanding

detection in distributed generation,” Applied Energy, vol. 210, pp. 776-785, Jan. 2018.

[26]R. Yan, G. Geng, Q. Jiang, and Y. Li, “Fast Transient Stability Batch Assessment using Cascaded

Convolutional Neural Networks,” IEEE Trans. Power Syst., vol. 34, no. 4, pp. 2802-2813, Jul. 2019.

[27]Y. He, G. J. Mendis, and J. Wei, “Real-Time Detection of False Data Injection Attacks in Smart Grid:

A Deep Learning-Based Intelligent Mechanism,” IEEE Trans. Smart Grid, vol. 8, no. 5, pp. 2505-2516,

Sep. 2017.

[28]K. R. Mestav, J. Luengo-Rozas, and L. Tong, “Bayesian State Estimation for Unobservable

Distribution Systems via Deep Learning,” IEEE Trans. Power Syst., vol. 34, no. 6, pp. 4910-4920, Nov.

2019.

144

[29]M. Sun, Y. Wang, F. Teng, Y. Ye, G. Strbac, and C. Kang, “Clustering-Based Residential Baseline

Estimation: A Probabilistic Perspective,” IEEE Trans. Smart Grid, vol. 10, no. 6, pp. 6014-6028, Nov.

2019.

[30]H. Jahangir, H. Tayarani, S. Baghali, A. Ahmadian, A. Elkamel, M. A. Golkar, and M. Castilla, “A

Novel Electricity Price Forecasting Approach Based on Dimension Reduction Strategy and Rough

Artificial Neural Networks,” IEEE Trans. Industrial Informatics, 2019, early access.

[31]L. Wang, Z. Zhang, and J. Chen, “Short-term electricity price forecasting with stacked denoising

autoencoders,” IEEE Trans. Power Syst., vol. 32, no. 4, pp. 2673-2681, Jul. 2017.

[32]J. Yan, H. Zhang, Y. Liu, S. Han, L. Li, and Z. Lu, “Forecasting the high penetration of wind power on

multiple scales using multi-to-multi mapping,” IEEE Trans. Power Syst., vol. 33, no. 3, pp. 3276-3284,

May. 2018.

[33]X. Luo, J. Sun, L. Wang, et al. “Short-term wind speed forecasting via stacked extreme learning

machine with generalized correntropy,” IEEE Trans. Industrial Informatics, vol. 14, no. 11, pp. 4963-

4971, Nov. 2018.

[34]M. Khodayar, S. Mohammadi, M. E. Khodayar, J. Wang, and G. Liu,“Convolutional Graph

Autoencoder: A Generative Deep Neural Network for Probabilistic Spatio-temporal Solar Irradiance

Forecasting,” IEEE Trans. Sustainable Energy, 2019, early access.

[35]Y. Zhang, V. V. G. Krishnan, J. Pi, K. Kaur, A. Srivastava, A. Hahn, and S. Suresh, “Cyber physical

security analytics for transactive energy systems,” IEEE Trans. Smart Grid, 2019, early access.

[36]R. Sun, Y. Liu, and L. Wang, “An Online Generator Start-Up Algorithm for Transmission System Self-

Healing Based on MCTS and Sparse Autoencoder,” IEEE Trans. Power Syst., vol. 34, no. 3, pp. 2061-

2070, May. 2019.

[37]Y. Chen, Y. Wang, D. Kirschen, and B. Zhang, “Model-Free Renewable Scenario Generation Using

Generative Adversarial Networks,” IEEE Trans. Power Syst., vol. 33, no. 3, pp. 3265-3275, May 2018.

[38]C. Ren, and Y. Xu, “A fully data-driven method based on generative adversarial networks for power

system dynamic security assessment with missing data,” IEEE Trans. Power Syst., vol. 34, no. 6, pp.

5044-5052. Nov. 2019.

[39]B. J. Claessens, P. Vrancx, and F. Ruelens, “Convolutional Neural Networks for Automatic State-Time

Feature Extraction in Reinforcement Learning Applied to Residential Load Control,” IEEE Trans.

Smart Grid, vol. 9, no. 4, pp. 3259-3269, Jul. 2018.

[40]E. Mocanu, D. C. Mocanu, P. H. Nguyen, A. Liotta, M. E. Webber, G. Gibescu, and J. G. Slootweg,

“On-line building energy optimization using deep reinforcement learning,” IEEE Trans. Smart Grid,

vol. 10, no. 4, Jul. 2019.

[41]P. Zeng, H. Li, H. He, and S. Li, “Dynamic Energy Management of a Microgrid using Approximate

Dynamic Programming and Deep Recurrent Neural Network Learning,” IEEE Trans. Smart Grid, vol.

10, no. 4, pp. 4435-4445, Jul. 2019.

145

[42]V. H. Bui, A. Hussain, and H. M. Kim, “Double Deep Q-Learning-Based Distributed Operation of

Battery Energy Storage System Considering Uncertainties,” IEEE Trans. Smart Grid, 2019, early

access.

[43]Z. Wan, H. L. H. He, and D. Prokhorov, “Model-Free Real-Time EV Charging Scheduling Based on

Deep Reinforcement Learning,” IEEE Trans. Smart Grid, vol. 10, no. 5, pp. 5246-5257, Sep. 2019.

[44]H. Xu, H. Sun, D. Nikovski, S. Kitamura, K. Mori, and H. Hashimoto, “Deep Reinforcement Learning

for Joint Bidding and Pricing of Load Serving Entity,” IEEE Trans. Smart Grid, vol. 10, no. 6, pp.

6366-6375, Nov. 2019.

[45]Z. Yan, and Y. Xu, “Data-Driven Load Frequency Control for Stochastic Power Systems: A Deep

Reinforcement Learning Method with Continuous Action Search,” IEEE Trans. Power Syst., vol. 34,

no. 2, pp. 1653-1656, Mar. 2019.

[46]N. Dagmar, and A. J. Germond, “Power system static security assessment using the Kohonen neural

network classifier,” IEEE Trans. Power Syst., vol. 7, pp. 865-872, May 1992.

[47]F. Li and Y. Du, “From AlphaGo to Power System AI: What Engineers Can Learn from Solving the

Most Complex Board Game,” IEEE Power & Energy Magazine, vol. 16, no. 2, pp. 76-84, Mar. 2018.

[48]N. Yorino, M. Abdillah, Y. Sasaki, and Y. Zoka, “Robust Power System Security Assessment Under

Uncertainties Using Bi-Level Optimization,” IEEE Trans. Power Syst., vol. 33, no. 1, pp. 352-362, Jan.

2018.

[49]Y. Yang, X. Guan, and Q. Zhai, “Fast Grid Security Assessment with N − k Contingencies,” IEEE

Trans. Power Syst., vol. 32, no. 3, pp. 2193-2203, May 2017.

[50]D. A. Tejada-Arango, P. Sánchez-Martın, and A. Ramos, “Security constrained unit commitment using

line outage distribution factors,” IEEE Trans. Power Syst., vol. 33, no. 1, pp. 329-337, Jan. 2018.

[51]M. Majidi-Qadikolai, R. Baldick, “Stochastic Transmission Capacity Expansion Planning with Special

Scenario Selection for Integrating N-1 Contingency Analysis,” IEEE Trans. Power Syst., vol. 31, no. 6,

pp. 4901-4912, Nov. 2016.

[52]P. Liu, Z. Li, Y. Zhuo, X. Lin, S. Ding, M. S. Khalid, and O. S. Adio, “Design of Wind Turbine Dynamic

Trip-Off Risk Alarming Mechanism for Large-Scale Wind Farms,” IEEE Trans. Sustainable Energy,

vol. 8, no. 4, pp. 1668-1678, Oct 2017.

[53]R. Sunitha, R. S. Kumar, and A. T. Mathew, “Online static security assessment module using artificial

neural networks,” IEEE Trans. Power Syst., vol. 28, no. 4, pp. 4328-4335, Nov. 2013.

[54]S. Kalyani, and K. Shanti Swarup, “Classification and Assessment of Power System Security Using

Multiclass SVM,” IEEE Trans. Systems, Man, and Cybernetics, Part C (Applications and Reviews),

vol. 41, no. 5, pp. 753-758, Sep. 2011.

[55]K. Nara, K. Tanaka, and H. Kodama, etc. “On-line contingency selection algorithm for voltage security

analysis,” IEEE Trans. Power Apparatus and Systems, vol. 4, pp. 846-856, Apr. 1985.

146

[56]R. Sunitha, R. Sreerama Kumar, and A. T. Mathew, “Development of a Composite Security Index for

Static Security Evaluation,” in TENCON 2009-2009 IEEE Region 10 Conference.

[57]R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas, “MATPOWER: Steady-state operations,

planning, and analysis tools for power systems research and education,” IEEE Trans. Power Syst., vol.

26, no. 1, pp. 12-19, Feb. 2011

[58]Glossary of Terms Used in NERC Reliability Standards. [Online]. Available:

https://www.nerc.com/files/glossary_of_terms.pdf

[59]WSCC Operations Committee, “Western Systems Coordinating Council Disturbance Report for the

Power System Outages that Occurred on the Western Interconnection on July 2, 1996 and July 3, 1996,”

Western Syst. Coordinating Council, Salt Lake City, UT, USA, Tech. Rep., 1996.

[60]U.S.-Canada Power System Outage Task Force, “Final report on the August 14th blackout in the United

States and Canada,” Apr. 2004.

[61]Protection System Response to Power Swings, System Protection and Control Subcommittee, NERC,

Atlanta, GA, USA, Aug. 2013. [Online]. Available: http://www.nerc.com

[62]Transmission System Planning Performance Requirements, NERC Standard TPL-001-4, 2013.

[63]I. Dobson, B.A. Carreras, V.E. Lynch, and D.E. Newman,“Complex systems analysis of series of

blackouts: cascading failure, critical points, and self-organization,” Chaos, vol. 17, 026103, June 2007.

[64]S. Mei, Y, Ni. Weng, G. Wang, and S. Wu, “A study of self-organized criticality of power system under

cascading failures based on AC-OPA with voltage stability margin,” IEEE Trans. Power Syst., vol. 23,

no. 4, pp. 1719–1726, Nov. 2008.

[65]D. S. Kirschen, D. Jawayeera, D. P. Nedic, and R. N. Allan, “A probabilistic indicator of system stress,”

IEEE Trans. Power Syst., vol. 19, no. 3, pp. 1650–1657, Aug. 2004.

[66]I. Dobson, B. A. Carreras, and D. E. Newman, “A loading dependent model of probabilistic cascading

failure,” Probability in the Engineering and Informational Sciences, vol. 19, no. 1, pp. 15–32, Jan. 2005.

[67]P. Henneaux, P.-E. Labeau, J.-C. Maun, and L. Haarla, “A Two-Level Probabilistic Risk Assessment

of Cascading Outages,” IEEE Trans. Power Syst., vol. 31, no. 3, pp. 2393-2403, 2016.

[68]R. Yao, S. Huang, K. Sun, F. Liu, X. Zhang, and S. Mei, “A Multi-Timescale Quasi-Dynamic Model

for Simulation of Cascading Outages,” IEEE Trans. Power Syst., vol. 31, no. 4, pp. 3189-3201, 2016.

[69]J. Guo, F. Liu, J. Wang, J. Lin, and S. Mei, “Toward Efficient Cascading Outage Simulation and

Probability Analysis in Power Systems,” IEEE Trans. Power Syst., vol. 33, no. 3, pp. 2370-2382, May

2018.

[70]M. Rahnamay-Naeini, and M. M. Hayat, “Cascading Failures in Interdependent Infrastructures: An

Interdependent Markov-Chain Approach,” IEEE Trans. Smart Grid, vol. 7, no. 4, pp. 1997-2006, Jul.

2016.

[71]P. Hines, I. Dobson, and P. Rezaei, “Cascading Power Outages Propagate Locally in an Influence Graph

that is not the Actual Grid Topology,” IEEE Trans. Power Syst., vol. 32, no. 2, pp. 958-967, Mar. 2017.

https://www.nerc.com/files/glossary_of_terms.pdf

147

[72]J. Qi, W. Ju, and K. Sun, “Estimating the Propagation of Interdependent Cascading Outages with Multi-

Type Branching Processes,” IEEE Trans. Power Syst., vol. 32, no. 2, pp. 1212-1223, Mar. 2017.

[73]J. Qi, J. Wang, and K. Sun, “Efficient Estimation of Component Interactions for Cascading Failure

Analysis by EM Algorithm,” IEEE Trans. Power Syst., vol. 33, no. 3, pp. 3153-3161, May 2018.

[74]R. Yao, S. Huang, K. Sun, F. Liu, X. Zhang, S. Mei, W. Wei, and L. Ding, “Risk Assessment of Multi-

Timescale Cascading Outages Based on Markovian Tree Search,” IEEE Trans. Power Syst., vol. 32, no.

4, pp. 2887-2900, Jul. 2017.

[75]R. Yao, and K. Sun, “Toward Simulation and Risk Assessment of Weather-Related Outages,” IEEE

Trans. Smart Grid, vol. 10, no. 4, pp. 4391-4400, Jul. 2019.

[76]J. Guo, F. Liu, J. Wang, M. Cao, and S. Mei, “Quantifying the Influence of Component Failure

Probability on Cascading Blackout Risk,” IEEE Trans. Power Syst., vol. 33, no. 5, pp. 5671-5681, Sep.

2018.

[77]X. Liu, and Z. Li, “Revealing the Impact of Multiple Solutions in DCOPF on the Risk Assessment of

Line Cascading Failure in OPA Model,” IEEE Trans. Power Syst., vol. 31, no. 5, pp. 4159-4160, Sep.

2016.

[78]Z. Ma, C. Shen, F. Liu, and S. Mei, “Fast Screening of Vulnerable Transmission Lines in Power Grids:

A PageRank-Based Approach,” IEEE Trans. Smart Grid, vol. 10, no. 2, pp. 1982-1991, Mar. 2019.

[79]X. Wei, J. Zhao, T. Huang, and E. Bompard, “A Novel Cascading Faults Graph Based Transmission

Network Vulnerability Assessment Method,” IEEE Trans. Power Syst., vol. 33, no. 3, pp. 2995-3000,

May 2018.

[80]E. J. Anderson, and J. Linderoth, “High Throughput Computing for Massive Scenario Analysis and

Optimization to Minimize Cascading Blackout Risk,” IEEE Trans. Smart Grid, vol. 8, no. 3, pp. 1427-

1435, May 2017.

[81]A. A. Babalola, R. Belkacemi, and S. Zarrabian, “Real-Time Cascading Failures Prevention for

Multiple Contingencies in Smart Grids Through a Multi-Agent System,” IEEE Trans. Smart Grid, vol.

9, no. 1, pp. 373-385, Jan. 2018.

[82]R. Yao, K. Sun, F. Liu, and S. Mei, “Management of Cascading Outage Risk Based on Risk Gradient

and Markovian Tree Search,” IEEE Trans. Power Syst., vol. 33, no. 4, pp. 4050-4060, Jul. 2018.

[83]M. R. Salimian, and M. R. Aghamohammadi, “A Three Stages Decision Tree-Based Intelligent

Blackout Predictor for Power Systems Using Brittleness Indices,” IEEE Trans. Smart Grid, vol. 9, no.

5, pp. 5123-5131, Sep. 2018.

[84]Y. Jia, Z. Xu, L. L. Lai, and K. P. Wong, “Risk-Based Power System Security Analysis Considering

Cascading Outages,” IEEE Trans. Industrial Informatics, vol. 12, no. 2, pp. 872-882, Apr. 2016.

[85]Y. Du, F. Li, J. Li, and T. Zheng, “Achieving 100x Acceleration for N-1 Contingency Screening with

Uncertain Scenarios using Deep Convolutional Neural Network,” IEEE Trans. Power Syst., vol. 34, no.

4, pp. 3303-3305, Jul. 2019.

148

[86]X. Fang, Q. Hu, F. Li, B. Wang, and Y. Li, “Coupon-based demand response considering wind power

uncertainty: A strategic bidding model for load serving entities,”. IEEE Trans. Power Syst., vol. 31, no.

2, pp. 1025-1037, Mar. 2015.

[87]Y. Du, and F. Li, “A Hierarchical Real-time Balancing Market Considering Multi-microgrids with

Distributed Sustainable Resources,” IEEE Trans. Sustainable Energy, vol. 11, no. 1, pp. 72-83, Jan.

2020.

[88]J. P. Catalão, P. Siano, F. Li, M. A. Masoum, and J. Aghaei, “Guest Editorial Special Section on

Industrial and Commercial Demand Response,” IEEE Trans. Industrial Informatics, vol. 14, no. 11, pp.

5017-5019, Nov. 2018.

[89]H. Shin, and R. Baldick, “Plug-in electric vehicle to home (V2H) operation under a grid outage,” IEEE

Trans. Smart Grid, vol. 8, no. 4, pp. 2032-2041, Jul. 2017.

[90]A.-H. Mohsenian-Rad, V. W. Wong, J. Jatskevich, R. Schober, and A. Leon-Garcia, “Autonomous

demand-side management based on game-theoretic energy consumption scheduling for the future smart

grid,” IEEE Trans. Smart Grid, vol. 1, no. 3, pp. 320-331, Nov. 2010.

[91]R. Deng, Z. Yang, J. Chen, N. R. Asr, and M.-Y. Chow, “Residential Energy Consumption Scheduling:

A Coupled-Constraint Game Approach,” IEEE Trans. Smart Grid, vol. 5, no. 3, pp. 1340-1350, May

2014.

[92] H. M. Soliman, and A. Leon-Garcia, “Game-Theoretic Demand-Side Management With Storage

Devices for the Future Smart Grid,” IEEE Trans. Smart Grid, vol. 5, no. 3, pp. 1475-1485, May 2014.

[93] P. Samadi, H. Mohsenian-Rad, V. W. S. Wong, and R. Schober, “Real-Time Pricing for Demand

Response Based on Stochastic Approximation,” IEEE Trans. Smart Grid, vol. 5, no. 2, pp. 789-798,

Mar. 2014.

[94] C. Li, X. Yu, W. Yu, G. Chen, and J. Wang, “Efficient Computation for Sparse Load Shifting in

Demand Side Management,” IEEE Trans. Smart Grid, vol. 8, no. 1, pp. 250-261, Jan. 2017.

[95] S. Bahrami, V. W. S. Wong, and J. Huang, “An Online Learning Algorithm for Demand Response in

Smart Grid,” IEEE Trans. Smart Grid, vol. 9, no. 5, pp. 4712-4725, Sep. 2018.

[96] L. Wang, Z. Zhang, and J. Chen. “Short-term electricity price forecasting with stacked denoising

autoencoders,” IEEE Trans. Power Syst., vol. 32, no. 4, pp. 2673-2681, Jul. 2017.

[97] D. O'Neill, M. Levorato, A. Goldsmith, and U. Mitra, “Residential demand response using

reinforcement learning,” in 2010 First IEEE International Conference on Smart Grid

Communications, 2010, pp. 409-414.

[98] Z. Wen, D. O'Neill, and H. Maei, “Optimal Demand Response Using Device-Based Reinforcement

Learning,” IEEE Trans. Smart Grid, vol. 6, no. 6, pp. 2312-2324, Sep. 2015.

[99] A. Sheikhi, M. Rayati, and A. M. Ranjbar, “Dynamic load management for a residential customer;

reinforcement learning approach,” Sustainable Cities and Society, vol. 24, pp. 42-51, Jul. 2016.

149

[100]M. Parvania, and M. Fotuhi-Firuzabad, “Demand response scheduling by stochastic SCUC,” IEEE

Trans. Smart Grid, vol. 1, no. 1, pp. 89-98, Jun. 2010.

[101]W. Liu, P. Zhuang, H. Liang, J. Peng, Z. Huang, “Distributed Economic Dispatch in Microgrids Based

on Cooperative Reinforcement Learning,” IEEE Trans. Neural Networks and Learning Systems, vol.

29, no. 6, pp. 2192-2203, Jun. 2018.

[102]R. S. Sutton, and A. G. Barto, “Reinforcement Learning: An Introduction,” Cambridge: MIT press,

2018.

[103]H. Yuan, F. Li, Y. Wei, and J. Zhu, “Novel Linearized Power Flow and Linearized OPF Models for

Active Distribution Networks with Application in Distribution LMP,” IEEE Trans. Smart Grid, vol.

9, no. 1, pp. 438-448, Jan. 2018.

[104]D. P. Kingma, and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint,

arXiv:1412.6980, 2014.

[105]X. Glorot, and Y. Bengio, “Understanding the difficulty of training deep feedforward neural networks,”

in Proceedings of the thirteenth international conference on artificial intelligence and statistics, 2010.

[106]S. Ioffe, C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal

covariate shift,” arXiv preprint, arXiv:1502.03167, 2015.

[107]L. Pérez-Lombard, J. Ortiz, and C. Pout, “A review on buildings energy consumption information,”

Energy and buildings, vol. 40, no. 3, pp. 394-398, 2008.

[108]A. Costa, M. M. Keane, J. I. Torrens, and E. Corry, “Building operation and energy performance:

Monitoring, analysis and optimisation toolkit,” Applied Energy, vol. 101, pp. 310-316, 2013.

[109]X. Kou, F. Li, J. Dong, M. Starke, J. Munk, T. Kuruganti, and H. Zandi, “A Distributed Energy

Management Approach for Residential Demand Response,” in the 3rd International Conference on

SMART GRID AND SMART CITIES (ICSGSC), Berkeley, CA, Jun. 25-28, 2019.

[110]K. Ma, G. Hu, and C. J. Spanos, “Energy management considering load operations and forecast errors

with application to HVAC systems,” IEEE Trans. Smart Grid, vol. 9, pp. 605-614, Mar. 2018.

[111]O. Erdinc, A. Taşcıkaraoğlu, N. G. Paterakis, Y. Eren, and J. P. Catalão, “End-user comfort oriented

day-ahead planning for responsive residential HVAC demand aggregation considering weather

forecasts,” IEEE Trans. Smart Grid, vol. 8, pp. 362-372, Jan. 2017.

[112]X. Wu, J. He, Y. Xu, J. Lu, N. Lu, and X. Wang, (2018). “Hierarchical control of residential HVAC

units for primary frequency regulation,” IEEE Trans. Smart Grid, vol. 9, pp. 3844-3856, Jul. 2018.

[113]Y. Lin, P. Barooah, and J. L. Mathieu, “Ancillary services through demand scheduling and control of

commercial buildings,” IEEE Trans. Power Syst., vol. 32, pp. 186-197, Jan. 2017.

[114]L. Yu, T. Jiang, and Y. Zou, “Online Energy Management for a Sustainable Smart Home with an

HVAC Load and Random Occupancy,” IEEE Trans. Smart Grid, vol. 10, pp. 1646-1659, Mar. 2019.

[115]H. Hao, C. D. Corbin, K. Kalsi, and R. G. Pratt, “Transactive control of commercial buildings for

demand response,” IEEE Trans. Power Syst., vol. 32, pp. 774-783, Jan. 2017.

150

[116]H. Sun, F. Zhao, H. Wang, K. Wang, W. Jiang, Q. Guo, B. Zhang, L. Wehenkel, “Automatic learning

of fine operating rules for online power system security control,” IEEE Trans Neural Networks and

Learning Systems, vol. 27, pp. 1708-1719, Aug. 2016.

[117]V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller,

“Playing atari with deep reinforcement learning,” arXiv preprint arXiv:1312.5602.

[118]Y. Wu, H. Tan, J. Peng, H. Zhang, H. He, “Deep reinforcement learning of energy management with

continuous control strategy and traffic information for a series-parallel plug-in hybrid electric bus,”

Applied Energy, vol. 247, pp. 454-466, 2019.

[119]X. Han, H. He, J. Wu, J. Peng, Y. Li, “Energy management based on reinforcement learning with

double deep Q-learning for a hybrid electric tracked vehicle,” Applied Energy, vol. 254, pp. 113708,

2019.

[120]H. Hua, Y. Qin, C. Hao, J. Cao, “Optimal energy management strategies for energy Internet via deep

reinforcement learning approach,” Applied Energy, vol. 239, pp. 598-609, 2019.

[121]R. Rocchetta, L. Bellani, M. Compare, E. Zio, E. Patelli, “A reinforcement learning framework for

optimal operation and maintenance of power grids,” Applied Energy, vol. 241, pp. 291-301, 2019.

[122]P. Kou, D. Liang, C. Wang, Z. Wu, L. Gao, “Safe deep reinforcement learning-based constrained

optimal control scheme for active distribution networks,” Applied Energy, vol. 264, pp. 114772, 2020.

[123]T. Wei, S. Ren, and Q. Zhu, “Deep Reinforcement Learning for Joint Datacenter and HVAC Load

Control in Distributed Mixed-Use Buildings,” IEEE Trans. Sustainable Computing, early access,

2019.

[124]Y. Wang, K. Velswamy, and B. Huang, “A long-short term memory recurrent neural network based

reinforcement learning controller for office heating ventilation and air conditioning systems,”

Processes, vol. 5, no. 3, Aug. 2017.

[125]G. Gao, J. Li, J., and Y. Wen, “Energy-Efficient Thermal Comfort Control in Smart Buildings via

Deep Reinforcement Learning,” arXiv preprint arXiv:1901.04693, 2019.

[126]N. Lu, “An Evaluation of the HVAC Load Potential for Providing Load Balancing Service,” IEEE

Trans. Smart Grid, vol. 3, pp. 1263-1270, Sep. 2012.

[127]B. Cui, J. Joe, J. Munk, J. Sun, T. Kuruganti, “Load Flexibility Analysis of Residential HVAC and

Water Heating and Commercial Refrigeration,” Oak Ridge National Lab, Oak Ridge, TN (United

States), Sep. 2019.

[128]V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. B. Bellemare, A. Graves, M.

Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, “Human-level control through deep

reinforcement learning,” Nature, vol. 518, pp. 529-533, 2015.

[129]T. P. Lillicrap, J. J. Hunt, A. Pritzel, et al. “Continuous control with deep reinforcement learning,”

arXiv preprint arXiv:1509.02971, 2015.

151

[130]B. Cui, J. Munk, R. Jackson, D. Fugate, and M. Starke, “Building thermal model development of

typical house in U.S. for virtual storage control of aggregated building loads based on limited

available information,” in 30th International Conference on Efficiency, Cost, Optimization,

Simulation, and Environmental Impact of Energy Systems, 2017.

[131]Clean Power Research. [online]: https://www.cleanpower.com/

[132]TensorFlow. [online]: https://www.tensorflow.org/

[133]PJM market. [online]: https://www.pjm.com/

[134] M. Shafie-khah, and J. P. Catalão, “A stochastic multi-layer agent-based model to study electricity

market participants behavior,” IEEE Trans. Power Syst., vol. 30, pp. 867-881, Mar. 2015.

[135] I. Taheri, M. Rashidinejad, A. Badri, and A. Rahimi-Kian, “Analytical approach in computing Nash

equilibrium for oligopolistic competition of transmission-constrained GENCOs,” IEEE systems

journal, vol. 9, pp. 1452-1462, Dec. 2015.

[136] B. Zhang, R. Johari, and R. Rajagopal, “Competition and coalition formation of renewable power

producers,” IEEE Trans. Power Syst., vol. 30, pp. 1624-1632, May 2015.

[137] L. Du, S. Grijalva, and R. G. Harley, “Game-Theoretic Formulation of Power Dispatch with

Guaranteed Convergence and Prioritized Best Response,” IEEE Trans. Sustain. Energy, vol. 6, pp.

51-59, Jan. 2015.

[138] M. Kazemi, H. Zareipour, F. Ehsan, and W. D. Rosehart, “A robust linear approach for offering

strategy of a hybrid electric energy company,” IEEE Trans. Power Syst., vol. 32, pp. 1949-1959, May

2017.

[139] G. R. Gajjar, S. A. Khaparde, P. Nagaraju, and S. A. Soman, “Application of actor-critic learning

algorithm for optimal bidding problem of a Genco,” IEEE Trans. Power Syst., vol. 18, pp. 11-18, Feb.

2003.

[140] H. Kebriaei, A. Rahimi-Kian, and M. N. Ahmadabadi, “Model-based and learning-based decision

making in incomplete information Cournot games: A state estimation approach,” IEEE Trans.

Systems, Man, and Cybernetics: Systems, vol. 45, pp. 713-718, Apr. 2015.

[141] M. R. Salehizadeh, and S. Soltaniyan, “Application of fuzzy Q-learning for electricity market

modeling by considering renewable power penetration,” Renewable and Sustainable Energy Reviews,

vol. 56, pp. 1172-1181, Apr. 2016.

[142] D. Esmaeili Aliabadi, M. Kaya, and G. Sahin, “Competition, risk and learning in electricity markets:

An agent-based simulation study,” Applied Energy, vol. 195, pp. 1000-1011, 2017.

[143] N. Rashedi, M. A. Tajeddini, H. Kebriaei, “Markov game approach for multi-agent competitive

bidding strategies in electricity market,” IET Generation, Transmission & Distribution, vol. 10, no.

15, pp. 3756-3763, Nov. 2016.

https://www.pjm.com/

152

[144] Y. Ye, D. Qiu, M. Sun, D. Papadaskalopoulos, and G. Strbac,“Deep Reinforcement Learning for

Strategic Bidding in Electricity Markets,” IEEE Trans. Smart Grid, vol. 11, no. 2, pp. 1343-1355,

Mar. 2020.

[145] Y. Ye, D. Qiu, J. Li, and G. Strbac, “Multi-Period and Multi-Spatial Equilibrium Analysis in Imperfect

Electricity Markets: A Novel Multi-Agent Deep Reinforcement Learning Approach,” IEEE Access,

vol. 7, pp. 130515-130529, Sep. 2019.

[146] Y. Huang, J. Shang, C. Kang, et al. “An Operation Mechanism and Model of the Day-ahead Electricity

Market”, Automation of Electric Power Systems, vol. 27, no. 3, pp. 23-27, Feb. 2003.

[147] R. Lowe, Y. Wu, A. Tamar, J. Harb, O. P. Abbeel, and I. Mordatch, “Multi-agent actor-critic for

mixed cooperative-competitive environments,” in Advances in Neural Information Processing

Systems (NIPS 2017), 2017, pp. 6379-6390.

153

Appendix

Publications During Ph.D. Study

Journal papers

[1] F. Li and Y. Du, “From AlphaGo to Power System AI Applications,” IEEE Power & Energy

Magazine, vol. 16, pp. 76-84, Feb. 2018.

[2] Y. Du, Z. Wang, G. Liu, X. Chen, H. Yuan, Y. Wei, and F. Li, “A Cooperative Game Approach

for Coordinating Multi-Microgrid Operation within Distribution Systems,” Applied Energy,

vol. 222, pp. 383-395, Jul. 2018.

[3] Y. Du, F. Li, J. Li, and T. Zheng, “Achieving 100x Acceleration for N-1 Contingency Screening

with Uncertain Scenarios using Deep Convolutional Neural Network,” IEEE Trans. Power

Systems, vol. 34, pp. 3303-3305, Jul. 2019.

[4] Y. Du and F. Li, “A Hierarchical Real-time Balancing Market Considering Multi-microgrids

with Distributed Sustainable Resources,” IEEE Trans. Sustainable. Energy, vol. 11, pp. 72-83,

Jan. 2020.

[5] Y. Du and F. Li, “Multi-microgrid Energy Management based on Deep Neural Network and

Model-free Reinforcement Learning,” IEEE Trans. Smart Grid, vol. 11, pp. 1066-1076, Mar.

2020.

[6] Y. Du, F. Li, T. Zheng, and J. Li, “Fast Cascading Outage Screening based on Deep

Convolutional Neural Network and Depth-First Search,” IEEE Trans. Power Systems, 2020,

early access.

Conference papers

[1] Y. Du, F. Li, X. Kou, and W. Pei, “Coordinating Multi-microgrid Operation within Distribution

System: A Cooperative Game Approach,” in 2017 Power & Energy Society General Meeting,

pp. 1-5.

[2] Y. Du and F. Li, “Integrating a Multi-microgrid System into Real-time Balancing Market:

Problem Formulation and Solution Technique,” in 2018 Power & Energy Society General

Meeting, pp. 1-5.

[3] Y. Du, F. Li, H. Yuan, and Y. Wei, “Distribution Locational Marginal Price for Grid-connected

Microgrids in Real-time Balancing Market”, in 2018 IEEE/PES Transmission and Distribution

Conference and Exposition (T&D), pp. 1-5.

[4] Y. Du, F. Li, and C. Huang, “Applying Deep Convolutional Neural Network for Fast Security

154

Assessment with N-1 Contingency,” in 2019 Power & Energy Society General Meeting, pp. 1-

5.

[5] Y. Du, J. Zhao, T. Zheng, E. Litvinov, F. Li, “Multi-Day-ahead Net Interchange Schedule

Forecast based on LSTM Recurrent Neural Network”, accepted by 2020 Power & Energy

Society General Meeting.

155

Vita

Yan Du received her B.S. degree from Tianjin University, Tianjin, China, in 2013, and M.Sc.

degree from Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China, in

2016, both in Electrical Engineering. She is currently pursuing her Ph.D. degree at the University

of Tennessee at Knoxville under the guidance of Professor Fangxing Li. Her research interests

include electricity market, optimization, and deep learning applications in power systems.

	Deep Learning Techniques for Power System Operation: Modeling and Implementation
	Recommended Citation

	tmp.1628341922.pdf.VkoHP

