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Abstract 

The fast development of deep learning techniques in recent years has drawn attention from both 

academia and industry. And there have been increasing applications of the DL techniques in many 

complex real-world problems, including computer vision, medical diagnosis, and natural language 

processing. The great power and flexibility of deep learning can be attributed to its hierarchical 

learning structure that automatically extracts features from mass amounts of data, as well as its 

end-to-end solving mechanism that directly generates the output from the input, which 

considerably improve the computational efficiency. 

The power system is one of the most complex artificial infrastructures, and many power system 

control and operation problems share features with the real-world applications mentioned above, 

such as time variability and uncertainty, and partial observability, which impedes the performance 

of conventional model-based methods. On the other hand, with the wide spread implementation of 

measuring systems providing massive data from the field, the data-driven deep learning technique 

is becoming an intriguing alternative method to enable the future development and success of the 

smart grid.  

This dissertation explores the potential of utilizing deep-learning-based approaches to solve a 

broad range of power system modeling and operation problems. First, a comprehensive literature 

review summarizing the existing applications of deep learning techniques in power systems is 

presented. Second, the prospective application of deep learning techniques in several scenarios in 

power systems, including contingency screening, cascading outage search, multi-microgrid energy 

management, residential HVAC system control, and electricity market bidding are discussed in 

detail in the following chapters. The problem formulation, the specific deep learning approaches 

in use, the simulation results, and comparisons with the model-based methods are all presented. 

Finally, the conclusions and future directions are provided in the last chapter. It’s hoped that this 

dissertation will work as a single spark that can generate more innovative ideas and original studies, 
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widening and deepening the application of deep learning techniques in the field of power systems, 

and eventually bring about some positive impacts on the resilient and economic control and 

operation of the real-world bulk grid. 
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Chapter 1 Introduction  

This chapter gives a brief introduction to deep learning techniques and their various applications 

in both academia and industry, specifically in the area of power systems. Equation Chapter (Next) Section 1 

1.1  Deep Learning: Motivation and Development 

The debut of AlphaGo in year 2016 drew worldwide attention to the evolutionary deep learning 

(DL) technique, which has continued developing at a fantastic speed [1]. Deep learning is a subset 

of machine learning. The relationship of deep learning to machine learning and AI technology is 

shown in Figure 1.1 [2]:  

AI

Example:

Knowledge 

bases

Machine 

learning

Example:

Logistic 

regression

Representation 

learning

Example:

Shallow 

autoencoders
Deep 

learning

Example:

MLP

 

Figure 1.1. Relationships of deep learning to machine learning and AI technology 
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The origins of deep learning can be dated back to the 1940s. However, deep learning has only 

recently caught the public attention because it remained unpopular during the time it was proposed, 

and also because it has gone through many different names before it is finally called “deep 

learning”, which started in 2006 [2]. The core idea of deep learning is the successive layers of 

representation. A representation means a way to encode the data. For example, a color image can 

be represented by the RGB matrices; a figure can be represented by its binary format. Deep 

learning intends to find a meaningful representation of the input data so that the expected output 

can be achieved [3]. The term “deep” refers to the multiple layers that are connected end to end to 

learn the data representations. The idea of multi-layer representation is based on the assumption 

that the data in the real-world can all be regarded as composition of features. The authors in [4] 

have developed sophisticated experiments and detailed explanations for how multiple layers work 

in a hierarchical way to capture local features and gradually form the high-level concept, and also 

a vivid visualization example of the output from each layer, as shown in Figure 1.2 [4]: 

The goal of the convnet model in Figure 1.2 is to classify a large number of 2-D color images 

based on their contents. As shown in the figure, the output from the first layer are simply edges 

and colors; the output from the second layer begins to show corners and other edge/color 

conjunctions; the output from the third layer has more invariance and captures similar textures; 

layer 4 begins to show class-specific features like the dog faces and bird legs; finally, layer 5 

outputs the entire objects with significant pose variation, like the dogs and keyboards, which is 

obvious enough for the computer to differentiate the various types of the objects. In summary, the 

shallow layers first capture the more general and simple local patterns such as lines and shapes. 

As the layers go deeper, features from the previous layers will be combined and form larger and 

more complicated patterns that are closer to the expected output.  
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Figure 1.2. Output from each layer in a well-trained convnet 

 

The multiple layers for data representation are embedded within the neural network models, 

which are almost always used in the deep learning studies. In the traditional machine learning 

methods, the neural network usually only has one hidden layer. This simple structure leads to two 

major challenges that inflicts the generalization of the traditional machine learning algorithms [2]. 

The first challenge is the curse of dimensionality, which means that the input data has multiple 

dimensions, and the traditional machine learning method cannot fully capture the spatial or 

temporal correlations crossing the different dimensions with its limited representation ability. In 
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addition, many machine learning algorithms are built upon prior beliefs that the target function has 

smoothness or local constancy, which means the function does not change much within a small 

region. This is a very strict assumption and it does not apply to statistical challenges involved in 

solving AI-level tasks. The deep learning method, however, replaces this assumption with a much 

milder one that the data to learn is generated by the composition of features, from simple to abstract, 

following a hierarchical structure, as has been mentioned above. The relaxed assumption allows 

the deep learning method to fit to more complex and high-dimensional functions, and to obtain 

better generalization than the traditional machine learning method.  

Today, with the improvement of the computer hardware and software infrastructure, as well as 

the accessibility to massive amount of data as training samples, it becomes possible to build and 

train neural networks with growing depth for solving increasingly complicated real-world 

problems, and their accuracy improves over time as available computation resources increase. 

Some current exemplary breakthroughs of the deep learning technique include near-human level 

image classification/speech recognition/autonomous driving, superhuman go playing, etc.[3]. With 

the explosion of data and the continuous advancement of the hardware and cloud-based 

computation resources, deep learning technology will undoubtedly be applied across more and 

more potential fields and serve societal well being in this information era. 

1.2  Classification and Application of Deep Learning 

There are three important branches in the field of machine learning: supervised learning, 

unsupervised learning, and reinforcement learning. Supervised learning is a type of machine 

learning with labeled data as training samples. The algorithm aims to formulate a mapping between 

the input and the output based on the large numbers of correct samples. The labeled samples can 

be regarded as the “supervisor” to provide guidelines for tuning the parameters of the learning 

model and to lead it toward the more accurate formulation. There are two main subgroups of 

supervised learning, the classification and the regression. With regard to the former, computer 
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vision, handwriting recognition, and medical diagnosis are its real-world realizations. As for the 

latter, regression is the problem of estimating or predicting a continuous quantity. Stock price 

forecasting, speech recognition, and machine translation are all in essence a supervised regression 

learning process. 

Unsupervised learning is a completely different class from supervised learning. In unsupervised 

learning, there are no labeled samples as the correct answers for the machine to learn. A typical 

example of unsupervised learning is the clustering problem, such as grouping customers with 

similar purchasing inclinations, identifying fake news and spam emails, and document 

classification based on tags and contents. Another example of unsupervised learning is the 

autoencoder. An autoencoder consists of two parts, the encoder and the decoder. The encoder 

develops a proper way to represent the input data and the decoder transforms the representation 

back to the input space. The autoencoder belongs to unsupervised learning because there is no 

labeled data used during the learning and the neural network only builds reconstructions of the 

input. Some useful applications of autoencoder include data denoising and dimensionality 

reduction, where the autoencoder extracts the most meaningful features from the input data and 

formulate a compact representation.  

Reinforcement learning is a third type of machine learning problem that aims at optimizing the 

time-sequential decision strategies via learning. Unlike the above two types of learning, 

reinforcement learning does not rely on large quantities of data, and its performance is evaluated 

by a reward signal. In reinforcement learning, an agent is placed in an unknown environment. At 

each time step, the agent takes an action, and is transferred to the next state following a transition 

probability. The agent will get a reward from the environment as feedback of taking a certain action. 

The goal of the agent is to maximize the total reward after reaching the end state.  

There have been a broad range of applications of reinforcement learning, from playing video 

games to training self-driving cars. The independence of reinforcement learning from exact models 

and data gives it high flexibility to adapt to problems that are unobservable or partially observable, 
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or have enormous or infinite solution spaces.  

All three types of machine learning methods have been revitalized in combination with the deep 

neural network, which is the hard core behind the deep learning technique. In the field of power 

systems, studies applying the deep learning techniques for power system control and operation 

have just begun, but they have already covered a wide range of topics. In the following subsections, 

a comprehensive review of the most recent related research works will be presented. 

1.3  Applications of Deep Learning in Power Systems 

The power system is a highly complex, multi-dimensional artificial infrastructure that shares 

many features with the above-mentioned real-world tasks, such as time variability, partial 

observability, and random uncertainty. Conventional model-based methods encounter difficulty 

when analyzing the stable and transient operation features of power systems, especially with the 

increasing penetration of renewable energy, demand response resources, as well as the fusion with 

the information, communication, and transportation networks. The deep learning technique 

provides a brand-new way to overcome the issue with high-dimensional data mining and feature 

extraction, and to compensate for the training data insufficiency and low generalization ability that 

inflicts the traditional shallow machine learning methods. The following sections present the 

existing power system researches in all the three machine learning categories. 

1.3.1  Supervised learning in power system control and operation 

1) Forecasting 

One major application of supervised learning in power systems is the forecasting, where large 

quantities of historical data are available for algorithm training. The newly developed deep neural 

network can capture the temporal or spatial correlations between the inputs with its hierarchical 

structure, and to provide a more accurate forecast result for time series data.  

The most commonly used deep neural network in forecasting is called the long-short-term-

memory (LSTM) recurrent neural network. It is different from the conventional feedforward neural 
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network due to the fact that it not only has connections between different layers, but also has 

connections between neurons in the same layer, which makes it possible to capture the temporal 

correlations of the inputs at different time steps, and an ideal fit for time sequential data. Ref. [5]-

[6] apply the LSTM for short-term residential load forecasting, and they compare it with a series 

of traditional machine learning methods including space vector machine (SVM) and K nearest 

neighbor (KNN) to demonstrate the improved accuracy of the method. Ref. [7] further considers 

the impact of fluctuated PV generation on the net load forecast, and proposes a Bayesian deep 

learning, which combines Bayesian probability theory with the LSTM. Instead of outputting the 

deterministic net load forecast, the model generates the estimated probability distribution of the 

net load to cover uncertain scenarios. Authors in [8]-[9] focus on short-term wind speed forecasting, 

where the LSTM is applied to capture the temporal features of the wind data, and convolutional 

neural network (CNN) is applied to capture the spatial features of the wind data. The combination 

of the two methods considerably improves the forecast accuracy. Ref. [10] proposes a bidirectional 

LSTM to forecast day-ahead load, wind and PV to help virtual power plants to optimize their 

bidding strategy in the day-ahead wholesale market. Apart from LSTM, other deep neural networks, 

such as deep residual networks [11] and quantile regression neural network [12] have also been 

used for load forecasting.  

2) Load monitoring and identification. 

Another important application of supervised learning in power systems is load monitoring and 

load identification. Load monitoring is a technology to disaggregate the cumulative energy 

consumption of a customer into appliance-level consumptions. Load identification is to analyze 

some characteristics of customer energy consumption based on the smart meter data. Both studies 

make way for more advanced smart grid applications such as load forecast for individuals, 

customized demand response programs, and energy-efficient appliance utilization. In [13], the 

deep convolutional neural network (deep CNN) is designed as a classifier to detect Type II 

appliances, i.e., the appliances that have multiple operation modes, such as washing machines and 
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dish washers. Deep CNN is applied to capture the local dependencies of the appliance power 

consumption patterns. In [14], the authors further consider the simultaneous detection of multiple 

appliances, and they propose a deep dictionary learning method to solve the multi-label 

classification. In [15], the LSTM neural network is applied to identify the parameters of the time-

varying ZIP load model and time-varying induction motor model under the random impacts of 

weather conditions and customer behaviors. In [16], the authors apply deep CNN to extract 

features from massive load profiles and use a support vector machine to identify socio-

demographic information of the customers form the extracted features, such as age and social class. 

In [17], a wide and deep CNN is designed to capture the periodicity of the customer electricity 

consumption and to further detect the potential electricity theft. 

3) Security assessment and fault diagnosis 

Supervised learning has also been adopted as a monitoring tool to identify the power system 

potential vulnerability and risks for the sake of safe and reliable operation. In [20], a hierarchical 

deep domain adaptation (HDDA) approach is proposed as a system fault classifier. With its layered 

feature learning framework, the well-trained HDDA model can be transferred to detect faults under 

different loading conditions, which cracks the obstacle of training data insufficiency. In [21], the 

deep convolutional neural network and PMU measurements are combined for faulted line 

localization and transient stability monitoring, respectively. In [22], the deep neural network is 

applied for real-time event classification under renewable penetration. The deep autoencoder is 

applied in [23]-[25] for system security assessment and system islanding detection, due to its 

automatic feature extraction ability. In [26], the deep CNN is applied to predict the transient 

stability to provide an early termination for time-domain simulation based on existing simulation 

results.  

4) Other applications 

Some other applications of supervised learning include optimizing the charging schedule of 

electric vehicles [18], predicting AGC control signal [19], identifying false data injection [27], and 
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state estimation [28], etc.  

In summary, data acquisition is key to supervised learning. For problems where massive amounts 

of data are easily accessible, such as the forecast problem, deep learning methods outshine 

traditional machine learning methods because their multi-layer hierarchical structures allow for 

more delicate feature extraction and more complex model regression. However, in some real-world 

scenarios, when the training data is not readily available, the performance of supervised learning 

can be seriously limited. In such cases, the deep reinforcement learning, introduced in the 

following section, will work more efficiently. 

1.3.2  Unsupervised learning in power system control and operation 

As has mentioned before, one representative unsupervised learning model is the deep 

autoencoder (DAE). The learning process of the DAE usually consists of two stages: the 

unsupervised pre-training stage and the supervised fine-tuning stage. In the pre-training stage, a 

DAE is trained to extract features from the input for reconstruction. The goal at this stage is to 

generate the output that is as close as possible to the input data with nonredundant features. The 

pre-training provides a good network parameter initialization and avoids the model to get stuck in 

the local optimum. In the fine-tuning stage, only the well-trained encoder part of a DAE is kept to 

efficiently extract features from the labeled data, and the network parameters are further updated 

via backpropagation until the target output is achieved.  

In [30]-[34], DAE is applied for forecasting uncertain factors including electricity price, wind 

generation, and solar irradiance. In [29], DAE is applied as a cluster tool to categorize a vast 

number of daily load profiles to better analyze customer responsiveness to dynamic price signals. 

In [35], DAE is proposed as a novel cyber attack tool, where it is trained using the normal 

measurements, and the anomalies will result in large reconstruction error. In [36], a Monte Carlo 

tree search method is applied for fast generator start-up after large-scale blackout, where DAE is 

built as the value network to evaluate the current generator start-up scheme at each search step.  

Generative adversarial networks (GANs) is another representative of unsupervised learning. As 
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can be inferred from the name, GAN is mostly applied for generating data samples. This function 

is especially desired in the cases when there is no easy access to available historical data, or when 

generating the training data using the conventional analytic method is too costly. GAN consists of 

two deep neural networks, the generator and the discriminator. The function of the generator is to 

produce data samples that follows the distribution of the historical data, and the function of the 

discriminator is to discriminate the generated data from the actual historical data. By training the 

two neural networks simultaneously, the model will eventually reach an equilibrium where the 

discriminator can no longer tell the generated data from the actual data, which means that the 

generator can produce data that is realistic enough for further analysis. Authors in [37] propose to 

apply GAN to create renewable scenarios to cover the full diversity of the uncertainties. The 

generated scenarios can be used for further power system planning and operation. In [38], GAN is 

applied to make up for missing PMU measurement data for dynamic security assessment.  

1.3.3  Reinforcement learning in power system control and operation 

Reinforcement learning utilizes a reward mechanism instead of the labeled samples to guide the 

learning behavior. In power system studies, reinforcement learning has been applied to a wide 

range of time-sequential optimal decision-making problems. Deep reinforcement learning (deep 

RL) is a combination of the deep neural network (DNN) with reinforcement learning. The DNN is 

utilized to estimate the Q value or the possibility for each state-action pair during the learning. In 

the conventional reinforcement learning, a tabular method is applied, where all the states and 

actions are listed as a 2-D table, and the Q-values of each pair are filled in. The tabular method can 

only be applied for discrete action space. And once the state space changes, the table needs to be 

rebuilt. By contrast, the data-driven DNN gives deep RL high generalization to adapt to new 

environments. There are also certain types of deep RL methods that can deal with continuous action 

spaces, which will be introduced in the following section. 

In [39], a deep Q learning method is developed to control a cluster of thermostatically controlled 

loads (TCLs), where the deep CNN is utilized to estimate the Q value of the on/off action of the 
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TCL. The simulation results show that the proposed method can reduce the electricity cost based 

merely on the observation of the air temperatures of TCLs. In [40], both the deep Q network (DQN) 

and the deep policy gradient (DPG) methods are applied to optimize the scheduling of residential 

loads including air conditioners, electrical vehicles, and dishwashers. The difference between the 

two methods is that the former estimates the Q value of the action, while the latter estimates the 

probability of the action. Both methods have higher scalability to adapt to larger state spaces than 

the conventional heuristic method due to the generalization of the DNN. In [41]-[42], deep Q 

learning is applied to decide the daily optimal operation schedule of the microgrid with multiple 

distributed generators and energy storages. In [43], deep Q network is applied to optimize the 

charging schedule of electric vehicles with the combination of LSTM for predicting price signals 

as the input state. In [44], a deep deterministic policy gradient (DDPG) method is applied to 

optimize the joint bidding strategy of the load serving entity in both the wholesale and retail market. 

The advantage of DDPG over DPG and DQN is that the former can deal with a continuous action 

space. In [45] , DDPG is applied to determine the generation command to maintain a steady local 

frequency.  

1.4  Summary 

In this chapter, a detailed overview of the existing researches regarding deep learning techniques 

in power systems is provided to give the readers a conceptual perception of the tremendous 

potentials of deep learning in solving complicated real-world problems, both theoretically and 

practically. In the next several chapters, some of the most complex power system operation 

problems are presented, along with the initial attempts of applying deep learning techniques to 

solving these problems. The feasibility of applying deep learning in real-world applications will 

also be discussed. 

In Chapter 2, a novel data-driven contingency screening method for power system operation 

under uncertain scenarios is introduced, which is based on deep CNN. Following that, in Chapter 
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3, a fast cascading outage screening method is proposed, which considers the sequential spread of 

the outages within the entire system. The method is a combination of both deep CNN and depth-

first-search (DFS) method, where the former is utilized to estimate the system security status, and 

the latter is utilized to identify the contingency path with highest severity. The method is also 

compared with conventional model-based power flow methods to verify its accuracy and 

computational efficiency. In Chapter 4, a model-free RL method combined with DNN is presented 

for realizing the economic energy management of multi-microgrid system in connection to the 

distribution system. In Chapter 5, the DDPG method is applied to optimize the setpoint of a multi-

zone residential HVAC system. In Chapter 6, a multi-agent DDPG method is employed for solving 

the Markov game at the day-ahead electricity market to optimize the bidding strategies of each 

generation company (GENCO) bidder. Finally, Chapter 7 summarizes the current researches and 

provides directions for future works.  
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Chapter 2 N-1 Contingency Screening with Deep 

Convolutional Neural Network  

The increasing penetration of renewable energy makes the traditional N-1 contingency screening 

highly challenging when a large number of uncertain scenarios need to be combined with 

contingency screening. In this chapter, a novel data-driven method, which is similar to the image-

processing technique, is proposed for accelerating N-1 contingency screening of power systems 

based on the deep convolutional neural network (CNN) method. Once the deep CNN is well trained, 

it has high generalization and works in a nearly computation-free fashion for unseen instances such 

as topological changes in the N-1 cases and uncertain renewable scenarios. The proposed deep 

CNN is implemented on several standard IEEE test systems to verify its accuracy and 

computational efficiency. The proposed study constitutes a solid demonstration of the considerable 

potential of the data-driven deep CNN in future online applications. Equation Chapter (Next) Section 1 

2.1  Introduction 

The increasing penetration of renewable energy into the bulk power system has brought the issue 

of uncertainty, which leads to higher requirement on system operation security. Security 

assessment decides whether the system is operating safely, critically, or unsafely based on a series 

of criteria including voltage level, power flows, islanding, etc. [46] Security assessment can be 

used as a reference for system operators to take preventive measures against operation risks. 

The N-1 contingency screening is a crucial part of security assessment. The N-1 contingency 

refers to the loss of any single element, e.g., a transmission line or a generator, in the power system. 

The main challenge for N-1 contingency screening under uncertainty is the extreme model 

complexity in the case of large-scale power systems, combined with many uncertain scenarios. For 

instance, a traditional contingency screening for an N-branch system requires N power flow runs; 

however, once this is combined with M independent wind plants with 10 uncertain scenarios in 
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each plant, contingency screening needs to be performed for N×10M power flow runs [47]. Even 

though it is well known that a traditional full-fledged N-1 contingency screening in the actual ISO 

operation takes only tens of seconds to complete, it will be unmanageable if many wind scenarios 

must be combined.  

Tremendous research efforts have been dedicated to accelerating computation speed for N-1 

contingency screening in the literature. In [48], a mixed integer linear programming model is 

formulated to calculate system reserve margin with renewable and load uncertainties involved. To 

reduce model complexity for large-scale power systems, a fast security assessment approach is 

proposed in [49] by removing redundant constraints from the original model, while keeping the 

same feasible region. Similarly, in [50], an iterative methodology is proposed for filtering only the 

active N-1 congestion constraints with the utilization of a line outage distribution factor in order 

to reduce the computational burden. A multi-level filtering algorithm for operation scenario 

selection is proposed in [51] to decrease the number of constraints in stochastic transmission 

planning with N-1 contingency analysis.  

All of the above methods can be summarized as the model-based method, where a large set of 

algebraic equations needs to be solved for security assessment. However, the model-based method 

faces the problem of identification inaccuracy and computational inefficiency, which constitutes a 

major impediment for its online application. In contrast to the model-based method, the data-driven 

approach relies on raw data for direct system analysis to avoid identification error, and with 

generalization to unseen inputs, it reduces computational burden. The above features make the 

data-driven method a fast and reliable alternative tool for security assessment in real-time scenarios. 

In terms of the data-driven approach for security assessment, some machine learning methods, 

including decision tree, artificial neural network (ANN), and support vector machine, have been 

introduced in [52]-[54]. In these studies, the algorithm relies on state variables, e.g., voltage 

magnitude and voltage angle, to quantify system security level. In such cases, the power flow needs 

to be calculated first to obtain the required state variables, which can be computationally costly in 



15 

 

the case of large-scale systems with multiple scenarios involved. 

To address the above issues with both the model-based and data-driven method for security 

assessment, a novel data-driven approach for static security assessment with N-1 contingency 

based on deep CNN is presented in this chapter. If compared with other data-driven approaches, 

the major highlight of the method is that the proposed deep CNN only depends on the known 

parameters, i.e. system topology and bus power injection, instead of system state variables, for 

evaluating system security status. Hence, once the model is well-trained, it can be readily applied 

to new test cases with little computation effort. This nearly computation-free feature of deep CNN 

makes it a desirable tool for online applications. 

The rest of the chapter is organized as follows: section 2.2 briefly introduces the composite 

security index for system security assessment; section 2.3 explains the basic idea of deep 

convolutional neural network and the design of the proposed deep CNN model; section 2.4 verifies 

the deep CNN performance on IEEE standard test cases; finally, section 2.5 concludes the chapter. 

2.2  Composite Security Index of Power System Security Assessment 

To accurately evaluate the security status of the power system under N-1 contingency, a 

composite security index is first introduced, which measures both bus voltage limit violation and 

line flow violation. For each measurement, two types of limits are defined, the security limit and 

the alarm limit. Security limit refers to the maximum allowed range for the bus voltage and line 

flow, and alarm limit indicates the closeness of the system to the limit violation. Accordingly, the 

system security status can be categorized into three types: secure, alarm, and insecure. A system is 

in the alarm state if at least one of the measurements violates the alarm limit but is still within the 

security limit. A system is insecure if at least one of the measurements violates the security limit 

[55]. Several other measures need to be defined before proceeding to calculate the composite 

security index. 

For bus voltage, the normalized deviation of bus voltage from the alarm limits is defined as 
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follows: 
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In Eq. (2.1), vi is the voltage magnitude of the ith bus; V
b 

i  is the base voltage magnitude; A
u 

i  and 

A
l 

i  are the upper and lower boundary of the voltage alarm limit. The normalized deviation of the 

alarm limit from the secure limit is defined as follows: 
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In Eq. (2.2), S
u 

i  and S
l 

i  are the upper and lower boundaries of the voltage security limit. For line 

flow, only the upper boundary of alarm limit and secure limit is needed. The normalized line flow 

violation of the alarm limit is defined as follows: 
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In Eq. (2.3), Pl is the power flow of the lth line; Ap,l  is the alarm limit of the line flow. The 

normalized deviation of the alarm limit from the security limit is defined as follows: 
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In Eq. (2.4), Sp,l  is the security limit of the line flow. Based on the above definitions, the 

composite security index (SI) for the system is defined as follows [53]: 
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Eq. (2.5) is based on the concept of a hyper-ellipse inscribed within the hyper-box for measuring 

limit violation [56], where m is the exponent used in the hyper ellipse equation. In this study, m is 

set to be 1. A higher value of SI means that the system is at a higher risk level. For example, if both 
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voltage magnitudes and line flows are within the alarm limit, which means that the system is 

operating within the secure region, then d
u 

v,i, d
l 

v,i, and dp,l are all zeroes, which leads to a zero SI; if 

any voltage magnitude or line flow is out of the alarm limit but still within the security limit, which 

means that the system can maintain the operation for a short time, then d is smaller than g, which 

leads to a value of SI that is larger than 0, but mostly below 1; last, if any voltage magnitude or 

line flow is above the security limit, which means that the system is close to collapse, then d will 

be larger than g, which will definitely leads to an SI larger than 1. 

2.3  Deep CNN-based N-1 Contingency Screening 

2.3.1  A brief on deep CNN 

Deep CNN is a type of ANN with multiple hidden layers. Deep CNN is known for its strong 

capability in processing data that has a grid-like topology, e.g., image data. Each image can be 

represented by a 2-D matrix with pixels filled in. The key of deep CNN lies in that it formulates a 

hierarchical structure that mimics the visual cortex of humans. According to visual neuroscience, 

in image recognition, our brain first perceives the color and brightness of the observed object, then 

the edges, angles, lines, and other local details, followed by the shape, texture and more abstract 

information, and finally the entire image.  

The CNN follows the same logic of the visual cortex. It consists of multiple convolutional layers, 

each of which contains several convolution kernels. Each convolution kernel scans the entire input 

to capture the detailed local features. All of the captured features will formulate a feature map for 

the neural network to identify. As the convolutional layer goes deeper, more high-order, and 

abstract features will be captured, which preserves the most useful information for image 

recognition. The principle of deep CNN feature extraction is shown in Figure 2.1: 
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Figure 2.1. The principle of deep CNN feature extraction 

 

Deep CNN has an important feature, which is sparse connectivity [2]. In conventional neural 

networks, usually every output unit is connected to every input unit. The number of connection 

parameters that need to be trained can be tremendous. In the case of deep CNN, each output unit 

in the feature map is only connected to a square patch, named as field of review, from the input 

that is closest to its location, instead of the entire input. This is called sparse connectivity. The 

reason of using sparse connectivity is that in one image, one pixel is closely related to its 

neighboring pixels, but is less related to more distant pixels. Hence, connections between the less 

related units are removed. With sparse connectivity, the number of parameters for training is 

greatly reduced, which improves computational efficiency. 

2.3.2  Mapping power system data to deep CNN input data 

Deep CNN is a natural fit for solving power system problems for two reasons. First, the power 

system topology has a grid-like structure, and can be fully described by matrices, e.g. nodal 

admittance matrix, element-bus incidence matrix, branch-path incidence matrix, etc. Second, the 

power system also possesses the feature of sparse connectivity. The voltage level at one bus is 

closely related to its neighboring buses, and it is less affected by the buses that are far away. 

Therefore, a hierarchical deep CNN can learn the element-bus relationship, the line connection, and 

the entire topology layer by layer based on power system raw data. 
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In the case of static security assessment, the idea is to apply deep CNN as a classifier for fast 

system security status classification. The input to the deep CNN will be the power system raw data, 

including system control variables and system topology, and the output will be the system security 

status. To realize this function, the first step is to map power system raw data to a grid-like structure 

for the CNN to read. Following the composition of 2-D image data, an n-bus power system can be 

represented by four 2-D matrices as shown below: 
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In Eq. (2.6)-(2.7), matrices G and B are the bus conductance matrix and bus susceptance matrix, 

respectively; matrices P and Q are the bus active power injection and bus reactive power injection, 

respectively. Hence, the input data to the deep CNN will have the size of n×n×4. 

Notice that in Eq. (2.7), the two bus power injection matrices are sparse since only diagonal 

elements are occupied. To reduce the data size for efficient network training, the bus power injection 

matrices are further replaced by the following two 1×n vectors: 
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In addition, the bus admittance matrices G and B can also be simplified. The aim of inputting 

the bus admittance matrix is to indicate whether there is a change in system topology during N-1 

contingency. In this study, we mainly consider N-1 line outage. Whenever there is a line outage, 

the self-susceptance element in B matrix will have a different value, but not necessarily the self-

conductance element, since some lines have zero resistance. Hence, we can eliminate the G matrix 
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and the non-diagonal elements in B matrix, and only keep its diagonal elements to represent the 

system topology, as shown in Eq.(2.9): 

           11 22 1
, nn n

b b b


B   (2.9) 

In this fashion, the original n-bus power system can be equivalently represented by three 1×n 

vectors, and the dimension of input data becomes 1×n×3. Compared with the original size n×n×4, 

the volume of input data is greatly decreased, which saves both storage space and computation 

efforts. 

2.3.3  Constructing deep convolutional neural network 

1) An illustration of convolution operation 

In a CNN, the core component is the convolutional layer. A convolutional layer is composed of 

trainable convolution kernels, or the filter. The function of the filter is to extract features from the 

input to generate feature maps that are representatives of the input. The feature extraction can be 

mathematically expressed as follows: 
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In Eq. (2.10), Inew(i,j) is a single unit in the newly generated feature map I from the convolutional 

layer; I(u,v) is a single unit in the original input; ω(u,v) is a single unit in the filter, which is also 

called the weight parameter; c is the size of the filter; b is the bias. Figure 2.2 gives an illustrative 

example of the above convolution operation: 
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Figure 2.2. Illustration of convolution operation 

 

In Figure 2.2(a), the size of the input is 5×5, the size of the filter is 3×3. Each unit in the feature 

map is the weighted sum of 9 units in the input. The filter scans the input with a step size of 1, hence 

the size of the feature map is 3×3. The feature map thus contains the aggregated information from 

the input. If we want to keep the size of the input, a padding method can be used, as shown in Figure 

2.2(b). Two additional rows and columns are added to the input with 0 filled, this is called zero-

padding. Then after the convolution operation, the feature map will have the same size as the input. 

From the above explanation, it can be observed that the feature extraction function of the 

convolutional layer refers to adding different weights to the inputs. In conventional machine 

learning, usually the features of the input have to be computed and selected manually to feed to the 

neural network for the algorithm to learn. In the case of deep CNN, because of the existence of 

multiple hidden layers and multiple filters in each layer, the features of the input can be 

automatically captured by the filters through changing the weights. After the deep CNN is well 

trained, the weights of the filters will have been properly selected so that the most obvious features 

from the input will have larger weights, while the less important features are neglected. In this way, 

the desired output can be obtained. In a convolutional layer, there usually exists multiple filters, and 

each filter will generate a different feature map. The purpose of utilizing multiple filters is to observe 

the input from different perspectives, i.e. assigning different weights to the same input unit, so that 

a comprehensive feature extraction can be obtained. The above explains the automatic feature 
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extraction ability of the deep CNN. 

2) Back propagation algorithm 

Before training the neural network, a loss function is defined to describe the accuracy of the deep 

CNN output. A lower loss indicates higher accuracy of the model. In the N-1 contingency screening 

problem, we would like deep CNN to realize two goals: as an AC power flow (ACPF) regression 

tool to generate power system state parameters, i.e., voltage magnitude and voltage angle, and as a 

classifier for categorizing system security status, which is a multi-task learning model. The loss 

function for this multi-task learning model is defined as follows: 
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In Eq. (2.11), Ns is the number of training samples, and n is the number of buses. The first two 

terms are the mean square error (MSE) of the bus voltage variables, where θi,s and vi,s are the deep 

CNN estimated voltage values, and θ
* 

i,s and v
* 

i,s are the actual voltage values. The third term is called 

the cross-entropy, where ys is the deep CNN estimated security classification, and y
* 

s  is the actual 

security classification. The cross-entropy is the most widely used loss function for multi-

classification problems. In statistics, minimizing cross-entropy is equivalent to maximizing the 

maximum likelihood. One advantage of applying cross-entropy as loss function is that it barely 

experiences gradient saturation, which facilitates algorithm convergence  

Furthermore, to avoid the issue of overfitting, which is a common problem in regression analysis 

due to the existence of abnormal values, we add L2 regularization to the loss function (2.11). 

Generalization means that the well-trained neural network can be effective across a wide range of 

inputs, not just the training data that has been fed to the neural network for learning. Sometimes a 

deep CNN can grow very complex with large values as its weights and biases, where instead of 

understanding the data, the deep CNN will memorize the one-to-one mapping between the input 

and the output, which leads to the result that the deep CNN fits well on the training set, but it has 

poor performance on the test set. This is because all the data in the test set are unseen by deep 
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CNN, and it has no memorized information for the new samples. The above problem is called 

overfitting. 

 L2 regularization is a common method to overcome the issue of overfitting. L2  regularization 

refers to a norm-2 penalty of weight parameters, as shown in Eq. (2.12): 
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In Eq. (2.12), α is called the regularization parameter, which is a positive number. The penalty 

term ωTω/2 stands for model complexity. An overfitted model that intends to match all the input 

samples, including abnormal values and noises, will have higher model complexity. By adding the 

penalty term to the loss function, the value of weight parameters will be decreased, and the model 

will evolve toward low complexity and high generalization.  

Upon the definition of loss function, the network weights and biases are updated via a back-

propagation algorithm, which is shown as follows: 
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In Eq. (2.13)-(2.14), k is the index of iteration; l is the index of convolutional layer; NL is the 

total number of convolutional layer; J
(k) 

l is the output of the lth layer; η is called the learning rate. 

Since the deep CNN has multiple convolutional layers, the chain rule is applied to calculate the 

partial derivative of the parameters at each layer. As can be observed, the back-propagation 

algorithm is essentially a gradient search method. Once the derivative is calculated, the weights 

and biases can be manipulated to decrease the loss function to its minimum and to obtain the 

optimal training results. 

3) Design of deep CNN structure 

The structure of deep CNN for voltage angle calculation is illustrated in Figure 2.3. It consists 
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of two convolutional (Conv) layers and three fully-connected (FC) layer. The function of the 

convolutional layers is to extract features from the input power system raw data. Each 

convolutional layer is composed of a number of learnable convolution kernels, which are shown 

as purple squares in Figure 2.3. 

In the constructed deep CNN, the convolution kernel size for the two layers are [3, 3, 1, 12] and 

[3, 3, 12, 24]. The first two figures are the height and the width of the convolution kernel, the third 

figure is the depth of the kernel, and the last figure is the number of kernels. Zero padding is 

applied here to maintain the width and the height of the input. The generated feature maps further 

go through an activation function. The activation function will bring nonlinearity to the regression 

model. This is because the original mathematical relationship between bus power injection and 

bus voltage is not linear, and cannot be fully represented by the linear convolution operation in 

(2.10). The limitation of linear transformations will be overcome by the activation function. 

In this study, rectified linear unit (ReLU) is applied as the activation function. The ReLU 

function has the form of f(x) = max(x,0), which is a quasi-linear function. This feature allows it to 

preserve high generalization ability as a linear model, but also avoids the issue of saturation as in 

the case of other activation functions, such as sigmoid and tanh function.  

The output from the second convolutional layer will go through two separate fully-connected 

layers, FC1 and FC2. This is because in the designed deep CNN, two types of output will be 

generated. The first output is the system state variables, i.e., the bus voltage angles and bus voltage 

magnitudes. The second output is the system security status. 

In Figure 2.3, the function of the fully-connected layers, FC1, FC2 and FC3, is to transform all 

the extracted features from the power system raw data into the desired output via matrix 

multiplication. For FC3, since its output is the classification of the system security status, the 

softmax function is used as the activation function. The softmax function has the following 

expression: 
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Figure 2.3. Deep CNN structure for N-1 contingency screening 
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The softmax function in Eq.(2.15) normalizes each input element by getting their exponential 

value divided by the sum of all exponential values. In this way, the difference between any two 

input elements is enlarged. For example, if xi ≥ xj, then exp(xi) will be much larger than exp(xj). 

This higher differentiation among the input can lead to more accurate classification results. The 

security status with the highest probability is taken as the status for the current system operation. 

2.4  Case Study 

The proposed image-processing-like, deep CNN model for ACPF calculation under N-1 

contingency is tested on the IEEE 9, 30, 57, 118, and 300-bus systems, WECC 181-bus system, 

and European 1354-bus system to verify its accuracy and computational efficiency. To include 

multi-scenario uncertainty, Monte Carlo simulation is used to create load and renewable energy 

variations in training samples. For load uncertainty, we assume that the bus active load follows a 

uniform distribution within the range of [0.8, 1.2] of the base case, and the bus reactive load is 

calculated by multiplying the bus active power consumption with a factor uniformly drawn from 

the range [0.15, 0.25]. For renewable energy uncertainty, we change 40% of the conventional 

generators in the original test cases into wind generators, and the forecast error of wind generation 

follows a normal distribution with zero mean and a standard deviation of 0.05. For N-1 contingency, 
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one line is randomly tripped in each training sample. The hardware environment for deep CNN 

training is an Nvidia GeForce GTX 1080 Ti Graphic Card with 11 GB memory and 1.582 GHz 

core clock. The software environment is the open-source deep learning platform TensorFlow for 

the proposed approach and MATPOWER [57] for the traditional model-based approach. The 

regression and classification results are shown in Table 2.1.  

In Table 2.1, the errors of  and v are the per unit mean absolute value over the test set compared 

with the results from model-based ACPF calculation. The classification accuracy is the ratio 

between the number of test samples that have been correctly classified and the total number of test 

samples. As the table shows, deep CNN model possesses considerably high accuracy for ACPF 

calculation, even for large-scale power systems. Also, the training time is within an acceptable 

range given that the training is completed off-line. 

To validate the computational efficiency of deep CNN regression, we compare calculation time 

of the AC power flow with N-1 contingency using both deep CNN and model-based AC power 

flow methods, as shown in Table 2.2.  

Table 2.1. AC power flow results based on deep CNN 

Case 
No. of samples Errors Training  

time(s) 

Classification 

Accuracy Training Test  v 

9 3292 1412 6.1e-3 7.2e-4 11.42 97.24% 

30 4262 1066 1.5e-3 5.4e-4 23.06 96.25% 

57 3360 1440 4.9e-3 1.6e-3 31.59 99.24% 

118 3027 1298 7.5e-3 2.9e-4 57.88 100% 

181(WECC) 2530 1085 5.7e-2 3.8e-3 65.04 97.70% 

300 3445 1477 6.9e-2 2.3e-3 148.91 99.05% 

1354 (Eu.) 3981 1707 1.1e-2 1.9e-3 1548.94 96.84% 
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 Table 2.2. Test time comparison 

Case Test size 
Test time (s) 

(deep CNN) 

Test time (s) 

(model-based) 

Acceleration 

ratio 

9 1412 0.017 3.500 206 

30 1066 0.016 3.303 206 

57 1440 0.018 4.323 240 

118 1298 0.021 4.905 234 

181 (WECC) 1085 0.025 4.655 186 

300 1477 0.044 10.15 231 

1354 (Eu.) 1707 0.264 34.13 129 

 

In Table 2.2, the last column shows the acceleration based on the computing time of deep CNN 

and the model-based ACPF method. The deep CNN approach is from 129 to 240 times faster than 

the latter, with an average of 205 times faster. This is because the well-trained deep CNN has high 

generalization to unseen test cases, and it can automatically generate AC power flow results and 

classify system security status under the new given input without any iterative calculation of power 

flows. 

To further demonstrate the superiority of the proposed deep CNN over traditional ANNs, we 

design an ANN model with only one hidden layer. The size of the hidden layer is [3×n, 3×n×24], 

which extracts the same number of features as the deep CNN. Hence the two neural networks are 

comparable. The regression and classification results of ANN are shown in Table 2.3: 

 

 

 

Table 2.3. AC power flow results of ANN 

Case 
No. of samples Errors Training  

time(s) 
Test time (s) 

Classification  

Accuracy Training Test  v 

9 3292 1412 2.0e-2  2.3e-3 6.52 0.011 91.64% 

30 4262 1066 9.0e-3 2.4e-3 10.29 0.008 87.43% 

57 3360 1440 2.7e-2 9.0e-3 14.88 0.009 92.43% 

118 3027 1298 2.7e-2 9.0e-4 36.28 0.017 98.54% 

181 2530 1085 1.8e-1 1.3e-2 47.31 0.019 75.94% 

300 3445 1477 2.0e-1 5.7e-3 139.04 0.036 78.00% 

1354 3981 1707 - - - - - 
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The results of the 1354-bus system are not available for ANN because the large-scale training 

data cause memory overflow. For all the other systems, deep CNN provides more accurate 

classification and regression results than the traditional shallow ANN. This is because the multiple 

convolutional layers within the deep CNN can extract better features for classification and 

regression, and this is the key contributing factor to the recent success of CNN in other applications. 

In addition, the traditional ANN is composed of fully-connected layers, where each neuron is 

connected to all of the subsequent neurons. This requires more neural parameters and computation. 

While in deep CNN, the sparse connectivity reduces both redundancy and computation to achieve 

better accuracy and computational efficiency. Note, although the deep CNN requires longer 

training time, it is of less importance since training is done offline. 

2.5  Conclusions 

In this chapter, a data-driven method based on deep CNN is applied for fast N-1 contingency 

screening. The deep CNN is constructed as both a regression tool and a classifier to evaluate 

system security status based on power system raw data. With the proposed deep CNN, no power 

flow calculation is required, which greatly spares computational effort. The simulation results on 

IEEE test cases verify the classification accuracy of the deep CNN. In addition, comparison with 

the model-based ACPF substantiates its high computational efficiency in dealing with unseen 

instances. Therefore, the proposed deep CNN can be a promising tool for online security 

assessment as well as other related power system researches. 
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Chapter 3 Fast Cascading Outage Screening based on Deep 

CNN and Depth-First Search 

In this chapter, a data-driven method is proposed for fast cascading outage screening in power 

systems. The proposed method is a combination of deep convolutional neural network (deep CNN) 

and depth-first search (DFS) algorithm. First, deep CNN is constructed as a security assessment 

tool to evaluate system security status based on observable information. With its automatic feature 

extraction ability and high generalization, a well-trained deep CNN can estimate AC optimal 

power flow (ACOPF) results for various uncertain operation scenarios, i.e. fluctuated load and 

system topology change, in a nearly computation-free manner. Second, a scenario tree is built to 

represent the potential operation scenarios and the associated cascading outages. The DFS 

algorithm is developed as a fast screening tool to calculate the expected security index value for 

each cascading outage path along the entire tree, which can be a reference for system operators to 

take predictive measures against system collapse. The simulation results of applying the proposed 

deep CNN and the DFS algorithm on standard test cases verify their accuracy and that their 

computational efficiency is thousands of times faster than the model-based traditional approach, 

which implies the great potentials of the proposed algorithm for online applications. 

Equation Chapter (Next) Section 1 

3.1  Introduction 

3.1.1  Motivation 

Protecting the bulk power system against cascading outages is crucial to enhancing the system-

wide operation economy and resilience. According to the definition of NERC [58], the cascading 

outage refers to the situation where the system uncontrollably and successively loses elements 

triggered by an initial incident at any location. Cascading outage will result in widespread electric 

service interruption, which cannot be restrained from sequentially spreading beyond an area 

predetermined by studies. However, the recently growing penetration of uncertainties into the bulk 
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power system has increased the system vulnerability, as well as the chance for cascading outages. 

Although the probability for cascading outage to induce blackouts is tiny, the consequences can be 

catastrophic, resulting in tremendous economic losses and social impacts.  

There have been several large-scale blackouts caused by cascading outages in recent years, such 

as the western U.S. blackout in 1996 [59], the U.S.-Canadian blackout in 2003 [60] and the 

Arizona-California. blackout in 2011 [61]. Given the costly effects of the cascading outages, 

NERC has required that each Transmission Planner and Planning Coordinator shall define the 

criteria or methodology used in the analysis to identify system instability for cascading or 

uncontrolled islanding during planning assessment studies [62].   

Based on the above context, both research communities and the industries have devoted 

substantial endeavors on cascading outage studies. However, the majority of the existing studies 

are founded on the conventional model-based method for cascading outage analysis, which suffers 

from certain computational limitations. Motivated by this consideration, in this chapter we propose 

a data-driven method that combines the deep CNN with DFS algorithm for a fast cascading outage 

screening and risk assessment, which aims at potential online applications under uncertain 

scenarios. More detailed literature review and contributions of this chapter will be presented in the 

following subsections. 

3.1.2  Literature review 

The existing research works regarding cascading outage can be mainly classified into three 

categories: cascading outage simulation and pattern recognition, system vulnerability detection 

and risk assessment, and post-outage recovery.  

In regard to the first category, simulation models have been developed to study the impact of 

cascading outages, such models include OPA model and its multiple improved versions [63]-[64], 

Manchester model [65], and CASCADE model [66]. Refs. [67]-[68] further develop multi-

timescale cascading outage models to study both slow dynamics like thermal transient and fast 

dynamics like electrical instability. Ref. [69] proposes a sequential importance sampling strategy 
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to reduce the number of cascading failures, while still capturing very rare events. To gain better 

statistic insights into the pattern of the cascading outages propagation, refs. [70]-[71] apply a 

Markov chain approach, where transition probabilities are estimated from historical data; while 

refs. [72]-[73] utilize the expectation maximization method, in which the parameters of the 

probability function are their maximum likelihood estimates. 

With respect to system vulnerability detection and risk assessment, a forward-backward 

Markovian tree search algorithm is introduced in [74], where the risk of the current outage is the 

expected risk of all its following outages. Based on this work, ref. [75] further considers weather 

impacts on the line outage probabilities and the system risks, and it develops the associated 

analytical probability model. Ref. [76] studies the quantitative relationship between the component 

failure probability and the blackout risks during cascading outages, which can be used as an 

effective risk assessment tool under the system components change. Ref. [77] shows that the 

cascading outage risk can be underestimated if not considering the multiple solutions of DC 

optimal power flow (DCOPF) models, and then proposes remedial measures. Ref. [78] proposes a 

fast screening method for vulnerable transmission lines based on PageRank algorithm, where a 

vulnerability degree of each line is calculated based on its post-contingency flow under the N-1 

contingency of all the other lines. Ref. [79] defines a branch loading assessment index and designs 

a cascading fault graph based on the proposed index to demonstrate the vulnerability of each 

transmission line.  

For post-outage recovery measures, simulation-based optimization method [80], multi-agent 

system method [81], and Markovian tree search method [82] are introduced to reduce the risk 

mitigation cost through generator re-dispatch and transmission capacity allocation.  

The above concern motivates the development of the data-driven method as a meaningful 

alternative for fast cascading outage screening. As opposite to the model-based method, the data-

driven method formulates an approximate mapping between the input and the output. And once 

the algorithm is well-trained, it is a generalized model that can automatically produce outputs from 
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unseen new inputs, without a massive amount of analytical computation. Therefore, the data-

driven method can be promising for future online cascading outage analysis with real-time data 

input. 

The application of the data-driven method in cascading outage analysis is still at its initial stage 

in literature. Although some works have been dedicated to utilizing machine learning methods, 

e.g., ANN [56], CNN [23] and deep autoencoder [24], for security assessment under contingency, 

few of them has considered the risk of the following cascading outages, which may cause the 

violation of NERC security standards. In [83], a three-stage decision tree method is proposed to 

classify the severity level of the cascading blackout. The system states obtained from wide area 

measurement system (WAMS) are used to train the decision trees, which proves to have a high 

classification accuracy. In [84], the authors propose a Monte Carlo cascading failure simulation 

method utilizing the existing model-based software package and a risk assessment method of 

cascade path based on decorrelated neural network ensembles. However, in this last work, the line 

flow is used as input to the neural network for system risk evaluation, which implies that the power 

flow calculation is still needed for new test cases. The ultimate goal of the data-driven method is 

to utilize the direct system observations, i.e. topologies, as the input to the algorithm without any 

additional analytical calculation for indirect measurements (such as line flow) to realize a nearly 

computation-free manner. Otherwise, the data-driven method can still be computation-inefficient 

for online applications under uncertainties. 

3.1.3  Contributions 

Based on the previous works, in this chapter, we propose a novel data-driven method for fast 

cascading outage screening and risk assessment. The proposed method is a combination of deep 

CNN and DFS algorithm. First, the deep CNN is constructed as a regression tool of the AC optimal 

power flow (ACOPF) model to quickly obtain the system state variables. The state variables are 

then utilized to calculate a security index for evaluating outage severity. Secondly, a scenario tree 

is built to represent all the potential cascading paths in real-time uncertain scenarios. Also, a DFS 
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algorithm is utilized to screen all the cascading outage paths in the scenario tree to detect the 

severest path. The detection is based on the estimated security index value from deep CNN. The 

screening results can serve as a reference for system operators to take corrective measures against 

system collapse. The main contributions of this chapter are summarized as follows: 

1) We propose the deep CNN as an efficient regression method for approximating ACOPF 

calculation. Unlike other data-driven methods that rely on system state variables as input, a well-

trained deep CNN only needs direct observations, e.g., system topology and bus power injection, 

and will automatically generate the state variables for evaluating outage severity. Hence, it can be 

directly applied to new test cases without the computationally intensive power flow calculation. 

2) We establish a multi-scenario tree as an efficient representation of all the potential cascading 

outage paths with uncertainties involved. Furthermore, we apply DFS method for a fast cascading 

outage screening over the entire tree. The DFS method aims to calculate the expected accumulative 

security index of each cascading outage path for evaluating their severity. With a proper screening 

order of all the cascading outages, the proposed DFS can complete the traversal with extremely 

low elapsed time, which is highly applicable in the case of large-scale power system cascading 

outage screening. 

The rest of this chapter is organized as follows: section 3.2 demonstrates the design of the 

proposed deep CNN for ACOPF regression; section 3.3 explains the construction of the scenario 

tree and the details of the DFS algorithm; section 3.4 verifies the proposed deep CNN and DFS 

algorithm for cascading outage screening on standard test cases; finally, section 3.5 concludes the 

chapter. 

3.2  Deep CNN-based Security Assessment 

3.2.1  Mapping power grid data to deep CNN input data  

In the case of system security assessment, the function of deep CNN is to approximate ACOPF 

calculation and to obtain the system state variables. The state variables can then be used to calculate 

the security index to evaluate system security status. To achieve this function, the first step is to 
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map power system raw data to a grid-like structure for the CNN to analyze. 

The ACOPF model is shown as follows: 
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In Eq. (3.1)-(3.6), the known parameters are the bus active/reactive load Pd, Qd, and system 

topology gij, bij, which will be the input to the deep CNN; and the unknowns are the bus 

active/reactive generation, Pg, Qg, bus voltage magnitude vi, and bus voltage angle i. Given that 

we only need bus voltage for security index calculation, the deep CNN will only output vi and i in 

this case. However, notice that the input parameters differ in their dimension. Given an n-bus power 

system, the Pd and Qd will both be 1×n vectors, while gij and bij are both n×n matrices. Deep CNN 

requires that the input known quantities should have the same dimensions. For example, for the 

image data, each image has the following dimensions: w (width) ×h (height) ×c (number of color 

channels), where the dimensions for each color channel are the same. To reach this requirement, we 

utilize the following 1× n vector to represent system topology: 

  11 22diag(imag(Y)) diag(B) = , nnb b b   (3.7) 

In Eq. (3.7), Y is the bus admittance matrix, and B is the bus susceptance matrix. The reason for 

utilizing the bus self-susceptance elements to represent system topology change is that whenever 

there is a line outage, the self-susceptance elements will definitely change, but not necessarily the 

self-conductance elements, since some lines have zero resistance. By removing the non-diagonal 
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elements in the B matrix, we only keep the most dominant elements as an efficient representation 

of system topology. Since deep CNN regression is a data-driven method, the regression error 

caused by the missing data in the G matrix and the B matrix will be automatically made up via 

iterative training based on existing data samples. With the above simplification, a deep-CNN 

regression for ACOPF calculation only requires three 1×n vectors as the input. The volume of 

training data is acceptable even in case of large-scale power systems. 

In the above static security assessment problem, mean square error (MSE) is used as the loss 

function: 
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In Eq. (3.8), NS is the number of training samples, n is the number of power system buses, θ
* 

i,s 

and v
* 

i,s are the desired output from the deep CNN, i.e., the actual bus voltage angle and bus voltage 

magnitude, θi,s and vi,s are the estimated bus voltage angle and bus voltage magnitude. Since we 

need to evaluate the system security status, a third term is added to the loss function, which is the 

difference between the actual security index value SI
* 

s  and the estimated security index value SIs. 

The objective of deep CNN is to minimize the deviation between the estimation and the ground 

truth to formulate an accurate enough ACOPF regression model. The last item in Eq. (3.8) is the 

L2 regularization, which is to avoid the issue of overfitting. 

3.2.2  Constructing deep convolutional neural network 

The structure of the deep CNN is demonstrated in Figure 3.1. It consists of two convolutional 

(Conv) layers and five fully-connected (FC) layers. The functions of these deep CNN layers are 

explained in detail as follows: 

a) The input data is a 3×n matrix, where n is the number of buses. These 3×n data corresponds 

to three 1×n vectors, i.e., the real loads of n buses, the reactive loads of n buses, and the n diagonal 

elements of the B matrix.  

The first convolutional layer has a filter with the size of [3,3,1,12], where the first three numbers 
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are the height, width, and the depth of the filter. The last figure is the number of filters. In this 

layer, 12 filters will be sampling the input data. As a result, the input data is deepened after scanned 

by the filter. In addition, the zero-padding is applied to maintain the original size of the input data. 

Hence the output of the first convolutional layer has the size of [3,n,12]. 

The filter has the size of 3×3, which means that it assumes the three neighboring buses have 

strong interrelations, e.g., bus 2-4, bus 3-5, since each time the filter samples a size of 3×3 from the 

input. This is in accordance with physical laws because the bus voltage angle is most affected by 

its closest neighboring buses. The size of the filter can also be increased to include more 

neighboring buses, but this comes with a larger quantity of parameters that need to be trained. 

b) The output from the first convolutional layer will go through an activation function. The 

activation function will add nonlinearity to the feature extraction. This is because Eq. (2.10) is a 

linear transformation. However, the ACOPF model (3.1)-(3.6) is nonlinear and nonconvex. 

Introducing the activation function to feature extraction can remove the limitation of linear 

representation. The ReLU is used as the activation function.  

c) The output from the ReLU function will go through the next convolutional layer, which has 

filters with the size of [3,3,12,24]. More features are extracted by the second convolutional layer. 

d) The output from the second convolutional layer has the size of [3, n, 24], which is a 3-D tensor. 

It is further flattened as a 1×(3×n×24) vector and goes through a fully-connected layer. In the fully-

connected layer, there is a connection between each neuron and each element in the input. In this 

case, the size of the weight parameters in the fully-connected layer is [3×n×24, 2×n], and the size 

of the bias is 2×n. So that after the matrix multiplication, the output will become a vector with the 

size of [1, 2×n], which is a combination of n bus voltage magnitudes and n bus voltage angles. 

e) Because we need to evaluate the system security status, the obtained voltage variables will 

further go through the next four FC layers to calculate the security index, which is a regression of 

Eq. (2.5). Before sending the voltage variables to the FC layer, the diagonal elements of B matrix 

are added to the voltage tensor to reflect the system topology change. This is because in Eq. (2.5), 
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the line flow is related to system topology. 

The four following FC layers have the size of [3×n, 12×n], [12×n, 6×n], [6×n, n], and [n, 1], 

respectively. After the matrix multiplication, the final output will be a 1×1 scalar, which is the 

security index value.  

Via the above deep CNN, both the system state variables and system security index can be 

obtained. Some may argue that since we only need the security index to evaluate system status, 

there is no need to output the bus voltage variable, which may result in a less complicated neural 

network structure. However, the security index value only shows the system security status as a 

whole, and it cannot reflect the local weakness and vulnerability. With system state variables, we 

can gain insights into the local voltage margin and line flow margin. In summary, the state variables 

cover more detailed information of system operation than the security index value. 
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Figure 3.1. Deep CNN structure for security assessment 
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3.2.3  Training sample generation 

In the training phase of the deep CNN, large quantities of training samples are required for fine-

tuning the neural network parameter. Since the proposed deep CNN is designed for cascading 

outage analysis, in the training sample, power flow results for k outage stages are included, where 

k indicates the number of electrical components that are out of service. In this study, we mainly 

consider line outage contingency. During power system operation, once a transmission line is 

tripped, it may cause overloading of other transmission lines and induces cascading line outages. 

The probability of the lth transmission line failure is calculated as follows [84]: 
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  (3.9) 

At each outage stage, based on Eq. (3.9), the line with the highest failure probability is selected 

as the tripped line. The whole process of generating cascading contingency training samples is 

shown in Figure 3.2, and is explained as follows: 

1) To begin with, an operation scenario is randomly generated based on Monte-Carlo simulation 

to represent real-time uncertainties. In this study, we mainly consider the load variations; 

2) Under the generated scenario, the model-based ACOPF is conducted to evaluate system 

security status; the system parameters and power flow results are stored for future training of deep 

CNN; 

3) Based on the obtained power flow results, the tripped line is selected according to Eq. (3.9). 

If there are several lines that are out of limit, the line with the highest probability is selected as the 

tripped line; 

4) Since we consider cascading outages in this study, if the number of line outage stages reaches 

k, then go to step 5); else go back to steps 2)-3) to repeat the above process; 

5) If enough operation scenarios have been generated, then the whole process is complete; else 

go back to step 1) to regenerate operation scenarios and repeat the above cascading outage process. 
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Figure 3.2. Flowchart of generating cascading outage training samples 

 

3.3  Cascading Outage Screening based on Depth-First Search Algorithm 

In the previous section, deep CNN is constructed to approximate ACOPF for evaluating system 

security status. In this section, we will demonstrate how to apply the calculated security index in 

cascading outage screening under multiple real-time scenarios. 

Given that the cascading outage is a time sequential process, we construct a scenario tree to 

represent the continuous dynamic changes of the system operation scenarios, which is shown in 

Figure 3.3 [47]. 
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Figure 3.3. Multi-scenario tree for cascading outage screening 

 

Figure 3.3 corresponds with the process of training sample generation shown in Figure 3.2. In 

Figure 3.3, beginning at the initial stage, different operation scenarios are first generated to 

represent the real-time uncertainties using Monte Carlo simulation. The uncertainties are regarded 

as a disturbance to trigger the following cascading line outages. At each tree node, i.e., at each 

outage stage, T stands for system topology, the superscript records all the previous stages, and the 

subscript indicates the current stage. Take T
(1,1) 

21 as an example,  in the superscript “(1,1)” , the first 

“1” indicates the operation scenario 1, and the second “1” indicates the first line outage scenario 

in the 1st outage stage; in the subscript “21” , the “2” indicates the 2nd outage stage, and the “1” 

indicates the first line outage scenario in the 2nd outage stage. 

On each branch that connects two tree nodes, pk is the line failure probability, which can be 

calculated by Eq. (3.9). A cascading outage path is defined as a path that starts from the initial 

stage and terminates at the kth outage stage. A value is assigned to each node along the path, namely 
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the security index SI. The goal of cascading outage screening is to evaluate the severity of each 

cascading outage path based on SI.  

We define the following accumulative security index for severity measurement: 
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In Eq. (3.10), starting from the kth outage stage, the accumulative security index is calculated in 

a recursive manner. For example, for the cascading outage path s1→T
(1) 

11 →T
(1,1) 

21 →……→T
(1,1,…,1) 

k1 , 

the accumulative security index is calculated as follows: 

   

(1,1,...,1) ( ) ( )

1 exp

(1,...,1) ( 1) ( 1) ( )

( 1)1 exp 1 exp

(1,1) (2) (2) (3)

21 exp 2 exp

(1) (1) (1) (2)

11 exp 1 exp

:

: ( )

: ( )

: ( )

k k

k k

k k k

k k

T SI p SI

T SI p SI SI

T SI p SI SI

T SI p SI SI

 

 



 

 

 

  (3.11) 

Finally, SI
(1) 

exp is taken as the final accumulative value of the entire cascading outage path. 

Based on Eq.(3.10), we design the following DFS algorithm for calculating the accumulative 

security index for each cascading outage path, as shown in Figure 3.4. The main idea of the DFS 

algorithm is to first explore the cascading outage stages along one path as deep as possible until 

reaching the last outage stage, while storing the order of line outages and the associated security 

index; then backtrack to the previous outage stages and update their expected security index. If all 

line outages at one outage stage have been scanned, then go back to the previous outage stage and 

switch to another line outage as the source node and repeat the above process, until all the 

cascading outage paths are screened. The DFS algorithm is a natural fit for the cascading outage 

screening because its forward-backward propagation corresponds with the recursive calculation of 

SI
(k) 

exp in Eq.(3.10). 

Note that in the above process, the original security index at each outage stage has already been 

calculated by deep CNN. Once the deep CNN is well-trained, it can be directly applied to new test 

cases in the multi-scenario tree and automatically generates ACOPF results and the associated 

security index, which greatly reduces computational burden. In the next section, the simulation 
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studies prove that the combination of the deep CNN and the above DFS algorithm makes it possible 

to scan a large-scale multi-scenario tree with extremely low time cost, while maintaining the 

desired accuracy.  
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Figure 3.4. Flow chart of depth-first search algorithm 
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3.4  Simulation Analysis 

In this section, we test the proposed deep CNN and DFS method for cascading outage screening 

on IEEE 57-bus system and European 1354-bus system. Deep CNN is first implemented as a 

regression model of ACOPF. Then, the scenario tree and DFS algorithm are deployed for fast 

cascading outage path screening.  

3.4.1  Deep CNN regression of ACOPF model 

The structure of the proposed deep CNN has been demonstrated in Figure 3.1. For scenario 

uncertainties, we assume that the variation of load forecast error follows a normal distribution with 

zero mean and a standard deviation of 0.1. In this study, we consider at most three cascading outage 

stages, i.e. k = 3. The number of operation scenarios and possible line outage scenarios considered 

in generating the training set and test set are summarized in Table 3.1: 

Table 3.1 is explained as follows: taking the IEEE 57-bus system as an example, for the training 

set, we have 33 different load scenarios at the initial stage. At each outage stage, 10 possible line 

outage selections are considered based on their failure probability. As such, the total number of 

training samples will be Ns + Ns × N+ Ns × N2 + ……+ Ns × Nk = Ns× (N (k + 1) – 1)/(N – 1) = 

33×(104–1)/(10–1) = 36,663, where Ns is the number of load scenarios, in this case it is 33; and N 

is the number of possible line outages, in this case it is 10. However, under some circumstances, 

the ACOPF does not converge. Such samples are removed from the above samples. The same 

explanation applies for other figures in the table. 

Note that part of the training set is used as the validation set. For both systems, 20% of the training 

samples are used as the validation set. The difference between the validation set and the test set is 

that the validation set has load scenarios that are also included in the training set, while the test set 

has different load scenarios from those in the training set (but follows the same probability 

distribution). The deep CNN accuracy is verified by both sets to prove its generalization under 

different instances. 
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Table 3.1. Summary of training/test set generation 

Test case 

Training set Test set 

No. of 

scenarios 
Stage 1 Stage 2 Stage 3 

No. of  

scenario 
Stage 1 Stage 2 Stage 3 

57-bus 33 10 10 10 7 10 10 10 

1354-bus  61 20 20 20 14 20 20 20 

 

All the samples are generated by the MATLAB toolbox MATPOWER [57]. The hardware 

environment is an Nvidia GeForce GTX 1080 Ti Graphic Card with 11 GB memory and 1.582 

GHz core clock. The software environment is the open-source deep learning platform TensorFlow. 

The learning rate is set to 1e-3, and the number of training epochs is set to 500. To improve the 

deep CNN regression accuracy, a repeated training process is conducted. For example, with the 

57-bus system, the training process for deep CNN is repeated for 3 times. Each time the learning 

rate is scaled down 10 times from its previous value. This means that the deep CNN is first trained 

for 500 epochs with the learning rate 1e-3, and the trained model is saved. Then the deep CNN is 

trained for another 500 epochs with the saved model as the initial value and a learning rate of 1e-

4. And the new trained model is saved. The above process repeats for 3 times. For the 1354-bus 

system, the process repeats for 4 times. With the repeated training, the algorithm can fine search 

within the local area with a smaller learning rate to avoid the overshooting. The final training 

results and the test results are shown in Table 3.2-Table 3.3: 

 

 

 

Table 3.2. Sample set size for deep CNN training and testing 

Case 
Training  

set size 

Validation  

set size 

Test set  

size 

57-bus 24,620 6,155 5,497 

1354-bus 18,680 4,670 5,278 
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Table 3.3. ACOPF regression results based on deep CNN 

Case 
Validation set error Test set error 

v  SI(%) v  SI(%) 

57-bus 5.3e-4 9.5e-4 0.65 6.2e-4 1.8e-3 2.80 

1354-bus 2.8e-4 2.6e-4 0.09 1.6e-4 2.4e-4 0.15 

 

In Table 3.3, the error of v and  is the mean absolute difference between the actual value and 

the estimated value produced by deep CNN, and the error of SI is the mean relative percentage 

error. As shown in the table, the error measurement is considerably small for both systems, which 

demonstrates the accuracy of deep CNN regression.  

To illustrate the high computational efficiency of the deep CNN, we compare ACOPF runtime 

of the 5,497 and 5,278 test samples between deep CNN regression and the model-based method in 

MATPOWER, and the results are summarized in Table 3.4: 

As shown in Table 3.4, the computation speed of deep CNN is thousands of times faster than 

that of the traditional model-based ACOPF. This is because once the deep CNN is well-trained, it 

has formulated a high dimensional mapping between the input and the output, and it can directly 

generate optimal power flow results for new instances with different loading conditions and system 

topology changes, without incurring the iterative calculation. This computation-free feature makes 

deep CNN an advantageous tool for solving highly complex large-scale power system planning 

and operation problems, where the model-based method can be excessively time-consuming and 

resource-consuming. In addition, the training time for both test cases is within an acceptable range, 

given that the training for deep CNN is completed off-line. 
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Table 3.4. Test time comparison 

Case Training time(s) 
Test time (s) 

(deep CNN) 

Test time (s) 

(model-based) 
Acceleration ratio 

57-bus 906 0.16 225.85 1,412 

1354-bus 24,692 5.7 8,185 1,436 

 

[1,3×n]

[3×n×24,2×n]

Output: 
θ = [θ1,θ2, ,θn]
v = [v1,v2, ,vn]

[1,2×n]

Input: [Pd;Qd;Bii]

FC2

Adding diag(B) to 
the voltage vector 
to represent the 
topology change

[3×n, 12×n]

FC3

[12×n, 1]

+

Output: 
Security 

index value
SI

[1,3×n]

FC1

Sigmoid
+

[3×n, 3×n×24]

Sigmoid

FC4
+

Sigmoid

 

Figure 3.5. ANN structure for security assessment 

 

To further validate the high learning ability of the proposed deep CNN, we design a traditional 

ANN with fully-connected layers as comparison for cascading outage screening. The configuration 

of the proposed ANN is shown in Figure 3.5. 

The difference between the proposed deep CNN model and the traditional ANN is that the 

former utilizes the convolutional layers to extract features, while the latter utilizes the fully 

connected layers. In addition, the deep CNN has multiple hidden layers for sufficient feature 

extraction, while in ANN, there is only one hidden layer between the input and the output, e.g., 

FC1 and FC3 are the hidden layers in Fig. 6. The same training set, validation set, and test set are 

used for ANN training and testing. The ANN is also trained repeatedly for the same number of 

epochs for fair comparison. The final regression results of ANN are shown in Table 3.5: 
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Table 3.5. ACOPF regression based on traditional ANN 

Case 
Validation set error Test set error 

v  SI(%) v  SI(%) 

57-bus  8.3e-4 1.9e-3 4.62 1.0e-3 3.0e-3 8.78 

1354-bus (Eu.) - - - - - - 

 

The results of the 1354-bus system are not available for ANN because the large-scale system 

causes the size of the FC layer parameters exceeds the memory limit. For the 57-bus system, it can 

be seen that deep CNN provides more accurate results than the traditional shallow ANN. This is 

because the convolutional kernels within the deep CNN utilizes the sparse connectivity to extract 

better features for model regression. In addition, the number of parameters in the convolutional 

layers is much lower than that of the FC layers, which spares both computation source and storage 

source. 

3.4.2  Identifying cascading outage path with DFS algorithm 

The function of deep CNN is to evaluate system security status for each operation scenario 

during cascading outages. In this subsection, a scenario tree is first constructed to represent the 

multiple realizations of real-time uncertainties. Then the security index of each node in the scenario 

tree is calculated based on the estimated results from deep CNN. Finally, the DFS algorithm is 

applied to evaluate the severity of each cascading outage path along the entire scenario tree. 

Two scenario trees for the IEEE-57 bus system and European 1354-bus system are constructed 

based on their respective test set. For the 57-bus system, because no line capacity data is given, 

the alarm limit is set as 1.35 times of the line flow under normal conditions, and the security limit 

is set as 1.4 times of the line capacity, which follows [84]; for 1354-bus system, the alarm limit is 

set as 1.35 times of the original line capacity, and the security limit is set as 1.4 times of the line 

capacity. The results of cascading outage screening are shown in Table 3.6-Table 3.8. 
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Table 3.6. Time efficiency of DFS algorithm 

Case No. of paths Time(s) 
Average SI

(1) 

exp   

error (%) 

57-bus 4,856 0.019 1.06 

1354-bus  4,424 0.010 0.16 

 

In Table 3.6, the fourth column is the average relative error of the accumulative security index 

SI
(1) 

exp based on the estimated results from deep CNN compared with the actual ACOPF results for 

all the cascading outage paths. It can be seen that the average errors for the two test cases are 

considerably small, which further indicates that the deep CNN regression results can be utilized as 

a reliable index for cascading outage severity evaluation.  

The DFS algorithm is written in MATLAB R2017b, and the hardware environment is an Nvidia 

GeForce GTX 1080 Ti Graphic Card with 11 GB memory and 1.582 GHz core clock. As shown 

in the third column of Table 3.7, the calculation time of SI
(1) 

exp exp  for all the cascading outage 

paths in both test cases takes no more than 0.02 second, which demonstrates the high 

computational efficiency of the DFS algorithm. 

Table 3.7 presents the cascading outage path with the highest SI
(1) 

exp in the two test cases, which 

indicates their highest severity. “Actual” means the result is based on the real SI value for 

calculating SI
(1) 

exp, and “Estimated” means that the result is based on the value from deep CNN for 

calculating SI
(1) 

exp. In the third column, eload stands for the load forecast error. For example, in the 

57-bus system, the severest cascading outage path is the 7th scenario with a load forecast error of 

0.0725, with line 9-11 tripped at the 1st outage stage, line 9-13 tripped at the 2nd outage stage, and 

line 3-15 tripped at the 3rd outage stage. As shown in the table, in the 57-bus system, the actual 

cascading outage path is the same as the estimated cascading outage path; in the 1354-bus system, 

the estimated path is different from the actual path in the third outage stage. However, the estimated 

path has the third highest SI
(1) 

exp if using the actual SI for calculating, which is only 0.0025% smaller 

than the highest SI
(1) 

exp. Therefore, it can be safely concluded that the computation-free deep CNN is 
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accurate enough to serve as a highly efficient tool for fast cascading outage screening in 

combination with the DFS algorithm, especially in the case of large-scale power systems with 

multiple uncertain scenarios. 

Some further insights can be gained from the cascading outage screening results. In Table 3.8, 

we analyze the transmission lines that are most frequently tripped at each cascading outage stage 

in the first 100 cascading outage paths with the highest estimated SI
(1) 

exp value, and also compare 

with the results based on actual SI
(1) 

exp value. The line indices marked in blue are the lines that are 

missed in the estimated line set. As shown in the table, almost all of the lines in the actual line set 

are detected in the estimated line set, which again proves the accuracy of deep CNN regression. 

The information revealed in the table can be used as a reference for system operators to take 

predictive measures for line capacity expansion or load shedding in advance to improve system 

operation security against cascading risks. 

Table 3.7. Cascading outage screening results 

Case Scenario Stage 1 Stage 2 Stage 3 

57-bus 
Actual 7 (eload: 0.0725) L 9-11 L 9-13 L 3-15 

Estimated 7 (eload: 0.0725) L 9-11 L 9-13 L 3-15 

1354-bus 
Actual 13 (eload: -0.0865) L 2426-8961 L 1146-7945 L 6806-1609 

Estimated 13 (eload: -0.0865) L 2426-8961 L 1146-7945 L 3248-7309 
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Table 3.8. Index of most frequently tripped lines in each cascading outage stage 

Case 57 

Stage 1 

Actual  

lines 

L 9-12, L 12-13, L 11-13, L 9-13, L 4-6, L 9-11  

Estimated  

lines 

L 9-12, L 12-13, L 11-13, L 9-13, L 4-6, L 9-11 

Stage 2 

Actual  

lines 

L 5-6, L 3-15, L 9-10, L 12-13, L 9-12, L 11-13, L 4-

6, L 9-11, L 9-13 

Estimated  

lines 

L 5-6, L 3-15, L 9-10, L 12-13, L 9-12, L 11-13, L 4-

6, L 9-11, L 9-13 

Stage 3 

Actual  

lines 

L 24-26, L 26-27, L 19-20, L 9-11, L 12-13, L 11-13, 

L 48-49, L 13-14, L 23-24, L 4-6, L 3-15, L 9-13, L 

9-10, L 5-6,  

L 9-12 

Estimated  

lines 

L 24-26, L 26-27, L 19-20, L 9-11, L 12-13, L 11-13, 

L 48-49, L 13-14, L 23-24, L 4-6, L 3-15, L 9-13, L 

9-10, L 5-6,  

L 9-12 

Case 1354 

Stage 1 

Actual  

lines 

L 3248-7309, L 4689-4936, L 6629-7309, L 1146-

7945, L 2426-8961 

Estimated  

lines 

L 3248-7309, L 4689-4936, L 6629-7309, L 1146-

7945, L 2426-8961 

Stage 2 

Actual  

lines 

L 2426-6888, L 6629-7309, L 3248 – 7309, L 4689-

4936, L 1146-7945, L 2426-8961 

Estimated  

lines 

L 2426-6888, L 6629-7309, L 3248 – 7309, L 4689-

4936, L 1146-7945, L 2426-8961 

Stage 3 

Actual  

lines 

L 2426-6888, L 1146-7945, L 6629-7309, L 3248-

7309, L 4689-4936, L 2426-8961, L 6806-1609 

Estimated  

lines 

L 2426-6888, L 1146-7945, L 6629-7309, L 3248-

7309, L 4689-4936, L 2426-8961, L 6806-1609 

3.5  Conclusions 

In this chapter, a data-driven fast cascading outage screening approach is proposed based on 

deep CNN and DFS algorithm. The deep CNN is constructed as a regression tool to estimate the 

ACOPF results under different contingencies and also the system security index. The DFS 
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algorithm is applied to scan the scenario tree to detect the most severe cascading outage path based 

on the estimated security index value provided by deep CNN. Simulation results on the IEEE 57-

bus and European 1354-bus systems verify the high accuracy and high computational efficiency 

of the proposed method. The practical implications of the study are summarized as follows: 

1) With the increasing penetrations of uncertainties into the bulk power system, the number of 

operation scenarios needed to be examined for system security assessment will grow exponentially, 

which will result in an unbearable computational cost to the conventional model-based methods. 

The proposed data-driven method with its nearly computation-free fashion can quickly detect the 

system vulnerability under multiple scenarios. The high accuracy and computational efficiency 

make the proposed method a desirable choice for real-time system screening. 

2) With the historical cascading outage data provided as the training set, the proposed data-

driven method can be easily adapted to power systems with different scales and multiple outage 

stages. The flexibility and scalability give the proposed method the potential to be developed as a 

general cascading outage screening tool in real-world applications. 

3) The screening results of the deep CNN and the DFS method can serve as a reference for power 

system operators to take preventive measures against the latent outages, and to reduce the system 

risk management cost such as load shedding and generator redispatch. The screening results can 

also be used as guidelines for future power system planning to efficiently allocate the investment 

to the most vulnerable transmission devices. 
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Chapter 4 Multi-microgrid Energy Management with Deep 

Learning and Reinforcement Learning  

In this chapter, an intelligent multi-microgrid (MMG) energy management method will be 

proposed based on deep neural network (DNN) and model-free reinforcement learning (RL) 

techniques. In the studied problem, multiple microgrids are connected to a main distribution 

system and they purchase power from the distribution system to maintain local consumption. From 

the perspective of the distribution system operator (DSO), the target is to decrease the demand-

side peak-to-average ratio (PAR), and to maximize the profit from selling energy. To protect user 

privacy, DSO learns the MMG response by implementing a DNN without direct access to user’s 

information. Further, the DSO selects its retail pricing strategy via a Monte Carlo method from 

RL, which optimizes the decision based on prediction. The simulation results from the proposed 

data-driven deep learning method, as well as comparisons with conventional model-based methods, 

substantiate the effectiveness of the proposed approach in solving power system problems with 

partial or uncertain information. 

 Equation Chapter (Next) Section 1 

4.1  Introduction 

The latest advancement of deep learning has opened the door of new AI-driven approaches to 

solve a broad range of power system problems [85]. Demand-side resource management is one of 

such problems. In recent years, emerging demand-side resources are playing an increasingly 

important role in maintaining the economy and security of bulk power system operation [86]-[88]. 

Many existing research works have been dedicated to exploring the function of multifarious 

demand-side resources, e.g., distributed generators, plug-in electric vehicles, demand response 

programs, and microgrids, in providing energy and ancillary services to the utility grid in both 

normal and emergent status [89]. Compared with conventional stand-by units, the demand-side 
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resources hold the merit of high flexibility because they are free from ramping constraints. Their 

diversity in type adds additional reliability for serving as alternative power and frequency support 

to the bulk power system in case of contingency.  

The increasing penetration of demand-side resources into the power system calls for demand-

side energy management, which aims to enable a coordinated and mutually beneficial interaction 

between the main grid and the local resources. One of the primary goals of demand-side 

management is to reduce the PAR of the load. A low PAR indicates a smooth load profile, which 

avoids overloading or underloading the system. Local consumers also benefit from a low PAR by 

shifting their energy consumption to off-peak hours with lower prices. 

There have been substantial efforts to investigate the optimal scheduling of demand-side 

resources in the literature. The concept of autonomous demand-side management is first 

introduced in [90], in which a non-cooperative game is formulated between the utility company 

and local customers. Iteratively, the utility provides dynamic pricing signals according to the 

aggregated consumer response, and the customers optimize their energy consumption schedules 

under the given price in a distributed manner. At the point of Nash Equilibrium, the minimum total 

energy cost and the decreased PAR is achieved. In [91], the temporally coupled constraints of the 

local consumer’s energy scheduling problem are included, and the coupled-constrained game 

model is tackled by dual decomposition. In [92], the authors prove that the non-cooperative game 

between the users and the utility provider is the general case of the minimum PAR ratio problem. 

In [93]-[94], the gradient method is utilized for solving a local consumption schedule problem with 

fast convergence. In [95], an online learning algorithm is developed, where each user learns 

through past experience to approximate other users’ decisions, and to optimize its own energy 

scheduling. 

All of the above methods can be categorized as model-based methods, where the mathematical 

equations are formulated to describe local users’ energy scheduling. Because the demand-side 

management problem is usually a partially observable problem, i.e., unknown or uncertain 
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information exists, the models are generally solved in an iterative way. There are two deficiencies 

of the iterative algorithm: 1) the convergence of the algorithm cannot always be guaranteed. The 

convergence can only be achieved under some strict prerequisites, e.g., convex payoff functions, 

which require certain assumptions and simplifications of the problem; 2) applying an iterative 

algorithm in the real-world can be impractical, especially in real-time scenarios. In real-world 

practices, it is more likely that the utility provider releases the price signal, and the consumers 

schedule their consumption accordingly, which tends to be a one-step process. The iterative 

interaction between the two sides can be both time-consuming and resource-consuming with the 

potential challenge of divergence.  

Based on the above challenges and motivations, we propose a data-driven method in this chapter 

for optimizing demand-side energy management. Specifically, we propose the combination of two 

techniques, the DNN and the RL method to overcome the complexity and inefficiency of model-

based methods. The recent years have witnessed the rapid advancement of DNN in a variety of 

applications, e.g., computer vision, machine translation, and remote sensing. In the field of power 

system, the DNN has been applied for prediction of uncertain factors [96], smart meter data 

identification [16], modeling of renewable energy [37], and energy storage dispatch [41]. The 

DNN is a data-driven method that does not rely on any analytical equations, but it utilizes 

voluminous existing data to formulate the mathematical problem and to approximate the solutions. 

The multiple hidden layers and the large number of neurons within the DNN can automatically 

extract features for data analysis to achieve an accurate model regression or classification. Once 

the DNN is well trained, it will develop high generalization and can be directly applied to new 

instances without costly numerical computation. Compared to the conventional model-based 

method, the DNN is highly computational efficient while maintaining considerable accuracy. 

The RL method is well known for its applicability in solving problems with hidden information. 

RL focuses on providing the optimal time-sequential decisions within an unknown environment. 

This is realized via continuous interactions between the decision-maker, which is called the agent, 
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and the environment. Through this learning process, the agent is able to gain knowledge of the 

environment and to take actions that affect the environment in order to reach its objective. 

Currently, RL has been widely spotted in areas including robotics and automation, computer games, 

auto pilot, and dialog system.  

There have also been significant efforts to implement RL method in solving complex power 

system problems. The utilization of RL to optimize the residential demand response schedule is 

first discussed in [97]. The method is later decomposed to the device-level to achieve higher 

computational efficiency [98]. The research in [99] further includes the smart energy hub to the 

residential DR management to initiate a real-time energy monitoring and to boost the learning 

process. In [39]-[40], both a DNN and RL are leveraged for an economically efficient residential 

load control. DNN is used to estimate the potential reward of each move of the consumer, and RL 

is used to coordinate the actions from a long-term perspective. This combination is called deep 

reinforcement learning (deep RL). The authors in [43] proposed the application of deep RL to 

optimize the real-time electric vehicle charging schedule with the consideration of future electricity 

price. The feasibility of applying deep RL to load frequency control with stochastic renewable 

energy penetration is investigated in [45]. More potential applications of deep RL in power system 

studies have been discussed in [47]. 

Inspired by the previous works, in this chapter, we propose the utilization of both DNN and RL 

method to solve the problem of MMG energy management. Different from the load control model 

in the previous works, a microgrid contains both generation and consumption units, leading to 

more variables and constraints with higher model complexity. In such cases, the conventional 

model-based method may become inapplicable due to the computational burden, which makes the 

data-driven method a more desirable and efficient alternative solution. The main contributions are 

summarized as follows: 

 1) A data-driven DNN is constructed to model the MMG response under dynamic retail price 

signals. The DNN is trained based on historical data and without requiring the user information 
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from local microgrid operators. Uncertain factors within the microgrid system are also included in 

the training set. The well-trained DNN has high generalization and can automatically generate 

MMG power exchange under the new given input. 

2) A model-free RL technique is applied for the distribution system operator (DSO) to optimize 

the retail pricing for local microgrids. The RL method aims to maximize the profit of selling power 

while reducing the PAR ratio. The DSO is able to achieve a near-optimal pricing strategy with the 

substantial exploration ability of the proposed RL method.  

 3) A comprehensive performance evaluation of the proposed method is provided through 

various simulations to verify its feasibility in practical scenarios. A comparison with model-based 

method is also presented to demonstrate the superiority of the proposed data-driven method. 

The rest of this chapter is organized as follows: section 4.2 presents the mathematical model of 

the MMG energy management problem; section 4.3 demonstrates the detailed design of the 

proposed DNN and the training process; section 4.4 elucidates the model-free RL algorithm for 

retail price setting of DSO; section 4.5 provides the simulation results of the proposed algorithm 

as well as observations and analysis; finally, section 4.6 concludes the chapter. 

4.2  Modeling of Multi-microgrid Energy Management 

In this section, we first introduce the mathematical model of the proposed MMG energy 

management problem. The interaction between the MMG and distribution system is shown in 

Figure 4.1. In the figure, a bi-directional communication channel is constructed between the 

microgrids and the DSO, where the DSO releases its retail price to the microgrids, and the 

microgrids send back the amount of power to purchase. The goal of MMG energy management is 

to smooth the hourly power exchange profile of the MMG with proper retail price setting strategies. 
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Figure 4.1. Multi-microgrid energy management under DSO pricing control 

 

From the perspective of an individual microgrid, each microgrid operator attempts to minimize 

its operation cost under the given retail price, which leads to the following microgrid economic 

dispatch (ED) model: 
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The objective function (4.1) represents the operation cost of the mth microgrid over dispatch 

cycle NT, which is usually 24 hours. The first term in (4.1) is the generation cost of the kth 

dispatchable generator, which has a quadratic form of the generation quantity P
DG 

k (t), as shown in 

(4.2). The second term in (4.1) is the power exchange cost, where λ(t) is the retail price at the point 

of common coupling (PCC), and ηm is a factor to represent network losses. P
grid 

m (t) is the power 

purchased by the microgrid. Note that ηm can differ among different microgrids, because the 

locations of the microgrids within the distribution network may vary. Thus, each microgrid bears 

different network losses and receives different retail prices, which is also known as distribution 

locational marginal price (DLMP). The third term in (4.1) is the cost of dispatching DR resources 

that reside in the microgrid, where u
z 

m (t) is a 0-1 binary variable indicating whether the zth demand 
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response block q
z 

m(t) is dispatched or not, and ec
z 

m is the unit price [100]. And the last term is the 

degradation cost of energy storage. The change between two consecutive states of charge (SOC) 

is measured as the energy storage life degradation caused by charging or discharging [101]. 

Microgrid economic dispatch should also satisfy the following constraints: 
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Constraint (4.3) is the generator capacity constraint of distributed generators (DGs) in the mth 

microgrid; constraints (4.4)-(4.5) mean that the total demand response dispatched should not 

exceed the load P
Load 

m (t), and the demand response blocks are dispatched in an increasing order; 

constraint (4.6) is the charge/discharge rate limit of the energy storage, where P
ch 

es (t) and P
dis 

es (t) are 

the charging and discharging quantity of the energy storage; constraint (4.7) calculates the energy 

level of energy storage, which is SOCes(t), where ƞes is its efficiency and ∆ is the length of the time 

interval; constraint (4.8) is the capacity limit of energy storage; and finally, constraint (4.9) is the 

power balance constraint of the microgrid.   

The DSO decides the retail price by solving the following optimization problem: 

 max
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In (4.10), the first term is the DSO’s profit from selling energy to the microgrids, where Nm is 

the total number of microgrids. m is a conversion factor. This is because P
grid 

m (t) is calculated by 

the local microgrid operators and does not include the network losses, hence cannot reflect the real 

amount of power exchange at PCC. The function m is to transform the local power exchange to 

the power exchange at PCC. For the sake of simplicity, we do not consider the detailed distribution 

network topology for a full-fledge DLMP model and assume that m is a known value in the 

following simulations.  

The second term in (4.10) is the PAR over the entire dispatch cycle, which is the ratio between 

the maximum power exchange and the average power exchange of MMG. Since PAR is unitless, 

the first term is divided by a constant base profitbase value to remove its unit. The DSO intends to 

find the optimal retail price λ (t) that maintains a balance between the two objectives, hence there 

is a weighting factor α added before the two terms.  

The difficulty of solving (4.10) is that the individual microgrid power exchange P
grid 

m (t) varies 

with the retail price λ(t), hence it cannot be solved directly. In the following sections, we will 

introduce two data-driven techniques, the DNN and RL, to crack the above problem with high 

computational efficiency. 

4.3  Multi-microgrid Operation Simulation with Deep Neural Network 

In this section, a DNN is applied to simulate MMG operation under given price signals, i.e., to 

solve (4.1)-(4.9). There are two main advantages of utilizing the DNN:  

1) The neural network is readily available as a toolbox. Once the parameters are well-trained, it 

has high generalization and can automatically generate the estimated amount of power exchange 

between the MMG and DSO under the new retail price. Given that the individual microgrid 

economic dispatch model is a nonconvex problem and that the number of microgrids can be large, 

solving the MMG power exchange using the conventional analytical method can be highly time-
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consuming. The data-driven DNN has much higher computational efficiency with considerable 

accuracy; 

2) The individual microgrids do not need to expose their generation or consumption information 

to the DSO, given that the DNN is trained using the historical retail price data and power exchange 

data. Therefore, the user privacy of microgrid owners is well protected. 

4.3.1  Deep neural network structure 

The ANN has long been recognized as an efficient regression tool for handling problems that are 

difficult to accurately model or with high computational complexity. MMG energy management 

fits this category. Hence, a DNN is constructed in Figure 4.2: 
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Figure 4.2. Multi-layer structure of the Deep Neural Network 
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As shown in Figure 4.2, the input to the DNN is the retail price, and the output is the aggregated 

MMG power exchange with the distribution system under the given price signal. The goal of the 

DNN is to generate a simulated power exchange that is as close as possible to the actual MMG 

response. 

Before sending the raw training data to the DNN for regression analysis, data preprocessing is 

implemented. The function of data preprocessing is to minimize the deviation of the training data 

for improving the regression accuracy and computational efficiency. 

The data preprocessing for MMG response raw data includes two steps: firstly, all the sample 

input data and output data are transformed into the per unit value. By utilizing the per unit value, 

different features of the sample data become comparable with each other. For the retail price 

sample, given that they are at the scale of 10$/MWh, 100$/MWh is set as the base value; for the 

aggregated MMG power exchange, given that they are at the scale of 100 kW, 1000 kW is set as 

the base value. 

Secondly, a min_max_scaler transformation is applied for further normalization, as shown below: 
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In (4.13), s is the index of training samples, maxsλ(t) and minsλ(t) are the maximum and 

minimum values of the retail price at the tth interval among the entire training set. Through the 

above normalization, the values of the retail price samples will lie within the range of [0,1]. The 

above data preprocessing helps create a more regular search region for faster algorithm convergence. 

In the DNN structure, between the input layer and the output layer are numerous hidden layers. 

The term “deep” refers to the multiplicity of hidden layers. Each hidden layer is composed of 

neurons that complete the following affine transformation of the input: 
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The calculation of the output of the lth hidden layer is shown by (4.14), where s is the index of 
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the sample, j is the index of the features of the sample, and k is the index of neurons. Also, ω
(l) 

jk is 

the weight assigned to the jth feature of the input, and b
(l) 

k is the bias. As can be observed, the output 

y
(l) 

sk  is the weighted aggregation of all the features of the input x
(l) 

s  captured by the kth neuron. The 

function of the hidden layer is to extract sufficient features from the input data and to construct the 

mapping between the input and the output.  

Notice that (4.14) is a linear transformation. However, the microgrid ED model (4.1) is 

nonlinear, and cannot be handled by a mere linear transformation. The ReLU function is thus added 

to the hidden layer to delinearize the model, as shown in Figure 4.2. 

4.3.2  DNN training algorithm 

In the DNN, the network parameters ω
(l) 

jk  and b
(l) 

k  are the unknown variables that need to be 

calculated. The back-propagation algorithm is applied for this cause. Before the implementation 

of the algorithm, a loss function is defined as the objective of the DNN training. The loss function 

implies the accuracy of the output from the DNN. In the MMG energy management problem, mean 

square error (MSE) is utilized as the loss function: 
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In (4.15), NS is the number of training samples, P
grid* 

total,s (t) is the actual MMG power exchange at 

the tth time interval of the sth sample, P
grid 

total,s(t) is the estimated MMG power exchange. The loss 

function tries to minimize the deviation between the ground truth and the estimated value to obtain 

an accurate enough approximation of the MMG response.  

In the studied MMG system, there exist uncertainties, e.g., distributed renewable generation 

fluctuation, load variations. These uncertainties may cause extremely large or small power 

exchanges. The existence of such abnormal values in the training set can lead to the issue of 

overfitting, where the DNN attempts to fit to all the training samples and loses its generalization.  
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To overcome the overfitting problem, we introduce L2 regularization to the loss function (4.15), 

which is shown as follows: 
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Once the loss function is calculated, the first partial derivatives of the loss function to the weights 

and biases can be obtained and used to update the variables. 

4.4  Monte Carlo Reinforcement Learning Method for DSO Decision-making 

In section 4.3, the DNN is constructed to simulate the MMG operation under the given price. As 

such, the DSO can obtain a reliable estimation of the aggregated MMG power exchange without 

much computation. Next, the DSO will decide the optimal retail price setting with the goal of 

maximizing the profit of selling power and minimizing the PAR, as shown by (4.10). 

Note that the PAR in (4.10) is not an explicit expression of the decision variable, which is the 

retail price λ (t), hence (4.10) is difficult to solve. In previous literature, similar problems are 

usually solved in a distributed and iterative manner, where the utility provider first releases the 

retail prices, and each local user sends back their power consumption under the given price. The 

utility provider then evaluates the current PAR and adjusts the price accordingly. The above 

process repeats until no power consumption change or price change happens.  

The iterative method is not applicable to MMG energy management problem for the following 

two reasons: 1) in previous studies, the local users are only consumers and are only allowed to 

shift their load. In this way, the total energy demand becomes constant and the average hourly load 

can be calculated, which only leaves P
grid 

max  unknown, as is the case in [90],[93]. However, in the 

MMG case, since each microgrid is a prosumer, their final energy consumption cannot be predicted, 

hence both P
grid 

max  and P
grid 

avg  are unknown terms, and the division leads to a nonconvex problem, the 

iterative algorithm cannot guarantee to converge in a nonconvex case; 2) The iterative algorithm 

can be time-consuming and resource-consuming, and not applicable for real-time applications.  
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Motivated by the above considerations, the RL method is applied in this study to crack the 

intractability of the DSO pricing problem. The RL method is well-known for its applicability to 

problems with unknown search spaces. For example, in the MMG energy management problem, 

both maximum power exchange P
grid 

max  and average power exchange P
grid 

avg  remain unknown to the 

decision-maker DSO, and they are also not analytically expressed as functions of the retail price. 

The RL method has strong exploration abilities through continuous interactions with the unknown 

environment and constantly updates the agent’s experience in order to make the optimal decision. 

In this section, we will discuss how to implement the RL method to optimize the retail pricing 

strategy of DSO. 

4.4.1  A brief overview of reinforcement learning 

RL is a type of machine learning approach focusing on how agents take actions within an 

unknown environment with the goal of maximizing reward [102]. Briefly speaking, in a provided 

environment, at each state, the agent randomly takes an action, and receives an immediate reward 

from the environment. Then the agent moves to the next state with a certain probability and repeats 

the above process, as shown in Figure 4.3: 

In the beginning, the agent has no knowledge of what reward and next state are linked to each 

action. To maximize the accumulative reward, the agent must learn the above knowledge by 

continuously interacting with the environment. In most cases, the action taken at the current state 

not only affects the immediate reward, but also the next state and all the future rewards. Hence, it 

can be concluded that RL is a decision-making process with trial-and-error-search and delayed 

reward. 
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Figure 4.3. Illustration of reinforcement learning 

 

4.4.2  Mapping multi-microgrid energy management problem to reinforcement learning 

RL assumes that the problem under study is a Markovian Decision Process (MDP), which is 

composed of four fundamental elements: 1) a series of environment states S; 2) a set of actions A; 

3) a sequence of rewards R; and 4) the probability P that describes the transition from state s and 

action a to state s' and reward r.  

In the MMG energy management problem, the fundamental elements of the RL are defined as 

follows: 

 The agent: DSO 

 State: current time step t 

 Action: hourly retail price λ (t), for t = 1…, NT 

 Reward: Hourly profit of selling power, λ (t) ∑
Nm 

m=1 mP
grid 

m (t) 

The ultimate objective of DSO is to maximize the total profit of selling power over the entire 

dispatch cycle, plus weighted PAR, as shown in (4.10). Since both the accumulative profit and 

PAR are decided by the power exchange through the entire dispatch cycle instead of a single time 

step, the DSO has to be farsighted to predict the future MMG power exchange when deciding the 

retail price for the current time step. This corresponds with the delayed-reward feature of RL, and 

makes RL a natural fit for the MMG energy management problem.  

Note that the transition function is not given in the above definitions. This is because the reward 

in this problem is related to the hourly total power exchange of MMG, which is difficult to predict. 

The hourly power exchange of microgrids is related to various uncertain factors within the 
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microgrid system, e.g., load variations and distributed renewable energy. In the next subsection, 

we will introduce a model-free method to overcome the barrier of lacking transition function. 

4.4.3  Model-free Monte Carlo method 

There are two types of RL methods: the model-based method and the model-free method. The 

former assumes that the problem is a known MDP with full knowledge of state transition 

probabilities. In this way, the problem can be solved analytically via dynamic programming or 

other iteration methods. However, for some RL problems, obtaining the transition probabilities is 

not a trivial task. In such occasions, the agent has to estimate the transitions and rewards from the 

interactive experiences with the environment. This is called the model-free method, since no state 

transition model can be constructed in advance due to the lack of information.  

The Monte Carlo method is a type of model-free method. To obtain the state and the reward 

information, the Monte Carlo method deploys the simplest possible policy. It utilizes the averaged 

sample reward for a certain action as its reward value. According to the law of large numbers, 

when there are enough simulations and enough samples of reward, the averaged value is 

approximately equal to the actual value, which proves the reasonability of the Monte Carlo method.  

As mentioned previously, it is very difficult to obtain the transition probability of the state and 

reward, which involves the hourly total power exchange of MMG, mainly due to the microgrid 

uncertainties. Therefore, in the MMG energy management problem, we also adopt the model-free 

Monte Carlo method to optimize the retail pricing strategy of the DSO. The Monte Carlo method 

is displayed in Algorithm 1 [102]:  
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Algorithm 1: Monte Carlo Method for DSO decision-making 

1: Generate daily retail price sequence samples NS 

2: Input the price samples to the DNN to obtain the MMG power 

exchange profile 

3: for t in 1 to NT  do 

4:        Choose retail price λ(s)(t) from price samples NS 

5:        Initialize the counter n(s) →0 

6:        for s’ in 1 to NS  do 

7:              if λ(s’)(t) equals λ(s)(t) 

8:                 do n(s) →n(s) + 1 

9:              end if 

10:        end for 

11:        Evaluate λ(s)(t) based on average weighted reward:     

r(λ(s)(t)) = 1/n(s) ·(α∑profit(λ(s)(t)) - (1-α) ∑PAR(λ(s)(t))) 

12:     Select λ (t) = argmax r (λ(s)(t)), for all s∈ NS 

13: end for 

 

Algorithm 1 is explained as follows: to begin with, the DSO randomly generates large quantities 

of retail price sequence samples. The price samples are then sent into the DNN to obtain the 

estimated aggregated MMG power exchange. After the generation of all the price samples and the 

power exchange samples, the DSO selects the optimal hourly retail price based on the procedure 

as follows:  

First, at each time step t, the DSO randomly picks a retail price λ(s)(t) from the sample set, then 

counts the number of price samples that contains λ(s)(t) and records it as n(s).  

Then, the DSO evaluates λ(s)(t) based on its average profit and average PAR. The profit(λ(s)(t)) is 

calculated as follows: 
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It can be seen from (4.18) that the profit of λ(s)(t) is the discounted accumulated profit of selling 

power from t to NT , where the discount factor γ is between 0 and 1. When γ is zero, it implies that 

the decision-maker focuses only on the current profit and is totally myopic; when γ is greater than 
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zero, it means that the decision-maker is farsighted by evaluating the current pricing with the 

consideration of potential future profit. In this study, γ is set to 0.9 to ensure that the DSO has a 

more robust pricing strategy to avoid future risks. 

Next, for a single price λ(s)(t), the PAR under the price sequence [λ(s)(1), …, λ(s)(t),...., λ(s)(NT)] is 

taken as PAR(λ(s)(t)). Each price is then evaluated based on the weighted sum of average 

profit(λ(s)(t)) and average PAR(λ(s)(t)), as shown in line 11 of Algorithm 1. The weight factor α 

represents the tradeoff between maximizing profit and minimizing PAR.  

Finally, all the prices are compared and the price with the maximum weighted reward is selected 

as the price for time step t, as shown in line 12. The above process is repeated for all the time steps 

until the whole optimal retail price sequence is decided. 

The above algorithm is a Monte Carlo method because the DSO selects the optimal price 

sequences from a randomly generated sample set. Note that in the above algorithm, the price for 

each time step is selected separately, i.e., the price selection process (line 6-line 10) repeats for NT 

times to obtain a complete price sequence. A more intuitive way is to directly select the price 

sequence with the maximum weighted reward from the sample set. However, this intuitive method 

cannot guarantee to reach global optimization when the possible realizations of the price sequence 

are huge. For instance, if there are NT  time steps in a dispatch cycle, and for each hour, there are 

Np  possible prices, then the total number of candidate price sequences will be Np^(NT), which can 

be an enormous figure even for small Np and NT, and cannot be completely represented by a limited 

sample set. By using the average value to evaluate each hourly price and regrouping them, the 

algorithm can explore beyond the given sample set and discover solutions better than the existing 

combinations. This judgement will be verified in the simulation part in next section. 

4.5  Simulation Analysis 

In this section, we first reveal the detailed structural design of the DNN for simulating MMG 

operation. Then the testing performance of the DNN is presented. Next, based on the simulated 
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results from the DNN, the model-free Monte Carlo method is applied for the DSO to decide the 

optimal pricing strategy. The results are evaluated and compared with a conventional model-based 

method to demonstrate the advantages of the proposed data-driven method. 

4.5.1  Simulating multi-microgrid Operation with DNN 

1) MMG system setup 

A test case where 10 microgrids are connected to one DSO is considered here. For simplicity, 

we assume that microgrids with greater serial number are farther away from PCC, hence suffer 

from more network losses and receive a higher retail price. The ηm for the 10 microgrids are 

assumed to be in the range of 1.01-1.1, with an incremental size of 0.01. The setting of ηm is aligned 

with the results of distributional locational marginal price (DLMP) in [103], in which the DLMP 

range is around 100% to 110% of the price at PCC. The m is assumed to be the same as ηm. The 

compositions of each microgrid are summarized in Table 4.1: 

Table 4.1 Microgrid composition 

No. Compositions No. Compositions 

1 WT, DE, DE, ES, DR 2 WT, DE MT, FC,ES,DR 

3 WT,  MT,MT,FC, ES,DR 4 WT, MT, FC,ES,DR 

5 WT, DE, MT, MT,ES 6 WT, DE, FC, FC,ES,DR 

7 WT, DE, DE, FC, ES, DR 8 WT, FC, FC, ES, DR 

9 WT, DE, MT, FC, FC, ES, DR 10 WT, MT, MT, MT,ES,DR 

WT: wind turbine; DE: diesel generation; MT: micro turbine; FC: fuel cell; ES: energy storage; 

DR: demand response 
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Table 4.2. Parameters of distributed energy resources 

DG type 
P

DG,min 

k
 

(kW) 

 P
DG,max 

k   

(kW) 

Quadratic coefficients 

a
p 

k ($/h) 
b

p 

k  

($/kWh) 

c
p 

k  

($/kW2h) 

Micro turbine 0 30 0.4 0.0397 0.00051 

Fuel cell 0 30 0.38 0.0267 0.00024 

Diesel generator 0 60 1.3 0.0304 0.00104 

Energy 

 storage 

SOC
min 

es  

(kWh) 

SOC
max 

es   

(kWh) 

P
ch,max 

es  

(kW) 

P
dis,max 

es  

(kW) 
ηes 

ρes 

($/MW) 

20 50 25 25 0.9 100 

DR quantity 
33% of 

 total DR 

66% of  

total DR 

100% of  

total DR 

DR unit price ($/kWh) 0.44 0.46 0.48 

2) Design of DNN regression model 

We design a DNN with 3 hidden layers for simulating MMG operation under the given retail 

price. The number of neurons in each layer is 1000. The number of inputs and outputs are both 24, 

since there are 24 hourly prices with 24 hourly power exchanges (i.e., the dispatch cycle considered 

here is 1 day). The number of neurons in each hidden layer is decided via repeated trial and error. 

The selection of the number of neurons is a trade-off between the regression accuracy and 

computational efficiency. The self-adaptive Adam Optimizer is applied with an initial learning rate 

of 1e-2 [104]. In addition, the exponential decay of learning rate is applied to stabilize the training. 

The initial values of the weights and biases of the DNN are obtained from Xavier initialization 

[105]. Furthermore, to guarantee that the output from each hidden layer is regularized within a 

certain range, batch normalization is applied to avoid algorithm divergence [106]. 

In this case study, 12,000 samples of retail price and power exchange are generated for the neural 

network training. In the first place, the daily retail price is randomly generated as 1 to 1.5 times 

higher than the wholesale market price, with a step size of 0.1. The wholesale market price can be 

obtained from historical market data. Then the generated retail price data is sent to model (4.1)-

(4.9) to calculate the hourly power exchange of each participating microgrid. In addition, there 

exist uncertain factors with the microgrid, e.g., the output of wind turbine, and the demand 
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variation. To make the DNN regression model more robust against uncertainties, we assume that 

the forecast error of load and wind generation follows a normal distribution with zero mean and a 

standard deviation of 0.1 and 0.05, respectively. Because a large number of training samples are 

generated to cover enough uncertain scenarios, the well-trained DNN has high generalization to 

unseen microgrid uncertainties and can provide regression results with high accuracy. 

3) DNN training and testing results 

The conventional model-based method is used at this stage to solve model (4.1)-(4.9). In this 

study, we use GAMS/CPLEX software package to solve the model. The ratio of training samples 

to testing samples is 8:2. The total number of iterations is 2,000. The hardware environment is a 

Nvidia GeForce GTX 1080 Ti Graphic Card with 11 GB memory and 1.582 GHz core clock. The 

software environment is the online open-source deep learning platform TensorFlow, which is 

implemented on Python. The whole simulation framework is shown in Figure 4.4. 

Table 4.3 shows the detailed settings of DNN training. The training result is summarized as 

follows: for the 2,400 test samples, the average relative error of estimated power exchange is 

0.96%, which indicates the considerable accuracy of DNN regression. The training loss (MSE plus 

L2 weighted penalty) for 9,600 training samples is 0.0034, which is small enough as an indicator 

of the training convergence. The time for completing 2,000 iterations is 91.05 s, which is 

acceptable since the training is completed off-line. 
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Figure 4.4. Simulation framework for multi-microgrid energy management 

 

Table 4.3 Summary of DNN training settings 

Item Value 

No. of hidden layers 3 

No. of neurons in each  

hidden layer 
1000 

Activation function ReLU 

Loss function MSE plus L2 regularization 

Learning rate 1e-2 

Exponential decay rate 0.96 

Exponential decay step 50 

Optimizer Adam Optimizer 

No. of training samples 9,600 

No. of test samples 2,400 

Iteration steps 2,000 

Data preprocessing min_max_scaler 

4) Sensitivity analysis 

To further verify the high generalization of the well-trained DNN to unseen inputs, we conduct 

the following sensitivity analysis of the DNN regression accuracy.  

First, the effect of price disturbance is discussed. As previously discussed, for the training set 

generation, the daily retail price is randomly generated as 1 to 1.5 times higher than the wholesale 
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market price. To include the price disturbance, in the test set generation, we manually create a price 

peak at hours 10-11. Note that this disturbance is not included in the training set. The comparison 

of price samples for training and testing is shown in Figure 4.5. 

Note that there appear to be only six lines in Figure 4.5, because some price samples overlap 

with others. A test set with the size of 500 based on the above price disturbance is generated and 

input to the DNN. The average relative error of estimated power exchange is 1.65%. Note that this 

error is slightly higher than the above 0.96%, given that the price disturbance is not included in 

the training set. Still, this average relative error is low enough to verify the robustness of DNN 

regression under price disturbance. 

We further explore the effect of microgrid load variation to the DNN regression accuracy. Similar 

to retail price disturbance, we manually create a load valley for hours 13-14 on the original 

microgrid load profile for the test set generation. The comparison of the microgrid load for training 

and test is shown in Figure 4.6. A test set with the size of 500 based on the microgrid load 

disturbance is generated and input to the DNN. The average relative error of estimated power 

exchange is 1.60%. This further verifies the robustness of DNN regression under load profile 

disturbance.  

Based on the above observations, it can be safely concluded that the DNN has formulated a 

considerably accurate regression model between the input, which is the retail price, and the output, 

which is the MMG power exchange, and is immune to the unseen disturbance in the input data. 

This is due to the strong automatic feature extraction ability of the large number of neurons 

embedded within the DNN. As a result, the DNN has tremendous potential in solving problems 

with unclear or complex mathematical formulations. 
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Figure 4.5. Disturbance of retail price 

 

 

Figure 4.6. Disturbance of microgrid load 

 

4.5.2  Monte Carlo method for optimizing DSO pricing strategy 

Once the DNN is well trained, the fine-tuned parameters can be properly stored for repeated use. 

The DSO can now apply the Monte Carlo method to search for the optimal retail price for the 
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MMG. Since the Monte Carlo method is based on the law of large numbers, the more samples are 

generated, the closer the obtained solution is to the actual global optimum. As previously 

mentioned, each hourly retail price falls within 1 to 1.5 times of the wholesale market price, with 

a step size of 0.1. Then the total number of all possible price sequences is 524 ≈ 5.96 × 1016, which 

is far beyond the hardware’s computation capabilities. Instead, we generate 104, 2×104, 5×104, and 

8×104 price samples respectively, to observe the effect of sample sizes on the performance of the 

Monte Carlo method.  

In the first place, the computation time for using the DNN to calculate an MMG power exchange, 

and for the Monte Carlo method to scan all the generated samples for price setting are shown in 

Table 4.4. The DNN calculation and Monte Carlo method are implemented on Matlab R2017b 

plus Python, and the hardware environment is a laptop with Intel®Core™ i7-7600U 2.8 GHz CPU, 

and 16.00 GB RAM. As seen from Table 4.4, using the well-trained parameters of the DNN to 

calculate the approximated MMG power exchange is fast enough to generate large numbers of 

samples for the Monte Carlo method. Also, the proposed Monte Carlo method is able to scan 

through large quantities of candidate retail price sequences with an acceptable time elapse.  

In addition, we also test the computing time for solving (4.1)-(4.9) using a conventional model-

based method. The software solver is GAMS/CPLEX, and the hardware environment is the same 

as previously mentioned. The computational efficiency is shown in the last row in Table 4.4. The 

acceleration ratio is the ratio between the computation time of model-based method and the DNN 

regression. The latter is thousands of times faster than the former, thus the high computational 

efficiency of the data-driven DNN is verified. 

Note that in Algorithm 1, each price is evaluated by a weighted reward. The value of the weight 

factor α will affect the eventual price selection. Figure 4.7 demonstrates the optimal price setting 

obtained by the Monte Carlo method with different weight factors. Figure 4.8 compares the total 

profit and PAR under different weight factors. More detailed explanations of Figure 4.7- Figure 

4.8 are shown as follows. 
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Table 4.4. Computation time for DNN and Monte Carlo method 

No. of  

samples 

Calculation time(s) 

DNN Monte Carlo 

10,000 2.67 31.35 

20,000 3.84 35.25 

50,000 7.90 41.82 

80,000 12.51 51.44 

No. of 

samples 

Calculation time(s) 

(model-based method) 

Acceleration 

ratio of DNN 

10,000 28,301 10,600 

 

  

  (a) 10,000 samples   (b) 20,000 samples     (c) 50,000 samples   (d) 80,000 samples 

Figure 4.7. Optimal price setting under different weight factors 

 

In Figure 4.7, it can be observed that with a larger weight factor, the DSO intends to increase the 

hourly retail price. For example, in all the subfigures at hour 20, as α increases from 0 to 1, the 

hourly retail price goes from green, which stands for a lower price value, to bright yellow, which 

stands for a higher price value. This is because an increasing weight factor implies that the DSO 

weighs the profit of selling power more than the PAR, as shown in (4.10). The DSO intends to 

raise the price to achieve a higher profit. 

Figure 4.8 demonstrates the DSO’s profit of selling power and the PAR under the specific weight 

factor. The profit and PAR shown in the figures are obtained by sending the selected price sequence 

to the individual microgrid model (4.1)-(4.9), and to calculate their aggregated power exchange. 

The DNN is not used here because we only need to test the selected price sequence, and the 

conventional model will provide an accurate result. As seen in the figures, a growing weight 
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parameter leads to higher profit and higher PAR. For example, when α is 0.1, the optimal profits 

of selling power obtained based on 10,000, 20,000, 50,000, and 80,000 samples are $609, $626, 

$663, and $651, respectively, and the optimal PARs are 1.0686,1.0744,1.0744,1.0744; when α is 

0.7, the optimal profits of selling power obtained based on 10,000, 20,000, 50,000, and 80,000 

samples are $681,$679,$682, and $682, respectively, and the optimal PARs are 

1.082,1.0777,1.0840, and 1.0840, respectively. This is because with an increasing weight factor, 

the DSO values the total profit more than PAR, and tends to increase the hourly retail price, which 

has already been discussed in Figure 4.7. An increasing price level drives microgrids to shift more 

of their load to hours with relatively lower prices, which exacerbates the peak to valley distance, 

and increases PAR. Therefore, the DSO needs to make a trade-off between gaining more profit and 

maintaining a smooth load profile. 

It can also be observed from Figure 4.7-Figure 4.8 that the results based on larger sizes of 

samples (i.e., 5×104 and 8×104) don’t show much difference. Hence, we can assume that such 

sample sizes are large enough for the Monte Carlo method to find the optimal solution. 

 

 

 

  

            (a) Total profit                            (b) Final PAR 

Figure 4.8. Total profit and final PAR under different weight factors 
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A final conclusion that can be drawn from Figure 4.8 concerns the optimal value of the weight 

factor. It can be observed from Figure 4.8(b) that as α increases from 0 to 0.7, the PAR increases 

considerably slow, while the profit of selling power keeps growing. When α is greater than 0.7, the 

PAR shows an obvious increase. Hence, the DSO is recommended to set the weight factor to 0.7 

to maximize the profit of selling power, while maintaining a considerably low PAR. 

 

 

 

 

(a) 10,000 samples                       (b) 20,000 samples 

 

(c) 50,000 samples                       (d) 80,000 samples 

Figure 4.9. Comparison of Monte Carlo method and intuitive method 
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As stated in section 4.4.3, the Monte Carlo method regroups the prices from different price 

sequence samples instead of intuitively choosing the price sequence with the largest weighted 

reward. To verify the merit of the Monte Carlo method, a comparison with the intuitive method is 

shown in Figure 4.9. As can be observed in the figure, with the change of weight factor, the Monte 

Carlo method is able to achieve a higher profit of selling power and lower PAR than the intuitive 

method. For example, in subfigure (d), when α is 0.6, the profits of selling power obtained from 

the Monte Carlo method and the intuitive method are $675 and $658, respectively; and the PARs 

are 1.0705 and 1.1003, respectively. This is because the Monte Carlo method has a strong 

exploration ability to discover new price sequences by regrouping the existing price samples, 

which can lead to better solutions; while the intuitive method only relies on the existing samples, 

which can be stuck to local optimum. 

4.6  Conclusions 

In this chapter, a novel data-driven method is proposed for the MMG energy management 

problem. First, a DNN is constructed to simulate MMG operation under dynamic retail price 

signals, with no requirement of local generation or consumption information, which protects 

customer privacy. Second, the DSO applies a model-free Monte Carlo RL method to optimize its 

pricing strategy, with the aim of maximizing the profit of selling power and minimizing PAR. 

Simulation results demonstrate that the DNN regression model has considerable accuracy and 

computational efficiency due to its automatic feature extraction ability and its high generalization. 

Compared with an intuitive selection method, the Monte Carlo method proves to have strong 

exploration ability in problems with no explicit mathematical formulations or with high 

computational complexity. The combination of the proposed data-driven DNN and the Monte 

Carlo method can be a promising tool for studying power system problems with hidden 

information or vast search spaces in future researches.  
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Chapter 5 Multi-zone Residential HVAC Control using Deep 

Reinforcement Learning 

Residential heating, ventilation, and air conditioning (HVAC) is considered to be an important 

demand response (DR) resource. Homeowners can greatly reduce their energy cost while 

maintaining their desired comfort level by optimizing their HVAC control strategy. However, the 

optimization of the residential HVAC control is not a trivial task due to the complex building 

thermal dynamics and uncertainty associated with both occupant-driven heat loads and weather 

forecasts. In this chapter, we apply a novel data-driven multi-zone residential HVAC control 

method, the deep deterministic policy gradient (DDPG), which belongs to the category of deep 

reinforcement learning (deep RL), to generate an optimal control strategy of the residential HVAC 

without referring to any complex modeling formulation or time-costly analytic solving process. 

The applied deep RL-based method can learn the optimal control strategy through the continuous 

interaction with the simulated building environment. Simulation results of DDPG on real-world 

use cases and comparisons with the deep Q network (DQN) as well as with the benchmark cases 

demonstrate the effectiveness and the generalization ability of DDPG in saving energy cost while 

maintaining the occupant comfort, which proves its feasibility in solving real-world high 

dimensional control problems with hidden information or vast solution spaces. 

Equation Chapter (Next) Section 1 

5.1  Introduction 

In the worldwide scope, buildings account for 40% of the total primary energy consumption and 

30% of all CO2 emissions, among which a large portion can be attributed to thermal comfort 

overhead [107]-[108]. Therefore, it is important to study the effective energy management of the 

building demand to achieve economic and environmental benefits.  

The HVAC system is currently the most widely used device for maintaining building thermal 
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comfort. It also serves as an important DR resource for peak load reduction and stabilizing system-

wide operation via proper demand-side energy management strategies [109]. In literature, there 

are many studies focusing on optimizing HVAC control strategies for improving energy efficiency.  

In [110], the energy management of HVAC systems is modelled under load forecast errors, where 

a primal-dual algorithm is applied to seek the optimal operating states of HVAC for the consumer, 

and the pricing strategy for the energy provider. In another work, a regression approach is applied 

for temperature forecast for day-ahead scheduling of responsive residential HVAC demand [111]. 

The authors in [112],[113] discuss the potential of using the HVAC system to provide primary 

frequency regulation to the bulk system via a hierarchical control strategy. A Lyapunov 

optimization technique is introduced in [114] for HVAC load control without the need of 

estimating system’s uncertain factors like price and temperature. A distributed transactive control 

market mechanism for commercial building HVAC systems is presented in [115] to demonstrate 

the effectiveness of HVAC at peak shaving and load shifting. 

All of the above methods can be categorized as model-based methods, where the detailed thermal 

dynamics of the HVAC with consideration of ambient environmental effects need to be modelled, 

along with the requirement of analytical solution toolboxes for practical runtime control. The 

model-based methods may suffer from measurement errors (e.g., building model inaccuracy), as 

well as computational inefficiency, since the building and equipment models must be tailored to a 

specific building to achieve accurate results. This represents a serious challenge for widespread 

deployment of model-based methods. 

The smart meter and related technology innovations over the past decade have built a large data 

repository that enables the application of the data-driven deep learning approaches [116]. The 

automatic feature extraction ability and generalization ability of deep learning makes it possible to 

overcome the modeling and computing limitations of the conventional model-based method. In 

the most recent years, the deep RL, which is a combination of DNN and RL, has attracted broad 

attention in solving high-dimensional control and optimization problems with tremendous 
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complexity. Both academia and industry have witnessed the near-human or superhuman 

performance achieved by the deep RL agent in problems like game of Go [1] and Atari [117]. In 

the field of power and energy, a double Q learning method [118] and a continuous DDPG method 

[119] have been applied for optimizing the energy management strategies of hybrid electrical 

vehicles (HEVs), respectively. In [120], the asynchronous advantage actor-critic (A3C) is 

employed to find the economic operation schedules of multiple distributed energy resources (DER) 

within an energy Internet. In [121], a deep Q learning method is designed for supporting the 

maintenance decision-making of the bulk power system. Given the potential operation constraints 

encountered during the implementation of deep RL-based control actions, a safe deep RL method 

is explored in [122] to obtain the optimal control scheme of active distribution network (ADN) 

with the consideration of voltage level limits, which introduces a safe layer on top of the 

conventional actor network to avoid any possible violations of the voltage constraints. 

With specific respect to the HVAC system control problem, there have also been some 

pioneering works in the literature focusing on utilizing the powerful deep RL approach to achieve 

higher energy efficiency and economic efficiency. In [123], a DQN is constructed for coordinated 

control of joint datacenter and HVAC load, in which the neural network is utilized to estimate the 

Q value of state-action pair. In [39], a CNN is deployed as the approximator of the state-action 

value function to better capture the spatial and temporal correlations within the input state data 

with its convolutional operation. A deep policy gradient (DPG) method is investigated in [40] for 

controlling multiple responsive demand including ACs, electrical vehicles and dish washers. In 

[124], an actor-critic method is applied for optimizing the thermal comfort and energy 

consumption of HVAC.  

All of the above existing research works have demonstrated the effectiveness of the applied deep 

RL methods in optimizing the HVAC thermal control strategy comparing with the designed 

benchmarks. However, one common deficiency of the above methods is that they cannot handle 

continuous control actions, like HVAC setpoint or air flow rate. In such cases, the discretization is 
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mostly applied to partition the continuous action space. Discretization can achieve satisfying 

performance when the granularity is low or without combination of action spaces. However, it 

encounters the issue of exponential explosion when the action space is high-dimensional, for 

example, multiple room zones in the case of HVAC control. As a result, more simulations are 

needed for training the deep RL methods and the algorithm performance can decrease.  

In [125], the authors adopt the DDPG method to realize the continuous thermal control of HVAC 

without discretization. However, this research work still focuses on single-zone HVAC control, 

which has been previously addressed by the above-mentioned discretion methods. In addition, the 

method applied is only compared with other RL methods, and no benchmark cases are designed to 

verify the optimality and the generalization of the obtained control strategy.  

Motivated by such concerns, in this chapter, we also apply the DDPG method for optimizing the 

continuous thermal control strategy of residential HVAC. The main contributions of this work, if 

compared with the existing researches, are summarized as follows: 

• We apply the DDPG RL method to optimize the continuous control of multi-zone residential 

HVAC. The multi-zone residential HVAC control involves more complex thermal dynamics 

and environmental uncertainties, and a high-dimensional action space, which requires more 

delicate problem formulation including the definitions of state, action, and reward during the 

learning process; 

• We conduct a comprehensive comparison between the applied DDPG method and the widely-

used DQN method to demonstrate the effectiveness of the former in dealing with the 

continuous action space, which is a more common case in many real-world situations; we also 

design benchmark cases without RL to prove that the applied DDPG can achieve higher 

economic benefits while maintaining user comfort; 

• We verify that the well-trained deep RL method has obtained high generalization and 

robustness, and is able to adapt to new environment with different price signals and physical 

conditions to provide the optimal HVAC control strategy. 
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The rest of the chapter is organized as follows. The HVAC control problem formulation is 

introduced in section 5.2; in section 5.3, the two representative deep RL methods, the DQN and 

DPG methods are first briefly reviewed, followed by a detailed explanation of the DDPG method, 

which is an extension of the former two; the simulation results of the DDPG method are presented 

in section 5.4, plus comparison with DQN and benchmark cases; finally, section 5.5 concludes the 

chapter. 

5.2  Multi-zone Residential HVAC System Control Problem Formulation  

5.2.1  A brief introduction of the multi-zone HVAC system control problem 

In this study, we consider a residential building with multiple zones and the indoor temperature 

of each zone can be controlled by adjusting the setpoint of the HVAC system. The HVAC system 

can work in various modes including “Cooling”, “Heating” and “Auto”. The “Auto” model means 

that the HVAC system can automatically switch between cooling and heating according to the 

indoor temperature and the assigned setpoint. Whenever there is a difference between the indoor 

temperature and the setpoint, the HVAC system will be automatically turned on to push the indoor 

temperature near to the setpoint to maintain the user comfort. Without loss of generality, in this 

work, we will focus on the case when all zones need heating. The goal of controlling the HVAC 

system is to minimize the energy cost while keeping the indoor temperature within the user comfort 

band. 

5.2.2  Mapping HVAC control problem to Markov Decision Process 

In this subsection, we will formulate the above multi-zone residential HVAC control problem as 

an MDP, which will later be solved by a model-free deep RL-based algorithm in section 5.3. 

According to the simplified thermal dynamics model of HVAC in [126], the indoor temperature at 

the current time interval is only related to the previous state parameters such as the indoor 

temperature at the previous time interval, and is not affected by indoor temperature at any other 

time intervals. Therefore, the HVAC control problem can be regarded as a finite Markov process 

and be solved using the RL method. 
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An MDP is composed of four essential elements: state (s), action (a), state transition probability 

(p), and reward(r). In the context of multi-zone residential HVAC control problem, the four 

elements are defined as follows: 

 State: 1) current outdoor temperature Tout(t); 2) current indoor temperature Tin,z(t) for the all 

the zones z; 3) the lower bound of the user comfort level Tlower(t); 4) retail price λretail(t), 

where t is the current time step. 

Note that the state parameters include the lower bound of the user comfort level, which 

changes along the time. This is because we assume that the HVAC users have a time-

variable comfort preference. This is reasonable since during the daily work hours when no 

one is at home, the comfort range of the indoor temperature can be lowered to save the 

energy cost. The comfort range can be brought back during the off-work hours when the 

house is occupied. 

The state parameters also include the current retail price to realize the pre-heating effect of 

HVAC. Pre-heating means to set the setpoint of HVAC at a relatively high value when the 

retail price is low to heat up the indoor temperature in advance, to avoid excessive energy 

consumption when the outdoor cold occurs at a high retail price. 

 Action: the setpoint Setptz(t) for the zone z; 

The setpoint of HVAC in each zone is a continuous variable. Given the setpoint, the on/off 

status of the HVAC unit with a thermostat at each zone obeys the following control logic: 

 
1, T ( )

0, T ( )

,

in

in

if t setpoint deadband

HVAC status if t setpoint

remain at the current status elsewise

 


 


 (5.1) 

The HVAC model considered in this paper is only utilized for heating. In Eq.(5.1), the 

deadband is a small temperature span, in which the thermostat will not change its on/off 

status to prevent short cycles. It can be observed in Eq. (5.1) that if the indoor temperature 

is above the setpoint, the HVAC will remain off; otherwise, the HVAC will be automatically 

started to heat up the room to maintain the user comfort.  
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 Reward: the cumulative energy consumption cost for the control interval, which is defined 

as follows:  

        
' '

( ) ( ') ( ') ( ')
t t

retail penalty

c HVAC p

t t t t t t

r t t E t c t  
   

    (5.2) 

In Eq. (5.2), the first term is the energy cost of the HVAC system, where λretail(t’) is the 

retail price, EHAVC(t’) is the power consumption, and Δt is the control interval; the second 

term is the penalty for user comfort violation, which is calculated as follows: 
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  (5.3) 

In Eq.(5.3), Tth is a threshold with a small value. The temperature violation is not counted if 

the magnitude of the violation is smaller than Tth. Given the existence of the deadband within 

the HVAC system, it is not possible to always keep the indoor temperature at the exact 

setpoint. The threshold allows for some deviations of the indoor temperature. 

Because the reward encloses both the energy cost and the penalty, which leads to a multi-

objective function, weight factors are added to the two objectives, which are represented by 

ωc and ωp in Eq. (5.2). The final objective of HVAC thermal control is to minimize the total 

energy consumption cost plus the penalty over the entire control cycle, which can be written 

as the cumulative sum of r(t): ∑
NT 

t=1 r(t). Therefore, a far-sighted control strategy is needed to 

prevent against uncertain future circumstances, which leads to a multi-stage decision making 

problem.  

Notice that the state transition probability p is not defined for the above MDP. The state 

transition probability refers to the probability of transferring to a certain next state after taking 

action Setptz(t). With a known state transition probability, the MDP is fully observed and the 

cumulative reward can be analytically solved via model-based dynamic programming or other 

iterative methods. However, in the HVAC control problem, to obtain an accurate probability model 

of the state transitions is not a trivial task, because it is difficult to formulate the exact thermal-

dynamic model of HVAC buildings. The heat transfer within the building is related to multiple 
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resistance (R) and capacitor (C) from different building components like the exterior walls, the 

interior walls and furnishings, as well as the attic, the values of which requires estimation and 

validation through experimenting.  All of these factors can have a significant impact on the 

temperature response of the indoor air [127]. Furthermore, the indoor temperature is also affected 

by uncertain external factors such as outdoor temperature, solar irradiance, and wind, which calls 

for additional modelling and computational efforts. As a consequence, a model-based method is 

not a robust or adaptive solution for HVAC system optimization. 

Driven by the above considerations, in this paper the model-free deep RL method is leveraged 

to overcome the unobservability in the multi-zone residential HVAC control problem. The model-

free RL method does not require any knowledge of the environment or the state transitions in 

advance. It gradually improves its decision-making strategy by continuously interacting with the 

environment and receiving feedback. In this way, the forecast errors of uncertain factors, as well 

as the measurement errors of building thermal mass, can be avoided. More details of the deep RL 

method will be revealed in the next section.  

5.3  DDPG-based Control Strategy for Multi-zone HVAC System 

5.3.1  A brief review of deep reinforcement learning methods 

The RL method is a type of machine learning method that optimizes the decision-making 

strategy in MDP. In the RL algorithm, the reward defined in MDP is served as the guideline for 

algorithm evolution. A large, positive reward will encourage the algorithm to search deep in the 

current direction, and vice versa. The RL method is especially suitable for handling decision-

making problems with temporal constraints or with hidden state space. 

There are two main types of RL method: the value-based RL method and the policy-based RL 

method. The difference between the two methods lies in their action evaluation strategies. The 

value-based method estimates the Q value of a state-action pair (s,a), which is the cumulative 

discounted reward starting from taking action a at state s, and selects the action with the highest Q 
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value; the policy-based RL method generates the probabilities of all the feasible actions at the 

current state, and selects the action with the highest probability.  

The combination of RL with DNN is called the deep RL method. In deep RL, the DNN is utilized 

as a regression tool to estimate either the Q value, as in the value-based RL method; or the action 

probability, as in the policy-based RL method. A general DNN structure for regression in RL is 

shown in Figure 5.1. 

The main advantage of the deep RL method over the conventional RL method is that the 

application of the DNN makes it possible to achieve high level control for extremely complex 

problems, such as with continuous state space or action space, without the tabular constraints. 

Since in the deep RL, a more generalized regression model is established instead of maintaining a 

concrete Q table to store all the possible action values, as in the case of traditional Q learning. This 

generalized regression model offers more robust and flexible strategies against unseen states in the 

case of continuous control. In the following section, we will first introduce the DQN, as a 

representative of the valued-based deep RL methods; and the DPG method, as a representative of 

the policy-based deep RL methods. Then, a continuous control method, DDPG, which is a 

combination of the above two methods, will be explained in detail for solving the optimal multi-

zone residential HVAC control problem. 
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Figure 5.1. DNN structure for function approximation in RL 
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5.3.2  Understanding the basic principles behind typical deep RL methods 

1) Deep Q Network (DQN) 

The DQN is a combination of Q-learning and DNN. In the DQN, the input is the current state, 

and the output is the Q value for each potential action at the current state. The advantage of DQN 

over the tabular Q-learning method is that once the state and action are slightly changed, the DQN 

can still estimate the associated Q value without re-training, which is highly time-efficient. 

Unlike supervised learning algorithm, in deep RL there are no labeled samples for the DNN to 

learn. To handle this issue, two DNN are designed for the DQN algorithm: one is called the target 

network, and the other is called the behavior network. The function of the target network is to 

serve as a reference, similar to the ground truth in supervised learning, to guide the evolution of 

the algorithm. 

Both networks are initialized with the same parameters and the same structure. As the training 

proceeds, the behavior network is updated at a faster speed than the target network. The loss 

function in DQN is defined as the MSE between the target Q value and the behavior Q value. Once 

the loss function is calculated, the parameters of the behavior network will be updated based on its 

gradient to the loss function. The algorithm will continue updating until the output from the target 

network and the behavior network are close to each other, which indicates the convergence of the 

learning. More details of DQN method can be found in [128]. 

2) Deep Policy Gradient (DPG) 

The DPG method utilizes a strategy different from the DQN for control optimization. The output 

from the DNN is the probabilities of each potential action at the current state, or the policy. The 

policy refers to the probability of selecting action a(t) at state s(t), and can be written as π(a|s,) = 

Pr{a(t)= a|s(t)= s, (t) = }.  stands for the parameters of the probability function. The loss 

function of the DPG method is also different from that of DQN, which intends to maximize the 

expected total reward under the policy π(a|s,), and can be expressed as follows: 
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In Eq. (5.4), τ is called an episode generated under the policy π(a|s,): τ={s(1), a(1), s(2), 

a(2),…, s(NT), a(NT)}. R(τ) = ∑NT 

t=1 r(t), which is the total reward of the episode. The goal of the 

DPG method is to get the parameters of the policy π that leads to the maximum value of the 

expected total reward. More details of DPG algorithm can be found in [40]. 

5.3.3  Realizing the continuous control of HVAC system with DDPG 

1) An introduction to DDPG 

The DDPG method is specially designed for solving problems with continuous variables. Unlike 

DQN or DPG, where the Q values or action probabilities of all feasible actions are generated by 

the DNN for the agent to select, the term “deterministic” in DDPG refers to the fact that there is 

only one output from the DNN, which is determined. In this way, the action space can be 

continuous since there is only one output unit.  

Another advantage of DDPG over DQN and DPG is that it is a combination of the two methods. 

In the DDPG, there are two types of neural networks applied: the actor network, which assembles 

DPG, and the critic network, which assembles DQN. Their functions are explained as follows. 

The input to the actor network is the current state, and the output is a deterministic action; the 

input to the critic network is the current state plus the action generated by the actor network, and 

the output is the Q value of the state-action pair. This Q value will be further used to update the 

parameters of the actor network. The loss function of the actor network is defined to maximize the 

Q value with the current policy, which follows the logic of the DPG method; and the loss function 

of the critic network is the MSE of the Q value, which follows the logic of the DQN method. In 

summary, the function of the actor network is to select actions, and the function of the critic 

network is to evaluate the selected action.  

In addition, similar to the DQN algorithm, for both actor network and critic network in DDPG, 

two neural networks are designed, a behavior network and a target network. Hence there are four 
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neural networks in total. The reason for applying a target network is to stabilize the algorithm 

convergence. More details of the DDPG algorithm are presented in the next subsection. 

2) DDPG algorithm for developing optimal HVAC control strategy 

The details of the proposed DDPG algorithm are shown in Algorithm 1, which is customized 

from a general DDPG algorithm in [129]. The DDPG algorithm follows a process similar to that 

of the DQN, except that an actor network is built to select a deterministic action. The proposed 

DDPG algorithm is further explained as follows: 

To begin with, two neural networks, i.e., the actor network and the critic network are randomly 

initialized, and their associated target networks are initialized with the same set of parameters, as 

shown in line 1-2. Starting from line 3, for each iteration, the system state is first initialized, then 

an HVAC control action, i.e. the setpoint, is chosen based on the current actor network (s;), as 

shown by line 7. A noise is added to the selected action to boost the exploration of the algorithm.  

Next, in lines 8-9, the selected action is executed in the environment for the entire control 

interval Δt, and the received reward and the next state are observed. The transition (s(t), Setptz(t), 

r(t), s(t + Δt))  is stored in a replay buffer to be further used for algorithm training. When a 

sufficient number of transitions are collected, a mini-batch of transitions is randomly selected to 

update the parameters of the actor network and the behavior network, as shown by line 11. The 

random selection can cut off the temporal correlations among the transitions, which will maintain 

the independent, identically distributed (IID) assumption in the learning model. Also, the 

transitions can be sampled multiple times, which increases their utilization efficiency. 

The neural network parameters Q and  are updated according to the loss functions. The loss 

function of the critic network is defined as the MSE between the target Q value and the current Q 

value from the behavior critic network, as shown by line 12. The temporal-difference (TD) error 

is used to update Q value, where the target Q value is the sum of the current reward plus a 

discounted Q value from the target critic network Q’ for the next control interval t + Δt. γ is called 
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the discount factor. Once the loss function is calculated, the parameters of the behavior critic 

network Q are updated based on the gradient, as shown by line 13. ηQ is called the learning rate.  

The loss function of the actor network is defined to maximize the Q value: 
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In Eq.(5.5), a(i)(t) is generated from the actor network (s;). Hence, the chain rule is applied 

in line 14 to calculate the gradient of the Q value to the . In line 16, the parameters of the target 

critic network and the target actor network, Q’ and ’, are updated at a slower rate than the 

behavior network, where τ is a number between 0 and 1 and close to 1. The function of this slower 

update is to increase the stability of the learning. The complete deep RL-based control framework 

of multi-zone HVAC system is shown in Figure 5.2.  
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Algorithm 1: DDPG method for multi-zone HVAC control 

1: Initialize the parameters of the critic network Q(s,a;Q) and the actor network (s;) 

2: Initialize the target networks Q(s,a;Q’) and (s;’)  with Q and  

3: for episode = 1 to arbitrary number do 

4:  Initialize system state s(Tout(0), Tin,z(0), Tlower(0), λretail(0)) 

5:  for t = 1 to NT do 

6:    if t == kΔt, where k is an integer, do 

7:     Select the multi-zone HVAC control action Setptz(t) with (s;) plus noise 

8:     Execute Setptz(t), receives the immediate reward r(t) and the next state s(t + Δt) 

9:     Store the transition (s(t), Setptz(t), r(t), s(t + Δt)) in the replay buffer 

10:   end if 

11:   Collect a mini-batch of transitions (s(i)(t), Setpt
(i) 

z (t), r(i)(t), s(i)(t + Δt)) with the size M from the 

replay buffer 

12:   Calculate the MSE of the Q value: 

               qtarget(i) (t) = r(i)(t)+ γQ(s(i)(t + Δt), (s(i)(t + Δt);’);Q’) 

               L(Q) =1/M∑
M  

i=1 (q
target(i)(t) - Q(s(i)(t),(s(i)(t););Q) 

13:   Update the parameters of the critic network:  

              Q = Q - ηQ▽
Q L(Q) 

14:   Calculate the gradient of the Q value to the actor network parameter  : 

            ▽
J≈1/M∑

M  

i=1▽Q(s(i)(t),(s(i)(t););Q)▽
(s(i)(t);) 

15:   Update the parameters of the actor network: 

                =  - η▽J 

16:   Update the parameters of the target network with a smaller step: 

               Q’ = (1 – τ)Q + τ Q’ 

             ’ = (1 – τ)  + τ ’ 

17:  end for 

18: end for 
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Figure 5.2. Multi-zone HVAC control framework with DDPG 

 

5.4  Case Study 

In this section, the effectiveness of the applied DDPG-based continuous control method for 

multi-zone residential HVAC is demonstrated through simulations with real-world data, as well as 

by comparison with the DQN-based discrete control method and the benchmark cases. 

5.4.1  Simulation environment 

A two-zone residential HVAC model [130] is implemented for training and testing the applied 

deep RL method, with real-world weather data during 2019-2020 obtained from [131]. For price 

signals, a simulated retail price sequence is generated, which include a high price value and a low 

price value. The price is regularly switched between the two values every three hours. The reason 

for applying such a frequently changing price sequence is to find if the deep RL agent can identify 

the effect of price signals on the reward function and to properly adjust its control strategies. It is 

further assumed that the lower bound of the user comfort level changes four times during the daily 

cycle, as shown in Table 5.1: 
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Table 5.1. Daily user comfort level 

Time period 0:00 – 6 :00 6:00 – 12 :00 12:00 – 18 :00 18:00 – 24 :00 

Tlower(oC) 18 17 18 19 

The control interval of the RL agent is set to 60 minutes, i.e., Δt = 60. Since we only focus on 

the heating effect of the HVAC system, the November weather data is used as the training data. 

During the training, one episode is defined as 24 hours. In this way, 24 (s(i)(t), Setpt
(i) 

z (t), r(i)(t), s(i)(t 

+ Δt)) transitions will be generated from each episode. In total 300 episodes are simulated for the 

RL agent to learn. After the training, the RL agent will be applied to new test days with different 

weather conditions to examine its generalization and adaptability. 

5.4.2  Design of the DNN structure in Deep RL 

The detailed design of the actor and critic network in DDPG is shown in Table 5.2. The design 

of DQN is also listed for comparison. The designs of both DDPG and DQN are obtained via a 

trial-and-error process, and the current configurations provide the best possible results among all 

the trials.  

Table 5.2. DNN structure applied in DDPG and DQN algorithm 

Algorithm 
DDPG 

DQN 
critic network actor network 

Size of input [1,7] [1,5] [1,5] 

No. of hidden layers 2 2 2 

Size of each hidden layer [7,20], [20,10] [5,20],[20,10] [5,20],[20,10] 

Size of output [1] [2] [25] 

Activation function for the 

hidden layer 
ReLU ReLU ReLU 

Optimizer Adam Adam Adam 

Learning rate(η) 0.001 0.01 0.01 

Discount factor(γ) 0.99 - 0.99 

Batch size 48 

Weights of the reward  ωc : 10,  ωp : 1 
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For the DDPG method, the input to the critic network is a vector containing both state variables 

and action variables, and the output is the estimated Q value, which is a scalar; the input to the 

actor network is a vector containing only state variables, and the output is a vector containing the 

setpoint for each zone. Although the setpoint is a continuous variable, in reality there is always a 

range of the setpoint for maintaining user comfort. Therefore, the output layer from the actor 

network utilizes tanh as the activation function, which confines the output with a range of [-1,1]. 

The actual setpoint is calculated as Setptz = Tlower + ΔT·(yout + 1), where yout is the output from the 

actor network, and ΔT is the upper range of the setpoint. In the simulation, ΔT is set to 2oC. 

Therefore, the setpoint selected by the DDPG lies within the range of [Tlower, Tlower + 2].  

For the DQN method, the input is also the state variables. Since DQN requires a discrete action 

space, we discretize the range of setpoint with a step size of 0.5 oC. As a result, there are 5 actions 

for each zone and 25 combinations of actions for the 2-zone HVAC. The output from DQN is a 

vector containing 25 Q values, with each corresponding to one combination of actions. 

5.4.3  Performance of the continuous HVAC control method 

1) Convergence of the DDPG 

In Figure 5.3, the average returns gained after each episode during the training process in the 

DDPG and DQN are presented. Notice that the average return in the first few episodes appears to 

be higher than that of the last few episodes. This is because for each episode, one training day is 

randomly chosen. Some training days may have moderate outdoor temperature, which can lead to 

lower energy cost and lower penalty, and vice versa. However, as the training proceeds, the number 

of episodes grows, and the average return is neutralized. Both curves gradually become steady as 

the training evolves. However, the average return gained by DDPG method is higher than that of 

the DQN method. This is because the size of the output from DQN is larger than that of DDPG, 

and the combination of actions have not been fully explored after 300 episodes, leading to a lower 

average return.  
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Figure 5.3. Convergence of different deep RL methods 

 

2) Computational efficiency 

After the training process, the DDPG RL agent is applied to 10 test days in January 2020 from 

the real-world data in [132] to generate the optimal HVAC control strategy. The time cost is around 

19 seconds for testing, which is highly time-efficient. The code is written in Python 3.6 with the 

open-source deep learning platform TensorFlow [133] . The hardware environment is a laptop with 

Intel®CoreTM i7-7600U 2.8 GHz CPU, and 16.00 GM RAM. 

3) Comparison of DDPG with DQN and the benchmark cases 

In this study, the well-trained deep RL agents from both DDPG and DQN are run on new test 

days to verify their learning performance. We also design two benchmark cases without the RL 

agent as comparisons. The benchmark cases are described as follows: a) Rule-based case: the 

setpoint is set at the lowest value at the peak price hours, and the highest value at the off-peak price 

hours, to realize the pre-heating effect to save energy cost; b) Fixed setpoint case: the setpoint is 

always at the highest value of the setpoint range to avoid any temperature violation. 

The final optimized results of the RL methods and the benchmark cases are shown in Table 5.3: 
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Table 5.3. Test results of different HVAC control methods 

Control method DDPG DQN Rule-based Fixed setpoint 

Total cost ($) 55.21 65.03 39.08 71.48 

Temperature violation (minutes) 48 230 2617 0 

Average temperature violation (oC) 0.13 0.93 1.85 0 

In Table 5.3, the well-trained deep RL agents are applied to generate the HVAC control strategies 

for the first 10 days in January 2020. The weather conditions of the test days are different from 

that of the training days, since the outdoor temperature is much lower in January than in November. 

The total cost in the table refers to the total energy cost over the 10 days, and the temperature 

violation in the table refers to the total number of minutes that the indoor temperature falls below 

Tlower - Tth, as shown by Eq. (3). Tth is set to 0.3 oC. The average temperature violation indicates 

on average by how many degrees the indoor temperature is lower than the setpoint. As shown in 

the table, the control strategy derived from DDPG method has both lower energy cost and fewer 

temperature violations than that of the DQN. With regard to the benchmark cases, in the rule-based 

case, because the pre-heating logic is applied based on the price structure, it obtained the lowest 

cost among all four cases. However, by always setting the setpoint to the lowest value at peak price 

hours, this control strategy results in severe temperature violation. In the fixed setpoint case, since 

the setpoint is always set at the highest value, there is no temperature violation. However, the 

energy cost is also the highest among the four cases. The control strategy and the indoor 

temperature in the four cases are further illustrated in Figure 5.4.-Figure 5.6.  

In all the figures, the yellow rectangular area represents the feasible region of the setpoint [Tlower, 

Tlower + 2 oC]. As can be observed, the setpoint range changes at a daily cycle. In addition, the 

indoor temperature in zone 1 is lower than that of zone 2, this is because in the building model, 

zone 1 is on the 1st floor and zone 2 is on the 2nd floor, and the warmer air goes to upper floors.  

In Figure 5.4., the DDPG RL agent develops a setpoint control strategy that when the outdoor 

temperature is relatively high, i.e. in the first 4,000 minutes, the setpoint will be set at the lowest 
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value at the peak price hour, and at the highest value at the off-peak hour, to realize the pre-heating 

effect and to reduce energy cost, which is similar to the control logic of the rule-based case. When 

the outdoor temperature is low, i.e., in the last 2,000 minutes, the setpoint is always set at the 

highest value to avoid the indoor temperature violation. On the contrary, in the rule-based case, 

the control strategy still follows the price structure even when the outdoor temperature is extremely 

low, which results in severe indoor temperature violation, as shown in Figure 5.6. Such 

comparisons indicate that after the training, the DDPG RL agent has acquired the knowledge that 

the price signal and the outdoor temperature has a significant impact on the reward, and it learns 

to intelligently set the setpoint based on this state information to reach a higher reward value.  

The control strategy of DQN RL agent is shown in Figure 5.5. When the outdoor temperature is 

relatively high, i.e. in the first 4,000 minutes, the setpoint is set at a relatively high value, and it 

does not follow the change of retail price. When the outdoor temperature is extremely low, i.e., 

around 12,000 minutes, the setpoint is set at the lower bound, which results in temperature 

violation. The DQN RL agent has not successfully capture the impacts of the state variables on the 

reward function. This can be attributed to the large number of action combinations encountered by 

the Q network. In such a case, the DQN RL agent has not fully explored all of the possible action 

combinations to maximize the reward, thus obtains a control strategy with higher energy cost and 

more temperature violations. 

Finally, in Figure 5.7, the fixed setpoint case, since the setpoint is always set at the highest value, 

the indoor temperature for both zones also remain at the highest level among the four test cases. 

However, this fixed setpoint case results in the highest energy cost.  
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Figure 5.4. Setpoint control strategy based on DDPG for 10 test days (top: zone 1; bottom: 

zone2) 
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Figure 5.5. Setpoint control strategy based on DQN for 10 test days (top: zone 1; bottom: zone2) 
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Figure 5.6. Setpoint control strategy from the rule-based case for 10 test days (top: zone 1; 

bottom: zone2) 
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Figure 5.7. Setpoint control strategy from the fixed setpoint case for 10 test days (top: zone 1; 

bottom: zone2) 

 

4) Generalization of DDPG Algorithm 

a) Extending DDPG RL agent to different residential buildings 

The well-trained DDPG RL agent is further tested in new residential building models with 

HVAC system to fully validate its generalization and robustness. Ten building models are 

generated with different thermal mass parameters, the variation of which follows a normal 

distribution. The same 10 test days in January 2020 are applied in this case. The energy cost and 

the temperature violation for the 10 building models under the DDPG control strategy and under 



105 

 

the two benchmark cases are compared in Table 5.4 and Figure 5.8. . As shown in the table, similar 

to the results in Table 5.3, the rule-based control strategy provides the lowest energy cost, while 

the fixed setpoint control strategy provides the lowest violation.  The well-trained DDPG RL 

agent can obtain an HVAC control strategy that properly weigh the two objectives, resulting in a 

relatively lower energy cost and fewer temperature violations for different test building models. 

Therefore, it can be safely concluded that the DDPG RL agent can flexibly adapt to unseen 

physical environments and provides an economic HVAC control strategy after its offline training 

within the fixed environment.  

 

 

 

 

Figure 5.8. Illustration of the comparison results 
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Table 5.4. Comparison of optimization results for different building models 

Building  

index 

DDPG Rule-based Fixed setpoint 

Cost ($) 

Temperature  

violation 

(minutes) 

Cost ($) 

Temperature  

violation 

(minutes) 

Cost ($) 

Temperature  

violation 

(minutes) 

1 42.22 31 27.78 1296 57.98 0 

2 44.13 41 29.22 1586 60.13 0 

3 52.14 45 36.51 2347 68.52 0 

4 59.66 101 43.94 3364 75.61 0 

5 45.84 41 31.30 1879 62.91 0 

6 42.49 39 27.68 1398 59.06 0 

7 37.47 24 23.51 1012 53.42 0 

8 61.21 81 45.42 3520 76.44 0 

9 35.34 25 21.98 818 49.90 0 

10 43.19 59 28.41 1323 58.46 0 

b) DDPG performance under different retail price signals 

In the above simulations, a simulated retail price sequence is generated for training and testing 

the deep RL agent, which is simply composed of only two price signals. To demonstrate that the 

well-trained DDPG RL agent has developed high generalization to an unseen environment without 

additional training, the DDPG RL agent is further tested with the PJM wholesale real-time hourly 

locational marginal price (LMP) data [133]. The retail price is set at 3 times of the wholesale 

market price. The PJM price changes hourly and fluctuates within a large range. The final 

optimized results of the two deep RL methods and the benchmark case are shown in Table 5.5: 

Table 5.5. Test results of different control methods (under PJM price) 

Control method DDPG DQN Fixed setpoint 

Total cost ($) 32.90 31.80 32.71 

Temperature violation (minutes) 0 222 31 

Average temperature violation (oC) 0 1.00 0.27 
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In Table 5.5, the fixed setpoint case applies a control strategy where the setpoint is always set 

at the middle of the setpoint range. This is because the PJM price sequence contains more than just 

two values, and it cannot be simply divided into two groups as high price and low price. As a result, 

the setpoint is set at the middle point to avoid possible temperature violations while minimizing 

the energy cost. 

The control strategy and the associated indoor temperature in the three cases are further 

illustrated by Figure 5.9-Figure 5.11. As can be observed in the figure, the PJM price demonstrates 

a very different pattern from the simulated price sequence. For most of the time the price remains 

at a relatively low level, with some occasional spikes and fluctuations. However, the well-trained 

DDPG RL agent still attempts to follow the price tendency, and intelligently sets the setpoint to 

realize the pre-heating effect. For example, a price spike appears around 12,500 minutes, the 

DDPG RL agent catches this sudden change, and lowers the setpoint. Around 13,500 minutes the 

retail price sequence demonstrates some fluctuations, and the DDPG RL agent also adjusts the 

setpoint accordingly. It should be pointed out that under the price signals that are more time-variant 

like the PJM market price, it is difficult to develop a simple rule-based control strategy, because 

the price range is uncertain. However, the well-trained DDPG RL agent can still work intelligently 

under such uncertain environment, and obtain satisfying economic benefits. Therefore, the 

adaptability of the DDPG algorithm is proved, which makes it feasible for real-world online 

applications. 

In Figure 5.10, the HVAC control strategy developed by the DQN RL agent also intends to 

follow the retail price tendency. However, at the price pike period (12,500 minutes) and the price 

variation period (13,500 minutes), the DQN RL agent chooses the lowest setpoint values, which 

results in temperature violation in zone 1, as shown in the bottom figure.  

Finally, in Figure 5.11, the fixed setpoint case also leads to some temperature violations in zone 

1 when the outdoor temperature is extremely low (after 10,000 minutes). 
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Figure 5.9. Setpoint control strategy based on DDPG under PJM price for 10 test days (top: zone 

1; bottom: zone2) 
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Figure 5.10. Setpoint control strategy based on DQN under PJM price for 10 test days (top: zone 

1; bottom: zoomed part of zone 1) 
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Figure 5.11. Setpoint control strategy in the fixed setpoint case under PJM price for 10 test days 

(top: zone 1; bottom: zoomed part of zone 1) 

 

5.5  Conclusions 

In this paper, a deep RL method, the DDPG is applied for controlling the multi-zone residential 

HVAC system to minimize the energy consumption cost while maintaining the user comfort. The 

DDPG can realize a continuous control of the HVAC setpoint due to its application of the DNNs. 

Simulation results demonstrate that the well-trained DDPG RL agent is able to adapt to the 

unknown environment and intelligently decides its setpoint control strategy to maximize the 

economic benefit. The training efficiency and high generalization ability of the DDPG algorithm 
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makes it a potential tool for future online applications in solving MDP problems with hidden 

information or with continuous search space. 

For future works, one interesting direction is to let the deep RL agent automatically switch 

between different operation modes, i.e. cooling and heating, to adapt to different seasoning 

scenarios. In this way, once the deep RL is well-trained, it can be directly applied to a longer 

control period, i.e. one year, to provide economic control strategies for HVAC users. Another 

exploratory direction is to let the deep RL agent learn a more variant setpoint schedule customized 

by users, given that different HVAC users can have different comfort level. By investigating these 

two directions, the deep RL agent will become more generalized and robust against uncertainties 

in real-world operation scenarios. 
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Chapter 6 Solving Markov Game in Day-ahead Electricity 

Market with Multi-Agent Deep RL 

In this chapter, the day-ahead electricity market bidding problem with multiple strategic GENCO 

bidders is studied. The problem is formulated as a Markov game model, where GENCO bidders 

interacts with each other to develop their optimal day-ahead bidding strategies. Given the 

uncertainties and unobservable information embedded within the problem, a model-free, data-

driven approach for solving the above Markov game is presented in this paper based on the latest 

DL technique called multi-agent deep deterministic policy gradient (MADDPG) algorithm. The 

MADDPG algorithm is a type of deep RL method designed for continuous control within a multi-

agent competitive environment, where DNNs are combined with reinforcement learning to capture 

the intricate environmental variations and to optimize decisions. The applied MADDPG method 

is implemented on the IEEE 30-bus system, with three RL agents to prove its feasibility and the 

computational efficiency in solving the multi-agent decision-making problem. The obtained 

bidding strategies for each GENCO bidder are further examined from the viewpoint of executing 

market power to provide insights for market participants. Equation Chapter (Next) Section 1 

6.1  Introduction 

In power systems, the strategic market bidding problem of generation companies (GENCOs) is 

a complex real-world multi-stage decision optimization process. The topic remains interesting ever 

since the deregulation of electricity market. The problem is investigable because there are many 

unknowns in the electricity market, e.g. the offers of other bidders. Also, the problem of executing 

market power is intriguing, where market bidders with large capacity can manipulate the market 

clearing results for his own benefits.  

In the literature, many research efforts are dedicated to cracking the problem of strategic market 

bidding. The non-cooperative game model is initially introduced in [134],[135] to solve the 
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problem of pricing electricity in a deregulated energy marketplace, where the unknown 

information of opponent bidders’ costs is equivalently represented by probabilities, and a game 

with complete but imperfect information can be formed and solved analytically to obtain Nash 

Equilibrium (NE). The authors in [136] further consider the probability of forming coalitions 

among generators under the non-cooperative game framework, where coalition members 

coordinate their bidding strategies to maximize the common profit. In ref. [137], an iterative 

simulation method is presented to obtain the desired NE, where each GENCO constantly updates 

their bidding curves based on the latest market clearing results until there is no increase in their 

gains. To fully capture the uncertainty of the rivals’ bids, robust optimization is implemented in 

[138], which formulates the bidding problem as a bi-level max-min model to obtain the feasible 

region of the desired bidding strategies.  

All of the above works can be categorized as model-based methods, where the uncertainties of 

the electricity market are overcome either by forecasted model or via iterative interactions. The 

model-based method can provide analytical insights into market equilibrium. However, achieving 

convergence with model-based methods generally requires strict prerequisites, e.g., linear or 

convex objective functions. In addition, the real-world market structure is not normally designed 

for iterative negotiations among the participants, which can be both time-consuming and resource-

consuming. 

The data-driven RL method stands out as an efficient alternative to the conventional model-

based method. Contrary to the latter, the RL method does not assume the knowledge of the exact 

mathematical model, but it approximates the model through continuous interactions with the actual 

environment. The RL method is well known for handling multi-stage decision-making problems, 

where game theory may fail due to its limitations in solving time-dependent models. The RL 

method can also adapt to new changes in the environment, where the solutions to the model-based 

method are fixed to the pre-defined model. 

The RL algorithm for the GENCO optimal bidding problem is first introduced in [139], where 
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the day-ahead market bidding for the next 24 hours is formulated as a Markov decision process 

(MDP), and an actor-critic RL method is applied for GENCO decision making. The actor is used 

for selecting an action from an existing bidding policy, and the critic is used to evaluate the selected 

action based on temporal difference error. The Q-learning method is applied in [140] in a repeated 

Cournot game to maximize the accumulative payoff of a GENCO in day-ahead market bidding. 

The learned bid proves to converge near the desired Nash-Cournot equilibrium point. Authors in 

[141] propose the fuzzy Q-learning method to handle the variations of renewable power 

penetration in hour-ahead market bidding, which demonstrates higher computational efficiency 

than the conventional Q-learning method. The authors in [142] discuss the effects of risk aversion 

on Q-learning performance and the bidding strategies of GENCOs. In [143], a multi-agent Q 

learning method is designed to achieve bidding strategies for multiple competitive generators. 

Popularized by the AI computer program AlphaGo, the deep RL represents the latest 

development for the data-driven RL method for solving time-sequential decision-making problem 

with partial or hidden information. Deep RL is a combination of a DNN and RL. The highlight of 

the deep RL method, compared to other learning-based methods discussed above, is that it can 

build a generalized model with DNN that can adapt to continuous environmental variations. The 

success of deep RL has been witnessed in the fields of computer games, robotics and industrial 

automation, etc. In power systems, the potentials of implementing deep RL for demand-side energy 

management and electric vehicle charging/discharging scheduling are shown in [40],[43]. The 

deep deterministic policy gradient (DDPG) algorithm is applied to solve the bidding problem of a 

load serving entity and a single producer in [44], [144]. The authors in [145] further explore the 

market equilibrium with multiple strategic GENCO bidders using both deep policy gradient 

method and long-short-term (LSTM) memory neural network.  

Motivated by the above researches, in this chapter we also focus on jointly optimizing the 

bidding strategies of multiple GENCOs in the day-ahead market with multi-agent deep RL method. 

The main contributions of the chapter are summarized as follows:  
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• A Markov game is formulated to describe the strategic day-ahead market bidding process of 

multiple GENCOs as price makers. Under such situation, each GENCO acts intelligently to 

maximize its own benefits with the consideration of bidding policies from other rivals. 

• A novel MADDPG method is applied to solve the above Markov game. Compared with the 

existing approaches, the method implements a centralized training and decentralized execution 

mechanism, which can deal with non-stationary environments where the rational players 

constantly change their strategies, as well as high-dimensional continuous state and action 

spaces. 

• A comprehensive simulation analysis is presented to prove that the applied MADDPG method 

can achieve the optimal bidding strategy with the absence of market power, and it also has high 

generalization to perform intelligently under unseen market environment. The superiority of 

the method is further verified by comparing with baseline cases. 

The rest of the chapter is organized as follows: section 6.2 provides the formulation of the multi-

agent day-ahead market bidding problem under the context of Markov game; section 6.3 

introduces the MADDPG method for multi-agent decision-making process within non-stationary 

environment; the simulation results and analysis are shown in section 6.4; finally, section 6.5 

concludes the chapter. 

6.2  Multi-agent Market Bidding Problem Formulation 

6.2.1  A brief on electricity market and bidding strategies 

A deregulated electricity market is usually composed of two stages, a day-ahead market and a 

real-time market. In the day-ahead market, GENCOs submit the amount of energy they are willing 

to sell for the next 24 hours, and the associated offer price, and consumers submit the amount of 

energy they are willing to buy and the associated bid price. The market operator clears the market 

by running an optimal power flow (OPF) calculation and releases the market clearing prices and 

quantities to the supply side and the demand side.  

GENCOs with large capacities can execute market power through the following two ways: 
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physical withholding, which means that they submit generation quantities that are less than their 

capacity; or economic withholding, which means that they offer prices that are higher than their 

marginal cost. However, executing market power can also be risky since GENCO bidders have 

incomplete information about their rivals.  

There are two market settlement methods: 1) the marginal price principle, where all suppliers 

receive the same market clearing price which is the cost of the marginal bidding block; and 2) the 

pay-as-bid principle, where each winning supplier receive a price based on their respective bidding 

prices, and it can be different from one to another. The marginal price principle is applied in almost 

all the organized wholesale markets in the United States, while the pay-as-bid principle is mostly 

seen in European countries like France and Britain. 

 In terms of auction theory, pay-as-bid principle is a variation of the sealed first-price auction 

and marginal price principle is a variation of the sealed second-price auction. It has been proved 

that in the sealed second-price auction, truthful bidding, which means no economic withholding, 

is a dominant strategy. While in the sealed first-price auction, truthful bidding is a necessary but 

not sufficient condition for reaching NE. 

In this study, we assume that the day-ahead electricity market is cleared based on the marginal 

price principle, and GENCOs are allowed to execute economic withholding to maximize their 

profits. Under such condition, a NE bidding strategy of the GENCO g should satisfy the following 

two conditions: 

(i) maxg’≠g vg’≥bg; (ii) maxg’≠g bg’≥vg 

In the above two conditions, vg is GENCO g’s valuation for the sold generation, bg is the bidding 

price of GENCO g. The profit of GENCO g will be bg – vg. Condition (i) means that GENCO g 

bids at a sufficiently low price in order to win the bid, and condition (ii) means that the valuation 

of GENCO g is sufficiently low. In section 6.4, we will demonstrate that the applied deep RL 

method is able to achieve a NE strategy that corresponds with the above two conditions through 

truthful bidding.  
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6.2.2  Mathematical formulation of day-ahead electricity market clearing 

The day-ahead electricity market clearing model is shown as the following DCOPF model: 
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In Eq. (6.1), NT is the number of time intervals, Nb is the number of bidding blocks submitted 

by the gth GENCO, λ
bid 

g,b (t) and P
cleared 

g,b (t) are the bidding price and the cleared quantity of the bth 

bidding block. Eq. (6.2) is the power balance constraint at the ith bus, where P
load 

l (t) is the load at 

bus i. i and j are the head and tail bus voltage angles at the transmission line ij. n(i) is the set of 

buses that are connected to bus i. xij is the line reactance. Eq. (6.3) is the transmission line capacity 

constraint, where NF is the set of transmission lines. Eq. (6.4) ensure that the cleared quantity does 

not exceed the bidding quantity submitted by the GENCO bidders. 

In the DCOPF model (6.1)-(6.4), λ
bid 

g,b (t) and P
bid 

g,b (t) are known values submitted by GENCO 

bidders. They should satisfy the following constraints: 
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Eq. (6.5) is the capacity limit of the bidding block, where P
min 

g  and P
max 

g  are the lower and upper 

limit of the generation. Eq. (6.6) indicates the economic withholding of the GENCO bidder, where 

λ
cost 

g,b (t) is the marginal cost of the bth bidding block. g(t) is a bidding factor between 1 and an upper 

limit g,max, which indicates that the GENCO bidder can deliberately submit a higher marginal cost 
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to increase its profit.   

From the above DCOPF model, the cleared P
cleared 

g,b (t) and cleared price λ
cleared 

g (t) for each GENCO 

bidder can be obtained. The λ
cleared 

g (t) is the locational marginal price (LMP). The GENCO bidder 

then calculates its profit according to Eq. (6.7). 
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In Eq.(6.8), the first item is the income of selling power at the day-ahead market; the second 

item is the generation cost, which has a linear expression as shown in Eq. (6.9).  

From the above mathematical models, it can be observed that the decision variable for the 

GENCO bidders is the bidding factor g(t), and the decision variable for the market operator is the 

cleared quantity P
cleared 

g,b (t). Deciding the optimal bidding factor is an involved task for GENCO 

bidders because the bidding information of their rivals remains unknown. The conventional model-

based method can fail due to this unobservability. In the following sections, the multi-agent day-

ahead market bidding problem will be transformed into a Markov game, and a model-free deep 

RL method will be introduced as a solution. 

6.2.3  Markov game model of day-ahead electricity market bidding 

Before building the Markov game model, we propose the following assumptions regarding the 

day-ahead market bidding problem [146]: 

1) The GENCOs submit hourly bidding blocks for the next 24 hours in the day-ahead market. 

The bidding quantities are their true generation capacities, only the bidding price is allowed to 

change. 

2) The bidding price for the same bidding block is allowed to vary from hour to hour. However, 

the ratio of the highest bidding price to the lowest bidding price for the same bidding block should 

not exceed a threshold th1. 
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3) For any two consecutive hours, the ratio of the bidding prices for the same bidding block 

should not exceed a threshold th2.  

From assumption 3), it can be discovered that the bidding price for the current hour is related to 

the bidding price in the previous hour, which leads to a finite MDP with discrete time steps.  

When multiple agents are considered in the day-ahead market bidding, the MDP is extended to 

a partially observable Markov game. A Markov game for N agents consists of a set of states s, a 

set of observations made by each agent at the current state, o1,o2,…,oN, and a set of actions a1, 

a2,…, aN taken by each agent based on their respective observations. After the execution of the 

actions, the environment will transfer to the next state following a transition probability p: 

s×a1×a2×…× aN×s→[0,1]. Each agent will receive a reward ri : s×ai → R and a private observation 

for the next state oi: s→ oi. The objective of each agent is to maximize the total discounted reward 

for the finite time steps: Ri = ∑
NT 

t=1 γt-1ri,t, where γ is a discount factor to convert future rewards to 

the present value.  

In the day-ahead market bidding problem, under the context of a Markov game, the agent is each 

independent GENCO bidder; the private observation for each GENCO is the demand quantity for 

the current hour, and its bidding price at the previous hour; the state is simply defined as the 

summation of the observations of all GENCOs; the action is the bidding price for the current hour; 

and the reward is the hourly profit. The day-ahead market bidding process is a sequential decision-

making problem with multiple decision makers involved, which requires that each GENCO bidder 

be farsighted enough to consider potential future outcomes in order to maximize the total profit.  

Note that in the general day-ahead market bidding, the GENCO bidders are required to submit 

their bidding blocks for the next 24 hours in one shot; while in the above Markov game, the bidding 

decision process is decomposed to discrete time steps and the bidding price for each time step is 

decided sequentially. This decomposition is acceptable because at each time step, the private 

observation only includes the current hourly load and the bidding price at the previous hour, and 

does not involve any market clearing results. Hence, after the applied deep RL algorithm is well-
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trained for solving the above Markov game model, it will only need the load data for the next 24 

hours as input and can generate the bidding prices for the next day in one shot (given an initial 

bidding price) during the test process. Therefore, the algorithm can be physically implemented 

without violating market rules. 

6.3  MADDPG Method for Day-ahead Electricity Market Bidding  

6.3.1  An overview of reinforcement learning method 

The RL method aims to solve the MDP process with the objective of maximizing the total 

discounted reward Ri = ∑
NT 

t=1  γt-1ri,t. An action-value function is further defined in RL as an 

estimation of the total discounted reward:  
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In Eq. (6.10), the action-value function Q (st,at) is equal to the expected return starting from 

state st, taking action at, and thereafter following policy . The goal of RL is to find the optimal 

policy * that maximizes the action-value function: 
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One typical way for solving Eq. (6.11) is to update the action value based on the temporal 

difference (TD) error: 
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In conventional RL methods such as Q-learning, a look-up table is established to store the action 

values of all the possible state-action pairs and it is updated iteratively according to (6.12) until 

convergence. However, the method encounters the curse of dimensionality when the state or action 

space becomes continuous. The deep RL method is developed to overcome the drawbacks of the 

tabular-based RL method. In deep RL, a neural network is designed to estimate the action-value 

function and it can form a continuous mapping between the state-action pair and the action value. 

In this way, more complex control or optimization problem with high dimensionality can be solved 
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through tweaking the neural network model. 

6.3.2  Deep deterministic policy gradient method for continuous control 

In this subsection, we will briefly introduce a deep RL method, DDPG, for solving continuous 

control problems. 

In DDPG, there are two types of neural network: the critic network, and the actor network. The 

function of the critic network is to estimate the action value, as has been mentioned above. The 

input to the critic network is the current state and the action taken, and the output is the associated 

action value. The MSE is used as the loss function for updating the parameters of the critic network, 

as shown below: 
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Two critic networks are involved for calculating the MSE in (6.14), the target critic network, 

whose weights are noted as Q’; and the behavior critic network, whose weights are noted as Q. 

In Eq. (6.13), the target action value at time step t is the sum of the current reward r(t) and the 

discounted value of the maximum action value at the next time step t+1, generated by the target 

critic network. The superscript j is the index of state-action pair samples. Then, the target action 

value is sent to (6.14) for calculating the loss. The output from the target critic network is served 

as the “labelled” data for the behavior network to learn. During the training, the target critic 

network is updated at a slower speed than the behavior critic network, which helps stabilize the 

learning process. 

The actor network is designed to utilize the estimated action value to obtain the optimal policy, 

i.e. π(s(t)) = argmaxa(t) Q(s(t), a(t)) for all time step t. The input to the actor network is the current 

state s(t), and the output is the action a(t) that results in the maximum Q(s(t), a(t)). To achieve this 

goal, the loss function for the actor network is designed as follows: 
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In Eq. (6.15), (s(t);) is the current policy generated by the actor network, where  is the 

network weights.  is updated in the direction of maximizing the Q value using a gradient: 
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In Eq.(6.16), the chain rule is applied to calculate the gradient of the action value to the weights 

of the actor network. In Eq.(6.17), η is the learning rate.  

The above introduction covers the basic idea behind the DDPG algorithm. Note that in the above 

actor and critic network, only the action and the Q value at the current state is generated, and 

there’s no need to store all the possible state-action pairs and their action values. The relationship 

between the state-action pair and the action value is encoded in the weights of the neural network. 

Therefore, DDPG can be applied for optimizing continuous control strategies without suffering 

from the dimensionality explosion.  

6.3.3  MADDPG for solving Markov game in day-ahead electricity market bidding 

Section 6.3.2 introduces the DDPG method for continuous control, which can be applied for 

optimizing the single agent decision-making process. However, in the case of day-ahead electricity 

market bidding, where multiple strategic GENCO bidders are involved, directly applying the 

above DDPG method for each GENCO cannot achieve the ideal results. This is because when 

multiple agents are optimizing their decisions simultaneously, the environment becomes dynamic, 

and the reward received at the same state with the same action can constantly change due to the 

changing policies of other agents. This issue invalidates the experience learnt by the target critic 

network and can result in incorrect target value settings and algorithm divergence.  

Driven by the above concerns, there have been some recent research works in AI that include 
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multi-agent (MA) learning as an extension of the DDPG method to form MADDPG [147]. The 

main idea of MADDPG is to implement a centralized training, where the input to the critic network 

includes not only the state and action of the current agent, but also the actions of other agents. This 

assumption is acceptable because the critic network is only required during the training process. 

Once the algorithm is well-trained, only the actor network is needed for testing in new 

environments, and the actions of other agents are no longer required.  

In this paper, the general-purposed MADDPG algorithm is applied and customized for solving 

the Markov game in day-ahead market bidding. The proposed customized MADDPG algorithm 

flow is shown in Algorithm 1 below.  
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Algorithm 1: MADDPG algorithm for day-ahead market bidding with N GENCO bidders 

1: Initialize the parameters of the critic network Q(s,a; Q) and the actor network  (o; ) for 

each GENCO bidder 

2: Initialize the target networks with Q and  

3: for episode = 1 to M do 

4:   Initialize the market bidding from a random day  

5:   for t = 1 to NT do 

6:    Observe the current state s(t) = [Pload(t), λ
bid 

1 (t-1), λ
bid 

2 (t-1), …, λ
bid 

g (t-1), …, λ
bid 

N (t-1)] 

7:    For each GENCO bidder g, select the bidding price λ
bid 

g (t) = g(og(t); ), where og(t) = 

[Pload(t), λ
bid 

g (t-1)] 

8:    Run DCOPF (1)-(5) to complete the market clearing, obtain the cleared quantity P
cleared 

g (t), 

cleared price λ
cleared 

g (t), and the reward rg(t) for each GENCO, and observe the next state 

[Pload(t + 1), λ
bid 

g (t)] 

9:    Store the transition (s(t), λ
bid 

g (t), λ
bid-

g  (t), rg(t), s(t+1)) for each GENCO 

10:   for GENCO g = 1 to N do 

11:     Randomly sample a minibatch of S samples (s(j)(t), λ
bid 

g
(j)(t), λ

bid-

g 
(j)(t), rg

(j)(t), s(j)(t+1)) from 

the stored transitions 

12:     Set Q
target(j) 

g (t) = rg
(j)(t) + γQg(s

(j)(t+1), λ
bid 

g
(j)(t+1), λ

bid-

g 
(j)(t+1);Q’), for λ

bid 

g
(j)(t+1)= 

        g (o
(j) 

g (t+1); ’) 

13:     Update the critic network by minimizing the MSE:  

14:         Lg(Q) =1/Ns∑j(Q
target(j) 

g (t) - γQg(s
(j)(t), λ

bid 

g
(j)(t), λ

bid-

g 
(j)(t);Q) 

15:         Q = Q - ηQ▽Q Lg(Q) 

16:     Update the actor network by maximizing the expected Q value:  

17:         ▽Jg()=1/Ns∑j▽gQg(s
(j)(t), λ

bid 

g
(j)(t), λ

bid-

g 
(j)(t);Q) ▽ g (o

(j) 

g (t); ) 

18:          =  - η▽Jg() 

19:   end for 

20:   Update the target network parameters for each GENCO: 

21:       Q’ = (1 – τ)Q + τ Q’ 

22:       ’ = (1 – τ) + τ ’ 

23:  end for 

24:end for 

 

In algorithm 1, the state is defined as the hourly load and the bidding prices of all the agents in 

the previous hour; the private observation of each agent is defined as the hourly load and its bidding 

price at the previous hour, as shown by line 6-7. The reward rg(t) is the hourly power selling profit:  
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The state is sent to the critic network for calculating the target action value, as shown by line 12. 

λ
bid-

g 
(j)(t+1) represents the bidding prices of all GENCOs except for the gth GENCO. Note that the 

bidding price for the next time step t+1 is generated by g (’) instead of g () in line 12. Like 

the target critic network, g (’) represents the target actor network, which also aims to stabilize 

the training process. 

After the weights of the behavior critic network and the behavior actor network are updated, as 

shown by line 15 and 18, the weights of the target critic network and the target actor network are 

updated accordingly at a slower speed, as shown by line 21-22, where τ has a value close to 1. The 

reason for this slow update is also to increase the stability of the learning. 

To help readers achieve an easy and clear understanding of the MADDPG algorithm for a multi-

agent day-ahead market bidding problem, an illustration of the algorithm is shown in Figure 6.1: 

6.3.4  Baseline cases for evaluating the learning performance of MADDPG 

Two baseline cases are designed as a comparison with MADDPG algorithm. In the first baseline 

case, all the generators will bid truthfully by submitting their true marginal cost. In the second 

baseline case, a value-based deep RL method, the DQN, is applied for optimizing the GENCOs’ 

bidding strategies. In DQN, discretization of the continuous action domain is required to estimate 

the Q value of each possible action, which can limit the search space and may not lead to the 

optimal action. The following section will present the simulation results from both MADDPG and 

the two baselines for comparison and analysis. 

6.4  Simulation Analysis 

6.4.1  Test system description 

The IEEE 30-bus system with 9 generators is applied as the transmission-level electricity market. 

The topology of the system is shown in Figure 6.2: 
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Figure 6.1 MADDPG algorithm for solving Markov game in day-ahead electricity market 
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Figure 6.2. Topology of the IEEE 30-bus system 

 

The generators at bus 27, bus 23, and bus 13 are considered as strategic bidders that will conduct 

economic withholding to maximize their profits. All other generators will submit their true 

marginal cost. In addition, the transmission lines 4-12 and 23-24 have a capacity limit of 10 MW. 

This capacity limit will give the nearby GENCOs, GENCO 2 and GENCO 3, the market power to 

manipulate the clearing price, which will later be shown in the simulation results. 

The generation cost function of GENCOs is assumed to be a piecewise linear function, which 

include three segments. The parameters of the cost function are shown in Table 6.1: 
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Table 6.1 GENCO generation cost function 

Segment 
Marginal price 

($/MWh) 

Generation  

range (MW) 

1 20 [0-12] 

2 40 [12-36] 

3 50 [36-60] 

It is assumed that at each hour, only one bidding block is submitted by each GENCO. The 

bidding quantity is 60 MW, which is their capacity. For GENCO 1-3, their bidding price is λ
bid 

g (t) 

= g(t) λ
cost 

g (t); for other GENCOs, their bidding price is  λ
cost 

g (t). In this case, λ
cost 

g (t) is 50$/MWh. 

Following the assumptions presented at section 6.2.3, the value of the bidding price thresholds, 

th1 and th2, are set to 1.5 and 1.1, respectively, which means λ
bid 

g (t) should comply with the 

following condition:  
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6.4.2  Design of neural network and simulation platform 

The detailed structures of actor network and critic network in the proposed MADDPG, as well 

as the structure of DQN are shown in Table 6.2: 

 

 

Table 6.2. Design of DNNs in deep RL 
Neural Network Actor Critic DQN 

Input [Pload(t), λ
bid 

g (t-1)] 
[Pload(t), λ

bid 

g (t-1),  
λ

bid- 

g (t-1), λ
bid 

g (t), λ
bid- 

g (t)] 
[Pload(t), λ

bid 

g (t-1)] 

No. of hidden layers 2 2 2 

No. of neurons [2,64],[64,64] [7,64],[64,64] [2,64] 

Output δ ∈ [0,1] Qg(s (t), λ
bid 

g  (t), λ
bid-

g (t)) Qg(s (t), λ
bid 

g  (t)) 

Activation function 
ReLU  

(hidden layer); sigmoid 
(output layer) 

ReLU 
(hidden layer) 

ReLU 
(hidden layer) 

Learning  
rate(η) 

0.001 0.002 0.001 

τ 0.99 0.99 0.99 
Optimizer Adam Adam Adam 
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The output from the actor network is a value δ between 0 and 1. The bidding price λ
bid 

g (t) is 

calculated as follows: 

 ( ) (0.9 (1.1 0.9) ) ( 1)bid bid

g gt t          (6.20) 

The value of λ
bid 

g (t) will be further adjusted to be within the range of 1~1.5 λ
cost 

g (t): 
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( )
( 0.9) / 0.2
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cost bid cost
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For DQN, since the action λ
bid 

g (t) is within the continuous interval 1~1.5 λ
cost 

g (t), a step size of 0.1 

is applied to discretize the action space: [1,1.1,1.2,1.3,1.4,1.5]×λ
cost 

g (t). Hence, the output from 

DQN is a vector of size 1×6, which includes the Q value for each potential λ
bid 

g (t). 

The neural network model is built and trained by the open-source deep learning platform 

TensorFlow. The day-ahead market clearing process is completed by the smart market module in 

MATPOWER toolbox [57] . The hardware environment is a laptop with Intel®CoreTM i7-7600U 

2.8 GHz CPU, and 16.00 GB RAM. 

6.4.3  Nash Equilibrium strategy from MADDPG: uncongested case 

In this subsection, we first study the bidding strategies of the three GENCOs under marginal 

pricing mechanism in an uncongested case, where the capacity limit on line 4-12 and 23-24 are 

removed. The goal is to show that MADDPG algorithm is able to achieve the NE strategies that 

satisfy the two conditions as introduced in section 6.2.1, when no GENCO bidder has access to 

market power. 

The load profile in June, 2019 from PJM wholesale market [133] is used to train the deep RL 

method. The load data in the 31 days in July, 2019 from PJM market is used to test the deep RL 

method after training. The load profile of the training days and the test days is shown in Figure 6.3, 

which shows the differences between the load levels in the two months. However, since the deep 
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RL is a generalized model, it can adapt to the changes in the environment and produces optimal 

strategies, which will be shown in the following test results. 

Figure 6.4 presents the change of average reward over 500 training episode as a sign of algorithm 

convergence. As shown in the figure, the average rewards for the three GENCOs gradually 

stabilize as the training proceeds, which indicates the convergence of the MADDPG algorithm. 

The test results of MADDPG with July data are shown in Figure 6.5 and are also compared with 

the truthful bidding baseline case in Table 6.3, where the 3 GENCOs always bids truthfully. In 

Figure 6.5, the y axis is the bidding parameter g(t) in Eq. (6.6). The red curve is the system load 

level. One thing should be pointed out is that since the state of GENCO bidder requires the bidding 

price at the previous hour, we assume that the bidding price at hour zero is always the true marginal 

cost. It can be observed that in the uncongested case, all GENCOs bid at their true marginal cost, 

regardless of the system load level. This is because when the capacity limit is removed, GENCO 

2-3 cannot manipulate the market clearing price. Since all other GENCOs are bidding at their true 

marginal cost, the optimal bidding strategy for GENCO 1-3 is also truthful bidding. According to 

the NE conditions in section 6.2.1, vg and bg are λ
cost 

g (t) and λ
bid 

g (t), respectively. It can be seen that 

the truthful bidding, where λ
bid 

g (t) = λ
cost 

g (t), satisfies the equality constraint in condition (i) and (ii). 

In Table 6.3, the total profit from MADDPG is the same as the baseline, since they both bid 

truthfully. Therefore, it can be safely concluded that the well-trained MADDPG algorithm can find 

the optimal bidding strategy of the three GENCO bidders in a constraint-free market environment. 
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Figure 6.3. Load profile in June and July of year 2019 

 

 

Figure 6.4. Convergence of MADDPG in the uncongested case 

 

 

Figure 6.5. Bidding strategy of three GENCOs with MADDPG: uncongested case 
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Table 6.3. Comparison of MADDPG with baseline: uncongested case 

GENCO 
Total profit (104 $) 

MADDPG Truthful bidding 

1 44.64 44.64 

2 44.64 44.64 

3 40.26 40.26 

 

6.4.4  Solving Markov game with MADDPG: congested case 

In this subsection, the MADDPG algorithm is applied to solve the Markov game in day-ahead 

electricity market bidding with congestions. The same training data is used and the training results 

are shown in Figure 6.6: The algorithm is trained for 200 episodes. As shown in the figure, the 

average reward converges for all three GENCO bidders. The well-trained RL agents are then tested 

with the July data, and are also compared with the truthful bidding case, as shown in Figure 6.7-

Figure 6.8, and Table 6.4. 

 

Figure 6.6. Convergence of MADDPG in the congested case 
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Figure 6.7. Bidding strategy of three GENCOs with MADDPG: congested case 

 

 
Figure 6.8. Hourly market clearing price under MADDPG bidding strategy 

 

Table 6.4 Comparison of MADDPG with baselines: congested case 

GENCO 
Total profit (104 $) 

MADDPG Truthful bidding  DQN 

1 57.24 50.01 63.30 

2 131.36 88.96 119.56 

3 184.37 114.34 142.01 
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Figure 6.7 shows that GENCO 2 always bids at the highest price, which is 1.5 λ
cost 

g (t), at the peak 

hours when congestions are most likely to happen. Since GENCO 1 does not have market power, 

it always bids at the true marginal cost, where g(t) is 1. GENCO 3 also bids at the true marginal 

cost. However, because the marginal price principle is applied for clearing the market, GENCOs 

1 and 3 still benefit from the high bidding price offered by GENCO 2. As shown in Figure 6.8, the 

cleared prices for all three GENCOs are higher than their marginal generation cost 50$/MWh. In 

Table 6.4, all three GENCOs obtain higher total profits than in the truthful bidding case. This 

phenomenon is called “free riding” in game theory, where GENCOs 1 and 3 can bid at a lower 

price to get more of their quantity cleared at the high marginal price.  

The above bidding strategies form one NE and the reason is provided as follows: according to 

the definition of NE, no player can benefit by changing its strategy while the strategies of other 

players remain unchanged. First, since GENCO 1 has no market power, increasing its bidding price 

will only reduce its cleared quantity and profit. GENCO 1 will not bid higher than the true marginal 

cost; secondly, if GENCO 2 decreases the bidding price to the marginal cost, then all three 

GENCOs will bid truthfully like the baseline case, and all of them will receive a lower profit; lastly, 

if GENCO 3 also adopts a similar strategy like GENCO 2, which is to bid high at peak hours, then 

the amount of its cleared power will be greatly reduced, which results in a lower profit (this has 

been tested through simulation). Therefore, no GENCO will be willing to change its bidding 

strategy alone while the other two remain unchanged, which indicates a NE status.  

The last column in Table 6.4 lists the total profit obtained by DQN-based bidding strategies. The 

average reward curve of DQN algorithm is shown in Figure 6.9. In DQN, an individual Q network 

is designed for each GENCO bidder, and there is no centralized training mechanism like the critic 

network in MADDPG. Therefore, it takes a longer time for the algorithm to converge. Figure 6.10 

shows the bidding strategies derived from DQN for the test days. As shown, because of the limited 

search space and a lack of centralized training, the DQN algorithm generated a less profitable 

bidding strategy than the MADDPG algorithm. Note that although the profit of GENCO 1 is higher 
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with DQN, this is not a NE since GENCO 2 and GENCO 3 have the motivation to change their 

bidding strategies to obtain higher profits.  

 

 

 

Figure 6.9. Convergence of DQN in the congested case 

 

 

Figure 6.10. Bidding strategy of three GENCOs with DQN: congested case 
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6.5  Conclusions 

This chapter presents an MADDPG algorithm for solving the Markov game in the day-ahead 

electricity market. The MADDPG algorithm can learn a profitable bidding strategy for multiple 

GENCO bidders through centralized training and decentralized execution. Simulation results 

verify the learning efficiency and computational efficiency of the MADDPG algorithm, which 

indicates that the algorithm can be a promising tool for solving power system problems that have 

multiple decision makers and high unobservability.  

For future works, one potential direction is to study the sequential market bidding problem, 

where the bidding will take place in several market stages, including the day-ahead, intra-day, and 

real-time market. In such cases, MADDPG can still be applied to solve the associated Markov 

game through continuous interaction with the environment. 
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Chapter 7 Conclusions and Future Works 

7.1  Summary of Current Progress 

Deep learning technology has become a heated topic in both academia and industry. The rapid 

development of hardware platform provides a solid support for the realization of deep learning 

models in various application fields. It is foreseeable that with the ongoing acceleration of 

hardware processors, the performance of deep learning methods will be continuously improved 

and get adapted to more complex and intractable real-world situations and produce fruitful results. 

 In this dissertation, the implications and advancements of deep learning technology are first 

reviewed. Then, the current applications of deep learning technologies in the field of power 

systems are categorized and summarized. Based on the current research works, in this dissertation, 

several types of power system problems, that are either suffering from high computational burden, 

or mathematically difficult to model, are introduced, and the potential of applying deep learning 

methods for solving these problems is discussed. 

In Chapter 2, a data-driven N-1 contingency screening method is applied for identifying the 

system security status under N-1 contingency with multiple uncertain operation scenarios. The 

deep CNN is utilized as a multi-task learning tool, which generates both system state variables and 

system security classification. Because of its high generalization ability, once the deep CNN is 

well trained, it can be directly applied to new operation scenarios and quickly estimates the system 

security status, without the iterative power flow calculation. The applied method can serve as an 

ancillary tool for power system security assessment in real-time operation.  

Following the above work, in Chapter 3, a fast cascading outage screening method is applied for 

identifying the severest cascading outage path in the power system, which considers the sequential 

contingencies taking place. The method is a combination of deep CNN and DFS method. The deep 

CNN can estimate the value of the system security index via the training process. Then, based on 

the estimated value, the DFS method quickly scans all the potential cascading outage paths within 
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the system and identifies the paths with highest severity. The simulation results based on standard 

IEEE test cases verify the computational efficiency and the accuracy of the above data-driven 

method, which can provide reference for power system operators to take corrective measures to 

prevent system collapse in advance during real-time operation. 

In Chapter 4, the DNN is applied for optimizing MMG energy management at the distribution 

system level. Due to the protection of user privacy, the microgrid is modeled as a black box, and 

the DNN is utilized to simulate the behavior of multiple microgrids under real-time prices. Then, 

with the well-trained DNN as a representative of MMG, Monte Carlo RL method is applied for 

the DSO to decide the optimal real-time price sequences so that the system PAR can be minimized, 

while maintaining a high profit of selling power for DSO. Case studies demonstrate that the applied 

data-driven method is highly computationally efficient compared with the conventional model-

based method for solving microgrid economic operation, which proves its feasibility in real-world 

applications.  

In Chapter 5, a data-driven, continuous control strategy for multi-zone residential HVAC system 

is proposed based on deep RL method. The DDPG algorithm is applied to explore the optimal 

selection of setpoints of the HVAC system to maintain the indoor temperature within the user’s 

comfort level while minimizing the energy consumption cost. Within such a data-driven 

framework, the algorithm requires no detailed formulation of the complex thermal dynamic model 

within the HVAC system, but gradually learns the optimal control policy through continuous 

interaction with the environment. Comparisons with benchmark baseline cases verify that the 

applied deep RL based control algorithm is able to find a more economic HVAC control strategy 

while maintaining user’s comfort. The well-trained deep RL agent has also gained considerable 

generalization and can be adapted to unseen environments with different physical conditions.  

In Chapter 6, a multi-agent deep RL method is applied to solve the Markov game at the day-

ahead electricity bidding market. The objective is to obtain an optimal bidding strategy for each 

intelligent GENCO bidder that will result in the largest individual profit, hence no player will 
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change its bidding strategy when other players remain unchanged, which leads to a NE. The 

MADDPG method is implemented for obtaining the NE status. The advantage of MADDPG over 

the DDPG is that the latter leverages a centralized-training, decentralized testing framework that 

considers the interactions among different decision-makers within a non-stationary environment. 

The simulation results on the IEEE 30-bus system in both an uncongested case and a congested 

case demonstrate that the applied MADDPG method is able to find a more economic bidding 

strategy for each GENCO bidder compared with a truthful bidding baseline case and also the 

widely applied DQN algorithm. It can be safely concluded that the MADDPG algorithm has 

substantial potential for solving complex decision-making problems with multiple decision-

makers or hidden information.  

7.2  Future Works 

One major bottleneck of the current developed deep learning algorithms is the adaptability. 

Adaptability means that a well-trained deep learning algorithm can get quickly adapted to new 

tasks based on its past learning experience with the least retraining efforts, and generates results 

with guaranteed accuracy. This type of effective learning is a key capability of human beings, yet 

machine learning methods are still a long way from realization of such capability. It is crucial for 

deep learning algorithms to develop the adaptability in order for their continuous flourishing 

because under certain real-world situations there is no access to a large amount of training data for 

the algorithm to learn, which can lead to the failure of heavily data-dependent methods like 

supervised learning. In addition, training a machine learning algorithm can be tremendously time-

consuming and resource-consuming, yet new tasks keep streaming in with different optimization 

objectives. As a consequence, it becomes unpractical to train a brand-new model for each 

individual task starting from scratch. 

There have been extensive research efforts in literature dedicating to enhancing the adaptability 

of machine learning algorithms within the context of multi-task learning. Transfer learning and 
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Meta-learning are two of the latest research hot spots. Transfer learning focuses on how to utilize 

the knowledge from a source task to accelerate the learning process when solving a target task, 

which is different but related to the source task. Meta learning applies a more simple philosophy, 

which is known as learning to learn. In traditional machine learnings, the algorithm can formulate 

a mapping between the input data and the desired output after thousands of rounds of iterations 

such as back propagation. Then a new task comes and the above process has to be repeated to 

achieve a desired model. What if instead of simply learning the extracted features from the given 

data, we let the machine learning model learn how this mapping is achieved, for example, how the 

neural networks are initialized (normal distribution, Xavier initialization, etc.), and how the 

parameters of the neural network are updated (back-propagation). These key issues are like a 

general tool for solving any data-driven related task. If the machine learning algorithm can 

understand these core ideas, it will become possible to quickly adapt to unseen tasks by applying 

the same idea with reduced retraining efforts. There is an old Chinese saying that goes “Give a 

man a fish, and you feed him for a day. Teach a man to fish, and you feed him for a lifetime.” Meta 

learning adopts a similar principle: teaching the machine the generalized learning skills instead of 

simply offering the specific answers. 

It is foreseeable that more complicated real-world tasks with high dimension or model 

inaccessibility will grow explosively in the near future, and the functionality of the heavily data-

dependent machine learning methods will become more limited under such scenarios. It is highly 

imperative to make the best of deep learning techniques like transfer learning and meta-learning 

to design algorithms with enhanced robustness and extended adaptability, to fully prepare for 

unpredicted learning tasks within a perplexing environment. The exploration of the potential 

applications of transfer learning and meta-learning in the field of power system control and 

operation will be the key future research directions. Some potentially interesting research topics 

include:  

1) Development of a more generalized contingency screening tool with deep CNN and transfer 
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learning that can be adapted to different types of contingencies and power systems at different 

scales, with least amount of retraining efforts;  

2) Applying deep RL for power system emergency control under cascading outages to restore 

system security; further combining with transfer learning to learn a more robust control strategy 

that can be adapted to various fault scenarios; 

3) Design of a multi-task learning framework based on deep RL and meta-learning that can 

optimally control a multi-zone residential HVAC system in both heating scenarios and cooling 

scenarios with high learning efficiency; 

4) Utilization of deep learning and transfer learning to estimate power system transient stability 

under different system topologies and operation scenarios to accelerate the simulation process. 
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