50,079 research outputs found

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    A survey of IEEE 802.15.4 effective system parameters for wireless body sensor networks

    Full text link
    This is the peer reviewed version of the following article: Moravejosharieh, Amirhossein, Lloret, Jaime. (2016). A survey of IEEE 802.15.4 effective system parameters for wireless body sensor networks.International Journal of Communication Systems, 29, 7, 1269-1292. DOI: 10.1002/dac.3098, which has been published in final form at http://doi.org/10.1002/dac.3098. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving[EN] Wireless body sensor networks are offered to meet the requirements of a diverse set of applications such as health-related and well-being applications. For instance, they are deployed to measure, fetch and collect human body vital signs. Such information could be further used for diagnosis and monitoring of medical conditions. IEEE 802.15.4 is arguably considered as a well-designed standard protocol to address the need for low-rate, low-power and low-cost wireless body sensor networks. Apart from the vast deployment of this technology, there are still some challenges and issues related to the performance of the medium access control (MAC) protocol of this standard that are required to be addressed. This paper comprises two main parts. In the first part, the survey has provided a thorough assessment of IEEE 802.15.4 MAC protocol performance where its functionality is evaluated considering a range of effective system parameters, that is, some of the MAC and application parameters and the impact of mutual interference. The second part of this paper is about conducting a simulation study to determine the influence of varying values of the system parameters on IEEE 802.15.4 performance gains. More specifically, we explore the dependability level of IEEE 802.5.4 performance gains on a candidate set of system parameters. Finally, this paper highlights the tangible needs to conduct more investigations on particular aspect(s) of IEEE 802.15.4 MAC protocol. Copyright (c) 2015 John Wiley & Sons, Ltd.Moravejosharieh, A.; Lloret, J. (2016). A survey of IEEE 802.15.4 effective system parameters for wireless body sensor networks. International Journal of Communication Systems. 29(7):1269-1292. https://doi.org/10.1002/dac.3098S12691292297Alrajeh, N. A., Lloret, J., & Canovas, A. (2014). A Framework for Obesity Control Using a Wireless Body Sensor Network. International Journal of Distributed Sensor Networks, 10(7), 534760. doi:10.1155/2014/534760Lopes I Silva B Rodrigues J Lloret J Proenca M A mobile health monitoring solution for weight control International Conference on Wireless Communications and Signal Processing (WCSP) Nanjing / China 2011 1 5Singh, N., Singh, A. K., & Singh, V. K. (2015). Design and performance of wearable ultrawide band textile antenna for medical applications. Microwave and Optical Technology Letters, 57(7), 1553-1557. doi:10.1002/mop.29131Lan, K., Chou, C.-M., Wang, T., & Li, M.-W. (2012). Using body sensor networks for motion detection: a cluster-based approach for green radio. Transactions on Emerging Telecommunications Technologies, 25(2), 199-216. doi:10.1002/ett.2559Lloret, J., Garcia, M., Catala, A., & Rodrigues, J. J. P. C. (2016). A group-based wireless body sensors network using energy harvesting for soccer team monitoring. International Journal of Sensor Networks, 21(4), 208. doi:10.1504/ijsnet.2016.079172Garcia M Catala A Lloret J Rodrigues J A wireless sensor network for soccer team monitoring International Conference on Distributed Computing in Sensor Systems and Workshops (DCOSS) Barcelona / Spain 2011 1 6Penders J Gyselinckx B Vullers R De Nil M Nimmala V van de Molengraft J Yazicioglu F Torfs T Leonov V Merken P Van Hoof C Human++: from technology to emerging health monitoring concepts 5th International Summer School and Symposium ISSS-MDBS on Medical Devices and Biosensors Hong Kong 2008 94 98Penders J Van de Molengraft J. Brown L Grundlehner B Gyselinckx B Van Hoof C Potential and challenges of body area networks for personal health Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC Minneapolis, U.S. 2009 6569 6572Ullah, S., Higgins, H., Braem, B., Latre, B., Blondia, C., Moerman, I., … Kwak, K. S. (2010). A Comprehensive Survey of Wireless Body Area Networks. Journal of Medical Systems, 36(3), 1065-1094. doi:10.1007/s10916-010-9571-3Cao, H., Leung, V., Chow, C., & Chan, H. (2009). Enabling technologies for wireless body area networks: A survey and outlook. IEEE Communications Magazine, 47(12), 84-93. doi:10.1109/mcom.2009.5350373Hall, P. S., Yang Hao, Nechayev, Y. I., Alomainy, A., Constantinou, C. C., Parini, C., … Bozzetti, M. (2007). Antennas and propagation for on-body communication systems. IEEE Antennas and Propagation Magazine, 49(3), 41-58. doi:10.1109/map.2007.4293935Mamaghanian, H., Khaled, N., Atienza, D., & Vandergheynst, P. (2011). Compressed Sensing for Real-Time Energy-Efficient ECG Compression on Wireless Body Sensor Nodes. IEEE Transactions on Biomedical Engineering, 58(9), 2456-2466. doi:10.1109/tbme.2011.2156795LAN-MAN Standards Committee the IEEE Computer Society IEEE standard for local and metropolitan area networks - part 15.4: low rate wireless personal area networks (LR-WPANs) 2011Petrova M Riihijarvi J Mahonen P Labella S Performance study of IEEE 802.15.4 using measurements and simulations IEEE Wireless Communications and Networking Conference (WCNC) Las Vegas, U.S. 2006 487 492Vaithiyanathan, J., Raju, R. K., & Sadayan, G. (2011). Performance Evaluation of IEEE 802.15.4 Using Association Process and Channel Measurement. Communications in Computer and Information Science, 409-417. doi:10.1007/978-3-642-22555-0_42Yazdi E Moravejosharieh A Willig A Pawlikowski K Coupling power and frequency adaptation for interference mitigation in IEEE 802.15.4-based mobile body sensor networks: part II 2014 Australasian Telecommunication Networks and Applications Conference (ATNAC) Melbourne, Australia 2014 105 110Pelegris P Banitsas K Investigating the efficiency of IEEE 802.15.4 for medical monitoring applications 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC Boston, U.S. 2011 8215 8218Ranjit, J. S., & Shin, S. (2013). A Modified IEEE 802.15.4 Superframe Structure for Guaranteed Emergency Handling in Wireless Body Area Network. Network Protocols and Algorithms, 5(2), 1. doi:10.5296/npa.v5i2.3375Jianliang Zheng, & Lee, M. J. (2004). Will IEEE 802.15.4 make ubiquitous networking a reality?: a discussion on a potential low power, low bit rate standard. IEEE Communications Magazine, 42(6), 140-146. doi:10.1109/mcom.2004.1304251Toscano E Lo Bello L Cross-channel interference in IEEE 802.15.4 networks IEEE International Workshop on Factory Communication Systems, 2008. WFCS 2008 Dresden, Germany 2008 139 148Bashir F Baek WS Sthapit P Pandey D young Pyun J Coordinator assisted passive discovery for mobile end devices in IEEE 802.15.4 2013 IEEE Consumer Communications and Networking Conference (CCNC) Las Vegas, U.S. 2013 601 604Tabatabaei Yazdi E Willig A Pawlikowski K Shortening orphan time in IEEE 802.15.4: what can be gained 2013 19th IEEE International Conference on Networks (ICON) Singapore 2013 1 6Park, T. R., Kim, T. H., Choi, J. Y., Choi, S., & Kwon, W. H. (2005). Throughput and energy consumption analysis of IEEE 802.15.4 slotted CSMA∕CA. Electronics Letters, 41(18), 1017. doi:10.1049/el:20051662Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18(3), 535-547. doi:10.1109/49.840210IEEE Computer Society LAN MAN Standards Committee Wireless LAN medium access control (MAC) and physical layer (PHY) specifications 1997Pollin, S., Ergen, M., Ergen, S. C., Bougard, B., Der Perre, L. V., Moerman, I., … Catthoor, F. (2008). Performance Analysis of Slotted Carrier Sense IEEE 802.15.4 Medium Access Layer. IEEE Transactions on Wireless Communications, 7(9), 3359-3371. doi:10.1109/twc.2008.060057Xinhua Ling, Yu Cheng, Mark, J. W., & Xuemin Shen. (2008). A Renewal Theory Based Analytical Model for the Contention Access Period of IEEE 802.15.4 MAC. IEEE Transactions on Wireless Communications, 7(6), 2340-2349. doi:10.1109/twc.2008.070048Lee, C. Y., Cho, H. I., Hwang, G. U., Doh, Y., & Park, N. (2011). Performance modeling and analysis of IEEE 802.15.4 slotted CSMA/CA protocol with ACK mode. AEU - International Journal of Electronics and Communications, 65(2), 123-131. doi:10.1016/j.aeue.2010.02.007Wang, F., Zhao, Y., & Li, D. (2011). Analysis of CSMA/CA in IEEE 802.15.4. IET Communications, 5(15), 2187-2195. doi:10.1049/iet-com.2010.1007Zhu, J., Tao, Z., & Lv, C. (2011). Performance Evaluation of IEEE 802.15.4 CSMA/CA Scheme Adopting a Modified LIB Model. Wireless Personal Communications, 65(1), 25-51. doi:10.1007/s11277-011-0226-6Shu F Sakurai T Analysis of an energy conserving CSMA-CA GLOBECOM Washington DC, U.S. 2007 2536 2540Shu, F., & Sakurai, T. (2011). A new analytical model for the IEEE 802.15.4 CSMA-CA protocol. Computer Networks, 55(11), 2576-2591. doi:10.1016/j.comnet.2011.04.017Cano-Garcia, J. M., & Casilari, E. (2011). An empirical evaluation of the consumption of 802.15.4/ZigBee sensor motes in noisy environments. 2011 International Conference on Networking, Sensing and Control. doi:10.1109/icnsc.2011.5874886Baz, M., Mitchell, P. D., & Pearce, D. A. J. (2013). Versatile Analytical Model for Delay and Energy Evaluation in WPANs: A Case Study for IEEE 802.15.4 CSMA-CA. Wireless Personal Communications, 75(1), 415-445. doi:10.1007/s11277-013-1370-yLiu Q Czylwik A A priority-based adaptive service differentiation scheme for IEEE 802.15.4 sensor networks Proceedings of European Wireless 2014; 20th European Wireless Conference Barcelona, Spain 2014 1 6Golmie, N., Cypher, D., & Rebala, O. (s. f.). Performance evaluation of low rate WPANs for medical applications. IEEE MILCOM 2004. Military Communications Conference, 2004. doi:10.1109/milcom.2004.1494952Misic, J., Misic, V. B., & Shafi, S. (s. f.). Performance of IEEE 802.15.4 beacon enabled PAN with uplink transmissions in non-saturation mode - access delay for finite buffers. First International Conference on Broadband Networks. doi:10.1109/broadnets.2004.61Mišić, J., Shafi, S., & Mišić, V. B. (2005). The impact of MAC parameters on the performance of 802.15.4 PAN. Ad Hoc Networks, 3(5), 509-528. doi:10.1016/j.adhoc.2004.08.002Anastasi, G., Conti, M., & Di Francesco, M. (2011). A Comprehensive Analysis of the MAC Unreliability Problem in IEEE 802.15.4 Wireless Sensor Networks. IEEE Transactions on Industrial Informatics, 7(1), 52-65. doi:10.1109/tii.2010.2085440Lee, B.-H., Al Rasyid, M. U. H., & Wu, H.-K. (2012). Analysis of superframe adjustment and beacon transmission for IEEE 802.15.4 cluster tree networks. EURASIP Journal on Wireless Communications and Networking, 2012(1). doi:10.1186/1687-1499-2012-219Zimmerling, M., Ferrari, F., Mottola, L., Voigt, T., & Thiele, L. (2012). pTunes. Proceedings of the 11th international conference on Information Processing in Sensor Networks - IPSN ’12. doi:10.1145/2185677.2185730Rohm, D., Goyal, M., Hosseini, H., Divjak, A., & Bashir, Y. (2009). Configuring Beaconless IEEE 802.15.4 Networks Under Different Traffic Loads. 2009 International Conference on Advanced Information Networking and Applications. doi:10.1109/aina.2009.84Jin-Shyan Lee. (2006). Performance evaluation of IEEE 802.15.4 for low-rate wireless personal area networks. IEEE Transactions on Consumer Electronics, 52(3), 742-749. doi:10.1109/tce.2006.1706465De Paz Alberola, R., & Pesch, D. (2012). Duty cycle learning algorithm (DCLA) for IEEE 802.15.4 beacon-enabled wireless sensor networks. Ad Hoc Networks, 10(4), 664-679. doi:10.1016/j.adhoc.2011.06.006Barbieri, A., Chiti, F., & Fantacci, R. (2006). WSN17-2: Proposal of an Adaptive MAC Protocol for Efficient IEEE 802.15.4 Low Power Communications. IEEE Globecom 2006. doi:10.1109/glocom.2006.989Jeon, J., Lee, J. W., Ha, J. Y., & Kwon, W. H. (2007). DCA: Duty-Cycle Adaptation Algorithm for IEEE 802.15.4 Beacon-Enabled Networks. 2007 IEEE 65th Vehicular Technology Conference - VTC2007-Spring. doi:10.1109/vetecs.2007.35Kang, M., Chong, J., Hyun, H., Kim, S., Jung, B., & Sung, D. (2007). Adaptive Interference-Aware Multi-Channel Clustering Algorithm in a ZigBee Network in the Presence of WLAN Interference. 2007 2nd International Symposium on Wireless Pervasive Computing. doi:10.1109/iswpc.2007.342601Yi, P., Iwayemi, A., & Zhou, C. (2011). Developing ZigBee Deployment Guideline Under WiFi Interference for Smart Grid Applications. IEEE Transactions on Smart Grid, 2(1), 110-120. doi:10.1109/tsg.2010.2091655Tang, L., Wang, K.-C., Huang, Y., & Gu, F. (2007). Channel Characterization and Link Quality Assessment of IEEE 802.15.4-Compliant Radio for Factory Environments. IEEE Transactions on Industrial Informatics, 3(2), 99-110. doi:10.1109/tii.2007.898414Sha M Xing G Zhou G Liu S Wang X C-MAC: model-driven concurrent medium access control for wireless sensor networks IEEE INFOCOM 2009 Rio de Janeiro, Brazil 2009 1845 1853 10.1109/INFCOM.2009.5062105Peizhong Yi, Iwayemi, A., & Chi Zhou. (2010). Frequency agility in a ZigBee network for smart grid application. 2010 Innovative Smart Grid Technologies (ISGT). doi:10.1109/isgt.2010.5434747Torabi N Wong W Leung VCM A robust coexistence scheme for IEEE 802.15.4 wireless personal area networks IEEE Consumer Communications and Networking Conference (CCNC) Las Vegas, U.S. 2011 1031 1035 10.1109/CCNC.2011.5766322IEEE standard for local and metropolitan area networks - part 15.6: wireless body area networks IEEE Std 802.15.6-2012 2012 1 271 10.1109/IEEESTD.2012.6161600Kim, S., Kim, S., Kim, J.-W., & Eom, D.-S. (2012). Flexible beacon scheduling scheme for interference mitigation in body sensor networks. 2012 9th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON). doi:10.1109/secon.2012.6275772Bradai N Fourati LC Kamoun L Performance analysis of medium access control protocol for wireless body area networks 27th International Conference on Advanced Information Networking and Applications Workshops (WAINA) Barcelona, Spain 2013 916 921Moravejosharieh A Yazdi ET Study of resource utilization in IEEE 802.15.4 wireless body sensor network, part I: the need for enhancement IEEE 16th International Conference on Computational Science and Engineering (CSE) Sydney, Australia 2013 1226 1231Moravejosharieh A Yazdi ET Willig A Study of resource utilization in IEEE 802.15.4 wireless body sensor network, part II: greedy channel utilization 19th IEEE International Conference on Networks (ICON) Singapore 2013 1 6Moravejosharieh A Yazdi E Willig A Pawlikowski K Adaptive channel utilisation in IEEE 802.15.4 wireless body sensor networks: continuous hopping approach Australasian Telecommunication Networks and Applications Conference (ATNAC) Melbourne, Australia 2014 93 98 10.1109/ATNAC.2014.7020880Moravejosharieh, A. H. (2015). Frequency-Adaptive Approach In IEEE 802.15.4 Wireless Body Sensor Networks: Continuous-Assessment or Periodic-Assessment? International Journal of Information, Communication Technology and Applications, 1(1), 19. doi:10.17972/ajicta2015113Moravejosharieh A Yazdi E Pawlikowski K Sirisena H Adaptive channel utilisation in IEEE 802.15.4 wireless body sensor networks: adaptive phase-shifting approach International Telecommunication Networks and Applications Conference (ITNAC) Sydney, Australia 2015 93 98Bian, K., Park, J.-M., & Gao, B. (2014). Channel Assignment for Multi-hop Cognitive Radio Networks. Cognitive Radio Networks, 101-116. doi:10.1007/978-3-319-07329-3_6Bian, K., Park, J.-M., & Gao, B. (2014). Coexistence-Aware Spectrum Sharing for Homogeneous Cognitive Radio Networks. Cognitive Radio Networks, 61-75. doi:10.1007/978-3-319-07329-3_4Wu C Yan H Huo H A multi-channel MAC protocol design based on IEEE 802.15.4 standard in industry 2012 10th IEEE International Conference on Industrial Informatics (INDIN) Beijing, China 2012 1206 1211 10.1109/INDIN.2012.6300916Incel, O. D. (2011). A survey on multi-channel communication in wireless sensor networks. Computer Networks, 55(13), 3081-3099. doi:10.1016/j.comnet.2011.05.020Kim Y Shin H Cha H Y-MAC: an energy-efficient multi-channel MAC protocol for dense wireless sensor networks Proceedings of the 7th International Conference on Information Processing in Sensor Networks IPSN '08 St. Louis MO, U.S. 2008 53 63Demirkol, I., Ersoy, C., & Alagoz, F. (2006). MAC protocols for wireless sensor networks: a survey. IEEE Communications Magazine, 44(4), 115-121. doi:10.1109/mcom.2006.1632658Wykret T Correia L Macedo D Giacomin J Andrade L Evaluation and avoidance of interference in WSN: a multi-radio node prototype using dynamic spectrum allocation IFIP Wireless Days (WD) Valencia, Spain 2013 1 3 10.1109/WD.2013.6686533Doyle L Sutton P Nolan K Lotze J Ozgul B Rondeau T Fahmy S Lahlou H DaSilva L Experiences from the IRIS testbed in dynamic spectrum access and cognitive radio experimentation IEEE Symposium on New Frontiers in Dynamic Spectrum Singapore 2010 1 8 10.1109/DYSPAN.2010.5457835Ansari, J., Zhang, X., & Mahonen, P. (2010). Multi-radio medium access control protocol for wireless sensor networks. International Journal of Sensor Networks, 8(1), 47. doi:10.1504/ijsnet.2010.034066Liu Z Wu W A dynamic multi-radio multi-channel MAC protocol for wireless sensor networks 2nd International Conference on Communication Software and Networks (ICCSN) Singapore 2010 105 109Xu, W., Trappe, W., & Zhang, Y. (2008). Defending wireless sensor networks from radio interference through channel adaptation. ACM Transactions on Sensor Networks, 4(4), 1-34. doi:10.1145/1387663.1387664Kim Y Shin H Cha H Y-MAC: an energy-efficient multi-channel MAC protocol for dense wireless sensor networks Proceedings of the 7th IEEE Computer Society International Conference on Information Processing in Sensor Networks IPSN '08 Washington, DC, USA 2008 53 63Tae Hyun Kim, Jae Yeol Ha, & Sunghyun Choi. (2009). Improving Spectral and Temporal Efficiency of Collocated IEEE 802.15.4 LR-WPANs. IEEE Transactions on Mobile Computing, 8(12), 1596-1609. doi:10.1109/tmc.2009.85Chowdhury, K. R., Nandiraju, N., Chanda, P., Agrawal, D. P., & Zeng, Q.-A. (2009). Channel allocation and medium access control for wireless sensor networks. Ad Hoc Networks, 7(2), 307-321. doi:10.1016/j.adhoc.2008.03.004Deylami, M., & Jovanov, E. (2012). A distributed and collaborative scheme for mitigating coexistence in IEEE 802.15.4 based WBANs. Proceedings of the 50th Annual Southeast Regional Conference on - ACM-SE ’12. doi:10.1145/2184512.2184514Deylami, M. N., & Jovanov, E. (2014). A Distributed Scheme to Manage The Dynamic Coexistence of IEEE 802.15.4-Based Health-Monitoring WBANs. IEEE Journal of Biomedical and Health Informatics, 18(1), 327-334. doi:10.1109/jbhi.2013.2278217Deylami M Jovanov E An implementation of a distributed scheme for managing the dynamic coexistence of wireless body area networks Southeastcon, 2013 Proceedings of IEEE Jacksonville, U.S. 2013 1 6 10.1109/SECON.2013.6567446Cavallari, R., Martelli, F., Rosini, R., Buratti, C., & Verdone, R. (2014). A Survey on Wireless Body Area Networks: Technologies and Design Challenges. IEEE Communications Surveys & Tutorials, 16(3), 1635-1657. doi:10.1109/surv.2014.012214.00007Chen, M., Gonzalez, S., Vasilakos, A., Cao, H., & Leung, V. C. M. (2010). Body Area Networks: A Survey. Mobile Networks and Applications, 16(2), 171-193. doi:10.1007/s11036-010-0260-8Movassaghi, S., Abolhasan, M., Lipman, J., Smith, D., & Jamalipour, A. (2014). Wireless Body Area Networks: A Survey. IEEE Communications Surveys & Tutorials, 16(3), 1658-1686. doi:10.1109/surv.2013.121313.00064Patel, M., & Wang, J. (2010). Applications, challenges, and prospective in emerging body area networking technologies. IEEE Wireless Communications, 17(1), 80-88. doi:10.1109/mwc.2010.5416354ULLAH, S., KHAN, P., ULLAH, N., SALEEM, S., HIGGINS, H., & Sup KWAK, K. (2009). A Review of Wireless Body Area Networks for Medical Applications. International Journal of Communications, Network and System Sciences, 02(08), 797-803. doi:10.4236/ijcns.2009.28093Boulis, A., Smith, D., Miniutti, D., Libman, L., & Tselishchev, Y. (2012). Challenges in body area networks for healthcare: the MAC. IEEE Communications Magazine, 50(5), 100-106. doi:10.1109/mcom.2012.6194389Pantelopoulos A Bourbakis N A survey on wearable biosensor systems for health monitoring 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society Vancouver, Canada 2008 4887 4890 10.1109/IEMBS.2008.4650309Takei, K., Honda, W., Harada, S., Arie, T., & Akita, S. (2014). Toward Flexible and Wearable Human-Interactive Health-Monitoring Devices. Advanced Healthcare Materials, 4(4), 487-500. doi:10.1002/adhm.201400546Caldeira, J. M. L. P., Rodrigues, J. J. P. C., & Lorenz, P. (2013). Intra-Mobility Support Solutions for Healthcare Wireless Sensor Networks–Handover Issues. IEEE Sensors Journal, 13(11), 4339-4348. doi:10.1109/jsen.2013.2267729Carrano, R. C., Passos, D., Magalhaes, L. C. S., & Albuquerque, C. V. N. (2014). Survey and Taxonomy of Duty Cycling Mechanisms in Wireless Sensor Networks. IEEE Communications Surveys & Tutorials, 16(1), 181-194. doi:10.1109/surv.2013.052213.00116Sudevalayam, S., & Kulkarni, P. (2011). Energy Harvesting Sensor Nodes: Survey and Implications. IEEE Communications Surveys & Tutorials, 13(3), 443-461. doi:10.1109/surv.2011.060710.00094Khanafer, M., Guennoun, M., & Mouftah, H. T. (2014). A Survey of Beacon-Enabled IEEE 802.15.4 MAC Protocols in Wireless Sensor Networks. IEEE Communications Surveys & Tutorials, 16(2), 856-876. doi:10.1

    City Data Fusion: Sensor Data Fusion in the Internet of Things

    Full text link
    Internet of Things (IoT) has gained substantial attention recently and play a significant role in smart city application deployments. A number of such smart city applications depend on sensor fusion capabilities in the cloud from diverse data sources. We introduce the concept of IoT and present in detail ten different parameters that govern our sensor data fusion evaluation framework. We then evaluate the current state-of-the art in sensor data fusion against our sensor data fusion framework. Our main goal is to examine and survey different sensor data fusion research efforts based on our evaluation framework. The major open research issues related to sensor data fusion are also presented.Comment: Accepted to be published in International Journal of Distributed Systems and Technologies (IJDST), 201

    Context Aware Computing for The Internet of Things: A Survey

    Get PDF
    As we are moving towards the Internet of Things (IoT), the number of sensors deployed around the world is growing at a rapid pace. Market research has shown a significant growth of sensor deployments over the past decade and has predicted a significant increment of the growth rate in the future. These sensors continuously generate enormous amounts of data. However, in order to add value to raw sensor data we need to understand it. Collection, modelling, reasoning, and distribution of context in relation to sensor data plays critical role in this challenge. Context-aware computing has proven to be successful in understanding sensor data. In this paper, we survey context awareness from an IoT perspective. We present the necessary background by introducing the IoT paradigm and context-aware fundamentals at the beginning. Then we provide an in-depth analysis of context life cycle. We evaluate a subset of projects (50) which represent the majority of research and commercial solutions proposed in the field of context-aware computing conducted over the last decade (2001-2011) based on our own taxonomy. Finally, based on our evaluation, we highlight the lessons to be learnt from the past and some possible directions for future research. The survey addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT. Our goal is not only to analyse, compare and consolidate past research work but also to appreciate their findings and discuss their applicability towards the IoT.Comment: IEEE Communications Surveys & Tutorials Journal, 201

    Smart Computing and Sensing Technologies for Animal Welfare: A Systematic Review

    Get PDF
    Animals play a profoundly important and intricate role in our lives today. Dogs have been human companions for thousands of years, but they now work closely with us to assist the disabled, and in combat and search and rescue situations. Farm animals are a critical part of the global food supply chain, and there is increasing consumer interest in organically fed and humanely raised livestock, and how it impacts our health and environmental footprint. Wild animals are threatened with extinction by human induced factors, and shrinking and compromised habitat. This review sets the goal to systematically survey the existing literature in smart computing and sensing technologies for domestic, farm and wild animal welfare. We use the notion of \emph{animal welfare} in broad terms, to review the technologies for assessing whether animals are healthy, free of pain and suffering, and also positively stimulated in their environment. Also the notion of \emph{smart computing and sensing} is used in broad terms, to refer to computing and sensing systems that are not isolated but interconnected with communication networks, and capable of remote data collection, processing, exchange and analysis. We review smart technologies for domestic animals, indoor and outdoor animal farming, as well as animals in the wild and zoos. The findings of this review are expected to motivate future research and contribute to data, information and communication management as well as policy for animal welfare
    corecore